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Abstract 

Scalably grown and transferred graphene is a highly promising material for organic 

electronic applications, but controlled interfacing of graphene thereby remains a key 

challenge. Here, we study the growth characteristics of the important organic 

semiconductor molecule para-hexaphenyl (6P) on chemical vapor deposited (CVD) 

graphene that has been transferred with polymethylmethacrylate (PMMA) onto 

oxidized Si wafer supports. A particular focus is on the influence of PMMA residual 

contamination, which we systematically reduce by H2 annealing prior to 6P 

deposition. We find that 6P grows in a flat-lying needle-type morphology, 

surprisingly independent of the level of PMMA residue and of graphene defects. 

Wrinkles in the graphene typically act as preferential nucleation centers. Residual 

PMMA does however limit the length of the resulting 6P needles by restricting 

molecular diffusion/attachment. We discuss the implications for organic device 

fabrication, with particular regard to contamination and defect tolerance.  
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Article Text 

Graphene is a highly promising material for future organic semiconductor device 

applications due to its unique combination of properties including high carrier 

mobility, high optical transmittance, chemical inertness and high mechanical strength 

and flexibility. Numerous device concepts have been reported,
1–8

 many of which 

utilize graphene as a transparent, conductive electrode material in contact with 

organic semiconductor layers. In this context, the growth modes of the organic 

molecules on the graphene have a key impact on the organics’ (opto-)electronic 

properties.
2,9–31

  

While a lot of progress has been made on scalable graphene manufacture in particular 

based on chemical vapor deposition (CVD),
32,33

 controlled transfer and interfacing of 

graphene remains a key challenge. Graphene layer transfer often involves the use of 

polymer support, typically polymethylmethacrylate (PMMA), which is challenging to 

subsequently remove from the graphene.
34–42

 Similar residues arise from lithographic 

patterning of graphene using resist layers.
43–45

 Technologically relevant, large area 

CVD graphene is poly-crystalline with a range of inherent defects, and upon transfer 

mono- and few-layer graphene tends to wrinkle.
28

 Despite their potentially crucial 

impact on organic device performance, the detailed effects of polymer residue, 

graphene defects, and wrinkles on subsequent organic semiconductor device layer 

nucleation and growth remain largely unknown. 

Here, we investigate the effect of scalable CVD mono-layer graphene (MLG) transfer 

processes (using PMMA) on the growth characteristics of the important, blue-light-

emitting organic semiconductor molecule para-hexaphenyl (6P, also called para-

sexiphenyl).
9–14,46–58

 We find that 6P grows in a flat-lying needle-type morphology on 

CVD MLG transferred to oxidized Si wafers, irrespective of observed PMMA residue 

levels and MLG defects. This indicates that MLG dominates interface properties even 

in the case of severe contamination or damage. Preferential 6P nucleation at MLG 

wrinkles is observed.
10

 While residual PMMA does not change the growth 

morphology of the 6P it severely limits the length of the resulting 6P needles by 

hindering molecular diffusion/attachment. Only subsequent to post-transfer H2 

anneals that remove even minor PMMA residues, is extended 6P needle growth 

obtained which resembles that observed on clean exfoliated MLG.
12–14
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We grow MLG by low-pressure CVD on Cu catalysts.
32,33

 The as-grown MLG on the 

Cu is then covered with a PMMA layer and wet chemical etches are used to release 

the PMMA-coated MLG from the Cu to subsequently transfer the stack onto SiO2 

(300 nm) covered Si-wafers. We chose SiO2 as the support due to its widespread use 

as a model dielectric surface.
43

 After transfer, the PMMA layer is initially removed by 

acetone followed by isopropanol. For selected samples, additional cleaning from 

PMMA residues is subsequently done by low-pressure (1 mbar) anneals in H2 at 

temperatures up to 500 °C (typical annealing time 3 hours). 6P is then deposited onto 

the transferred CVD MLG via hot wall epitaxy (HWE) with MLG substrates held at 

90 °C (deposition time 5 min).
12,13

 For further experimental details see Supporting 

Information.
59

 

The small conjugated 6P molecule is chosen as a model system since its growth 

behavior is highly sensitive to surface conditions, showing two principal growth 

morphologies
50,52–55,57,58

 (Figure 1): Flat-lying “needle” growth (molecular long axis 

roughly parallel to the substrate surface and normal to the needle’s long axis) is 

preferred on crystalline substrates whereas upright “island” growth (molecular long 

axis roughly perpendicular to the substrate surface) prevails on amorphous surfaces 

including SiO2.
12,60

 Control over these growth morphologies is of key importance for 

device applications as needle- or island morphologies strongly influence opto-

electronic properties of 6P layers.
46

 6P needles characteristically show a high lateral 

aspect ratio and commonly exhibit heights of tens of nm, as multiple flat-lying 6P 

layers stack (in herringbone arrangement, see Figure 1) in the needles. In contrast, 

upright 6P islands form terraced mounds with discrete heights corresponding to 

multiples of the 6P length of ~2.7 nm.
50

 At low coverages usually only mono- or bi-

layer islands exist, resulting in comparably small island heights of only ~2.0 nm - 5.3 

nm (depending on small 6P tilt).
50,58

 This difference in height and morphology makes 

it straightforward to differentiate needle and island 6P growth based on atomic force 

microscopy (AFM, see insets in Figure 1). Previous work on 6P deposition on ultra-

high-vacuum-grown
9–11

 and exfoliated MLG
12–14

 demonstrated that for these clean 

MLG interfaces 6P grows exclusively in the flat-lying needle-type mode under our 

HWE conditions at 90 °C. The flat-lying needle morphology is commonly ascribed to 

strong π-π interactions between 6P’s organic backbone and MLG’s sp
2
 lattice.

61
  



 4 

Figure 2 shows a series of AFM topography images of 6P morphologies on PMMA-

transferred CVD MLG, starting with as transferred MLG and for samples which were 

post-transfer cleaned by H2 annealing at increasing temperatures (280 °C to 500 °C) 

prior to 6P deposition. Only needle-type 6P growth is observed on the CVD MLG, 

irrespective of H2 annealing treatment. Strikingly however, with increasing annealing 

temperature the needle length increases while the needle areal density reduces. In 

general, 6P needles nucleate preferentially at the CVD graphene wrinkles
9,11,28

 and 

typically extend roughly perpendicular to the wrinkle direction. For the MLG which 

was H2-treated between 280 °C to 350 °C, needles also nucleate at lump-like features 

which we attribute to accumulated PMMA residues (see below). For further increased 

annealing temperatures of 400 °C and 500 °C, the longer 6P needles frequently act as 

nucleation centers themselves yielding the formation of cross or star like needle 

bunches, similar to 6P deposition on exfoliated MLG.
12,13

 

Figure 3a shows a quantitative analysis of 6P needle length distributions as a function 

of MLG H2 annealing temperature. For each histogram the lengths of 250-500 needles 

were evaluated. Figure 3b shows the average needle length extracted from the 

histograms. The non-H2-annealed, as-transferred sample exhibits the shortest average 

needle length, the narrowest distribution and also the shortest maximum needle length 

(<0.5 µm). With increasing annealing temperature, the average needle lengths 

increase and concurrently the distributions broaden asymmetrically towards larger 

maximum needle lengths. We note, however, that also the H2 annealed samples 

continue to feature a significant number of needles shorter than 0.5 µm. For 500 °C, 

where the largest needle lengths are reached, the distribution becomes bimodal: A 

high number of very short needles (< 150 nm), nucleating at the MLG wrinkles (albeit 

covering only just over 1% of the surface) can be found in addition to long needles 

that reach lengths of over 1.5 µm. While we observe an increase in needle length with 

H2 annealing temperature, conversely the 6P needle areal density decreases from 

~4.0 µm
-2

 (as transferred) to ~1.5 µm
-2

 (annealed at 500 °C after transfer). Typical 6P 

needle heights and widths range from 20-40 nm and 50-200 nm, respectively. 

We conclude that 6P grows on CVD graphene in a flat-lying needle-like fashion 

irrespective of the PMMA residue cleaning procedure applied but that the length and 

density of the resulting 6P needles is strongly dependent on the PMMA removal 

process prior to 6P deposition. 
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To understand the origin of these dependencies, we investigate the state of the CVD 

MLG at the point of 6P nucleation. Figure 4a shows AFM images of as transferred 

and H2-annealed CVD MLG before 6P deposition. The non-H2-annealed, as 

transferred sample exhibits a high density of up to 1 nm high features evenly 

distributed over the surface, which are ascribed to PMMA residues, in agreement with 

previous observations on only acetone/isopropanol cleaned transferred CVD MLG.
36

 

H2 annealing at 280 °C results in a noticeably reduced surface roughness (root-mean-

square, RMS) from 0.8 nm (as transferred) to 0.5 nm (280 °C) in the MLG areas 

between wrinkles, indicative of the onset of PMMA removal.
34,36

 Further increase of 

the H2 treatment temperature successively reduces the surface roughness (down to 

RMS ~0.3 nm for 500 °C) which is attributed to the removal of PMMA residues from 

the MLG basal planes, with only few isolated larger PMMA residues remaining. 

Figure 4b further quantifies this trend of increasing PMMA removal with increasing 

H2 annealing temperature by plotting the relative volume, relative coverage and 

average thickness of the PMMA residues as a function of the H2 annealing 

temperature. From as deposited to 280 °C the PMMA residue reduces in average 

thickness (in agreement with the RMS roughness decrease from 0.8 nm to 0.5 nm), 

but the lateral relative coverage remains fairly constant. Comparison of Figure 4a and 

the relative coverage values however indicates that during 280 °C annealing the 

PMMA residues are also spatially redistributed such that larger continuous MLG 

areas become available for 6P needle growth, thus resulting in the observed 6P needle 

length increase (Figures 2 and 3). For further increased annealing temperatures (350 

°C, 500 °C) the PMMA residue reduces in relative volume, relative coverage and 

average thickness, in agreement with the visual impression from Figure 4a and the 

RMS roughness decrease to 0.3 nm. 

While increasing H2 treatment temperatures thus result in more efficient PMMA 

removal, concurrently alterations to the graphene quality occur, as evidenced by 

Raman spectroscopy (Figure 4c). The intensity ratio of the 2D/G peaks drops with 

increasing annealing temperature from ~2.3 (as-transferred) to ~0.7 (500 °C), 

indicative for a change in the graphene doping level and partly consistent with 

PMMA removal but also with defect formation in MLG.
36,38,62

 The defect-related D 

peak starts to rise for 350 °C annealing and emerges notably at 500 °C. This indicates 

minor generation of defects up to annealing temperatures of ~350 °C and pronounced 

damage to the MLG for higher annealing temperatures. This means that, while high 
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temperature H2 annealing efficiently removes PMMA and thereby enables extended 

6P needle growth, it also damages the underlying MLG. 

To understand how the PMMA residues influence 6P growth, we compare 6P 

morphologies on selected reference substrates in Figure 5. 6P is deposited onto (a) 

exfoliated MLG, (b) spin-coated homogeneous PMMA layers, and (c) filtered-

cathodic-vacuum-arc deposited amorphous carbon (a-C) films
63

 (all on SiO2 covered 

Si wafers). The exfoliated MLG serves as a clean and defect-free ideal graphene 

surface, while the PMMA layer and the a-C film represent “dirty” and fully defective 

graphene, respectively (Raman spectrum of a-C in Supporting Figure S4
59

). We find 

flat-lying needle growth on the exfoliated MLG (consistent with previous literature
12–

14
) but interestingly a drastic change to upright 6P island growth on both the PMMA 

layer and the defective a-C.
53,54

 The 6P island growth on the reference PMMA layer 

indicates that for extended PMMA residues on MLG, a change to island-type 6P 

growth would occur. Similarly, the reference a-C result suggests that for high defect 

levels in MLG a change-over from 6P needle to island growth is to be expected. 

Equally, in the extreme case when CVD MLG would be so strongly pitted that the 

bare SiO2 substrate underneath would be exposed also 6P island growth would be 

expected, as 6P is well known from literature to generally show island-type 

morphology on bare SiO2.
12,60

 In Figure 2 however no upright 6P island-type growth 

is observed on the CVD MLG irrespective of the PMMA residue and the MLG defect 

levels revealed in Figure 4. This indicates that the observed PMMA residuals on the 

MLG (even without H2 annealing) do not provide large enough interaction to induce 

island growth with upright molecule orientation. Thus, 6P growth appears to still be 

dominated by the π-π interactions between the 6P organic backbone and the sp
2
 MLG 

lattice, even for the relatively contaminated MLG. This surprising resilience of the 

underlying MLG to dominate the interface properties, even in the case of the observed 

severe contamination, may be a key technological advantage of MLG. Similarly, 

despite the comparably high defect levels in the Raman data for high temperature H2 

annealed MLG (Figure 4c), also in this defective MLG the sp
2
 lattice still appears to 

dominate as a template to promote 6P needle growth. This highlights the robustness of 

MLG’s interfacial properties against contamination and defects, albeit future work 

will be required to understand detailed dependencies on organic molecule species and 

substrate-MLG interactions.
2,13,14,22,29–33
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While 6P grows in a needle-type mode on MLG irrespective of PMMA residue and 

defect levels, the systematic variation of the 6P needle lengths correlates with the 

amount and distribution of PMMA left on the surface. Only short needles are present 

on strongly PMMA contaminated samples. In such a scenario, the 6P needles nucleate 

at graphene wrinkles and extend perpendicular to the wrinkle direction until they 

terminate at a PMMA contaminated area. This indicates that PMMA limits 6P 

molecular diffusion and/or attachment.
10

 This is further corroborated by the 

comparably high nucleation density just at the wrinkles on the as transferred MLG 

(Figure 2a). Upon H2 annealing, the PMMA is successively removed from the 

graphene basal plane (Figure 4a,b). The reduction of PMMA residuals results in less 

influence on 6P diffusion and attachment mechanisms, thus yielding longer needles. 

As the overall deposited 6P volume is kept constant in our experiments, the larger 

needle lengths result in the observed lower needle areal densities. In addition to the 

wrinkles, also the longer needles start to act as nucleation centers for additional 6P 

needles, and the 6P growth morphology on high temperature H2 annealed CVD MLG 

approaches the highly crystalline characteristics of 6P needle structures on clean 

exfoliated graphene.
12,13

 

In summary, we have systematically investigated the effects of transfer-induced 

PMMA residues and defects on the growth modes of the model organic 

semiconductor molecule 6P on CVD MLG. 6P grows in a flat-lying needle-type 

morphology on CVD MLG, irrespective of observed PMMA residue and graphene 

defect levels. This implies a surprising persistance of MLG in dominating interface 

properties even in the case of severe contamination or damage. 6P needles nucleate 

preferentially from wrinkles in the MLG. While PMMA residues do not have an 

impact on the growth mode of 6P, they severely restrict the length of the resulting 6P 

needles by limiting molecular diffusion/attachment. H2 annealing prior to 6P 

deposition however recovers extended 6P needle growth, approaching the 

characteristics of 6P on clean exfoliated MLG. This underscores the importance of 

post-transfer cleaning processes for integration of MLG into organic electronics. 
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Figures 

 

Figure 1. Schematic sketch of the two principal 6P growth morphologies: Flat-lying configuration 

forming “needles” (left) and upright configuration forming “islands” (right). The needles’ long axes 

extend normal to the 6P molecular long axis (here normal to the page plane). Note that needles are 

typically comprised of multiple 6P layers and thus several tens of nm in height while islands are 

comprised of terraced 6P mounds with discrete heights corresponding to multiples of the 6P length of 

~2.66 nm. At low coverages, usually only mono- or bi-layer 6P islands are observed.
12,13

 The insets 

show corresponding atomic force microscopy (AFM) images of needle and island growth on exfoliated 

MLG
12,13

 and amorphous carbon, respectively (1.75×1.75 µm
2
, z-scale 10 nm, see also below). 
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Figure 2. AFM topography images (5×5 µm
2
) of 6P morphologies arising upon 6P deposition on 

PMMA-transferred CVD MLG which was H2 annealed at varying temperatures prior to 6P deposition. 

The corresponding H2 annealing temperatures are given in the right top corner of the images. To 

emphasize the MLG wrinkles, the same AFM data is plotted with a lower maximum z-scale in 

Supporting Figure S1.
59 
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Figure 3. (a) 6P needle length distributions for CVD MLG samples that were H2 annealed at different 

temperatures prior to 6P deposition. The histograms present needle-length-weighted needle counts over 

needle length. (For histogram data without length-weighting see Supporting Figure S2.
59

) (b) Average 

weighted needle lengths calculated from the histograms in (a). We note that for the 280 °C annealed 

sample it is difficult to distinguish needles from adjoining PMMA residuals since there these partly 

exhibit comparable heights and diameters as the 6P needles. As a result the corresponding distribution 

for 280 °C appears somewhat broadened and shifted to higher values. 
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Figure 4. (a) 1×1 µm
2
 AFM micrographs of PMMA-transferred CVD MLG which was H2 annealed at 

varying temperatures. Note that the polygonal high features in the 280 °C scan with heights >5 nm are 

junctions of multiple MLG wrinkles coming together, see Supporting Figure S3
59

 for the same data 

plotted on a larger z-scale. We note that areas with these polygonal features are not exclusive to the 280 

°C sample but are observed in all CVD MLG samples. The 280 °C sample in fact mostly exhibits a 

MLG wrinkling morphology similar to the 25 °C, 350 °C and 500 °C scans i.e. without these polygonal 

features. This particular 280 °C scan is shown to illustrate the existence of these polygonal wrinkle 

junctions across our samples. Comparison of Figure 4a and Supporting Figure S3
59

 also reveals that in 



 13 

order to detect small PMMA contamination levels high resolution AFM scanning on a small z-scale has 

to be employed. (b) Relative volume, relative coverage (i.e. relative contact area of PMMA residues 

and MLG) and average thickness of residual PMMA as function of the H2 annealing temperature (y-

axes partly offset for readability). These quantifications of PMMA residue content were obtained via 

numerical height threshold analysis on AFM topography data.
59

 (c) Corresponding Raman spectra 

showing the evolution of the characteristic MLG G and 2D bands and the defect related D band with 

H2 annealing temperature.  
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Figure 5. 5×5 µm
2
 AFM micrographs of 6P deposited onto (a) exfoliated MLG (b) a spin-coated 

PMMA layer and (c) an a-C film. Comparison of (a) with (b) and (c) clearly reveals the different lateral 

6P morphologies and 6P feature heights involved between needle (a) and island (b,c) growth. 
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