
Geotechnique
 

Investigating the changing Deformation Mechanism beneath Shallow Foundations
--Manuscript Draft--

 
Manuscript Number: 14-P-226R2

Full Title: Investigating the changing Deformation Mechanism beneath Shallow Foundations

Article Type: General Paper

Corresponding Author: Srikanth Satyanarayana Chakrapani Madabhushi, MEng
University of Cambridge
Cambridge, UNITED KINGDOM

Corresponding Author's Institution: University of Cambridge

Order of Authors: Srikanth Satyanarayana Chakrapani Madabhushi, MEng

Stuart Kenneth Haigh, MA MEng PhD (Cantab)

Corresponding Author's Secondary
Institution:

Order of Authors Secondary Information:

Manuscript Region of Origin: UNITED KINGDOM

Abstract: The design of shallow foundations has traditionally used a mixture of plasticity based
solutions to find the ultimate limit state and either a factor of safety on the plasticity
solution or a linear elastic solution to attempt to design for the serviceability limit state.
The serviceability limit state is intrinsically linked to the deformation mechanism that
occurs beneath the shallow foundation in service. A better understanding of these soil
movements can pave the way for more rational design approaches. In this paper, small
scale experimental work is used to show that the deformation mechanism beneath strip
and circular foundations continuously changes as the footing is displaced. The
mechanisms observed at intermediate settlements, noted to be typical design points,
are best described by a mixture of solutions. Linear mixes of idealised fields were
analysed using an upper bound approach to determine the load displacement
behaviour of each mix. The envelope of lowest upper bounds indicated that the optimal
mix of fields changes depending on the footing settlement. At typical design points for
shallow foundations mixtures dominated by ellipsoidal cavity expansion mechanisms
were found to be optimal for both axisymmetric and plane strain cases. Comparison of
theoretical and experimentally measured predictions indicated that using linear mixes
of fields gives a good approximation to the true behaviour and may be used for
settlement-based design approaches in the future.

Suggested Reviewers: Ashraf  Osman, BSc MPhil PhD
Lecturer, Durham University
 ashraf.osman@durham.ac.uk
Dr Osman has previously investigated the deformation mechanisms beneath shallow
foundations in the context of the extended mobilisable strength design framework.

Susan Gourvenec, BEng, PhD
Professor, University of Western Australia
Susan.Gourvenec@uwa.edu.au
Professor Gourvenec has conducted numerical analyses for both on and offshore
shallow foundation systems.

Opposed Reviewers:

Additional Information:

Question Response

Have all the authors (and if necessary the
client) seen and approved the final article
(Paper, Technical Note, Discussion
contribution, Book review), and agreed
submission to this journal? If your answer

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



is “no” please explain the circumstances.

Please enter the total number of words in
the main text only.

The main text of the paper should be as
concise as possible. The word count of
General Papers should not exceed 5000
words and for Technical Notes should not
exceed 2000 words.
 The word count of a submission excludes
the abstract, list of notation,
acknowledgements, references, tables
and figure captions.
 Discussions, Book Reviews, and
Obituaries should be less than 1000
words.
 Whilst Geotechnique reserves the right to
publish papers of any length Authors
should be aware that any submission for a
General Paper that is significantly over
the word limit will be subjected to pre-
assessment and may be returned to the
Authors for editing prior to being sent for
review.
 The word limit for Technical Notes will be
strictly adhered to, and if over 2000
words, the submission will be considered
as a General Paper.

5752

Have you included a full notation list
including definitions (and SI units of
measurement where appropriate) for any
mathematical terms and equations
included in your paper?

Yes

Have you included a completed copyright
transfer form? This is required for all
publications and can be found here.

Yes

Have you uploaded each of your figures
separately and in high-resolution .tiff
(ideal for photographs) or .eps files (best
for line drawings)? This is required for all
figures before your paper can be
accepted. Our figure requirements can be
found here.

Yes

Have you uploaded your tables in an
editable Microsoft Word (.doc) format?

Yes

Have you included a separate list of all
your figure and table captions?

Yes

Are your figures clear when printed in
black and white? (For example, are plot
lines distinguishable; are tints sequentially
graded?) As this journal is printed in black
and white, any figures that are unclear
may be removed.

Yes

Are your references in Harvard style? Our
reference guidelines can be found here.

Yes

To ensure your paper is indexed correctly
– and therefore as discoverable as
possible – in our ICE Virtual Library,

Bearing Capacity, Design,

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

http://www.icevirtuallibrary.com/upload/jnlcopyright.pdf
http://www.icevirtuallibrary.com/upload/figure.pdf
http://www.icevirtuallibrary.com/upload/reference.pdf


please choose up to 6 keywords from our
Keywords List. This can be found here.
We are unable to accept keywords that do
not appear on this list.

Manuscript Classifications: 1-g modelling; FOUNDATIONS AND SOIL-STRUCTURE INTERACTION; PHYSICAL
MODELLING; Settlement; SOILS MECHANICS &amp; CONSTITUTIVE MODELS;
Stiffness

Author Comments: Dear Sir or Madam,

We would like to submit our manuscript titled "Investigating the changing Deformation
Mechanism beneath Shallow Foundations " authored by myself and my co-author Dr
Stuart K Haigh.

Kind regards,

Srikanth

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

 http://www.icevirtuallibrary.com/upload/geotechniquekeywords.pdf


Reply to Reviewers comments 

The authors are grateful for the additional comments made by the reviewers. They 

have endeavoured to take every comment into consideration and updated the 

manuscript in light of these comments. 

 

1. Figures 3b, 4a, 4c and 8 show small displacement vectors and contours. These 

figures may need some adjustments to ensure they are clear and readable at print 

scale in the final paper. 

The thickness of the displacement vectors have been doubled in all the figures 

mentioned.  

2. Introduction, line 28 - suggest defining abbreviation for serviceability limit state 

(SLS). 

The abbreviation has been defined as suggested. The sentence now reads: 

‘Foundations are designed using a combination of calculations of Ultimate Limit 

State (ULS), protecting against failure, and Serviceability Limit State (SLS) to ensure 

acceptable levels of deformation’ 

3. Introduction, line 30 - suggest reviewing the wording 'Partial factors of around 

three...'. It is perhaps more accurate to refer to an 'overall /global factor of safety of 

around three'. 

e.g. 'Partial factors are commonly used in geotechnical engineering practice to 

provide a global factor of safety of around three in order to guard against...' 

The wording has been reviewed, and the sentence now reads: 

‘Partial factors are commonly used in geotechnical engineering practice to provide a 

global factor of safety of around three in order to guard against variability of the 

applied loads and material strengths and also to limit deformations.’ 

 

4. Experimental setup, para. 5. Reference to (White et al, 2002) should be (2003) as 

in the reference list. 

The authors thanks the reviewer for spotting this. The necessary change has been 

made.  

 

5. Notation list. Suggest including: 
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- sigma(f), as used on y-axis in several figures 

- delta, or delta(f), as used on x-axis in several figures and in equation 4 

The single instance of delta(f) has been removed and sigma(f) and delta have been 

added to the notation list  

 

6. Design example. This is now clearer for practitioners to apply the proposed 

method, after the revisions from the original draft. However, comments to illustrate 

the improved efficiency of the design based on the optimum displacement fields are 

no longer included. It would be useful to include some comments to illustrate this 

(e.g. reduction in footing diameter compared to a traditional ULS/SLS design), and 

to support the conclusions regarding the improved efficiency of the proposed 

method. 

The authors thank the reviewer for this suggestion. The following text has been 

added to provide a comparison of the proposed method with a more traditional SLS 

calculation. The list of references and the notation list have been updated.  

‘This design can be compared with the result from the adjusted elasticity method, 

as suggested in Annex F of Eurocode 7. The immediate settlement is given by 

equation 5.  

𝑤 = 𝜎𝑓𝐷
(1−𝜈2)

𝐸𝑚
𝐼𝑝 …(5) 

For the footing designed above, undrained conditions dictate ν = 0.5 and the 

influence factor Ip = 1.8 for this Poisson’s ratio and a deep soil layer (Poulos and 

Davis, 1974).  An estimate of the modulus of elasticity may be calculated using 

equation 6 (Vardanega and Bolton, 2011).  

𝐸𝑚 =
𝑆𝑢

2×𝛾𝑀=2
  …(6) 

The resulting modulus of 7143 kPa treats the soil as linear elastic until half the 

undrained shear strength is mobilised. Hence, the adjusted elasticity method 

suggests a settlement of a rigid circular foundation of the order of 50 mm. A more 

typical elastic modulus used in design calculations may be 40000 kPa for London clay 

(i.e 400 times greater than the undrained shear strength), giving a settlement of 

approximately 9 mm. In either case, the settlement predictions appear to be over 

predicted. Moreover, the advantage of the proposed method is not that it may 

produce more efficient solutions than codes of practice. Rather, the proposed 

method satisfies both the ULS and SLS without employing arbitrary factors of safety 

or requiring overly simplifying assumptions of the soil behaviour.’ 
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ABSTRACT 

The design of shallow foundations has traditionally used a mixture of plasticity based 

solutions to find the ultimate limit state and either a factor of safety on the plasticity solution 

or a linear elastic solution to attempt to design for the serviceability limit state. The 

serviceability limit state is intrinsically linked to the deformation mechanism that occurs 

beneath the shallow foundation in service. A better understanding of these soil movements 

can pave the way for more rational design approaches. In this paper, small scale experimental 

work is used to show that the deformation mechanism beneath strip and circular foundations 

continuously changes as the footing is displaced. The mechanisms observed at intermediate 

settlements, noted to be typical design points, are best described by a mixture of solutions. 

Linear mixes of idealised fields were analysed using an upper bound approach to determine 

the load displacement behaviour of each mix. The envelope of lowest upper bounds indicated 

that the optimal mix of fields changes depending on the footing settlement. At typical design 

points for shallow foundations mixtures dominated by ellipsoidal cavity expansion 

mechanisms were found to be optimal for both axisymmetric and plane strain cases. 

Comparison of theoretical and experimentally measured predictions indicated that using 

linear mixes of fields gives a good approximation to the true behaviour and may be used for 

settlement-based design approaches in the future.  

 

INTRODUCTION 

Shallow foundation design primarily aims to spread the load of the structure over a sufficiently large 

area to reduce the stresses imposed on the soil to an acceptably safe level and to achieve an acceptably 

low settlement. Their widespread use in practice is due to their speed of design and relatively low 

design and construction costs.  

Foundations are designed using a combination of calculations of Ultimate Limit State (ULS), 

protecting against failure, and Serviceability Limit State (SLS) to ensure acceptable levels of 

deformation. ULS calculations utilise plasticity theory to predict the maximum load which may be 

applied to the shallow foundation before ‘failure’. Partial factors are commonly used in geotechnical 

engineering practice to provide a global factor of safety of around three in order to guard against 

variability of the applied loads and material strengths and also to limit deformations. Predictions of 

ground settlements can also be produced from elastic solutions, despite soil not being an elastic 

material. The aim of such a design approach is to limit the induced strains in the structure, which, 

owing to their brittle behaviour, is especially important for typical construction materials such as 
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masonry or concrete. As excessive deformation always precedes failure (although this would not be 

revealed by an elastic calculation), it is the serviceability limit state that in general governs design. 

In order to design shallow foundations directly from an SLS viewpoint, the applied loads must be 

linked with the soil movements, as the movement of the soil under the working loads govern the 

settlement of the superstructure in service. McMahon et al (2013a) conducted centrifuge experiments 

on circular shallow foundations on clay in undrained conditions and discovered that the soil 

movements, or deformation mechanism, change depending on the level of loading or settlement. 

Whilst at the ULS a Prandtl mechanism was an accurate representation of the soil movements, at the 

lower loads and settlements typical of SLS,  the observed displacement of the soil was described as an 

‘ellipsoidal cavity expansion’. This mechanism is illustrated in Figure 1. 

McMahon et al (2013a) introduced a framework for calculating the energy dissipated in the soil and 

used upper bound analyses to predict the load settlement behaviour of the shallow foundation. It was 

found that the ‘optimal mechanism’ (lowest work done to cause failure) switched as the settlement 

increased. It was also shown the upper bound based load settlement predictions matched well with the 

finite element analyses of Gourvenec and Randolph (2003) and Taiebat and Carter (2000). McMahon 

et al (2013a) proposed a single design line, independent of the undrained shear strength and soil 

stiffness, for predicting the undrained load settlement performance of a circular footing on uniform 

clay.  

This paper provides further experimental evidence of the changing deformation mechanisms and aims 

to better link the observed deformation mechanisms with the footing displacement. Further analytical 

predictions are made using linear mixes of idealised fields, a method previously explored by Klar and 

Osman (2008). Optimising these mixes allows for lower upper bound predictions, tending towards the 

‘true behaviour’.  

EXPERIMENTAL SETUP 

Circular and strip footings were investigated in the work described here and hence both axisymmetric 

and plane-strain analyses were carried out. The models were constructed within a stiff Aluminium 

container with a Perspex window having internal dimensions 788 × 200 × 450 mm. The model 

footings tested were made from Aluminium alloy, with the strip footing having a width of 50 mm and 

the circular footing consisting of a semicircular plate of diameter 50 mm, symmetry being assumed on 

the plane of the window. These footings are sufficiently small to avoid any significant boundary 

effects from the sides of the testing tank assuming an elastic mechanism.  

E-grade Kaolin clay was consolidated from slurry to avoid soil strength and stiffness anisotropy. A 

consolidometer was used that applied a uniform stress via a hydraulic piston with the stress being 

applied increased in increasing stages to allow the soil to gain strength and prevent extrusion of the 

slurry. The final consolidation stress was five times the nominal undrained shear strength, following 

the findings of Vardanega et al (2012). A summary of the nominal and measured undrained shear 

strengths for the tests carried out is shown in Table 1.  

At the time of testing the model footings, the removal of the overburden pressure induced large 

suctions in the clay layer and hence a correspondingly large effective stress in the clay. The clay layer 

thus had approximately uniform effective stress, strength and stiffness throughout the clay layer, 

mitigating the usual inapplicability of small scale tests to field behaviour due to the non-linear, stress 

dependent nature of soils.  Further, the uniform undrained shear strength and stiffness with depth 
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better reflects the simplified analytical models than would centrifuge test data in which self-weight 

stresses increase substantially with depth. 

Figure 2 shows a schematic and photograph of the experimental setup for the circular and strip footing 

configurations respectively. The footings were driven into the clay using a 1D actuator at a constant 

rate of displacement of 0.1 mm/s. A slower rate aids the visualisation process but was limited to try to 

ensure that the soil behaved in an approximately undrained fashion. As a check on this, the 

dimensionless loading rate proposed by Finnie and Randolph (1994) may be calculated. Originally 

defined for CPT tests as the product of the penetration rate and the cone diameter divided by the 

vertical coefficient of consolidation, Finnie and Randolph (1994) suggested a value of < 0.01 

represents totally drained conditions whilst a value > 20 is completely undrained. For the previously 

defined loading rate of 0.1 mm/s, footings of width 50 mm on kaolin with a cv value of approximately 

0.5 mm2/s yields a value of 10. Whilst some compromise was made on achieving ‘true undrained 

compression’ the dimensionless loading rate is close to the undrained limit of 20.  

Visualisation of the deformation mechanism beneath the small scale foundations was achieved using 

Particle Image Velocimetry (PIV). (White et al, 2003). This software exploits the unique spatial 

variation of colour intensity across discrete ‘patches’ of soil to track the movement of these patches 

with time.  

Following testing, a number of vane shear tests were conducted on the surface of the clay layers to 

provide rapid estimates of the undrained shear strength, the results of which are shown in Table 1. A 

number of samples were also taken from the clay layers for Triaxial testing. Unconfined UU 

compressive triaxial tests were conducted following the ASTM standard procedure. These tests were 

chosen as the stress state beneath the footing approximates triaxial compression with only small 

confining pressures being present during the small scale 1g tests carried out. Table 2 indicates the 

results from these sets of tests. The shear strain at half the mobilised undrained shear strength, γM=2, 

and the empirical exponent, b, were both calculating following Vardanega and Bolton (2012). More 

details of the experiments reported in this paper can be found in Madabhushi (2014). 

 

EXPERIMENTAL LOAD SETTLEMENT BEHAVIOUR 

Load cells and a linearly variable differential transformer (LVDT), shown schematically in Figure 2a, 

were used to obtain the load settlement behaviour of the footings. The results from MSC2-a and 

MSC2-b are plotted in Figure 3a. The zero load, zero displacement point was chosen based on the first 

increase from the load cell baseline reading. Whilst this method was consistently employed for all 

data sets, it must be noted that a misalignment of the clay surface and footing or bedding errors at the 

clay surface are possible sources of error. This would especially affect the smaller displacement 

readings. For example, an error of 0.5 mm when estimating the point of zero displacement could 

move data on the origin to 1 on the logarithmic axis shown. 

Figure 3 also shows GeoPIV visualisations of the deformation mechanisms, taken from the indicated 

levels of normalised settlement. Levels ‘i’, ‘ii’ and ‘iii’ represent very small, intermediate and large 

levels of normalised settlement respectively. Using the Matlab code originally written by Hanselman 

(2008) and edited by the authors, the steepest gradients in the GeoPIV fields were found. These were 

used to plot the soil ‘streamlines’ shown in Figure 3b. These streamlines represent the trajectories of 

soil particles and hence greatly clarify the overall deformation mechanisms.  
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Examination of Figure 3b reveals that for both axisymmetric and plane strain conditions the 

deformation mechanism clearly changes with displacement. At normalised displacement level ‘i’ the 

soil displaces mainly vertically downwards. A large volume of the soil experiences small 

displacements to accommodate the footing displacement. Such a deformation field is similar to the 

solution for an indentation made into an elastic material, as described by Boussinesq (1885). 

Differentiation of these fields and examination of the sum of the principal strains revealed there were 

small amounts of volumetric strain due to the compression of the soil – hence the lack of heave at the 

soil surface.  

By displacement level ‘iii’ both footing types exhibit soil movements similar to those predicted by the 

Prandtl (1921) upper bound solution. Three rigid triangles can be observed, the central one moving 

vertically downwards and the left and right ones moving diagonally upwards at 45°. Between these 

regions the two slip fans can also be discerned, featuring many infinitesimal rigid elements moving 

along an arc. This type of ‘plastic solution’ features a smaller quantity of soil moving larger amounts 

to accommodate the displaced footing. The movements outside the predicted regions are due to the 

soil not being rigid-perfectly plastic, and hence suffering strains in the region bounding the plastic 

mechanism.  

At displacement level ‘ii’, the development of horizontal movements is clear, though there is less soil 

moving towards the free surface and causing heaving than at displacement level ‘iii’. The soil 

movements may be described as a mixture of the ‘elastic’ and ‘plastic’ solutions seen at displacement 

levels ‘i’ and ‘iii’ respectively.  

The development of the deformation mechanisms, or rate of change of mechanisms differ between the 

strip and the circular footing. The deformation mechanisms determine the strains induced in the soil, 

and hence this differing rate of strain development is also reflected by the different load settlement 

behaviour recorded. For a given applied footing pressure, the strip footing undergoes larger amounts 

of settlement. The axisymmetric circular footing allows the soil to displace outwards in three 

dimensions. Conversely, the two dimensional plane strain conditions necessitate larger movements of 

the soil for a given footing displacement, implying larger shear strains and hence mobilising more of 

the soils’ shear strength. Hence, the soil beneath the footings tends to a plastic solution quicker. This 

is also reflected by the experimentally obtained load settlement behaviour shown in Figure 3a.   

 

THEORETICAL PREDICTIONS 

Analysis Procedure  

The experimental results indicate that assuming a constant deformation mechanism, either elastic or 

plastic, will not lead to accurate settlement predictions at all levels of loading. Further, depending on 

the strain level, an incorrectly assumed deformation mechanism can lead to either dangerously low or 

inefficiently large predictions of the superstructure settlement, both of which are unacceptable for 

design.  

McMahon et al (2013a) introduced a method of predicting the load settlement behaviour for any 

axisymmetric deformation mechanism, valid for a linear-elastic perfectly-plastic material. This 

approach was extended by McMahon et al (2014) to incorporate the non-linear stress-strain relation 

for clay proposed by Vardanega and Bolton (2012). The power law suggested, inferred from a 

database of triaxial tests on silts and clays is given by Equation 1.  
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𝜏𝑚𝑜𝑏

𝑆𝑢
=

1

2
(

𝛾

𝛾𝑀=2
)

𝑏
 …(1) 

Table 2 shows appropriate values of b and M=2 based on the triaxial samples extracted from the clay 

beds after testing. The b values of 0.75 ± 0.1 are at the upper end of the range proposed by Vardanega 

and Bolton (2012), but this might be expected based on the work of Vardanega et al (2012), who 

showed an increasing relationship between b and OCR.  

The shear strains are calculated from differentiating the deformation mechanism. The energy 

dissipated in mobilising these strains is calculated assuming a non-linear elastic perfectly-plastic 

model. The non-linear energy dissipated utilises equation 1. The soil is assumed to behave perfectly 

plastically once the mobilised shear stress equals the undrained shear strength, or equivalently at the 

strain given in equation 2 for the values used in this analysis. The product of the principal strain and 

the undrained shear strength gives the perfectly plastic energy dissipation per unit volume.  

𝛾 = 𝛾𝑀=2 √2
𝑏

  …(2) 

Finally, the sum of the energy dissipated is equated to the work done by the footing to achieve an 

upper bound estimate of the footing pressure required to cause the assumed deformation mechanism. 

Equation 3 illustrates this calculation, though a numerical integration was performed in practice. Full 

details of this analysis process can be found in McMahon et al (2013a) and McMahon et al (2014). 

𝑁𝑐 =
1

𝐴𝑓
(∫

𝜕𝑊𝑛 

𝜕𝛿
𝑑𝑉

𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟
+  ∫

𝜕𝑊𝑝 

𝜕𝛿
𝑑𝑉

𝑝𝑙𝑎𝑠𝑡𝑖𝑐
)  …(3) 

The underlying upper bound process was not changed in this paper. However, the calculation of 

strains and normalisation of the work done over the soil volume were modified to allow calculation of 

the load settlement behaviour for both plane strain and axisymmetric deformation mechanisms. The 

experimental results have shown that the deformation mechanism changes for both strain conditions. 

By constructing theoretical fields that reflect these changing deformation mechanisms upper bound 

predictions of the load settlement behaviour can be made. The only constraint is that the constructed 

deformation mechanism should obey the zero volumetric strain condition in order to be applicable for 

the design of shallow foundations on clay behaving in an undrained fashion.  

Figure 3b reveals that the deformation mechanism transitions from an elastic type mechanism to a 

plastic type mechanism as the footing settlement increases. The mechanism inserted into the energy 

calculations must hence reflect these features. One method to imitate these transitional fields is to 

linearly sum proportions of various deformation mechanisms and hence to calculate the energy 

dissipated by the resulting field, as described by Klar and Osman (2008) as part of the ‘extended 

mobilisable strength design framework’. Puzrin and Randolph (2001) present a rigorous proof of how 

kinematically admissible strain fields can be combined to produce more optimal upper-bound 

predictions than those predicted by any of the fields on their own. 

Illustration of field mixing  

In Figure 4 an illustration of this field mixing approach for a circular foundation is given. The 

displacement field shown in Figure 4a is comprised of 90 % of the field of a Prandtl type mechanism 

with distributed plastic strains, as originally defined by Osman and Bolton (2005) and hereafter 

referred to as the ‘Osman field’. The other 10 % comprises an elastic field, derived from an ABAQUS 

simulation of a footing on an elastic material with a Poisson ratio very close to 0.5, hence conserving 

volume. The energy calculation assumes that the deformation mechanism remains geometrically 
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similar but adjusts the strains to account for the increased footing displacement to predict the load 

displacement behaviour as shown in Figure 4b.  A b value of 0.6 was used in all the analyses 

presented here, representative of that of typical clays at large confining stresses, (Vardanega and 

Bolton, 2012).  

The upper bound of the load displacement behaviour has not plateaued even at very high ratios of 

normalised settlement, indicating that the field is not optimal for large footing settlements. The energy 

surfaces in Figure 4c offer further clarity. The non-linear plastic work, dissipated at low shear strain 

values, and the perfectly plastic distributions are plotted.  At low footing displacements (level ‘i’) only 

non-linear plastic work is dissipated. At the intermediate level ‘ii’ the core of the mechanism has 

strained sufficiently to cause perfectly plastic energy dissipation, whilst a shell of non-linear plastic 

strains surrounds this. Though the magnitudes of the non-linear work are comparatively smaller, in an 

axisymmetric mechanism the contribution of small strains at large radii can still significantly 

influence the load settlement prediction. By a settlement level of iii the perfectly plastic core has 

increased in size. However the remaining non-linear plastic shell illustrates why the selected 

mechanism is not able to reach the purely plastic solution, and hence does not plateau.  

Lowest Upper bounds from field mixing  

The experiments indicate that the ‘optimum’ deformation mechanism almost continually changes. By 

varying the proportions of the fields mixed, running the previous analysis for each field and selecting 

the lowest envelope of upper bound predictions, a better estimate of the settlement at a given loading 

can be constructed. Figure 5 shows this procedure for a strip footing, mixing the plane strain elastic 

solution with the Prandtl solution. It is important to note that unlike the previous deformation fields 

the Prandtl field features displacement discontinuities. In theory this should produce a shear band of 

infinite shear strains along these discontinuity boundaries.  However, the computer based analysis 

infers the strains from the displacements, which are finitely spaced according to the mesh size. The 

resulting strains are hence very high rather than infinite and spread over a thickness comparable to the 

mesh size, rather than an infinitesimally thin boundary.  

The result of this approximation is the predicted load displacement behaviour in Figure 5a is not ‘rigid 

perfectly plastic’. Interestingly, the effect of smoother strains around the discontinuity boundaries is to 

produce more optimal upper bound estimates at low settlements – the bearing capacity factor 

predicted is below 5.14. The trade-off is at large settlements the predicted bearing capacity factor 

plateaus at 5.2 rather than 5.14 – without infinite shear strains the known optimum can’t be reached. 

The finer the mesh used for the displacement field, the higher the bearing capacity factor at low 

settlements but the closer the plateau to 5.14. The mesh presented represents a compromise between 

accuracy and computation time. Despite these subtleties, the deformation field modelled will hereafter 

be referred to for brevity as the Prandtl field.    

The optimal proportion of the Prandtl field is shown in Figure 5b. The optimal proportion of the 

Prandtl field at low settlements is zero and hence the mesh effects discussed above have no impact on 

the lowest upper bound found. After the 100 % elastic field ceases to be optimal, the proportion of the 

Prandtl field mixed to make the idealised field varies continually with settlement. This matches the 

experimental observations that the deformation mechanism is changing with the footing settlement. 

Further, the smoothly increasing proportion of the Prandtl field required indicates that the deformation 

mechanism is also transitioning smoothly. This suggests the approach of linearly mixing the 

deformation fields is superior to evaluating the load displacement behaviour of individual ‘types’ of 

field as previously studied.  
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Figure 6 presents the results for a similar technique applied to circular foundations. For clarity, only 

the lowest envelope of upper bounds is shown. McMahon et al (2013a) introduced the idea of an 

‘ellipsoidal cavity expansion’ deformation mechanism. In McMahon et al (2014) it was found that 

such a mechanism is optimal compared to the pure elastic solution or the Osman solution in the 

intermediate settlement ranges. Hence, it was decided to mix these three fields in varying proportions 

to investigate the interplay. For the cavity expansion mechanism, the transition of the soil 

displacement from being normal to ellipsoids to normal to hemispheres occurs at twice the footing 

depth. This follows from the results found by McMahon et al (2013a).  

The results in Figure 6 agree well with previous research whilst providing some new insights. Large 

proportions of either the elastic mechanism or the cavity expansion at high footing settlements result 

in fields that dissipate too much energy to be optimal. This results in the growing proportion of the 

Osman field, similar to that seen for the Prandtl field in Figure 5. At very low settlements, McMahon 

et al (2014) found that the purely elastic solution is optimal until a switch to the pure cavity expansion 

mechanism at intermediate settlements. The research presented in this paper shows that a mixture of 

the elastic and the cavity expansion solutions, in approximately equal quantities, is more optimal even 

at very low settlements. At intermediate settlements the proportion of the elastic field falls as the 

cavity expansion mechanism reaches a peak optimal proportion, before falling away as the Osman 

field begins to dominate. These results justify the findings by McMahon et al (2014) that a cavity 

expansion mechanism produces optimal deformation mechanisms at intermediate settlements. 

However, it is also clear that at all the settlement ranges shown the mixing of fields produces more 

optimal upper bound estimates than any one of the individual fields. Observing the superposition of 

all load settlement predictions, as shown in Figure 5a for the strip footing, indicated the optimisation 

offered by mixing fields was greatest at intermediate settlements. This will be further discussed later 

in the context of a design example.   

Following a procedure similar to that detailed by McMahon et al (2013a), the ellipsoidal cavity 

expansion solution, valid for plane strain conditions, was determined. Ellipses which transition to 

semicircles at a depth of 2 footing diameters were constructed, and used to find the displacements by 

utilising equation 4. The surface area of the ellipses was found using the Ramanjun (1914) 

approximation. 

𝑤 =
𝐴𝑓

𝐴𝑒
𝛿 …(4) 

Whilst this conserves volume across elliptical regions, it potentially allows for local compression or 

extension within these regions. However, examination of the strains revealed these did not occur in 

practice, except at the footing edge where purely vertical and purely horizontal displacements are 

adjacent. McMahon et al (2013a) found that the effect of this error on the load-settlement prediction 

was negligible.  

Using the plane strain ellipsoidal cavity expansion solution, a three way mix with the plane strain 

elastic and Prandtl solution was conducted. The trend of optimal proportions shown in Figure 7 is in 

strong agreement with Figure 8. At low settlements a mixture of the elastic and cavity expansion 

solution dominates. The optimal proportion of the cavity expansion peaks at intermediate settlements, 

then falls away as the optimal proportion of the Prandtl solution increases. The plane strain cavity 

expansion peak is at larger normalised settlements than the axisymmetric equivalent. This is mainly 

due to using the Prandtl solution which does not have distributed plastic strains, unlike the 

axiysmmetric Osman solution.  
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Comparison of the predicted optimal fields and GeoPIV results 

Comparison between the optimal fields generated by the analysis shown in Figure 6 and the 

experimentally observed results from test MSC2-b is offered by Figure 8. The streamlines of soil 

movement are also shown, calculated as described earlier for Figure 3b. The fields shown are from 

three levels of normalised settlement of the circular footing. The soil deformations that occur, i.e. the 

‘real solutions’, are the displacements that result in the least energy dissipation. Hence, the closer the 

agreement between the theoretical and observed fields the closer the lowest upper bound calculated 

will be to the real solution. Figure 8 shows that in general there is good agreement between the 

predicted optimal fields and observed fields. Both sets show the transition from mechanisms 

involving small displacements of large volumes of soil to mechanisms where it is a smaller volume of 

soil, mainly near the surface, that displaces larger amounts. However, the observed fields do exhibit 

more horizontal displacements at lower normalised settlements. Earlier examination of the volumetric 

strains derived from the experimental results revealed the clay near the surface was experiencing 

some consolidation. It is possible this led to mechanisms with more near surface displacements 

becoming optimal, compared to the theoretical predictions which maintain perfectly undrained 

conditions throughout. In any case one would expect the GeoPIV to be more accurate in determining 

the fields at larger footing displacement, owing to the larger signal to noise ratio. Figure 8 also 

suggests the usefulness of mixing the fields. Even at the largest footing settlement, it is clear that there 

is some soil movement outside the Osman solution, justifying the mixing with the cavity expansion 

and elastic solution used in the theoretical prediction.   

Comparison of experimental and analytical results  

Having applied both experimental and analytical techniques to the problem of the changing 

deformation mechanism beneath shallow foundations, it is prudent to conclude with the implications 

for the practical aspects of design of shallow foundations. We consider the experimentally obtained 

load settlement behaviour to be our ‘correct’ solution. Figures 9a and 9b illustrate the closeness of the 

upper bound calculations to the correct solutions, for the circular and strip foundation respectively.  

Observing Figure 9a reveals that the pure elastic, cavity expansion and Osman solutions transition 

from being the lowest upper-bound at very low, intermediate and large footing settlements 

respectively. However, the upper bound predicted by the optimal mixes of these three fields is 

consistently lower, and hence represents a better possible design curve. In general, the same can be 

said of Figure 9b; the optimal mixes of the pure fields is superior to using any single field across the 

entire settlement range. In Figure 9b the intersection of the experimental data with the lowest upper 

bound is not theoretically expected. The sensitivity of the experimental data to the initial selection of 

the ‘zero load, zero displacement’ point is one possible cause of this result. Alternatively, small 

amounts of drainage of the clay at large footing displacements could also be responsible.  

The key point is that the discrepancy between a single field or the optimal mixes and the ‘true 

behaviour’ varies depending on the level of settlement. For example, at very low settlements a 

designer using only the elastic or cavity expansion solution would make a reasonably accurate 

prediction of the allowable footing pressure to cause a given settlement. However, typical design 

points for shallow foundations utilise a factor of safety between 2 and 3. At these working ranges 

accurate settlement predictions are more sensitive to the assumed deformation mechanism.   

Figure 10 illustrates the proposed design curves for both circular and strip footings, based on the 

theoretically obtained lowest upper bounds. As an example of using these results in design, one may 
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consider the design of a circular shallow foundation on London Clay. The designer may be required to 

select an appropriate diameter for a given load within a maximum settlement. Let us consider a 

specified load of 200 kN and an allowable short term undrained settlement of 5 mm. The undrained 

shear strength may be taken as 100 kPa and Vardanega and Bolton (2011) suggest an average value of 

γM=2=0.0070 for London clay. The following steps illustrate how the design process may commence. 

1. Begin by selecting an approximate ratio of allowable footing pressure to undrained shear 

strength, (for example using a factor of safety of 2, σf/su=3). 

2. From a standard design calculation, estimate the foundation diameter. (In our case 0.92 m)   

3. Using Figure 10 read across from the selected footing pressure on the y-axis to the circular 

footing design curve to find the normalised settlement. (In our case this implies a normalised 

settlement of 0.9).  

4. For a diameter of 0.92 m from step 2 and a value of γM=2=0.0070 this footing would settle by 

5.8 mm  

5. As the settlement is larger than permitted, the process must be repeated with a lower 

allowable footing pressure selected. This iterative process can be continued until the required 

settlement is obtained.  

6. For example, it is found that a footing pressure to undrained shear strength ratio of 2.8 implies 

a diameter of 0.95 m with a settlement of 5.0 mm  

 

It should be noted that the choice of load displacement behaviour in step 3 is quite critical as the 

estimates are upper bounds. Applying a calculated footing pressure based on an incorrectly selected 

deformation mechanism could lead to unexpectedly large settlements in practice.  

This design can be compared with the result from the adjusted elasticity method, as suggested in 

Annex F of Eurocode 7. The immediate settlement is given by equation 5.  

𝑤 = 𝜎𝑓𝐷
(1−𝜈2)

𝐸𝑚
𝐼𝑝  …(5) 

For the footing designed above, undrained conditions dictate ν = 0.5 and the influence factor Ip = 1.8 

for this Poisson’s ratio and a deep soil layer (Poulos and Davis, 1974).  An estimate of the modulus of 

elasticity may be calculated using equation 6 (Vardanega and Bolton, 2011).  

𝐸𝑚 =
𝑆𝑢

2×𝛾𝑀=2
   …(6) 

The resulting modulus of 7143 kPa treats the soil as linear elastic until half the undrained shear 

strength is mobilised. Hence, the adjusted elasticity method suggests a settlement of a rigid circular 

foundation of the order of 50 mm. A more typical elastic modulus used in design calculations may be 

40000 kPa for London clay (i.e 400 times greater than the undrained shear strength), giving a 

settlement of approximately 9 mm. In either case, the settlement predictions appear to be over 

predicted. Moreover, the advantage of the proposed method is not that it may produce more efficient 

solutions than codes of practice. Rather, the proposed method satisfies both the ULS and SLS without 

employing arbitrary factors of safety or requiring overly simplifying assumptions of the soil 

behaviour.      

 

CONCLUSIONS 

The globally widespread use of shallow foundations necessitates accurate predictions of their 

behaviour to ensure safety, performance and efficient design. A rationalised design approach that does 
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not resort to arbitrary factors of safety provides the designer with greater control of their design point, 

knowing exactly how far the chosen shallow foundation design is from the limit states. This paper has 

illustrated that utilising a deformation mechanism that is allowed to smoothly vary between elastic, 

Prandtl and Cavity expansion mechanisms allows more optimal design to be carried out than by 

utilising any of the mechanisms in isolation. The paper has also illustrated that small-scale test data on 

plane-strain and axisymmetric shallow foundations yield load-displacement data and deformation 

mechanisms that validates this analysis.  

Use of the procedures developed by McMahon et al (2013) and further refined here allows shallow 

foundation design for serviceability to be carried out directly, rather than by using arbitrary Factors of 

Safety and hence leads to both safe and more efficient performance-based design. 
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NOTATION 

Roman 

Ae surface area of ellipse  

Af surface area of footing  

b empirical exponent 

cv coefficient of consolidation 

Em modulus of elasticity  

Nc bearing capacity factor  

su undrained shear strength 

UU unconsolidated-undrained  

w normal displacement 

Wn non-linear work 

Wp perfectly plastic work 

Greek 

τ shear stress 

σf footing pressure 

δ footing settlement/displacement  

γ shear strain 

γM=2 shear strain at half the mobilised shear strength 

 

Notation List
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Table 1 Summary of test configurations 

Test Id 
Type of 

foundation 

Nominal 

su (kPa) 
Type of test 

Soil Characterisation 

No. of Vane 

shear tests 

Samples for U-

U Triaxial test 

MSC1-a Strip 25 Plane strain 

8 2 MSC1-b Semi-circular 25 Axisymmetric 

MSC1-c Semi-circular 25 Axisymmetric 

MSC2-a Strip 50 Plane strain 

16 2 MSC2-b Semi-circular 50 Axisymmetric 

MSC2-c Semi-circular 50 Axisymmetric 

MSC3-a Strip 100 Plane strain 

16 2 MSC3-b Strip 100 Plane strain 

MSC3-c Semi-circular 100 Axisymmetric 
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Table 2 Summary of soil characterisation results used to normalise load-settlement behaviour 

 

Test Id Average of 

measured su 

(kPa) 

    , Shear 

Strain at half 

mobilised su  

b, empirical 

exponent relating 
 

  
 to γ 

MSC1 24.00 0.030 0.6431 

MSC2 34.00 0.015 0.8697 

MSC3 65.00 0.012 0.7488 
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Table 1: Summary of test configurations  
 
Table 2: Summary of soil characterisation results used to normalise load-settlement 
behaviour 
 
 
Figure 1: Examples of deformation mechanisms, following from McMahon et al 
(2013a) 
 
Figure 2: Experimental setup  
 
Figure 3: Combining the load settlement behaviour with the experimentally observed 
deformation mechanisms obtained using the GeoPIV software  
 
Figure 4:  Upper bound load settlement prediction based on linear mix of 90 % 
Osman and 10 % Elastic solutions  
 
Figure 5: Determining the envelope of lowest upper bounds by linear mixes of plane 
strain Prandtl and Elastic solutions  

a) Envelope of Lowest Upper Bounds 
b) Optimal Proportion of Prandtl Field  

 
Figure 6: Determining the envelope of lowest upper bounds by linear mixes of 
axisymmetric Osman, Cavity Expansion and Elastic solutions  

a) Envelope of Lowest Upper Bounds 
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Figure 7: Optimal proportion of linear mixes of plane strain Prandtl, Cavity expansion 
and Elastic solutions 
 
Figure 8: Determining the envelope of lowest upper bounds based on GeoPIV 
deformation fields 
 
Figure 9: Comparison of theoretical and experimental load settlement behaviour 
 

a) Circular Footing Predictions 
 

b) Strip Footing Predictions  
 

Figure 10: Possible design curves for predicting undrained settlement of circular or 
strip footings  
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