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1 Introduction

The optimal regulatory framework of utilities seeks to resolve an inherent
conflict between the interests of consumers and investors. On the one hand,
to attract investment, the regulator has to assure the utility that the sunk
cost of capital will be rewarded appropriately, and prices will be set to cover
both short run as well as the long run costs. On the other hand, utilities are
natural monopolies and as such are prone to earn excessive profits if unregu-
lated. Thus, acting in the public interest the regulator should seek to transfer
to consumers the lower production costs resulting from technological innova-
tion. In the UK this conflict of interest is resolved via price-cap regulation.
This paper assumes that the regulator has a reasonable estimate of the profit
function of the company, but is faced with the problem of evaluating the cost
of capital that the company faces.
The purpose of this paper is to investigate a new estimator for computing

the cost of capital in regulated industries. The vast majority of calculations by
regulators involve the use of the capital asset pricing model (CAPM). The beta
of the CAPM is estimated dynamically, or otherwise based on least squares
criteria or some time varying variation (see Buckland and Fraser, 1999, for
a discussion). This methodology was thought to be quite robust. However,
in practice, this has been a very unstable measure. This problem has been
documented since the early 1970 (e.g. Blume, 1971, 1975, and Baesel, 1974)
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untill quite recent (e.g. Bos and Newbold, 1984, and Black et al., 1992). In
particular, Buckland and Fraser (1999) document this problem in the case
of regulated listed companies. Therefore, it seems reasonable to investigate
alternative procedures consistent with the CAPM, but more likely to lead to
more satisfactory answers than least squares methods have provided. Such
a methodology can be criticized for treating equally the overvaluation of the
cost of capital with the undervaluation. As discussed in Newey and Powell
(1987), interpretation of the estimated coefficeints is dependent on the method
used as soon as we depart from the classical case where the depednet variable
is a linear function of explanatory variables plus iid noise
Suppose, St is the price of the stock listed in the market. Let Pt be the

price that the company charges to the consumers for its services. Suppose
that Pt �→ πt, where πt is the profit at time t. Then, in terms of long-run
equilibrium

St = Et

(
K∑

k=1

πt+k (Pt+k)

(1 + r̃)
k

)

,

where r̃ is the appropriate discount rate based on the cost of capital, and the
right hand side can be thought of as the fair price of the stock. If the company
distribute its earnings in the form of dividends, then πt has to be interpreted
as dividends payments (or expected dividends payments). We are concerned
with the estimation or r̃ when the regulator decides that the capital asset
pricing model holds. In this case, let rf be the interest free rate over one
period, and Smt be the market price at time t. Then,

r̃ = Et

(
St

St−1
− 1
)
− rf = Yt = βµm (1)

µm := Et

(
Smt
Smt−1

− 1
)
− rf .

It follows that the regulator should consider the estimation of β in such a way
that is consistent with its mission: to protect the consumers whilst giving an
incentive for future investment.
We propose a method to do this, namely estimation via Linex loss func-

tions. Linex loss functions are a class of asymmetric loss functions which ap-
pear to have been used by Varian (1975) in the first place in the context of real
estate. It has also been applied in other areas, such as to Bayesian estimation
problems in statistics (Zellner, 1986), and to construct optimal forecasts (e.g.
Hwang et al., 1997, Elliott and Timmermann, 2003, and references therein).
While Linex has been used as a loss function for constructing forecasts, it
has been rarely used for in-sample parameter estimation. When the errors in
the classical linear regression context are asymmetric or do not satisfy some
of the OLS assumptions, asymmetric estimation has been advocated by sev-
eral authors (e.g. Newey and Powell, 1987, and references therein). In these
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cases, the interpretation of the estimated coefficients rely heavily on the loss
function used. This is particularly so in the case of misspecification when the
optimal misspecified model (within the class of chosen models) is the closest
to the true (usually unknown) model relatively to the chosen loss function. In
this case, preferences must determine the characteristics of the loss function.
Linex allows for this flexible approach, as it depends on one parameter that
has direct interpretation in terms of risk aversion.
The plan for the paper is as follows. In Section 2 we discuss the popula-

tion properties of Linex estimation. We restrict attention to Linex best linear
prediction. These tools allows us to define the population value of beta, which
we shall describe how to estimate in the remainder of the paper. In Section
3, we consider the sample properties together with some further discussion
and a small simulation to compare the Linex estimator to the least square. In
Section 4 we apply our methodology to both UK water and electricity compa-
nies. We find substantial differences in the cost of capital when computed by
our method versus the traditional one. Conclusions follow in Section 5. An
appendix provides some information on the companies used in our empirical
study.

2 Asymmetric Prediction and Estimation

Suppose Y is a real random variable. Let h be our predictor of Y and write
e = Y − h for the prediction error. Suppose Θ is a compact parameter space,
and X is a random variable in S. With increasing level of generality, we can
restrict h to be an element into the following classes of functions: 1. the
constant functions

M1 := {h : h ∈ R} ,
2. linear maps of X (clearly, X may include a constant term)

M2 (S,X,Θ) :=
{
h : h = βTX,β ∈ Θ,X ∈ S

}
(2)

3. arbitrary functions of X indexed in Θ

M3 (S,X,Θ) := {h : h = µθ (X) , µθ : S ×Θ→ R} .

For each of these categories, the predictor h ∈ Mi (i = 1, 2, 3) will depend
on the loss function we wish to minimize, i.e. the optimal predictor is the
predictor which minimizes the expectation of the loss function L (e) with
respect to h, L : R→ R+

min
h∈Mi

EL (Y − h) ,

for a fixed i = 1, 2, 3.
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2.1 Linear Predictors and Projections

As above h is our predictor of Y and write e = Y − h for the prediction
error. We restrict h ∈ M2 (S,Θ) . In this case, if Ee

2 < ∞, it is natural to
consider the best predictor in the space of square integrable linear functions.
Therefore, it is natural to equip this space with an inner product, so that we
have an Hilbert space, say H. In this space, the best predictor h ∈M2 (S,Θ)
for Y is equivalent to finding the projection of Y onto S, where Y ∈ H and
h ∈M2 (S,Θ) ∩H. This projection is given by XT β̃, where

β̃ := argmin
β∈Θ

E

(
Y − θTX

)2

is the solution of the mean square error problem, i.e. the closest element in
M2 (S,X,Θ) ∩H to Y under the L2 norm ‖...‖2.
While this is a natural approach, we do not need to restrict our attention

toM2 (S,Θ) ∩ H (i.e. we do not need to equip our space with ‖...‖2) hence
XT β̃ does not need to be the best choice for our purposes: the class of best
predictions inM2 (S,X,Θ) is much larger than the one inM2 (S,X,Θ)∩H.
Our motivation for considering the prediction problem in a more general

setup stems from the fact that we are restricted toM2 (S,X,Θ) , but this is
just a convenient parametric approximation. In this case, choosing the best
predictor under ‖...‖2 is adequate only if we have symmetric beliefs. The
following is an example to illustrate the point.

Example 1 Suppose Y = a + Zb + ε, where Z is a conditioning variable
and ε is a random variables such that Eε = 0, Eε2 < ∞. Assume we do
not know the true generating process for Y , and we choose a predictorh ∈
M2 (S,X = Z,Θ ⊂ R) i.e. we choose h = Zβ,. The second step it to decide
the metric under which the predictor is optimal. Suppose we choose the L2
norm:

β̃ = (EZ)−2 EZY.

Substituting for Y,
EZY = aEZ + EZ2b+ EZε,

so that
β̃ = b+ EZa.

If we knew that Z > 0 and a > 0, our predictor would be biased upwards. In
this simple case, the problem would be solved by choosing

h ∈M2

(
S,X = (1, Z) ,Θ ⊂ R2

)
.

However, in other cases, we will have to stick to a specific class irrespective
either of previous knowledge or preference.
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2.2 Linex Loss Function

The previous example shows that if we are forced to restrict attention to a
specific class of predictors, than choosing a quadratic risk function may not
be the best choice. For example, in the previous case, we may decide to
penalize more when the expectation of the predictor error is negative instead
of being positive. For this reason, we propose a different approach via Linex
loss functions. As mentioned in the Introduction, Linex is not commonly used
for in-sample parameter estimation.
When L is a Linex loss function, we have

L (e) = exp {αe} − αe− 1. (3)

For small |α| < 1 the function is nearly symmetric (just take a Taylor expan-
sion), while asymmetry becomes more pronounced as |α| increases (Zellner,
1986, for further details). In particular, for α > 0, we penalize more (i.e.
L (e) is larger) when e is positive. In the context of the regulation problem,
we would punish a value of beta that would lead to an under fitting of the
company returns in excess of what the CAPM might predict. Thus beta is
being chosen such that positive ”alpha” in the company is being penalized.
When h ∈Mi (i = 1, 2) the Linex loss function always has a unique minimum
and this follows by convexity (e.g. Zellner, 1986).

Example 2 Consider h ∈M1 (recallM1 is the class of constant functions).
The optimal h, say h∗, will depend on the loss function L : R → R. If L is
Linex, we have that

h∗ =
1

α
lnE exp {αY } (4)

= EY + αE (Y − EY )2 +O
(
α2
)
,

using the fact that lnE exp {αY } is the cumulative generating function of Y
(e.g. McCullagh, 1987, for details). In our case, it is of interest to look at
α > 0, as we want to penalize gains more than losses. For example, under
normality, this implies that for α > 0, the Linex estimator is larger than the
mean. On the other hand, if L (e) := e2 (which is least squares, a popular
symmetric loss function), then h∗ = EY is the mean. Of course our problem
differs from this in that it is the beta that we wish to estimate.

2.2.1 Linex Solution via Moment Condition

The Linex solution to the problem EL (e) for L as in (3), where we confine
attention to h ∈ M2 (S,X,Θ) as in (2), can be characterized via moment
restriction. We include an intercept term, and for convenience we write h =
β0 +XTβ1. Clearly, Y does not need to have linear conditional expectation
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function with respect to X. For example Y = f (X, η) , for some measurable
function f and some stochastic term η.

EL
(
α
(
Y − β0 −XTβ1

))
= E exp

(
α
(
Y − β0 −XTβ1

))
−αE

(
Y − β0 −XTβ1

)
−1,

where expectation is taken over the joint distribution of (X,Y ) which can
be conditional, steady state et cetera. Under regularity conditions, setting
β = (β0, β1) ,

∂EL
(
α
(
Y − β0 −XTβ1

))

∂β
=
E∂L

(
α
(
Y − β0 −XTβ1

))

∂β
.

Hence

E∂L
(
α
(
Y − β0 −XTβ1

))

∂β1
= −EX exp

(
α
(
Y − β0 −XTβ1

))
+ µX = 0

∂EL
(
α
(
Y − β0 −XTβ1

))

∂β0
= −E exp

(
α
(
Y − β0 −XTβ1

))
+ 1 = 0,

so that, under Linex, the first order conditions can be written as

cov (X, exp (αe)) = EX exp (αe)− EXE exp (αe)
= EX exp (αe)− µX = 0. (5)

We see that (5) can be seen as the analogue to the conditions in OLS, where
the regressors are orthogonal to the error term.

Computing the Optimal Beta Value using Linex. We intend to use
Linex to compute the population value of β in (1). The first thing to notice
is that it is a function of α in (3), that is the loss function of the regula-
tor determines the ”true” value of the discount factor. Define ϕY,X (s, t) :=
E exp {sY + tX} to be the moment generating function of (X,Y ), and

ϕi,jY,X (s, t) :=
∂i+jϕY,X (u, v)

∂ui∂vj
|u=s,v=t.

Notice that
E exp (αe) = ϕY,X (α,−αβ1) exp {−αβ0} .

Then, from (5), β is indirectly defined as the solution of the system of equa-
tions

ϕ0,1Y,X (α,−αβ1) = µX exp {αβ0} , (6)

ϕY,X (α,−αβ1) = exp {αβ0} ,
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and β1 is the solution of

ϕ0,1Y,X (α,−αβ1)

ϕY,X (α,−αβ1)
= µX , (7)

while β0 is proportional to the cumulant generating function of (Y,X) at
(α,−αβ1) , i.e.

β0 =
1

α
lnϕY,X (α,−αβ1) .

This shows that under linex, β0 is usually different from µY −β1µX . Therefore,
the restriction on the intercept used to test for the CAPM is not meaningful
in the general case.
In the case of bivariate normality, we have the following.

Proposition 1 Suppose (X,Y ) is jointly normal with σ2X = var (X), σXY =
cov (X,Y ) . Then, the linex optimal linear predictor h ∈M2

(
S, (1, X) ,Θ ∈ R2

)

is given by the linear projection

β̃1 =
σXY
σXX

,

and

β̃0 = µY − β1µX +
α

2

(
σY Y −

σ2XY
σXX

)
.

Proof. The moment generating function of Gaussian vector (X,Y ) is given
by

ϕY,X (s, t) = exp

{
sµY + tµX +

s2σY Y + 2stσXY + t2σXX
2

}
.

Then, substitute in (7) with s = α, t = −αβ1, and solve.
The proposition shows that under joint normality, not only β̃1 does not

depend on α, but it is also equal to the linear projection onto the space
spanned by the explanatory variable. On the other hand, β0 does depend on
α : the larger α, the lower β0. Furthermore, in this special case, the validity

of the CAPM (µY = βµX) implies that β̃0 =
α
2

(
σY Y − σ2XY

σXX

)
.

The result that β1 is independent of α may hold in some other cases, when
X is Gaussian and Y conditionally Gaussian.

Example 3 Suppose Y is a measurable random variable with the following
stochastic representation in terms of a random variable X ∼ N (µX , σXX)

Y = γ + δX + θX2 + η,

where η ∼ N
(
0, σ2η

)
. Then,

µY = γ + δµX + θ
(
σXX + µ2X

)
.
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This model has been proposed by Treynor and Mazuy (1996) to test for market
timing (however, we have imposed some further distributional assumptions).
Under the linear forecast model

Y = β0 + β1X + e,

use Linex to solve the following

min
β
EL (α (Y − β0 − β1X)) .

Now,

EL
(
α
(
γ + δX + θX2 + η − β0 − β1X

))

= E exp
{
α
(
γ + δX + θX2 + η − β0 − β1X

)}

−αE
(
γ + δX + θX2 − η − β0 − β1X

)
− 1

= exp
{
α
(
γ − β0 + ασ2η/2

)}
E exp

{
α
(
θX2 + (δ − β1)X

)}

−α
(
γ − β0 + θ

(
σXX + µ2X

)
+ (δ − β1)µX

)
− 1

= A (α, β1) exp {−αβ0}+B (α, β1)− αβ0.

By Lemma 1 in the appendix, with s = α (δ − β1) and t = αθ,

E exp
{
α (δ − β1)X + αθX2

}
= exp

{

−µ2X − ψ (β1)
2

2σXX

}

(1− 2αθσXX)−1/2 ,

where
ψ (β1) = (µX + α (δ − β1)σXX) (1− 2αθσXX)−1/2 .

Differentiating with respect to β1

A (α, β1) exp {−αβ0}α
(
µX + α (δ − β1)σXX
(2αθσXX − 1)

)
+ αµX = 0,

and with respect to β0,

A (α, β1) exp {−αβ0} = 1.
The solution is given by

α (δ − β1)σXX = − (2αθσXX − 1)µX − µX

= −2αθσXXµX

β1 = δ + 2θµX ,

for θ < 1/ (2ασXX) , and

β0 = γ − µ2X + α
σ2η
2
− 1

2α
ln (1− 2αθσXX) .

In this case, β1 is independent of α, while β0 does depend on α.
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However, this is not always the case.

Example 4 Suppose Y is as in the previous example, but the error term is
now heteroscedastic, η ∼ N

(
0, σ2ηX

2
)
. We cna solve the same problem. Using

conditional expectations

ELα
(
γ + δX + θX2 + η − β0 − β1X

)

= E exp
{
α
(
γ + δX + θX2 + η − β0 − β1X

)}

−αE
(
γ + δX + θX2 − η − β0 − β1X

)
− 1

= E exp
{
α
(
γ − β0 + ασ2ηX

2/2
)}
E exp

{
α
(
θX2 + (δ − β1)X

)}

−α
(
γ − β0 + θ

(
σXX + µ2X

)
+ (δ − β1)µX

)
− 1

= exp {α (γ − β0)}E exp
{
α
((
θ + ασ2η/2

)
X2 + (δ − β1)X

)}

−α
(
γ − β0 + θ

(
σXX + µ2X

)
+ (δ − β1)µX

)
− 1.

Then calculations similar to the previous example, give

β1 = δ + 2
(
θ + ασ2η/2

)
µX ,

for
(
θ + ασ2η/2

)
< 1/ (2ασXX) . Here β1 directly depends on α : the larger α,

the larger β1.

2.2.2 Expected Utility Interpretation of Linex

Linex estimation is given by

min
h∈Mi

EL (Y − h) := min
h∈Mi

E exp {α (Y − h)} − α (Y − h)− 1,

such that E (Y − h) = 0. This problem is equivalent to

max
h∈Mi

E [−L (Y − h)] = max
h∈Mi

E [α (Y − h)− exp {α (Y − h)}+ 1] .

Then we have the natural interpretation of the Linex optimization in term
of expected utility optimization of an agent with linear plus Bernoulli utility
function. A similar interpretation has been provided by Knight et al. (2003).
The only difference is that we are considering a mapping from e ∈ R, whereas
in a standard utility context the argument of objective function (i.e. wealth)
is a non-negative random variable. If we are to retain this interpretation,
then α (Y − h) → ∞ implies a higher utility and α (Y − h) → −∞ lower
utility. For this reason sign (α) will have to be chosen consistently with this.
Considering our context, we see that |α| is chosen so to reflect the level of
risk aversion of the regulator, which both in theory and good practice leads
to a coefficient of risk aversion independent of wealth (Bell and Fishburn,
2001). Infact, the linear plus Bernoulli utility function is one of the only two
Bernoulli utility functions that are consistent with the notion that gambles
may be ordered by riskiness and that this rank is independent of the decision
maker’s wealth (Bell and Fishburn, 2001).
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3 In Sample Properties of Linex Estimators

3.1 Generalized Linear Estimation

Suppose (Yi)i∈Z is a sequence of stationary random variables with values in
the probability space (R,F ,P). Suppose (Xi)i∈Z is a sequence of R

K (K ≥ 1)
stationary random variables. Consider h ∈M2, i.e.

h = βTX, (8)

for β ∈ Θ (Θ is some compact separable space, e.g. ⊂ R
K), where for sim-

plicity β may contain the intercept. In the previous section we phrased the
problem in terms of the true measure P. However this is not always known.
In this case, it needs to be replaced by the empirical measure. Suppose we
want to choose the best linear forecast with respect to the Linex loss func-
tion using the empirical measure. For any sample {x1, ..., xn} from X, define
Pn := n−1

∑n
i δxi , where δxi is the Dirac measure (i.e. Pn is the empirical

measure which assign mass n−1 at each observation). Setting eβ := Y −βTX,
we define the following M-estimator (which we may call the empirical linex
estimator),

min
h∈M2

PnL (Y − h) = min
β∈Θ

PnL
(
Y − βTX

)
= min

β∈Θ
Pn (exp {αeβ} − αeβ − 1) ,

and
β̂ (n) := argmin

β∈Θ
PnL

(
Y − βTX

)

is its solution. Under suitable conditions, PnL
(
Y − βTX

)
converges to a

non-random limit. In this case, PL
(
Y − βTX

)
= EL

(
Y − βTX

)
is the

”asymptotic” version of PnL
(
Y − βTX

)
, i.e. its limit with respect to n.

This limit is the population value considered in terms of X and Y . Then,

β̃ := argmin
β∈Θ

EL
(
Y − βTX

)
,

and

Lβ̃ :=




∂L
(
Y − βTX

)

∂βT





β=β̃

, (9)

Lβ̃β̃ :=




∂2L

(
Y − βTX

)

∂β∂βT





β=β̃

.
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Under suitable conditions on eβ , β̂ (n)→ β̃, and

√
n
(
β̂ (n)− β̃

)
� N

(
0,
(
ELβ̃β̃

)−1
ELβ̃L

T
β̃

(
ELβ̃β̃

)−1)
,

where � stands for weak convergence and N for the Gaussian distribution.
In particular,

Lβ̃ = αX
(
1− exp

{
αeβ̃

})
,

and
Lβ̃β̃ = α2XXT exp

{
αeβ̃

}
,

so that
√
ncov

(
β̂ (n)− β̃

)

= α−2
[
EXXT exp

{
αeβ̃

}]−1
E

[
XXT

(
1− exp

{
αeβ̃

})2] [
EXXT exp

{
αeβ̃

}]−1

The distribution of the Least Squares Estimator is exactly Gaussian when
the regressors are non-stochastic and the errors are normal. Suppose that
x1, ..., xn, xi ∈ RK are non-stochastic and we want to use h ∈ M2 as best
linear predictor for Y, i.e. we want to estimate

Y = βTx+ ε

using Linex.

Proposition 2 Under regularity conditions, (Pn − P)Lβ̃ = PnLβ̃ → 0, and

Pr
(
β̂ (n) ≤ β̃

)
= Pr

(√
nPnLβ̂(n) ≤ PLβ̃

)
= Pr

(√
nPnLβ̂(n) ≤ 0

)
,

where, under stationarity,

√
nPnLβ =

1√
n

n∑

i=1

αxTi −
1√
n

n∑

i=1

αxTi exp
{
−αβTxi

}
exp {αYi}

has distribution given by the weighted sum of exp {αY } .
Example 5 Suppose, Yi ∼ N (θxi, σY ) . Then, Zi = exp {αYi} is lognormally
distributed with EZi = exp

{
αθxi + α2σ2Y /2

}
. Therefore, β̂ (n) solves

1

n

n∑

i=1

xi exp

{
α2σ2Y
2

}
=
1

n

n∑

i=1

xi exp
{
α
(
θ − β̃

)
xi

}
,

and Pr
(
β̂ (n) ≤ β̃

)
is equal to the centered weighted sum of Lognormal random

variables. This is a function of the xi’s, θ, σ
2
Y , and α. As discussed in the

previous section, it is not necessarily true that β̃ = θ.
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3.2 Linex in a Time Series One Step Ahead Prediction

Environment

Under suitable modification, consistency of the estimator is guaranteed in
a time series context under possible mispecification. We apply the approach
presented in Skouras and Dawid (2000) to our Linex forecasting problem. Sup-
pose (Yi)i∈Z is a sequence of possibly non-stationary random variables with
values in the probability space (R,F ,P). We define (Ft)t∈Z+ (with F0 trivial,
if variables are not defined on a product probability space) to be a filtration
of F . Let (ht)t∈Z+ be an Ft−1-measurable sequence of forecasts for (Yt)t∈Z+
with values in (R,F ,P) . Notice that (ht)t∈Z+ is a non-misspecified forecast if

(Yt − ht)t∈Z+ is a martingale difference. Clearly, we cannot restrict ourselves
to non-misspecified forecasts.
As before, we shall restrict ht to belong to the class of linear forecasts, i.e.

ht = βTXt−1,

for β ∈ Θ (Θ is some compact separable space, e.g. ⊂ Rk) where Xt (k × 1)
is measurable with respect to Ft (i.e. it is known at time t). Therefore, our
Ft−1 conditional forecast for time t is given by

E (ht|Ft−1) = βTXt−1,

which is possibly different from

E (Yt|Ft−1) ,

due to misspecification. Suppose we want to choose the best linear forecast
with respect to the loss function L. Setting eβ|t := Zt − βTXt−1, we define
the following problem

min
β∈Θ

LT (β) := min
β∈Θ

1

T

T∑

t=1

L
(
Yt − βTXt−1

)
= min

β∈Θ

1

T

T∑

t=1

(
exp
{
αeβ|t

}
− αeβ|t − 1

)
,

and consider

L∗T (β) :=
1

T

T∑

t=1

E

[
L
(
Yt − βTXt−1

)
|Ft−1

]

to be the natural asymptotic version of LT (β). Therefore, we define

β̃
∗
:= min

β∈Θ
L∗T (β) ,

where in many cases, but not all (e.g. see Skouras and Dawid, 2000), β̃
∗
= β̃,

as defined previously. We could choose a previsible sequence (AT )T≥1 as alter-

native denominator T (e.g. Skouras and Dawid). Clearly, LT (β)−L∗T (β)
a.s.→
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0 by the reverse Martingale convergence theorem whenever LT (β) − L∗T (β)
is uniformly integrable (Rogers and Williams, 2000). In the case of LinEx, it

can be shown that under suitable conditions on eβ, β̂ (n)→ β̃, and (e.g. Hall
and Heyde, 1980)

√
n
(
β̂ (n)− β̃

)
� N

(
0,Σ

(
β̃
))

,

where

Σ
(
β̃
)
:=

[
1

T

T∑

t=1

E

(
Lβ̃β̃ |Ft−1

)]−1 1
T

T∑

t=1

E

(
Lβ̃L

T
β̃
|Ft−1

)[ 1
T

T∑

t=1

E

(
Lβ̃β̃ |Ft−1

)]−1

.

3.3 Efficiency of the Estimator: A Short Simulation Study

As shown in the previous section, the linear coefficient under Linex estimation
is asymptotically equivalent to the least square one. However, it would be
interesting to know, at least under simple conditions, something about the
efficiency of the estimator itself. To this end, we consider the following small
Monte Carlo exercise. We generateB samples of size n from the same bivariate
distribution. Hence, we estimate the following

Yt = β0 + β1Xt + εt.

For comparison reasons we also estimate the restricted version (β0 = 0) under
OLS. In particular, we choose B = 1000 and n = 40, 120, α = −.8,−.2, .2, .8.
For (Xt, Yt)t∈N , we generate samples from the following bivariate distribu-
tions:
1. a Gaussian,with mean and covariance matrix,

µ(1) = (2, (2/4) 2) ; vec
(
Σ(1)

)
= (4, 2, 2.5) ,

respectively;
2. a Gaussian with

µ(2) = (2, (4.8/4) 2) ; vec
(
Σ(2)

)
= (4, 4.8, 12) ;

3. a skewed non-elliptic distribution with fat tails given by the Kimeldorf-
Sampson copula (e.g. Joe, 1997, for details) with shifted double exponential
marginals:

C (u, v) =
(
u−δ + v−δ − 1

) 1
δ ,

u : = FX (x) = (1− qx) exp
{
λ−x (x− µx)

}
I{x<µx}

+
(
1− qx exp

{
λ+x (x− µx)

})
I{x≥µx},

13



v : = FY (y) = (1− qy) exp
{
λ−y
(
y − µy

)}
I{y<µy}

+
(
1− qy exp

{
λ+y
(
y − µy

)})
I{y≥µy},

where the parameters (rounded to nearest third digit)






λ−x
λ+x
µx
qx
λ−y
λ+y
µy
qy
δ






=






0.6
0.8
3

0.229
0.3
0.4
5.549
0.032
1.5






are chosen to match the mean and the covariance matrix of distribution 2.
Notice that for the above distributions µY = β1µX . The motivation for

the first two models is that they are consistent with the CAPM: the first gives
a low beta, the second a high beta. For the third distribution, the CAPM
does not apply without assumptions on the utility function, i.e. to justify the
CAPM we would need a quadratic Bernoulli utility function.
Figure I plots the cross plot for a sample of observations from the three

distributions. Both figures include a linear fit with intercept.

Figure I. Simulated Cross Plot of Market with Stock, n = 120
Panel A. Distribution 1
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Panel B. Distribution 2
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Panel C. Distribution 3
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Unfortunately, the situation in Panel C is more often the rule than the ex-
ception. Hence, an asymmetric loss function appears to be more adequate.
From our Monte Carlo simulation we compute the salient summary statistics
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for the beta estimator. Results are reported in Table I.

Table I. Beta Estimator
Panel A. Using Data simulated from Distribution 1

restricted
n=40 slope intercept slope intercept slope intercept slope intercept slope intercept slope
Mean 0.499 -0.010 0.501 -0.555 0.499 -0.150 0.501 0.130 0.502 0.536 0.505
Var. 0.005 0.080 0.010 0.113 0.015 0.081 0.011 0.082 0.011 0.116 0.015

Skewness -0.026 0.132 -0.043 0.031 -0.124 0.135 -0.067 0.141 -0.018 0.320 0.057
Kurtosis -0.127 0.261 0.120 0.153 0.484 0.298 0.159 0.233 0.136 0.537 0.342

Min. 0.298 -0.877 0.143 -1.545 0.076 -1.019 0.131 -0.730 0.154 -0.404 0.076
1st Qu. 0.452 -0.195 0.430 -0.779 0.425 -0.345 0.429 -0.060 0.436 0.299 0.424
Median 0.500 -0.022 0.502 -0.556 0.499 -0.161 0.505 0.119 0.504 0.532 0.503
3rd Qu. 0.551 0.181 0.570 -0.324 0.581 0.045 0.572 0.325 0.572 0.749 0.586

Max. 0.734 1.240 0.876 0.896 0.947 1.158 0.893 1.322 0.863 1.833 0.946
restricted

n=120 slope intercept slope intercept slope intercept slope intercept slope intercept slope
Mean 0.501 -0.004 0.502 -0.586 0.502 -0.151 0.502 0.143 0.503 0.576 0.504
Var. 0.002 0.024 0.003 0.037 0.005 0.024 0.003 0.025 0.003 0.040 0.005

Skewness 0.017 -0.154 0.178 -0.123 -0.002 -0.113 0.146 -0.158 0.179 0.093 0.021
Kurtosis 0.113 0.108 0.067 0.082 0.054 0.035 0.015 0.214 0.065 0.494 -0.028

Min. 0.375 -0.612 0.339 -1.270 0.270 -0.746 0.337 -0.482 0.341 -0.125 0.287
1st Qu. 0.475 -0.104 0.465 -0.716 0.456 -0.252 0.465 0.041 0.464 0.437 0.455
Median 0.503 0.001 0.501 -0.579 0.502 -0.146 0.502 0.149 0.501 0.579 0.502
3rd Qu. 0.527 0.102 0.537 -0.456 0.544 -0.042 0.537 0.253 0.541 0.713 0.551

Max. 0.640 0.476 0.712 0.024 0.736 0.355 0.709 0.747 0.712 1.480 0.716

unrestricted -0.8 -0.2 0.2 0.8

unrestricted -0.8 -0.2 0.2 0.8
OLS alpha=

Panel B. Using Data simulated from Distribution 2

restricted
n=40 slope intercept slope intercept slope intercept slope intercept slope intercept slope
Mean 1.200 -0.015 1.204 -2.128 1.208 -0.613 1.205 0.586 1.202 2.118 1.200
Var. 0.020 0.322 0.042 0.983 0.112 0.366 0.047 0.361 0.047 0.950 0.113

Skewness -0.002 -0.042 -0.018 -0.659 -0.076 -0.014 -0.082 0.050 -0.027 0.749 -0.119
Kurtosis -0.031 0.097 -0.165 1.326 1.480 0.094 -0.051 0.247 -0.207 1.608 0.488

Min. 0.743 -1.899 0.572 -7.259 -0.445 -2.632 0.375 -1.420 0.534 -0.560 -0.130
1st Qu. 1.104 -0.382 1.060 -2.704 1.002 -1.003 1.061 0.194 1.048 1.448 0.984
Median 1.197 0.002 1.206 -2.029 1.203 -0.609 1.207 0.577 1.206 2.037 1.203
3rd Qu. 1.300 0.354 1.347 -1.438 1.426 -0.205 1.358 0.998 1.352 2.659 1.416

Max. 1.738 1.954 1.874 0.991 2.523 1.485 1.829 2.634 1.910 7.583 2.198
restricted

n=120 slope intercept slope intercept slope intercept slope intercept slope intercept slope
Mean 1.201 0.005 1.200 -2.291 1.197 -0.607 1.200 0.619 1.199 2.325 1.199
Var. 0.007 0.108 0.014 0.424 0.048 0.121 0.015 0.122 0.015 0.404 0.044

Skewness 0.097 0.128 -0.076 -0.918 -0.042 0.040 -0.055 0.112 -0.038 0.594 0.055
Kurtosis 0.326 0.082 -0.008 2.561 0.660 0.072 -0.052 0.071 -0.147 0.976 0.359

Min. 0.924 -0.956 0.837 -6.182 0.210 -1.888 0.839 -0.511 0.845 0.655 0.422
1st Qu. 1.145 -0.220 1.123 -2.667 1.058 -0.844 1.115 0.403 1.114 1.875 1.058
Median 1.203 0.012 1.203 -2.255 1.200 -0.611 1.204 0.628 1.202 2.289 1.201
3rd Qu. 1.252 0.214 1.277 -1.861 1.334 -0.371 1.284 0.837 1.283 2.691 1.339

Max. 1.519 1.108 1.577 -0.693 2.070 0.486 1.584 1.719 1.608 5.121 1.978

-0.2 0.2 0.8unrestricted -0.8

0.2 0.8unrestricted -0.8 -0.2
OLS alpha=
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Panel C. Using Data simulated from Distribution 3

restricted
n=40 slope intercept slope intercept slope intercept slope intercept slope intercept slope
Mean 1.213 0.078 1.184 -2.673 1.324 -0.658 1.246 0.766 1.118 2.347 1.007
Var. 0.029 0.637 0.096 2.320 0.181 0.813 0.107 0.732 0.112 2.675 0.417

Skewness 0.255 0.280 -0.016 -1.253 0.463 0.027 0.059 1.083 0.147 4.110 0.505
Kurtosis 0.202 0.246 -0.120 5.353 1.666 0.626 -0.072 6.503 0.923 31.318 4.444

Min. 0.797 -2.453 0.257 -14.677 -0.036 -4.401 0.281 -1.709 -0.480 -0.403 -2.443
1st Qu. 1.100 -0.456 0.973 -3.498 1.041 -1.265 1.017 0.208 0.888 1.505 0.630
Median 1.208 0.031 1.185 -2.483 1.308 -0.690 1.242 0.703 1.115 2.124 0.932
3rd Qu. 1.320 0.555 1.392 -1.687 1.582 -0.102 1.473 1.257 1.331 2.808 1.295

Max. 1.917 2.962 2.165 1.107 3.521 2.527 2.408 8.090 2.708 21.065 4.512
restricted

n=120 slope intercept slope intercept slope intercept slope intercept slope intercept slope
Mean 1.209 0.022 1.199 -3.312 1.331 -0.777 1.265 0.786 1.120 2.898 1.087
Var. 0.010 0.214 0.033 1.448 0.088 0.284 0.040 0.254 0.041 3.255 0.455

Skewness 0.205 0.213 -0.099 -1.043 0.364 0.121 -0.054 0.355 0.360 3.884 0.162
Kurtosis 0.115 0.324 -0.010 2.266 1.801 0.514 0.085 0.785 2.031 24.041 3.023

Min. 0.902 -1.468 0.611 -9.558 0.202 -2.831 0.584 -0.670 0.426 0.203 -2.296
1st Qu. 1.140 -0.271 1.080 -3.935 1.141 -1.126 1.129 0.461 0.989 1.988 0.724
Median 1.205 0.007 1.204 -3.126 1.323 -0.786 1.265 0.770 1.114 2.443 0.989
3rd Qu. 1.275 0.310 1.320 -2.517 1.508 -0.449 1.398 1.101 1.251 3.174 1.414

Max. 1.545 1.712 1.767 -0.277 2.677 1.132 1.875 3.094 2.519 20.715 3.977

-0.8 -0.2 0.2 0.8unrestricted

-0.2 0.2 0.8unrestricted -0.8
OLS alpha=

Table I shows that in the case of normality, the Linex slope estimator
provides very similar answers to the least square estimator and it is basically
independent of α. As noticed above, the intercept is not invariant with respect
to α, but exhibit a symmetric behaviour. Moreover, as α is set closer to
zero, not only the intercept becomes closer to the OLS intercept, but also
the standard errors for both estimators under linex and OLS tend to become
similar. On the other hand, results are very different for the third case, where
Gaussianity does not hold anymore. In this case, standard errors appear
to increase as |α| increases, but in a very different way. By construction,
distribuiton 3 exhibits lower tails dependence, i.e. joint large negative values
of Y and X are more likely to occour than joint large positive values of Y
and X. For α < 0, we penalize losses more than gains. However, by lower
tail dependence, we can expect a higher concentration of observations in the
extremes of the negative quadrant than in the positive one, hence estimates
are more precise there.

4 Application to Regulated UK Companies

In this section we report the results we obtained by computing the beta coeffi-
cient for many UK regulated companies which are listed in the FTSE all share.
Our time series sample comprises weekly prices on shares and the FTSE all
share together with the three month-guild rate. The time series goes back
to as much as 27/11/1992 to as short as just a few weeks, depending on the
stock, up to 14/11/2003. We include the starting date in parenthesis for each
stock. In particular, we consider the following companies identified by their
Bloomberg ticker (details are in the appendix):

Electricity:

IPR LN Equity (13/10/2000), SSE LN Equity (27/11/1992), SPW LN Equity
(27/11/1992), VRD LN Equity (02/07/1993)
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Utilities:

CNA LN Equity (21/02/1997), IEG LN Equity (16/06/1995), KEL LN Equity
(27/11/1992), NGT LN Equity (01/12/1995), PNN LN Equity (27/11/1992),
SVT LN Equity (27/11/1992), UU LN Equity (27/11/1992), UUA LN Equity
(26/09/2003).
We constract the excess returns on the companies and the market by

subtracting the risk free interest rate over a week using the rule 7/365 ×
(three-month risk free rate). We estimate the beta coefficient using the OLS
estimator and the constrained and unconstrained Linex estimator for α =
(−1 : 1) (.1). Table II provides summary statistics for the excess returns on
all time series.
The beta estimates are reported in Table III.

Table II. Summary Statistics
Mean Var. Skewness Kurtosis Min. 1st Qu. Median 3rd Qu. Max.

FT 0.01 4.20 -0.19 1.81 -8.11 -1.14 0.08 1.24 9.89
IPR -0.52 32.01 -0.39 1.89 -22.94 -3.62 -0.91 2.55 14.74
SSE 0.12 12.48 1.13 10.27 -14.38 -1.96 -0.02 2.01 29.54
SPW 0.21 25.78 4.69 58.30 -17.06 -2.30 -0.10 2.31 68.17
VRD 0.24 16.38 3.84 46.66 -15.80 -1.68 -0.05 1.78 51.04
CAN 0.26 20.44 0.49 1.89 -12.34 -2.19 0.14 2.53 18.71
IEG -0.02 5.04 1.46 11.37 -9.77 -0.66 -0.11 0.20 14.89
KEL -0.02 21.04 -1.57 21.23 -47.25 -2.11 -0.08 2.16 24.07
NGT 0.09 12.00 0.39 0.82 -8.39 -2.01 -0.11 2.03 12.19
PNN 0.00 13.13 -0.49 17.67 -33.02 -1.72 0.04 1.58 23.58
SVT 0.03 12.54 -0.03 1.95 -18.10 -2.12 -0.03 2.17 14.38
UU -0.05 12.62 0.13 2.07 -15.91 -2.04 -0.02 1.89 15.42

UUA 0.51 10.36 -0.05 -0.27 -4.78 -1.07 0.14 2.30 4.95

Table III. Beta Estimates

restricted
slope intercept slope intercept slope intercept slope intercept slope intercept slope intercept slope intercept slope

IPR 1.15 -0.22 1.14 -8.26 2.13 -2.68 1.53 -1.40 1.30 0.92 1.08 2.05 1.06 7.26 1.00
SSE 0.39 0.12 0.39 -7.09 -0.17 -1.04 0.33 -0.44 0.37 0.91 0.39 3.28 0.55 20.41 3.19
SPW -0.17 0.21 -0.17 -9.41 0.42 -1.63 -0.18 -0.72 -0.18 9.21 2.23 30.43 5.80 54.80 7.83
VRD 0.18 0.24 0.18 -8.11 0.40 -1.04 0.23 -0.39 0.24 2.64 -1.29 9.73 -2.94 28.02 -3.35
CAN 0.69 0.31 0.70 -5.26 0.79 -1.31 0.72 -0.52 0.70 1.30 0.71 2.64 0.72 11.15 0.61
IEG 0.02 -0.02 0.02 -2.98 0.23 -0.48 0.08 -0.25 0.05 0.28 -0.02 0.73 -0.08 8.02 -0.58
KEL 0.27 -0.02 0.27 -32.10 -3.67 -12.15 -2.65 -2.40 -0.44 1.00 0.15 2.51 -0.19 13.00 -0.71
NGT 0.54 0.11 0.54 -3.60 0.20 -0.90 0.43 -0.40 0.49 0.66 0.57 1.29 0.58 5.88 0.56
PNN 0.17 0.00 0.17 -24.72 3.18 -4.59 0.40 -0.89 0.23 0.73 0.05 2.11 -0.26 14.54 -1.51
SVT 0.27 0.03 0.27 -10.09 0.97 -1.33 0.31 -0.60 0.29 0.65 0.20 1.35 0.09 5.93 -0.47
UU 0.46 -0.05 0.46 -6.40 0.91 -1.27 0.49 -0.64 0.47 0.56 0.47 1.29 0.47 8.40 0.35

UUA -0.41 0.66 -0.47 -1.32 -0.73 -0.06 -0.61 0.28 -0.55 1.05 -0.38 1.45 -0.29 3.12 -0.06

0.8
OLS alpha=

unrestricted -0.8 -0.4 -0.2 0.2 0.4

Both summary statistics and the the results in Table III emphasize a large
degree of nonlinearity for the data and the possibility of misspecification under
OLS.

5 Conclusion

Our paper presents a theory of best linear prediction based on linex loss
functions. The extra parameter involved reflects the regulator’s preferences
in the context of estimating the cost of capital. In the case of bivariate

18



normality, our answers do not differ substantially from the actual ones given
by OLS. However, for arbitrary bivariate distributions, the answers are quite
different and seem to reflect the degree of nonlinearity in the data. More work
is needed to understand general conditions when β1, the slope parameter and
”beta” of the stock, may be independent of α, and when it is not. We hope
to report further results in later research.

A Brief Description of the Companies

Electricity:

IPR LN Equity:
International Power plc generates and sells electricity internationally. The

Group has operating facilities in some 13 countries, including Australia, the
Czech Republic, Malaysia, Pakistan, Portugal, Spain, Turkey, the United
States and the United Kingdom.

SSE LN Equity: Scottish & Southern Energy Plc
Scottish and Southern Energy plc generates, transmits, distributes and

supplies electricity to industrial, commercial and domestic customers in Eng-
land, Wales and Scotland. The Group also provides electrical and utility
contracting services, environmental control systems for the pharmaceutical
and manufacturing sectors, and supplies natural gas.

SPW LN Equity: Scottish Power Plc
Scottish Power plc is an integrated power and energy group, which gener-

ates, trades and supplies electricity, in addition to providing electrical power
systems in the UK and USA.

VRD LN Equity: Viridian Group Plc
Viridian Group PLC operates a utility company which procures, transmits,

distributes and supplies electricity. The Group’s main subsidiary, Northern
Ireland Electricity plc, buys energy in bulk from independent power gener-
ating companies and distributes it to other retail suppliers and customers in
Northern Ireland. Sx3 is the Group’s information technology and business
support services group.

Utilities:

CNA LN Equity: Centrica Plc
Centrica plc, through various subsidiaries, provides gas and energy related

products and services to residential and business customers throughout Great
Britain. The Group has a home services business, which allows customers to
protect themselves against problems with their plumbing, heating and kitchen
appliances. They also offer roadside assistance and indirect telecom services.

IEG LN Equity: International Energy Group Plc
International Energy Group Ltd. produces, distributes and transports gas.

The Company also sells and distributes petroleum products. The Group’s
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main operations are based in Guernsey, with a number of operating sub-
sidiaries in the United Kingdom, Guernsey, the Isle of Man, Portugal and
Jersey.

KEL LN Equity: Kelda Group Plc
Kelda Group PLC, through its wholly-owned subsidiary, Yorkshire Water

Services Ltd., provides drinking water and waste water services to the York-
shire region. The Group’s other core activities include treatment of liquid and
solid wastes, collection and disposal of medical waste. Aquarion offers water
services in the US. The company also has interests in water engineering and
property management.

NGT LN Equity: National Grid Transco PLC
National Grid Transco PLC owns, operates and develops electricity and gas

networks. The Group’s electricity transmission and gas distribution networks
are located throughout the United Kingdom and in the north-eastern section
of the United States. They also own liquefied natural gas storage facilitites in
Britain and provide infrastructure services to the mobile telecom industry.

PNN LN Equity: Pennon Group Plc
Pennon Group Plc operates and invests primarily in the areas of water

and sewerage services and waste management. Their principal subsidiary,
SouthWest Water Limited, holds the water and sewerage appointments for
Devon, Cornwall and parts of Somerset and Dorset. Viridor Waste Limited
operates a waste treatment and disposal businesses in the United Kingdom.

SVT LN Equity: Severn Trent plc
Severn Trent plc supplies water, waste and utility services throughout the

UK, Europe and the USA. The Group offers a range of water purification,
sewage treatment and disposal, and recycling services. They also provide
utility companies with a range of IT services and software solutions, as well
as engineering consultancy and project management services.

UU/ LN Equity: United Utilities PLC
United Utilities plc is an international multi-utility business whose ac-

tivities include water supply and distribution, wastewater services, facili-
ties management, electricity distribution, business process outsourcing and
telecommunications solutions. The Company provides services to approxi-
mately seven million people, primarily in the North west of England.

UU/A LN Equity: United Utilities PLC
United Utilities plc is an international multi-utility business whose ac-

tivities include water supply and distribution, wastewater services, facili-
ties management, electricity distribution, business process outsourcing and
telecommunications solutions. The Company provides services to approxi-
mately seven million people, primarily in the North west of England.
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B Lemma

Lemma 1 Suppose X ∼ N
(
µ, σ2

)
. If t < 1/

(
2σ2
)
, then

E exp
{
sX + tX2

}
= exp

{
−µ2 − ψ2

2σ2

}(
1− 2tσ2

)−1/2
,

with
ψ =

(
µ+ sσ2

) (
1− 2tσ2

)−1/2
.

Proof.

E exp
{
sX + tX2

}
=

∫

R

exp
{
sx+ tx2

}
√
2π

exp

{
(x− µ)

2

σ2

}

dx

=

∫

R

1√
2π
exp

{

−x2
(
1− 2tσ2

)
− 2x

(
µ+ sσ2

)
+ µ2

2σ2

}

dx.

Make the substitution y = x
(
1− 2tσ2

)1/2
with Jacobian dy/dx =

(
1− 2tσ2

)1/2

and set
ψ =

(
µ+ sσ2

) (
1− 2tσ2

)−1/2
.

Then the last display equals

∫

R

(
1− 2tσ2

)−1/2
√
2π

exp

{
−y2 − 2ψy + µ2

2σ2

}
dx

= exp

{
−µ2 − ψ2

2σ2

}∫

R

(
1− 2tσ2

)−1/2
√
2π

exp

{

− (y − ψ)2

2σ2

}

dx

= exp

{
−µ2 − ψ2

2σ2

}(
1− 2tσ2

)−1/2
.
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