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Abstract

Many communication systems are poorly modelled by the standard channels assumed in the
information theory literature, such as the binary symmetric channel or the additive white
Gaussian noise channel. Real systems suffer from additional problems including time-varying
noise, cross-talk, synchronization errors and latency constraints. In this thesis, low-density
parity-check codes and codes related to them are applied to non-standard channels.

First, we look at time-varying noise modelled by a Markov channel. A low-density parity-
check code decoder is modified to give an improvement of over 1dB.

Secondly, novel codes based on low-density parity-check codes are introduced which pro-
duce transmissions with Pr(bit = 1) 6= Pr(bit = 0). These non-linear codes are shown to be
good candidates for multi-user channels with crosstalk, such as optical channels.

Thirdly, a channel with synchronization errors is modelled by random uncorrelated inser-
tion or deletion events at unknown positions. Marker codes formed from low-density parity-
check codewords with regular markers inserted within them are studied. It is shown that
a marker code with iterative decoding has performance close to the bounds on the channel
capacity, significantly outperforming other known codes.

Finally, coding for a system with latency constraints is studied. For example, if a telemetry
system involves a slow channel some error correction is often needed quickly whilst the code
should be able to correct remaining errors later. A new code is formed from the intersection
of a convolutional code with a high rate low-density parity-check code. The convolutional
code has good early decoding performance and the high rate low-density parity-check code
efficiently cleans up remaining errors after receiving the entire block. Simulations of the block
code show a gain of 1.5dB over a standard NASA code.
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Chapter 1

Introduction

1.1 Forward Error Correction

We are all familiar with noise on the radio. If the noise level gets so high that we miss

something, we can not get back what we missed. This is a common problem in many areas

of communication and has led to the development of “forward error-correction” or “channel

coding”. In forward error-correction we add extra redundancy to our original signal and then

hope we can reconstruct the original transmission from this new signal when it is corrupted

by noise. In 1948 Shannon [93] showed that there was a theoretical solution that would allow

an arbitarily small probability of error under certain constraints. This thesis will look at

situations where these constraints do not hold or are not suitable.

We will look at the field of binary communication – where we transmit a sequence of 0s

and 1s over a system like that illustrated in figure 1.1. For example, on a fibre optic channel

1s could correspond to the presence of light and 0s to no light. This is one possible type of

modulation; many modulation schemes exist for different types of channel [81]. The receiver

observes the original sequence corrupted by noise. There are two main classes of receivers.

“Hard-decision” receivers report a best guess of each transmitted symbol (for the fibre-optic

channel this could be obtained from a threshold of the observed light level). “Soft-decision”

receivers report analogue information, ideally Pr(received signal|transmitted bit = 1) and

User data Error−correcting
encoder Transmitter

Noisy channel

ReceiverError−correcting
decoderUser data

s x

x

s

Figure 1.1: Schematic of a communication system
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CHAPTER 1. INTRODUCTION 2

Pr(received signal|transmitted bit = 0). For the fibre-optic channel this could be obtained by

observing the light intensity and using a knowledge of the channel characteristics. In Appendix

B.1 simple standard channel models that approximate some real systems are presented.

In forward-error correction we are interested in forming an error-correcting code – a set

of allowed sequences, E. Redundancy for forward-error correction can then be obtained as

not all sequences are allowed. We define a one-to-one mapping from input sequences s to

transmitted sequences x ∈ E. In this thesis we will look at codes where there is a fixed ratio

between the length of these sequences, R = length s

length x
. R is a measure of redundancy called the

code rate and corresponds to the number of information bits carried per symbol transmitted

on the channel.

There are two main classes of error-correcting codes. The first are block codes for which

length s and lengthx are fixed. Lengthx is the blocksize of the code, commonly given the

symbol N . The second class are stream or convolutional codes for which only R is fixed

and there are no block boundaries. Commonly stream codes are implemented by an encoder

which, for example, outputs 2 bits for every 1 bit of input. This would then define a stream

code of R = 1/2.

1.2 Random codes

Shannon [93] showed that on a channel with stationary ergodic noise of a fixed power there

exists a rate C called the channel capacity. For R < C transmission at an arbitarily small error

probability is possible with a large random block code (meaning that the set of codewords is

chosen at random). For R > C arbitrarily reliable transmission is not possible.

To get a particular error probability with a random block code one needs to choose the

blocksize N . To get a smaller error probability, N needs to be larger. For a code to be

practical we would like an O(N) complexity encoder and decoder so we can choose a larger

blocksize without a penalty on the amount of computation per bit. Random block codes

are not practical. One could imagine a simple encoder and decoder based on the set of

codewords. Such an encoder and decoder are both O(NeN ) in space as they need to store

all the codewords (there are O(eN ) codewords each of length N). The maximum-likelihood

decoder is O(NeN ) in time – the decoder looks through every codeword and evaluates the

probability of the received signal having been produced by the channel given that codeword.

More elaborate algorithms could be used, for example with decision trees, but no algorithm

is known that is better than exponential [69].

So instead more structured codes with tractable encoders and decoders were studied.

1.3 Algebraic coding theory

Algebraic coding theory mainly deals with noise from the binary symmetric channel (as

defined in appendix B.1) which flips bits with probability pf . The simplest family of error-
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correcting codes for such a channel are the repetition codes RN . For the binary case RN

consists of two codewords: the codeword of N 1s and the codeword of N 0s. The code has

R = 1/N . To encode, we take one input bit and repeat it N times. On receiving an RN

codeword corrupted by a binary symmetric channel, the maximum likelihood decoder returns

the bit that forms the majority of the received noisy codeword (if pf < 1/2) [71].

In [50] the idea of looking at error-correcting codes from the point of view of the “minimum

distance”, dmin, was introduced. One can define a distance (the Hamming distance) between

two codewords as the number of positions where the codewords have different bits. dmin is

the minimum distance between any two codewords in the code. For the RN code dmin = N

as the only pair of codewords differ in every position.

One can characterise the maximum number of bit flips that a code can always correct: a

code can always correct
⌊

dmin−1
2

⌋
bit flip errors [45]. For example the R3 code can correct 1

bit-flip error as one wrong “vote” can always be overruled in a set of three “votes”. The R2

code can not correct a single bit-flip error.

Algebraic coding focused on the development of codes with high values of dmin for par-

ticular values of R and N . Many clever codes have been developed [10, 44, 52, 84, 85] with

“bounded-distance” decoders that allow the one codeword (if it exists) within a distance of⌊
dmin−1

2

⌋
or less of the received word to be found with tractable algorithms (polynomial time).

For a summary of algebraic coding with decoding up to dmin/2 see [7]. Decoders for algebraic

codes which can decode slightly beyond dmin/2 are starting to appear [47, 75].

The Gilbert-Varshamov lower bound [43] (which is believed to be tight [71]) says that for

any binary code

R ≈ 1 − H2(dmin/N) (1.1)

where H2(·) is the binary entropy (see appendix A for a definition of H2(·) and other informa-

tion theory concepts). If we set the expected number of bit flip errors to be the same as the best

we hope to be able to successfully decode with a bounded-distance decoder (Npf ≈ dmin/2),

we get a maximum code rate of

R ≈ 1 − H2(2pf ) (1.2)

whereas Shannon says the capacity of a binary symmetric channel is

C = 1 − H2(pf ) (1.3)

So a bounded-distance decoder has a fundamental problem: if one decodes a code with such a

decoder it is impossible to reach Shannon’s channel capacity for the BSC. To achieve capacity

we need to generally be able to decode to twice the minimum distance.
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dmin
2

Figure 1.2: A schematic illustration of the space around a codeword (after [71]). The jagged
edge is the boundary inside which the chosen codeword is the closest. The space where a
bounded distance decoder works takes up a small fraction of the allowed space. The dia-
gram has to be schematic as a codeword lives in N -dimensional Hamming space, not the
2-dimensional Euclidean space of the page.

1.4 Modern Coding

At low noise levels it is important to look at the number of codewords at the minimum

distance – for many codes this is low. In a high dimensional space the probability of a random

direction from a codeword heading towards a particular codeword is low. Berlekamp visualises

the space around a codeword as a “bat cave” [6]. One can draw the idea schematically in

2-dimensions, figure 1.2. A bat heading off in a random direction has a low chance of hitting

the edge of the cave in a distance of approximately dmin/2. If the noise level is such that

about dmin/2 errors occur, decoding errors are caused by codewords at small distance. If the

number of these codewords is low the error probability is small.

At higher noise levels, errors are caused by codewords at larger distance as there are more

of them within reach. To create a code with good general performance we need to worry

about the number of codewords at all distances (the distance spectrum). For a random code

an excursion in most directions can reach a distance of more like dmin without hitting the

edge.

With the development of Turbo codes in 1993 [8, 9], it was realised that practical codes that

allow capacity-approaching performance were possible. At about the same time low-density

parity-check codes were rediscovered [67] and have been shown to get within a whisker of

the capacity of the additive white Gaussian noise (AWGN) channel with large block size [18].

Both of these families of codes are random-like block codes [3].

The AWGN channel is not a good model for many real systems and the large block sizes
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of these modern codes can be a problem. In this thesis we will look mainly at low-density

parity-check codes, but apply them to systems with more difficult noise models and blocksize

constraints.

1.5 Thesis outline

In Chapter 2 low-density parity-check codes will be presented in detail.

We will then break away from the symmetric memoryless channel. Many channels suffer

from noise whose power varies with time so we will test the performance of low-density parity-

check codes on channels with bursts in Chapter 3. In Chapter 4 channels for which the noise

varies depending on other users’ behaviour will be presented, and in Chapters 5 and 6 two

different coding solutions for these multi-user channels using non-linear modifications to low-

density parity-check codes will be shown. A further type of channel will be presented in

Chapter 7, a channel that suffers from synchronization errors. A concatenated coding scheme

will be shown to be effective on this channel.

Finally we examine the issue of latency; we present a method to get good performance

early, without needing to wait to receive a large block. Convolutional codes will be presented

in Chapter 8. In Chapter 9 these codes will then be used in conjuction with low-density parity-

check codes to develop a system with good latency properties as well as good performance

over a larger block size.

Appendices A to F present background information on topics in communication theory.

Appendix G presents an interesting application of Hamming codes. Appendix H has a detailed

complexity evaluation of low-density parity-check decoding. Appendix I describes the theory

behind the Gaussian approximation in EXIT charts.



Chapter 2

Low-Density Parity-Check Codes

2.1 History

Low-density parity-check codes were introduced by Gallager in the early 60’s [39]. They are

a class of linear block codes defined by a sparse parity-check matrix, H. The parity-check

matrix consists of entries which are mostly zeros, for example figure 2.1. The codewords of a

linear block code are defined as:

E = {x : Hx = 0} (2.1)

H has N columns and generally M < N independent rows. By viewing each row as an

equation in a system of M equations with N unknowns, the code rate R of a code defined

over GF(2) can be seen to be (N −M)/N . See Appendix D for further details on linear block

codes.

In the literature, asymptotic performance results are shown over sequences of codes with

increasing N . For instance, a sequence could be defined by a set of random-like H with a

column weight of three (exactly three 1s per column) and R = 1/2. Figure 2.1 would be a

H =


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Figure 2.1: An N = 100, M = 50, R = 1/2, GF(2) low-density parity-check matrix with 3 1s
per column. The zero elements have been left blank for clarity.
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member of this sequence for N = 100.

Gallager showed that the codes were “good” on a symmetric memoryless channel – se-

quences of codes exist that achieve arbitarily reliable communication at a rate below the

channel capacity with a maximum likelihood decoder. However the codes were largely for-

gotten for the next thirty years.

After the invention of turbo codes [8], low-density parity-check codes were “rediscovered”

in 1995 [67]. In [70] it was proved that low-density parity-check codes were “very good” –

sequences of codes exist that achieve reliable communication at rates up to the channel ca-

pacity with a maximum likelihood decoder. This was proved for any symmetric stationary

ergodic noise.

In a special issue of the IEEE Transactions in Information Theory [56] many important

remaining questions on the practicality of the codes were answered. Firstly low-density parity-

check codes were shown to be “good” with a practical decoding algorithm [87]. Secondly a way

of choosing the sequence of codes to achieve capacity-approaching performance was shown

[86]. Thirdly an efficient encoding algorithm was presented [88]. Simulations of codes have

since shown performance within 0.04dB of the Shannon Limit at a bit error probability of

10−6 on the additive white Gaussian noise (AWGN) channel [18].

These codes are all based on a random-like construction. Work on more structured ap-

proaches continues [60, 72]. In most work the codes have been defined over GF(2), but work

on codes defined over larger fields has been promising [23]. We will mainly deal with binary

random-like codes.

Low-density parity-check codes are now starting to break out of academia with current

attempts to incorporate them in standards for video transmission [29] and space communica-

tions [21]. Text books covering the codes are starting to appear [37, 71, 89].

2.2 Belief Propagation Decoding

In this thesis we will use a technique for inference called belief propagation [79]. The technique

allows one to take a graph describing the inter-relationships between variables in a system and

obtain approximate marginalised probabilities of each variable. Belief propagation can then

be used to approximately infer the state of hidden variables from observed variables. To be

more specific we will look initially at belief propagation decoding of low-density parity-check

codes on a memoryless channel [39]; this is the best known practical decoding algorithm [18].

In this case, the observed variables are as received from the channel and the hidden variables

represent the true transmitted codeword.

For a low-density parity-check code each row of the parity-check matrix provides a rela-

tionship. We form a graph by starting with nodes corresponding to each variable (xi) which

we call the variable (or symbol) nodes. For each row we add a check node. We then add

an arc (or link) for each non-zero member of H connecting the variable node corresponding

to the column and the check node corresponding to the row of the non-zero member. The
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Figure 2.2: A graph fragment corresponding to Equation 2.2. Filled and open circles represent
the check nodes and symbol nodes respectively. In this example the row and column weights
are 3 and 2 respectively.

graph has the form that each check node provides the constraint that the sum of the variables

corresponding to the connected nodes is 0. A valid codeword is formed from a setting of the

variable nodes such that the constraints of all the check nodes are satisfied. A parity-check

matrix fragment:

H =




1 1 0 · · ·
0 1 1 · · ·
...

...
...

. . .


 (2.2)

creates the bipartite graph fragment shown in figure 2.2. This type of graph is called a factor

graph; further details on factor graphs are in appendix F.

A decoder typically receives as its input a set of probabilities fi = Pr(bit i = 1). Belief

propagation then gives us an estimate of the most likely setting for each bit x̂i given the

constraints of the code. Belief propagation is an iterative message-passing algorithm which

involves local computation in each node and messages passed on the arcs of the graph between

nodes. New messages are based on the received channel signal and existing messages. It is

hoped that, as we iterate, the messages stabilise. This stable state should ideally have the best

guesses of the symbol nodes forming a codeword and that this codeword would be the same

as that given by a maximum likelihood decoder. At a fixed noise level the algorithm typically

takes the same number of iterations regardless of block size [70]. Therefore the algorithm

is computationally O(N) and is practical. See appendix H for a more exact complexity

evaluation.

We approach the algorithm from a local viewpoint by presenting a self-consistent set of

message update formulas for each type of node. In appendix F we present an alternative

viewpoint.

In the following algorithm description Gij is the condition that a link exists between check

node i and symbol node j (ie Gij is true if and only if Hij =1).
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2.2.1 Check Node Computation

Each check node i sends to a connected symbol node j the message Ra
ij that is an approxi-

mation to the probability that check i is satisfied given symbol j is a:

Ra
ij = Pr(

∑
l Hilxl =0|xj =a) (2.3)

=
∑

� :xj=a

Pr(
∑

l Hilxl =0|x) Pr(x|xj =a) (2.4)

where x is the transmitted vector. We observe that the first term is an indicator as to whether

a setting of x is in the set of the valid codewords of the check node (Ci). This indicator is

used to restrict the summation. The second term can be approximately expanded in terms

of the messages from connected variable nodes Qa
ij (an approximation to the probability that

symbol j is a according to the check nodes other than i and the channel probabilities) to give:

Ra
ij ≈

∑
� ∈Ci:xj=a

∏

k:k 6=j,Gik

Qxk

ik (2.5)

Equation 2.5 can be evaluated by the forward-backward algorithm [2].

2.2.2 Symbol Node Computation

We want to evaluate both the messages to be passed from a symbol node j to a connected

check node i, Qa
ij , and a tentative decoding for that symbol node. Qa

ij is an approximation to

the probability that symbol j is a according to the channel probabilities and the check nodes

other than i – the symbol Si is used below to indicate that check node i is satisfied:

Qa
ij = Pr(xj =a|{S1 . . . Si−1, Si+1 . . . SM},f) (2.6)

where f is the “prior” probability that symbol j is a (this in general includes the channel

likelihoods). We condition on only the connected check nodes:

Qa
ij ≈ Pr(xj =a|{Sk : Gkj , k 6= i},f) (2.7)

We can then use Bayes’s Theorem to get:

Qa
ij ≈ Zij Pr(xj =a|f) Pr({Sk : Gkj , k 6= i}|xj =a) (2.8)

where Zij is a normalizing constant. Finally we expand the latter term as a product of

messages from the check nodes and select just the individual “prior” needed:

Qa
ij ≈ Zijfj(a)

∏

k:k 6=i,Gkj

Ra
kj (2.9)
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The tentative decoding for symbol j is:

x̂j = arg max
a

(Pr(xj =a|{S1 . . . SM},f)) (2.10)

≈ arg max
a

(Pr(xj =a|{Sk : Gkj},f)) (2.11)

≈ arg max
a


fj(a)

∏

k:Gkj

Ra
kj


 (2.12)

2.2.3 Iteration

Qa
ij is initialized to fi(a). Messages are then passed on the bipartite graph. We typically

update all the check nodes, followed by all the symbol nodes and then repeat until a successful

decoding results or a maximum number of steps has been taken. In simulations this maximum

was typically taken to be 500 iterations.

2.3 Construction

To create a code we start by choosing parameters for a sequence of codes over increasing

N . These parameters are the proportions of columns (and rows) of fixed weight – this set of

proportions is called the column (or row) profile. The term “degree sequence” is also used for

these parameters. If all the columns are the same weight, then the code is called regular –

having a column weight j = 3 is common. Otherwise the code is called irregular. The exact

row profile in general is less important to the performance of the code than the column profile

[66, 86]. We choose a sequence and then create an instance of it at a particular N .

There are two problems to be addressed in creating good practical codes [37]:

1. We want the code to give excellent performance under maximum likelihood decoding,

2. We want the code to give good performance when used with a practical decoder.

Both of these affect the choice of sequence and how we choose a member of the sequence.

The first proofs of the performance of low-density parity-check codes were done with a

maximum likelihood decoder. In [70] MacKay proved that almost-regular codes with j ≥ 3

could obtain “very good” performance (sequences of codes exist that allow an arbitarily small

probability of error, arbitarily close to the channel capacity).

More recently performance under a practical decoding algorithm has been analyzed. Den-

sity evolution [87] follows the messages passed in belief propagation decoding. An assumption

of infinite block size underlies density evolution. Infinite block size corresponds locally to a

graph with no cycles (or loops) called a tree. See figure 2.3 for an illustration of cycles. Under

density evolution, a “threshold” is found; at noise levels higher than the threshold the decod-

ing does not converge and below the threshold the decoding successfully converges. One can

then optimize the row and column profiles to achieve the best threshold [86].



CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 11

(a) 4 cycle (b) 6 cycle

Figure 2.3: Short cycles (or loops) in a graph

Approximate techniques for density evolution exist: Gaussian approximations [19], EXIT

charts (section 7.5) and Monte Carlo approximations (section 6.3.2). Applets to carry out

Gaussian approximations are available on the web [16, 108].

The infinite code has no local cycles – with a finite-size code cycles change the behaviour.

The best thresholds found with density evolution have both columns of weight 2 and very high

weight. For a finite code, the weight-2 columns do not give excellent performance even with

maximum-likelihood decoding. One gets a poor minimum distance with cycles in weight-2

columns – a cycle in weight-2 columns leads to a codeword of weight half the cycle length

[113]. One therefore needs to be careful how the weight-2 columns are arranged and possibly

limit the number used. Belief propagation decoding works well with a sparse parity-check

matrix; the presence of very high weight columns leads to a large performance difference

between infinite and finite block sizes. One needs to impose a maximum column weight to

maintain good performance with a finite block size.

Once we have chosen a sequence with good asymptotic properties we then have the task

of creating a particular member at the desired block size. We need to arrange the 1s in the

M × N parity-check matrix whilst trying to approximate an infinite code by avoiding short

cycles.

We start by placing the weight-2 columns. To avoid low-weight codewords, we create the

columns so they are loop-free. Up to M
2 non-overlapping weight-2 columns can be created

(where M is the number of rows in H). If further columns are required, up to M
2 further

columns can be created that together with the first columns form a single chain, see figure

2.4. We also ensure that if any weight-2 check nodes are present they are not connected solely

to weight-2 variable nodes.

To ensure no short cycles, the remaining links are arranged using a construction similar

to MacKay’s Construction 1A [70]. This involves randomly filling in columns and rows with

the correct number of ones and the constraint that no two columns have an overlap of more

than 1. The construction ensures the presence of no cycles of length 4.

This process creates an ensemble of codes. The best one was chosen from a random sample

using the metric of the largest “girth average” [73]. This metric is the average size of the
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Figure 2.4: Arrangement of M weight-2 columns. The first M/2 are loop-free, the rest link
the others as a chain. If fewer than M weight-2 columns are needed we take as many as we
need, starting from the left-hand side.

smallest cycle in which each variable node is involved.

More complex sequences can be used, for instance the “multi-edge” approach [89, ch. 7].

Alternative techniques for laying out the 1s in a parity-check matrix exist, for example [54].

It is also possible to optimize a finite size code directly [106].

2.4 Basic simulations

To show the behaviour of low-density parity-check codes, simulations are presented on the

AWGN channel and the BSC. The simulation procedure is described in appendix B.

Firstly we show the gain from using a soft-decision rather than a hard-decision receiver

for the AWGN channel. If we threshold a AWGN channel we obtain a BSC. A low-density

parity-check code can in general use any soft information that is available. The simulations,

figure 2.5, are carried out with one regular j = 3 low-density parity-check code. It can be

seen that a gain of approximately 2dB from using soft decisions is obtained.

Good column and row profiles (from [16]) with a maximum column weight of 10 were used

to create irregular codes. Figure 2.6 shows the performance of two irregular codes, one with

a limit of M weight-2 columns (c2) and the other with a limit of M/2 weight-2 columns. The

irregular codes have an error floor where the probability of block error drops slowly at a high

signal-to-noise ratio. It can be seen that as we allow more weight-2 columns the performance

in terms of the waterfall region improves but the error floor worsens.

2.5 Codes over GF(q)

One can define low-density parity-check codes over GF(q) [23]. See appendix C for details of

finite fields. Each symbol in H and hence s and x (the message and the transmitted codeword

respectively) is then a member of the finite field. By using an H defined over GF(2q) we can
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eliminate some cycles that would otherwise be present in the equivalent H defined over GF(2)

[22]. This is expected to improve the performance of the decoding algorithm.

Techniques from binary code construction can be used to arrange the non-zero entries

of the parity-check matrix. In this thesis the values of the non-zero elements were chosen

uniformly at random. The non-zero elements can be chosen so that they maximise the entropy

of the syndrome with the channel model [22].

For GF(2), if any cycle can be made of weight-2 columns then a codeword of weight

half the cycle length exists [113]. For larger finite fields we can look at the “weight” as the

number of non-zero elements in a codeword. With randomly chosen matrix elements, a cycle

in columns of weight 2 causes q−1 codewords of weight half the cycle length with probability
1

q−1 .

The computational cost per iteration of decoding increases with field size. Fourier trans-

form decoding [87] reduces the complexity. See appendix H for details of the complexity of

the algorithms. Even for the binary case using a Fourier transform decoding algorithm can

often reduce the complexity.



Chapter 3

Markov Channels

3.1 Introduction

The study of low-density parity-check codes over channels with memory is a less well developed

field than the application to memoryless channels. Worthen and Stark have described extend-

ing belief propagation to include channel inference [116] and experimental work on channels

with block memory [115]. Eckford has since shown conditions for low-density parity-check

codes to be “good” on Markov channels [31].

Markov channels are a useful bursty channel model because with a sufficient number of

states they can model many noise characteristics [112, 122]. However even a two-state system

shows enough complexity to evaluate how a coding system would perform [101]. Worthen

[114] describes initial work with Markov channels and Wadayama [111] and Garcia-Frias [42]

both have presented results on channels with hard-decision receivers (bit-flipping noise). In

this chapter we will extend these results by looking at both Gaussian noise and bit-flipping

noise two-state Markov channels.

3.2 Markov channels

A Markov channel is defined by a set of states, the transition probabilities between these states

and a noise level for each state. In this chapter this noise will either be bit-flipping noise with

a symmetrical bit-flip probability pf or Gaussian noise with a particular standard deviation.

Each bit transmission has a state associated with it. The channel state for each transmission

is based on the previous state and the state transition probabilities. In the sequence of state

labels, each state has a typical run length; if a particular state has a probability pc of changing

to any different state then:

E(run length) =

∞∑

i=1

i(1 − pc)
i−1pc (3.1)

= 1/pc (3.2)

15



CHAPTER 3. MARKOV CHANNELS 16

50% 0%

1/b

1/b

(b-1)/b(b-1)/b

(a) An example channel model. Each state is represented by a cir-
cle indicating pf and the arrows are labelled with state transition
probabilities.

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 1  10  100

C
ap

ac
ity

 / 
bi

t/c
ha

nn
el

 u
se

Typical burst length (b)

Genie-aided capacity
Gilbert-Elliott capacity

Interleaved capacity

(b) Capacity

Figure 3.1: An example Gilbert-Elliott channel and its capacity

The capacity of the two-state bit-flipping channel (called the Gilbert-Elliott channel) has

been calculated in [77]. Using a simple channel model, figure 3.1(a), the capacity and two

bounds on it were calculated, figure 3.1(b):

Gilbert-Elliott capacity This is calculated by the iterative method in [77]. 1000 bins were

used. It can be seen that for long typical burst lengths the accuracy of the calculation

starts to reduce, causing a deviation from a smooth curve.

Genie-aided capacity This is the capacity when the state of the channel is available to

the decoder. For the example illustrated, the channel then splits into two channels, an

erasure channel (when pf =50%), and a noiseless channel (when pf =0%). The capacity

is then 0.5 since each channel is used half the time.

Interleaved capacity If the Markov properties of the channel state are ignored then the

channel can be considered as a BSC with noise level pf equal to the time-average bit
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Figure 3.2: A sample set of received amplitudes from the transmission of i.i.d. bits over a
Markov channel with two Gaussian noise states separated by 7dB. The average SNR is 0.57dB
with a typical run length of 100 in each state. The transmissions occurring during the noisy
state are shaded.

flip rate. For the example shown this is pf =25%.

When the bursts are very small they are hard to distinguish when decoding, hence as the

typical burst length decreases the Gilbert-Elliott capacity tends to the interleaved capacity.

Conversely as the burst length increases one can detect more easily where the bursts are and

the capacity tends towards the genie-aided capacity.

The capacity for two-state Gaussian noise channels has not been calculated to our knowl-

edge (more complicated finite alphabet channels are addressed in [46]).

3.3 Modifications to the decoding algorithm

The most basic decoding algorithm ignores the time-dependent properties of the channel and

uses the decoding algorithm from section 2.2 with the input likelihoods fi calculated using

the average noise characteristics (like the interleaved capacity). We call this the “No state

estimation” algorithm.

An improvement would be to estimate the channel state history based on the string of

amplitudes received (an example set of received amplitudes is shown in figure 3.2). We can

use the different characteristic forms of the received signal in each of the states to estimate

the state sequence using a standard HMM algorithm, the forward-backward algorithm [28].
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We would like to calculate:

Pr(xi =1|r) =
∑

j∈S

Pr(xi =1|r, sij) Pr(sij|r) (3.3)

=
∑

j∈S

Pr(xi =1|ri, sij) Pr(sij |r) (3.4)

where r is the received signal, S is the set of states and sij represents being in state j at time

i. The first factor can be calculated using Bayes’s theorem and the noise model. The second

factor can be calculated as follows:

Pr(sij|r) ∝ Pr(sij , r) (3.5)

∝ Pr(sij , r1,··· ,i) Pr(r(i+1),··· ,N |r1,··· ,i, sij) (3.6)

∝ Pr(sij , r1,··· ,i) Pr(r(i+1),··· ,N |sij) (3.7)

∝ αijβij by definition (3.8)

α and β are called the forward and backward probabilities and can be evaluated recursively:

αij =
∑

k∈S

Pr(sij|si−1,k) Pr(ri|sij)αi−1,k (3.9)

βij =
∑

k∈S

Pr(si+1,k|sij) Pr(ri+1|si+1,k)βi+1,k (3.10)

using the following boundary conditions:

α0,i = Pr(s0,i) (3.11)

βN,i = 1 (3.12)

This algorithm can be seen as adding extra nodes to the decoding graph which we call channel

nodes, as illustrated in figure 3.3. We call the whole decoding algorithm the “one-off state

estimation” algorithm. This algorithm does not work for bit-flipping channels as Pr(ri|sij) is

independent of sij for i.i.d. transmitted bits.

A further improvement would be to expand the low-density parity-check belief propagation

over these new nodes [116]. In the traditional belief propagation style we have messages gi

coming up from the symbol nodes (using the notation of section 2.2):

ga
i = Pr(xi = a|{Sk : Gki}) (3.13)

= Zi Pr({Sk : Gki}|xj = a) (3.14)

≈ Zi

∏

k

Ra
ki (3.15)
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Figure 3.3: The one-off state estimation algorithm with channel nodes shown in grey

and the computation at each channel node has to be changed:

Pr(xi =1|r, {∀gk : k 6= i}) =
∑

j∈S

Pr(xi =1|ri, sij) Pr(sij |r, {∀gk : k 6= i}) (3.16)

∝
∑

j∈S

Pr(xi =1|ri, sij)α
′
ijβ

′
ij (3.17)

where α′ and β′ are modified versions of α and β to include g:

α′
ij =

∑

k∈S

Pr(sij|si−1,k) Pr(ri|sij, gi)αi−1,k (3.18)

β′
ij =

∑

k∈S

Pr(si+1,k|sij) Pr(ri+1|si+1,k, gi+1)βi+1,k (3.19)

We call this decoding algorithm the “iterative state estimation” algorithm and it is illustrated

in figure 3.4. This algorithm can now be used over bit-flipping channels unlike the one-off

state estimation algorithm. The computation order used in the following experiments was

that the channel nodes were first updated as a chain. Next the symbol nodes were initialized

in the traditional belief propagation manner. Then iteration over the graph was started. The

nodes were repeatedly updated in the following order: the check nodes, the symbol nodes,

the channel nodes and then the symbol nodes.

A further improvement would be if one had additional information of the true channel

state for each bit received – the traditional low-density parity-check decoding algorithm can

then be used with input probabilities derived using the state information. This is the “genie-

aided” algorithm.
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Figure 3.4: The iterative state estimation decoding algorithm

3.4 Performance on the Markov channel

An R = 1/2, N = 8000 regular low-density parity-check code with column weight 3 from [68]

was used to test the above algorithms.

3.4.1 Bursts of total data loss

A channel with bit flipping noise was first studied. Two states were used: one with pf =50%

and one with pf =0%; the former had a typical burst length of 10 and the latter had a variable

typical burst length t, figure 3.5(a). Varying the typical run length in the quiet state varies

the average noise on the channel. The results of experimental simulations with three different

decoding algorithms and the corresponding Shannon limits are shown in figure 3.5(b).

3.4.2 Gaussian noise

A channel with Gaussian noise was also studied. Two channel states were used with a sepa-

ration in noise level of 7dB (to match [115]). The typical run-length in the two states were

both set to 3, 10 or 30. The average SNR was varied and the empirical block error rate was

measured using all four algorithms described above. The results are shown in figure 3.6.

3.4.3 Bit-flipping noise

The same experiment was then repeated using bit-flipping noise. To make the experiment

more easily comparable to the previous experiment this noise was assumed to come from the

same channel as before but with a hard-decision receiver. One would expect a 2dB drop from

taking hard decisions [81]. Empirical results are shown in figure 3.7.

The capacity of this type of channel is shown in figure 3.8.
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(c) Burst length 30
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Figure 3.6: Gaussian noise with 7dB separation between two states with equal typical run-
lengths



CHAPTER 3. MARKOV CHANNELS 23

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 3  3.5  4  4.5  5  5.5  6

B
lo

ck
 e

rr
or

 p
ro

ba
bi

lit
y

SNR / dB

(a) Burst length 3

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 3  3.5  4  4.5  5  5.5  6  6.5

B
lo

ck
 e

rr
or

 p
ro

ba
bi

lit
y

SNR / dB

(b) Burst length 30

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 3  3.5  4  4.5  5  5.5  6  6.5  7

B
lo

ck
 e

rr
or

 p
ro

ba
bi

lit
y

SNR / dB

(c) Burst length 300

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 3  3.5  4  4.5  5  5.5  6  6.5  7

B
lo

ck
 e

rr
or

 p
ro

ba
bi

lit
y

SNR / dB

No state estimation
Iterative state estimation

Genie-aided

Figure 3.7: Bit-flipping noise with 7dB separation between two states with equal typical
run-lengths
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3.4.4 Typicality of the channel

It can be seen that as the burst length increases the performance curves become flatter. It

is thought that this is due to the variation of the total noise energy of the channel, over the

studied block size of 8000, increasing as the typical burst length increases. A low-density

parity-check code can handle noise up to a fixed power, so an increased variability of total

noise power leads to a blurring of the waterfall region. For a burst length of 30 an estimate of

the probability density function of the number of bits transmitted in the noisy state is shown

in figure 3.9(a). The standard deviation of this distribution against typical burst length is

shown in figure 3.9(b).

3.4.5 Iterations

For the latter bit-flipping experiment (section 3.4.3) the evolution of Pr(sij|r, {gk : k 6= i})
was studied. For the first iteration the estimate of the probability of being in the noisy state

starts with a 50:50 distribution. It is expected to tend towards the true state distribution as

the iterations progress. An example of the evolution is shown in figure 3.10. Correct decoding

was achieved in three iterations for the example shown. The state estimate is close to the true

value after only a few iterations. Large errors in iteration 2 can be seen around bit numbers

1200 and 1700 but these are corrected by iteration 3.

The number of iterations before the iterative state estimation algorithm reached a decoding

was also recorded for the Gaussian noise experiment (section 3.4.2) and is shown in figure

3.11. It can be seen that fewer iterations are needed for a successful decoding as the typical

burst length increases. This suggests that decoding becomes easier as the typical burst length
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the iterative state estimation algorithm terminates. Gaussian noise was used with an SNR
difference of 7dB and the average SNR was chosen so the block error probability was 10−3.

increases. The most difficult region for the channel nodes to infer the true state is near a

state transition. As the typical burst length increases these regions become less significant

and hence the decoding process can be expected to be easier.

3.5 Discussion

For bit-flipping noise, the performance with the iterative state estimation algorithm should be

compared with the Gilbert-Elliott capacity as this represents the best possible performance

over the bit-flipping channel with no channel state information. The first experiment (section

3.4.1) shows that the iterative state estimation algorithm, despite not reaching this capacity

with the chosen code, is producing the expected gain over the no state information case. The

further experiments on the bit-flipping channel (section 3.4.3) show that the iterative state

estimation algorithm is producing similar gains. We can further see the codes are at least

2dB from capacity at a block error probability of 10−3.

The performance of the algorithms over the Gaussian noise channel is hard to assess as

the channel capacity has not been calculated to the author’s knowledge. It can be seen that

behaviour similar to the bit-flipping case is observed: the code performance increases as the

typical burst length increases. However this increase happens faster than for the bit-flipping

case, probably due to the extra information in the received amplitudes. It is interesting to

compare the one-off state estimation algorithm and the iterative state estimation algorithm.

For very short bursts iterative state estimation can not offer any significant advantage over

one-off state estimation. When the typical burst length is 30 the gain is only 0.1dB.

Earlier work on a block bursty channel [115] with a hop length of 10 bits (one spends a
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fixed “hop length” in a particular state) and a code of the same rate suggested that larger

gains might be found between one-off state estimation and iterative state estimation. We can

compare the entropy per symbol (H) of the state sequences of the two channels:

H(block bursty channel) =
1

hop length
(3.20)

H(Markov channel) = H2

(
1

burst length

)
(3.21)

where H2(·) is the binary entropy (as defined in appendix A). For a hop length of 10 one needs

a typical burst length of 77 for these two expressions to be equal. However the experiments

with a burst length of 77, figure 3.6(d), suggest that a gain of about 0.1dB (rather than 0.2dB

for the block bursty channel as reported in [115]) is being seen.

Many iteration schemes could be used on the belief propagation graph. It would be worth

investigating other schemes and comparing their expected computational complexity. Quicker

decodings may be achieved in some cases by, for example, only evaluating the channel nodes

after a few iterations over just the symbol and check nodes. An analysis of the balance

between expected computational time and performance is possible [13].

No attempt was made to optimize the code. It is hoped that a larger block-size irregular

code could perform better as seen with the AWGN channel [86]. Confirmation of this would

be useful further work. Further criteria could also be used, for example the removal of “near”

codewords (codewords that lead to low weight syndromes when a set of bits transmitted at

close times are corrupted) could be advantageous as a burst of noise is likely to corrupt several

nearby bits.

3.6 Conclusion

We have shown that we can include channel estimation in a low-density parity-check code’s

decoder to get a gain when the code is used over a channel with memory.

For the bit-flipping noise Markov channel we get a gain of the same order as the difference

between the interleaved capacity and the Gilbert-Elliott capacity. With Gaussian noise the

most significant gain comes from estimating the channel state once. As the typical burst

length increases, iterative state estimation produces an increasing gain over one-off state

estimation.



Chapter 4

Multi-User Channels

4.1 Introduction

Often multiple signals are transmitted in the same medium at the same time. For instance,

to increase the amount of information carried by an optical fibre, signals are transmitted

in several different colours (or bands) at the same time. This is called wavelength division

multiplexing. Light in one band can cause noise or “cross-talk” in other bands. As one can

alter the characteristics of the noise on one band by regulating transmissions on other bands,

coding for the system is an interesting problem.

There are four ways one could approach such a channel which we shall classify in terms

of whether one can do joint or independent encoding or decoding:

Joint encoding and decoding All the bands are treated together as a non-binary channel.

An optimal non-binary input distribution could be found and a coding scheme used

similar to the one which will be presented in chapter 6.

Joint decoding If one is able to process all the received signals together, a better esti-

mate of the characteristics of the noise can be obtained. This field is called multiuser

detection [109].

Joint encoding Beam-forming [61] can be used on some multi-user channels to focus infor-

mation towards particular receivers.

Independent encoding and decoding Each band is treated independently with conven-

tional error-correcting encoders and decoders.

We will study this last scenario. This situation is common as often neither joint encoding

nor joint decoding are possible, either for computational reasons or due to transceivers not

being co-located.

In this chapter we introduce two simple channel models in which noise originates from

cross-talk. Then in the following two chapters coding schemes will be developed which work

well on these channel models.

28
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Figure 4.1: Subchannels for the two channel models studied. o is the number of ones being
transmitted on the other channels at the current time and a is the noise level parameter.

4.2 Channel Models

In this thesis we will look at two simple multi-user channel models:

Parallel Z Channel Each user’s channel is a Z-channel where the probability of corrupting

0s is proportional to the number of 1s being transmitted on the other channels, figure

4.1(a). This is a model of crosstalk in optical channels.

Parallel Binary Symmetric Channel Each user’s channel model is a BSC where the flip

probability is proportional to the number of 1s being transmitted on the other channels,

figure 4.1(b). This example is similar to noise on some ultra-wideband channels.

For both channels, a is the constant of proportionality, o is the number of ones being trans-

mitted on the other channels and u is the number of users.

We assume the constraint that we treat each subchannel independently and identically.

This constraint leads to each subchannel being a channel with flip probability = ap1.(u − 1),

where p1 is the probability of transmitting 1. To achieve the maximum rate of communication,

the symbols should not be used with equal probability. For the parallel BSC, p1 ≤ 1
2 for

optimal communication. For the parallel Z channel this same condition applies for high noise

levels. For a single user binary channel the maximum gain over a traditional code by using

an asymmetric input distribution is 6% [96], but for a multi-user channel larger gains can be

achieved.

We will look at three approaches to improve communication on this channel beyond using

a plain low-density parity-check code that gives p1 = 1/2. These are:

Time-sharing Each user only transmits for some fraction of the time, thereby lowering the

noise experienced by each user.

Sparse-Dense codes In chapter 5 a scheme whereby p1 is lowered for a fraction of the bits

(with the rest of the bits having p1 = 1/2) is presented. This again lowers the average
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noise level, but one might expect superior performance over the timesharing approach

as the channel is not being left idle.

Sparse LDPC Codes In chapter 6 a way of lowering p1 for all the bits will be shown, thus

achieving the optimum input ensemble.

4.3 Capacity

We calculate the “capacity” for each user’s subchannel under three different transmission

regimes:

Dense transmissions The capacity achievable if each bit transmitted is i.i.d. with p1 = 0.5.

This capacity can be approached using linear error-correcting codes.

Sparse-Dense transmission This is the capacity achievable if each data bit is transmitted

in a sparse form (with density pd1) and each check digit is dense, corresponding to

Sparse-Dense codes. Rd is used as the ratio of number of source sparse bits to block

size.

Sparse transmission This is the capacity achievable if each bit is i.i.d. with p1 6= 0.5.

When calculating the capacities for the example channels we take the average codeword

weight and then use this weight to calculate an average noise level. This technique assumes

a large number of users each with a random independent order of bit transmission and is a

consequence of the noise being linear.

To calculate the dense data capacity we evaluate I(X;Y )|p1=0.5 (where I(X;Y ) is the

mutual information between the input ensemble X and the output ensemble Y as defined in

appendix A). For the sparse calculation we evaluate maxp1
I(X;Y ), remembering that the

noise level depends on X.

Calculation of the sparse-dense capacity is more complicated as we have two expressions

for the information reliably transmitted per channel symbol f(pd1, Rd), one from the channel

coding theorem and one from the source coding theorem (the constraint that all the user data

is contained within the sparse bits):

f(pd1, Rd) = I(X;Y ) (4.1)

f(pd1, Rd) = RdH2(pd1) (4.2)

where H2(·) is the binary entropy (as defined in Appendix A). We obtain f(pd1) by elimination

of Rd in the above simultaneous equations with a symbolic maths package. The capacity is

then:

C = max
pd1

f(pd1) (4.3)

For the parallel Z channel with 128 users and a = 0.0074, f(pd1) is shown in figure 4.2(a).

Similarly figure 4.2(b) shows f(pd1) for the parallel BSC with a = 0.0037.
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Figure 4.2: Plots f(pd1) for a Sparse-Dense code. The lower curve shows f(pd1) (the sparse-
dense capacity is at the maximum) and the upper curve shows the corresponding ratio of
number of source sparse bits to block size, Rd. The lower line indicates the dense transmission
capacity and the upper line the sparse transmission capacity.

4.4 Time-sharing

Time-sharing can be described by a single parameter: the fraction of time a transmitter is

active, tf . We would like to work out the optimum time-sharing proportion t∗f for a particular

code rate R. Assuming a linear capacity-approaching code we can write

R = tf I(X;Y ) = tf (1 − H2(a(u − 1)tf/2)) (4.4)

where the expansion of I(X;Y ) has been done for the parallel BSC. We can numerically solve

for a = a(tf ) which allows a solution for

t∗f = arg max
tf

a(tf ) (4.5)

Time-sharing at this optimum proportion will be used in the next two chapters as a bench-

mark.



Chapter 5

Sparse-Dense Codes for

Multi-User Channels

5.1 Introduction

Sparse data consisting of independent identically distributed (i.i.d.) bits with p1 ≡ Pr(digit=

1) 6= 1/2 is frequently used in information theory. Applications in communication theory

include MN codes [70] and watermark codes [24].

This chapter first addresses the problem of mapping dense data to sparse data blocks

of fixed size. This is often solved for small block sizes by using a look-up table [24]. An

algorithm is presented in [70] for larger blocks and is studied further below. A new, more

efficient, algorithm is then introduced.

We then present a new application for sparse data blocks in conjunction with linear error-

correcting codes for multi-user channels which we call Sparse-Dense codes.

5.2 Sparsifiers

5.2.1 A sparsifier based on arithmetic coding

Arithmetic coding [76] is a source coding technique that represents a sequence of outcomes

by an interval in the range [0, 1). To encode the next outcome this interval is uniquely

divided into subintervals for each of the possible outcomes of the experiment. The size of

each subinterval is proportional to the probability of the outcome. The previous interval is

replaced with the subinterval to which the outcome corresponds. This type of interval division

can be seen in left-hand side of figure 5.1. We usually then compare the final interval with

intervals produced in the same manner with an i.i.d. binary equiprobable ensemble. For more

information on compression with arithmetic coding, [71] is recommended.

An algorithm for the generation of sparse blocks based on arithmetic coding is presented in

[70]. The algorithm uses standard arithmetic coding but reverses the usual role of compression

32
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Figure 5.1: An example state of the arithmetic coding based sparsifier. The sparse output bits
on the left hand side are read from left to right (the current area is shown as a magnification
of the initial state). The dense input bits are on the right hand side and are read from right
to left. The centre of each sparse interval is shown with a dot.

and decompression. The probabilistic model used is:

Pr(si =1|s1, . . . , si−1) = Pr(si =1) = p1 (5.1)

where si is the ith bit of the sparse data.

The algorithm is presented without details of initialization or termination. For initial-

ization one sets the standard arithmetic coding start conditions. The algorithm can be used

without termination if there is an infinite stream of data being transmitted. If a single sparse

bit is corrupted, on decoding, all following data bits are corrupted in a catastrophic fashion.

This property is not desirable in a communication theory context. We are often transmit-

ting blocks; if a single block is corrupted we do not want the following blocks to be corrupted

in addition. To avoid it we need each block to be created independently. Different weight

blocks have different probabilities of occurring, hence for fixed size sparse blocks the input

sequence length is variable (with longer sequences for less probable blocks). We therefore

need to ensure that the termination of the arithmetic coder has the property of forming a

complete prefix code in the dense data. A complete prefix code has the property that every

possible infinite dense string can be divided into codewords without punctuation [71]. We

check for the existence of a valid sparse block as if the next input digit is 0 and 1 (to maintain

the prefix code tree structure) before reading in each binary digit. If there is not such a block

for both 0 and 1 we stop reading for that block and transmit the sequence corresponding to

a valid interval.

Two different termination algorithms were tried. The first, Algorithm I, ensured the
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Figure 5.2: The gap from the Shannon Limit for the sparsifiers discussed in this chapter. The
difference between the number of bits encoded and NH2(p̂1) is shown. p1 was requested to
be 0.1.

presence of the entirety of a sparse interval within the dense interval. For example if the

arithmetic coder is in the situation illustrated in figure 5.1, only one more dense bit would be

able to be encoded. If the next dense digit is either 0 or 1, neither of their two subintervals

both contain a sparse interval. The second, Algorithm C, ensured the presence of the centre

of an interval within the dense interval. For the situation in figure 5.1 this would allow the

sequences 1, 00 and 01 to be encoded. The encoding of more information by Algorithm C

carries across in general as simulations in figure 5.2 show.

Arithmetic coding algorithms are efficient for compressing data as, with a suitable proba-

bilistic model, the overhead is at worst 2 bits over the entire compression. The same efficiency

does not carry over to sparsifiers. The problem stems from the termination procedure not

coping well with large intervals near small intervals. For the case of figure 5.1 the bottom

magnified sparse interval is much smaller than the other two. Under Algorithm I this small

interval is transmitted if the dense digit is 0. For this example using the notation in figure

5.1 the information loss (δI) scales with the block size (N):

t = p2
1p

N−2
0 + p1p

N−1
0 + p0p

N−1
1 (5.2)

c = t/2 for worst case (5.3)

m = p0p
N−1
1 (5.4)

δI = log2(c) − log2(m) (5.5)

= log2(3) − 1 +
4(2N − 5)

3 ln(2)
(1/2 − p1) + O

(
(1/2 − p1)

2
)

(5.6)

For Algorithm C this information loss happens less often (it needs the next two dense digits
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to be 00) and, in this case, a 1 bit smaller information loss than Algorithm I would be seen.

One can also evaluate the sparsifier’s performance in terms of the sparsification achieved,

p̂1, as a function of blocksize. Figure 5.3 shows p̂1 for the two sparsification algorithms

described so far.

5.2.2 The new sparsifier

A new sparsifier is now developed with the aim of better asymptotic performance.

A set of sparse data blocks, with a given p1, is indistinguishable from a set of blocks

created by a fixed weight block generator, if the fixed weight (w) is sampled from the correct

binomial distribution:

Pr(block|p1) = Pr(block|w, p1) Pr(w|p1) (5.7)

= Pr(block|w) Pr(w|p1) (5.8)

= Pr(block|w)pw
1 (1 − p1)

N−w (5.9)

We can therefore construct a sparsifier which operates in two steps: choosing a weight and

generating a block of that weight.

If we take a prefix code decoder and feed it a stream of i.i.d. bits, it outputs members of

the code’s alphabet with probabilities qi =2−li (where li is the codeword length of alphabet

member i). A Huffman code [55] was constructed with an alphabet consisting of a subset

of weights, each assigned a probability according to the binomial distribution. This code’s

decoder was used to choose the weight of a block.

If we choose the subset to be all the weights, we get the code shown in the middle column
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Weight log2 1/Pr Full Code li Truncated Code li
0 3.04 010 3 010 3
1 1.89 10 2 10 2
2 1.81 11 2 11 2
3 2.4 00 2 00 2
4 3.48 0111 4 0111 4
5 4.97 01101 5 0110 4
6 6.82 011001 6
...

...
...

...
18 52.5 011000000000000001 18
19 58.9 0110000000000000001 19
20 66.4 0110000000000000000 19

Table 5.1: Two Huffman codes generated for N = 20, p1 = 0.1
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Figure 5.4: The binomial distribution and the implicit probabilities for the Hamming code
formed from the set of all weights with N = 20, p1 = 0.1

of Table 5.1. Figure 5.4 shows a problem with this subset – the very low probability sequences

occur more often than expected. If we are asking for sparse data we probably do not want

high weight sequences to occur more often than expected. So a subset was chosen that was

as large as possible, centred around Np1, such that the qi were within a factor of two of the

binomial distribution. A code chosen in this way is shown in the last column of Table 5.1.

Such a code stops extreme events happening which can be an advantage in a cooperative

system.

To generate a block of a particular weight, once a weight has been chosen, a constant weight

code (also known as an M -out-of-N code) was used. These codes satisfy the constraint that

for each codeword exactly M bits are 1 and the other N −M bits are 0. The codes are widely

used as they can detect all unidirectional errors, such as from a Z-channel [5]. Applications
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Figure 5.6: A Sparse-Dense Code. Sparse data is indicated by light grey and dense data by
dark grey.

include VLSI circuits and memories and optical channels [119]. Efficient creation of both

small and large blocks has been investigated [119, 82].

In [82] an algorithm based on a technique similar to arithmetic coding is presented. The

algorithm maps a fixed length source block to a M -out-of-N codeword with at worst a one bit

inefficiency. We extend the algorithm by creating a prefix code in the dense data to reduce

the inefficiency. The idea is to use a similar type of arithmetic coding algorithm to Algorithm

C, but instead use it to generate constant weight codewords. The probabilistic model now

becomes dependent on the history:

Pr(si =1|s1, . . . , si−1) =
M − weight(s1, . . . , si−1)

N − i + 1
(5.10)

This probabilistic model makes all blocks of weight M equiprobable. Unlike many models

with large history, this model is easily tractable as the history can be summarized by the

weight of the proceeding bits.

Algorithm H is the combination of the Huffman decoder and the constant weight encoder.

From the input stream we read off a Huffman codeword to set the weight and then read off

one codeword of the corresponding fixed weight sparsifier as illustrated in figure 5.5. The

performance of this algorithm is illustrated in figures 5.2 and 5.3. It can be seen that on both

efficiency and accuracy of sparsification Algorithm H outperforms Algorithms I and C.

5.3 Sparse-Dense Codes

The method of creation of sparse data blocks above does not include the facility for any

error correction. But by feeding sparse bits to a systematic error-correcting code encoder we

obtain an error-correcting code word with lower weight than usual. The final block has sparse

systematic bits and dense parity bits (for a linear code), figure 5.6.
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Figure 5.7: The performance of R = 0.3, N = 10000 codes on a 128-user parallel Z channel

The performance of Sparse-Dense codes on the two channel models presented in chapter

4 was studied by simulation.

5.3.1 Parallel Z Channel

Codes with R = 0.3 and N = 10000 were constructed. Firstly a Sparse-Dense code was

created using a p1 = 0.25 sparsifier combined with an N = 10000, RLDPC = 0.37, j = 3

low-density parity-check code so that the overall code rate was 0.3.

For comparison, two low-density parity-check coding schemes were created. One R = 0.3,

j = 3 low-density parity-check code used directly on the channel and the other an R = 0.37,

j = 3 low-density parity-check code used with the optimum timesharing proportion t∗f = 81%

to give a user perceived code rate of 0.3.

The results from simulations on the parallel Z channel are plotted in figure 5.7. It can be

seen that the Sparse-Dense code outperforms the other benchmark schemes.

5.3.2 Parallel BSC

A similar simulation was carried out with the parallel BSC and three N = 10000, R = 0.2

codes. The three codes were a low-density parity-check code, a low-density parity-check code

used with timesharing and a Sparse-Dense code created with pd1 = 0.11. The simulation

results are shown in figure 5.8. A gain over both the benchmark systems can again be

observed for the Sparse-Dense code.
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Figure 5.8: The performance of two R = 0.2, N = 10000 codes on a 128 user parallel BSC

5.3.3 Discussion

For the parallel BSC, sparse codes are more advantageous than for the parallel Z channel;

for the single user Z channel the optimum input distribution has p1 > 1/2. For the multiuser

channel, the pressure to reduce the noise and the single-user optimum input distribution

work against each other. The smaller gain from sparse transmission can be seen in both the

simulations and capacity calculations. It is expected that Sparse-Dense codes on a parallel Z

channel with the opposite asymmetric error (so 0s are transmitted reliably and 1s corrupted)

would show a larger gain.

The codes chosen were not optimized in detail for the channel model. The capacity

graphs were used as a guide for the parameters to use. Optimization of Rd and pd1 could be

carried out. Also irregular low-density parity-check codes could be used with degree sequences

optimized for the two different channel models.

It is probable that a further gain could be achieved by timesharing with a Sparse-Dense

code to counter some of the effects of the dense parity bits.

5.4 Conclusion

We have presented a technique for creating sparse blocks of data and demonstrated a coding

scheme using such a sparsifier to produce a gain over traditional linear codes on multi-user

channels.



Chapter 6

Sparse LDPC Codes for

Multi-User Channels

6.1 Introduction

In this chapter we present another coding solution for the multi-user channels presented in

chapter 4. For a Sparse LDPC code, every codeword has the property that all the bits are

sparse.

6.2 Initial Experiments with Binary Low-Density Parity-Check

Codes

The work started by looking at binary low-density parity-check codes with a mapper similar

to McEliece [74]. This mapper takes a set of equiprobable bits from a binary low-density

parity-check encoder and converts them to an output bit with a biased distribution.

The mapper function ideally needs to have the following properties:

• The function is such that given bits with uniform input probabilities the probability of

the output being 1 is p1.

• The input bits should be used symmetrically. This avoids problems where one input

bit often does not affect the output bit. For example if the mapper took the binary

representation of the input bits and performed a threshold, the least significant bit

would often not affect the output.

• For belief propagation it is useful that given the output and all the inputs bar one, the

remaining input digit can be inferred. One idea was to use the output bit to represent

the function “are the inputs a valid codeword of a particular code?” In particular a

Hamming code would have good properties due to being a perfect code, appendix G.

However given received bits this mapper is not capable of passing any information to

40
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Figure 6.1: A binary sparse LDPC code with non-overlapping sparsifying mappers

a code initially, therefore it does not decode with a belief propagation decoder. This

holds for any linear code.

A “voting” function was tested – output 1 if the number of 1 inputs is less than or equal

to a threshold value. This function can be tuned to give the correct p1 and is symmetric

with respect to its inputs. However one can only infer a last remaining input bit when the

number of input bits being 1 is near the threshold value. A 7-input function was used with

a threshold value of 2 to give p1 = 0.23.

The first configuration studied was a binary low-density parity-check code with non-

overlapping chunks of bits as inputs to the mapper, as illustrated in figure 6.1. Unfortunately

not enough information could be passed down to the low-density parity-check decoder to start

decoding for code rates close to capacity. The binary low-density parity-check decoder only

deals with marginalised bit-by-bit probabilities – the mutual information between the bits in

each chunk is significant. The performance under belief propagation decoding is disappoint-

ing; under maximum likelihood decoding, it has been shown that codes constructed similarly

are capable of achieving capacity [4, 40].

It was hoped that by linking each variable node to several different mappers the channel

beliefs passed down to the rest of the code could be strengthened. The connection properties

were chosen so that the information content of the low-density parity-check code bits was

the same as the sparsified bits, NLDPC = NH2(p1). The construction is shown in figure

6.2. The interleaver between the variable nodes and sparse mapper nodes was constructed

using Algorithm 1A [70] to ensure no short loops which might impair belief propagation.

Unfortunately performance of this construction was not good due to poor distance. It was

possible for two distinct low-density parity-check codewords to map to identical transmitted

sequences.
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Figure 6.2: A binary sparse LDPC code with overlapping sparsifying mappers

6.3 Sparse LDPC codes

The mutual information problems found with binary low-density parity-check codes with non-

overlapping mappers can be handled by low-density parity-check codes defined over GF(q).

6.3.1 Mapper

To define a Sparse LDPC code we take a low-density parity-check code over GF(q) and use

a time-varying function to translate individual code symbols to channel bits, as illustrated in

figure 6.3. To obtain sparse transmissions, most of the symbols in GF(q) are mapped to 0.

The fraction of symbols mapped to 1 is p1. We hope that, with a function chosen at random

for each symbol node, all the codewords of the code are mapped to distinct sparse sequences.

If we treat the mappers as randomly assigning codewords to sparse sequences, a pigeon-

hole approach can be used to determine whether the construction of Sparse LDPC codes is

possible. The probability of a codeword colliding with another can be shown to tend to 0 as

N → ∞ if R < H2(p1) (where H2(·) is the binary entropy defined in Appendix A).

A similar construction, called GQC-LDPC codes, has been independently developed and

have been shown to have good maximum-likelihood decoding performance [4].

The decoder can view the binary channel and mapper as a single noisy channel, as illus-

trated in figure 6.4.

6.3.2 Degree sequence optimization

Binary LDPC code constructions with a fixed column weight, called regular codes, are pop-

ular. It is known that a column weight of 3 performs well on many standard channels. For

low-density parity-check codes over larger finite fields a column weight of three does not lead
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Figure 6.5: An example of the dynamically created tree around an element of the new ensem-
ble. The downward messages from elements of the old ensemble are connected via dynamically
created check nodes to the new ensemble element. In general all the Q and R messages illus-
trated are different.

to optimal code performance. A simple mixture of weight-2 and weight-3 columns can perform

better [22].

To optimize the profile of the irregular code, we used the Monte Carlo approach of [22],

modified to include the non-linear channel. We started with an ensemble of variable nodes

that represented the state of variable nodes of an infinite loop-free code graph in a particular

decoding iteration. We then created a new ensemble of variable nodes from the former

ensemble to represent the state one iteration later. This process was repeated for a fixed

number of iterations to see whether the decoding converges. By binary division, we found a

noise threshold below which decoding converges and above which it does not.

In detail, we associated each variable node with a “correct” GF(q) symbol, and a vector,

Q, of messages from it. As the infinite code had a tree structure, each symbol node had one

message coming out of it. To create an element of the new ensemble we first chose a “correct”

symbol from GF(q) and used the channel noise model to simulate the received signal. Then

we created a tree fragment above it, for example figure 6.5, by first choosing a column weight,

c, as a sample from the degree distribution. Then we created c−1 incoming check nodes. For

each of these we chose a row weight, r, by sampling from the row distribution weighted by

the row weight. We then connected it to r− 1 incoming symbol nodes from the old ensemble.

These nodes were sampled from the column distribution weighted by the column weight with

the constraint that the chosen nodes led to the check node being satisfied with their correct

transmissions. Belief propagation was then carried out down the tree to evaluate Q for the

new node. This process was repeated for each element in the new ensemble.

For each of the two channel models we assumed 128 users and a line search was carried out

to find the best combination of weight-2 and weight-3 columns for particular code parameters,

figure 6.6. The best average column weight was 2.35 for the parallel BSC channel for codes

defined over GF(5) with p1 = 1/5 and R = 0.2. Similarly 2.35 was the best average column
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Col Weight Proportions

2 0.65 0.715 0.635
3 0.35 0.193 0.302
5 0.092
10 0.063

Threshold/0.001 8.48 8.74 8.91

Table 6.1: Thresholds of three degree sequences for codes defined over GF(3) with p1 = 1/3
and R = 0.3 over the parallel Z channel with 128 users.

weight for the parallel Z channel with codes defined over GF(3), p1 = 1/3 and R = 0.3.

A search for better fully irregular degree sequences using a global optimization package

(DIRect [38]) was carried out. Some degree sequences for the parallel Z channel are shown in

table 6.1.

The thresholds found in figure 6.6 may be compared with those of the simple time-sharing

scheme presented in chapter 4. For the above parallel BSC, the Shannon limit for time-sharing

is a = 0.00463 with t∗f = 54% (the optimal fraction of time for which each transmitter is

active). Similarly, for the parallel Z channel, the Shannon limit is a = 0.00832 with t∗f = 81%.

Both of these Shannon limits are smaller than the respective Sparse LDPC code thresholds

found above.

6.4 Simulation results

An N = 10000, R = 0.2, p1 = 1/5 code was created for testing on the parallel BSC. These

parameters were chosen to match simulations in chapter 5. The base code was defined over

GF(5) with N = 10000, M = 9139 with 60% weight-2 columns and 40% weight-3 columns.

Random data symbols were chosen, encoded, transmitted and then decoded. In figure 6.7(a)

the simulation results are compared with those from a normal low-density parity-check code,

a low-density parity-check code with time-sharing and a Sparse-Dense code.

An N = 10000, R = 0.3, p1 = 1/3 code was created for testing on the parallel Z channel.

The base code over GF(3) had N = 10000, M = 8107 and two degree sequences from table

6.1 (the “semi-regular” degree sequence with only weight-2 and weight-3 columns and the

degree sequence with weight 2, 3 and 10 columns were used). Simulation results with the

parallel Z channel are shown in figure 6.7(b).

For the two channels studied above, the Sparse LDPC codes can be seen to outperform

the other coding schemes tested by 1.6dB and 1.1dB respectively.

6.5 Discussion

Even in the event of an uncorrupted transmission being received, a decoding is required to

recover the original GF(q) symbols. This approach is best suited for use with good, large
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codes, time-sharing schemes and Sparse-Dense codes are the same as in chapter 5. The time-
sharing schemes are low-density parity-check codes being used with the optimum time-sharing
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blocksize codes. For small blocksize codes, block errors might still be possible at zero noise

level.

The complexity of decoding at the check nodes increases with the size of the finite field

used, appendix H. If a value of p1 is needed that can not be obtained with smallish fields

then the coding technique presented may become computationally infeasible. We have used

a uniform value of p1 throughout a codeword – it is possible that using a different value for

each codeword symbol might help the decoding process and lead to better code performance.

The method of code construction could be studied further. It may be possible to choose

the non-zero values in H to create a code with better distance properties.

The performance on single-user asymmetric channels could be tested – Sparse LDPC codes

might be able to outperform linear codes on these channels.

6.6 Conclusion

The codes presented here show a substantial gain over linear codes for a multi-user channel.

The codes have a modified linear encoder and a message-passing decoder and thus are easier

to implement than many non-linear codes.



Chapter 7

Insertion-Deletion Channels

7.1 Introduction

Examples of channels with synchronization errors include:

Serial line The clock speed of the transmitter may not be accurately known (for instance

due to temperature variations in the clock) so the time of arrival of each transmitted

bit is not known.

Hard disc Variations in the rotation speed (for instance due to mechanical vibrations or

shock) mean the position of the head relative to the platter may be uncertain.

DAT tape Tape stretch leads to problems similar to those suffered by a hard disc.

In this chapter, such a channel is modelled by random uncorrelated insertion or deletion

events at unknown positions. A flowchart of the channel model is shown in figure 7.1. The

capacity for channels of this kind is not known exactly. A capacity lower bound from [120]

and an upper bound from [107] are used in this chapter.

Marker codes [58] were originally designed to be able to deal with single insertion or

deletion error events. The bit stream to be transmitted has a regular marker (or header)

inserted in it. For example the marker ‘001’ may be inserted between every 4 data bits:

01101100101010 7→ 01100011100001101000110

The decoder can look for the markers and use any shift in their position to deduce bit loss

or gain. Errors in the matched sequence can then be corrected with a conventional code.

With advances in computer power probabilistic sequence matching, as described below, can

be carried out. The coding system is shown in figure 7.2.

Watermark codes [24] are a similar scheme, but rather than having bursts of synchro-

nization information and bursts of data, the information is distributed uniformly. To encode,

the data bits are uniformly sparsified and then added to a watermark sequence. To decode,

probabilistic resynchronization can be carried out with the watermark sequence.

49
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In the literature, watermark codes appear to present the best simulation results. Other

coding schemes have been presented which may be of interest for computational or theoretical

reasons. A few are listed below:

Comma-free codes The codewords are constructed so that they have the property that

no overlap between the codewords can be confused as a codeword [99]. If a codeword

is corrupted with an insertion or deletion it is possible to regain synchronization af-

ter the error, however error correction within the corrupted codeword is not generally

possible [11].

Convolutional coding In [27] a standard convolutional code encoder with a set of normal

decoders is used. This leads to a computationally efficient scheme, but the results

are disappointing. A modified convolutional encoder and decoder are used in [100] to

achieve promising results.

Levenshtein codes In a similar manner to the Hamming distance, the Levenshtein distance

[63] between words is the minimum number of insertions or deletions necessary to get

from one word to another. Codes exist which try to optimize the minimum Levenshtein

distance between codewords but practical codes with good distance properties have not

yet been developed.

Schulman and Zuckerman codes Concatenated codes that are asymptotically good are

presented in [91] but experimental results are not developed. The codes appear to

mainly be of theoretical interest [24].

See [98] for good coverage of older schemes.

Earlier work on marker codes [83] presented an experimental way to optimize the markers

based on the capacity of the effective channel illustrated in figure 7.2. Algebraic optimization

of markers has also been attempted [33, 59]. In this chapter the results from [83] are extended

by comparing complete marker-code-based systems with watermark codes. The benefit of

iterative probabilistic resynchronization is also studied. We show simulation results that

outperform the best known results.

7.2 Probabilistic Resynchronization

We use the forward-backward algorithm to find the conditional probability distribution of

the transmitted bits given the received bits. We follow the presentation of [83], modified to

include iterative probabilistic resynchronization.

Figure 7.3(a) shows a representation of synchronization errors. The solid line indicates

one particular sequence of insertions and deletions which then defines a mapping from the

transmitted bits to the received bits. If there were no insertions or deletions the mapping

would follow the dashed line – this represents a one-to-one mapping between the received
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and transmitted bits. To correspond to the three operations of the channel there are three

different types of moves possible on the grid, illustrated in figure 7.3(b):

Normal transmission (possibly including a bit flip) A diagonal move in which the top left-

hand end of the move lies on the intersection between the row and column corresponding

to the transmitted and received bits respectively.

Insertion This corresponds to a horizontal move in which an extra random bit appears in

the received stream at the left hand end of the move.

Deletion This is a vertical move such that the transmitted bit corresponding to the top of

the move does not have a position in the received stream.

We assume prior probabilities, gj = Pr(tj = 1), on each transmitted bit. The probability

of a particular path and set of received of data is:

Pr(path, r|g) = P (path) · P (r|path,g) (7.1)

=
∏

insertions

pins

∏

deletions

pdel

∏

normal

(1−pdel−pins) ·
∏

insertions

1
2

∏

normal

κ(ri, gj) (7.2)

where

κ(r, g) = Pr(r|g,normal transmission, pflip) (7.3)

For non-iterative resynchronization gj is 0 or 1 in a marker and 1
2 otherwise. In iterative

resynchronization these “prior” probabilities outside the markers are the messages passed

back from the outer low-density parity-check code. The probability of the path is given by a

product of the probabilities for each insertion (pins), deletion (pdel) and normal transmission.

The probability of the received data for an inserted bit is 1
2 (in our channel model it is equally

likely to be a 0 or 1). Deletions do not give any received data and hence do not contribute

towards the probability of the received data.

When decoding we use the forward-backward algorithm [28] to marginalize across all

paths. We define a forward probability at a position (i, j):

pf(i, j) = Pr(path goes through (i, j), r1 . . . ri−1|g) (7.4)

To keep the same notation as [83], pf(i, j) has been used as a forward probability – this should

not be confused with other uses of pf in this thesis. There are only three ways the path can

get to (i, j) – it can arrive by a horizontal, vertical or diagonal move from an adjacent space.

So pf(i, j) can be found recursively:

pf(i, j) = pins
1
2pf(i−1, j) + pdelpf(i, j − 1) + (1 − pdel − pins)κ(ri−1, gj−1)pf(i − 1, j − 1) (7.5)

as shown in figure 7.4. The boundary conditions, assuming that the synchronization error is

known to be zero initially, are pf(0, 0) = 1, and pf(i, j) = 0 for all points not on the grid.
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Figure 7.4: The recursive evaluation of the forward probabilities

Similarly, we define the backward probabilities:

pb(i, j) = Pr(ri . . . rN |path through (i, j)) (7.6)

The backward message-passing algorithm for computing pb(i, j) is similar to the forward

algorithm above. The boundary conditions are pb(i, j) = 0 for (i, j) not on the grid, and

pb(N, i) = 1 for all rows i, where N is the last column of received data.

The forward and backward messages pf and pb are used to infer the posterior probability

of each user bit, P (tj |r), by marginalizing over the diagonal and vertical edges in row j.

7.3 Comparison with Watermark Codes

In [83] it was shown that for a code system like that in figure 7.2 the capacity of the effective

channel seen by an outer code is higher for marker codes than for watermark codes at low

noise levels. The highest rate results published for watermark codes [24] are at R = 0.71 with

a block size of 4995. To match this a marker code of the same overall rate and block size was

created, code A. The inner code was chosen to be good at a noise level pins = pdel = 0.005

using the effective capacity technique outlined in [83]. The outer code was a low-density

parity-check code with weight-2 and weight-3 columns. The code parameters are shown in

table 7.1 on page 61. Decoding was as figure 7.2.

A comparison of the watermark and marker codes is shown in figure 7.5. The marker code

outperforms the watermark code, despite the watermark code having been constructed with

a code defined over a larger field (GF(16)) than the binary codes considered here.

The performance of the marker code is not close to the channel capacity bounds. To try

to approach the bounds, the outer code was optimized. The threshold of an infinite loop-

free low-density parity-check code as a function of column weight distribution was evaluated

using a Monte Carlo approach [22]. In this procedure it is necessary to know the distribu-

tion of messages sent by the channel. Statistics of the messages received by the outer code

were collected, figure 7.6. The distribution is almost symmetrical if given a data sequence
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Figure 7.5: R = 0.71, N = 4995 codes over an insertion/deletion channel with serial decoding.
The watermark code result is from [24]. Marker code A is with a low-density parity-check
code with with weight-2 and weight-3 columns. Marker code B has weight 10 columns in
addition, table 7.1.

of i.i.d. bits. The simulation was carried out with an all zero-transmission but with noise

statistics as if they were i.i.d. data bits. Despite the non-Gaussian form of the messages,

degree sequences could not be found that significantly outperformed good degree sequences

obtained from optimizations on the Gaussian channel [16]. This optimization was carried out

with the message histograms marginalized over all bits, figure 7.6(b). Perhaps if a different

degree sequence for each bit between markers were allowed, a further gain could be achieved;

as figure 7.6(a) shows, bits received near markers are more reliable than bits far away from

markers.

Simulations using a good degree sequence from the Gaussian channel, code B, are also

shown in figure 7.5. The waterfall region is not much closer to the channel capacity bounds,

but it is close to the serial “capacity” (defined from the effective capacity of the channel seen

by the outer code [83]).

7.4 A Complete Iterative System

In chapter 3 we saw that the extension of loopy belief propagation to include estimating chan-

nel state can be beneficial. For the insertion-deletion resynchronization phase it is expected

that if we give the resynchronization algorithm more information about the likely transmission

the accuracy of the resynchronization will increase.

Watermark and regular marker codes were empirically discovered to have similar perfor-

mance near R = 0.5 by looking at the capacity of the effective channel [83]. Therefore R = 0.5

codes with a blocksize of 4000 (to match [24]) were studied.
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As benchmarks, marker codes were decoded with the serial decoding algorithm from sec-

tion 7.3. The first simulation (code C) was with identical markers of length 3 and a low-

density parity-check outer code with weight-2 and weight-3 columns. Figure 7.7 shows that

the watermark code has better error floor behaviour. With identical markers catastrophic

error propagation is possible in a marker code as the resynchronization can be shifted by

a multiple of a marker interval. Code D was similar to code C however each marker was

pseudo-randomly chosen from a set of two different markers. This improved the error floor

and led to better performance than the watermark code. An irregular low-density parity-

check outer code (chosen to be good on the Gaussian channel) was also tested and a small

further improvement found, code E.

Simulations were carried out with codes D and E using iterative resynchronization. The

algorithm is similar to the serial resynchronization algorithm but with extrinsic information

from the low-density parity-check decoder fed back into the resynchronization stage (updating

the values for g in equation 7.2). The resynchronization was carried out every five iterations

of the low-density parity-check decoder to increase the decoding speed as a low-density parity-

check decoder iteration is faster than probabilistic resynchronization.

The simulation results are shown on figure 7.7. The figure shows that the iterative ap-

proach significantly outperforms the serial approach and that the waterfall region can be close

to the channel capacity. It is worth noting that the ranking of the codes is reversed between

serial and iterative decoding. This suggests that the choice of code to be used should be made
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in conjunction with the decoding algorithm.

7.5 EXIT charts

To look into this swap in performance between serial and iterative decoding, extrinsic infor-

mation transfer (EXIT) charts [104] for the system were studied at a noise level of pins =

pdel = 0.04. EXIT charts allow a visualization of the messages passed during decoding be-

tween two loop-free sections of the graph describing the decoding. When a section is loop-free

an “exact” inference can be carried out in that subsection of the graph. At the limit of large

block size we can then look at the average statistical properties of the messages into that

section versus the messages coming out of that section. We assume a Gaussian form to the

distribution of messages. The transfer function of the two graph sections can be put on

opposing axes and then the expected progress of infinite-blocksize decoding can be seen, as

shown in figure 7.8. A “staircase” is formed between the two curves with a step per iteration.

To decode, the staircase needs to reach the top right-hand corner (which indicates totally

confident messages). If there is an intersection between the two curves this is not possible

and a code is not expected to decode.

The EXIT chart of the resynchronization was obtained by a Monte Carlo approach and

a quadratic function fitted, figure 7.9(a). With no information passed from the code to

the resynchronization stage the maximum rate of the outer code with serial decoding is

shown at the intercept with the y-axis. As the input information is increased the output

information increases but does not reach 1. This is due to remaining uncertainty in the exact

synchronization path and whether the bit in question may have been deleted (and possibly



CHAPTER 7. INSERTION-DELETION CHANNELS 59

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0  0.2  0.4  0.6  0.8  1

I re
sy

nc
hr

on
iz

at
io

n 
to

 c
od

e 
/ b

it

Icode to resynchronization / bit

Simulation
Best fit

(a) Insertion deletion channel

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

In
fo

 (b
it/

ar
c)

Info (bit/arc)

Resynchronization and variable nodes x-> y
Check nodes y->x

(b) Code E

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

In
fo

 (b
it/

ar
c)

Info (bit/arc)

Resynchronization and variable nodes x-> y
Check nodes y->x

(c) Code D

Figure 7.9: EXIT charts at pins = pdel = 0.04



CHAPTER 7. INSERTION-DELETION CHANNELS 60

reinserted).

The behaviour of the decoding algorithm can be seen in terms of messages being passed

between the variable nodes and check nodes; a section made up of check nodes and a section

made up of variable nodes and resynchronization are each individually loop-free. The transfer

functions of the check and variable nodes were as in appendix I. The code that performs

well on the Gaussian channel leads to an EXIT chart with an intersection, figure 7.9(b), so

decoding is not expected to converge. For the code with only weight-2 and weight-3 columns

no intersection is observed, figure 7.9(c), and therefore decoding is expected to converge. A

code with a softer response often performs better as part of an iterative decoding scheme;

more evidence of this will be seen in chapter 9.

The width of the swath between the curves can be used as a metric to choose a better

degree sequence. We only have the resynchronization EXIT chart at one noise level. To create

a better code we want to find a form of curves that is less likely to have an intersection at a

higher noise level. As the noise increases the top curve moves down the chart, so keeping a

wide swath between the curves allows a larger noise level to be reached until an intersection

occurs. Better degree sequences were searched for using a global optimization package [38].

Better thresholds could only be found by increasing the number of weight-2 columns above

the number of rows in the parity-check matrix. This is not expected to produce a good code

as short cycles in weight-2 columns lead to low weight codewords.

7.6 Deletion Channel

Interest in the academic community has recently focused on the bit-deletion channel (insertion-

deletion channels where pins = 0). Researchers have generally used similar codes to those used

on the insertion-deletion channel [97].

Another example of a deletion channel is the packet-deletion channel. Whole data packets

can be randomly lost on the internet. The channel model is similar to figure 7.1 however

instead of looking bit-by-bit we look on a packet-by-packet basis. Intelligent ways of coping

with this loss are of commercial interest. For systems with large packets, the packet-deletion

channel capacity is close to a packet erasure channel [25]. The deletion capacity shows an

asymptotic loss of 1 bit per packet compared to the erasure capacity. The protocol currently

used for most internet transmissions (TCP) uses 32 bits to number the packets [80] – however

more efficient schemes to convert the deletion channel to an erasure channel should be possible.

Packet-erasure channels are handled well by Raptor Codes [95].

Simulations of the marker codes developed in this chapter for the insertion-deletion channel

are shown on the bit-deletion channel in figure 7.10. The codes significantly outperform other

known deletion codes (for example allowing approximately twice the transmission rate of [15]).
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A B C D E
R 0.71 0.71 0.5 0.5 0.5
N 4995 4995 4000 4000 4000
d 19 19 9 9 9
m 01 01 001 001/110 001/110

NLDPC 4521 4521 3001 3001 3001
MLDPC 969 969 1001 1001 1001

c2 968 963 1000 1000 927
c3 3553 2785 2001 2001 1572

c10 0 773 0 0 502

Table 7.1: The codes used in this chapter. Markers (m) are inserted between every d data bits.
If more than one marker is available, the marker is chosen pseudo-randomly. The low-density
parity-check outer code was constructed with ci columns of weight i.
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7.7 Conclusion

We have shown that marker codes outperform watermark codes at rates above 0.5. To avoid

catastrophic decoding errors at higher noise levels the use of pseudo-random markers from a

set of different markers is necessary.

Iterative resynchronization provides better performance than serial resynchronization,

bringing the waterfall region close to the bounds on the channel capacity.



Chapter 8

Convolutional Codes

8.1 Introduction

Large block sizes are impractical for channels with very slow data rates if the sender and

receiver wish to communicate without substantial average delay. A code that allows early

decoding (decoding before an entire block is received) with good performance is needed.

Infinite random tree codes (figure 8.1) can reach the Shannon Limit [32]. They seem

appropriate for low bandwidth channels: a decoding can be attempted at any time and the

data earlier on in the transmission becomes progressively better protected by data received

later. Unfortunately infinite random tree codes have infinite complexity. Convolutional codes

[57] approximate this structure and are simple to both encode and decode. An encoder can be

visualised as a linear sequential circuit, for example figure 8.2. The encoding can alternatively

be viewed in a similar manner to a tree code, in which the number of states of the system

remains bounded, forming a trellis, for example figure 8.3. For information on the parameters

describing a convolutional code and their systematic form see appendix E.

Convolutional codes are often used as block codes by terminating the input stream with

dummy zeros. This termination forces the system to a known state at the end of a block and

hence provides equal protection to the bits at the beginning and end of the block. However if

one is decoding a continuous stream or attempting a decoding in the middle of a block, one

is dealing with an unterminated code. In this chapter we study this case.

To test the performance of unterminated convolutional codes, many blocks were encoded,

transmitted over a simulated noisy channel, and then decoded. Various algorithms for the

decoding stage were considered. Three algorithms that fully exploit the error-correcting

abilities of the code are widely used:

• The Viterbi algorithm [35, 110] provides the maximum likelihood decoding of a block

by visiting every branch.

• Sequential decoding [117] provides an approximation to maximum likelihood decoding.

In general it uses less resources than the Viterbi algorithm as it aims to explore only

branches close to the maximum likelihood path.

63
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Figure 8.3: A trellis for the system shown in figure 8.2 (with four states). Only the content
of the memories are shown, other labels are omitted for clarity.

• The forward-backward algorithm [2] provides the marginal posterior probabilities for

each bit – this is called an a posteriori probability decoding. The algorithm is slower

than the Viterbi algorithm as it visits every branch twice.

The maximum likelihood path produces the minimum block error probability but not nec-

essarily the minimum bit error probabilities. The forward-backward algorithm was chosen

for further study as its a posteriori probability decoding behaviour minimises the bit error

probability.

8.2 Forward-backward algorithm

We start by defining a coordinate system on the trellis (i, j) where i is a time coordinate and

j a coordinate over instantaneous state. bkm
t represents the path from state (t, k) to (t+1,m).

The set L contains all the valid branches on the trellis:

L ≡ {(k,m) : a branch links state (i, k) to (i + 1,m)} (8.1)

If we receive the sequence of binary vectors R ≡ r1 . . . rN , we then want to infer the

original sequence of vectors v1 . . . vN . We calculate for each bit in the original data stream:

Pr(vl
i =1|R)=

∑

(k,m)∈L

Pr(vl
i =1|bkm

i ) Pr(bkm
i |R) (8.2)

∝
∑

(k,m)∈L

Pr(vl
i =1|bkm

i ) Pr(R|bkm
i ) (8.3)

where we have used Bayes’s Theorem with a uniform prior across the branches. The first

term in equation 8.3 is either 0 or 1 depending on the output corresponding to the branch.

We can evaluate the second term efficiently using the trellis of the convolutional code. We
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define forward probabilities and backward likelihoods as

αi,j = Pr(r1 . . . ri−1,path through (i, j)) (8.4)

βi,j = Pr(ri . . . rN |path through (i, j)) (8.5)

These can be evaluated recursively:

αi,j =
∑

k:(k,j)∈L

αi−1,k Pr(ri−1|bkj
i−1) (8.6)

βi,j =
∑

k:(j,k)∈L

βi+1,k Pr(ri|bjk
i ) (8.7)

with the following boundary conditions for an unterminated block:

α1,j = δ0,j (8.8)

βN+1,i = 1 (8.9)

We can then evaluate

Pr(R|bkm
i ) = αi,k Pr(ri|bkm

i )βi+1,m (8.10)

8.3 Experiments

A computer simulation of the communication system was tested. The performance of rate

R = 3/4 convolutional codes over the binary symmetric channel with flip probability pf = 0.01

was studied. The capacity of this channel is 0.92 and the computational cut-off rate [121] is

0.74. The process of collecting the data took the following stages:

1. A random binary data sequence of k independent identically distributed (i.i.d.) bits was

created.

2. This data sequence was encoded using the chosen generator matrix.

3. All but the first k/R = t bits of the encoded stream were discarded to simulate the

effect of being in part of a longer data stream.

4. Bits were randomly flipped with probability pf to simulate the received sequence.

5. The forward-backward algorithm was used to decode this received sequence and a hard

decision returned.

6. This decision was compared to the originally transmitted sequence and the location of

errors noted.

By repeating these tests many times and averaging, estimated error probabilities for each

bit with effective decoding delays up to k could be obtained. For each bit, each sample is
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Figure 8.4: A graph of the bit error probability for transmissions using a R = 3/4 code over
a 1% binary symmetric channel. The vertical lines represent 1σ error bars. The 180 bit block
has been annotated with the regions described in the main text.

independent; however, there are correlations in errors between neighbouring bits as errors for

convolutional codes tend to occur in bursts.

8.3.1 A sample set of errors

Two experiments were conducted on identical R = 3/4 convolutional codes (from [14] with

ν = 9) to determine the characteristic form of results. The code was non-catastrophic (a finite

number of channel corruptions can not lead to an infinite number of errors on decoding). The

transmission of 100,000 unterminated blocks of 180 data bits and of 100,000 unterminated

blocks of 360 data bits were simulated. The estimated probability of error for each bit in the

blocks is shown in figure 8.4.

Each graph has three distinct regions as marked:

Ending Tail. The probability of error decreases as the decoding delay increases. The pro-

tection of the bits increases as the encoder’s state becomes more well known in this

region.

Error Floor. For data bits in the middle of the transmission there is a constant probability

of error. These bits are equally well protected and the end-effects have become unim-

portant. This can be confirmed by seeing that the differing length transmissions have

the same error floor. It is expected that for a catastrophic code this flat region would

not exist.

Starting Tail. Early in the code block the state is more well known as the encoder starts in

a known state, hence the probability of error decreases.
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Figure 8.5: A graph of bit error probability for systematic and non-systematic generator
matrices of the same R = 3/4 code over a 1% binary symmetric channel

8.3.2 Comparison of non-systematic and systematic generator matrices for

a “good” code

An optimal R = 3/4, m = 3, ν = 9 generator matrix was used from [14]. The transmission and

decoding of 100,000 unterminated blocks of 180 data bits was simulated using this generator

matrix. Then a systematic generator matrix (a generator that replicates the input stream

within the output stream) for the same code was created and the experiment repeated. The

probability of bit error for the two generator matrices is shown in figure 8.5. The systematic

code has two desirable features:

• The probability of bit error is in general lower than the non-systematic code – a deviation

from the correct path in the trellis of the code is more likely to decode to the originally

transmitted bits for a systematic code.

• The bit error probability does not increase above the channel error probability. In the

worst case no information on the state is known and the decoder just reports back

the systematic bits as received. The bit error probability becomes “unclamped” from

the channel error probability only when the Hamming distance between trellis paths

becomes great enough for error correction to occur.

8.3.3 Comparison of “good” and random systematic generator matrices

A random systematic generator matrix (R = 3/4, m = 9, ν = 9) realizable in observer-

canonical form was created. This generator was then compared to the systematic version of

the “good” code used in section 8.3.2. The results are shown in figure 8.6. These codes show
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Figure 8.6: Comparison of a random code and a “good” code

similar performance; the main difference is at very short decoding delays, where the random

code performs worse. In the random construction the penultimate memory element did not

have any connections to it, therefore no more protection was offered to the bits at the end of

a transmission.

8.3.4 Dependence on memory size

Random systematic codes with different memory orders were investigated and are shown

in figure 8.7. The gradient of the ending tails is similar in each graph; the main variation

between them is the level of the error floor. This variation is as expected as a more complicated

code generally has a better error correcting capability. The Zigangirov upper bound on the

contribution to bit error probability by finite decoding delay [121] is also shown on the graph.

The position of the transition from the error floor to the ending tail region (as shown

in figure 8.4) effectively defines the decoding delay one should use to fully exploit the error

correcting abilities of the code. The section of the graph from decoding delay 20 to 140

(these ranges were chosen so as to exclude the starting tail and remove the effect of the few

“clamped” bits) was modelled as two sections. The error floor was taken to be a constant

error probability and the ending tail a log-scale straight line. A maximum likelihood best-fit

was carried out with the gradient of the ending tail line kept fixed at the gradient found

for the maximum memory size point (otherwise the length of the tail was too small for the

procedure to work reliably). The results with a line of best fit (with a fixed zero intercept)

are shown in figure 8.8. One can therefore deduce that the decoder should have a delay of at

least 7m to fully exploit the error-correcting ability of these codes.
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8.4 Discussion

The Zigangirov upper bound for bit error probability against decoding delay as shown in figure

8.7 happens to be the same as the random-coding bound for bit error probability against block

size. The following of this bound in the ending tail region shows that a convolutional code

offers good performance as function of decoding delay; with every bit received we have similar

performance to a block code stretching from the bit being decoded to the end of the block.

It would be desirable to lower the error floor further. The obvious way of doing this, by

increasing the memory size, is not immediately feasible in the set-up described in this chapter;

the computational complexity of the forward-backward algorithm scales exponentially with

the memory size. Sequential decoding would allow the memory size to be increased further

as the decoder does not visit all trellis branches. However, it is only efficient below the

computational cut-off rate – a lower rate code would have to be used over the example

channel above. Sequential decoding is a near maximum likelihood technique, so exact a

posteriori probability decodings are not reached – this is a particular concern in the ending

tail. Also sequential decoding can lose any computational advantage when faced with bursty

channels or loss of synchronization.

8.5 Conclusion

We have shown that a convolutional code provides good performance for a low latency appli-

cation until the code reaches its error floor. In the next chapter we will look at reducing the

error floor by adding global structure to the local structure of a convolutional code.



Chapter 9

Intersected LDPC and

Convolutional Codes

9.1 Introduction

In current communication systems it is common to use a serial concatenation of a Reed-

Solomon code with a convolutional code (SCRSCC) [20, 34]. Commonly the convolutional

code is decoded to a maximum likelihood codeword and this is then used as an input to a Reed-

Solomon decoder. Information is not used effectively in this process since the convolutional

code is returning a hard decision. Most Reed-Solomon decoders are not capable of using soft

information.

In general large block codes need a complete block to be received before decoding can

be attempted (this is a problem for low-speed telemetry links). To keep encoders close to

linear time and allow early decoding, it is useful to keep the structure of a convolutional code

combined with a high-rate block code. We can decode the convolutional code at any time

to get performance as shown in chapter 8; after a complete block has been received we can

decode both the codes to get better performance.

Convolutional codes with a soft-input soft-output decoder [2, 48] have been shown to

perform well in concatenated coding schemes [8]. This chapter looks at replacing the Reed-

Solomon component code of the SCRSCC with a low-density parity-check code [70].

Iterative decoding will be used. We will use extrinsic information transfer (EXIT) charts

[103] to analyse a code’s performance in terms of properties of the messages being passed

during decoding.

9.2 Code Construction

To maintain a simple graph structure we look at the intersection of a low-density parity-check

code with a convolutional code. We call this code an ICG code (intersected convolutional
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Figure 9.1: The factor graph of a ICG code, shown with a Gaussian noise channel. The point
of message analysis, section 9.3, is shown with a dotted line.

Gallager code). We use the term intersection as the codewords are defined as:

EICG = Econv ∩ ELDPC (9.1)

The intersection means that the factor graph of the complete code is the factor graphs

of the two component codes connected by common variable nodes. An example factor graph

showing the constraints satisfied is shown in figure 9.1. Decoding is carried out by belief

propagation on the factor graph. The iterative belief propagation is terminated when a

tentative decoding is found that is a codeword of both the low-density parity-check code and

the convolutional code (or a maximum number of iterations is reached).

The intersection can also be seen in the parity-check matrix. The parity-check matrix of

the intersected code is the parity-check matrix of the component codes vertically concatenated

as shown in the top panel of figure 9.2. With the low-density parity-check component kept to

be high rate, the majority of the encoding can happen in linear time with the convolutional

code. The final few bits are encoded by matrix multiplication. The encoder can be obtained

by Gaussian elimination in the parity-check matrix of the code as shown in figure 9.2.

After Gaussian elimination has been carried out one could view the system as a convolu-

tional outer code serially concatenated with a general linear inner code. Various results [1, 90]

suggest that having a high rate inner code in a concatenated system is advantageous. The rate

of the general linear inner code (RGLI) increases if the low-density parity-check component

code’s rate is increased. Looking at the size of the pivot square one can show that

RGLI = RLDPC

(
1 +

1 − Rconv

Rconv

)
− 1 − Rconv

Rconv
(9.2)
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Convolutional
Encoder

Linear
Encoder

Figure 9.2: The rearrangement of the parity check matrix of an ICG code to create an encoder.
In the upper matrix, the upper dark band is the area of the parity check matrix used for the
convolutional code. The light rectangle at the bottom of the matrix is the low-density parity-
check matrix. The square indicates the pivot area for Gaussian elimination. The lower matrix
shows that most of the sparse area of the parity-check matrix has been replaced with dense
entries.
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Figure 9.3: EXIT charts of ν = 7, R = 3/4 and ν = 7, R = 1/2 convolutional codes showing
simulation results and tanh fits.

9.3 EXIT chart analysis

The behaviour of the iterative decoding can be predicted using an EXIT chart. In figure 9.1

the graph has been shown split into two loop-free sections; the left section consists of the

check nodes and the right section consists of the variable nodes and the convolutional code.

The transfer function of the right section depends on the channel noise level; the left section

does not. An advantage of ICG codes over turbo codes [8] is that the form of the transfer

functions can be altered by adjusting the degree sequences of the nodes.

Approximate forms for the transfer function of the variable nodes and check nodes were

used as detailed in appendix I. The transfer function of the convolutional code was simulated

and then a tanh function fitted to it. The fit was tried for a range of different convolutional

codes and good fits were generally found (for 1/4 ≤ R ≤ 3/4, ν ≥ 3). Some examples are

shown in figure 9.3.

An example EXIT chart is shown in figure 9.4. In the limit of large block size a code

decodes if a swath exists between the two curves. The channel noise level was altered by

binary division to find the threshold where the curves just intersect.

9.4 Threshold Optimization

The degree sequence of the low-density parity-check nodes was optimized using a global op-

timization package (DIRect [38]) with “fractional phantom distributions” [86]. For high rate

component codes, the optimization results suggested that the largest gain in performance for

high rate low-density parity-check component codes could be achieved by a simple mixture of

weight-0 and weight-1 columns – equivalent to having only some of the nodes of the convolu-
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Figure 9.4: EXIT chart of an ICG code (j = 1, RLDPC = 0.9, Rconv = 0.75) at threshold

tional code involved with the intersection with the low-density parity-check code. Intuitively

this corresponds to the low-density parity-check code having a lower rate and being able to

give better help to the bits to which it is connected. When the rates of the convolutional

and low-density parity-check component codes become similar then a more complex irregular

sequence with higher weight columns is preferred.

The gap between the threshold and the Shannon Limit for codes with a mixture of weight-

1 and weight-0 columns is shown in figure 9.5. It can be seen that there is a minimum in

these graphs.

With weight-1 columns there is local structure in the parity-check matrix as there is no

overlap between each row of the parity-check matrix. Uniform interleaving of the parity checks

spreads out the structure. However a burst of errors from the convolutional code can easily

knock out a large number of parity checks. So we applied an S-random interleaver [26] to the

parity-checks. An S-random interleaver is a random-like interleaver with the constraint that

no input symbols within distance S appear within a distance of S in the output.

With no weight-0 columns this strategy works well. For a code with weight-0 columns an

error floor is found. Many sequential symbols of the convolutional code can be disconnected

from the low-density parity-check code. These disconnected symbols can be at the same

position as a burst of errors from the convolutional code which leads to an error floor. Better

results are found if the weight-0 columns are regularly spaced through the code and then an

S-random interleaver applied to the other columns.
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Figure 9.5: The gap from the Shannon Limit for ICG codes with two different convolutional
component codes and the low-density parity-check codes made from a mixture of weight-1
and weight-0 columns.

9.5 Code construction results

Ideally we would like the low-density parity-check component code rate to be close to 1 to

keep the encoding complexity close to linear. For a slow telemetry application keeping the

low-density parity-check component code rate high means we do not need to suspend data

transmission to transmit a large number of parity bits.

Simulations are shown with two different rates of low-density parity-check component

codes in figure 9.6.

In figure 9.6(a) an R = 0.9 low-density parity-check component code is used. Two regular

codes with j = 1 and j = 3 are shown with two irregular codes (both with 80% weight-1

columns and 20% weight-0 columns). Firstly one can see the improvement of the j = 1 over

the j = 3 regular low-density parity-check component code. When used alone, j = 3 low-

density parity-check codes are good codes, however strong codes are often not good constituent

codes in an iterative decoding scheme. When the waterfall region is steep (as with a low-

density parity-check code) the constituent decoder gives an “all-or-nothing” answer; this does

not help iterative decoding. Also shown is the effect on the error floor of having uniformly

distributed weight-0 columns and having them as part of the S-random permutation. A

significant reduction in the error floor can be seen.

The parameter S of the interleaver generally satisfies S <
√

N/2 [26]. However to widely

distribute the parity checks we need S > row weight. So the S-random interleaver imposes a

maximum rate on RLDPC. RLDPC = 0.95 was approximately the highest rate that could be

simulated with N = 3000. With a higher rate the S-random interleaver could not spread the

parity bits widely enough. The simulation results are shown in figure 9.6(b). The irregular
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codes have N =4092 and R= 0.4360. The constituent convolutional codes are identical. One
point of the bit error rate of a larger block size (N =130572) iteratively decoded SCRSCC is
shown with an asterisk [49].

code had 23% weight-0 columns and 77% weight-1 columns. It can be seen that there is an

error floor with weight-0 columns despite having the weight-0 columns uniformly distributed.

9.6 Comparison with a deep-space standard

A standard for deep-space communications (for example on the NASA Voyager mission) is

a rate 1/2 convolutional code serially concatenated with (255, 223) Reed-Solomon codes [20].

This was compared to two ICG codes (one regular with j =1 and the other with 38% of the

columns being of weight 0 and the rest of weight 1). Simulation results are shown in figure

9.7. For comparison a regular j = 3 low-density parity-check block code is shown. It can be

seen that a gain of 1.5dB over the deep-space standard is achieved with the ICG code and

that the ICG code compares favourably with a non-optimized sparse graph block code.

Recently some iterative techniques for decoding SCRSCC codes using state pinning have

been introduced [49]. With multiple interleaved Reed-Solomon codes a gain of about 1dB

can be found by conducting iterative decoding. This is smaller than the gain found at N =

3000 (equivalent to no interleaving) by using ICG codes. As N is increased the ICG code

performance should further approach its threshold. A value for the bit error rate of an

iteratively decoded SCRSCC with interleaver depth I = 32 (N = 130572) from [49] is shown

in addition in figure 9.7.
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9.7 Discussion

In figure 9.8 the performance of the same convolutional code as used in the ICG codes in

figure 9.7 is shown at various decoding delays. For this example, at signal-to-noise ratios

above 1dB the ICG code structure works well. On decoding the convolutional code alone

the bit error probability drops as the decoding delay increases. Then, as seen in figure 9.7,

decoding the entire block of the ICG code cleans up most remaining errors.

To get the very best waterfall performance, evidence of an error floor is seen due to the

presence of weight-0 columns. It may be possible to ensure that the weight-0 columns do not

match very low weight error patterns of the convolutional code to reduce this error floor.

Thresholds could be further investigated. Firstly a theoretical model for the threshold of

an ICG code could be worked upon. Secondly a study of different block sizes could be carried

out to find out whether the approximate threshold values are approached as the block size

increases.

We have used a decoding algorithm in which the entire convolutional code has been

decoded once per iteration. As convolutional codes often have bursts of errors it may be

possible to speed up decoding by only redecoding the sections of the convolutional code that

are in error.
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9.8 Conclusion

Intersected convolutional and low-density parity-check codes have been presented and shown

to compare favourably with other coding schemes whilst showing computational advantages.

Approximate threshold values have been found, some less than 0.3dB from the Shannon Limit.

Simulations of medium size blocks have shown code performance within 1.5dB of the Shannon

Limit at a block error probability of 10−5.



Chapter 10

Conclusion

10.1 Summary

We have shown that low-density parity-check codes and related codes can be successfully

applied to a variety of non-standard channels.

For channels without synchronization errors, an ordinary low-density parity-check code

system can be used. But if we keep the same code and allow modifications of the decoder,

we may obtain a performance gain on channels with time-varying noise. In chapter 3, we

looked at Gaussian noise and bit-flipping noise two-state Markov channels, and showed that

iterative message passing on a graph representing the code and channel could lead to gains

of as much as 1dB on the examples studied. For the Gaussian noise case, a similar gain could

be obtained by inferring the channel state initially and then carrying out message passing on

the graph of the code alone.

If we allow encoder and decoder modifications, we can obtain a gain for asymmetric chan-

nels (chapters 5 and 6) and allow channels with synchronization problems to be handled

(chapter 7). We introduced two new codes designed for use on a multi-user asymmetric chan-

nel: Sparse-Dense Codes and Sparse LDPC Codes. The Sparse LDPC Codes showed better

performance on the channels studied than Sparse-Dense codes but at a higher computational

cost. On the bit insertion-deletion channel, marker codes were studied and a full iterative

decoding approach experimentally shown to have better performance than other known codes.

Finally it was shown in chapters 8 and 9 that a low-density parity-check code can be

used in combination with a convolutional code to create a useful telemetry system over a

slow channel. A high rate low-density parity-check code is used to add global structure to

a convolutional code. This gives good block code performance whilst the early decoding

properties of a convolutional code are maintained.

10.2 Key Insights

Throughout this thesis “soft decisions” have been used; the messages passed are real numbers

rather than discrete. Taking these messages to be beliefs allows a wide variety of algorithms
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to be constructed. Furthermore a better decoding can usually be obtained if we receive soft

information from the channel. For a code designer who understands the transfer character-

istics of a channel it is often a simple matter to design a belief-propagation decoder which

exploits that knowledge to obtain a better decoding. Care should be taken as the optimal

code depends on the message passing schedule in the decoder.

EXIT charts can often be used as a code optimization tool. They allow an easy vi-

sualisation of the behaviour of a belief-propagation decoder. The technique is a Gaussian

approximation to density evolution; it was seen that even with non-Gaussian inputs the code

optimization results are useful. In a few cases EXIT charts are not suitable; for example,

when our messages became vectors of probabilities, we instead used Monte Carlo techniques.

Random codes are good codes. To achieve a random-like code, global structure is needed;

a change in one bit affects many other bits throughout the code. A convolutional code has

local structure due to the finite history in the encoder. We have seen that we can add global

structure to a convolutional code by intersecting it with a high-rate low-density parity-check

code. This addition could be used with other codes, for example to join multiple small block

codes.

Asymmetric channels seem to be largely ignored as, for the single-user binary case, sym-

metric signalling does not lead to a large hit in performance. We have shown that, for

multi-user channels, significant gains can be obtained with a code designed to give the correct

input distribution. The common assumption of the adequacy of symmetric signalling needs

revision.

10.3 Future directions

Iterative message-passing algorithms which include channel state estimation lead to a useful

gain in performance. However there is a cost in decoding speed which needs to be addressed.

A lowering in complexity may be possible with a different message-passing schedule. Design

and implementation of the final algorithm in hardware should lead to a further increase in

speed.

Codes designed for asymmetric channels have received very little study. The work pre-

sented on multi-user channels suggests that further study of such codes would be profitable.

Physical systems could be surveyed to obtain accurate channel models and tests carried out

with asymmetric signalling. Sparse-Dense Codes are promising for fibre-optic applications

as their serial-style encoder and decoder could lead to a high-speed implementation. The

hardware design for such a system would be an interesting challenge. Sparse LDPC codes

are currently more of theoretical interest. The experiments presented show near-capacity

performance; whether Sparse LDPC codes can approach capacity with a practical decoding

algorithm remains an important open question.

The capacity of the insertion-deletion channel is still unknown. We have presented codes

that are close to the bounds on the capacity. If the capacity can be evaluated, we will be
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better able to assess whether marker codes provide a satisfactory coding solution or whether

alternative code designs should be studied.

Intersected convolutional and low-density parity-check codes have shown good perfor-

mance. Only initial analysis has been conducted of the threshold and error floor of these

codes and further study could be invaluable. Also optimization of the message passing sched-

ule could be studied; it is likely an entire forward-backward pass on the trellis of the convo-

lutional code is not needed every iteration.

Low-density parity-check codes have spent 40 years in academia; I hope this thesis con-

tributes to the take-up of the codes in the real world.



Appendix A

Information Theory

A.1 Definitions

Shannon [93] introduced the concept of the information content of the outcome of an exper-

iment. If the experiment has an outcome randomly drawn from the ensemble X (the set of

all possible outcomes with a probability Pr(x) associated with each outcome x), then the

information content of outcome x is:

h(x) = − log2 Pr(x) (A.1)

where h is measured in bits. A logarithmic approach as observed in [51, 78] seems sensible;

when an experiment is repeated the information content adds:

h(x, y) = − log2 Pr(x, y) = − log2 Pr(x) − log2 Pr(y) = h(x) + h(y) (A.2)

The entropy of an ensemble H(X) is defined to be expected information content:

H(X) =
∑

x∈X

Pr(x)h(x) = −
∑

x∈X

Pr(x) log2 Pr(x) (A.3)

The entropy of an ensemble with two symbols (one occuring with probability p1) has the

form:

H2(p1) = −p1 log2 p1 − (1 − p1) log2(1 − p1) (A.4)

H2(·) is called the binary entropy function.
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Other types of entropy can be defined:

H(X,Y ) = −
∑

x∈X,y∈Y

Pr(x, y) log2 Pr(x, y) (A.5)

H(X|y) = −
∑

x∈X

Pr(x|y) log2 Pr(x|y) (A.6)

H(X|Y ) =
∑

y∈Y

Pr(y)H(X|y)

= −
∑

x∈X,y∈Y

Pr(x, y) log2 Pr(x|y) (A.7)

The final important definition is that of the mutual information between two ensembles:

I(X;Y ) = I(Y ;X) = H(X) − H(X|Y ) (A.8)

This measures the reduction in uncertainty of x once y is learnt (or vice versa). So it measures

the amount of information that y conveys about x.

A.2 Source coding

Shannon’s source coding theorem [93] tell us the length of the shortest string in which some

data can be expressed. If one has N draws from an ensemble X with entropy H(X) then as

N → ∞ one can describe the outcomes in NH(X) bits. If fewer bits are used an inaccurate

description will be obtained.

When the model of the source is known perfectly, arithmetic coding [76] is able to efficiently

reach within 2 bits of the bound. Huffman codes [55] can achieve within 1 bit of the bound

(and often less [41]) but are computationally infeasible with large N .

The source coding theorem describes a compression process. For instance, it has been

found that English has an entropy of about 1 bit per character [94]. If English text is stored

in the standard representation used in a computer then it takes 7 bits per character [92]. The

source coding theorem says that we ought to be able to store a long string using 1 bit per

character, achieving compression by a factor of 7.

A.3 Channel coding

Shannon also presented his channel coding theorem in [93]. Unlike the source coding theorem

which deals with removal of redundancy this theorem specifies how much redundancy a source

needs to allow reliable communication over a noisy channel (with stationary ergodic noise).

We will present the case of a discrete memoryless channel (DMC). A DMC defines a

probabilistic map of elements from an input ensemble X to an output ensemble Y . The

mapping does not vary with time. For examples of basic channels see section B.1. The
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capacity of such a channel is:

C = max
{Pr(x)}

I(X;Y ) (A.9)

In other words the input distribution {Pr(x)} is chosen to maximize the mutual information

between X and Y .

We can construct a code E, a set of allowed transmission sequences. Each sequence is

of length N . The code rate R =
log2 |E|

N . R specifies the number of source bits encoded per

output symbol. For a binary (n, k) code which encodes k bits into n bits, R = k/n. The

channel coding theorem says that as N → ∞ we can communicate with an arbitarily small

probability of error over a DMC if R < C. If R > C then reliable communication is not

possible.

For more details on Information Theory, [71] is recommended.



Appendix B

Simulations

B.1 Basic channels

There are four well-known noisy communication channels we will use. Each of these channels

defines a probabilistic map from an input set to an output set. They are all memoryless; each

time the probabilistic map is conducted it is done independentally and identically.

For more information on any of the following channels the reader is referred to [71].

B.1.1 Binary erasure channel

The binary erasure channel (BEC) has a binary input {0, 1} and a ternary output {0, 1, ?}.
Each input bit is either copied identically to the output with probability 1 − pe or changed

to ‘?’ with probability pe, figure B.1(a).

The capacity for this channel is 1 − pe.
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Figure B.1: Three discrete memoryless channels
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Figure B.2: The capacity of the binary symmetric channel

B.1.2 Binary symmetric channel

A binary symmetric channel (BSC) has a binary input {0, 1} and output {0, 1}. Each bit input

is either copied identically to the output with probability 1 − pf or flipped with probability

pf , figure B.1(b).

The capacity for a BSC is 1−H2(pf ) (where H2(·) is the binary entropy function as defined

in appendix A). The capacity is plotted in figure B.2.

B.1.3 Z channel

The Z channel also has a binary input and output. One of the input set is transmitted reliably

and the other flipped with probability pf . Figure B.1(c) shows the case with 1 transmitted

reliably and 0 subject to corruption. The channel is not symmetric and it is optimal to use

an input distribution that is asymmetrical.

B.1.4 Addititive White Gaussian Noise

The additive white Gaussian noise (AWGN) channel has a real input X and a real output Y.

Y has a Gaussian distribution:

Pr(y|x) ∝ exp

(
(y − x)2

2σ2

)
(B.1)

Is it optimal to use Gaussian signalling (where X has a Gaussian distribution) but this is

hard to achieve in practice. Digital modulation is common and in this thesis we will assume

binary signalling where X = {−1, 1}. For low code rates the difference in capacity between

binary and Gaussian signalling is small [37].
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It is common to quote a signal-to-noise ratio (SNR) rather than σ. We will use the

following definition of SNR:

SNR /dB ≡ 10 log10(1/σ2) (B.2)

In many contexts a statistic of Eb/N0 is quoted where Eb is the energy per data bit and N0

is the noise spectral density. This gives:

Eb/N0 /dB ≡ 10 log10(1/(2Rσ2)) = SNR /dB + 10 log10(1/2R) (B.3)

Examples of the resultant amplitude distributions with Gaussian noise are shown in figure

B.3. In simulations, samples from a Gaussian distribution were obtained using the Box-Muller

transform technique [12].

The capacity of the AWGN channel does not have a simple analytical form. When pre-

sented the capacity has been calculated using the Monte-Carlo technique of Frey [37].

Many BSCs are derived from thresholding the output of an AWGN (or similar real-output

channel) channel at 0. The electronics for a thresholding receiver can be simpler than a real-

output receiver – however this leads to approximately a 2dB loss in performance [57].

B.2 Simulation of one block

To test the performance of a code, the transmission of blocks over the chosen channel was

simulated. In general a random data input sequence (s) was chosen and then encoded using

the code’s encoder. The resultant bits (x) were corrupted randomly by the chosen channel

and then fed to the code’s decoder. The final decoder bits (x̂) were compared to x. The

number of bit differences were reported as the number of bit errors nb. If nb was greater than
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zero a block error was declared.

In some cases s and x were set to zero. For a linear code and linear channel all source

blocks will behave the same and therefore computational effort can be saved. In this case,

tests were done with a random s first to check for any systematic errors in the simulation.

B.3 Calculation of error probabilities

Many blocks nsim were simulated at a particular noise level and a total number of bit errors

nbit and block errors nblock obtained. Best estimates of bit and block error probabilities could

then be obtained:

Pr(block error) =
nblock

nsim
(B.4)

Pr(bit error) =
nbit

Nnsim
(B.5)

Error bars on the block error probability were obtained by using the feature that in logit

space, l = loge
p

1−p , the posterior distribution is generally bell-shaped and hence a Laplace

approximation can work well [71]. Logit space is also a sensible space in which to have a

uniform prior as large block code simulations often lead to probabilities of error roughly

uniformly distributed in logit space.

Abbreviating nsim = n, nblock = r and Pr(block error) = p, we have for the likelihood:

Pr(n, r|p) = pr(1 − p)n−r (B.6)

With an improper uniform prior over logit space we then get the following posterior:

Pr(l|n, r) ∝ (exp(l))n−r

(1 + exp(l))n
(B.7)

Differentiating the log-likelihood allows one to find the peak in the posterior at:

exp(−l̂) =
r

n − r
(B.8)

When r 6= 0 and n 6= r, we find the second differential of the log-likelihood at the peak. Using

the Laplace approximation we get:

σ2
l =

n

n − r
(B.9)

We can then give 1-σ error bars:

p± =

(
1 +

n − r

r
exp∓

√
n

r(n − r)

)−1

(B.10)

When r = 0 and r = n, we get l̂ = ±∞ which requires special treatment due to the

improper prior. We will look at where the probability falls by a factor of exp(−1/2) from the
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peak (the 1-σ point on a Gaussian distribution). For r = 0 we get:

p+ = 1 − exp

(
− 1

2n

)
(B.11)

p− = 0 (B.12)

and for r = n:

p+ = 1 (B.13)

p− = exp

(
− 1

2n

)
(B.14)

In [70] 2-σ error bars are calculated in log space. The 1-σ error bars here agree well in

form except at large p where the log space approximation is not expected to be good.

In general at each noise level a code was simulated until 20 block errors had occurred.



Appendix C

Finite Field Arithmetic

A field (F ) is a set over which the binary operations + and × are defined and the operations

satisfy the following constraints:

• F forms a commuative group over + with identity 0

• F\0 (F without the 0 element) forms a group over ×

• × is distributive over +

The well known infinite sets of all real numbers, all rational numbers and all integers each

form fields. In coding we commonly look at finite fields (where F has a finite number of

elements).

The basic finite field is the field consisting of integers modulo a prime number, p. The

field is called the Galois Field of size p, GF(p). Most commonly used is GF(2):

+ 0 1

0 0 1

1 1 0

× 0 1

0 0 0

1 0 1

(C.1)

The only other finite fields are extension fields of size pq where p is prime and q an integer.

These are not explicitly used in this thesis.

For more details on finite fields see [64].
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Linear Block Codes

D.1 Definition

The codewords of a linear block code are defined as:

E = {x : Hx = 0} (D.1)

x and H are a vector and a matrix respectively over the same finite field. The field in this

thesis will in general be GF(2) (so Hx = 0 mod 2) however larger finite fields will be used in

chapter 6 and appendix H.

D.2 Properties

The “bat caves” (see section 1.4) around every codeword in a linear code are equivalent:

H(x1 + ε) = Hε = H(x2 + ε) (D.2)

As the all zero sequence is a codeword, the terms “weight” and “distance” are often used

interchangeably for a linear code. The minimum codeword weight (excluding the all-zero

codeword) is the minimum distance dmin.

The parity-check matrix makes it easy to check whether a received block is a codeword.

If the received string has noise added to it: r = t + n we can calculate the syndrome z =

Hr = Hn as Ht = 0. If z = 0 then r is a codeword. Otherwise the best estimate of the noise

for a linear channel can be calculated knowing the syndrome alone.

It has been shown that one can achieve the capacity of a symmetric channel with a random

linear block code [32].
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D.3 Generator Matrix

We need a way to map user source bits to a codeword block. For a linear code one typically

uses a “systematic” generator that adds parity bits after the source bits to form the codeword.

A first stage to obtain this generator is to use row operations to rearrange the parity-

check matrix into a form similar to row-reduced echelon form (this is equivalent to conducting

Gaussian elimination on Hx = 0):

Henc = (P IM) (D.3)

so the M × N parity check matrix is now expressed by a M × (N − M) matrix (P) and a

M × M identity matrix. This is not always possible and sometimes the columns might need

to be rearranged to find a suitable form. If the columns are reordered a new code is defined

with the same distance properties as the original code (it is a permutation of the original

code). With Henc the last M values of a codeword can be deduced from the first N − M

values. We have therefore found a way of generating codewords.

Typically the operation of finding the parity bits is written as a matrix multiplication:

x = G>s (D.4)

where G is the “generator matrix” defined as:

G> =

(
IN−M

−P

)
(D.5)

For binary linear block codes the minus sign in the above equation can be ignored.

For low-density parity-check codes this rearrangement will lead to a dense P matrix.

An alternative rearrangement can be carried which will often lead to a sparse generator

matrix [88].



Appendix E

Convolutional Codes

Convolutional codes, as used in chapters 8 and 9, are described in terms of several parameters.

We will follow the notation and examples of [57]. The first parameter is the rate, R. It is

traditionally written in a fractional form with the number of input symbols to the sequential

circuit over the number of output symbols; an R = 2/4 code hence has a different form to

an R = 1/2 code. The other generally cited parameters are the memory order, m, and the

total encoder memory, ν (called the overall constraint length in [57]). If each input has νi

memory elements (for example in figure 8.2 on page 64, ν1 = 2), we then define m = maxi νi

and ν =
∑

i νi.

Instead of using a sequential circuit form for describing convolutional codes, we can use a

matrix representation of the system under a D-transformation (where operations are carried

out modulo 2). Then v
�

= u
�

G, where u
�

and v
�

are the vectors representing the D-transforms

of the input time sequences ut and output time sequences vt respectively. For the example

in figure 8.2:

G =
(

1 + D2 1 + D + D2
)

(E.1)

Convolutional codes can be catastrophic: a finite number of channel corruptions can lead

to an infinite sequence of errors after decoding. To avoid this situation, the convolutional

encoder needs to be chosen appropriately. Systematic convolutional codes (codes where the

input stream appears in the clear in the output stream) are known to be non-catastrophic.

The codes so far described have not necessarily been systematic. It is known that if you

create a systematic generator matrix from a non-systematic generator matrix by replacing the

left hand side of the matrix with the identity matrix, a bad code is produced [57]. Alternatively

we can create a systematic matrix from a non-systematic generator matrix, G, by multiplying

96



APPENDIX E. CONVOLUTIONAL CODES 97

v2

v1u1

v3

u2

Figure E.1: Observer-canonical representation of the generator matrix shown in equation E.5

by the inverse of a square-matrix component, T, for example:

G =

(
1 + D2 D + D2 1 + D

D3 D3 + 1 D2

)
(E.2)

T =

(
1 + D2 D + D2

D3 D3 + 1

)
(E.3)

T−1G =

(
1 0 1+D

1+D2+D3+D4

0 1 D2+D3

1+D2+D3+D4

)
(E.4)

If we use T−1G as our new generator matrix it forms the same code as G; T−1 only defines

a convolutional scrambling of the input bits. If T is selected so that its determinant is in

the form 1 + f(D), then we can realise it in a sequential circuit form with the denominator

corresponding to feedback in the delay line.

It is important to be able to represent a convolutional code as a sequential circuit with a

minimal set of memory elements. The contents of the memories define the state; if we can

minimize the number of memories we can reduce the trellis size and hence the complexity

of decoding. In general for systematic codes this is the hard problem of finite-state-machine

minimization; however for R = n/(n + 1) systematic codes the problem becomes trivial.

We can use the distributive and associative properties of the finite field to reverse the order

of the delay and addition properties to come up with another simple representation called

observer-canonical form. For example we can represent the systematic encoder

G =

(
1 0 1+D2

1+D

0 1 1+D+D2

1+D

)
(E.5)

using two memory elements rather than four as we would have in controller-canonical form.

This form is shown in figure E.1. The memory order m of such a matrix is the same as the

total encoder memory ν of the minimal non-systematic matrix.



Appendix F

Factor Graphs

Factor graphs [37] show the decomposition of a complex joint distribution into simple factors.

For example:

Pr(x1, x2, x3, x4) =
f1(x1)f2(x2)f3(x3)f4(x4)f5(x1, x2, x3)f6(x3, x4)

Z
(F.1)

where Z is a normalizing constant that is not necessarily known. The factorization can be

illustrated in the manner shown in figure F.1. Each variable and factor has a node and each

factor node is joined to the variable nodes on which the factor depends.

In the context of linear codes [102], each of the variables is from the finite field over which

the code is defined and corresponds to a column of the parity-check matrix. Each of the rows

describes a factor which would be a constraint (f5 and f6 in this case). A constraint is an

indicator {0, 1} and says whether that parity-check is satisfied. In the example above, this

would for example be f6(x3, x4) = 1 if x3 + x4 = 0 and f6(x3, x4) = 0 otherwise. A codeword

has all the constraints satisfied. Each factor of only one variable is a prior which generally

includes the receiver symbol likelihood.

3

5 6

1 2 3

1 2 4

4

Figure F.1: A factor graph formed from equation F.1. The factors are shown as filled circles
and the variables as empty circles.
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1

2 3

6

4

4

32

1 5

∑
x4

f6(x3, x4)f4(x4)

f3(x3)
∑

x4
f6(x3, x4)f4(x4)

f3(x3)

f4(x4)

f4(x4)

f2(x2)

f2(x2)

f1(x1)
∑

x2,x3
f5(x1, x2, x3)f2(x2)f3(x3)

∑
x4

f6(x3, x4)f4(x4)

f1(x1)
∑

x2,x3
f5(x1, x2, x3)f2(x2)f3(x3)

∑
x4

f6(x3, x4)f4(x4)

Figure F.2: Message evalution in a tree. Messages are shown being passed from top to bottom.

The decoding problem is then to marginalise out the other variables, for example:

x̂1 = arg max
x1

Pr(x1) = arg max
x1

∑

x2,x3,x4

Pr(x1, x2, x3, x4) (F.2)

We could calculate the sum in equation F.2 directly, but this can be computationally complex

as the sum is over all combinations of all variables. For a code this would involve O(eN ) terms

in the sum.

Alternatively, the summation can be split into smaller steps:

Pr(x1) = f1(x1)
∑

x2,x3

f5(x1, x2, x3)f2(x2)f3(x3)
∑

x4

f6(x3, x4)f4(x4) (F.3)

This evaluation of this equation can be implemented using computation local to the nodes

and message-passing on a tree. A tree is shown in figure F.2 which topologically is identical

to figure F.1. We will look at passing messages from top to bottom.
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We set the check node message passing equation to be:

Ra
i =

∑

{xk}

fi(· · · )
∏

j

Q
xj

j (F.4)

where the sum is over the variables connected on the incoming links and the product is over

the incoming connected symbol nodes. We set the variable node message passing equation to

be:

Qa
j =

∏

i

Ra
i (F.5)

where the product is over the incoming connected factor nodes. By expanding out the mes-

sages (as shown in figure F.2) we reach the same formula as equation F.3. This algorithm is

called the sum-product algorithm [113].

We will normalize the messages used in decoding. For more details on the sum-product

algorithm and normalization please see [71].

The graph in this example has no cycles (called a loop-free graph or a tree). In a cycle-

free graph, the message update equations are exact [37]. If a graph has cycles then one can

carry out the same message update equations but the update equations are approximate. The

update equations assume the incoming messages are independent; this is only generally the

case for a tree.

Yedidia [118] showed that the fixed points of belief propagation on a graph with cycles

correspond to stationary points of the Bethe approximation to the free energy of a factor

graph. This gives support to using belief propagation on graphs with cycles. Yedidia also

presented algorithms that minimize better approximations to the free energy, however these

have higher computational complexity.



Appendix G

The Hat Problem

G.1 Introduction

Todd Ebert presented the following puzzle with a solution [30]:

Each player on a team of seven is randomly and independently assigned a colored

hat (either red or blue) to wear, and then tries to guess the color of his hat by

viewing the hats of the other teammates. No communication is allowed except

for a strategy session before the game begins. [Each player may either guess red,

guess blue or pass.] The team wins a prize if at least one player guesses and all

the guesses are correct. The team loses if no one guesses or some player guesses

incorrectly. What strategy should the team adopt to maximize their chance of

winning?

No-one knows their own hat colour, so if a person guesses they have a 50% chance of

guessing correctly. One might think that the best strategy is to nominate a single person

to guess the colour of their hat and tell everyone else to pass. The team would have a 50%

chance of winning. But they can do better because the rules are not symmetric; one wrong

answer can rule out any number of right answers. One can spread out all the right answers

and clump the wrong ones together.

It is helpful to consider the case of how a team of three might play. The optimal strategy

is for a player to pass unless they see two hats of the same colour worn by the other team

members. In this event they say the opposite colour to what they see. The outcomes are

listed in table G.1. It can be seen that each player’s guesses are correct half the time but the

strategy is such that everyone is wrong together and right separately. The odds of winning

are 3/4.

One can plot the situation on cube, figure G.1. We have defined “strategy points” where

everyone is wrong. Assuming we’re not close to another strategy point, then at a distance of

one from the strategy point (along the edges of the cube) one person is right and everyone else

passes. One hat colour has changed. The person whose hat colour has changed sees the same
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Hats worn Guesses Win?
R R R B B B no
R R B B yes
R B R B yes
R B B R yes
B R R B yes
B R B R yes
B R R B yes
B R B R yes
B B R R yes
B B B R R R no

Table G.1: The outcome of 3-players playing an optimal strategy with the hat game

BBR

RRR

RRB

BRB BBB

BRR

RBB

RBR

Figure G.1: The possible states of the three-person hat problem. The states are arranged on
the corners of a cube with an edge between states where exactly one hat colour is different.
The “strategy points” have been marked with a star.

state as at a strategy point and is now right; everyone else does not recognise the situation

and passes.

To be an optimal strategy every point in space needs to be either a strategy point or an a

distance of one from a single strategy point. Therefore all strategy points need to be at least

a distance three from each other.

So to solve the 7-player case we need to design a set of strategy points on a seven-

dimensional cube such that the points are all at least a distance of three from each other and

every other point is within a distance of one of the strategy point. If we map this “hat space”

to Hamming space the problem can be seen as the specifications for an error-correcting code.
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G.2 The code

One of the first family of error-correcting codes presented were Hamming codes [50]. A

Hamming code is created by first choosing the number of rows M ≥ 2 in the parity-check

matrix. The columns are then filled with all the distinct M -tuples apart from the the all-zero

tuple. For example for M = 3 we get the Hamming (7,4) code:

H(7,4) =




0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1


 (G.1)

One can easily prove two useful properties. Firstly dmin = 3. To find a minimum distance

codeword from the all-zero codeword we need to find the smallest set of columns of the

parity-check matrix such that their vector sum is zero. We can see there are no sets of size

1 (as the all-zero column does not exists) or of size 2 (as there are no identical columns).

However combinations of three columns can be found; in the example above columns {1, 2, 3}
for instance.

Secondly we can show the code is “perfect”. A perfect code has the Hamming spheres of

radius
⌊

dmin−1
2

⌋
completely filling the space. In this case we are interested in spheres of radius

1. We can start by working out how many codewords there are. There are M independent

equations with N unknowns. Therefore there are 2N−M solutions. Each sphere takes up

N + 1 points in space (the central point and 1 point off in each dimension). The total space

filled by spheres of radius 1 is (N + 1)2N−M = 2N . All space is filled. The Hamming code is

therefore a perfect code.

As all space is filled with the spheres, all points in space are either codewords or within a

distance of 1 of a codeword. If we map the colours red and blue to {0, 1} then the codewords

of a (7,4) Hamming code are located at the strategy points needed to solve the 7-player hat

problem. The probability of winning is 7/8.

G.3 Experiment

The Hamming code may give the best answer in theory, but can non-mathematicians be

trained to play with this strategy? To get 7 people to recognise Hamming codewords by

working out the parity-checks is liable to lead to mistakes. We can simplify the problem by

using the cyclic form of a Hamming code [65]. To be cyclic, the columns of the parity-check
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Rotate around and see
if pattern matches.  If so
say the OPPOSITE colour
to where your position is

Rotate around and see
if pattern matches.  If so
say the OPPOSITE colour
to where your position is

If you see all one colour say the opposite

Figure G.2: A black and white version of the rule sheet issued. The filled circles were red and
unfilled circles were blue. Players were told to stand facing each other in a circle and try and
match the patterns. If no match could be found they were to pass.

matrix are arranged so that the rows are cyclic shifts of each other:

Hcyclic =




1 1 1 0 1 0 0

0 1 1 1 0 1 0

0 0 1 1 1 0 1

1 0 0 1 1 1 0

0 1 0 0 1 1 1

1 0 1 0 0 1 1

1 1 0 1 0 0 1




(G.2)

Four extra redundant rows have been added below (eg row 4 is the sum of rows 1 and 2). The

symmetry of all the columns means that any cyclic shift of a codeword is another codeword.

For the parity-check matrix above all the codewords are formed from cyclic shifts of members

of the following set:

{0000000, 1011000, 0100111, 1111111} (G.3)

We therefore reduce the problem of recognising 16 patterns to recognising cyclic shifts of four

patterns.

Within a ten minute talk on the topic, seven undergraduate students were given sheets as

figure G.2 and told how to use them. They were then given randomly chosen coloured hats.

The group then all correctly passed apart from one member who said what colour hat he was

wearing.
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G.4 Postscript

A Hamming code can be used to solve this problem for groups of size (2n − 1) where n is

an integer. For instance for a group of size 127 the chance of winning is higher than 99%.

For other size groups it would be possible to nominate the largest possible subgroup of size

(2n − 1) to play the above strategy and the rest to pass. Other strategies and games with

more than two hat colours have been studied in [62].



Appendix H

Complexity of LDPC belief

propagation decoding

In this appendix the complexity of belief propagation decoding for low-density parity-check

codes will be studied. We will look at the complexity per iteration of two different algo-

rithms. Firstly an algorithm based on the equations in chapter 2 and secondly an equivalent

algorithm based on a Fourier (or dual) representation. An alternate equivalent algorithm

involves passing log-space messages [19] but this can be slow on a computer due to the use of

hyperbolic functions. Lower complexity algorithms which pass discrete messages can be used

with a drop in code performance [39, 87].

We will express the complexity in terms of parameters of the M ×N parity-check matrix

H. The graph formed has M check nodes and N symbol nodes. We will look at regular

codes with column and row weights of j and k respectively. Each check node is connected

to k symbol nodes and each symbol node is connected to j check nodes. In each case we

will calculate the complexity for each node’s message evaluations first so the results could be

carried over to irregular codes.

H.1 Complexity of the GF(2) Non-Fourier algorithm

H.1.1 Check Node

We will first evaluate the complexity of the computation in a single check node y. The

simplest known algorithm for the computation is the forward-backward algorithm [2] on a

trellis like figure H.1. Each possible path from the beginning to the end of the trellis represents

a codeword; the power of the algorithm comes from the trellis having fewer branches than

paths.
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00 0 0

1

0

000

1 1 11 1 1 1

Figure H.1: A trellis for a single parity-check over GF(2)

Forward and backward probabilities, α and β respectively, will be defined as follows:

αyz(a) = Pr


∑

i≤z

Hyixi = a


 (H.1)

βyz(a) = Pr

(∑

i>z

Hyixi = a

)
(H.2)

a can be seen as representing the level on the trellis in this case. These probabilities can be

calculated recursively on the trellis:

αyz(1) = Q0
yzαy,z−1(1) + Q1

yzαy,z−1(0) (H.3)

βij(1) = Q0
i,j+1βi,j+1(1) + Q1

i,j+1βi,j+1(0) (H.4)

αyz(0) and βyz(0) do not need to be evaluated explicitly due to the normalization condition.

We can express equations H.3 and H.4 as:

αyz(1) = (Q0
yz − Q1

yz)αy,z−1(1) + Q1
yz (H.5)

βyz(1) = (Q0
y,z+1 − Q1

y,z+1)βy,z+1(1) + Q1
y,z+1 (H.6)

The boundary conditions are:

αy0(0) = βyk(0) = 1 (H.7)

αy0(1) = βyk(1) = 0 (H.8)

We need the α and β values on (k − 2) non-trivial states, this takes 2(k − 2) multiplications

and 4(k − 2) additions in total.

We can then obtain the Ryz values by multiplication and addition:

R1
yz = αy,z−1(1)βyz(0) + αy,z−1(0)βyz(1) (H.9)

= αy,z−1(1) + βyz(1) − 2αy,z−1(1)βyz(1) (H.10)

R0
yz = 1 − R1

yz (H.11)

To do this efficiently we only need to apply the full equation H.10 to k−2 states – over the two

remaining states the boundary conditions make the equation trivial. Equation H.11 needs to
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1

B C D EA

ABCAB ABCD ABCDE

DECDE

A

E

Figure H.2: The forward-backward algorithm at an j = 4 symbol node. The linear structure
for just one particular member of GF(q) is shown. ‘A’ represents the additional state for fz
and ‘B’-‘E’ the Ra

iz messages. The top row shows the α′ values and the bottom row the β′

values. The dotted lines represent the needed multiplications to obtain values of Qa
yz from

these.

be applied to all k states. Calculation of all Ryz values hence takes 2(k − 2) multiplications

and 3k− 4 additions. It should be noted though that (k− 2) of these multiplications are easy

as they are just multiplication by 2 – on a computer this can quickly be done just using a bit

shift or addition of 1 to the exponent of a floating point number.

Each check node in total requires 4(k − 2) multiplications and 7k − 12 additions.

H.1.2 Symbol Node

We will again use forward-backward algorithm to evaluate Qyz and x̂z. An additional state

will be used to deal with the fz term, as shown in figure H.2. We define the forward and

backward probabilities to be:

α′
yz(a) = fz(a)

∏

i≤y

Ra
iz (H.12)

β′
yz(a) =

∏

i>y

Ra
iz (H.13)

Again we will break the computation down into steps:

1. Evaluation of α′ and β′ We need to know all the values of α′ (taking 2j multipli-

cations) and j − 2 values of β′ (taking 2(j − 2) multiplications). This takes a total of

4(j − 1) multiplications.

2. Evaluation of unnormalized Qyz We simply multiply values of α′ and β′ separated

by one, as shown in figure H.2, this takes 2(j − 1) multiplications.

3. Normalization This is done by adding up each pair of probabilities and then dividing

each probability by the result – this takes j additions, j multiplicative inverses and 2j

multiplications (note the inverses and multiplications could be replaced by 2j divisions

but we will again assume that multiplication is preferable).

4. Evaluation of x̂z We just need to compare α′
jz(1) and α′

jz(0) and find the maximum.

This takes 1 comparison.
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Operation Number

Real multiplications 4M(k − 2) + 2N(4i − 3)
Real additions M(7j − 12) + Nk
Binary multiplications Mj
Binary additions M(k − 1)
Multiplicative inverses Nj
Comparisons N + M

(a) Complexity in terms of parameters of the H matrix

Operation Number

Real multiplications 4(3j + 2R) − 14
Real additions 8j + 12(R − 1)
Binary multiplications j
Binary additions j + R − 1
Multiplicative Inverses j
Comparisons 2 − R

(b) Complexity per transmitted bit in terms of rate

Table H.1: Complexity per iteration for non-Fourier algorithm

This comes to a total of 2(4j − 3) multiplications, j additions, j multiplicative inverses

and 1 comparison.

Alternatively one could multiply all the Riz terms and then use division to remove the

unneeded ones – this takes fewer operations in total however it is likely that division will be

significantly slower than multiplication and hence be slower overall.

H.1.3 Syndrome check

After calculating all the x̂z we then want to check whether this is a valid decoding. To do

this we just test whether

Hx̂ = 0.

H is sparse and hence the entire matrix multiplication does not need to be carried out, instead

we can just concentrate on the non-‘0’ entries. This will take Mk binary multiplications,

M(k − 1) binary additions and M comparisons.

H.1.4 Total complexity per iteration

In each iteration we will update all the check nodes, all the symbol nodes and then do a

syndrome check. The total number of operations per iteration is shown in table H.1(a).

It is useful to express the complexity in terms the rate R of the resultant code. Assuming
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(a) C over GF(8)

(b) C⊥ over GF(8)

Figure H.3: Trellises over GF(q)

linearly independent rows in H this gives:

R =
N − M

N
⇒ M = N(1 − R) (H.14)

The total number of connections in the graph must be the same from the point of view of the

check nodes and the symbol nodes, so we can remove the dependence on the row weight:

Mk = Nj ⇒ k =
j

1 − R
(H.15)

The complexity per transmitted bit per iteration is shown in table H.1(b).

H.2 Fourier Representation

We will now look at codes defined over GF(q) = GF(2p) using Fourier transform decoding in

the check nodes. We can define a isomorphism between GF(2)p and GF(2p) so codes defined

over GF(2p) are convenient for binary digital data.

H.2.1 Check Node Computation

Unlike in the binary case the trellis for a check node computation is complicated, figure H.3(a).

The number of branches scales as q2 making the forward-backward algorithm computationally
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demanding. By using a Fourier representation one can reduce the complexity as follows:

Rij(a) =
∑

� ∈Ci

δ(xj = a)
∏

k 6=j

Qik(xk) (H.16)

=
|Ci|

|GF(q)n|
∑

� ′∈C⊥

i

F [δ(· = a)](x′
j)
∏

k 6=j

F [Qik] (x
′
k) (H.17)

= 1
q

∑

� ′∈C⊥

i

∑

xj

〈xj , x
′
j〉δ(xj = a)

∏

k 6=j

F [Qik] (x
′
k)

= 1
q

∑

� ′∈C⊥

i

〈a, x′
j〉
∏

k 6=j

F [Qik] (x
′
k)

F [Rij ](a
′) = 1

q

∑

a

〈a, a′〉
∑

� ′∈C⊥

i

〈a, x′
j〉
∏

k 6=j

F [Qik] (x
′
k)

= 1
q

∑

� ′∈C⊥

i

qδ(x′
j = a′)

∏

k 6=j

F [Qik] (x
′
k)

⇒ F [Rij ](a
′) =

∑

� ′∈C⊥

i :x′

j=a′

∏

k 6=j

F [Qik](x
′
k) (H.18)

where in going from equation H.16 to equation H.17 we have applied the Poisson summation

formula [105] as suggested by Forney [36] to get to a summation over the dual code (C⊥
i ) and

we can split up the Fourier transform as each term is in a separate dimension. Note equation

H.18 has the same structure as equation 2.5 and hence can similarly be evaluated by the

sum-product algorithm, but instead over the dual code with Fourier transformed messages.

The trellis for the dual code of each check node is trivial (the dual code is one-dimensional),

figure H.3(b). Hence the addition in equation H.18 is only over one term. The number of

branches now scales as q. This leads to an important reduction in complexity as the field size

increases.

H.2.2 Fourier transformations

The Fourier transformation is defined as:

F (h1, h2, · · · ) ≡ F [f ](h1, h2, · · · )
4
=

∑

(g1,g2,··· )∈GF(2)p

(−1)h1g1+h2g2+···f(g1, g2, · · · ) (H.19)

where we have mapped GF(2p) 7→ GF(2)p and used the “character” of GF(2) that maps the

elements on to {−1, 1}.
We can view this process as the application of a matrix similar to a Hadamard matrix,

for example figure H.4.
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F : F (h1, h2) =
∑

g1,g2

F(h1,h2),(g1,g2)f(g1, g2)




(1,−1) (1, 1) (−1, 1) (−1,−1)

(1,−1) −1 −1 1 1
(1, 1) −1 1 −1 1
(−1, 1) 1 −1 −1 1
(−1,−1) 1 1 1 1




Figure H.4: Fourier transformation matrix F for GF(22)

H.3 Complexity of the Fourier Decoding algorithm

In in similar manner to section H.1 we will calculate the complexity of the Fourier decoding

algorithm. The major changes are the Fourier transformation and the normalization of the

probability distributions. All of the messages will be unnormalized and the normalization

will be done once per iteration in the check nodes. This leads to a reduction in complexity

as explained below. The notation will be the same as used before.

H.3.1 Check Node

The forward-backward algorithm will be used to carry out the calculations in Fourier space.

Our trellis now looks like figure H.3(b). The trellis is not time-invariant and hence one needs

to be careful with how the forward and backward probabilities are defined. We label the ith

symbol of dual code word z for check node y as di
yz. The forward and backward probabilities

then are defined as:

α′′
yz(a) =

∏

i≤z

F [Qyi](d
i
ya) (H.20)

β′′
yz(a) =

∏

i>z

F [Qyi](d
i
ya) (H.21)

We can then recursively evaluate these in the similar manner to section H.1.2. To obtain the

Fourier transformed Rij we then just have to multiply these:

F [Ryz](d
z
ya) = α′′

y,z−1(a)β′′
yz(a) (H.22)

The algorithm breaks down into several steps:

1. Fourier Transformation Using the method in figure H.4 we are multiplying a k × q

matrix (there are k rows as we will Fourier transform the messages from all connected

symbol nodes at the same time) by a q× q matrix (F, which can be pre-calculated) and

so we would expect that kq2 multiplications and kq2−kq additions are needed. However
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F =




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




F (0) = [f(0) + f(1)] + [f(2) + f(3)]

F (1) = [f(0) − f(1)] + [f(2) − f(3)]

F (2) = [f(0) + f(1)] − [f(2) + f(3)]

F (3) = [f(0) − f(1)] − [f(2) − f(3)]

Figure H.5: An example Fourier transform (after [22])

the matrix F consists of only 1 and −1 entries so we can expand the calculation out

into instead kq2 − kq additions or subtractions only.

A big saving can be gained by seeing that our matrix is a permutation of a Hadamard

matrix. We can then split the calculation up into pairs and additions and subtractions.

For example in figure H.5 it can be seen that four additions or subtractions are re-

peated and hence need only be done once. In general this gives us nq log2 q additions

or subtractions. This result stems from the fact that at each level of pairing there are

q additions or subtractions and there are log2 q levels of pairing.

It should be noted that this does not increase the memory usage as the inputs (or previ-

ous level of calculations) can be discarded once each pair of an addition and subtraction

is done.

2. Normalization We then normalize each row in the resultant n × q matrix. This

is an efficient time as the ‘0’ element of each Fourier transform is just the required

normalization factor for that row. This takes k multiplicative inverses and k(q − 1)

multiplications.

3. Evaluation of α′′ and β′′ The forward and backward probabilities each require (k −
2)(q − 1) multiplications (the first and last state is either known or not needed in later

calculations and the ‘0’ row of the trellis is trivial as all α′′ and β′′ values are just 1).

4. Calculation of Fourier Transformed Probabilities This multiplication of α′′ and

β′′ requires (k − 2)(q − 1) multiplications (the first and last states are just β′′ or α′′

respectively and the ‘0’ row is again trivial).

5. Inverse Fourier Transform The Fourier transformation used is proportional to an

involution (a self-inverse). Thus to obtain unnormalized probabilities this requires the

same kq log2 q additions or subtractions as we did before. The normalizing factor is q

for all the probabilities – this scaling factor does not affect anything apart from the

scale of the symbol node calculations and can be left in the resultant messages.

This leads to a total of 2kq log2 q additions or subtractions, 2(2k − 3)(q − 1) multiplications

and k multiplicative inverses per check node.
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H.3.2 Symbol Node

We will use the same technique as before (figure H.2 and section H.1.2) but now over q field

elements rather than just 2. The probabilities are now unnormalized but this does not change

the overall calculation.

1. Evaluation of α′ and β′ This takes 2(j − 1)q multiplications.

2. Evaluation of unnormalized Qij This takes (j − 1)q multiplications.

3. Evaluation of x̂z q − 1 comparisons are needed.

This comes to a total of 3(j − 1)q multiplications and q− 1 comparisons per symbol node.

H.3.3 Syndrome check

We will do exactly the same as section H.1.3. Our additions and multiplications are now over

the field GF(q) rather than being binary. This comes to Mk GF(q) multiplications, M(k−1)

GF(q) additions and M comparisons.

H.3.4 Total complexity per iteration

As in the binary case the total complexity per iteration is shown in table H.2.

Meaningful comparisons are only possible if we assume the number of iterations are similar

for all codes.

H.4 The best algorithm for binary codes

We can directly compare the Fourier algorithm with the non-Fourier algorithm in the case

of q = 2. This is shown in table H.3. It can be seen that the only difference occurs for real

multiplications and additions. For the Fourier algorithm to be more efficient we respectively

require:

j > 1 − R (H.23)

j > 3(1 − R) (H.24)

It is likely that both of these will be satisfied. Equation H.23 will be satisfied as j in general

is greater than 1. Equation H.24 will often be satisfied as j is often greater than or equal to

3. Therefore the Fourier decoding algorithm is liable to be more efficient even over GF(2).

As q is increased we can hope for similar behaviour as the Fourier algorithm is O(q)

whereas a traditional algorithm is O(q2/ log2 q) (as shown by the complexity of the trellis).
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Operations Number

Real multiplications 2M(2k − 3)(q − 1) + 3N(j − 1)q
Real additions 2Mkq log2 q
GF(q) multiplications Mk
GF(q) additions M(k − 1)
Multiplicative inverses Mk
Comparisons N(q − 1) + M

(a) Complexity per iteration in terms of parameters of the H matrix

Operation Number

Real multiplications (7j−9)q+6(R(q−1)+1)−4j
log2 q

Real additions 2jq

GF(q) multiplications j
log2 q

GF(q) additions j+R−1
log2 q

Multiplicative Inverses j
log2 q

Comparisons q−R
log2 q

(b) Complexity per iteration per transmitted bit in
terms of rate

Table H.2: Complexity for the Fourier algorithm

Operation Non-Fourier number Fourier number

Real multiplications 4(3j + 2R) − 14 10j − 12 + 6R
Real additions 8j + 12(R − 1) 4j
Binary multiplications j j
Binary additions j + R − 1 j + R − 1
Multiplicative inverses j j
Comparisons 2 − R 2 − R

Table H.3: Comparison of the complexity of the Fourier and non-Fourier decoding algorithms
over GF(2)
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H.5 Conclusion

Moving to Fourier transform decoding reduces the complexity of the decoding algorithm in

the binary case and also allows easier use of larger finite fields as the decoding algorithm

scales as q.



Appendix I

EXIT Charts with a Gaussian

Approximation

I.1 Introduction

Following [104] we will construct extrinsic information transfer (EXIT) charts with the as-

sumption that the messages are Gaussian distributed. We want to obtain a Gaussian approx-

imation to the transfer function of an ensemble of nodes given that the input messages are

samples from a Gaussian distribution.

I.2 Log-likelihood messages

A variable node adds incoming log-likelihood messages to produce an output message [39].

This simple function means it is sensible to look at log-likelihood messages. We will use the

approach of [104].

First we need need to look at the form of log-likelihood ratio (LLR) messages from sources

with Gaussian noise. Following [53] let L be the LLR ensemble from the Gaussian distributed

real space ensemble Y :

Pr(y|µ = +µy)dy =
1√

2πσy

exp

(
−(y − µy)

2

2σ2
y

)
dy (I.1)

By definition the LLR from a bipolar input signal is defined as follows:

l ≡ log(Pr(y|µ = +µy)) − log(Pr(y|µ = −µy)) (I.2)

=
2µy

σ2
y

y (I.3)

117
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We can then use this substitution to find the conditional distribution of L:

Pr(l|µ = +µy)dl =
dy

dl

1√
2πσy

exp

(
−
(
(σ2

y/2µy)l − µy

)2

2σ2
y

)
dl (I.4)

=
1√

2π
2µy

σy

exp


−

(
l − 2µ2

y

σ2
y

)2

2
(

2µy

σy

)2


 dl (I.5)

which leads to the result that

L ∼ N(µl, σl) (I.6)

where σ2
l = 2µl (I.7)

We can therefore parameterise a LLR message from a Gaussian source by σl alone.

We can now look at the information between a LLR message with standard deviation σl

and a bipolar distribution in real space, X. To follow [104] we will call this function J(σl).

J(σl) = I(X;L) = H(X) − H(X|L) (I.8)

= 1 −
∑

x=±1

∫ +∞

−∞
Pr(x, l) log2

1

Pr(x|l)dl (I.9)

= 1 −
∑

x=±1

∫ +∞

−∞

1

2
Pr(l|x) log2

1

Pr(x|l)dl (I.10)

which by symmetry gives:

J(σl) = 1 −
∫ +∞

−∞
Pr(l|x = +1) log2

1

Pr(x = +1|l)dl (I.11)

For our bipolar X we can easily calculate

Pr(x = +1|l) =
Pr(l|x = +1)

Pr(l|x = +1) + Pr(l|x = −1)
(I.12)

=
1

1 + exp(−l)
(I.13)

Substituting equation I.13 and equation I.5 into equation I.11 we get

J(σl) = 1 −

∫ +∞

−∞

exp

(
−(l−σ2

l
/2)

2

2σ2

l

)

√
2πσl

log2

(
1 + e−l

)
dl (I.14)

This sigmoid-like function can be evaluated numerically. The approximate piecewise closed

forms for J and J−1 from [104] were used in calculations in this thesis.
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I.3 Variable nodes

Variable nodes add log-likelihood messages [39]. The transfer function in terms of σ2
l can

be calculated as a simple sum by the basic laws of probability theory. Hence the extrinsic

information transfer function of a variable node with an incoming extrinsic information I and

degree dv is

fv(I) ≈ J

(√
(dv − 1)J−1(I)2 + σ2

ch

)
(I.15)

where σch is the log-likelihood standard deviation of the message from the channel.

I.4 Check nodes

For check nodes we can use a duality property which holds for a binary erasure channel [1, 17].

With a binary erasure channel the set of messages passed during decoding is {0, 1, ?}. The

extrinsic information of a message I = 1 − pe,mesg (where pe,mesg is the probability that a

message is ‘?’). A variable node knows its state if any incoming message is not a ‘?’:

Pr(unknown) = Pr(all erased) = pdv−1
e,mesg = (1 − I)dv−1 (I.16)

so

fBEC
v (I) = 1 − (1 − I)dv−1 (I.17)

A check node has to send a ‘?’ message unless all the other inputs are known:

Pr(known) = Pr(all known) = (1 − pe,mesg)
dc−1 = Idc−1 (I.18)

where dc is the check node degree, so

fBEC
c (I) = Idc−1 (I.19)

The following duality can be seen:

fBEC
c (I) = 1 − fBEC

v (1 − I) (I.20)

We then apply this duality to Gaussian messages to get:

fc(I) ≈ 1 − J
(√

dc − 1 J−1(1 − I))
)

(I.21)

Simulations were carried out with Gaussian messages to find out how accurate this approxi-

mation is. In figure I.1 it can be seen that the approximation is reasonable.
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Figure I.1: EXIT charts of check nodes of different degrees

I.5 Irregular ensembles

When optimizing codes we have various different degree variable nodes and check nodes. To

calculate the transfer function of an ensemble of nodes we take a weighted average of the

transfer functions of each of the different degree nodes [1]. The weights are the proportions

of edges coming from nodes of that type (proportional to the number of nodes of that type

multiplied by number of outgoing edges from such a node).

I.6 Combined sections

In chapters 7 and 9 we combine the transfer function of the variable nodes with the additional

transfer functions of the resynchronization and a convolutional code respectively. We will give

this additional transfer function the symbol fa[I] (we use square brackets soley to clarify the

equation below). The information flows through a variable node, to the additional transfer

function and then back through a variable node. The overall transfer function can be evaluated

by concatenating the transfer functions [104]. The overall transfer function for the variables

nodes and convolutional code is:

J



√

(dv − 1)J−1(I)2 + J−1

(
fa

[
J

(√
dvJ

−1(I)2 + σ2
ch

)])2

+ σ2
ch


 (I.22)

For the variable nodes and resynchronization the transfer function is the same but with

σch = 0 as there is no channel input directly to the variable nodes.
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