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Abstract: Obesity in women of child-bearing age is a growing problem in developed and developing 
countries. Evidence from human studies indicates that maternal BMI correlates with offspring 
adiposity from an early age and predisposes to metabolic disease in later life. Thus the early life 
environment is an attractive target for intervention to improve public health. Animal models have been 
used to investigate the specific physiological outcomes and mechanisms of developmental 
programming that result from exposure to maternal obesity in utero. From this research, targeted 
intervention strategies can be designed. In this review we summarise recent progress in this field, with 
a focus on cardiometabolic disease and central control of appetite and behaviour. We highlight key 
factors that may mediate programming by maternal obesity, including leptin, insulin and ghrelin. 
Finally, we explore potential lifestyle and pharmacological interventions in humans and the current 
state of evidence from animal models. 
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Miss Naomi Penfold 
University of Cambridge Metabolic Research Laboratories 

Wellcome Trust-MRC Institute of Metabolic Science 
Box 289, Addenbrooke's Hospital 

Cambridge, CB2 0QQ 
United Kingdom 

Dr. Lique Coolen 
By email 

23 June 2015 

Dear Dr. Coolen, 

We thank you for forwarding the requested revisions of our submitted manuscript “Developmental 
programming by maternal obesity in 2015: outcomes, mechanisms and potential interventions” 
for inclusion in the Hormones & Behaviour Special Issue “SBN invited contributions to the second 
joint SBN and ICN meeting, 2014”.  We have addressed the reviewer’s comments and include a full 
description in the response to reviewer. 

Please find the revised manuscript and associated documents uploaded via the Elsevier Editorial 
System. We confirm again that this manuscript has not been published nor submitted elsewhere. 

Please do not hesitate to contact us using the details below for any further information.   

Yours sincerely, 

Naomi Penfold (co-author) 

Email: np325@medschl.cam.ac.uk 
Telephone: (+44) 01223 336784 
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Miss Naomi Penfold 
University of Cambridge Metabolic Research Laboratories 

Wellcome Trust-MRC Institute of Metabolic Science 
Box 289, Addenbrooke's Hospital 

Cambridge, CB2 0QQ 
United Kingdom 

23 June 2015 

Dear Sir/Madam, 

We thank you for your review of our submitted manuscript “Developmental programming by 
maternal obesity in 2015: outcomes, mechanisms and potential interventions” for inclusion in the 
Hormones & Behaviour Special Issue “SBN invited contributions to the second joint SBN and ICN 
meeting, 2014”.  Please find below your comments addressed point by point: 

1.     While the review discusses the strengths of animal models, it does not address the limitations of 
the models. 

We agree that this would be a valuable addition to the review. A more complete discussion of the 
limitations and strengths of different species as models for developmental programming studies has 
been added in lines 76-101 to address this point.  

2.     Authors need to provide a comparison of the developmental ontogeny of organ system of 
relevance in animal models with humans. Inclusion of schematic comparing human and animal 
models being discussed would be helpful in this regard. 

Although we agree schematics of the developmental ontogeny of organ systems of relevance in 
animal models with humans would be helpful, we feel that inclusion of this would be a whole review 
in itself. It of course differs for different organ systems and even within one organ system different 
components of it differ. We therefore believe that this is too big a task to incorporate within the 
context of the current review. We have added comments in specific sections (as described in 
response to point 3) where differences may be particularly relevant so that the reader is at least 
aware of this complexity. 

3.     Authors need to emphasize the importance of choosing models that are appropriate in terms of 
the organ system of translational relevance. For instance if differentiation of organ systems occur 
postnatally in given species as opposed to prenatally in humans, the mediation can also involve 
effects via the mother in case of humans as opposed to direct effect in the animal models.  These 
caveats need to be addressed. 

As we have discussed above, a thorough comparison of the developmental ontogenies of key organs 
in humans and the common animal models used in programming studies would be a welcome 
addition to the literature. However, we feel that this is beyond the scope of this review. We 
recognise that exploration of these issues would improve this review and to address this we have 
added discussion of the developmental timings for relevant organs and systems throughout the 

*2-Response to Reviewers
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review, with a particular focus on the limitations of translating mechanistic studies in rodents to 
designing interventions in humans. In addition, discussion of the merits of different animal models 
and their relevance as models for specific tissues is included. Namely, additions have been made in 
lines 76-101, 288-291, 295-297, 332-339, 360-364 and 381. 

4.     In addition to dietary and exercise interventions authors should discuss briefly potential effects 
of pharmacological interventions (e.g. insulin sensitizing agents) on offspring health. 

We concur that this would be a helpful addition to the review and as such a section discussing the 
current trials using metformin, an insulin sensitizer, has been added (lines 410-428). 

Minor comments: 

Line 84: Sentence is incomplete 

It is not clear to us how the sentence (now in line 108) is incomplete and we would welcome further 

clarification here. 

Line 218 - ventromedial hypothalamus has been previously abbreviated to VMH. 

This has been amended. 

Please do not hesitate to contact us using the details below for any further information.   

Yours sincerely, 

Naomi Penfold (co-author) 

Email: np325@medschl.cam.ac.uk 
Telephone: (+44) 01223 336784 
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Developmental programming by maternal obesity in 2015: outcomes, 

mechanisms and potential interventions 

Authors: Naomi C. Penfold, Susan E. Ozanne 

Highlights 

 Leptin is a potential mediator of cardiovascular programming by maternal obesity. 

 Insulin contributes to development of central control of glucose homeostasis.  

 Ghrelin has neurodevelopmental actions in the rodent hypothalamus. 

 Maternal obesity affects neural mechanisms of reward, motivation and learning. 

 Dietary, exercise and pharmacological interventions aim to improve maternal metabolic 

state. 
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Abstract 8 

Obesity in women of child-bearing age is a growing problem in developed and developing countries. 9 

Evidence from human studies indicates that maternal BMI correlates with offspring adiposity from 10 

an early age and predisposes to metabolic disease in later life. Thus the early life environment is an 11 

attractive target for intervention to improve public health. Animal models have been used to 12 

investigate the specific physiological outcomes and mechanisms of developmental programming 13 

that result from exposure to maternal obesity in utero. From this research, targeted intervention 14 

strategies can be designed. In this review we summarise recent progress in this field, with a focus on 15 

cardiometabolic disease and central control of appetite and behaviour. We highlight key factors that 16 

may mediate programming by maternal obesity, including leptin, insulin and ghrelin. Finally, we 17 

explore potential lifestyle and pharmacological interventions in humans and the current state of 18 

evidence from animal models. 19 
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Introduction 32 

The importance of normal fetal growth was first highlighted by associations between low birth 33 

weight and the increased risk of heart disease and type 2 diabetes in adulthood (Barker et al., 1989; 34 

Hales et al., 1991). Subsequent studies of maternal under-nutrition and, more recently, maternal 35 

over-nutrition have demonstrated that the maternal nutritional environment and fetal and neonatal 36 

growth, collectively known as the first 1000 days of life, are key determinants of health in the next 37 

generation (de Rooij et al., 2006; Lumey and Stein, 1997; Ravelli et al., 1999; Ravelli et al., 1976). In 38 

humans, maternal obesity is associated with low and high birth weight (Cedergren, 2004; Gaudet et 39 

al., 2014) and increased risk of obesity and metabolic dysfunction in the offspring both in childhood 40 

(Boney et al., 2005; Whitaker, 2004) as well as in adulthood (Brisbois et al., 2012; Cooper et al., 41 

2010). Maternal obesity is also associated with increased risk of offspring cardiovascular disease 42 

(Drake and Reynolds, 2010), type 2 diabetes (Berends and Ozanne, 2012) and neurodevelopmental 43 

and psychiatric disorders, including ADHD, autism, schizophrenia and mood disorders (Mehta et al., 44 

2014; Rodriguez, 2010). 45 

The prevalence of overweight and obesity has soared in the last 30 years globally (Ng et al., 2014). 46 

Worryingly, the number of children classified as overweight or obese has increased 150% worldwide 47 

in this timeframe (Ng et al., 2014) and the rate of obesity in women of child-bearing age is still rising 48 

(Fisher et al., 2013).  Whilst genetic factors that predispose to obesity in an obesogenic environment, 49 

have likely contributed to the current global obesity epidemic, the short timescale of this increase 50 

implicates non-genetic factors including the impact of the intrauterine and neonatal environment on 51 

adult health and disease (McAllister et al., 2009). It is vital that we understand the mechanisms 52 

underlying such developmental programming of disease by maternal obesity in order to develop 53 

effective interventions to help mitigate the current rise in obesity, cardiovascular and metabolic 54 

disease as well as mental health disorders. Bariatric surgery to induce weight loss lowers the risk of 55 

gestational diabetes mellitus (GDM), fetal macrosomia and the rate of obesity in the offspring as 56 

well as improving offspring insulin sensitivity, demonstrating that improving the maternal metabolic 57 
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state prior to pregnancy is an effective intervention that improves the health of both mother and 58 

child (Kral et al., 2006; Shai et al., 2014; Smith et al., 2009). However, bariatric surgery is intrusive, 59 

high-risk, costly and can cause nutrient deficiency, the latter of which led to severe neural defects in 60 

some children conceived very soon after surgery (Pelizzo et al., 2014). A clearer understanding of the 61 

mechanisms mediating the increased risk of metabolic disease in offspring of obese women is 62 

required in order to develop less intrusive, better targeted interventions. This review will explore 63 

recent progress made in the understanding of the developmental programming by maternal obesity 64 

and potential avenues for intervention. 65 

 66 

Animal models have revealed mechanisms underlying programming by maternal 67 

obesity  68 

Animal studies have confirmed that maternal obesity programs metabolic syndrome-like outcomes 69 

in the offspring including impaired insulin action and glucose homeostasis (Martin-Gronert et al., 70 

2010; Samuelsson et al., 2008; Shankar et al., 2010; Shelley et al., 2009), hypertension and 71 

cardiovascular dysfunction (Blackmore et al., 2014; Fernandez-Twinn et al., 2012; Samuelsson et al., 72 

2008), as well as increased adiposity (Bayol et al., 2008; Samuelsson et al., 2008; Song et al., 2015) 73 

and an increased susceptibility to diet-induced obesity (DIO) (Bayol et al., 2007; Howie et al., 2009; 74 

Kirk et al., 2009; Nivoit et al., 2009; Samuelsson et al., 2008; Shankar et al., 2008; Torrens et al., 75 

2012). The choice of animal model is often a compromise between practicality of the research and 76 

translatability to humans. Whilst non-human primates (NHPs) share the closest resemblance to 77 

human developmental trajectories and pregnancies, they have a long gestation length and time to 78 

maturity of the offspring, leading to high research costs. Sheep and pigs are used due to their 79 

similarities in placental structure and function to humans, whilst rabbits are a medium-sized 80 

mammal with intermediary similarities and differences to humans. These larger mammals are 81 

conducive to repeated sampling of blood and tissue, allowing for longitudinal studies and within-82 

subject analysis. Models with larger litter sizes, such as pigs and rodents, allow for the easier 83 
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investigation of sex differences in programming. Rodent models have been used extensively due to 84 

their short gestation (three weeks) and maturity intervals (five weeks to puberty) and the ease with 85 

which to generate a well-powered experiment of animals of ages across the lifecourse. Furthermore, 86 

they enable genetic engineering to elucidate mechanisms. A disadvantage is that these smaller 87 

mammals are limited to one sampling point, precluding true longitudinal analysis. In addition, there 88 

are several differences in developmental timings of key tissues between rodents and humans. An 89 

overarching observation is that the third trimester in humans is roughly equivalent to the first 90 

postnatal weeks in the rodent. Notably adipose tissue develops from early in gestation in humans 91 

whereas subcutaneous and visceral depots develop from late gestation and early postnatal life, 92 

respectively, in rodents (Rosen and Spiegelman, 2014). Cardiomyocyte proliferation and growth is 93 

mostly complete by birth in the human and sheep (Morrison et al., 2007), whereas cardiomyocyte 94 

division ends at postnatal day 3 to 4 in the rat, with growth occurring over the first two weeks of life 95 

(Li et al., 1996). In addition, the development of key intra-hypothalamic connections occurs during 96 

the second postnatal week in rodents but these connections are established by birth in humans and 97 

NHPs ((Bouret, 2012; Coupe and Bouret, 2013; Liu et al., 2013). The choice of animal model will 98 

affect the translatability of the results, however the outcomes seen in these models often 99 

recapitulate phenotypes reported in humans, signifying the validity of the use of a range of animals 100 

to investigate the mechanisms underlying developmental programming. 101 

 102 

Insulin and glucose homeostasis 103 

Maternal obesity programs offspring adiposity, decreased glucose tolerance and impaired insulin 104 

sensitivity (Fernandez-Twinn et al., 2012; Samuelsson et al., 2008; Yan et al., 2011). The mechanisms 105 

underlying programming of insulin resistance and glucose homeostasis by maternal obesity include 106 

alterations in peripheral insulin signalling and insulin secretion [reviewed in (Berends and Ozanne, 107 

2012) and (Duque-Guimaraes and Ozanne, 2013)]. Adult offspring exposed to maternal obesity are 108 

hyperinsulinaemic and have alterations in the expression of key insulin signalling and glucose 109 
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handling molecules in skeletal muscle, liver and adipose tissue that indicate a predisposition for 110 

insulin resistance and impaired glucose tolerance (Martin-Gronert et al., 2010; Nicholas et al., 2013a; 111 

Rattanatray et al., 2010; Shelley et al., 2009; Yan et al., 2011). At least some of the programming of 112 

insulin signalling protein expression appears to occur through post-transcriptional mechanisms via 113 

changes in microRNA (miR-) levels. Maternal obesity at conception in sheep increases hepatic miR-114 

29b, miR-130 and miR-107 levels (Nicholas et al., 2013b). Increased miR-126 expression in adipose 115 

tissue of mice exposed to maternal obesity is associated with down-regulated expression of target 116 

genes involved in insulin signalling including insulin receptor substrate 1 (IRS-1) (Fernandez-Twinn et 117 

al., 2014). These programmed changes in IRS-1 and miR-126 were maintained following 118 

differentiation of pre-adipocytes in vitro, indicating that  maternal obesity programs altered insulin 119 

signalling in the offspring adipose tissue in a cell-autonomous fashion.  120 

In addition to peripheral insulin signalling, recent evidence suggests that the central control of 121 

glucose homeostasis is vulnerable to the hyperinsulinaemic obese maternal environment. 122 

Genetically-induced maternal hyperinsulinaemia and insulin resistance is associated with disrupted 123 

glucose homeostasis and hyperinsulinaemia in male wild-type offspring despite normal body weight 124 

and glycaemia in the mother (Isganaitis et al., 2014). Furthermore, a recent study demonstrated that 125 

genetic abrogation of insulin signalling specifically in pro-opiomelanocortin (POMC) neurons of 126 

offspring exposed to a maternal high-fat diet (HFD) restores POMC innervation of pre-autonomic 127 

paraventricular nucleus (PVH) neurons and normalises the impaired glucose tolerance otherwise 128 

seen (Vogt et al., 2014). This is associated with an improvement in pancreatic beta cell glucose-129 

stimulated insulin secretion and parasympathetic innervation of beta cells.  130 

Maternal hyperinsulinaemia with insulin resistance might program altered offspring development 131 

via the concomitant maternal hyperglycaemia, since insulin does not cross the placenta whereas 132 

glucose does (Dabelea, 2007). In humans, impaired glucose tolerance during pregnancy is often 133 

associated with increased birth weight and increased risk of childhood obesity (Catalano et al., 2003; 134 

Cottrell and Ozanne, 2007; Hillier et al., 2007; Liu et al., 2014; Plagemann et al., 2002). Treating GDM 135 
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mothers to lower their blood glucose reduces this risk, particularly in male offspring (Bahado-Singh 136 

et al., 2012; Gillman et al., 2010). In a recent study in mice, genetically-induced maternal 137 

hyperglycaemia is associated with increased body weight and impaired glucose tolerance in wild-138 

type male offspring (Nadif et al., 2015). Therefore control of glycaemia during pregnancy is not only 139 

important for maternal health but also for the long term health of the offspring.  140 

 141 

Cardiovascular system 142 

Hypertension and cardiac hypertrophy are common phenotypes observed in offspring exposed to 143 

maternal obesity (Fernandez-Twinn et al., 2012; Samuelsson et al., 2008). Studies in rabbits and rats 144 

have suggested that changes in sympathetic tone may be an important mediator of these effects. 145 

Maternal HFD in rabbits increases renal sympathetic nerve activity in the offspring (Prior et al., 146 

2014). Likewise studies suggest that maternal obesity in rats induces hypertension in the offspring 147 

via increased sympathetic drive in early development (Samuelsson et al., 2010), which may be 148 

mediated by altered early life leptin signalling.  149 

Leptin action in the nucleus of the solitary tract (NTS) and the ventromedial nucleus of the 150 

hypothalamus (VMH) increases sympathetic outflow via the renal nerve (Li et al., 2013; Mark et al., 151 

2009; Marsh et al., 2003). Umbilical cord leptin levels are elevated in obese pregnancies (Ferretti et 152 

al., 2014; Karakosta et al., 2013; Walsh et al., 2014) and neonatal circulating leptin is elevated in 153 

offspring of obese mice (Samuelsson et al., 2008). Therefore, early life hyperleptinaemia may drive 154 

sympathetic hyperstimulation in the developing renal-cardiovascular system, leading to 155 

hypertension and cardiovascular dysfunction in adulthood (Briffa et al., 2014). Indeed, neonatal 156 

leptin administration in rats results in cardiac hypertrophy and dysfunction in adulthood (Marques et 157 

al., 2014b). In addition, rat offspring exposed to maternal obesity show an exaggerated hypertensive 158 

response to peripheral leptin administration in adulthood (Samuelsson et al., 2010). This is unlikely 159 

to be due to impaired central leptin signalling, as maternal obesity-mediated programming of leptin 160 

resistance is hypothalamic nuclei-specific (Kirk et al., 2009) and diet-induced obesity in adulthood 161 
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does not impair central leptin-mediated sympathetic activity via the renal nerve (Rahmouni et al., 162 

2005). Therefore it has been postulated that the hyperleptinaemia seen in adult offspring of 163 

maternal obesity animal models drives the accompanying hypertension via the concomitant increase 164 

in central activation of the sympathetic nervous system (Samuelsson et al., 2010; Simonds et al., 165 

2014). Notably, it has recently been shown that the increased risk of hypertension in obese 166 

individuals is dependent on functional leptin signalling (Simonds et al., 2014). 167 

Our studies in a mouse model of maternal DIO have shown that male offspring of obese dams 168 

display cardiac hypertrophy associated with hyperinsulinaemia and increased oxidative stress prior 169 

to a change in body weight or adiposity, indicating that the programming of increased risk of 170 

cardiovascular disease is independent from mechanisms relating to obesity (Blackmore et al., 2014; 171 

Fernandez-Twinn et al., 2012). Furthermore, frank cardiac dysfunction with increased sympathetic 172 

dominance akin to the early stages of heart failure is evident in these mice by young adulthood 173 

(Blackmore et al., 2014). This dysfunction may relate to pathological cardiac hypertrophy and cardiac 174 

stress as early as weaning. Oxidative stress, inflammation and epigenetic mechanisms may all be 175 

involved in the programming of cardiovascular dysfunction by maternal obesity (Blackmore and 176 

Ozanne, 2013, 2014). Given that obesity itself increases the risk of heart disease, cardiac dysfunction 177 

may be exaggerated in high-fat-fed offspring exposed to maternal obesity. Indeed, the combination 178 

of maternal HFD and post-weaning exposure to HFD culminates in reduced vasorelaxation in both 179 

mice and non-human primates (Fan et al., 2013; Torrens et al., 2012), with increased oxidative stress 180 

in the femoral arteries of adult male offspring (Torrens et al., 2012). 181 

In summary, early life exposure to hyperleptinaemia as a consequence of maternal obesity may drive 182 

increased sympathetic tone leading to hypertension and accelerate the onset of cardiac hypertrophy 183 

and heart failure. 184 

 185 
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Ectopic lipid deposition  186 

Maternal obesity programs increased adiposity and adipose tissue function in the offspring via 187 

alterations in adipocyte morphology and signalling (Alfaradhi and Ozanne, 2011; Benkalfat et al., 188 

2011; Murabayashi et al., 2013) as well as changes in food intake. As well as increased adiposity, 189 

ectopic lipid deposition has also been observed in the liver and pancreas of offspring exposed to 190 

maternal obesity (Alfaradhi et al., 2014; Oben et al., 2010a; Oben et al., 2010b), in association with 191 

altered hepatic mRNA and protein expression profiles indicative of increased lipogenesis (Bruce et 192 

al., 2009), elevated markers of oxidative damage (Alfaradhi et al., 2014; Bringhenti et al., 2014; 193 

Torrens et al., 2012), inflammation, fibrosis and increased sympathetic nervous system activation 194 

(Oben et al., 2010a).  These results provide evidence for an increased risk of non-alcoholic fatty liver 195 

and pancreas diseases (NAFLD and NAFPD, respectively) in offspring of obese mothers, a pathology 196 

which commonly occurs in obesity when the normal capacity of white adipose tissue for lipid storage 197 

has been exceeded. Recent evidence from a mouse model of maternal DIO suggests that the 198 

predisposition for NAFPD in high-fat-fed offspring is associated with a programmed shift in the 199 

cellular circadian clock (Carter et al., 2014). Perturbation in internal biological rhythms is a recent 200 

addition to the list of offspring physiologies affected by maternal nutrition (Martin-Gronert and 201 

Ozanne, 2013) and represents an exciting avenue for investigation, given the new understanding of 202 

circadian biology in health and disease (Bailey et al., 2014). 203 

Interestingly, recent evidence from a swine model of maternal obesity suggests that increased risk of 204 

liver disease can be programmed transgenerationally, since early postnatal increases in adiposity 205 

and markers of pediatric liver disease are found in male piglets of obese grandmothers (Gonzalez-206 

Bulnes et al., 2014).  207 

 208 

Central control of food intake: programming the hypothalamus 209 

The increased incidence of offspring obesity is frequently associated with hyperphagia in maternal 210 

over-nutrition models (Bayol et al., 2007; Kirk et al., 2009; Long et al., 2011; Nivoit et al., 2009; 211 
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Samuelsson et al., 2008). This increased caloric intake is accompanied by alterations in hypothalamic 212 

expression of key neuropeptides, their receptors and molecules involved in signalling by peripheral 213 

factors (Chen and Morris, 2009; Chen et al., 2009; Ferezou-Viala et al., 2007; Gupta et al., 2009; 214 

Morris and Chen, 2009; Page et al., 2009) as well as altered hypothalamic development (Chang et al., 215 

2008; Kirk et al., 2009). Alterations in gene expression may be due to epigenetic alterations such as 216 

changes in DNA methylation within the gene promoters, as observed in offspring exposed to early 217 

life over-nutrition (Plagemann et al., 2009; Plagemann et al., 2010). The impaired development of 218 

hypothalamic circuitry in rodents is likely due to alterations in the hormonal environment in early 219 

postnatal life. Insulin has been implicated in the programming of hypothalamic circuits in response 220 

to maternal diabetes and maternal over-nutrition (Steculorum et al., 2013; Vogt et al., 2014). 221 

Maternal hypoinsulinaemic hyperglycaemia increases the ratio of orexigenic neurons to anorexigenic 222 

neurons in the neonatal arcuate nucleus (Arc) (Franke et al., 2005; Steculorum and Bouret, 2011b) 223 

and impairs Arc-PVH Agouti-related peptide (AgRP) and POMC projections (Steculorum and Bouret, 224 

2011b). These changes are associated with elevated circulating glucose, insulin and leptin in the 225 

neonate and central leptin resistance, hyperphagia and obesity in adult life (Steculorum and Bouret, 226 

2011b). In addition, maternal over-nutrition can alter the timing, amplitude of, and response to the 227 

postnatal surge in neonatal leptin concentrations that is critical for the development of 228 

hypothalamic circuitry (Ahima et al., 1998; Bouret et al., 2004a; Long et al., 2011; Toste et al., 2006). 229 

Leptin promotes neurite outgrowth from the Arc during neonatal life (Bouret et al., 2012; Bouret et 230 

al., 2004b) and abnormal neonatal leptin signalling impairs the formation of the Arc-derived 231 

hypothalamic projections (Attig et al., 2008; Delahaye et al., 2008; Yura et al., 2005). It has recently 232 

emerged that ghrelin also contributes to the early life programming of obesity. Neonatal ghrelin 233 

administration increases Arc neuronal number and increases the ratio of orexigenic to anorexigenic 234 

gene expression (Steculorum and Bouret, 2011a). Chronic postnatal ghrelin impairs the formation of 235 

Arc projections in association with metabolic dysfunction and impaired leptin sensitivity in 236 

adulthood (Steculorum et al., 2015). Neonatal over-nutrition, by reducing litter size and thus 237 
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increasing access to the mother’s milk, predisposes offspring to hyperphagia and obesity in 238 

adulthood (Collden et al., 2015; Plagemann et al., 1999). This is associated with decreased serum 239 

ghrelin in neonates, due to a loss of the normal up-regulation of ghrelin mRNA in the neonatal 240 

stomach, and with abrogation of ghrelin-induced gene expression in the Arc, potentially due to 241 

impaired transport of ghrelin into the ventromedial hypothalamus (Collden et al., 2015). Impairment 242 

of central ghrelin action in neonates increases Arc projection density and leads to obesity, 243 

hyperglycaemia and impaired leptin sensitivity in adulthood (Steculorum et al., 2015). 244 

Thus alteration of central insulin, leptin and ghrelin signalling in neonates exposed to maternal 245 

obesity, with insulin resistance, hyperglycaemia and hyperleptinaemia, may underlie the 246 

programming of altered hypothalamic development and subsequent metabolic dysfunction in the 247 

adult offspring. 248 

 249 

Maternal obesity predisposes to diet-induced obesity: the role of the reward system 250 

Studies in rodents have demonstrated that offspring exposed to maternal obesity and/or HFD during 251 

gestation and lactation are predisposed to a greater increase in adiposity and metabolic 252 

dysregulation than those from control dams when the offspring themselves are challenged with a 253 

HFD after weaning (Benkalfat et al., 2011; Howie et al., 2009; Page et al., 2009; Parente et al., 2008; 254 

Rajia et al., 2010). Post-weaning exposure to a HFD further alters hypothalamic mRNA and protein 255 

expression (Page et al., 2009; Rajia et al., 2010), which may mediate the increased caloric intake and 256 

drive the increased adiposity. Alternatively, the increased propensity for DIO in offspring of obese 257 

mothers may be mediated via programmed dysregulation of the central mechanisms involved in 258 

palatable food intake: namely the mesocorticolimbic dopamine pathway from the ventral tegmental 259 

area (VTA) to the nucleus accumbens (NAcc). Dopaminergic signalling in the NAcc is thought to 260 

control incentive salience, or the motivated “wanting” of palatable foods, whilst opioidergic inputs 261 

onto the same pathway are thought to signal the pleasure associated with eating tasty foods and so 262 
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influence food preferences or the “liking” of palatable foods (Blum et al., 2012; Egecioglu et al., 263 

2011; Volkow et al., 2011). Connections between the reward system and the hypothalamus are 264 

critical for the regulation of reward-related feeding (Dietrich et al., 2012; Leinninger et al., 2011).  265 

In humans and rodents, reward signalling is altered in obesity (Batterink et al., 2010; Burger and 266 

Stice, 2011; Finger et al., 2012; Johnson and Kenny, 2010; Shin and Berthoud, 2011; Stoeckel et al., 267 

2008), due at least in part to chronic HFD-mediated epigenetic dysregulation of key dopaminergic 268 

and opioidergic signalling molecules (Vucetic et al., 2012; Vucetic et al., 2011). In addition, 269 

dysregulated reward signalling may predispose to diet-induced obesity (Blum et al., 2014; Volkow et 270 

al., 2008). Thus, the central reward system may be vulnerable to early life exposure to maternal 271 

obesity and programmed alterations may underlie the increased propensity for obesity when 272 

offspring are exposed to a highly palatable diet in adulthood.  273 

Indeed, in animal models of maternal HFD or obesity, offspring consume more high-fat and high-274 

sugar foods than controls (Bayol et al., 2007; Bocarsly et al., 2012; Ong and Muhlhausler, 2011, 275 

2014; Tamashiro et al., 2009; Walker et al., 2008). This may be due to an increased preference for 276 

these macronutrients (Vucetic et al., 2010) but is not associated with altered orosensory stimulation 277 

by their taste (Treesukosol et al., 2014). Whilst food preferences can be programmed by maternal 278 

nutrition (reviewed in (Gugusheff et al., 2014), maternal obesity is also associated with altered 279 

motivation for palatable foods in multiple rodent models (Grissom et al., 2014b; Naef et al., 2011; 280 

Rodriguez et al., 2012). The programmed increases in preference for fat and sugar and altered 281 

motivation to work for such foods are associated with changes in dopaminergic tone (Naef et al., 282 

2011; Naef et al., 2013) as well as in expression of key dopaminergic and opioidergic signalling genes 283 

(Naef et al., 2011; Ong and Muhlhausler, 2011; Vucetic et al., 2010), with evidence for epigenetic 284 

regulation at some loci (Grissom et al., 2014a; Vucetic et al., 2010). In fact, maternal obesity at 285 

conception is sufficient to program opioid dysregulation in the offspring (Grissom et al., 2014c). 286 

Therefore, maternal obesity may predispose the offspring to DIO via programmed changes in the 287 

mesocorticolimbic reward pathway. Importantly, the mesocorticolimbic dopamine pathway 288 
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develops in utero in rodents with VTA efferents innervating the accumbens and cortex by birth (Hu 289 

et al., 2004). Therefore, investigations into the in utero programming of the reward system may 290 

more readily translate from mouse to man than for some other systems. 291 

 292 

Programming learning and memory: leptin and the hippocampus 293 

Offspring exposed to maternal obesity are slower to acquire an executive function task, in which 294 

they demonstrate greater impulsivity but no difference in attention (Grissom et al., 2014b). The 295 

hippocampus mediates learning and develops perinatally in both humans and rodents (Semple et al., 296 

2013). In rodents, an important period of synaptogenesis and dendritic spine formation in the 297 

developing hippocampus coincides with the peak of the postnatal leptin surge in rodents, which is 298 

significant as leptin induces excitatory synaptogenesis and promotes dendritic spine formation in the 299 

adult hippocampus (Dhar et al., 2014a; Dhar et al., 2014b). Leptin also potentiates GABAergic 300 

transmission in postsynaptic CA3 pyramidal cells from the hippocampi of newborn rats (Guimond et 301 

al., 2014). The basal activity of these cells is reduced in leptin-deficient mice, as is a marker of 302 

presynaptic GABA synthesis, indicating that leptin signalling is critical for GABAergic transmission in 303 

the developing hippocampus (Guimond et al., 2014). In addition, chronic leptin treatment during the 304 

first two postnatal weeks alters the expression of genes involved in NMDA signalling and synaptic 305 

machinery and reduces long-term potentiation in pre-weaning rats (Walker et al., 2007). A similar 306 

phenotype is observed in hyperleptinaemic neonates exposed to maternal HFD from late gestation 307 

through lactation (Walker et al., 2008). As such, altered leptin signalling in early life may impair the 308 

formation of synapses and dendritic spines and thus the maturation of the hippocampus, which may 309 

underpin the reported impaired cognition, learning and memory in later life and predisposition for 310 

psychopathologies and obesity (Valleau and Sullivan, 2014). 311 

In addition, the programming of obesity and psychiatric disorders by maternal obesity has been 312 

attributed to increased maternal-fetal inflammatory signalling (Bolton and Bilbo, 2014; Marques et 313 
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al., 2014a). It has recently been shown that the impairment in Arc-PVH neuropeptide Y (NPY) 314 

projections seen in mice exposed to maternal DIO may be due to increased fetal exposure to the 315 

inflammatory cytokine interleukin-6 (IL-6) (Sanders et al., 2014). Maternal IL-6 is also increased mid-316 

gestation in mothers with GDM and inversely correlates with birth weight and glucose tolerance 317 

(Hassiakos et al., 2015). In fact, the correlation between GDM and IL-6 levels is so strong that 318 

circulating IL-6 alone can predict GDM status. In addition, maternal obesity is associated with 319 

increased levels of inflammatory cytokines (Challier et al., 2008; Kepczynska et al., 2013; Kim et al., 320 

2014), of which IL-6 is associated with increased risk of obesity in the offspring (Dahlgren et al., 321 

2001; Smith et al., 2007). Therefore, inflammatory cytokines are also candidate programming 322 

mediators in the early life programming of central dysfunction by maternal obesity. 323 

 324 

Candidate programming mechanisms and factors in maternal obesity 325 

Potential molecular mediators of the programming of cardiometabolic disease and central 326 

neuroendocrine pathways by maternal obesity have been highlighted by recent mechanistic studies. 327 

Identification of the key programming factors is vital for the development of rational intervention 328 

strategies. It is also important to understand the key windows for intervention: do we aim to 329 

intervene before or during pregnancy and/or during early postnatal life? Should interventions target 330 

maternal diet, maternal obesity or both?  331 

In utero exposure to maternal obesity is an important target for intervention. It is important to note 332 

here the differences in placental biology and developmental timings between rodents, the key 333 

model for mechanistic studies, and humans. Rodent placentae structure and blood flow differ from 334 

human placentae, however mice have been used successfully to model intra-uterine growth 335 

restriction (Gonzalez-Bulnes and Astiz, 2015). Sheep and pig models are more common in 336 

investigations into placental biology and intrauterine development, due to their closer resemblance 337 

to human placental morphology but also the ability to insert catheters into the maternal and fetal 338 

circulation in order to monitor placental transfer over time in vivo (Barry and Anthony, 2008).  339 



Page 15 of 32 
 

Maternal obesity during pregnancy may impair fetal nutrition via placental adaptations (Tarrade et 340 

al., 2015). Indeed placentae from obese women transport less maternal taurine, a critical beta-341 

amino acid involved in placental development and fetal growth (Ditchfield et al., 2014) and have 342 

higher levels of oxidative stress and impaired mitochondrial respiration (Hastie and Lappas, 2014; 343 

Mele et al., 2014). In addition, maternal DIO in mice is associated with decreased placental mTOR 344 

signalling, which may contribute to the decreased fetal:placental weight ratio in late gestation via 345 

altered amino acid transport (Lager et al., 2014). Conversely maternal high-fat feeding, whether 346 

accompanied by obesity or not, is associated with fetal overgrowth and up-regulation of glucose and 347 

amino acid transport across the placenta (Jones et al., 2009; Sferruzzi-Perri et al., 2013). Thus, fetal 348 

growth may be altered in maternal obesity due to alterations in placental function.  349 

In addition, altered maternal intake of vital micronutrients in maternal obesity may contribute to 350 

offspring epigenetic programming. Dietary intake of key methyl donors varies seasonally in certain 351 

populations such as those in the Gambia where the timing of pregnancy in relation to the seasons is 352 

associated with permanent alterations in DNA methylation at key loci in the offspring (Dominguez-353 

Salas et al., 2014). This provides some of the earliest evidence for the impact of human maternal 354 

methyl donor dietary intake during pregnancy on life-long epigenetic programming in the offspring. 355 

In rodents, maternal dietary supplementation with methyl donors ameliorates the increased body 356 

weight gain in offspring of obese dams (Carlin et al., 2013; Cordero et al., 2014) and restores fat 357 

preference to control levels in association with normalisation of the methylation status at promoter 358 

regions of key genes involved in the central reward system (Carlin et al., 2013). 359 

The early postnatal life and the lactation period is another target for intervention. Rodents 360 

experience fluctuations in hormonal levels during the first three weeks of life that have been 361 

implicated in the development and maturation of key hypothalamic circuitry (Bouret, 2013). Whilst 362 

this is different to human development, early postnatal life in humans is also considered to be a vital 363 

time for the maturation of the brain and adipose tissue. As such, exposure to maternal obesity 364 

during lactation is a factor in offspring health, with one potential mediator being alterations in 365 
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breast milk lipid content. In both humans and rodents, over-nutrition and accelerated growth during 366 

the neonatal period is associated with increased adiposity in later life (Plagemann et al., 2012). The 367 

combination of maternal obesity and HFD consumption reduces breast milk lipids, whilst HFD 368 

consumption during lactation alone increases them (Rolls et al., 1986). Breast milk lipid content is 369 

decreased in HFD-fed obese dams during lactation compared to HFD-fed control dams, due to 370 

impaired mammary fatty acid synthesis (Saben et al., 2014). In a maternal DIO rat model, breast milk 371 

levels of triglycerides are elevated but free fatty acids are decreased early in lactation and increased 372 

in the latter stages (Kirk et al., 2009). 373 

As discussed above, maternal obesity during pregnancy and lactation is associated with elevated 374 

maternal circulating leptin, insulin, glucose and inflammatory cytokines, all of which have been 375 

linked to cardiometabolic dysfunction in the offspring. Exposure to these maternal factors both in 376 

utero and during early postnatal life can alter offspring development. As such, interventions should 377 

aim to target women planning to conceive or soon after pregnancy is confirmed. Ensuring 378 

appropriate maternal dietary nutrition, improving the metabolic status of obese women in order to 379 

normalise hormonal levels, ameliorate inflammation and improve placental sufficiency, and 380 

optimizing infant growth and nutrition in the neonatal period are key aims of intervention. 381 

 382 

Interventions to improve outcomes of offspring exposed to maternal obesity 383 

Improving women’s metabolic health at the time when they are trying to reproduce is an attractive 384 

target, since it would benefit the health of both mother and child and only a temporary 385 

improvement in maternal health could improve public health for generations. Notably, dietary and 386 

lifestyle advice has been shown to be effective in overweight and obese pregnant women (Dodd et 387 

al., 2014). 388 

Rodent models of maternal obesity have been used to study the effectiveness of dietary and 389 

exercise interventions in the mother on offspring metabolic and behavioural phenotype, due to the 390 

ability to enforce exercise and easily control diets in these species. Dietary intervention from before 391 
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pregnancy or during lactation normalises the increased adiposity and circulating leptin, insulin and 392 

triglycerides in weanling offspring, rescues the altered motivation and hyperphagia and partially 393 

normalises glucose homeostasis and adipocyte morphology in adulthood (Bayol et al., 2007; 394 

Rodriguez et al., 2012; Zambrano et al., 2010). In addition, maternal dietary intervention rescues the 395 

increased anxiety and altered social behaviours in female offspring of maternal DIO mice in 396 

association with amelioration of central inflammation in these offspring (Kang et al., 2014). 397 

However, the same reversal is not seen in male offspring. Voluntary exercise before and during 398 

pregnancy in lean dams improves glucose homeostasis in the offspring (Carter et al., 2012; Carter et 399 

al., 2013) and prevents hyperleptinaemia (Laker et al., 2014; Vega et al., 2013). This may be due to 400 

the reduction in levels of maternal circulating triglycerides, glucose, insulin, cholesterol, oxidative 401 

stress and corticosterone (Vega et al., 2013). 402 

Randomised controlled trials (RCTs) are now being used to investigate whether the same 403 

improvements can be seen in obese human pregnancies. A low glycaemic index (GI) diet during 404 

pregnancy has been shown to increase weight loss from pre-pregnancy to three months after birth 405 

in overweight women and thus may minimise gestational weight gain (Horan et al., 2014). Current 406 

RCTs are addressing the effect of exercise alone (Sagedal et al., 2013; Seneviratne et al., 2014) or in 407 

combination with dietary intervention (Briley et al., 2014) to improve health outcomes in overweight 408 

and obese mothers and their children. 409 

In addition, pharmacological studies are addressing the possibility of normalising the maternal 410 

metabolic and hormonal state with a view to improving offspring health. Metformin, an insulin 411 

sensitiser, has been trialled as an alternative to insulin treatment for gestational diabetes, with initial 412 

results indicating no affect on offspring blood pressure at 2 years of age in comparison to insulin 413 

treatment nor in maternal postpartum weight loss when compared to placebo (Battin et al., 2015; 414 

Refuerzo et al., 2015). There is currently a trial underway to test whether metformin administration 415 

during pregnancy in obese women will prevent macrosomia and this study will include investigation 416 

of materrnal factors, including insulin resistance, inflammation and adiposity, as well as fetal 417 
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adiposity (Chiswick et al., 2015). However, concerns have been raised as to the lack of long-term 418 

safety data in offspring exposed to metformin during gestation (Fantus, 2015). Animal models are 419 

invaluable to help address this issue. An initial study into the effects of metformin administration 420 

during pregnancy in a maternal obesity mouse model found that offspring from metformin-treated 421 

dams were protected from glucose intolerance and key gene expression changes in skeletal muscle 422 

(Tong et al., 2011). A more recently published study suggests that offspring from high-fat fed dams 423 

treated with metformin during pregnancy are protected against the exacerbated body weight gain 424 

upon exposure to a high fat diet in adulthood (Salomaki et al., 2014). However, this was not a model 425 

of maternal obesity and the number of litters studied was low. Additional investigations in rodent 426 

models are needed to understand the long-term effects of gestational exposure to metformin and to 427 

complement the human trials on short-term outcomes in obese pregnancies. 428 

Further study in animal models is therefore required to inform the most effective timing and 429 

intensity of specific dietary and pharmacological interventions, including in altricial species to model 430 

intervention periods in line with human developmental timings (Nathanielsz et al., 2013). 431 

 432 

Conclusion 433 

In summary, recent animal studies of developmental programming by maternal obesity have 434 

advanced our understanding of the underlying mechanisms as well as further elucidated aspects of 435 

offspring physiology that contribute to their increased risk of obesity, cardiometabolic disease and 436 

mental health disorders. As the focus shifts towards designing interventions to curtail the 437 

developmental programming by maternal obesity, studies in both animals and humans are 438 

necessary to ensure safety, effectiveness and specificity.   439 
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Figure 1 legend 440 

Figure 1: Maternal obesity programs obesity, cardiometabolic disease and neuropsychiatric 441 

disorders in the offspring. Maternal factors involved include hyperinsulinaemia, hyperglycaemia, 442 

hyperleptinaemia, hyperlipidaemia and impaired placental function. Common programming 443 

mechanisms in offspring tissues include oxidative stress, epigenetics and inflammation. 444 

Inflammation, insulin, leptin and ghrelin have all been implicated in brain development. The early life 445 

programming of brain circuits [HIP – hippocampus, HYP – hypothalamus, ML – mesolimbic pathway] 446 

may contribute to altered energy balance, motivated and other behaviours. Altered central control 447 

of the autonomic nervous system (ANS) may underlie cardiac and pancreatic phenotypes in the 448 

offspring. Programmed changes in adipose tissue, liver, pancreas and skeletal muscle function 449 

contribute to impaired glucose homeostasis. Overall, alterations in individual tissue function 450 

contribute to the increased risk of obesity, cardiometabolic disease and neuropsychiatric disorder in 451 

the offspring. Current strategies aim to ameliorate metabolic status of the obese mother via lifestyle 452 

or pharmacological interventions before conception or during pregnancy in order to normalise 453 

offspring phenotype.  454 
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Figure 1: Maternal obesity programs obesity, cardiometabolic disease and neuropsychiatric 

disorders in the offspring. Maternal factors involved include hyperinsulinaemia, hyperglycaemia, 

hyperleptinaemia, hyperlipidaemia and impaired placental function. Common programming 

mechanisms in offspring tissues include oxidative stress, epigenetics and inflammation. 

Inflammation, insulin, leptin and ghrelin have all been implicated in brain development. The early life 

programming of brain circuits [HIP – hippocampus, HYP – hypothalamus, ML – mesolimbic pathway] 

may contribute to altered energy balance, motivated and other behaviours. Altered central control 

of the autonomic nervous system (ANS) may underlie cardiac and pancreatic phenotypes in the 

offspring. Programmed changes in adipose tissue, liver, pancreas and skeletal muscle function 

contribute to impaired glucose homeostasis. Overall, alterations in individual tissue function 

contribute to the increased risk of obesity, cardiometabolic disease and neuropsychiatric disorder in 

the offspring. Current strategies aim to ameliorate metabolic status of the obese mother via lifestyle 

or pharmacological interventions before conception or during pregnancy in order to normalise 

offspring phenotype. 
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