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Unsupervised intralingual and cross-lingual speaker
adaptation for HMM-based speech synthesis using
two-pass decision tree construction

Matthew Gibson and William Byrne

Abstract—Hidden Markov model (HMM)-based speech syn- a transcription of the unlabelled adaptation data [5]. Sec-
thesis systems possess several advantages over concatenatiyhdly, linguistic analysis is required to transform word-level
synthesis systems. One such advantage is the relative ease Withanseriptions into transcriptions containing suprasegmental

which HMM-based systems are adapted to speakers not present . . . .
in the training dataset. Speaker adaptation methods used in contextual information. In the case of unsupervised adaptation,

the field of HMM-based automatic speech recognition (ASR) it is feasible that such linguistic analysis exacerbates errors
are adopted for this task. In the case of unsupervised speaker present in the estimated word-level transcription.

adaptation, previous work has used a supplementary set of  This paper presents an alternative to the unsupervised adap-
acoustic models to estimate the transcription of the adaptation tation approach described in [5]. In [5], adaptation transforms

data. This paper firstly presents an approach to the unsuper- . . . . .
vised speaker adaptation task for HMM-based speech synthesis estimated using triphone acoustic models are applied to the

models which avoids the need for such supplementary acoustic more detailed acoustic models typically used in HMM-based
models. This is achieved by defining a mapping between HMM- synthesis. While this technique avoids the need for linguistic
based synthesis models and ASR-style models, via a two-passinalysis of the estimated transcription of the adaptation data,

decision tree construction process. Secondly, it is shown that this 5 separately-estimated triphone acoustic model set is still
mapping also enables unsupervised adaptation of HMM-based required

speech synthesis models without the need to perform linguistic ] L .
analysis of the estimated transcription of the adaptation data.  In this paper, a two-stage decision tree construction method
Thirdly, this paper demonstrates how this technique lends itself is introduced, which enables a single set of acoustic model
LO thz task 0:] Unstlhpef_\/isedfCJiYOISS-”ngUm aﬁapta:ik?n 001; H'\{”V'- components to be used for both ASR and TTS. This method
n IS m n X n van H

sﬁsﬁ aﬁnggrozzh. E;ZIIy,()Iis(at:ﬁe? evglu%filonss r:v:al ?ha?%ﬁz % then. used to cwcumveqt Fhe need.for sup.plementary AS.R
proposed unsupervised adaptation methods deliver performance "’_‘COUS“C models and |I.HQUIStIC anaIyS|s of estlma_ted.transcrlp-
approaching that of supervised adaptation. tions during unsupervised adaptation. The application of the
two-stage decision tree construction method is then extended
to the task of unsupervised cross-lingual speaker adaptation.

Cross-lingual (or interlingual) speaker adaptation is defined
as the adaptation of acoustic models associated with one

I. INTRODUCTION language, thearget language using adaptation data uttered
in a different language, theource language
IDDEN Markov model-based systems have delivered A large amount of research has been performed on the
synthetic speech of similar quality to that of concatesross-lingual adaptation task for ASR acoustic models. The

native (or unit selection) synthesis systems [1]. Additionallyask typically arises in cases where a relatively small amount
HMM-based systems possess several advantages over ghitlata is available to train an ASR acoustic model in a
selection systems. These advantages include simple waysdeticular target language. Bootstrapping the target language
interpolate between speakers and synthesise speech of vargitgustic models ([6]) based upon an explicit mapping from
styles or emotions [2; 3]. Perhaps the most significant advasburce to target language phonemes has been explored, as well
tage is the ability to adapt to new speakers using a relatively interpolation of the source and target language acoustic
small amount of adaptation data [4]. models (also [6]). Later work ([7]) has successfully applied

Most research into speaker adaptation for HMM-basdlde maximum a-posteriori (MAP) adaptation method to the
speech synthesis (or text-to-speech, TTS) has focussed upmss-lingual adaptation task, demonstrating the usefulness of
the supervised scenario, where transcribed adaptation data prior knowledge contained within the source language.
is available. More recent work has tackled the challenge ofRecent work [8; 9] has addressed the task of supervised
adaptation of HMM-based synthesis models using unlabelletbss-lingual adaptation for HMM-based speech synthesis.
adaptation data [5]. As will be explained in due course, unstihis work used TTS models of both source and target lan-
pervised adaptation of HMM-based synthesis models is prapdages, and defined a phoneme or state-level mapping between
lematic for two reasons. Firstly, the modelling of suprasegfie source and target language acoustic models. This mapping
mental contextual information renders the synthesis mode&as then deployed to translate the source language transcrip-
unsuitable for ASR purposes. Therefore a supplementary et of the adaptation data to a target language phoneme
of triphone acoustic models are typically used to estimate state sequence. The target language TTS models were

Index Terms—HMM-based speech synthesis, unsupervised
speaker adaptation, cross-lingual.
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subsequently adapted using the source language acoustic dataplete hypotheses (e.g. the total number of words in an
and the corresponding mapped target language phonemautberance) when constructing a recognition network. When
state sequence. using e.g. triphone acoustic models, such information may be

Techniques similar to those described above rely upon tigmored to simplify the recognition network and to facilitate
availability of both source and target language TTS modeldynamic network construction. The presence of suprasegmen-
and the mapping mechanism between these models mustdlecontextual information in full context models therefore
established prior to adaptation. An alternative approach basettls a prohibitive amount of complexity to the construction
upon the two-stage decision tree construction technigue is ped-recognition networks.
posed in this paper. As will be explained later, this alternative A simple solution to this problem is to use a separately-
approach is appealing because it requires no knowledge of éstimated ASR-compliant acoustic model to obtain a tran-
source language acoustic model (or even the source languasgeiption of the adaptation data, followed by adaptation of
or its relationship to the target language acoustic model. the TTS model using this transcription [5]. However this

This paper evaluates the proposed unsupervised adaptagiolution involves estimation of a separate ASR model, and
schemes in both a standard adaptation scenario and a speakeh model estimation is often a lengthy procedure. Further,
adaptive training (SAT) framework. The performance of thesese of different models during the recognition and adaptation
techniques is compared with standard approaches to sugd&ges precludes the use of efficient online adaptation strategies
vised and unsupervised speaker adaptation of HMM-baddd]. For these reasons, alternative techniques which enable
synthesis models in both thiatralingual (within-language) TTS models to be deployed for ASR have been explored [12].
and cross-lingual scenarios. In the cross-lingual case, parallee two-pass decision tree construction technique [13] is one
translated adaptation datasets recorded by the same spealeh technique, as will be explained in the following section.
are used to compare the performance of intralingual and cross-
lingual adaptation in a controlled manner. Listener evaluations
reveal that the proposed unsupervised adaptation techniques
deliver performance approaching that of supervised intralin-As is the case for ASR acoustic modelling, decision tree
gual adaptation. clustering of the full contexts is used to enable robust esti-

The paper is structured as follows. Section II provides ation of the model parameters. The minimum description
brief introduction to HMM-based speech synthesis modd@ngth (MDL) criterion [14] is used when constructing the
and explains why unsupervised adaptation of such modelsdggcision tree, which in turn uses questions pertaining to both
problematic. Section Il explains the two-pass decision tré&gmental and suprasegmental context. By performing this
construction technique, and how this enables unsupervigtqpision tree construction in two stages, where the initial stage
adaptation of HMM-based synthesis models. Sections M5€S questions relating to triphone contextual information, and
and V respectively introduce the unsupervised intra|ingu3f|e second stage uses questions relating to all contextual infor-
and cross-lingual approaches used in this work. Section ¥ation, a well-defined mapping between full context models
discusses the use of SAT in the context of HMM-based speedd triphone models may be established. This constrained
synthesis. The proposed approaches to intralingual and crdigcision tree construction process is illustrated in Figure 1.
lingual speaker adaptation are evaluated in Sections VII andrThe first stage, indicated as Pass 1 in Figure 1, uses
VI respectively. Lastly, Section IX summarises the contribuenly questions relating to left, right and central phonemes to
tions of this work and highlights areas of future research. construct a phonetic decision tree. This decision tree is used
to generate a set of tied triphone contexts, which are easily
integrated into the ASR search. No state output distributions
are estimated at this stage. Pass 2 extends the decision tree
constructed in Pass 1 by introducing additional questions

In the domain of ASR, unsupervised adaptation is usualiglating to suprasegmental information. The output of Pass 2
conducted by firstly estimating a transcription of the adaptatids an extended decision tree which defines a set of tied full
data using a speech recogniser. This speech recogniser usua@liytexts. The MDL criterion is used for both Pass 1 and Pass
deploys the same models which are subsequently adapted?2.

In the domain of HMM-based synthesis, use of the sameAfter this two-pass decision tree construction, single com-
unsupervised adaptation framework is problematic becayseent Gaussian state output distributions are estimated to
the acoustic models typically used in HMM-based speechodel the tied full contexts associated with each leaf node
synthesis are not easily integrated into the ASR search prooéthe extended decision tree. These models are then used for
dure. This, in turn, is because the context-dependent acouspieech synthesis.
models used in HMM-based speech synthesis [10] represenf mapping from the single component full context models
suprasegmental information (e.g. syllabic stress, total numbiiermultiple component triphone models is defined as follows.
of syllables in utterance) in addition to segmental informdach set of Gaussian components associated with the same
tion (e.g. context-dependent phoneme label). These modéiphone ancestor’ are grouped to form a multiple component
are henceforth referred to dall context models. Although mixture distribution to model the triphone context defined
theoretically possible to recognise unlabelled data using flly the ‘triphone ancestor’. The derived triphone models are
context models, this requires information which relates itustrated at the bottom of Figure 1. The mixture weight of

Il1. TwO-PASS DECISION TREE CONSTRUCTION

Il. UNSUPERVISED ADAPTATION ANDHMM-BASED
SPEECH SYNTHESIS
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each component is calculated from the occupancies associated

with the Pass 2 leaf node contexts. D
Full context Training
transcription Data
L-Vowel? L-Vowel?
C-Vowel? / \
e}
C-Nasal?
C-Nasal? Full context «—. Triphone
—] appin,
</ \O models models
Pass 2 L-Vowel? L-Yowel? Linguistic
C-Vowel? / analysis Adaptation _’
C-Nasal? 2 syllables in utt? Data
N\ 1|
C-Nasal? . Estimated full Estimated word and
Restressed? 1/\ R/S"eised')[‘ N /\5 context transcription triphone transcription
2 syllables in utt?
2/\ /\3 Full context models F£ll Tri l..
(single-component) adaptation adaptation
() ataptaton \adaptation) 3
Model L-Vowel? Adapted Inverse Adapted
/ \ Mapping ( Inverse ) full context mapping triphone
mapping apDi
C-Nasal? /X\ mapping models models
/ \ 4 5
pa—
/\ m Triphone models
! 2 3 (multi-component) Fig. 2. Unsupervised adaptation of full context models via (1) full adaptation

or (2) triphone adaptation.
Fig. 1. Two-pass decision tree construction. Mapping functions permit
sharing of components between full context models for TTS and triphone
models for ASR.

Once word and triphone-level transcriptions of the adapta-
The inverse mapping from triphone models to full conte)Hon data are ayailable, the full context modells'may be gdapted
models is obtained by associating each Gaussian comporlBrifiese two different ways. Note that linguistic analysis may

with its original full context. This is achieved by assigning £X@cerbate errors present in the estimated word-level tran-

unique full context identifier to each component as illustratexf/IPtion- It is therefore feasible that the triphone adaptation
in Figure 1. technique is more robust than full context adaptation in the

Mapping full context models to triphone models enablégwsupe'rvised case. This hypothesis is tested in the experiments
ASR compatible acoustic models to be derived from TT¢ Section VII.
acoustic models, thus avoiding the need for a separately-
estimated ASR model. Sections IV and V explain how these V. UNSUPERVISED CROSS.INGUAL ADAPTATION
mappings between full context and triphone models can beConsider now the task of unsupervised cross-lingual speaker
exploited to perform unsupervised intralingual and crosadaptation, as defined in Section |, in the case of full context

lingual adaptation of full context models. acoustic models. To transcribe the adaptation data one could
deploy an ASR system tailored to the source language i.e. a
IV. UNSUPERVISED INTRALINGUAL ADAPTATION source language lexicon, as well as source language acoustic

As illustrated in Figure 2, triphone models derived fronand language models. This estimated transcription may then
estimated full context models (as described in Section llhe subsequently mapped to the target language. This mapping
are used to transcribe unlabelled adaptation data. One quesy be defined at the phone level [8] or the state level [9].
tion remains, however. How is ASR output, e.g. a word;he mapped transcription may then be used to adapt the target
phoneme or triphone sequence, used to adapt full contésguage full context models.
models? One method, labelled as ‘full adaptation’ in Figure 2, The above approach deploys a large amount of source
firstly performs linguistic analysis of the estimated word-levéanguage specific knowledge, as well as knowledge of the
transcription to produce an estimated full context labelling @élationship between source and target languages. Acquisition
the adaptation data. The full context models are then adaptéddsuch knowledge typically depends upon a large amount
directly using this labelling. of transcribed acoustic data from the source language. Such

By defining an inverse mapping between full context and tr& database is certainly not available for all languages, and
phone models, the two-pass decision tree construction meth@dexpensive to obtain. Further, if the source language is
introduces an alternative to the ‘full adaptation’ technique. Amknown, clearly the approach described above cannot be
illustrated in Figure 2, the estimated triphone transcription mapplied. For these reasons, an alternative method is explored
be used to adapt the triphone models. The adapted triphamehis work.
models are then subsequently mapped back to full contextThe cross-lingual adaptation technique used in this work
models using the inverse mapping. This is labelled as ‘triphotreats the source language adaptation data as if it were uttered
adaptation’ in Figure 2. in the target language. Target language acoustic models and a
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phoneme loop grammar are used to recognise the adaptation
data, thus mapping it onto a phoneme sequence in the target
language. Subsequently, the estimated triphone sequence is
used as the reference sequence, and the triphone adaptation
method of Figure 2 is used. This process is almost identical to

Training
Data

SAT (monophone)
i

| SAT monophone models |

the triphone adaptation approach to unsupervised intralingual

adaptation. The sole difference is that, in order to avoid
language specific constraints, no dictionary or language model

is used during recognition. This method was first introduced | SAT full context models |

and evaluated in [15].

The approach described in the previous paragraph uses no
source language ASR or TTS system. Further, no previously
learned mapping between source and target language acoustic
models is necessary. Indeed, no source language knowledge

Full context
clustering

Tied full
context models

whatsoever is used, so the technique may be applied even
when the source language is unknown. SAT
By comparing the performance of unsupervised intralingual ST T ——
and cross-lingual adaptation, the impact of source language — context models
knowledge may be measured. This comparison is reported in
Section VIII.
VI. SPEAKER ADAPTIVE TRAINING Fig. 3. Estimation of speaker independent (SI) full context models using

speaker adaptive training (SAT) and standard model estimation.
Speaker adaptive training (SAT, [16]) attempts to decouple

inter-speaker and intra-speaker variance when estimating a

speaker independent (Sl) acoustic model. The SAT framework . .
simultaneously estimates sets of speaker dependent transform@ How _does .the per_formance of tnphon_e adaptation (as
of the acoustic models (one set of transforms for each speaker descrlbgd in-Section 1V) compare with that of full
in the training set) and a speaker independent ‘canonical’ adaptation?
model. The transforms are designed to capture much of the
inter-speaker acoustic variance and consequently the canonitaBackground information

model displays less variance than a standard Sl system. e gynthesis models used in this evaluation deploy the fol-
Both SAT-estimated and standard SI full context models 8§y ing acoustic features: STRAIGHT-analysed Mel-cepstral
used in the experimental wqu of this paper. Figure 3 '"“St_rat%ﬁefficients [18] ¢0 dimensions), fundamental frequency
the procedure used to estimate these models. SAT-estimatg ), and measurements which quantify the aperiodicity of
monophone models are estimated, then cloned to full contgyt speechsdimensions). The first and second order temporal
models, which are SAT-estimated using one global transforaiyatives of all of these coefficients are appended to yield
per state/_s.tream combination per speaker. The statistics frgMu5ture vector of dimensior8s. The feature vector is split
these untied full context models are then used to cluster §g, five streams: cepstral coefficients, aperiodicity measures,
full context models. Subsequent to full-context clustering, tleplO’ first derivative ofF0, and second derivative @t0. Multi-
models are re-estimated to create both SAT-estimated apd e probability distributions are used to model observations
standard _SI “e‘_’ full context models. ) of varying dimension, namely th&'0 observation [19]. Ex-
The_re is evidence [17] t_hat SAT-estimated models ajgicit quration models (hidden semi-Markov models, [20]) are
superior to standard Sl-estimated models for HMM-basgateqrated to improve the quality of synthesised speech. One
speech synthesis. The evaluation of Section VIIl revisits thig,iision tree per state and stream combination (where all three
comparison to determine if the same conclusions hold 1, gyreams are combined for the purposes of clustering) is
the case of models generated using two-pass decision @&y ith an additional decision tree to cluster contexts of
construchop. The performance _Of SAT-estimated and Standi’ﬁg duration model. A speech utterance is generated from full
Sl models is compared both prior to and after adaptation. ;onteyt models via feature sequence generation with global
variance consideration [21; 22]. Synthesis of the waveform

VII. EVALUATION : INTRALINGUAL SPEAKER ADAPTATION .
, , ) i o . from the feature sequence is performed by the STRAIGHT
The evaluation described in this section is designed . qer [18].

address the following questions regarding unsupervised in-
tralingual speaker adaptation of HMM-based synthesis models.
1) Does the constrained two-pass decision tree constructfon Systems
process affect the naturalness of the resulting speech? To address the questions posed at the start of this section,
2) How does the proposed approach to unsupervised the systems detailed in Table | are evaluated. Standard Sl full
tralingual adaptation compare with supervised intralircontext models are estimated using the Wall Street Journal
gual adaptation? (WSJ) SI84 training datase8,(586 male and3, 552 female
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utterancesy136 utterances) and maximum likelihood estimagenerated after two-pass decision tree construction exceeds
tion. Note that such databases have proven useful for HMMhat of standard tree construction. This demonstrates that

based speech synthesis ([23]). constraining the tree structure to satisfy the requirements of
the two-pass construction method, defined in Section lll, leads
[ System] Clustering [ Adaptation method| Supervised?] to less compact trees.
A Standard - -
B Two-pass - -
c Two-pass Full Y D. Evaluation details
D Two-pass Full N
E Two-pass Triphone Y Two different evaluation methods were used to measure the
(F;, Two-pass Triphone N performance of the two-pass intralingual adaptation technique:
an opinion score evaluation, described in Section VII-D1, and
TABLE |

a paired comparison of several pairs of systems, described
in Section VII-D2. The opinion score evaluation provides a
performance measure and overall ranking of the systems stud-
ied, while the paired comparison more effectively discovers
Average voice models corresponding to standard, uncaignificant differences between system pairs.
strained decision tree construction (system A of Table I) are1) Opinion score evaluationThe seven systems (A through
estimated for comparison with those corresponding to twg) were evaluated by listening to synthesised utterances via
pass decision tree construction (system B). Note that only Mel-web browser interface closely resembling that used in
cepstral,F'0, and aperiodicity models are adapted in this workhe Blizzard Challenge 2007. The evaluation comprised two
so only those models are clustered using the two-pass decisi@Btions. In the first section, listeners judged the naturalness of
tree construction method. Duration models are clustered usiag initial set of synthesised utterances. In the second section,
standard clustering methods and are identical in systemsjigeners judged the similarity of a second set of synthesised
and B. utterances to a target speaker’s (speaker 440M) speech. Four
Adapted systems are derived from System B using eithgf the target speaker’'s natural utterances were available for
the triphone or full adaptation method described in Section Iéemparison. No utterances from the initial set were present
Constrained maximum likelihood linear regression (CMLLRn the second set. Each synthetic utterance was judged using
[24]) adaptation is used, and the adaptation data correspoadfive point Likert-type psychometric response scale [25],
to spoke 4 of the 1993 ARPA evaluatiod0(utterances for where ‘5’ is the most favourable response and ‘1’ is the least
speaker 440M). The adaptation techniques are evaluated infta@urable.
supervised and unsupervised cases, resulting in four adaptefiventy two native English speakers conducted the evalua-
model sets corresponding to systems C through F in Tabletipn. A Latin square experimental design was used to define
System G corresponds to vocoded natural speech, analygfflorder in which systems were judged (a different square for
and resynthesised using the STRAIGHT technique [18]. Thigich section of the evaluation). Each listener was assigned a
system is included in the evaluation to establish an upp&v of each Latin square, and judged seven different utterances
bound on the performance of the synthesised speech.  per section, each synthesised by a different system. The
In the case of unsupervised adaptation, triphone modelmthesised utterances are a subset of the 1992 ARPA speaker
derived from the estimated full context average voice modetsdependent read 5k test dataset with no verbal punctuation.
are used for the recognition step, in conjunction with the Throughout this paper, significant differences between sys-
closed vocabulargok bigram language model provided withtems evaluated using the opinion score evaluation are de-
the WSJO corpus. A set of state transition probabilities afécted using a pairwise Wilcoxon signed rank test which is
estimated from the SI84 dataset for use with the triphombnferroni-corrected for multiple comparisons [26]. A differ-
models during recognition. A phoneme error rated@f1% ence is deemed significant if this test discovers significance at

EVALUATED SYSTEMS (INTRALINGUAL ONLY ).

is observed for the unsupervised transcriptions. the 95% confidence level.
2) Paired comparison evaluationThree pairs of systems
C. Analysis of two-pass decision tree construction are selected and a preference test conducted in order to address

Table 1 displ h b ¢ leaf nod q _the questions stated at the start of this section. Each judge was
_rable ISplays the number of leal nodes created Usigesented with pairs of synthesised utterances, one generated
different decision tree construction methods, and for t fom each system in the comparison. For each pair, the judge
different streams. In all cases, the number of leaf nOdﬁﬁas forced to select his preferred system, according to either

naturalness or similarity to a target speaker. In the case of

[ | Mel-cepstral| F0 | aperiodicity |

Pass 1 5508 5750 il S|m!lar|ty, fogr of the target speaker’s natural utterances were
Pass 2 2889 34849 2639 available to inform the judgement. The synthesised utterances
Standard 2621 30581 2160 are a subset of the 1992 ARPA speaker independent read 5k
TABLE I test dataset with no verbal punctuation.
NUMBER OF LEAF NODES CREATED USING DIFFERENT DECISION TREE The fO”OWing pairs Of Systems were Compared. Unadapted

CONSTRUCTION METHODS standard (system A) and unadapted two-pass (system B)

were compared in terms of naturalness. Supervised triphone-
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- . ) _ [ System ¥ of times selected)] Significant difference?
adapted (system E) and unsupervised triphone-adapted (sys NGB Az o%) -

tem F) were gompared in terms of target speaker simila_rity. E (55.0%) F (@5.0%) N
Lastly, supervised full-adapted (system C) and unsupervised C (72.6%) F (27.4%) Y
triphone-adapted (system F) were also compared in terms of TABLE IV
target speaker similarity. Thirty-four pairs of utterances were PAIRED COMPARISONS FOR INTRALINGUAL ADAPTATION METHODS
presented in each comparison. Ten native English speakers EACH ROW CORRESPONDS TO A SINGLE COMPARISQN
conducted the evaluation.

Throughout this paper, significant differences between sys-
tems evaluated using the paired comparison method are de-
tected using Pearson’s chi-square test to approximate thd) Does the constrained two-pass decision tree construction
binomial test. A difference is deemed significant if this tegirocess affect the naturalness of the resulting speech?:
discovers significance at t196% confidence level. A small but significant decrease in naturalness is observed
between system A (standard decision tree construction) and
system B (two-pass decision tree construction). So constrain-
E. Results ing decision t truction using the two-pass technique h

g decision tree construction using the two-pass technique has

1) Opinion scores:Figure 4 summarises listener judgecompromised the naturalness of the resulting synthetic speech.
ments of ‘naturalness’ and ‘similarity to target speaker’ usingowever this is only a small loss in naturalness, as shown in
boxplots. Table Il displays the corresponding mean opiniorable 1ll.
scores (MOS) for naturalness and similarity for each system.2) How does the proposed approach to unsupervised in-
tralingual adaptation compare with supervised intralingual

[_System | MOS naturalnes§ MOS similarity | adaptation?: In the case of full adaptation, a reasonably large
g ?'g fg reduction in target speaker similarity MOS frod8 (system
c 51 33 C) to 2.8 (system D) is observed when using unsupervised
D 1.9 2.8 adaptation. In the case of triphone adaptation, supervised
E 3(1) gg (system E) and unsupervised (system F) methods deliver the
G 3% 19 same target speaker similarity MOS 2f), and no significant
TABLE Il diff(_erence is found between these systems in a paired com-
MEAN OPINION SCORES FOR NATURALNESS AND SIMILARITY TO TARGET ~Parison test.
SPEAKER To summarise, in the case of full adaptation there is evi-

dence to suggest that supervised adaptation delivers superior
performance to the unsupervised case. A significant difference

Significant differences are observed between vocoded ni§t-found between unsupervised triphone adaptation (system
ural speech (System G) and all other systems for both nafu- @nd supervised full adaptation (system C). However, in
ralness and similarity to the target speaker. Listeners cleaf neral, these results demonstrate that unsupervised adaptation
assign lower scores to synthetic speech. of TTS models achieves performance approaching that of

With regard to target speaker similarity, significant differSUPervised adaptation. This is achieved without use of sup-
ences are observed between the unadapted models (systi§fientary acoustic models or any source-language training
B) and all adapted systems (C through F). No significaftaterial- _ ,
difference is observed between any pair of adapted systems,3) How does the performance of triphone adaptation (as

With regard to naturalness, no significant differences aggscrlbed in S_ectlon IVV) compare W|th_that of full adaptaﬂo_n?:
observed between any of the synthetic speech systems"f'Athe supervised case, full adaptation (system C) delivers
through F) a superior target speaker similarity MOS to that of triphone

2) Paired comparisons:Table IV displays the frequency adlaptr;\]tlon (system. E)& h o Trioh
with which each system was preferred in the paired compar- nt € unsupervised case, the oppgsﬂe IS true. Trip one
isons evaluation described in Section VII-D2. A significarﬁdaptat'on (system F) delivers a superior target speaker simi-
difference in naturalness is detected between the stand&'dY MOS to that of full adaptation (;ystem D.)' .
unadapted system (system A) and the unadapted two-pas hesg results_ suggest that.there is a reIatlonshlp. between
system (system B). A significant difference in target speak € optimal c;home of ad'aptatlon techmqge (full or tnphong)
similarity is also detected between the supervised full-adap Bd the quality of the _estlmated transcription of the adaptation
system (system C) and the unsupervised triphone-adap - In the unsupervised case here, it has been demonstrated
system (system F). No significant difference is detected that linguistic analysis of the adaptation data may be bypassed

tween supervised and unsupervised triphone-adapted syst th&sINg .tr|pdhor(;e atld?ptatlon V\(/j|thout adversely affecting the
(systems E and F respectively). unsupervised adaptation procedure.

VIIl. EVALUATION : CROSSLINGUAL SPEAKER
F. Discussion ADAPTATION

The questions phrased at the start of this section will nowThe evaluation described in this section is designed to
be addressed in turn. address the following questions in the context of unsupervised
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Naturalness Similarity to target speaker
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A B c D E F G A B C D E F G
System System

Fig. 4. Boxplots of listener opinion scores for naturalness and similarity to target speaker.

cross-lingual speaker adaptation of HMM-based synthesecorded in the same acoustic environment. The use of adap-
models. tation datasets corresponding to the same speaker, semantics,
1) How does the proposed approach to unsupervised crog8d acoustic conditions enables a controlled comparison of
lingual adaptation compare with unsupervised intraliddtralingual and cross-lingual speaker adaptation.
gual adaptation? Statistics relating to the adaptation datasets for each
2) Can knowledge of the source language improve tis®eaker/language pair are provided in Table V. The datasets
quality of unsupervised cross-lingual adaptation? were designed to correspond to approximately the same total
3) How well does the unsupervised cross-lingual adaptatiodmber of English words.
technique generalise across speakers and languages? _ ,
Speaker native] Adaptation

Additionally, the following questions, related to the SAT ~janguage | data languagd * Utt€rances| # minutes | # words

framework, will be addressed in the context of supervised i Mandarin W) -
. . . Mandarin p 84
intralingual speaker adaptation. English 10.0 1221
. . . . French 10.8 1353
4) Does SAT estimation improve the quality of the un-  French English 113 9.4 1927
adapted and adapted models? . Italian 11.9 1312
h L Italian Enalish 119 12.8 1296
5) Does the constrained two-pass decision tree constructjon Dngt'sh s 1173
. . . utc .
process affect the quality of the resulting SAT-estimatgd Dutch English 113 101 1292
models? - Finnish 8.3 839
: : T - Finnish English m 9.6 1224
The background information detailed in Section VII- :
remains relevant for this evaluation. TABLE V

PARALLEL ADAPTATION DATASETS.

A. Adaptation datasets

The speech of five competent, but not native, male speakers
of English is used as adaptation data. In the case of the
European languages considered (French, Italian, Dutch dhdSYStems
Finnish), this speech corresponds to utterances selected frofihe questions highlighted at the start of this section inform
the Europarl corpus of parallel text of European parliamettie choice of systems to be evaluated. In total, eight systems,
proceedings [27]. In the case of Mandarin, the speech cdetailed in Table VI are evaluated.
responds to a subset of the NIST 2008 Chinese-English MTEnglish male average voice full context models are gen-
evaluation parallel texts. Each speaker provided speech in éiated using the male-only subset of the Wall Street Journal
native language as well as the parallel translated speech(\WiSJ) SI84 training datase8,(586 utterances). Using two-
English. The semantic content of the data is therefore identigalss decision tree construction, both SAT (system I) and
in both languages. Additionally, the parallel speech data wasndard Sl (system J) models are estimated as discussed
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in Section VI. For comparison, a SAT-estimated model &t the time of the evaluation. Different Latin squares were
estimated using standard decision tree construction (systesed for each section to define the order in which systems
H). Again, note that only Mel-cepstrak'0, and aperiodicity were judged. Each listener was assigned a row of each Latin
models are adapted in this work, so only those models aguare, and judged eight different utterances per section, each
clustered using the two-pass decision tree construction methsyghthesised by a different system.

Three SAT-adapted models (systems K through M) are2) Paired comparison evaluationTwo pairs of systems
derived from the SAT models (system ) using CMLLR adapare selected and a preference test similar to that described
tation. System K is the result of applying unsupervised cross-Section VIII-C2 was conducted in order to address some of
lingual adaptation as described in Section V, and using tHee questions stated at the start of this section. The following
native speech adaptation datasets described in Section VIlIp&irs of systems were compared: unsupervised intralingual
System L is the result of unsupervised intralingual adaptatiedapted (system L) and unsupervised cross-lingual adapted
(triphone adaptation) as described in Section IV, and usifgystem K), and supervised intralingual adapted (system M)
the English speech adaptation datasets described in Sectiod unsupervised cross-lingual adapted (system K). Forty pairs
VIII-A. System M is identical to system L with the exceptionof utterances were presented in each comparison. Ten native
that the correct transcription is used during adaptation.  English speakers conducted the evaluation.

One standard adapted system (system N) is derived from
system J, again using CMLLR. System N differs from system. Results

M only in that it is adapted from the standard SI models 1) Opinion scores: Figure 5 summarises listener judge-
(system J). System O corresponds to vocoded natural speeghinis of target speaker similarity and naturalness using box-
plots. Tables VII and VIII display, respectively, the average

S| model Source L .
System | Clustering | estimation | language| Supervised? target speaker similarity and naturalness for each system in
method the column labelled ‘av'.
H Standard SAT
I Two-pass SAT ‘MOs
J Two-pass | Standard Sl - - Sys similarity
K Two-pass SAT Native N MTFTT[DJFRTa
L Two-pass SAT English N H 14 11416 |16 | 1.6 | 1.5
M Two-pass SAT English Y | 1.2 | 1313 |13 |16 | 1.3
N Two-pass | Standard Sl| English Y J 13|13 |14 |15 |18 | 14
O - - - - K 1.5 13|18 |18 | 18 | 1.7
L 19|15 |17 ] 20| 18| 1.8
EVALUATED SYSTEMS (CR-I(-JASBSIT_IIEN\(;IUAL AND INTRALINGUAL ) M| 201920 ) 18) 207119
: N 19 | 1.7 | 20 | 20 | 22 | 2.0
O 49 | 5.0 | 5.0 | 4.7 | 4.8 | 49

TABLE VI
MEAN OPINION SCORES FOR SIMILARITY TO TARGET SPEAKER
ANALYSED BY TARGET SPEAKER NATIVE LANGUAGE (M=MANDARIN,

C. Evaluation details FR=FRENCH, I=ITALIAN , D=DUTCH, FI=FINNISH).

As in Section VII-D, two different evaluation methods
were used to measure the performance of the cross-lingual

adaptation technique: an opinion score evaluation, described VoS
in Section VIII-C1, and a paired comparison of several pairs Sys naturalness
of systems, described in Section VIII-C2. MTF [T [DJFRTav
1) Opinion score evaluation:As described in Section A e e N
. . [ - - - | 2.8
VII-D, all systems were evaluated by rating synthesised J . B I
utterances via a web browser interface using a five point K [ 25 24|25 | 2420 24
psychometric response scale. These utterances are English L | 25|25)28)25]21)25
¢ tracted f the E | d th M | 26 | 28|27 |23|25]| 26
sentences extracted from the Europarl corpus, and they are N |27 26|28 27|22 26
distinct from the adaptation utterances. O |39 |46 | 45 | 49 | 44 | 44

The evaluation comprised ten sections. In the first set of five TABLE VIII
sections (one per speaker), listeners judged the naturalness ofiEAN OPINION SCORES FOR NATURALNESSANALYSED BY TARGET
an initial set of forty synthesised utterances. In the secorfRPEAKER NATIVE LANGUAGE (M=MANDARIN, FR=FRENCH, I=ITALIAN,,
. . . . . D=DuTCH, FI=FINNISH).
set of five sections (again, one per speaker), listeners judged
the similarity of a second set of forty synthesised utterances
to the target speaker’'s speech. In each section, four of the
target speaker’'s natural English utterances were available foAgain, significant differences exist between vocoded natural
comparison. speech (system O) and all other systems, both in terms of
Twenty-four paid judges conducted the evaluation. Twentypraturalness and target speaker similarity.
one were native English speakers and the remaining three had@he average similarity to the target speaker given by SAT-
spent more than two years in an English-speaking countaglapted systems (K, L and M) are all significantly greater than
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Similarity to target speaker Naturalness
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Fig. 5. Listener opinion scores for similarity to target speaker and naturalness.

that observed for the corresponding unadapted models (systamupervised intralingual adaptation yields superior perfor-
). No significant difference is observed between the similaritpance to unsupervised cross-lingual adaptation: compare the
of any pair of SAT-adapted systems. The average similarity aferage target speaker similarity in the case of system L
the standard adapted models (system N) is significantly greatensupervised intralingual adaptatiohg8) to that of system
than that observed for the corresponding unadapted mode€léunsupervised cross-lingual adaptatiary)). Note, however,
(system J). that this evidence, and that of the paired comparison between

With regard to naturalness, although the adapted systethgse systems, is not sufficient to prove that any significant
(K through N) display lower average scores, no significaulifference exists between the systems.
difference is detected between the naturalness of any adapted) Can knowledge of the source language improve the
system and its corresponding unadapted system. quality of unsupervised cross-lingual adaptation3ystem M

2) Paired comparisons:Table IX displays the frequency (supervised intralingual adaptation) may be thought of as an
with which each system was preferred in the paired compatsupervised cross-lingual system with an ideal mapping from
isons evaluation described in Section VIII-C2. No significargource language speech to target language phoneme sequence.
difference in target speaker similarity is detected betweés such, its performance, an average target speaker similarity
the unsupervised intralingual adapted system (system L) &#fd1.9 and average naturalness f6, provides a reason-
the unsupervised cross-lingual adapted system (system K)aple upper limit for the performance of cross-lingual speaker
significant difference in target speaker similarity is detecteaflaptation. This is superior performance to that observed for
between the supervised intralingual adapted system (systeRgupervised cross-lingual adaptation (system K, similarity
M) and the unsupervised cross-lingual adapted system (syst@fml.7 and naturalness of.4). Note also that a significant

K). performance difference is found between these systems in a
paired comparison, so it can be argued that use of source
[ System % of times selected)| Significant difference?] language knowledge may narrow the margin between these
L (53.2%) K (46.8%) N systems.
M (56.7%) | K (43.3%) Y 3) How well does the unsupervised cross-lingual adaptation
TABLE IX technique generalise across speakers and languag€sn-
PAIRED COMPARISONS FOR CROSSINGUAL ADAPTATION METHODS. paring the Values fOf SyStem | Wlth those Of System K in Table

EACH ROW CORRESPONDS TO A SINGLE COMPARISQN Lo . .
VII, it is observed that the unsupervised cross-lingual adapta-

tion technique successfully increases target speaker similarity
for all speakers/languages chosen in this study. While this
demonstrates that the technique generalises well, note that this
increase in similarity varies widely across speakers/languages.
For example, in the case of Dutch, an increase0df is

The results presented above are now discussed in relatidserved (froml.3 to 1.8) while, in the case of French, an
to the questions specified at the start of this section. increase of less tham1 (from 1.29 to 1.33) is recorded.

1) How does the proposed approach to unsupervised crossThis variance may be due to language-specific factors e.g.
lingual adaptation compare with unsupervised intralinguathe extent of overlap between the phonetic inventory of the
adaptation?: The evidence presented above suggests trsmturce language and that of English. Several other factors may

E. Discussion
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contribute to this variance, however, e.g. varying volumes afgorithm (full or triphone adaptation) merits further investi-
adaptation data used (see Table V), differing phonetic cogation.
tent across adaptation datasets, or differences in recognitioffuture work may also address the reasonably large reduc-
accuracy across speakers. tions in naturalness which are observed in the adapted systems
An alternative explanation should be kept in mind. Thef Section VIII-D (in comparison to the unadapted systems).
target speaker’s characteristics may change when speakinds mentioned in Section VIII-E, further analysis is required
his non-native English. When adapting using native languatge explain the varying effectiveness of unsupervised cross-
speech, such alterations are not observed, and so possiinigual adaptation. The relationship between this effectiveness
not captured. This is a fundamental issue with cross-linguahd, for example, adaptation data content or speaker and
speaker adaptation. However, this issue may be more plaaguage characteristics, remains unknown.
nounced for certain speakers or languages. Lastly, future work may evaluate the effectiveness of cross-
Further experimentation and analysis is required to expldingual adaptation in the context of an application, for example
the varying performance of the unsupervised cross-lingualpersonalised speech-to-speech translation system.
speaker adaptation.
4) Does SAT estimation improve the quality of the un- X. ACKNOWLEDGEMENTS
adapted and adapted modelsBoth the unadapted SAT. he authors are very grateful to the organizers of the Bliz-
models (system 1) and the standard S.I models. (system J) YI9&td Challenge for providing experimental evaluation scripts.
an average naturalness scor@ @ as displayed in Table VIII. Thi

research was partially funded by the European Commu-
In the case of the adapted systems, both the standard ada Seventh Framework Programme (FP7/2007-2013), grant
models (system N) and SAT-adapted models (system M) yi '

an average naturalness®6. The SAT-adapted models display reement 213845 (EMIME).
an average target speaker similarity 10§, which is slightly
inferior to the equivalent standard SI models. So no evidence
has been observed in this evaluation to support the hypothedi V. Karaiskos, S. King, R. Clark, and C. Mayo, “The
that the SAT estimation technique yields superior models to  Blizzard Challenge 2008,” ifProc. Blizzard 20082008.
the standard Sl estimation method depicted in Figure 3. [2] T. Yoshimura, T. Masuko, K. Tokuda, T. Kobayashi,
5) Does the constrained two-pass decision tree construction and T. Kitamura, “Speaker interpolation for HMM-based
process affect the quality of the resulting SAT-estimated mod- speech synthesis systenThe Journal of the Acoustical
els?: The SAT-estimated models corresponding to standard Society of Japanvol. 21, no. 4, pp. 119-206, 2000.
decision tree construction (system H) yield a slightly superiof3] J. Yamagishi, K. Onishi, T. Masuko, and T. Kobayashi,
average naturalnesg.9) to the SAT-estimated models which ~ “Acoustic modeling of speaking styles and emotional
deploy two-pass decision tree construction (syste?s),. As expressions in HMM-based speech synthesIE|CE
in the case for standard SI models (Section VII-D), constrain-  Trans. Information and Systemeol. E88-D, no. 3, pp.
ing decision tree construction using the two-pass technique 503-509, 2005.

has slightly compromised the naturalness of the SAT-estimatd4] J. Yamagishi, T. Kobayashi, Y. Nakano, K. Ogata, and
models. J. Isogai, “Analysis of speaker adaptation algorithms

for HMM-based speech synthesis and a constrained
SMAPLR adaptation algorithmJEEE Audio, Speech &
Language Processingol. 17(1), pp. 66-83, 2009.

This paper has introduced a two-pass decision tree construig] S. King, K. Tokuda, H. Zen, and J. Yamagishi, “Unsu-
tion method. This method enables sharing between full context pervised adaptation for HMM-based speech synthesis,”
models used for HMM-based speech synthesis and triphone in Proceedings InterspeecR008.
models used for HMM-based ASR via a simple mapping6] B. Wheatley, K. Kondo, W. Anderson, and
between these models. This, in turn, enables unsupervised Y. Muthusamy, “An evaluation of cross-language
intralingual adaptation of speech synthesis models without a adaptation for rapid HMM development in a new
separately estimated set of components. Further, the technique language,” inProceedings ICASSPvol. 1, 1994, pp.
enables the components to be adapted without the use of 237-240.
linguistic analysis. A cross-lingual adaptation technique whicij7] P. Fung, C. Y. Ma, and W. K. Liu, “MAP-based cross-
uses no source language knowledge is then proposed. This language adaptation augmented by linguistic knowledge:
method is based upon the unsupervised intralingual adaptation from English to Chinese,” irProceedings Eurospeech
method. Listener evaluations demonstrate that the proposed 1999, pp. 871-874.
unsupervised adaptation methods, both intralingual and crosg8] Y. Wu, S. King, and K. Tokuda, “Cross-lingual speaker
lingual, deliver performance approaching that of supervised adaptation for HMM-based speech synthesis,”Pro-
adaptation. ceedings ISCSLF2008.

Several lines of potential future research are directly linked9] Y. Wu, Y. Nankaku, and K. Tokuda, “State mapping
to this work. With regard to the results of Section VII-E, the based method for cross-lingual speaker adaptation in
relationship between the quality of the estimated transcription HMM-based speech synthesis,” iBroceedings Inter-
of the adaptation data and the optimal choice of adaptation speech?2009.
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