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Abstract

In the analysis of thermoacoustic systems, a flame is usually charac-

terised by the way its heat release responds to acoustic forcing. This

response depends on the hydrodynamic stability of the flame. Some

flames, such as a premixed bunsen flame, are hydrodynamically glob-

ally stable. They respond only at the forcing frequency. Other flames,

such as a jet diffusion flame, are hydrodynamically globally unstable.

They oscillate at their own natural frequencies and are often assumed

to be insensitive to low-amplitude forcing at other frequencies.

If a hydrodynamically globally unstable flame really is insensitive to

forcing at other frequencies, then it should be possible to weaken

thermoacoustic oscillations by detuning the frequency of the natural

hydrodynamic mode from that of the natural acoustic modes. This

would be very beneficial for industrial combustors.

In this thesis, that assumption of insensitivity to forcing is tested

experimentally. This is done by acoustically forcing two different self-

excited flows: a non-reacting jet and a reacting jet. Both jets have

regions of absolute instability at their base and this causes them to

exhibit varicose oscillations at discrete natural frequencies. The forc-

ing is applied around these frequencies, at varying amplitudes, and

the response examined over a range of frequencies (not just at the

forcing frequency). The overall system is then modelled as a forced

van der Pol oscillator.

The results show that, contrary to some expectations, a hydrody-

namically self-excited jet oscillating at one frequency is sensitive to

forcing at other frequencies. When forced at low amplitudes, the jet



responds at both frequencies as well as at several nearby frequen-

cies, and there is beating, indicating quasiperiodicity. When forced at

high amplitudes, however, it locks into the forcing. The critical forc-

ing amplitude required for lock-in increases with the deviation of the

forcing frequency from the natural frequency. This increase is linear,

indicating a Hopf bifurcation to a global mode.

The lock-in curve has a characteristic ∨ shape, but with two subtle

asymmetries about the natural frequency. The first asymmetry con-

cerns the forcing amplitude required for lock-in. In the non-reacting

jet, higher amplitudes are required when the forcing frequency is above

the natural frequency. In the reacting jet, lower amplitudes are re-

quired when the forcing frequency is above the natural frequency. The

second asymmetry concerns the broadband response at lock-in. In the

non-reacting jet, this response is always weaker than the unforced re-

sponse, regardless of whether the forcing frequency is above or below

the natural frequency. In the reacting jet, that response is weaker

than the unforced response when the forcing frequency is above the

natural frequency, but is stronger than it when the forcing frequency

is below the natural frequency.

In the reacting jet, weakening the global instability – by adding coflow

or by diluting the fuel mixture – causes the flame to lock in at lower

forcing amplitudes. This finding, however, cannot be detected in the

flame describing function. That is because the flame describing func-

tion captures the response at only the forcing frequency and ignores all

other frequencies, most notably those arising from the natural mode

and from its interactions with the forcing. Nevertheless, the flame de-

scribing function does show a rise in gain below the natural frequency

and a drop above it, consistent with the broadband response.

Many of these features can be predicted by the forced van der Pol

oscillator. They include (i) the coexistence of the natural and forcing

frequencies before lock-in; (ii) the presence of multiple spectral peaks

around these competing frequencies, indicating quasiperiodicity; (iii)



the occurrence of lock-in above a critical forcing amplitude; (iv) the

∨-shaped lock-in curve; and (v) the reduced broadband response at

lock-in. There are, however, some features that cannot be predicted.

They include (i) the asymmetry of the forcing amplitude required

for lock-in, found in both jets; (ii) the asymmetry of the response at

lock-in, found in the reacting jet; and (iii) the interactions between

the fundamental and harmonics of both the natural and forcing fre-

quencies, found in both jets.
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Chapter 1

Introduction

In many combustion systems, high-amplitude pressure oscillations can develop at

frequencies close to one or more of the acoustic modes of the combustor. Known

as thermoacoustic instabilities1, such oscillations arise when local fluctuations in

heat release and pressure couple together in positive feedback, enabling energy to

be transferred from the flame to its surrounding acoustic field. Thermoacoustic

instability is a serious problem because it is difficult to predict and control. If left

unchecked it can induce flame blowoff or flashback, trigger thrust and power vari-

ations, and enhance heat transfer to the combustor walls. Over time it can even

impart sufficient cyclic loading to structural components to cause catastrophic

fatigue failure.

One of the most important factors determining the stability and amplitude

of thermoacoustic oscillations is the design of the fuel injector. Although certain

injector designs have been found to be less prone to instability than others, the

underlying reasons for this are not well understood. Nevertheless, by making

small incremental changes to previously proven designs, engineers have managed

to stabilise current combustion systems to tolerable levels. Future efficiency and

pollutant targets, however, may only be met with new designs, some of which

can turn out to be prone to thermoacoustic instability. Thus, without a bet-

1Also known as combustion instabilities or pulsating combustion. In industry, the os-
cillations can be further classified according to their frequencies (Krebs et al., 2005): chug-
ging/rumble for low frequencies, O(10) Hz; buzzing for intermediate frequencies, O(100) Hz;
and screeching/screaming/squealing for high frequencies, O(1000) Hz.

1



ter understanding of why some injector designs perform better than others, the

incremental improvement process would have to begin over again.

This thesis is part of an overall research effort to investigate how hydrody-

namic1 oscillations interact with thermoacoustic2 oscillations, and whether the

former can be used to weaken the latter. The aim of this thesis in particular

is to examine the forced response of flames that have different strengths of hy-

drodynamic global instability (or simply ‘global instability’). Previous work has

suggested that flows with global instability are universally characterised by self-

excited oscillations at discrete natural frequencies and by insensitivity to external

disturbances imposed at other frequencies. On first sight, these instability char-

acteristics appear to have the potential to reduce the receptivity of a flame to

incident flow perturbations, and may therefore be useful for disrupting the energy

coupling that gives rise to thermoacoustic instability. This thesis, however, will

show that the dynamics of globally unstable flames is richer than that, resembling

instead the dynamics of nonlinear oscillators.

1.1 Thermoacoustic instability

It has been known for over two centuries that sound can be generated by a flame

when it is enclosed in a combustion chamber (Higgins, 1802). Back then, though,

it was merely a novelty phenomenon, used occasionally to entertain guests at

musical parties – as Le Conte did in 1858. Thermoacoustic instability, as the

phenomenon later became known, was not considered a serious problem until

the late 1930s, when it began appearing in high-performance combustion devices

such as the gas turbine and the rocket engine3. Since that time, researchers from

both academia and industry have been trying to discover the dominant physical

mechanisms that govern how a flame responds to incident flow perturbations.

Although many such mechanisms have now been identified, most of them are

1The term ‘hydrodynamic’ refers to instabilities caused by fluid mechanics for which com-
pressibility effects are negligible. Its usage is therefore not restricted to water.

2The term ‘thermoacoustic’ refers to instabilities caused by heat release and acoustics.
3A notable example is the F-1 engine of the Saturn V rockets used in the Apollo space

missions. Overcoming instability required an extensive trial-and-error program involving nearly
2000 full-scale tests. One of the eventual solutions was a modification to the fuel injector design.
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still not fully understood. Worse still, the problem is exacerbated if the flow

perturbations are large1, because then the nonlinear dynamics of heat release,

about which little is known, becomes important. As Peracchio and Proscia (1999)

and Zinn and Lieuwen (2005) have noted, this lack of understanding, particularly

concerning nonlinear combustion processes, is what makes it difficult to predict

the onset2 and saturation of thermoacoustic oscillations without costly and often

prohibitive full-scale testing.

In recent years, thermoacoustic instability has been a growing concern for de-

velopers of gas turbines. New environmental legislations3 calling for lower emis-

sions of nitrogen oxides (NOx) have led to a technological shift from diffusion to

lean-premixed combustors. Although lean-premixed operation can indeed reduce

flame temperatures and hence thermal NOx production4, it also tends to make

the overall system more thermoacoustically unstable. This is due partly to the

nature of the flame stabilisation mechanism but mostly to the increased sensitiv-

ity of heat release to equivalence ratio fluctuations5, Keller (1995) and Lieuwen

et al. (2001) have shown.

Other combustion devices in which thermoacoustic instability can arise in-

clude aeroengine afterburners (Langhorne, 1988; Macquisten and Dowling, 1995;

Schadow et al., 1987), industrial furnaces (Correa, 1998), ramjet missiles (Crump

et al., 1986), and both solid- and liquid-fuelled rockets (Blomshield, 2001; Crocco

and Cheng, 1956; Harrje and Reardon, 1972). Referring to liquid-fuelled rockets

1Typically if the oscillation amplitude grows to O(mean), for pressure or velocity.
2Even in a ‘stable’ combustor, there is always some degree of unsteadiness in the flow.

What demarcates the onset of thermoacoustic instability, according to Huang and Yang (2009),
is when the pressure amplitude becomes greater than about 5% of the mean chamber pressure.

3One example is the recommendation made by the United Nations Committee on Aviation
Environmental Protection (CAEP) at the 37th Session of the International Civil Aviation Or-
ganisation Assembly held in Montreal, October 2010. At the Assembly, CAEP recommended
“NOx standards up to 15 percent more stringent than current levels, applicable to new aircraft
engines certified after 31 December 2013.” It also recommended that “engines not be produced
under existing NOx standards after 31 December 2012.”

4Via the mechanism of Zel’dovich et al. (1985), which operates through high-temperature
(>1400 K) oxidation of the diatomic nitrogen present in atmospheric air. The extended version
of this mechanism has three principal reactions: (i) N2 + O ⇋ NO + N; (ii) N + O2 ⇋ NO +
O; and (iii) N + OH ⇋ NO + H.

5In lean-premixed combustion, the rate of heat release increases as the equivalence ratio
increases. Consequently, a significant drop in the equivalence ratio causes local extinction, and
any rise causes the flame to become richer, releasing significantly more heat.
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in particular, Yang and Anderson (1995) remarked that the high density of heat

release1 occurring in a chamber with little damping sets up conditions that are

ideal for self-excitation and sustenance of high-amplitude pressure oscillations.

But while thermoacoustic instability is detrimental to continuous combustion de-

vices, it is the principle on which pulsed combustors operate (Zinn, 1996).

1.1.1 Basic theory

The cause of thermoacoustic instability is the resonant interaction that occurs

between unsteady combustion and acoustics. According to Dowling and Ffowcs-

Williams (1983), even infinitesimal fluctuations in heat release from a flame can

cause the reacting gases to expand and contract cyclically, propagating initially

weak acoustic waves to the surroundings. On interacting with the combustor,

these waves may partially reflect back to perturb the flame. If the flame is

perturbed such that moments and locations of high heat release coincide with

moments and locations of high pressure, it will transfer some of its thermal energy

to the acoustic modes of the combustor, thereby amplifying them over time.

Rayleigh (1878) was the first to scientifically explain the physical mechanism

by which a heat source can transfer energy to an acoustic field. In what is now

one of the most widely quoted passages in the field of combustion, he established

the basic criterion for the onset of thermoacoustic instability:

“If heat be periodically communicated to, and abstracted from, a

mass of air vibrating in a cylinder bounded by a piston, the effect

produced will depend upon the phase of the vibration at which the

transfer of heat takes place. If heat be given to the air at the moment

of greatest condensation or be taken from it at the moment of greatest

rarefaction, the vibration is encouraged. On the other hand, if heat

be given at the moment of greatest rarefaction, or abstracted at the

moment of greatest condensation, the vibration is discouraged.”

1For example, the power density of the F-1 rocket engine is 22 GW m−3 and that of the
Space Shuttle main engine is 35 GW m−3. By comparison, the figure for solid-fuelled rockets
rarely exceeds 1 GW m−3 and for aeroengine afterburners is 0.3–0.4 GW m−3 (Culick, 2006).
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This mechanism is analogous to the thermodynamic Carnot cycle, except that

work is done on the acoustic field rather than against a piston. Almost a century

later, Putnam (1971) reformulated Rayleigh’s criterion into a more useful form:

∫

τ

∫

V

q′(x, t) p′(x, t) d3x dt > 0, (1.1)

where q′(x, t) is the fluctuating heat release, p′(x, t) is the fluctuating pressure,

and x and t are spatial and temporal variables, respectively. Known as the

Rayleigh integral, (1.1) is meant to be evaluated over an oscillation period, τ ,

and a control volume, V , that encompasses the entire thermal source.

If the Rayleigh integral is positive, an acoustic wave gains energy from the

flame, becoming excited. If it is negative, the acoustic wave loses energy to the

flame, becoming damped. If it is zero, no net energy is exchanged over a full

oscillation period. In theory, the sign of the Rayleigh integral is influenced by

both the spatial and temporal correlations between heat release and pressure,

as (1.1) explicitly shows. In practice, however, the spatial correlation is only

mildly influential because most industrial flames are acoustically compact1. At

any moment in time, every location on the flame surface experiences the same

acoustic pressure: p′(x, t) → p′(t) within the flame boundary. For a given flame

size and position, therefore, the spatial distribution of heat release is of secondary

importance. Of primary importance is how the heat release fluctuates in time

because that determines how well it is correlated temporally to the acoustics.

For thermoacoustic instability to arise, that correlation must be strong enough to

create a positive Rayleigh integral. This tends to occur if the dominant frequency

of heat release is near one of the acoustic frequencies of the combustor, and if

the phase difference between the heat release and pressure is 0◦ ≤ |θqp| < 90◦.

If 90◦ < |θqp| ≤ 180◦, however, the Rayleigh integral becomes negative and the

instability is damped. The Rayleigh integral is zero if |θqp| = 90◦.

As written in (1.1), the Rayleigh integral applies only to periodic oscillations

which, by definition, do not grow or decay over a period. A rigorous analysis must

therefore separate the system into two timescales: a rapidly varying timescale and

1This means that the acoustic wavelength is much larger than the largest flame dimension.
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a slowly varying timescale. From this point of view, Rayleigh’s criterion applies

to the system over a period of the rapidly varying timescale, but determines the

change in amplitude on the slowly varying timescale (Culick, 1976).

In real combustors, inequality (1.1) is a necessary but insufficient condition

for thermoacoustic instability because it does not account for energy dissipation.

This is not to say, though, that damping is required to reach a limit cycle. Using

a nonlinear analysis, Balasubramanian and Sujith (2008) showed that a thermoa-

coustic system can still saturate even without damping. Undamped saturation

can occur, for example, if θqp varies with the amplitude as follows: (i) for initial

growth, the system exhibits 0◦ ≤ |θqp| < 90◦ and thus has a positive Rayleigh

integral; then (ii) as the oscillation grows, θqp approaches exactly 90◦. The final

state of such a system would be a finite-amplitude limit cycle in which no net

energy is exchanged between the flame and its surrounding acoustic field.

Real combustors invariably have some degree of damping, however. To sup-

port a limit cycle, they must always exhibit 0◦ ≤ |θqp| < 90◦, as this ensures that

at least some energy is supplied to the acoustic field to balance the damping.

Recognising this, Chu (1964) generalised the Rayleigh criterion to include energy

loss across boundaries. He noted that for an inviscid ideal gas, fluctuations in

density can be caused by fluctuations in pressure or entropy (heat):

∂ρ′

∂t
=

1

c2
∂p′

∂t
− (γ − 1)q′

c2
, (1.2)

where ρ is the density, γ is the specific heat ratio, and c is the speed of sound.

The overbars denote time-averaged quantities and the primes denote fluctuating

quantities. Chu (1964) then combined (1.2) with the linearised continuity and

momentum equations, and integrated the result over a combustor of volume V

bounded by surface S, arriving at an equation for the acoustic energy:

∂

∂t

∫

V

(

1

2
ρu2 +

1

2
ρc2

( p′

pγ

)2
)

dV =
γ − 1

pγ

∫

V

q′p′dV −
∫

S

p′u · dS, (1.3)

where u is the local velocity. From left to right, the first term in (1.3) is the time

6



rate of change of acoustic energy (both kinetic and potential) within the control

volume; the amplitude of an acoustic mode grows if this term is positive over

an oscillation period. The second term, equivalent to the Rayleigh integral, is

the energy gained by acoustic waves as a result of heat addition. The last term

is a general surface integral used to account for energy lost across boundary S;

the major sources of this term, according to Zinn and Lieuwen (2005), are heat

transfer through the combustor walls, viscous dissipation in the boundary layers,

vorticity generation due to flow separation at sharp edges and sudden expansions,

and radiation and advection of acoustic energy out of the system.

For thermoacoustic modes to grow, the energy gained from combustion must

exceed the energy lost across boundaries:

γ − 1

pγ

∫

V

q′p′dV >

∫

S

p′u · dS, (1.4)

where the overbar now denotes time averaging over one oscillation period. As

the modes grow, though, they become increasingly nonlinear and this can af-

fect the initial energy imbalance. For instance, the energy gain term could vary

because the phase difference between heat release and pressure could vary, as

in the analysis of Balasubramanian and Sujith (2008). The energy loss term

probably increases because, as Zinn and Lieuwen (2005) have noted, damping

mechanisms generally become more effective as the oscillation amplitude grows.

The thermoacoustic modes will continue to grow until the two energy terms be-

come equal. Once this occurs, the system saturates, eventually settling into a

limit cycle (Dowling, 1997; Peracchio and Proscia, 1999). It should be noted

that in most systems, the acoustic damping is small and increases only linearly

with the pressure amplitude. Saturation therefore does not usually occur through

increased damping, but through the nonlinear response of the flame. Further in-

formation on thermoacoustic theory is available in the books by Zinn (1996) and

Poinsot and Veynante (2005), and in the articles by Culick (1987) and Nicoud

and Poinsot (2005).
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1.1.2 Driving mechanisms

Many physical mechanisms can cause a flame to release heat unsteadily. Some of

the more notable ones were highlighted by Candel (1992, 2002) in his lectures at

the 24th and 29th International Symposia on Combustion:

- Flame-vortex interaction. Shear flows – such as jets, wakes, and mixing

layers – tend to be unstable and can develop large-scale coherent struc-

tures (Brown and Roshko, 1974). Known as vortices, such structures can

be induced hydrodynamically, for example by the Kelvin–Helmholtz (KH)

mechanism (Helmholtz, 1868; Kelvin, 1871) or by vortex breakdown if the

flow is swirling (Leibovich, 1978). They can also be induced externally, for

example by mechanical vibration or by acoustic waves impinging on the in-

jector lip or the flame holder1. Regardless of the physical cause, the growth

and development of such organised flow structures can have profound effects

on combustion. Schadow et al. (1989), for example, showed that vortices can

enhance local entrainment and mixing, creating spatially coherent pockets

of high heat release. Rogers and Marble (1956) and Poinsot et al. (1987),

moreover, showed that as vortices roll up and advect downstream, they can

entrain and trap a combustible mixture of unburnt reactants and hot prod-

ucts. The mixture eventually ignites, but only after a time delay, resulting

in heat being released periodically such that energy can be transferred to

the acoustic modes of the combustor. Another way in which vortices can

cause fluctuations in heat release is by physically distorting the flame and

altering its surface area (Balachandran et al., 2005).

1In this mechanism, acoustic waves – travelling at the speed of sound – impinge on a solid
surface and generate vorticity as a result of the no-slip condition. The vorticity is released
periodically and then carried downstream at the mean advective velocity, forming a travelling
vortical wave. On a related note, the presence of acoustic waves can also give rise to an
instability driving mechanism that does not involve large-scale vortex generation. According
to Howe (2008), this process starts with the acoustic waves impinging on the flame holder and
causing periodic fluctuations in the flame anchoring point. This produces a travelling wave
on the flame surface, which, as Boyer and Quinard (1990) have shown, propagates at a phase
velocity equal to the component of the mean velocity that is locally tangent to the flame front.
The result is that the flame stretch fluctuates in both space and time, causing fluctuations in
the flame speed and hence in the burning rate.
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- Mixture-strength oscillation. The pressure oscillations associated with

thermoacoustic instability can cause modulations in pressure drop across

any unchoked supplies of air, fuel, and premixed air–fuel, Zinn and Lieuwen

(2005) have noted. If the supply of fuel or premixed air–fuel is unchoked, the

amount of fuel entering the combustor could vary in time. By conservation

of energy, this would induce direct fluctuations in heat release. Similar

fluctuations in heat release can arise even if the fuel supply is choked. That

is because, according to Lieuwen and Zinn (1998), if the air supply is not

choked1 or if the acoustics can propagate upstream to the premixer and

affect air–fuel mixing, the pressure oscillations could induce fluctuations in

the equivalence ratio of the reactants. When advected to the flame front,

these would induce fluctuations in the heat of reaction and the flame speed,

thereby causing fluctuations in the heat release.

- Unsteady atomisation. Pressure waves impinging on a developing fuel

spray can aid the secondary breakup2 of ligaments and droplets. The re-

sultant increase in liquid surface area would cause an increase in the local

rate of fuel evaporation and hence in the heat release (Tong and Sirignano,

1986a,b, 1987). Furthermore, even without pressure waves, atomisation is

itself an unsteady process. In measurements on air-blast sprays, which are

used in gas turbines and rocket engines, Faragó and Chigier (1992) and

Batarseh et al. (2009) reported large spatial and temporal fluctuations in

the size, shape, and number density of droplets – even for quiescent ambi-

ent conditions and nominally steady flow rates. Such fluctuations, Chigier

(1976) and Lefebvre (1980) have shown, can lead to localised regions of high

fuel concentration and high heat release, which, if phased properly, could

cause thermal energy to be transferred to the combustor acoustics.

1Allowing for an instability driving mechanism known as air-side coupling.
2Secondary breakup, according to Lefebvre (1989), is a process involving the disintegration

of the discrete ligaments and droplets formed during the earlier process of primary breakup.
For most Newtonian liquids, it is driven by aerodynamic forces and opposed by capillary forces
(Li et al., 2009). It is not to be confused with secondary instability, which, as Bayly et al.
(1988) have explained, is determined by performing a stability analysis about a solution other
than the laminar one. It is also not to be confused with secondary flow, a term reserved for the
streamwise vortices produced by the centrifugal forces arising at the bends of pipe flow.
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Other instability driving mechanisms include flame acceleration by shock

waves (important for flames in ducts), flame interaction with solid boundaries,

unsteady strain and curvature effects on flame structure and speed, and periodic

flame extinction and ignition.

1.1.3 Control methods

Several methods are available for controlling thermoacoustic instability. They

can be divided into two main categories: passive control and active control.

In passive control, the energy gain is decreased by modifying the injector

design or the combustor geometry, so as to alter the frequency–phase relationship

between heat release and pressure (Gutmark et al., 1995; Noiray et al., 2007;

Richards and Janus, 1998; Steele et al., 2000). The energy loss is increased by

deploying damping devices, such as Helmholtz resonators (Bellucci et al., 2004;

Gysling et al., 2000) and acoustic liners (Eldredge and Dowling, 2003), which

convert the acoustic energy of the oscillations into vorticity.

Passive control faces two problems, however. First, it is expensive and time

consuming to implement, requiring careful modification of the combustion sys-

tem, often at late stages of the development program. Second, it tends to be

effective over only a limited range of operating conditions. The reason for this,

Straub and Richards (1998) and Yang and Anderson (1995) have argued, is that

most combustors are highly resonant systems containing a multitude of acoustic

modes, whose characteristics (e.g. spectrum and saturation amplitude) and mu-

tual interactions (e.g. nonlinear energy transfer) may change depending on the

actual operating condition. In fact, according to Dowling and Morgans (2005),

current methods of passive control tend to be ineffective at low frequencies, where

thermoacoustic instability can cause the most damage.

In active control, the energy gain is decreased by adjusting, via feedback, the

fuel flow rate such that heat is released more out of phase with pressure (Neumeier

and Zinn, 1996; Sattinger et al., 2000). The energy loss is increased by modifying

the downstream pressure conditions with loudspeakers (Annaswamy et al., 2000;

Blonbou et al., 2000; Dines, 1983). Further information on active control can be

found in the reviews by McManus et al. (1993) and Dowling and Morgans (2005).
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1.2 Hydrodynamic instability

Thermoacoustic instability is not the only type of instability that can arise in the

flows within a combustion chamber: hydrodynamic instability can arise as well.

As noted in §1, this thesis concerns the effect that thermoacoustics can have on the

behaviour of globally unstable flows. A necessary condition for global instability,

though, is the presence of a finite region of absolute instability. It is therefore

instructive to explain the concepts of absolute and convective instability1. As

will be discussed, the term ‘global’ describes the instability of an entire flow

field, whereas the terms ‘absolute’ and ‘convective’ describe the instability of the

velocity profile at a particular streamwise location.

The following discussion will focus on open shear flows because this is the

type of flow found in most fuel injectors. A shear flow is simply one in which the

velocity varies principally in a direction perpendicular to the mean flow. The term

‘open’ implies that the fluid particles enter and exit the domain of interest (e.g.

a combustor) without recirculating. This is in contrast to ‘closed’ flows, such

as Rayleigh–Bénard convection cells (Getling, 1997) and Taylor–Couette flow

between concentric rotating cylinders (Taylor, 1923), where the fluid particles,

along with the instabilities they support, recirculate in a periodic manner.

1.2.1 Spatiotemporal theory

Determining whether a shear flow is absolutely or convectively unstable requires

an inspection of its impulse response. Such an inspection, Huerre (2000) has

shown, must be done with a spatiotemporal analysis. This is because distin-

guishing between absolute and convective instability necessarily involves tracking

infinitesimal perturbations, applied to the basic laminar flow, as they develop in

both space and time. Classical theories of hydrodynamic instability, which rely

on either a spatial or temporal approach, are incapable of such tracking.

A two-dimensional baseflow2, with streamwise and cross-stream coordinates

1Originated in the field of plasma physics (Briggs, 1964), the concepts of absolute and
convective instability are used in this thesis to describe instabilities due to hydrodynamics.

2It is not necessary to consider more than two dimensions because the theorem of Squire
(1933) states that if a three-dimensional instability exists it will always be less unstable than a
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x and y respectively, is assumed to be locally parallel1 but may vary with a

control parameter such as the Reynolds number2. The stability of this baseflow

is determined by separating its total stream function into basic and perturba-

tion (ψ) components. After linearisation3 around the base state, a normal mode

decomposition is applied to give elementary solutions of the form:

ψ(x, y, t) = Re{φ(y)ei(kx−ωt)}, (1.5)

where k is the axial wavenumber, ω is the angular frequency, and φ is the eigen-

function that describes the cross-stream distribution of perturbations; all three

of these quantities are complex. Equation (1.5) satisfies an ordinary differential

equation of the Orr-Sommerfeld type. Enforcement of appropriate boundary con-

ditions leads to an eigenvalue problem wherein non-trivial solutions for φ(y) exist

if and only if k and ω satisfy a dispersion relation of the form:

D(k, ω, R) = 0, (1.6)

where R denotes all generalised control parameters. Each complex pair of k and

ω that satisfies (1.6) has a corresponding eigenfunction φ(y). The distinction

between absolute and convective instability is finally made by examining the

Green’s function, G(x, t): the linear response of the flow to an applied impulse

fixed in both space and time, say at (x, t) = (0, 0). If that response decays in

corresponding two-dimensional instability.
1This assumes that in the streamwise direction, the baseflow is constant over a lengthscale

comparable to the most unstable wavelength. In the analysis, therefore, the velocity profile
can be extracted at a given streamwise location and replicated indefinitely both upstream and
downstream, creating a ‘doubly infinite domain’.

2For instabilities not driven by shear, other control parameters may be more important.
If the instability is driven by thermal convection – as it is in the Rayleigh–Bénard instability
– the key control parameter is the Rayleigh number: a ratio of the buoyancy force, from an
applied thermal gradient, to the momentum and thermal diffusivities. If the instability is driven
by centrifugal forces – as it is in the Taylor–Couette instability – the key control parameter
is the Taylor number: a ratio of the centrifugal force, from an applied rotational rate, to the
momentum diffusivity.

3Linearisation involves neglecting the terms that contain products of perturbations, on the
basis that if the perturbations themselves are small then their products will be even smaller.
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time everywhere in space, the flow is linearly stable:

lim
t→∞

G(x, t) = 0 along all rays of x/t = constant. (1.7)

If it grows in time anywhere in space, however, the flow is linearly unstable:

lim
t→∞

G(x, t) = ∞ along at least one ray of x/t = constant. (1.8)

Only for unstable flows can the distinction between absolute and convective in-

stability be made. The procedure involves examining, in the complex k–ω plane,

how the response at the impulsive source (x = 0) evolves with time. This is

equivalent to tracking the temporal evolution of the mode that has a group ve-

locity1 of zero: ∂ω/∂k = 0. If this stationary mode has wavenumber k0 (called

the ‘absolute wavenumber’), its temporal growth rate is the imaginary part of the

corresponding angular frequency or ω0,i = Im{ω(k0)}.
Three different types of impulse response can arise in an unstable flow. Shown

in figure 1.1, they are best described on spatiotemporal diagrams of G(x, t). If

ω0,i < 0 (figure 1.1a), the response at x = 0 decays in time, eventually leaving the

flow in its undisturbed state. Such a flow is termed convectively unstable because

kinetic energy is convected2 downstream at a higher rate than it is supplied

to the stationary mode. If, however, ω0,i > 0 (figure 1.1c), the response at

x = 0 grows exponentially in time, propagating both upstream and downstream

to contaminate the entire domain. Such a flow is termed absolutely unstable

because kinetic energy is convected downstream at a lower rate than it is supplied

to the stationary mode. If, moreover, ω0,i = 0 (figure 1.1b), the trailing edge of

the wavepacket stays precisely at x = 0, leading to marginal instability.

1The group velocity is the velocity at which an entire wavepacket propagates. It is not
to be confused with the phase velocity, which is the velocity at which an individual frequency
component propagates. Physically, the group velocity can be thought of as being the speed at
which the kinetic energy of perturbations is advected downstream.

2Here the term ‘convect’ is used by convention only. Nowadays it is interchangeable with
the term ‘advect’, although some researchers still prefer to define convection as strictly the
advection of heat by bulk fluid motion.

13



x

t

(a) Convective

x

t

(b) Marginal

x

t

(c) Absolute

Figure 1.1: Linear impulse response of an unstable parallel shear flow: (a) con-
vectively unstable, (b) marginally unstable, and (c) absolutely unstable. The
impulse is fixed in both space and time at (x, t) = (0, 0), as indicated by the red
circular markers. The black dotted lines delineate the leading and trailing edges
of the growing wavepacket.

1.2.2 Amplifiers and oscillators

The key concept is that absolute instability enables perturbations to grow both

upstream and downstream, whereas convective instability enables perturbations

to grow downstream only. A flow that is convectively unstable everywhere, there-

fore, acts as a spatial amplifier of external perturbations. A flow that is absolutely

unstable over a sufficient region, by contrast, acts as an oscillator. In hydrody-

namics, this conceptual distinction has several implications:

- Hydrodynamic amplifier. This class of flow exhibits extrinsic dynamics

as a result of being strongly sensitive to external disturbances such as back-

ground noise and intentional forcing. As its name suggests, an amplifier

spatially amplifies incoming disturbances1, typically over a broad frequency

range – although certain frequencies may be amplified more than others,

leading to a preferred wavelength for fastest instability growth. The strong

receptivity of amplifiers to external disturbances makes them well suited for

achieving specific control goals. Examples of amplifiers include coflowing

mixing layers, constant-density jets, wakes at Reynolds numbers below the

onset of von Kármán vortex shedding, and boundary layers on a flat plate.

1In a perfectly noiseless system, an amplifier would have nothing to amplify and the flow
would thus be steady (but unstable). Perfectly noiseless systems do not exist in reality.
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- Hydrodynamic oscillator. This class of flow exhibits intrinsic dynamics

and is thought to be insensitive to low-amplitude external disturbances1.

Moreover, oscillators are self-excited: their oscillations, once triggered by

an initial disturbance, however small, would persist even if the disturbance

is subsequently removed and there was no noise whatsoever in the system.

What enables the oscillations to persist is a continuous supply of kinetic

energy from the baseflow. The oscillations dominate the entire flow and

are at a well-defined natural frequency – and may also contain harmonics,

as Strykowski and Niccum (1991) and Davitian et al. (2010) have shown.

Examples of oscillators include counterflowing mixing layers, low-density

jets, swirling jets, crossflowing jets, buoyant jet diffusion flames, and wakes

at Reynolds numbers above the onset of von Kármán vortex shedding.

1.2.3 Global instability

If a flow has a sufficient region of absolute instability that it acts as a hydrody-

namic oscillator, it is referred to as a globally unstable flow. A globally unstable

flow thus oscillates with high amplitude at a discrete natural frequency. The

oscillations are spectrally discrete because all temporally growing wavepackets

with non-zero group velocity must, by definition, move away from the impulsive

source. When viewed in the laboratory frame, therefore, the flow and its natural

frequency (also called the global frequency) are left to be determined by the most

upstream region of absolute instability, termed the ‘wavemaker’ by Pier (2003).

Details on how to predict the global frequency can be found in Appendix A.

In a combustion system, the sensitivity of a globally unstable injector flow to

upstream perturbations depends on the position of the wavemaker. If the flow is

absolutely unstable everywhere, the global mode has a high amplitude everywhere

and is thus relatively insensitive to external forcing. If, however, the flow is

convectively unstable over an appreciable region between the injector lip and the

wavemaker, the external forcing can amplify within this region, overwhelm the

absolute instability, and hence dictate the frequency of the global mode.

1This assumption was first proposed over twenty years ago by Huerre and Monkewitz (1990)
and has since been cited throughout the literature, even though it has only ever been justified
with phenomenological models, such as the forced Landau equation.
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1.3 Globally unstable flows

Global instability can arise in a number of different shear flows. This section

focuses on the three that are most relevant to this thesis: non-reacting wakes,

non-reacting jets, and jet diffusion flames.

1.3.1 Non-reacting wakes

Wake flows have played a central role in efforts to understand how absolute in-

stability relates to global instability. Perhaps nowhere is this better exemplified

than in the seminal study conducted by Koch (1985). Using a linear analysis,

he computed the spatiotemporal stability of the wake behind a bluff body. From

the findings, he hypothesised that in the absence of pressure feedback1, the pe-

riodic self-excited nature of vortex shedding is caused entirely by hydrodynamic

resonance arising from a region of absolute instability in the near wake.

Independent support for Koch’s hypothesis emerged soon after, in the form

of experimental evidence. In wind tunnel tests, Strykowski (1986) and Provansal

et al. (1987) studied the dynamics of vortex shedding behind a cylinder at low

Reynolds numbers. The Reynolds number was defined as Red ≡ U∞d/ν, where

U∞ is the freestream velocity, d is the cylinder diameter, and ν is the kinematic

viscosity. By impulsively raising Red above a critical value, the researchers were

able to monitor the temporal evolution of the wake: from exponential amplitude

growth in the initial linear regime through to nonlinear saturation in the form of

self-sustained global oscillations, commonly known as von Kármán vortex streets.

Illustrating the emergence of the global oscillations, figure 1.2 shows time

traces of Red and of the local fluctuating velocity in the wake, both measured by

Strykowski (1986) with hot-wire anemometry. Immediately after Red is raised

above a critical value of 46, the flow oscillations start to grow exponentially in

time and eventually saturate into a finite-amplitude limit cycle. According to

Zebib (1987), such an abrupt change in the dynamical behaviour of the system,

as a control parameter is varied, indicates a Hopf bifurcation to a global mode.

1This is also known as hydroacoustic resonance, which can arise from the edge-tone mech-
anism of Powell (1961) or the shear-layer tone mechanism of Hussain and Zaman (1978).
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(a) (b)

Figure 1.2: Transition to global instability in a cylinder wake, triggered by a
step increase in the Reynolds number above Red = 46. Originally published by
Strykowski (1986), the plots show (a) the low-pass filtered Red and (b) the local
fluctuating velocity in the wake.

To strengthen the causality between absolute and global instability, Chomaz

et al. (1988) examined the evolution of a spatially developing flow1 using a sim-

plified Ginzburg–Landau model. In agreement with Zebib (1987), they found

that hydrodynamic resonance can indeed occur via a Hopf bifurcation but only

if the flow contains a sufficient region of absolute instability. After exploring the

bifurcation in detail, the researchers proposed a sequence of transitions through

which global instability can arise. That sequence involves the flow starting out

as being stable, then becoming locally convectively unstable, then becoming lo-

cally absolutely unstable, then becoming linearly globally unstable, and finally

reaching a nonlinear self-excited state or a limit cycle.

The link between absolute and global instability can be further strengthened

by comparing spatiotemporal calculations to experimental data. Examining two-

dimensional wakes at near-critical Reynolds numbers, Monkewitz (1988) found

that although the transition from stability to convective instability occurs at just

Red ≈ 5, the first instance of absolute instability does not appear until Red ≈ 25.

Experiments by Williamson (1996) later showed that only above even higher

values of the Reynolds number, 45 < Red < 47, does vortex shedding arise. This

1This means that the flow is nonuniform in the streamwise direction.
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sequence of wake transitions is consistent with the idea that for global instability

to arise, a sufficient region of the flow must first become absolutely unstable.

The link between absolute and global instability becomes even more con-

vincing when the effects of other parameters are considered. For an inviscid

incompressible non-buoyant two-dimensional jet or wake bounded by two vortex

sheets, Yu and Monkewitz (1990) solved the linear dispersion relations for both

varicose and sinuous disturbances. Among the parameters considered were the

density ratio, s ≡ ρin/ρout, and the shear ratio, Λ ≡ (Uin − Uout)/(Uin + Uout),

where the subscripts in and out denote the inner and outer fluid streams, respec-

tively. To delineate the boundary between absolute and convective instability,

the researchers presented their findings in s–Λ parameter space: figure 1.3.

Figure 1.3: Regions of absolute instability as a function of density and shear for a
two-dimensional inviscid shear flow, as calculated by Yu and Monkewitz (1990).
The horizontal hatching denotes sinuous disturbances, and the vertical hatching
denotes varicose disturbances.

There are three important features to note in figure 1.3. First, in both jets

and wakes, counterflow (|Λ| > 1) promotes absolute instability, whereas coflow

(|Λ| < 1) suppresses it. Physically this means that absolute instability is pro-

moted if shear, the force driving the instability, dominates over advection, the

force carrying the instability away. Second, in both jets and wakes, low density of

the faster moving fluid, or high density of the slower moving fluid, also promotes
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absolute instability. This effect arises because the group velocity of the pertur-

bations is weighted more heavily towards the velocity of the denser fluid. Third,

in wakes the sinuous mode is always more unstable than the varicose mode, but

in jets it is the other way round. All three of these features have been verified to

various degrees by experiments.

Concerning the effect of shear, a common way to control Λ in wakes is to vary

the velocity of the inner fluid. This can be done by changing the porosity of a

bluff body exposed to a uniform freestream. Similar in concept to base bleed1,

this technique has been in use for over half a century to suppress unwanted von

Kármán vortex shedding (Wood, 1964). A striking example can be seen in the

smoke-visualisation photos taken by Inoue (1985). Shown in figure 1.4, they

depict a freestream moving from left to right, at a Reynolds number of about

3000, past and around four flat plates, each with a different open area ratio,

β ≡ (open plate area)/(total plate area), a measure of the plate porosity. By

qualitative inspection, the researcher found the existence of a critical value of β

above which vortex shedding is suppressed. At low β (figures 1.4a and 1.4b), the

outer flow is substantially faster than the inner flow, and hence the shear forces

are large. This causes the wake to be absolutely unstable, with a global mode

in the form of large-scale sinuous oscillations. Reducing the shear just slightly,

however, by increasing β from 0.37 (figure 1.4b) to 0.39 (figure 1.4c), causes a

noticeable dampening of the oscillation. Reducing the shear further, by increasing

β to 0.55 (figure 1.4d), causes a complete suppression of the global mode. In its

place emerges a far-wake instability consisting of small-scale vortices that roll up

and grow downstream. This new instability, convective and no longer absolute,

is driven by upstream disturbances and background turbulence rather than by

hydrodynamic resonance2. Recent numerical simulations by Arcas and Redekopp

(2004) have verified these findings, as well as addressing other areas of vortex

control such as the effect of nonuniform momentum-flux distribution in the wake.

1Pioneered by Canadian engineer Gerald Bull, base bleed is a technique for extending the
range of artillery. It involves releasing, on ignition, a small volume of gas, stored in a pressurised
chamber at the back of a shell, into the low-pressure wake, thus reducing the pressure imbalance
responsible for form drag. (Gerald Bull was murdered in mysterious circumstances in 1990.)

2In other words, if all noise sources were somehow removed, there would be nothing for the
convective instability to amplify and the flow would thus be steady (but unstable).
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(a) (b)

(c) (d)

Figure 1.4: Suppression of von Kármán vortex shedding due to a reduction in
shear, achieved by the use of porous flat plates with different open area ratios:
(a) β = 0 or solid plate, (b) β = 0.37, (c) β = 0.39, and (d) β = 0.55. The
freestream, made visible with smoke seeding, moves from left to right, as indicated
by the red arrows. The flat plate is at the centre left, and the velocity through it
is indicated by the blue arrows, whose length represents the velocity magnitude.
All the images were taken by Inoue (1985).

As for the effect of density, figure 1.3 predicts that absolute instability –

and thus global instability – can be suppressed if the wake is lighter than its

surroundings. This effect has been observed in laboratory experiments (Berger

and Schumm, 1988; Mori et al., 1986), numerical simulations (Hannemann and

Oertel Jr, 1989), and theoretical analyses (Sevilla and Mart́ınez-Bazán, 2006).

In the laboratory, the easiest way to produce a reduction in density, besides

changing fluids, is to add heat. Because the viscosity of a real fluid depends on

temperature, however, doing this raises the question of whether the suppression

of global instability might be due to a modification (an increase if the fluid is a

gas) of the viscous forces. To answer this, Yu and Monkewitz (1990) conducted

a spatiotemporal analysis, specifying an ideal gas, a finite Reynolds number, a
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temperature profile similar to the velocity profile, and the use of Sutherland’s

relation to model the dependency of viscosity on temperature. On finding similar

results with both constant and temperature-dependent viscosity fluids, they con-

cluded that the suppression of absolute instability is caused primarily by density

variations and the modification of inertial forces, rather than by viscosity varia-

tions. This conclusion has since paved the way for the popular practice of using

heat addition to achieve low density in experiments on global instability.

1.3.2 Non-reacting jets

According to figure 1.3, jets discharging into a quiescent fluid can contain regions

of absolute instability if s is sufficiently low. Using direct numerical simulation

(DNS), Nichols et al. (2007) showed that this is because the KH instability, act-

ing at the inflexion point in the radial profile of axial velocity (Rayleigh, 1879),

becomes increasingly unstable as the density gradient steepens in the opposite

direction to the velocity gradient. In particular, they found that the absolute

growth rate (ω0,i) is proportional to the logarithm of an alignment integral:

Σuρ = −
∫ ∞

0

∂u

∂r

∂ρ

∂r
rdr, (1.9)

where u is the streamwise velocity and r is the radial coordinate. Because ω

appears in the exponent of (1.5), the initial growth rate is proportional to Σuρ.

If the velocity and density profiles align such that Σuρ becomes large enough to

induce absolute instability (ω0,i > 0) over a significant length of the jet1, global

instability may develop, leading to self-sustained oscillations. The physical cause

of instability is the destabilising action of baroclinicity2 in the shear layers.

One of the most revealing studies on absolutely unstable jets was conducted

over two decades ago by Monkewitz and Sohn (1988). Using a linear analy-

sis, these researchers examined the instability characteristics of an axisymmet-

1The region of the jet that first becomes absolutely unstable is the potential core, because
this is where the gradients of velocity and density are steepest.

2According to Green (1995), baroclinicity arises when the pressure and density gradients are
not aligned – i.e. when isobars and isopycnals are not parallel. Its effect on the flow is a torque,
proportional to ∇ρ×∇p, that can generate vorticity, even without the action of viscosity.

21



ric jet in response to a reduction in jet density. They used model profiles for

the velocity and density, and assumed the fluid to be an inviscid ideal gas

with a jet Reynolds number, Rej ≡ ρjUjdj/µj = ∞, where µ is the dynamic

viscosity. They also neglected buoyancy, implying a jet Richardson number,

Rij ≡ gdj(ρ∞ − ρj)/ρjU
2
j = 0, with g denoting the gravitational acceleration.

For a constant-density jet (s = 1), they did not find any velocity profile capa-

ble of supporting absolute instability. On reducing the jet density, however, they

found the first instance of absolute instability1 at s = 0.72. Its shape was varicose

and its frequency, f , scaled with the Strouhal number2 defined as Std ≡ fdj/Uj.

The instability frequency thus scaled with the jet diameter, or the distance sepa-

rating the shear layers, rather than with the momentum thickness. This suggests

that the instability was caused by a resonant interaction between the shear layers

(by a ‘jet-column mode’) rather than by actions of the individual shear layers

(not by a ‘shear-layer mode’).

Inspired by the discovery of absolute instability in theoretical jets, experi-

mentalists began searching for global instability in real jets. In the axisymmetric

case, they include Sreenivasan et al. (1989), Monkewitz et al. (1990), Kyle and

Sreenivasan (1993), Richards et al. (1996), Pasumarthi and Agrawal (2003), and

Yildirim and Agrawal (2005). In the two-dimensional case, contributions have

come from Yu and Monkewitz (1993), Raynal et al. (1996), and Yu et al. (2001).

Their collective findings can be summarised as follows:

- Constant-density jets (s = 1), whether axisymmetric or two-dimensional

but only when they are coflowing (0 ≤ Λ ≤ 1), are always globally stable3.

This means that they are strongly receptive to external disturbances, acting

as hydrodynamic amplifiers. Applying low-amplitude periodic forcing to

the base of such jets, as Crow and Champagne (1971) have done, can cause

a shortening of the potential core, a change in the spatial distribution of

turbulence intensity, and an increase in the spread rate.

1This instability threshold was for a vorticity thickness equal to 8.7% of the jet diameter.
2Predicted values of the Strouhal number ranged between 0.25 and 0.50.
3A real flow that is ‘globally stable’ is sometimes referred to as ‘convectively unstable’ in

order to emphasise that it behaves like a hydrodynamic amplifier. This does not imply that
absolute instability is absent in the flow, but only that it does not exist over a region large
enough to support a global mode.
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Figure 1.5: Schlieren image of a globally unstable low-density round jet. Self-
excited varicose oscillations are visible around the potential core. Side-jets are
visible in the near field, just downstream of the potential core but upstream of
the fully-developed turbulent region. The jet fluid is helium and the ambient
fluid is air. The jet conditions are: dj = 6 mm, s = 0.14, Λ = 1, Rej = 1100, and
Rij = 7.4× 10−4.

- Axisymmetric jets discharging into a quiescent fluid (Λ = 1) can become

globally unstable if s is below a critical range of about 0.60–0.72, in agree-

ment with the theoretical prediction by Monkewitz and Sohn (1988). The

global instability manifests as self-excited oscillations of the varicose mode,

also in agreement with theory. A globally unstable low-density round jet is

shown in the schlieren image of figure 1.5.

- Two-dimensional jets discharging into a quiescent fluid (Λ = 1) can likewise

become globally unstable if s is sufficiently low. But the critical range of

s below which the transition occurs is both higher and wider than that

for the axisymmetric case, with Raynal et al. (1996) having reported it at

s = 0.7 and Yu and Monkewitz (1993) at s = 0.9. This range is nevertheless

consistent with the predictions by Yu and Monkewitz (1990) and Monkewitz

et al. (1993). Its greater scatter has been attributed by Raynal et al. (1996)

to differences in the shapes of the velocity and density profiles – particularly

the shear layer thickness.
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(a) (b)

Figure 1.6: Comparison between convectively and globally unstable round jets
at Λ = 1, as published by Monkewitz et al. (1989). Subfigure (a) shows the
near-field pressure spectra, with the convectively unstable jet (s = 1) indicated
by the dashed line and the globally unstable jet (s = 0.47) indicated by the solid
line. Subfigure (b) shows the amplitude of the near-field pressure fluctuations,
normalised by the jet dynamic head, as a function of density for two distinct
instability modes.

- Once triggered, a global mode causes the kinetic energy to concentrate at

discrete frequencies, leading to sharp peaks in the measured spectra. In

figure 1.6a, for example, which shows spectra of the sound pressure level

(SPL) measured by Monkewitz et al. (1989), there are strong discrete peaks

for the globally unstable jet, but only weak broadband peaks for the con-

vectively unstable jet. In fact, the highest spectral peak for the globally

unstable jet is nearly 30 dB higher than the background noise.

- The final saturated state of a globally unstable flow is a limit cycle, which

is usually arrived at via a Hopf bifurcation, according to Huerre and Rossi

(1998). A typical way to detect such an event is to plot the oscillation

amplitude as a function of a control parameter. Known as a bifurcation

diagram, the result resembles figure 1.6b, which, in this example, shows

the root-mean-square (RMS) pressure fluctuation normalised by the jet dy-

namic head, p′rms/ρjU
2
j , as a function of density, s. The bifurcation occurs
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at the value of s for which the oscillation amplitude begins to grow1. Once

the bifurcation occurs, the oscillation amplitude increases in proportion to

the square root of the deviation from the control parameter. This increase

is accurately predicted by the Landau equation, as will be explained in §2.1.

- Compared to constant-density jets, low-density jets tend to spread more

rapidly, often with spread rates2 greater than unity. According to Sreeni-

vasan et al. (1989), this is a near-field phenomenon, caused by an instability

of the transition region and not by the dynamics of the far-field turbulent

region. In axisymmetric jets, the spreading is asymmetric, involving inter-

mittent ejections of fluid out of the jet column. These ejections, known as

side-jets, are visible in the schlieren image of figure 1.5. Their physical cause

is thought to be the Widnall instability acting in the primary vortex rings

(Widnall et al., 1974). In two-dimensional jets, this instability is inactive

owing to a lack of symmetry, and thus the side-jets are not observed.

- For detection of global instability, the jet shear layers must initially be lam-

inar, which means that the Reynolds number must be kept low (< 104).

Otherwise, Huerre and Monkewitz (1990) have shown that even a strongly

globally unstable jet can revert back to behaving like a convectively unstable

jet, for reasons that Meliga et al. (2008) later attributed to the stabilising

effect of the Mach number. Another concern is mode competition. For a

fixed injector geometry, increasing the Reynolds number causes a decrease

in the shear layer thickness. Using spatiotemporal theory, Jendoubi and

Strykowski (1994) showed that if the shear layer becomes sufficiently thin,

other instability modes – such as the helical mode (azimuthal wavenumber

m = 1) and the double-helical mode (m = 2) – can become absolutely un-

stable. The competition between these new modes and the existing varicose

mode (m = 0) could disrupt the orderly roll-up process, leading to distor-

tion in the spectral energy distribution, possibly via nonlinear mechanisms.

1For the Mode I instability of figure 1.6b, this occurs at s ≈ 0.72. The coexistence of two
(or more) global modes is typical not just of low-density jets but of most globally unstable
flows, which is consistent with the analysis by Chomaz et al. (1988).

2This is defined as the ratio between the local half width (i.e. the radius where u is half its
centreline value) and the streamwise distance at which that half width is measured.
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1.3.3 Jet diffusion flames

In a reacting jet, the flame alters the hydrodynamic instability. Its heat release

produces a peak in the radial profile of temperature, leading directly to a local

reduction in density and indirectly, if the jet discharges upwards against gravity,

to a modification of the velocity profile via the action of buoyancy. To explain

how these changes affect the hydrodynamics, figure 1.7 shows an image taken by

Roquemore et al. (2003) of a laminar methane jet diffusion flame surrounded by

a small amount of annular air coflow. The image contains two separate signals:

(i) elastic Mie scattering from TiO2 particles1, viewed perpendicular to a laser

sheet passing through the jet centreline; and (ii) natural chemiluminescence from

the flame, integrated over a line of sight. Figure 1.7a shows an overview of the

entire flow field, while figure 1.7b shows a detailed view of the shear layers in

the near field. Superimposed on figure 1.7b are the mean velocity and density

profiles. The velocity profile was measured by Lingens et al. (1996a) using laser

Doppler velocimetry (LDV). The density profile was derived by Lingens (1995)

using data from a flamelet library, LDV measurements of the flame strain rate,

and images of the hydroxyl radical – used as an indicator of the reaction-zone

location – taken with planar laser-induced fluorescence.

In the near field (figure 1.7b), buoyancy causes the velocity profile to gain

two additional inflexion points, labelled IP2 and IP3, on either side of the jet

centreline (Durao and Whitelaw, 1974; Hegde et al., 1994; Lingens et al., 1996a)

– bringing the total to three on either side2. Depending on the location of these

inflexion points relative to the density profile, the flow can become more unstable

or less unstable. This happens via the mechanism described in §1.3.2, whereby
the KH instability becomes increasingly unstable as the density gradient steepens

in the opposite direction to the velocity gradient. In buoyant jet diffusion flames,

the inflexion point (IP3) in the shear layer just outside the flame surface (i.e. on

the oxidiser side) has a steep gradient and coincides with a section of the density

profile that also has a steep gradient but in the opposite direction. This inflexion

point is therefore absolutely unstable and gives rise to a strong global mode in the

1Seeded in both the fuel jet and the coflow air is TiCl4 vapor. As the fuel and air mix and
combust, the TiCl4 vapor reacts with H2O to form micron-sized TiO2 particles (and HCl).

2A non-reacting jet has just one inflexion point, labelled IP1, on either side of centreline.
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(a) (b)

Figure 1.7: Image of a laminar methane jet diffusion flame with a global mode in
the form of large-scale toroidal vortices: (a) an overview of the entire flow field and
(b) a detailed view of the shear layers in the near field, with the mean velocity
and density profiles superimposed (see the text for a description). Originally
published by Roquemore et al. (2003), the image contains two separate signals:
Mie scattering from TiO2 particles and natural chemiluminescence from the flame.
The unburnt jet conditions are: dj = 10 mm, s = 0.55, Λ = 0.91, Rej = 1867,
and Rij = 8.4× 10−3. CU, convectively unstable; GU, globally unstable.

outer shear layer1. This global mode develops into large-scale toroidal vortices,

rolling up periodically at low frequencies, typically on the order of 10–20 Hz.

As these vortices grow downstream, they interact with the flame, stretching its

surface, altering its local temperature, thickness and curvature, and even causing

its extinction if the induced strain rates are sufficiently high2 (Lewis et al., 1988).

The result, according to Chen et al. (1989), is that the hydrodynamic global mode

modulates the heat release in synchronisation.

1According to Maxworthy (1999), this is the same global mode that is responsible for the
flickering of a candle flame.

2In terms of affecting combustion, the strain rate is perhaps the most influential, according
to Lingens et al. (1996b). High strain rates can not only cause reductions in flame temperature
and thickness (Katta and Roquemore, 1995), but can also affect the formation, oxidation, and
spatial distribution of soot particles (Cuoci et al., 2009).

27



It has been known for some time that the flicker of a buoyant jet diffusion

flame can be suppressed by adding two control cylinders1 just downstream of the

injector (Toong et al., 1965). Similarly, vortex shedding behind a cylinder can be

suppressed by adding one control cylinder2 just downstream (Strykowski, 1986;

Strykowski and Sreenivasan, 1990). As noted in §1.3.1, vortex shedding behind

a cylinder arises from a region of absolute instability in the near wake. What

the control cylinder does, according to Strykowski and Sreenivasan (1990)3, is

diffuse the vorticity concentrated in the shear layers, thereby changing the wake

from being absolutely unstable to convectively unstable. Recently, Giannetti and

Luchini (2007) have suggested that the control cylinder works also by introducing

force-momentum feedback. Regardless of the physical mechanisms involved, the

fact that the same stabilising effect is observed in buoyant jet diffusion flames is

strong evidence that they are also absolutely unstable at their base.

In buoyant jet diffusion flames, the inflexion point (IP3) that is responsible

for absolute instability lies just outside the flame surface, where buoyancy causes

the radial gradients of velocity and density to have opposite sign (Lingens et al.,

1996a). Conversely, buoyancy causes the inner inflexion point (IP1) to become

more stable – but not so stable that it prevents the inner shear layer from rolling

up into small-scale convectively unstable vortices, clearly visible in figure 1.7.

Consequently, unlike that of a non-reacting low-density jet (in which the inner

inflexion point is absolutely unstable and controls the global mode), the global

frequency of a buoyant jet diffusion flame is relatively insensitive to the velocity

and diameter of the inner jet, as is well documented in the literature. Instead

it is very sensitive to the factors affecting buoyancy, such as the gravitational

acceleration and the adiabatic flame temperature (Lingens et al., 1996b). In-

genious experiments on aircraft and centrifuges have demonstrated this strong

dependence on g and weak dependence on other factors (Durox et al., 1995, 1997;

Sato et al., 2000).

1A control cylinder is simply a stationary cylinder placed in the flow. It does not have to
move or vibrate to function. Usually its diameter is smaller than the characteristic lengthscale
of the flow (e.g. smaller than the diameter of an injector or that of a main cylinder).

2Or one control plate, as in the experiments by Shao et al. (2007).
3Strykowski and Sreenivasan (1990) also suggested that the control cylinder diverts a small

amount of fluid into the wake of the main cylinder, thus imparting a stabilising effect similar
to that imparted by base bleed (page 19).
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1.4 Nonlinear dynamics

The hydrodynamic stability theory discussed in §1.2.1 is based on linear analysis.

Real hydrodynamic systems, however, are governed by nonlinear equations and

can therefore exhibit much richer behaviour. There are in fact several different

possibilities for the evolution of a nonlinear dynamical system, and those most

often seen in self-excited flows are discussed in this section.

1.4.1 Unforced systems

In a linear stability analysis, the aim is to characterise the behaviour of infinites-

imal perturbations around some base state. Usually that base state is a steady

solution1 of the governing equations, known as a ‘fixed point’2. If all infinitesimal

perturbations around this solution decay in time, it is called a ‘stable fixed point’.

If at least one infinitesimal perturbation grows in time, it is called an ‘unstable

fixed point’.

No natural system can grow indefinitely, however. If the fixed points are

unstable, perturbations grow until they are no longer small. Nonlinear effects then

take over and the system tends to another solution of the governing equations.

In most cases, the system tends to a periodic solution, which maps onto itself

every cycle. In some cases, it tends to a biperiodic solution, which maps onto

itself every two cycles, or to a quasiperiodic solution. All periodic solutions3

are limit cycles because they are the solutions to which the system tends as time

approaches ±∞ (+∞ for a stable limit cycle and −∞ for an unstable limit cycle).

In rare cases, the system even tends to a chaotic solution4, which never maps onto

itself. All of these solutions have been discussed before (e.g. by Strogatz, 1994)

and have been seen in the celebrated Lorenz (1963) waterwheel as well as in a

real thermoacoustic system (Kabiraj et al., 2011).

1Alternatively the base state can be a periodic solution, in which case the technique is called
a Floquet stability analysis (Drazin and Reid, 2004).

2Also known as a ‘point attractor’ in phase space.
3In phase space, such solutions correspond to closed trajectories around ‘periodic attractors’.
4A chaotic solution is aperiodic. In phase space, it sweeps out a non-repeating trajectory

around one or more ‘strange attractors’.
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1.4.1.1 Simple oscillators

There are many toy models for oscillators. The simplest is a damped mass on a

spring:

mẍ+ bẋ+ kx = 0, (1.10)

wherem is the mass, x is its position, b is the damping coefficient, and k is now the

spring constant (not the axial wavenumber). The overdot denotes differentiation

with respect to time. The model of (1.10) has a single fixed point at x = ẋ = 0,

whose stability is determined by the sign of b: it is stable for b > 0 (positive

damping) and unstable for b < 0 (negative damping).

Without a periodic solution, however, the damped mass on a spring is not

a suitable model for this thesis. Because this thesis concerns self-excited flows,

it needs a model with self-excited solutions. One such model is the van der Pol

(VDP) oscillator. Named after its Dutch discoverer, van der Pol (1926), the VDP

oscillator was originally proposed as a model for electrical circuits (Cartwright,

1960). Over the years, though, it has been used throughout the biological and

physical sciences to explain various nonlinear phenomena, such as the alternating

hypomanic–depressive episodes in bipolar II disorder (Daugherty et al., 2009),

vortex shedding behind a cylinder (Baek and Sung, 2000), and others1. Similarly,

it will be used in §4.2.4 to explain experimental observations on two different self-

excited flows: a low-density jet and a jet diffusion flame.

According to Fay (2009), the VDP oscillator has periodic solutions as well as

a fixed point (at x = ẋ = 0). This means that, for certain model parameters, the

oscillations can take on a stable limit cycle. The homogeneous equation describing

those oscillations is:

ẍ− ǫ(1− x2)ẋ+ ω2
nx = 0, (1.11)

where ωn is the natural angular frequency and ǫ is a positive scalar parameter

1Other examples include the response of nerve membranes (Fitzhugh, 1961) and the inter-
action between two tectonic plates (Cartwright et al., 1999).
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that controls the degree of self-excitation and nonlinear self-limitation. To see

how this system reaches a limit cycle, consider the sign of−ǫ(1−x2) as x oscillates.
This quantity is like a damping coefficient, analogous to the constant b in (1.10).

When |x| < 1, it is negative, causing self-excitation and therefore growth. When

the system grows to |x| > 1, however, it becomes positive, causing self-limitation

and therefore decay. The system thus alternates between positive and negative

damping as x oscillates. Eventually the positive damping cancels out the negative

damping over a cycle and the system settles into a limit cycle.

For small ǫ, the system has just a small degree of nonlinearity and its tra-

jectory in phase plane is almost a perfect circle (with radius 2 and period 2π).

This limit cycle is stable, attracting all other trajectories regardless of whether

they originate inside or outside the circle1. For large ǫ, the system has more non-

linearity and its trajectory is no longer circular. Instead it exhibits ‘relaxation

oscillations’, described by van der Pol (1926) as periodic oscillations that have a

slow gradual buildup followed by a fast sudden discharge (or vice versa).

1.4.1.2 Hydrodynamic oscillators

In hydrodynamics, periodic solutions, or limit cycles, are known as nonlinear

global modes. For some of these, such as the ‘steep-fronted nonlinear global mode’

and the ‘elephant mode’, Chomaz (2005) proposed that the global frequency is

determined by the wavemaker – the most upstream region of absolute instability

(page 15). In the self-excited flows of this thesis, the wavemaker is thought to

have the same effect. In low-density jets, the wavemaker is at the exit plane of

the nozzle (Lesshafft et al., 2006). In jet diffusion flames, it is at an unknown

distance downstream (§1.3.3).

1.4.1.3 Thermoacoustic oscillators

For most thermoacoustic limit cycles, the energy input from combustion each cy-

cle and the energy drain from damping each cycle tend to be just small fractions

of the total acoustic energy already in the cycle2 (Culick, 2006). One consequence

1In other words, the entire phase plane is a basin of attraction for this periodic attractor.
2According to Lieuwen and McManus (2002), to maintain a pressure amplitude of 1 psi

requires the transfer, to the acoustic field, of less than 0.01% of the thermal energy released by
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of this, alluded to in §1.1.1, is that there are two well-separated timescales: a fast

timescale over which the system oscillates and a slow timescale over which its

amplitude and phase vary. Another consequence is that the thermoacoustic oscil-

lations have similar frequencies to the natural acoustic modes of the combustor.

In other words, although there is always a frequency shift between the two due to

heat release and damping, it is usually small relative to the oscillation frequency

itself (Culick, 2006).

It follows that a thermoacoustic system should be decomposed into a set of

coupled oscillators, based on the natural acoustic modes of the system. This

approach was started by Crocco’s group at Princeton in the 1960s and was con-

tinued by Culick’s group at Caltech from then until the present day. A summary

of that work can be found in the monograph by Culick (2006). The main analysis

involves an expansion of the full governing equations in terms of two small pa-

rameters: the acoustic Mach number, M ′, which measures the magnitude of the

velocity perturbations relative to the speed of sound, and the mean flow Mach

number, M , which measures by proxy the magnitude of the heat release.

Solving the full system of coupled oscillators is technically challenging1. Many

of the qualitative features can be examined with a single oscillator instead, in this

case that which represents the first fundamental acoustic mode of the chamber:

ẍ+ ω2x = f(x, ẋ), (1.12)

This was the approach taken by Culick (1971, 2006) to identify the features

that thermoacoustic systems share with the toy models of §1.4.1.1. This type

of equation can be analysed with a two-timing technique (chapter 7 of Strogatz,

1994) or a time-averaging technique (Culick, 1971).

The terms on the left hand side of (1.12) are linear and represent an oscillation

at angular frequency ω. The ensemble term f represents heat release, damping,

and other effects such as nonlinear acoustics2. The linear component of f that is

a typical combustion process.
1Recent developments in continuation analysis, nevertheless, make it possible, as Jahnke

and Culick (1994) and Juniper (2011) have shown.
2Nonlinear acoustics acts as an extra source of damping in this model.
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in phase with x causes a frequency shift between the thermoacoustic mode and the

natural acoustic mode. The linear component of f that is in phase with ẋ causes

growth or decay of the oscillations, depending on its sign – just as it does for

the damped-mass-on-a-spring example of (1.10). The nonlinear components of f ,

which include the heat release, damping and acoustics, determine the amplitude of

the periodic solution. The relative influence of each of these nonlinear components

depends on the exact system. Gas turbines, for example, have low acoustic Mach

numbers and are most influenced by nonlinear heat release. Solid-fuelled rockets,

by contrast, have high acoustic Mach numbers and are therefore also influenced

by nonlinear acoustics.

The key point is that, to a first approximation, both hydrodynamic and ther-

moacoustic systems can be regarded as harmonic oscillators with small nonlinear

terms.

1.4.2 Forced systems

Introducing external forcing to a self-excited oscillating system can induce a re-

sponse that is more complicated than that which typically arises without forcing.

1.4.2.1 Simple oscillators

The simplest forced oscillator is a forced damped mass on a spring:

mẍ+ bẋ+ kx = F, (1.13)

where F is an external forcing function. This second-order ordinary differential

equation can be solved with the Complementary Function and Particular Integral

technique. The solution has a contribution at the (undamped) natural frequency,
√

k/m, which dies away if the system is damped (b > 0). If the forcing is

harmonic, the solution has a contribution at the forcing frequency, which persists

into the steady state.

As explained in §1.4.1.1, however, the damped mass on a spring is not a

suitable model for this thesis. It does not have a periodic solution and so can
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not model a self-excited flow. Even when forced, it has only a stable or unstable

fixed point at x = ẋ = 0. The steady state solution either ends up at the forcing

frequency, if the transients are damped, or blows up to infinity, if the forcing is

at the natural frequency and is sufficiently strong to negate the damping terms.

Instead the VDP oscillator will be used. The reasoning behind this choice was

explained in §1.4.1.1. When unforced, the VDP oscillator has periodic solutions as

well as a fixed point. When forced at frequencies around its natural frequency1, it

has quasiperiodic2 solutions as well as lock-in3 solutions (van der Pol and van der

Mark, 1927). For certain forcing conditions, it even has chaotic solutions (Davis,

1962; Ott, 2002). Thus, with its rich dynamics, the VDP oscillator should be a

suitable model with which to examine the effect of forcing on self-excited flows.

The success of this will be discussed in §4.2.4.

1.4.2.2 Hydrodynamic oscillators

As noted in §1.3, there are three self-excited systems that are particularly relevant

to this thesis: (i) vortex shedding in a cylinder wake, (ii) bulging of a low-density

jet, and (iii) bulging of a jet diffusion flame. The effect of open-loop4 sinusoidal

forcing on the first two systems has been investigated before.

In wind tunnel tests, Provansal et al. (1987) examined the forced dynamics

of vortex shedding in a cylinder wake at near-critical Reynolds numbers. Using

1This is done by adding a forcing function to the right hand side of (1.11).
2A quasiperiodic solution can be regarded as a combination of several periodic solutions,

each with a different natural frequency. These natural frequencies, however, must be incom-
mensurable, which means that they cannot be rational multiples of each other. In the Fourier
transform of the system motion, quasiperiodicity manifests as a train of delta functions at inte-
ger combinations of the different natural frequencies (Nayfeh and Mook, 1995). The spectrum
of a quasiperiodic solution is thus dominated by discrete tones, and can be readily distinguished
from that of a chaotic solution, which is dominated by broadband tones.

3Known as ‘entrainment’ in the field of dynamical systems, lock-in is defined as being when
the natural frequency of a self-excited oscillator shifts to the forcing frequency. It is accompanied
by a suppression of spectral energy around the natural frequency. The spectrum of a locked-
in solution is thus dominated by the forced mode – sometimes with weaker components at
the harmonics and subharmonics – and shows no evidence of the natural mode. The term
‘entrainment’ will not be used in this thesis, however, because it could be confused with the
entrainment of fluid mass. Instead the term ‘lock-in’ will be used.

4The term ‘open-loop’ implies that the properties of the forcing signal (i.e. its amplitude,
frequency, phase, and duty cycle) do not depend on the state of the system being forced. This
is in contrast to ‘closed-loop’ forcing, which involves feedback and active control.
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a loudspeaker mounted in the upstream plenum, these researchers forced their

wake at several amplitudes and frequencies. For certain forcing conditions, they

found that the self-excited oscillations, at a natural frequency fn, can lock into

the applied forcing and take on its frequency, ff . To show these forcing condi-

tions, they plotted the critical forcing amplitude required for lock-in, Aloc, as a

function of ff . Referred to as a ‘lock-in map’, this is reproduced in figure 1.8.

When ff is close to fn, only a low forcing amplitude is required for lock-in. When

ff is far from fn, however, a high forcing amplitude is required for lock-in. The

relationship between Aloc and |ff − fn| is linear, giving rise to a distinctive ∨-
shaped curve (which will be seen again in other self-excited systems). According

to the researchers, this linear relationship is accurately predicted by a simplified

Stuart–Landau model (Appendix B). Others who have observed similar lock-in

behaviour include Koopmann (1967) and Stansby (1976). Unlike Provansal et al.

(1987), though, these researchers used mechanical vibration, rather than acous-

tics, to force their cylinder wakes. Even so, their experimental data, compiled

together by Blevins (2006) and plotted in figure 1.9, show similar increases in

Aloc with increasing |ff − fn|.
Lock-in can also occur in self-excited jets. This was demonstrated, for exam-

ple, by Sreenivasan et al. (1989) using open-loop forcing on a globally unstable

low-density jet1. With a loudspeaker mounted upstream, these researchers forced

their jet at several amplitudes but over only a narrow range of frequencies. Their

lock-in map, verified by Hallberg and Strykowski (2008), is reproduced in fig-

ure 1.10 for comparison with figures 1.8 and 1.9. It shows that in order for the

fundamental global mode – in the form of varicose oscillations and labelled ‘1/1

Lock-in’ – to lock into the applied forcing, the forcing amplitude must be in-

creased above a critical threshold, Aloc, which itself increases in proportion to

|ff − fn|. The map shows also that lock-in can occur at subharmonics2 of the

fundamental global frequency. The result is a set of ∨-shaped curves, which bear

a striking resemblance to the ones seen earlier for self-excited cylinder wakes.

1Mixtures of helium and air were used to create the light jet fluid.
2Subharmonic lock-in refers to the situation where a self-excited oscillator locks into some

external forcing whose frequency is near a sub-rational multiple of the fundamental frequency
of the natural mode. Besides occurring in low-density jets, subharmonic lock-in occurs in wakes
behind a flat plate, as Fang and Chen (2000) have shown.
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Figure 1.8: Lock-in map for a self-excited cylinder wake, as published by
Provansal et al. (1987). The linear lock-in relationship is typical of most globally
unstable flows. The abscissa intercept corresponds to the natural frequency of
vortex shedding (the fluctuations in the natural frequency are due to thermal-
induced fluctuations in the freestream velocity). The definition of Aloc is the
upstream velocity fluctuation, due to forcing, at the onset of lock-in normalised
by the natural velocity fluctuation in the wake.

Figure 1.9: As for figure 1.8 but with data supplied by Koopmann (1967) and
Stansby (1976). The forcing frequency is now normalised by the natural frequency
of vortex shedding. The definition of Aloc is the cylinder vibration amplitude at
the onset of lock-in normalised by the cylinder diameter. The different symbols
represent data at different Reynolds numbers: 100 < Red < 9200. Details can be
found in the book by Blevins (2006).
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Figure 1.10: Lock-in map for a self-excited low-density jet, as published by Sreeni-
vasan et al. (1989). The units of Aloc are arbitrary. The abscissa intercept of the
‘1/1 Lock-in’ data points corresponds to the fundamental frequency of the global
varicose oscillations. The other data points are included to show the possibility
of subharmonic lock-in.

Another self-excited flow with similar lock-in behaviour is a crossflowing jet.

According to the DNS of Bagheri et al. (2009), this system becomes globally un-

stable if the jet-to-crossflow velocity ratio falls below approximately 3. Recognis-

ing this, Davitian et al. (2010) applied open-loop acoustic forcing to a crossflowing

jet under such conditions and compiled a map of the forcing amplitudes and fre-

quencies at which lock-in occurred. Their lock-in map, reproduced in figure 1.11,

shows the familiar ∨-shaped curve (thick solid line).

Lock-in is just one type of forced response, however. Some self-excited flows

can exhibit quasiperiodicity as well. Quasiperiodicity tends to arise when ff and

fn are close but incommensurable and when the forcing amplitude is insufficient

to cause complete lock-in (i.e. when A < Aloc). For example, Sreenivasan et al.

(1989), examining globally unstable low-density jets, mentioned that they saw

this type of response, but they did not show the results. For another example,

Davitian et al. (2010), examining globally unstable crossflowing jets, showed hot-

wire spectra containing strong evidence of quasiperiodicity – a train of spectral

peaks surrounding the forced and natural modes (see their figure 11c) – at forcing

amplitudes just below Aloc, but they did not discuss that evidence in detail.

For yet another example, Baek and Sung (2000), examining globally unstable
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Figure 1.11: Lock-in map for a self-excited crossflowing jet, as published by
Davitian et al. (2010). The jet-to-crossflow velocity ratio is 1.2. The thin lines
represent contours of the ratio between u′rms with and without forcing, measured
by a hot-wire probe placed two jet diameters downstream. The definition of Aloc

is the velocity fluctuation due to forcing at the nozzle outlet normalised by the
mean jet velocity there (expressed as a percentage). The letters ‘A’, ‘B’, and ‘C’
denote the three types of spectral response observed. Lock-in is indicated by ‘C’
or the region above the thick solid line. Response types ‘A’ and ‘B’ are described
in detail by Davitian et al. (2010).

cylinder wakes, discussed quasiperiodicity in the context of phase portraits and

circle maps, but they did not do much more.

In this thesis, the universal lock-in behaviour found in various non-reacting

self-excited flows – ranging from a cylinder wake to a low-density jet to a cross-

flowing jet – will be found in a reacting self-excited flow, a jet diffusion flame.

The possibility of quasiperiodicity will also be explored, by measuring how the

flame, as well as a low-density jet, responds to forcing when the forcing amplitude

is just below the critical value required for lock-in.

1.4.2.3 Thermoacoustic oscillators

Only a handful of researchers have ever examined the forced response of a self-

excited thermoacoustic system. Their findings show that low-amplitude forcing
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usually leads to a linear response1 but that high-amplitude forcing can lead to a

much richer nonlinear response.

Intrigued by the richness of nonlinearity, Lieuwen’s group at Georgia Tech

conducted a series of experiments on the interaction between forced modes and

self-excited modes in a premixed swirl-stabilised flame2 enclosed in a combus-

tor (Bellows et al., 2005, 2006; Lieuwen and Neumeier, 2002). The forced modes

were produced by loudspeakers mounted in an upstream plenum. The self-excited

modes were produced by thermoacoustic resonance, not by hydrodynamic reso-

nance. This means that without acoustic coupling (i.e. if the combustor were

removed), the flame would not be self-excited and hence would not naturally os-

cillate. Of course it would still have some unsteadiness owing to the turbulent

structures and convective instabilities in the underlying baseflow, but these would

be relatively broadband and weaker than any self-excited resonant mode.

Forcing their flame and measuring the changes in dynamic pressure, Lieuwen’s

group observed two different types of response. In one type, lock-in cannot occur,

even when ff ≈ fn and when the forcing amplitude is high. Instead the natural

amplitude3 always remains above the background noise level and the natural

frequency merely shifts to a nearby non-harmonic value.

In the other type of response4, lock-in can occur, albeit only when ff < fn.

This behaviour is illustrated in figure 1.12: a lock-in map by Bellows et al. (2006)

showing Aloc as a function of ff . Again, as seen before in various self-excited

hydrodynamic systems (§1.4.2.2), Aloc increases with |ff − fn|. The high degree

of data scatter in this example, though, makes establishing a linear relationship

difficult. The linear fit shown is from another article by Bellows et al. (2005) (but

is based on the same experimental data) and can be regarded as the left half of

a typical ∨-shaped lock-in curve. For every data point shown, the final state of

lock-in is arrived at in the same way: as the forcing amplitude is increased (for

1A linear response implies that the forced modes do not interact with the self-excited modes.
The response amplitude at the forcing frequency should therefore increase in proportion to the
forcing amplitude. The response could take on various forms; for example, it could be the
velocity fluctuation or the heat-release fluctuation, the latter only if the flow is reacting.

2The reactants were methane and air at room temperature and atmospheric pressure.
3Defined as the amplitude of the flame response at the natural self-excited frequency.
4This type of response occurs at the same equivalence ratio and flow rate as the first. The

only difference is that fn is slightly higher owing to a shorter combustor length.
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Figure 1.12: Lock-in map for a self-excited premixed flame, as published by
Bellows et al. (2006). The self-excitation is due to thermoacoustic (not hydrody-
namic) resonance arising from coupling with a combustor. The natural frequency
of the combined flame–combustor system is fn = 461 Hz, as indicated by the red
circular marker. The definition of Aloc is the velocity fluctuation due to forcing
at the burner outlet normalised by the mean flow velocity there.

ff < fn), the natural amplitude decreases monotonically until it settles onto the

background noise level (≈ 0.25% of the mean chamber pressure). This decrease

in the natural amplitude, the researchers found, is consistent with the prediction

by a VDP-type model. That relationship was not explored in detail, however,

leaving many open questions which will be addressed in this thesis (§1.5).

1.4.3 Coupled systems

As §1.4.2 has shown, most studies on forced systems – whether hydrodynamic

or thermoacoustic – rely on the use of open-loop forcing. This type of forcing,

however, is not an accurate representation of the forcing present in real systems,

because it does not have any provisions for feedback. In a combustion system, for

example, the frequency and amplitude of the thermoacoustic modes that force the

flame depend on the heat release from the flame itself – in particular on how that

heat release interacts with the natural acoustic modes of the chamber. A more

realistic approach would be to consider the system as two coupled oscillators: one

representing the flame and the other the chamber acoustics. Each oscillator would
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have its own natural frequency, and so would the coupled-oscillator system1. The

stability of this coupled-oscillator system would then depend crucially on the way

in which the individual oscillators force each other.

1.4.3.1 Simple oscillators

The governing equations for two coupled damped harmonic oscillators can be

reduced to the standard form:

ẍ1 + b1ẋ1 + ω2
1x1 + C21x2 = 0, (1.14)

ẍ2 + b2ẋ2 + ω2
2x2 + C12x1 = 0, (1.15)

where the coupling function C21 is the effect of oscillator 2 on oscillator 1. If

the two oscillators are assumed to lock into each other such that they share the

same frequency and growth rate, then the governing equations can be further

reduced to a quartic characteristic equation in the growth rate. The stability of

the resultant system around the fixed point ẋ1 = x1 = ẋ2 = x2 = 0 is given by the

Routh–Hurwitz criterion2 (Hurwitz, 1964; Routh, 1877). It is obvious that the

coupled system is unstable when either of the oscillators is individually unstable.

It is less obvious that, for certain coupling functions, the coupled system can be

unstable even when both oscillators are individually stable.

The technique above has been used by Awad and Culick (1986) and Yang and

Culick (1990) to study pairs of coupled thermoacoustic modes. The output is a

set of criteria for the coupling function that leads to different types of nonlinear

instabilities. This is an area of promising research, for which the results in this

thesis will be valuable.

1In reality, the natural frequency of the coupled-oscillator system (i.e. that of the ther-
moacoustics) is close to, but not necessarily equal to, one of the natural acoustic frequencies
of the chamber. This is because, as noted in §1.4.1.3, the energy exchanged during a typical
thermoacoustic limit cycle is only a small fraction of the total energy already in the cycle.

2This technique is commonly used to study coupled-mode flutter of aircraft wings, according
to Blevins (2006).
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1.4.3.2 Thermoacoustic oscillators

Most flame models assume that the heat-release fluctuations are functions of the

velocity or pressure fluctuations within the combustor. Implicitly, these models

assume that all flames are globally stable, that they all act as frequency-dependent

amplifiers of external perturbations. What the models overlook is the fact that

some flames may be globally unstable, that they can act as self-excited oscillators

with their own intrinsic frequencies. If the oscillation frequency of a globally

unstable flame is close to one of the acoustic frequencies of the chamber, lock-in

would be expected, leading to high-amplitude pressure oscillations.

If, however, the oscillation frequency of the flame is far from the acoustic

frequencies of the chamber, lock-in would not be expected. In such a situation,

the thermoacoustic system would have two different frequencies: (i) one near the

frequency of vortex shedding due to the hydrodynamic global mode, which scales

with the Strouhal number, St ≡ fd/U , where d is the characteristic flame di-

mension1; and (ii) the other near the natural acoustic frequency of the chamber,

which scales with the Helmholtz number, He ≡ fL/c, where L is the characteris-

tic chamber dimension. Such coexistence of multiple modes has been observed by

Chakravarthy (2010) in experiments on dump combustors2. It has also been in-

vestigated by Matveev and Culick (2003) using theory. These researchers wrote,

however, that for their theory to be applied any further, the characteristics of

unsteady flow and combustion must be determined more accurately. Of particu-

lar importance is the relationship between external forcing and heat release, and

how it relates to the innate strength of a hydrodynamic global mode.

1Such as the injector diameter, bluff-body width, or height of a backward-facing step.
2It was demonstrated that even a simple variation of the Reynolds number can be a powerful

diagnostic tool. If, in response, St remains constant (with He varying linearly), the instability
can be regarded as hydrodynamic in origin. If, however, He remains constant (with St varying
hyperbolically), the instability can be regarded as acoustic in origin.
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1.5 Motivation and aim

If the fact that a flame is oscillating at one frequency means that its response

near the natural acoustic frequencies of the chamber in which it sits is reduced,

then the amplitude of the thermoacoustic oscillations may also be reduced. This

would be very beneficial for industrial combustors. Before this hypothesis can

be tested, however, it is necessary to test whether hydrodynamically self-excited

flames are indeed insensitive to external forcing.

To that end, this thesis examines the response of jet diffusion flames to open-

loop acoustic forcing (chapter 4). This type of flame is considered because1 it has

a hydrodynamic global mode whose innate strength can be adjusted – either by

varying the coflow velocity or by making small changes to the fuel composition.

Separately, a non-reacting low-density jet is examined in order to verify the ex-

perimental methodology (chapter 3). For both jets, the forcing is applied around

the global frequency, at varying amplitudes, and the response examined over a

range of frequencies (not just at the forcing frequency). In §4.2.4, this response
will be compared to that of the VDP oscillator, which is a simple form (a single

mode) of the oscillator used by Matveev and Culick (2003).

Both jets are expected to be broadly insensitive to forcing until the forcing

amplitude is sufficient to cause lock-in. The response leading up to lock-in will

be carefully examined because it will determine the extent to which the heat

release can be decoupled from the incident pressure perturbations. Although

Lieuwen’s group has looked at a similar problem before (§1.4.2.3), their flames

are fundamentally different. They did not have the ability to dial in the strength

of the global mode, because it was intrinsically linked to the combustor acoustics.

The flames examined in this thesis, by contrast, are self-excited by hydrodynamic

resonance, and therefore have global modes whose strengths can be adjusted

relatively easily. The aim is to answer the following questions:

- Are globally unstable flows actually insensitive to low-amplitude forcing at

frequencies away from their natural frequencies?

1Another reason for considering jet diffusion flames is that their global frequencies are low
enough (around 10–20 Hz) for simple diagnostics to be effective.
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- How does the strength of a global mode affect the flow response at the

forcing and natural frequencies?

- What happens to the flow response at frequencies away from the forcing

and natural frequencies?

- Is there any difference between forcing above the natural frequency and

forcing below it?

- Are the flows ever quasiperiodic? If so, under what conditions?

- How does the strength of a global mode affect the forcing amplitudes re-

quired for lock-in?

- Why do some flows lock into external forcing more readily than do others?

- What happens to the response amplitude as the forcing amplitude is in-

creased through lock-in?

- Why is the lock-in curve always ∨ shaped?

- Can the flow response, including the phenomenon of lock-in, be predicted

accurately by a forced VDP oscillator?
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Chapter 2

Experimental methods

This chapter is divided into two parts. The first is an introduction to the tech-

niques available for detecting and controlling global instability. The second is

a discussion of the measurement diagnostics used in this thesis, including the

technical details of two different injectors. The history and theory behind the

diagnostics will not be discussed in detail, however, to avoid filling this chapter

with information that can be easily found in reference texts.

2.1 Detecting global instability

The hydrodynamics community has been investigating self-excited flows for over

three decades. In that time, their members have developed several proven tech-

niques with which to detect global instability. According to Huerre and Monke-

witz (1990), these can be divided into two categories: steady and transient.

In this thesis, only the steady category of experiments is used. A steady

experiment involves examining the flow after it has bifurcated into a global mode

and has settled into a limit cycle1. The focus is therefore on the final saturated

state, rather than on the transient details of the bifurcation (which is the focus

of the transient category of experiments). Often stability properties such as the

global frequency and the saturation amplitude are measured for the periodic

system, which may or may not be forced externally.

1The term ‘steady’ refers to the fact that the limit-cycle amplitude does not vary with time.
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There are three ways to conduct a steady experiment, and this thesis makes

use of all three. They are listed below in increasing order of the strength of the

evidence that they provide for the existence of global instability:

- Local spectral measurements. Because global modes are self-sustained,

they tend to oscillate at discrete natural frequencies. Their spectra are thus

dominated by lines at the fundamental frequency of the oscillation. The

signal being measured often does not oscillate exactly sinusoidally, so there

may be additional peaks at integer multiples of the fundamental frequency,

which represent harmonics. The spectra can be of any fluctuating quantity,

such as the velocity, pressure, or temperature. In figure 1.6a, for instance,

it was the sound pressure level.

- Response to periodic forcing. A more reliable way to detect global in-

stability is to examine how the flow responds to periodic forcing applied at

the frequency of a suspected global mode. If the flow is convectively unsta-

ble, acting as a hydrodynamic amplifier, the response amplitude should be

proportional to the forcing amplitude – provided the latter is small enough

to remain in the linear regime. If the flow is globally unstable, acting as a

hydrodynamic oscillator, the response amplitude should be less sensitive to

the same forcing. An example of this difference can be seen in figure 2.1a,

which shows the response amplitude1 of a counterflowing mixing layer as

a function of the forcing amplitude. The forcing is sinusoidal and at the

same frequency as the suspected global mode. The data shows that as the

counterflow velocity (or the shear, Λ) is increased, the response amplitude

becomes less sensitive to the applied forcing. This reduction in sensitivity

indicates an emerging global mode. What also indicates a global mode is

that when the flow is forced around its natural frequency and at sufficient

amplitudes, it locks into the forcing frequency – in much the same way as

self-excited nonlinear oscillators do.

- Varying a control parameter. Perhaps the most reliable way to detect

global instability, short of performing a transient experiment, is to measure

1Here the response amplitude, measured with a hot wire, is defined as the local RMS velocity
fluctuation normalised by twice the mean advective velocity of the two fluid streams.

46



(a) Forced response (b) Bifurcation diagram

Figure 2.1: Oscillation amplitude of a counterflowing mixing layer as a function
of (a) forcing amplitude and (b) shear ratio, both as published by Strykowski and
Niccum (1991). In subfigure (a), the forcing, produced by a loudspeaker mounted
10dj downstream, is at the same frequency as the suspected global mode. In sub-
figure (b), the oscillation amplitude – or more precisely, the saturation amplitude
– is measured on the high-speed side of the mixing layer at 0.26dj downstream.
The data can be extrapolated back with a linear fit to the bifurcation point:
Λbif = 1.34 where (u′rms/(Uin + Uout))

2 = 0.

the change in saturation amplitude due to a variation in some control pa-

rameter. The bifurcation occurs at the value of the control parameter for

which the saturation amplitude begins to rise above the background noise.

According to the Landau equation (Appendix B, last paragraph), for small

deviations from the Hopf point and in the absence of forcing, the saturation

amplitude should be proportional to the square root of the deviation from

the control parameter. This dependence is illustrated in figure 1.6b for a

low-density jet and in figure 2.1b for a counterflowing mixing layer.

Although transient experiments are not conducted for this thesis, they will be

explained anyway for completeness. In a transient experiment, the flow behaviour

is resolved in time as some control parameter is impulsively varied to induce a

bifurcation. The global mode that emerges is thus monitored from its inception,

through the initial exponential growth stage, to nonlinear saturation. The infor-

mation gathered can be used not only as an indicator of global instability but

also for comparison with theoretical predictions of the global frequency and the
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temporal growth rate. However, although transient experiments can provide in-

formation that is more conclusive than can steady experiments, they are far more

difficult to perform. This is because the control parameter must be varied on a

timescale that is at least one order of magnitude shorter than the period of the

eventual global mode. In the laboratory, this difficulty often restricts the choice

of the control parameter to the flow geometry1, as the ability to make abrupt

changes to the flow or fluid properties is impaired by inertial and diffusivity ef-

fects. Researchers who nevertheless have had success with transient experiments

include Mathis et al. (1984), Strykowski (1986), and Provansal et al. (1987).

For both steady and transient experiments, the test facility must be designed

and operated such that background noise is kept to a minimum. The key concern

is that if external sources of flow excitation – such as acoustic cavity resonance and

mechanical vibration – are not adequately attenuated, they can emulate the role

of continuous forcing. If selectively amplified by the convectively unstable modes

in a globally unstable flow, such forcing can disrupt or obscure the naturally

occurring global mode. What is worse, if the flow is globally stable to start with,

the continuously amplified forcing could mimic an otherwise absent global mode.

2.2 Controlling global instability

The strength of the global instability in any flow can be changed by changing

the flow parameters. The most effective parameter depends on the flow. In the

low-density jet (chapter 3), the jet velocity is used because the flow is momentum-

dominated and inertia drives the global instability.

In the jet diffusion flame (chapter 4), however, the global instability is driven

by buoyancy – specifically by a buoyancy-induced modification of the velocity

profile that creates an absolutely unstable inflexion point just outside the flame

surface (IP3 in figure 1.7). Consequently, two different methods are used to con-

trol the global instability2. In the first, coflow air is added around the flame base.

This reduces the shear and advects perturbations downstream, both of which

1For example, Monkewitz et al. (1990) inserted a pin into their low-density jet to suppress
the global mode, and then impulsively retracted the pin to enable the global mode to re-emerge.

2A third possible method is via the jet velocity, but this is similar to adding coflow (§4.1.2.2).
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weaken the instability. In the second, the relative concentrations of the fuel

(methane) and dilutant (nitrogen) are changed. Reducing the methane concen-

tration, for example, increases the stoichiometric mixture fraction. This causes

the flame to shift towards the jet centreline, closer to the shear layer. The resul-

tant changes to the density and velocity profiles are such that the flame becomes

less unstable, according to Füri et al. (2002).

It should be noted that changing the relative concentrations of the fuel and

dilutant has three secondary effects: the density ratio of the unburnt mixture

changes, the flame temperature changes, and the density profile changes because

the thermal diffusivity of the reactants changes. Experimental measurements of

the velocity and temperature profiles would be required to examine these effects

in detail, but this is not required for this thesis. What is important for this thesis

is that the global instability of the flame can be changed by changing the relative

concentrations of methane and nitrogen, without changing the overall flow rate.

2.3 Injector A

The low-density jet is examined on Injector A, which was kindly lent by Daniel

Durox from Laboratoire EM2C. Shown in figure 2.2, it is a bench-top burner

with a single round outlet, d1 = 6 mm in diameter. Upstream of the outlet is a

contraction section, whose area ratio is 52. This creates a nearly top-hat velocity

profile with thin boundary layers (§3.1.1), which is ideal for creating regions of

absolute instability. Farther upstream, in the settling chamber, is a series of

fine-mesh screens and honeycomb1 used for flow conditioning. At the base of

the injector, a loudspeaker2 is installed for acoustic forcing of the flow. The

loudspeaker is driven by an amplified3 (monochromatic) sinusoidal voltage signal

from a function generator4. The amplitude and frequency of the voltage signal

are monitored with a data acquisition system (DAQ)5 and a digital oscilloscope6.

1Cell height of 31.75 mm, cell diameter of 3.175 mm.
2AuraSound R© 20 W 8 Ω extended-range driver (model NS3-193-8A).
3Matrix Amplification R© power amplifier, mono mode on one channel.
4Thurlby Thandar Instruments R© TG120, precision uncertainty of ±5% FS.
5National Instruments R© USB–6009, 14-bit, installed 100 Ω bias resistor for removal of

electrical noise while allowing for some common-mode voltage rejection.
6Tektronix TDS220 R©.
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Figure 2.2: Rendering of Injector A.

2.4 Injector B

The jet diffusion flame is examined on Injector B, which was designed and built

specifically for this thesis. Shown in figure 2.3, it resembles Injector A in that its

(inner) outlet is round and has a diameter of d1 = 6 mm. It likewise has a series of

fine-mesh screens1 and honeycomb2 in its settling chamber for flow conditioning.

It has the same model of loudspeaker installed at its base, for acoustic forcing

of the flow. The loudspeaker is driven by an amplified3 (monochromatic) sinu-

soidal voltage signal from a function generator4. The amplitude and frequency

of the voltage signal are monitored with a DAQ5 and a digital oscilloscope6.

Figure 2.4 shows an electrical diagram of this setup, including connections for

two-microphone measurements (§2.5.2) and for high-speed imaging (§2.5.3).
1Plain weave, mesh count of 20 per inch, wire diameter of 0.355 mm, open area of 51%.
2Cell height of 31.75 mm, cell diameter of 3.175 mm.
3Alesis R© RA150 power amplifier, fanless, phono input.
4Thurlby Thandar Instruments R© TG1000, precision uncertainty of ±3% FS.
5National Instruments R© USB–6211, 16-bit, installed 100 Ω bias resistor for removal of

electrical noise while allowing for some common-mode voltage rejection.
6Tektronix TDS220 R©.
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Figure 2.3: Rendering of Injector B.

Injector B differs from Injector A in that it has an outer contraction, with

an outlet diameter of d2 = 30 mm, through which coflow can be introduced (the

coflow cannot be forced, however). Because the inner nozzle tapers to a knife

edge at the exit plane, its wall thickness there is zero and the annular gap is

12 mm all around. The size of this gap is necessary to ensure that the flame

anchors to the inner nozzle, rather than to the outer one1. The entire injector is

machined from Type 308 stainless steel for added heat resistance. Appendix C

contains technical drawings of each component.

In §4.1.1, it will be seen that the flow in Injector B is both flatter and quieter

than that in Injector A. This is not surprising given that the design criteria in-

cluded thin boundary layers and a low turbulence intensity. Both the inner and

outer contractions of Injector B are designed on the basis of principles used in wind

tunnel engineering (Mikhail, 1979; Morel, 1975), resulting in delicately smooth

1Experiments on a preliminary version of Injector B with a smaller outer contraction
(d2 = 11 mm) and hence a smaller annular gap (2.5 mm) show that the flame anchors only to
the outer nozzle. This occurs because the fuel rapidly diffuses outwards from the inner jet and
because the knife edge of the inner nozzle prevents the formation of recirculation zones.
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Figure 2.4: Electrical diagram for the combustion experiments with Injector B.
Connections are also shown for two-microphone measurements (§2.5.2) and for
high-speed imaging (§2.5.3). A timing diagram of the data acquisition process
can be found in Appendix D. P1–2, pressure signals; AI0–3, analogue inputs; DI,
digital input; DO, digital output.

contours1 and a large area ratio2. The fine-mesh screens mounted upstream im-

pose a small static pressure drop on the flow (∆P ∝ u2), dampening fluctuations

in the streamwise velocity (Mehta, 1985). They also realign the incident flow in

the local normal direction, dampening fluctuations in the cross-stream velocity.

The Reynolds number of the screen wires is O(1), low enough to prevent vortex

shedding. The honeycomb, meanwhile, functions as a flow straightener, remov-

ing the radial components of velocity associated with large-scale turbulent eddies

(Mehta and Bradshaw, 1979).

1The shape of the inner contour is a high-order polynomial, whose first and second spatial
derivatives are zero at the exit plane. The coefficients of this polynomial are optimised on
simulations to prevent internal flow separation whilst maintaining thin boundary layers.

2The area ratio of the inner contraction is 100.
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2.5 Measurement diagnostics

In this section, the measurement diagnostics used in this thesis are discussed.

All experimental uncertainties are calculated with the Method of Partial Differ-

entiation, the official standard of the American Society of Mechanical Engineers

(Abernethy et al., 1985).

2.5.1 Hot-wire anemometry

Hot-wire anemometry (HWA) is a method for measuring the local instantaneous

velocity in a homogeneous flow. Most commonly, it involves resistively heating a

thin metallic wire, exposed to a flow, and measuring the voltage required to keep

the wire at constant temperature, against the cooling effect of forced convection.

The voltage measured thus is a proxy for the flow velocity at the wire – subject

to limits at low velocities when natural convection dominates. The history and

theory behind HWA have been written about by many researchers, Brunn (1995)

being one of the most recent.

In this thesis, HWA is used to characterise the baseflows in both Injector A

(§3.1.1) and Injector B (§4.1.1). It is also used to measure the natural and forced

dynamics of the low-density jet (chapter 3) and to provide a calibration reference

for the two-microphone method in the combustion experiments (chapter 4).

The equipment consists of a DANTECR© constant-temperature anemometer

(MiniCTA) and a DANTECR© 55P16 single-normal probe operated at an over-

heat ratio of 1.8. The wire element of the probe, constructed of platinum-plated

tungsten, is 5 µm in diameter and 1.25 mm in length. Its manufacturer-specified

frequency response is 10 kHz, well above the expected flow frequencies. The probe

is positioned using a three-axis linear traverse, with an uncertainty of ±0.1 mm

in each axis. The voltage from the anemometer is digitised on a 16-bit DAQ1 and

saved for post-processing and analysis. A custom LabVIEW program is used to

control all the data acquisition and storage routines.

In most of the experiments, the HWA voltage is sampled at a frequency of

1National Instruments R© USB–6211.
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16384 Hz for 16 seconds, resulting in 218 data points1. This particular sampling

frequency is chosen to satisfy – by more than a factor of ten – the Nyquist

criterion, as the flow frequencies are expected to be O(103) Hz. A long sampling

duration is used because the frequency resolution2 of the power spectral density

(PSD)3 increases with the number of data points in the time series. The PSD is

computed on MATLABR© using a built-in fast Fourier transform (FFT) algorithm:

pwelch. Originally proposed by Welch (1967), pwelch has four main steps . First,

in preparation for window-averaging, the time series is segmented into two halves

of equal length, each with 50% overlap4. Second, each segment is windowed

with a Hamming window in order to reduce spectral leakage5. Third, an FFT

is applied to each windowed segment and the periodogram is computed. Fourth,

the periodograms are averaged together, forming the final PSD.

1The only exception is for characterisation of the baseflow, when the sampling duration is
extended to 32 seconds, or 219 data points.

2In most cases, the frequency resolution is ±0.125 Hz, after window-averaging.
3The PSD is used to describe the statistics of stationary stochastic data (Bendat and Pier-

sol, 1986). Formally known as the auto-spectral density, it is a convenient way of estimating the
mean-square value of a time-domain signal in a given frequency band. By Parseval’s theorem,
which states that the integral of the square of a function is equal to the integral of the square
of its Fourier transform, the total area under a PSD curve (in theory, over all frequencies) is
equal to the square of the RMS of the time-domain signal. Because the PSD is a statistical
estimate, a long time series, capturing many periods of the oscillating phenomenon, is required
for statistically significant results. This, along with the improved frequency resolution, is why
all the data in this thesis are recorded with sampling times that are as long as possible, subject
to physical memory constraints. A final note is that although having more data points in the
time series increases the frequency resolution of the PSD, the accuracy is not affected.

4The number of segments and the overlap percentage can be adjusted according to the
desired accuracy and resolution. If n is the number of segments, the standard deviation of the
PSD is reduced by a factor of

√
n. Such segmenting (and averaging later on), however, also

reduces the length of each segment and therefore reduces the frequency resolution of the PSD.
For example, if each of the n segments contains 2N data points, the PSD will have just N +1
frequency bins, from DC to the Nyquist frequency (half the sampling frequency). Overlapping
the n segments by 50% further reduces the variance of the PSD by a factor of about 9n/11.
There is not a full factor of n reduction because the overlapping segments are not statistically
independent.

5Computing the FFT of a time series of length n is equivalent to the multiplication of an
infinitely long input by a square window function of length n and of unity magnitude over n.
Because a square window function has steep gradients at its ends, high-frequency components
are created, which can contaminate the PSD by creating sidelobes around the main lobe, an
effect known as spectral leakage. A typical way to reduce spectral leakage is to apply window
functions that attenuate the time series at its ends. There are many suitable types of window
function, their differences being mostly in the various measures used to describe the sharpness
of peaks in the PSD (e.g. highest sidelobe level, sidelobe falloff rate, 3 dB bandwidth).
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The application of thermal anemometry to inhomogeneous flows, such as a

low-density helium jet (chapter 3), is a recognised challenge. This is because the

HWA probe deduces the flow velocity from the convective heat transfer, which

depends on both the flow velocity itself and the thermal diffusivity of the fluid.

In view of this, many researchers have chosen not to use predetermined HWA

calibrations, which are usually done in air, relying instead on the raw bridge

voltages. This has worked surprisingly well, particularly for PSD estimates, as

can be seen in the experiments by Sreenivasan et al. (1989), Kyle and Sreenivasan

(1993), and Hallberg et al. (2007). In this thesis, the same simplification is used

but only when the HWA probe is outside the potential regions of the flow.

That simplification, however, cannot be used for baseflow characterisation

(§3.1.1 and §4.1.1). For this, an absolute HWA calibration is required. In this

thesis, it is obtained with the procedure proposed by Johnson et al. (2005), the

steps of which are detailed in the flowchart of figure 2.5. First, the velocity

profile across a laminar air jet (diameter of 25.58 mm) is measured with a trial

calibration based on the plug-flow approximation1 and is integrated to get an

estimate of the flow rate. This estimate is then compared to the reading from a

precision mass flow controller2. If the difference is > 1%, a plug-flow correction

factor is iteratively applied to the trial calibration until convergence is achieved.

This is repeated at several flow rates, for velocities up to 12 m s−1, resulting in a

set of correction factors for the final HWA calibration. Figure 2.6 shows a typical

final HWA calibration, along with a polynomial fit.

2.5.2 Two-microphone method

When examining the forced response of a flow, it is helpful to know the amplitude

and phase of the applied forcing. In this thesis, these quantities are measured

with the two-microphone method (TMM). Originally proposed by Seybert and

Ross (1977), the TMM involves the simultaneous measurement of the static pres-

1As the HWA probe approaches the nozzle walls (within 2–3 mm), the heat transfer from
the wire increases as a result of thermal conduction, leading to the spurious reporting of higher
velocities. In this thesis, this effect is corrected for with the method proposed by Lekakis (1996).

2Bronkhorst R© EL-FLOW F-203AC-SAA-55-V, 536.5 LPM FS air at STP, precision uncer-
tainty of ±0.6% FS including linearity.
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Figure 2.5: Flowchart of the HWA calibration procedure.
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Figure 2.6: Typical final HWA calibration obtained via the procedure described
in the text. The error bars for the flow velocity denote a precision uncertainty
of ±0.12 m s−1. The blue curve is a fifth-order polynomial fit; this particular
regression model is chosen because it has the highest coefficient of determination.
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sures at two different locations along a duct, p(x1) and p(x2) – or in the case of

this thesis, along the inner settling chamber of Injector B (§2.4). From these,

the acoustic modes of the system are decomposed into forward- and backward-

propagating waves. This decomposition enables both the acoustic pressure, p′,

and the acoustic particle velocity, u′, to be extrapolated anywhere along the duct,

including at its ends, thus providing estimates of the forcing amplitude and phase.

The theory and error sources of the TMM have been discussed before in the

literature (e.g. by Abom and Boden, 1988; Boden and Abom, 1986; Seybert and

Soenarko, 1981), so for brevity only the basics are reviewed here. The theory

considers a constant-area duct, forced periodically at one end but terminated at

the other end by some unknown passive impedance. For small perturbations such

that p′/p≪ 1 and ρ′/ρ≪ 1, the compressible continuity and Euler equations can

be linearised to give the homogeneous acoustic equation for pressure:

∂2p′

∂t2
= c2∇2p′, (2.1)

where the mean speed of sound, c, is evaluated at mean values of p and ρ. For a

one-dimensional planar wave propagating in the x direction, (2.1) simplifies to:

∂2p′

∂t2
= c2

∂2p′

∂x2
. (2.2)

Expressing the acoustic pressure field as a Fourier integral yields:

p′(x, t) =

∫ ∞

−∞

p̂′(x, f) ei2πft df, (2.3)

where p̂′(x, f), with a hat, is the Fourier transform of p′(x, t). Substitution of

(2.3) into (2.2) gives:

∂2p̂′

∂x2
+ k2p̂′ = 0, (2.4)

where the wavenumber k ≡ 2πf/c. Solutions to (2.4) should account for contri-
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butions from both forward- and backward-propagating waves:

p̂′+ = B+e
−ixk+ , (2.5)

p̂′− = B−e
ixk

−, (2.6)

where the subscripts + and − denote wave propagation in the forward and back-

ward directions, respectively. The coefficients B+ and B− are the amplitudes of

those waves, and they depend on the oscillation frequency but not on the axial

position because the system is assumed to be non-dispersive1. For a mean flow

travelling in the +x direction at Mach number, M ≡ u/c, the wavenumbers of

the forward- and backward-propagating waves are:

k+ =
2πf

c+ u
=

k

1 +M
, (2.7)

k− =
2πf

c− u
=

k

1−M
. (2.8)

The general solution of the acoustic pressure field thus becomes:

p̂′ = p̂′+ + p̂′− = B+e
−ixk+ +B−e

ixk
−. (2.9)

Evaluating (2.9) at two different locations, say x1 and x2, enables the coefficients

B+ and B− to be expressed as functions of the experimentally measured pressures,

p̂′1 ≡ p̂′(x1, f) and p̂
′
2 ≡ p̂′(x2, f):

B+ =
p̂′1e

ix2k− − p̂′2e
ix1k−

ei(x2k−−x1k+) − ei(x1k−−x2k+)
, (2.10)

B− =
p̂′2e

−ix1k+ − p̂′1e
−ix2k+

ei(x2k−−x1k+) − ei(x1k−−x2k+)
. (2.11)

1This means that all frequency components travel at the same speed, with the phase velocity
equal to the group velocity everywhere (i.e. the wave retains the same shape as it propagates).
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If energy losses due to momentum and thermal diffusion are neglected, the acous-

tic particle velocity can be related to the acoustic pressure:

p̂′+ = ρcû′+, (2.12)

p̂′− = −ρcû′−. (2.13)

Thus, for a one-dimensional planar wave propagating without attenuation, the

acoustic particle velocity at axial position x is:

û′ =
B+e

−ixk+ − B−e
ixk

−

ρc
. (2.14)

In this thesis, the above equations are programmed in MATLABR© and solved

to give the amplitude and phase of the velocity perturbation at the outlet (x = 0)

of Injector B. The complex modal inputs, p̂′1 and p̂′2, are measured with two

identical pressure transducers1. Both are mounted flush with the chamber wall,

separated by a distance of (x2 − x1) = 60 mm. The output voltage from each

transducer is fed into a separate isolated channel of a purpose-built signal condi-

tioner. With two operational amplifiers per channel, this device provides gains of

up to 60 dB with negligible drift and low electrical noise. It also has a low-pass

filter, whose cutoff frequency is approximately 7 kHz at −3 dB. This filter is used

to attenuate what is thought to be high-frequency electromagnetic interference

from the surrounding laboratories. The outputs from the signal conditioner are

fed into a DAQ and digitised for post-processing.

Before the TMM system can be used for actual testing, however, its compo-

nents must be individually calibrated. First, the signal conditioner is checked to

1Kulite Sensors R© XCS-093-140MBARD, piezoresistive, 2.4 mm diameter, differential range
of 14000 Pa FS, sensitivity of 4.29×10−3 mV/Pa, precision uncertainty of ±0.25% FS, bias
uncertainty removed by referencing to the atmosphere.

59



ensure that both its gain and phase remain at their set values over the entire

range of expected frequencies (≤ 35 Hz for the flame experiments). The concern

is that if there was a resonance in the electronics, it would be indistinguishable

from hydrodynamic or acoustic resonances in the flow. The findings show that

for frequencies up to 300 Hz, the gain is constant, at 60 dB, as is the phase, at

0◦ (Appendix E). These are the actual settings used in the experiments.

Next, the factory calibrations for the two pressure transducers are checked

ex-situ in a custom loudspeaker enclosure. This involves temporarily mounting

both transducers beside a reference microphone1, which has been calibrated be-

forehand with a pistonphone2. All three devices are then subjected to identical

sinusoidal forcing by a loudspeaker, and their outputs measured and compared.

The amplitude response of both pressure transducers is checked thus and found

to be within ±0.5% of their respective factory calibrations. This precision un-

certainty is on the order of the aggregate uncertainty of the calibration system

and hence the factory calibrations are retained. The bias uncertainty is removed

by exposing the back of both transducer diaphragms to atmospheric pressure,

via flexible tubes threaded through the outer settling chamber (Injector B). As

for the phase response, the coherence between the two pressure transducers is

found to be close to unity for frequencies up to 300 Hz, which is well above the

frequencies expected in the experiments.

With the signal conditioner and both pressure transducers calibrated, the

TMM system is calibrated as a whole and in-situ. This is done against HWA,

with the probe positioned on the jet centreline (r/d1 = 0) at the exit plane

(x/d1 = 0) of Injector B. The hot-wire element itself is oriented perpendicular to

the flow, which is forced by a loudspeaker, as described in §2.4. The sinusoidal

voltage into the loudspeaker is kept at a constant amplitude as its frequency is

swept from 7 to 35 Hz, in 0.5 Hz increments. This frequency range is chosen

because it covers the typical global frequencies of jet diffusion flames (around

10–20 Hz). The lower end of that range, 7 Hz, is limited by the inability of

the loudspeaker to generate the desired forcing amplitudes without incurring

1Brüel & Kjaer Type 4134 condenser microphone, 12.7 mm diameter, coupler measurement,
sensitivity of 12.5 mV/Pa, powered by a Brüel & Kjaer Type 2807 supply unit.

2Brüel & Kjaer Type 4228 pistonphone, cam-operated cavity, constant SPL = 124±0.09 dB
re. 20 µPa, pure tone at 250±0.25 Hz.
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excessive cone motion1. The calibration is performed at flow rates similar to

those used in the actual experiments, with two different gases: (i) air and (ii) a

mixture of air and helium (48% air–52% He, by volume) having the same density

and speed of sound as methane. This non-reacting methane surrogate is used to

ensure that the TMM measurements would be accurate regardless of the mixture

composition. Methane itself is not used because it is flammable – a safety risk

exacerbated by the need to deactivate the local extraction during testing owing

to excessive noise. Before the TMM is calibrated with the methane surrogate,

though, the HWA probe is re-calibrated for this gas using the procedure in §2.5.1.
In order to account for deviations from plug-flow behaviour, correction factors

are applied to the raw TMM data. They are found by taking the ratio between

TMM and HWA readings over a wide range of flow rates, mixture compositions,

and forcing amplitudes and frequencies (ff). The aggregate data are regressed

against ff using a high-order polynomial, resulting in a set of coefficients for

the correction factor that can then be applied to all the TMM data. A typical

comparison of the forcing amplitudes measured with TMM and HWA is shown

in figure 2.7. The forcing amplitude is defined, at the injector plane, as the am-

plitude of the velocity perturbation at ff normalised by the bulk jet velocity:

A ≡ |u′1, ff |/U1. The comparison shows that the corrected TMM can be used to

accurately measure the imposed velocity perturbations. Although the compar-

ison is for air, results for the methane surrogate are similar in that they show

agreement between TMM and HWA. Figure 2.7 also represents the acoustic re-

sponse of the system. The response is smooth, free of resonant peaks2, which is

not surprising given that the injector does not have a combustor attached to it.

As ff increases, A increases (nearly linearly) because the loudspeaker becomes

more efficient as it is operated away from very low frequencies.

1Excessive cone motion can damage the suspension of a loudspeaker. Most loudspeakers are
not designed to be operated at frequencies below the audible range in humans (20–20×103 Hz).

2Some degree of acoustic coupling with the upstream supply lines usually occurs. In this
thesis, however, a flashback arrestor is installed immediately upstream of the injector inlets.
This device increases the acoustic impedance of the supply lines and therefore reduces their
tendency to support acoustic modes that can affect the downstream flow.

61



0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

ff [Hz]

A
≡

|u
′ 1
,
f

f
|/

U
1

 

 
TMM
HWA

Figure 2.7: Typical comparison of the forcing amplitudes measured with TMM
and HWA as a function of forcing frequency. The test fluid is air, the injector is
Injector B, and the bulk velocity at the injector outlet is U1 = 3.0 m s−1. The
peak-to-peak voltage into the loudspeaker is fixed at 400 mVpp.

2.5.3 Chemiluminescence

When examining the forced response of a flame, it is helpful to have an indicator

of the heat release. For this thesis, that indicator is the natural flame chemilu-

minescence. Chemiluminescence is used because it is easy to measure, requiring

no costly lasers or intensified cameras, and because it is well proven, having been

used extensively in previous studies on flame dynamics (McManus et al., 1995).

The history and theory behind it have been the subject of numerous texts (e.g.

the book by Gaydon, 1974), so for brevity only the basics are reviewed here.

Chemiluminescence is the emission of photons from electronically excited rad-

ical species on their return to the ground state. In flames, the majority of such

species are produced by chemical reactions at the flame front1. Consequently, the

chemiluminescent intensity2, which is directly related to the concentration of the

excited species, depends on the rate at which those combustion reactions occur.

In hydrocarbon flames, the combustion reactions produce a variety of radical

species, each of which emits photons of a specific wavelength3. Only some of them,

1Chemiluminescence is thus fundamentally different from fluorescence, in which the excited
species are produced by the absorption of electromagnetic radiation, typically from a laser.

2This is defined as the number of photons emitted per unit area.
3The exact wavelength depends on the atomic structure of the excited species and on the
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however, will emit with an intensity strong enough to be detectable above the

background spectrum. In lean-premixed flames, the strongest chemiluminescence

is from CH* (431 nm), OH* (309 nm), and CO2* (broadband over 300–600 nm).

In rich-premixed flames, there is also a contribution from C2* (513 nm).

In premixed flames, chemiluminescence is regarded as a reliable indicator of

the reaction-zone location and the heat-release rate (Hurle et al., 1968; Price

et al., 1969). In fact, this assumption is often used in studies on flame dynamics

(Cho et al., 1998; Langhorne, 1988), although it can fail in regions of high strain

rate and high curvature, especially near the extinction limits (Najm et al., 1998).

In diffusion flames, such as those studied in this thesis, the chemiluminescent

spectrum is qualitatively similar to that of rich-premixed flames. This does not,

however, mean that the total radiative spectrum is similar, because diffusion

flames tend to generate soot. The presence of soot can have several effects.

First, soot can positively bias a chemiluminescent measurement by emitting

blackbody radiation. According to Solomon and Best (1991), the emitted spec-

trum is similar to that of a theoretical blackbody at the temperature of the soot,

which means that it is continuous and retains the same overall shape (Planck’s

law)1. With the proper equipment, therefore, the effect of soot radiation can be

corrected for relatively easily. The procedure, described by Hardalupas and Sel-

bach (2002), involves measuring the chemiluminescent intensity at wavelengths

around the target wavelength. If the correction is being made on a CH* measure-

ment (431 nm), for example, the intensities at 420 nm and 440 nm are measured

along with the target signal. By interpolating the intensities between 420 nm and

440 nm, it is possible to obtain an estimate of the contribution from soot radia-

tion at 431 nm. This can then be subtracted from the total intensity measured

at 431 nm, leaving just the intensity from chemically produced CH*.

Second, soot can affect both the spatial and temporal accuracies of image-

based measurements. Concerning the spatial accuracy, soot can be transported

to regions where there is no flame, thus biasing the reaction-zone location. To

reduce this bias, it is important that the Stokes number of the soot particles is

quantum transition that it undergoes.
1Wien’s displacement law, though, states that as the temperature increases, the spectral

peak weakens and shifts to shorter wavelengths.
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small, so that they can accurately track the carrier flow. A first-order calculation

of the Stokes number, based on a soot diameter of 1 micron and a hydrodynamic

timescale equal to the period of a typical global mode in a jet diffusion flame,

gives values of O(10−4), which is indeed small.

Concerning the temporal accuracy, if a flame oscillates very rapidly, the

timescale involved in the nucleation and growth of soot particles – plus the

timescale involved in their subsequent heating and blackbody emission – could

be larger than the timescale of the heat release. In this scenario, there would be

a time delay between the emission of blackbody radiation from the soot and the

emission of chemiluminescence from the flame. To reduce this delay, it is impor-

tant that the flame oscillates very slowly (i.e. with a large oscillation timescale),

which is fortuitously what jet diffusion flames tend to do naturally. Moreover,

once an excited radical species is (chemically) produced, unless collisional quench-

ing causes de-excitation first, light is usually emitted within the order of a mi-

crosecond (Garland and Crosley, 1988). This timescale is significantly shorter

than the advection, diffusion, and instability timescales of the flame. For this

thesis, therefore, chemiluminescence should serve as an accurate indicator of the

location and frequency of the heat release, even though its intensity does not

accurately represent the intensity of the heat release itself.

In the experiments, a high-speed camera (Phantom
TM

V4.2 CMOS) is used

to record the flame chemiluminescence as a time series of line-of-sight images1.

It is fitted with ultra-violent optics (Nikkor 105 mm f/4.5) but without spectral

filters. The measured spectrum is thus broadband, with limits determined by

the spectral characteristics of the camera–lens system. Line-specific imaging is

not used for two reasons. First, the chemiluminescence from diffusion flames is

contaminated with soot radiation, which, as discussed above, is broadband and

affects a range of wavelengths. Second, to satisfy the Nyquist criterion requires

the use of high frame rates and short exposure times. Without an image intensi-

fier, however, capturing a sufficient signal-to-noise ratio (SNR) becomes difficult,

so the broadband spectrum is measured in order to maximise the signal strength.

1Phase-averaging, whereby images are binned according to their phase in the oscillation
cycle, is not used because the flows studied here tend to oscillate at multiple frequencies. There
is therefore no dominant frequency to which the camera can be synched.
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Table 2.1: Camera settings for the chemiluminescence videos.

Frame rate 180 frames s−1 (fixed)
Exposure time 40–5200 µs (variable⋆)
Image depth 8 bits (monochrome)
Resolution 256 (w) × 512 (h) pixels
Image scale 0.3435 mm pixel−1

Field of view Frame height = (29.3)d1
Video length 5429 frames
Post-trigger 5429 frames

Auto-exposure Off

⋆ For each flame, the exposure time is adjusted such that the near field

of the flow, where toroidal vortices begin to roll up, is not saturated.

The camera settings used to record the chemiluminescence videos are listed in

table 2.1. For analysis of the flame dynamics, the intensity in each frame of each

video is summed across every pixel column1, generating a time series (five pixel

rows in height) at each axial station: I (x/d1). This procedure is illustrated in

figure 2.8. From the time series, two quantities are computed for further analysis.

The first is the PSD, a measure of the spectral distribution of energy in I (x/d1).

It is computed similarly to the HWA spectra, as described in §2.5.1 (page 54).

The second quantity is the reconstructed phase space. The phase space of

a dynamical system contains all the independent state variables necessary to

describe the system in full at any given time2. In this phase space, every possible

state of the system is represented by a discrete point. As the system evolves in

time, the active points trace out a ‘phase trajectory’. Analysing the topology

of this phase trajectory provides valuable information about the dynamics of the

1The intensity is not summed over the entire frame because doing so would conceal small-
scale structures (i.e. those smaller than the field of view), leading to a bias towards large-scale
structures. Photomultipliers that image an entire flame often suffer from such biasing, although
few researchers recognise it. Nevertheless, this is not a major concern in thermoacoustics
because most industrial flames are acoustically compact. To the acoustic field, the flame appears
as a point heat source, so imaging it in its entirety (even though it may not be oscillating as a
whole, everywhere in phase) is still a representative way to measure its response.

2Given knowledge of these state variables, therefore, one could in theory evolve the system
forward in time to predict its state at some later time (Kabiraj et al., 2011).
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Figure 2.8: Visual representation of the image-processing procedure applied to
the chemiluminescence videos.

underlying system1. If the system is periodic, the phase trajectory follows a closed

orbit around a periodic attractor. If the system is quasiperiodic, it follows the

surface of a torus. If the system is chaotic, it follows a non-repeating orbit around

one or more strange attractors (fractal objects with self-similarity).

In a real-world system, the number of independent state variables (i.e. the di-

mension of the phase space) is not known a priori. It must therefore be estimated,

and one way of doing this is with the state-space vector:

[ I(t), I ′(t), . . . , IN−1(t) ], (2.15)

where N is the number of degrees of freedom (DOFs) in the system. For exam-

ple, a two-DOF system, such as a swinging pendulum, has the state-space vector

1A natural question to ask is: why should we even bother with the phase space? The
answer, Lieuwen (2002) suggests, is that it can be a very useful tool for identifying patterns
and similarities in the system dynamics, because it uses data from many oscillation cycles – not
just a few. This is its key advantage over analyses done in the time domain.
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[Θ, Θ′], with Θ being the angular position of the pendulum. In practice, how-

ever, this method of representing the system involves numerical differentiation of

experimental data, a process that is very sensitive to measurement noise.

To sidestep this problem, this thesis will use the method of time-delay em-

bedding. Based on the embedding theorem of Ruelle and Takens (1971), it in-

volves unfolding the geometric structure of the multivariate phase space into a

m-dimensional system of time-delayed vectors1 created from experimental data:

[ I(t), I(t+ τ), I(t + 2τ), . . . , I(t + (m− 1)τ) ], (2.16)

where m is the embedding dimension – i.e. the dimension of the reconstructed

phase space. The minimum value of m needed to fully capture the physical prop-

erties of an attractor depends on the number of DOFs in the underlying system.

The time delay τ must be carefully chosen: if it is too small, the vector elements

will be strongly correlated and statistical independence will be lost; if it is too

large, numerical inaccuracies and noise will dominate, making the correlation be-

tween different time-delayed elements random. In this thesis, the optimal time

delay is found by computing the first zero-crossing of the autocorrelation function,

as recommended by Abarbanel (1996). Other available methods can be found in

the books by Henry et al. (2000) and by Kantz and Schreiber (2003).

The reconstructed phase space is never identical to the original phase space,

although, as Trauth (2010) has pointed out, its topological features are preserved

– provided that m is at least one larger than the correlation dimension2. Several

methods are available for visualising the reconstructed phase space, with two

standing out in particular: the phase portrait and the Poincaré map. The phase

portrait is a three-dimensional plot of the system motion (e.g. the pixel intensity)

against that same motion shifted by τ , and by 2τ . The Poincaré map3 is a

1These are sometimes called the reconstructed phase-space vectors.
2The correlation dimension is a measure of the number of DOFs in a dynamical system. It

is an objective parameter that is useful for classifying the structure of attractors. Its value is
one for a periodic limit cycle, two for a quasiperiodic oscillation with two independent modes,
fractional for a chaotic motion, and infinite for purely random noise. The correlation dimension
is usually estimated with the algorithm of Grassberger and Procaccia (1983); examples in
combustion research include the papers by Gotoda and Ueda (2002) and Lieuwen (2002).

3The Poincaré map can be classified as being either a one-sided map or a two-sided map,
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two-dimensional plot comprising data points from the geometric intersection of

the trajectories in the phase portrait and an arbitrary plane – aptly named the

Poincaré plane. Thus, whereas the phase portrait tracks the system as it evolves

in time, the Poincaré map provides snapshots at discrete time intervals. Each

class of nonlinear response, ranging from a limit cycle to a quasiperiodic oscillation

to a chaotic motion, has its own distinctive features in the Poincaré map, and

these will be discussed further in chapters 3 and 4.

2.5.4 Schlieren

Another type of flow visualisation that is used is schlieren. Invented by German

physicist August Toepler in 1864, this technique works by intercepting light rays

according to their degree of refraction (Weinberg, 1963). In the procedure, a col-

limated beam of light is projected through a target flow and focused onto a knife

edge. Any spatial variations in refractive index in the flow, caused for example by

spatial variations in density, would cause the light to be refracted either towards

or away from the knife edge. The light that passes is recorded, creating a final im-

age whose spatial illuminance variation is, to a first approximation, proportional1

to the component of the density gradient that is perpendicular to the knife edge.

In this thesis, schlieren is applied to both the low-density jet and the jet

diffusion flame. The setup, shown in figure 2.9, consists of two parabolic concave

mirrors (both 152.4 mm in diameter and 1219 mm in focal length) aligned in a

Z-type Herschelian configuration. A high-intensity light-emitting diode (white,

phosphor-coated, 5 cd), mounted behind a pinhole aperture (1 mm in diameter),

is used as an extended light source. A household razor blade, mounted on a linear

translation stage, is used as a knife edge. The orientation of the knife edge can be

varied to resolve either streamwise or cross-stream gradients of density. The same

high-speed camera that is used for chemiluminescence is also used for schlieren.

For most tests, the camera is fitted with a Nikkor 135 mm f/2.8 lens. The camera

depending on whether its data points represent motion of the phase trajectories in one direction
or two. In this thesis, only two-sided maps will be shown.

1Linearity is valid only if the optical receiver is itself linear with respect to illuminance.
Two examples for which this is not the case are the human eye and photographic film. Both of
these respond logarithmically to incident illuminance, so for them to produce a linear response
would require the use of a knife edge with an exponential contour.
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Figure 2.9: Schematic of the Z-type schlieren setup.

settings (i.e. pixel resolution, frame rate, and exposure time) are optimised to

satisfy the Nyquist criterion – usually exceeding it by more than a factor of

ten. The knife-edge cutoff is optimised for maximum contrast sensitivity without

exceeding the dynamic range of the image sensor. The details of this optimisation

procedure can be found in §3.2.1 of the book by Settles (2001).

2.5.5 Flow supply and metering

The flow rate of the various gases is measured with glass rotameters1. The flow

temperature is measured at the injector outlet with a Type-K thermocouple2. For

the prevention of flow pulsations, which could excite undesired instabilities, all

the fuel and dilution gases – including air – are supplied from compressed cylin-

ders, rather than from a centralised compressor or a shared manifold. Two-stage

gas regulators are used to ensure a steady upstream supply pressure. Particulate

filters are installed on the gas lines to prevent debris from entering the experi-

ment and damaging the HWA probes. Most of the experiments are conducted at

times of low vehicular traffic and low ambient noise, in order to reduce the influ-

ence of external disturbances. All the experiments are conducted at an ambient

temperature of 293±2 K and at atmospheric pressure.

1Precision uncertainty of ±3%, bias uncertainty removed by calibrating against a mass flow
controller: Bronkhorst R© EL-FLOW F-203AC-SAA-55-V, 536.5 LPM FS air at STP, precision
uncertainty of ±0.6% FS including linearity.

2Precision uncertainty of ±1 K.
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Chapter 3

Low-density jets

In this chapter, the global instability of a non-reacting low-density jet is examined

experimentally. First the jet is examined without forcing, in order to study its

natural self-excited dynamics. Then it is examined with forcing applied around

its natural frequency, in order to study how its natural dynamics at one frequency

is affected by external forcing at other frequencies. As well as linking to previ-

ous studies in the literature, this provides a reference case for the combustion

experiments in chapter 4.

According to the linear stability analysis by Monkewitz and Sohn (1986, 1988),

a round inviscid unconfined jet begins to develop regions of local absolute insta-

bility when its density ratio falls below approximately1 0.7. The jet examined

in this chapter is of helium gas, which, in air, has a density ratio of 0.14, well

below the inviscid threshold for instability. The jet is examined on Injector A,

with sinusoidal forcing applied by a loudspeaker mounted in the upstream settling

chamber (§2.3).
1The exact threshold depends mildly on the shape of the velocity profile but is always

around 0.7. Monkewitz and Sohn (1988), for instance, found that for a Mach number of zero
and for a vorticity thickness equal to 8.7% of the jet diameter, the critical density ratio is 0.72.
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3.1 Unforced

3.1.1 Baseflow characterisation

Before the jet dynamics is studied, the velocity profile at the outlet of Injector

A is measured with HWA (§2.5.1). This is done by traversing a single-normal

probe across the outlet, as close as possible to the exit plane (x/d1 ≈ 0). This

is repeated in multiple azimuthal planes in order to test for flow symmetry. For

brevity, however, only data from one representative plane are shown.

In these measurements, air is used as the jet fluid in order to conserve helium1.

This is acceptable because the velocity profile depends primarily on the Reynolds

number and the injector geometry, such as the contraction ratio and the surface

roughness. It does not depend on the other transport properties of the fluid, such

as the Prandtl and Schmidt numbers, which differ between air and helium.

Figure 3.1a shows radial profiles of the time-averaged streamwise velocity,

normalised by the maximum across each profile, for a range of Reynolds numbers:

710 ≤ Re1 ≤ 3530. Figure 3.1b shows radial profiles of the turbulence intensity2

for the same Reynolds numbers. This particular range of Re1 is chosen because

the jet bifurcates into a global mode within it, as will be discussed in §3.1.2.
For all values of Re1, the velocity and the turbulence intensity are uniform

over the central part of the flow and are symmetric about the jet centreline.

As expected, the velocity approaches zero at the walls (r/d1 = ±0.5) and the

turbulence intensity peaks in the boundary layers. Away from the boundary

layers, the turbulence intensity varies between 0.25 and 0.37%, depending on

Re1. This flat velocity profile with low turbulence intensity is ideal for creating

well-characterised regions of absolute instability.

As Re1 increases, the boundary layer thickness and the turbulence intensity

both decrease. In other words, the flat part of the velocity profile extends to a

1Since the start of this thesis, the price of helium has more than doubled. This is partly due
to growing demand, especially from the semiconductor industry and the medical imaging field.
But it is also due to declining supplies, with 80% of global reserves existing in the American
Southwest, as a component of natural gas (helium is extracted by fractional distillation). Many
researchers have argued that the time of Peak Helium may have already passed.

2The turbulence intensity is defined as the RMS velocity fluctuation normalised by the
time-averaged velocity: u′

rms/u.
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Figure 3.1: (a) Normalised time-averaged velocity and (b) turbulence intensity
at the outlet of Injector A. They are plotted as a function of radial position for
five Reynolds numbers: 710 ≤ Re1 ≤ 3530.

greater radius and has proportionately less turbulent fluctuation.

One of the key parameters determining the stability of a flow is the shear layer

thickness. At the injector outlet, where the axial velocity in the surrounding air is

zero, this is equal to the boundary layer thickness. The boundary layer thickness

can be measured with two quantities: the displacement thickness, δ∗, and the

momentum thickness, θ. In the experiments, both are found by fitting high-order

polynomials to the velocity profiles shown in figure 3.1a and then integrating.

Figure 3.2a shows δ∗ and θ as a function of Re1. As Re1 increases, both δ
∗ and θ

decrease, which is consistent with the earlier observation that the velocity profile

becomes more uniform with increasing Re1.

The ratio between δ∗ and θ quantifies the shape of the boundary layer. Plotted

in figure 3.2b, it varies by less than ±3% of its mean across the entire range of

Re1. This shows that, although the thickness of the boundary layer changes as

Re1 changes, its shape does not. This invariance is important because, as Kyle

and Sreenivasan (1993) have noted, it implies that the velocity profile can be

characterised by just one parameter: the transverse curvature, d1/θ. According

to Hallberg and Strykowski (2006), this is one of the most influential parameters

controlling global instability; it is plotted in figure 3.3 as a function of
√
Re1.

72



The trend is linear (blue line), indicating that the boundary layer is laminar.

The transverse curvature will be useful for understanding the results that follow.
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Figure 3.2: (a) Displacement thickness, δ∗, and momentum thickness, θ, and (b)
their ratio at the outlet of Injector A. They are plotted as a function of the same
Reynolds numbers as in figure 3.1.
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Figure 3.3: Transverse curvature, d1/θ, at the outlet of Injector A. It is plotted
as a function of the square root of the Reynolds numbers shown in figures 3.1
and 3.2. The blue line is a linear fit.
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3.1.2 Global bifurcation

In figure 3.4, the PSD of the local streamwise velocity in the low-density jet

is shown for eleven Reynolds numbers: 480 ≤ Re1 ≤ 1900. For comparison,

the PSD of the same quantity but in a constant-density air jet is also shown

(bottom in red). These measurements are made with a HWA probe positioned

on the jet centreline, 1.5d1 downstream of the injector outlet. This particular

axial station is chosen because it is where the amplitude of the eventual global

mode is at a maximum. Fortuitously, it is also within the potential core, so the

HWA calibration for helium can be validly used.

The PSD from the constant-density jet contains broadband noise, with a

slight increase around 250 Hz but no clear peak. This is consistent with the fact

that this jet has no pocket of absolute instability and is therefore not globally

unstable. It is instructive to compare this to the behaviour of the low-density jet.

At Re1 = 480, the low-density jet behaves like the constant-density jet: there

is a slight increase in the PSD around a few hundred Hertz but no clear peak.

This is because the low-density jet is not globally unstable at this Reynolds

number, because the inertia of small perturbations is not sufficient to overcome

the stabilising action of viscosity. The behaviour at Re1 = 630 is marginal but,

at Re1 ≥ 710, a clear peak emerges in the PSD, together with harmonics. This

occurs because the jet has become globally unstable, behaving as an oscillator

with a well-defined natural frequency rather than just as an amplifier. This is the

classical global mode behaviour that was expected. The shape of the global mode

is varicose, as can be seen from the schlieren image in figure 1.5. The frequency

of the global mode is around 500 Hz at Re1 = 710 and increases as Re1 increases,

for reasons that will be explained in §3.1.3.
The emergence of the global mode can be identified more clearly in a bi-

furcation diagram: figure 3.5a shows the square of the RMS velocity fluctua-

tion normalised by the time-averaged velocity, (u′rms/u)
2, as a function of the

Reynolds number. At low Reynolds numbers (480 ≤ Re1 ≤ 630), the jet is

globally stable and its response is negligible. As the Reynolds number increases

(710 ≤ Re1 ≤ 1900), however, the jet becomes self-excited and its response in-

creases. Close to the bifurcation point (630 ≤ Re1 ≤ 710), the response seems to
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Figure 3.4: PSD of the local streamwise velocity in the low-density jet for eleven
Reynolds numbers, 480 ≤ Re1 ≤ 1900, and in a constant-density jet at Re1 =
1410. The velocity is measured with a HWA probe positioned on the jet centreline,
1.5d1 downstream of the injector outlet.
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Figure 3.5: Subfigure (a) shows the square of the RMS velocity fluctuation nor-
malised by the time-averaged velocity, (u′rms/u)

2, as a function of the Reynolds
number. The linear increase near 630 ≤ Re1 ≤ 710 indicates a Hopf bifurcation
to a global mode. Subfigure (b) shows the Strouhal number of that global mode
as a function of the Reynolds number.

increase linearly with Re1. This is the classical behaviour around a Hopf bifur-

cation, which can be modelled with a Landau equation containing just first- and

third-order terms (Appendix B). Away from the bifurcation point, the increase

is less than linear, as fifth- and higher-order terms become influential.

3.1.3 Global frequency

Because the global mode is caused by an inertial instability, its frequency should

scale with an inertial timescale. One such timescale is d1/U1, which is the time

that a fluid element takes to travel a distance of d1 under its own inertia. Here

the jet diameter is used because the global mode is thought to be caused by a jet-

column instability (rather than by a shear-layer instability) whose characteristic

lengthscale is the distance between diametrically opposed shear layers. If this

timescale is used to non-dimensionalise the global frequency, the following form

of the Strouhal number results: St ≡ fd1/U1. Figure 3.5b shows St as a function

of Re1. Despite Re1 varying by a factor of three, St remains within a relatively

narrow range, between 0.21 and 0.31.
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3.2 Forced

The low-density jet is forced around its natural frequency, in order to study

how its natural dynamics at one frequency is affected by external forcing at other

frequencies. The jet response is measured with both a HWA probe and a pressure

transducer, although only the HWA measurements will be shown because they

are less influenced by external noise. As in §3.1.2 and §3.1.3, the HWA probe is

positioned on the jet centreline, 1.5d1 downstream of the injector outlet.

For these forcing experiments, the jet Reynolds number is fixed at Re1 = 1100.

This particular value is chosen because it is sufficiently far from the supercrit-

ical Hopf bifurcation – which occurs between Re1 = 630 and 710 – that the

instantaneous Re1 remains large enough to induce global instability even when

the jet is forced very strongly. At this Re1, the frequency of the natural global

mode is fn = 983 Hz, corresponding to a Strouhal number of 0.27. This is the

axisymmetric Mode II instability discussed by Monkewitz et al. (1990).

The jet is forced at 13 different frequencies around its natural frequency,

ranging from 823 Hz (ff/fn = 0.84) to 1143 Hz (ff/fn = 1.16). At each ff , the

forcing amplitude, A, defined as the peak-to-peak voltage into the loudspeaker,

is incrementally increased until lock-in is achieved. There is, however, one value

of ff , 823 Hz, for which lock-in cannot be achieved, even with the use of high A.

This value of ff is far from fn, so this result is not surprising.

3.2.1 Response before lock-in

With ff (1023 Hz) slightly above fn, figure 3.6a shows time traces of the local

streamwise velocity for nine forcing amplitudes: 200 ≤ A ≤ 900 mVpp. For

comparison, a time trace of the same quantity but without forcing is also shown

(bottom). The corresponding PSD curves are shown in figure 3.6b.

When unforced, the jet has a global mode at a discrete natural frequency,

represented in the PSD by a sharp peak at fn = 983 Hz. There are similar, but

weaker, peaks at the harmonics. The presence of harmonics indicates that the

natural varicose oscillation of the jet is not perfectly sinusoidal. In particular,

the peak at the first subharmonic, fn/2 = 491.5 Hz, suggests a period-doubling
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Figure 3.6: (a) Time trace and (b) PSD of the local streamwise velocity in the
low-density jet forced at a frequency, ff = 1023 Hz, slightly above the natural
frequency, fn = 983 Hz: ff/fn = 1.04. Data are shown for nine forcing ampli-
tudes, 200 ≤ A ≤ 900 mVpp, and for the unforced case. The onset of lock-in
occurs at Aloc = 700 mVpp. The arbitrary reference for the dB scale in the PSD
varies from curve to curve.

motion, commonly associated with vortex pairing.

When forced at low amplitudes (200 ≤ A ≤ 400 mVpp), the jet responds at

ff as well as fn. Around these two frequencies, there are multiple spectral peaks.

Known as sidebands, they are caused by nonlinear interactions between the nat-

ural mode and the forcing. Their presence suggests that the jet is quasiperiodic

(page 34), behaving like a typical forced oscillator before lock-in1.

Additional spectral peaks arise at low frequencies, f < 100 Hz. Among these,

the highest corresponds to the beat frequency: |ff−fn|. In the time traces (figure

3.6a), this beating phenomenon can be seen as low-frequency (long-wavelength)

modulations of the signal amplitude.

The spectral peaks around fn and ff , as well as those at low f due to beating,

can be explained by wavenumber-triad interactions. According to Pope (2000)

(§6.4, eqn 6.146), if the Navier–Stokes equations are written in Fourier space, the

1In dynamical systems, quasiperiodicity tends to arise when a self-excited oscillator is driven
at a low amplitude and at a frequency that is not a rational multiple of the natural frequency.
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nonlinear convection term gives rise to a convolution sum. Each Fourier mode,

say of wavenumber k1, is forced by combinations of two other Fourier modes, k2

and k3, such that k1 = k2+k3. Two high-wavenumber (short-wavelength) modes,

for example k2 = ± 19 and k3 = ± 20, can thus force a low-wavenumber (long-

wavelength) mode, here k1 = ± 1. This low-wavenumber mode would resemble

the beating mode observed above. Similarly, mode k1 = ± 1 could interact

with the two modes forcing it, k2 = ± 19 and k3 = ± 20, generating multiple

spectral peaks around them. These would resemble the sidebands observed above.

Moreover, even the natural harmonics seen in the unforced jet can be explained

by such interactions: the self-interaction of wavenumber k with itself causes the

forcing of wavenumber 2k.

As A increases from 400 to 650 mVpp, fn shifts towards ff , which remains

fixed. This decrease in |ff − fn| leads to an identical decrease in the dominant

beat frequency. Meanwhile, the spectral peaks around fn and ff become closer

and their envelope widens. By A = 650 mVpp, they are almost imperceptible,

their envelope showing a subtle bias towards frequencies below fn, as indicated

by the more marked tail.

Once A reaches a critical value of 700 mVpp, the natural mode locks into the

forcing: the PSD becomes dominated by ff and its harmonics (i.e. 2ff , 3ff ,...),

with no sign of the original natural mode. The PSD of the locked-in jet looks

similar to that of the unforced jet, except that the dominant frequency is ff .

The above features are seen not only when ff > fn but also when ff < fn.

Figure 3.7 shows time traces and PSD curves for ff = 943 Hz, with the natural

global mode at fn = 983 Hz as before. The response leading up to lock-in is the

same regardless of whether ff is above or below fn. In fact, even the subtle bias

in the PSD envelope seen before lock-in is present, although with ff < fn the

tail of that envelope is now more marked on the high-frequency side of fn.

The jet dynamics can be understood more easily by inspecting phase portraits

and Poincaré maps. A phase portrait is a three-dimensional plot of the system

motion (here u) against that same motion shifted by a time delay, and by two time

delays1. A two-dimensional slice through that set of phase trajectories gives the

1As noted in chapter 2, the optimal time delay is found by computing the first zero-crossing
of the autocorrelation function, as recommended by Abarbanel (1996).
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Figure 3.7: (a) Time trace and (b) PSD of the local streamwise velocity in the
low-density jet forced at a frequency, ff = 943 Hz, slightly below the natural fre-
quency, fn = 983 Hz: ff/fn = 0.96. Data are shown for eight forcing amplitudes,
200 ≤ A ≤ 500 mVpp, and for the unforced case. The onset of lock-in occurs at
Aloc = 400 mVpp. The arbitrary reference for the dB scale in the PSD varies
from curve to curve.

Poincaré map. The phase portraits and Poincaré maps for the forcing conditions

of figure 3.6 are shown in figure 3.8.

For the unforced jet (figure 3.8a), the phase trajectory is closed, indicating

that the jet oscillates periodically at a limit cycle (of fn). A cross-section of this

trajectory contains data points scattered around two blobs. If the system were

free of noise, the trajectory would be perfectly closed and the Poincaré map would

show two discrete points.

As A increases, the phase trajectory follows the surface of a torus. In the

Poincaré map, this is seen as two rings. The appearance of a torus-like surface

is characteristic of quasiperiodicity. For weak forcing (200 ≤ A ≤ 650 mVpp),

the rings grow as A increases. For strong forcing (700 ≤ A ≤ 900 mVpp), they

close again to another limit cycle, this time at ff . The final limit cycle resembles

the one for the unforced jet, but has slightly less scatter because the flow is now

forced by an external signal.
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(a) A = 0 mVpp

(b) A = 200 mVpp (c) A = 300 mVpp (d) A = 400 mVpp

(e) A = 500 mVpp (f) A = 600 mVpp (g) A = 650 mVpp

(h) A = 700 mVpp (i) A = 800 mVpp (j) A = 900 mVpp

Figure 3.8: Phase portraits (left) and Poincaré maps (right) for the low-density
jet forced at the conditions of figure 3.6. Each subfigure is for a different forcing
amplitude: A = (a) 0, (b) 200, (c) 300, (d) 400, (e) 500, (f) 600, (g) 650, (h) 700,
(i) 800, and (j) 900 mVpp.
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3.2.2 Response at lock-in

The jet dynamics at lock-in can be examined via the relationship between the

minimum forcing amplitude required for lock-in, Aloc, and the normalised forcing

frequency, ff/fn. This is shown in figure 3.9 (circular markers) to form a lock-in

map. The diagonal lines through the data around ff/fn = 1 are linear fits. The

data at ff/fn < 1 are regressed separately from the data at ff/fn > 1.

Also shown on the figure are contours of the jet response, defined as the ratio

of the RMS velocity fluctuation with forcing to the same quantity without forcing:

u′rms, for/u
′
rms, unf . Globally unstable flows, such as this low-density jet, oscillate

at discrete frequencies even when unforced, so normalising the response by that

of the unforced jet provides a useful baseline.

When ff is near fn, Aloc is low; otherwise it is high. Around ff/fn = 1,

Aloc increases in proportion to |ff − fn|, indicating a Hopf bifurcation to a global

mode. This linear relationship gives rise to a ∨-shaped lock-in curve, similar to

the ones seen in other self-excited flows (§1.4.2).
As A increases for ff > fn or < fn, the jet response first decreases below unity,

reaches a minimum near the onset of lock-in (circular markers), and then increases

back towards unity. As A increases for ff = fn, however, the jet response simply

increases above unity without ever falling below it. The former finding shows

that the jet oscillations at lock-in are weaker than those of the unforced jet. This

suggests that, for thermoacoustic systems, lock-in may not be as detrimental as

it is thought to be.

Finally, the ∨-shaped lock-in curve is asymmetric: Aloc is lower for ff < fn

than for ff > fn. In these experiments, A is assumed to be directly proportional

to the acoustic power from the loudspeaker, as is common in the literature (Kyle

and Sreenivasan, 1993; Sreenivasan et al., 1989). It is better, though, to have

direct measurements of A, such as the acoustic pressure or velocity, because these

would eliminate the unknown relationship between the loudspeaker voltage and

flow fluctuations. For this reason, the two-microphone method will be used in

the combustion experiments (chapter 4) in order to express the forcing in terms

of the velocity perturbation at the injector outlet.
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Figure 3.9: Lock-in map for the low-density jet, shown on contours of the nor-
malised response (defined in the text). The critical forcing amplitude required
for lock-in, Aloc, is indicated by the circular markers. On the colorscale, a jet
response of unity is in green, with values above unity in warmer (red/yellow)
hues and values below unity in cooler (blue/cyan) hues.
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Chapter 4

Jet diffusion flames

In this chapter, the global instability of a range of jet diffusion flames is examined

experimentally. First the flames are examined without forcing, in order to study

their natural self-excited dynamics. Then they are examined with forcing applied

around their natural frequencies, in order to study how their natural dynamics

at one frequency are affected by external forcing at other frequencies.

The experiments are performed on Injector B (§2.4), with flames created from

mixtures of methane and nitrogen. The flames are forced sinusoidally by a loud-

speaker mounted upstream, and their responses measured with a high-speed cam-

era via broadband chemiluminescence (§2.5.3).

4.1 Unforced

4.1.1 Baseflow characterisation

Before the flame dynamics is studied, the velocity profile at the outlet of Injec-

tor B is measured with HWA (§2.5.1). Air is used as the test fluid, as in the

measurements on Injector A (§3.1.1).
Figures 4.1–4.3 are analogous to figures 3.1–3.3 but are for Injector B rather

than for Injector A. Figure 4.1a shows radial profiles of the time-averaged stream-

wise velocity, normalised by the maximum across each profile, for a range of

Reynolds numbers: 470 ≤ Re1 ≤ 3290. Figure 4.1b shows radial profiles of the
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Figure 4.1: (a) Normalised time-averaged velocity and (b) turbulence intensity
at the outlet of Injector B. They are plotted as a function of radial position for
seven Reynolds numbers: 470 ≤ Re1 ≤ 3290.

turbulence intensity1 for the same Reynolds numbers. Figure 4.2 shows δ∗ and

θ, as well as their ratio, while figure 4.3 shows the transverse curvature, all as a

function of the Reynolds number.

These figures show that the baseflow characteristics of Injector B are similar

to those of Injector A. In both injectors, the velocity and the turbulence intensity

are uniform over the central part of the flow and are symmetric about the jet

centreline. The velocity approaches zero at the walls (r/d1 = ±0.5) and the

turbulence intensity peaks in the boundary layers. AsRe1 increases, the boundary

layer thickness and the turbulence intensity both decrease. In other words, the

flat part of the velocity profile extends to a greater radius and has proportionately

less turbulent fluctuation.

There are, nevertheless, two notable differences. First, the turbulence inten-

sity in Injector B is lower than that in Injector A. This is seen across the entire

outlet, from the jet centreline to the boundary layers. In the central part of the

flow, for example, the turbulence intensity in Injector B varies between 0.20 and

0.25% over 470 ≤ Re1 ≤ 3290 (figure 4.1b), whereas that in Injector A varies

between 0.25 and 0.37% over a similar range of Re1 (figure 3.1b). As for the

1As in chapter 3, the turbulence intensity is defined as the RMS velocity fluctuation nor-
malised by the time-averaged velocity: u′

rms/u.
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second difference, the boundary layers in Injector B are thinner than those in

Injector A – for any given value of Re1. This can be seen in the lower values of

δ∗ and θ (figure 4.2a compared to figure 3.2a), as well as in the higher values of

the transverse curvature (figure 4.3 compared to figure 3.3).
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Figure 4.2: (a) Displacement thickness, δ∗, and momentum thickness, θ, and (b)
their ratio at the outlet of Injector B. They are plotted as a function of the same
Reynolds numbers as in figure 4.1.
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Figure 4.3: Transverse curvature, d1/θ, at the outlet of Injector B. It is plotted
as a function of the square root of the Reynolds numbers shown in figures 4.1
and 4.2. The blue line is a linear fit.
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4.1.2 Global bifurcation

As noted in §2.2, the strength of the global instability in a jet diffusion flame can

be changed by changing the flow parameters. Three of these are examined below:

the mixture composition, the jet velocity, and the coflow velocity.

4.1.2.1 Mixture composition

The natural flame oscillation is measured as the volumetric concentration of

methane, [CH4], is varied between 36.7 and 100% (N2 makes up the balance)1.

For each flame, the total flow rate of the reactants is fixed at 5×10−5 m3 s−1, for

a jet velocity of U1 = 1.77 m s−1. The oscillation amplitude is plotted in figure

4.4a as a function of [CH4] and x/d1. It is defined as the square of the local RMS

intensity fluctuation normalised by the local time-averaged intensity: (I ′rms/I)
2.

At low methane concentrations (36.7 ≤ [CH4] ≤ 40%), the oscillation ampli-

tude is low everywhere except near x/d1 ≈ 18 where it increases slightly, peaking

around 0.35. Although the flame is globally stable throughout, it is convectively

unstable in the upstream region. Small perturbations at the injector amplify

in this region but remain undetectable until their amplitudes are sufficient to

cause the flame to oscillate. An inspection of the high-speed videos shows that

the flame begins to oscillate at x/d1 ≈ 18, a location that coincides with the

measured increase in the oscillation amplitude.

Once [CH4] > 40%, the flame bifurcates into a global mode. This can be seen

in the bifurcation diagram2 of figure 4.4b, which shows the oscillation amplitude

as a function of [CH4] at four axial stations, all upstream of the location of peak

amplitude. The global bifurcation causes an abrupt increase in the oscillation

amplitude. Near the bifurcation point, the increase in the square of the intensity

fluctuation is linear, indicating a Hopf bifurcation to a global mode. The exact

value of the bifurcation point depends on the downstream distance: the base of

the global mode moves upstream as [CH4] increases. This spatial dependence has

been reported before in counterflowing jets, by Strykowski and Niccum (1991),

and in crossflowing jets, by Davitian et al. (2010). Beyond the bifurcation point,

1For [CH4] < 36.7%, the flame blows off and cannot be studied.
2The data in this figure are taken from horizontal slices through figure 4.4a.
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Figure 4.4: Oscillation amplitude of CH4–N2 jet diffusion flames as a function
of (a) methane concentration and axial distance, and (b) methane concentration
at four axial stations. The oscillation amplitude is defined as the square of the
local RMS intensity fluctuation normalised by the local time-averaged intensity:
(I ′rms/I)

2. In subfigure (b), the dashed lines are linear fits to the data after the
global bifurcation.

the oscillation amplitude continues to grow. Once [CH4] > 63.3%, however, it

remains roughly constant, all the way to [CH4] = 100%, indicating that the

saturated amplitude of the global mode has reached a maximum.

Further on the spatial dependence of the global mode, figure 4.4a shows that

as [CH4] increases above 40%, the location of peak amplitude shifts upstream.

This happens until [CH4] = 63.3%, after which it shifts to x/d1 ≈ 16 and stays

there for higher [CH4]. This curious behaviour is not investigated further.

4.1.2.2 Other control parameters

Changing the mixture composition is not the only way to control the global

instability in a jet diffusion flame. It can also be done by changing the jet velocity

or by adding coflow. Both of these methods have been tried in this thesis, but

for brevity only an overview of the results is given.

For the globally unstable flames (43.3 ≤ [CH4] ≤ 100%), increasing the jet

velocity causes the oscillation amplitude to decrease and its peak to shift down-

88



stream. Above a critical jet velocity, the global mode becomes suppressed, result-

ing in a globally stable flame1. This critical jet velocity is highest for the most

unstable flame ([CH4] = 100%) but decreases as the flame becomes less unstable

(i.e. as [CH4] decreases). For the globally stable flames (36.7 ≤ [CH4] ≤ 40%), a

similar decrease in the oscillation amplitude occurs with increasing jet velocity.

The decrease in the oscillation amplitude is caused by the increase in the group

velocity of perturbations that arises from an increase in the jet velocity. In effect,

the speed at which the kinetic energy of perturbations is advected downstream

increases, making the flow less absolutely unstable, or even convectively unstable,

thereby making the flow less globally unstable. This stabilising effect of the jet

velocity is not, however, observed in all globally unstable flows. In the low-density

jet (chapter 3), for example, increasing the jet velocity causes the oscillation

amplitude to increase. To explain this behaviour, it is necessary to consider the

physical mechanisms behind the global instability. In the low-density jet, the

global instability arises from shear, and this increases with the jet velocity2. In

the jet diffusion flame, the global instability arises from buoyancy3 and is advected

away by the jet velocity. The jet velocity therefore drives the instability in the

low-density jet but damps it in the jet diffusion flame, which is why its increase

leads to different effects on the two flows.

The effect of coflow air around the flame base has also been examined. The

findings show that increasing the coflow velocity has a similar effect to increasing

the jet velocity: the oscillation amplitude decreases and its peak shifts down-

stream. The physical cause is also similar: increasing the coflow velocity increases

the group velocity of perturbations, increasing the mean advection. Compared

to the jet velocity, the coflow velocity may even be more effective at sweeping

away the instability, because the group velocity is weighted more heavily towards

the velocity of the denser fluid. In buoyant jet diffusion flames, the denser fluid

around the inflexion point (IP3 in figure 1.7) causing global instability is the

ambient fluid, which is replaced by the coflow fluid when coflow is used.

1This suppression of global instability is seen throughout the entire flame, and is not just
an artefact of the instability shifting outside the field of view.

2Advection also increases with the jet velocity but not enough to carry away the instability.
3Specifically from a buoyancy-induced modification of the velocity profile that creates an

absolutely unstable inflexion point just outside the flame surface (IP3 in figure 1.7).
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In this thesis, the coflow velocities used (0 ≤ U2/U1 ≤ 0.14) are not sufficient

to fully damp the global mode but are sufficient to reduce its oscillation amplitude.

For the globally stable flames (36.7 ≤ [CH4] ≤ 40%), introducing even a small

amount of coflow (U2/U1 ≈ 0.01) causes the flame to lift off from the injector lip1.

Because this thesis does not concern lifted flames, however, these conditions are

not investigated further.

In some experiments, hydrogen is used as the fuel. Compared to methane,

hydrogen has a lower density, a lower stoichiometric mixture fraction, and a higher

flame temperature. These features help make a hydrogen flame more globally

unstable than an equivalent methane flame, though this is not the only reason it

is used. Research by Juniper et al. (2009) has shown that a hydrogen flame can

be made globally stable in similar ways as a methane flame can be: for example,

by diluting the fuel with nitrogen or helium. The use of hydrogen, in place of

methane, therefore enables a wider range of self-excited dynamics to be studied.

In this thesis, experiments with hydrogen are limited to just a few exploratory

tests, for two main reasons. The first is related to safety. Among flammable

gases, hydrogen is particularly dangerous owing to its wide explosion limits and

low ignition energy. This danger is exacerbated by the measurement procedure,

which requires that the local extraction be deactivated during data acquisition in

order to prevent exhaust updrafts from disturbing the sensitive flame oscillations.

The second reason for not using hydrogen more extensively is related to opti-

cal diagnostics. The chemiluminescent emission from a hydrogen flame is weak,

resulting in a low SNR in the high-speed videos. This problem is exacerbated

partly because an image intensifier is not available and partly by the need to

use short exposure times for resolving the dominant flame frequencies. Conse-

quently, methane is preferred over hydrogen because its chemiluminescent emis-

sion is stronger and can be imaged more reliably with the available equipment.

In the limited tests involving hydrogen, only schlieren imaging is used. Schlieren

works well for this because hydrogen has a low density and thus produces high

density gradients when combusting in atmospheric air.

1The flame can be ‘stabilised’ with its base perfectly steady up to 5d1 above the injector
lip. This stability is a testament to the symmetry and quietness of the baseflow in Injector B.
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4.2 Forced

The flames are forced around their natural frequencies, in order to study how

their natural dynamics at one frequency are affected by external forcing at other

frequencies. In total, six different flames are studied (table 4.1): five globally

unstable and one marginally globally stable. For each flame, the total flow rate

of the reactants is fixed at 5×10−5 m3 s−1, for a jet velocity of U1 = 1.77 m s−1.

The globally unstable flames (Flames 1–5) all have similar natural frequen-

cies: 12.5 ≤ fn ≤ 14.7 Hz. The marginally globally stable flame (Flame 6) has

two natural frequencies, 14.8 and 16.1 Hz, when unforced. These, however, are

replaced by a lightly damped global mode, at fn = 14.3 Hz, whenever forcing is

applied – however low its amplitude and even if its frequency is far from fn.

All six flames are forced sinusoidally by a loudspeaker mounted upstream

(§2.4), over a range of frequencies (7 ≤ ff ≤ 35 Hz)1 around the natural global

frequency. This ff range is wide, covering fn and its second harmonic, 2fn. It also

covers the high-frequency side of the first subharmonic, fn/2. The low-frequency

side is not covered because the loudspeaker cannot produce sufficient forcing

amplitudes without damaging its suspension. Moreover, as ff decreases, the

waveform of the sinusoidal forcing signal becomes increasingly distorted, leading

to undesired harmonics in the measured spectra.

The forcing amplitude, A, is measured with the two-microphone method

(§2.5.2). It is defined, at the injector plane, as the amplitude of the velocity

perturbation at ff normalised by the bulk jet velocity: A ≡ |u′1, ff |/U1. At each

ff , A is incrementally increased to 0.90, even though lock-in often occurs earlier2.

Lock-in is defined as being when fn locks into ff , leaving no sign of the natural

global mode in the PSD. This is a qualitative change, meaning that the onset

of lock-in can be identified simply by inspecting the PSD.

The flame response is measured with the high-speed imaging setup described

in §2.5.3. As mentioned in that section, the intensity in each frame of each video

is summed across every pixel column, generating a time series – five pixel rows

1The ff increment is 1 Hz, except if fn is more than 0.25 Hz from an integer frequency
value, in which case an additional setting, at the 0.5 Hz increment, is used.

2The A increment is usually 0.20 but is reduced to 0.050 around lock-in and to 0.025 if
lock-in occurs at A < 0.10.
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Table 4.1: Flow conditions of the six flames under investigation. The properties
listed are at a temperature of 293 K and a pressure of 101.3 kPa. GU, globally
unstable; MGS, marginally globally stable; U2/U1, coflow-to-jet velocity ratio;
fn, natural global frequency; s, cold density ratio; Zst, stoichiometric mixture
fraction; Tad, adiabatic flame temperature; Re1, cold jet Reynolds number.

Flame [CH4]% [N2]% U2/U1 fn [Hz] s Zst Tad [K] Re⋆1
1 6 100 0 0 12.5 0.554 0.055 2330 647
2 100 0 0.083 13.9 0.554 0.055 2330 647
3 GU 80 20 0 13.0 0.637 0.077 2290 488
4

?

60 40 0 13.3 0.719 0.112 2230 496
5 60 40 0.083 14.7 0.719 0.112 2230 496
6 MGS 40 60 0 14.3⋆⋆ 0.802 0.175 2120 543

⋆ The mixture viscosities used in calculating Re1 are approximated by the method

of Wilke (1950), with data for the pure components provided by Poling et al. (2001).

⋆⋆ This is the frequency of the marginal global mode, which is detectable only with

forcing. Without forcing, Flame 6 exhibits two weak modes at 14.8 and 16.1 Hz.

in height – at each axial station, I (x/d1) (see figure 2.8 for details). In most

of this chapter, however, only one axial station is considered: x/d1 = 10. This

station is chosen for three reasons: (i) it is just far enough downstream that the

chemiluminescent emission leads to a reliable SNR without saturation; (ii) it is

sufficiently far downstream that the global mode (if one exists) has time to grow

and interact with the forcing; but (iii) it is not so far downstream that it coincides

with the location of vortex roll-up, where the strain rates can be high enough to

cause local flame extinction1, especially if high forcing amplitudes are used. The

other axial stations will be considered later, when the flame response is examined

via the flame describing function (§4.2.3).
1Lingens et al. (1996b) showed that in jet diffusion flames, the axial velocity gradient caused

by the natural roll-up of toroidal structures can reach up to 360 s−1, which is near the critical
strain rates for extinction (350–410 s−1, for methane) reported by Tsuji and Yamaoka (1971)
and Dixon-Lewis et al. (1985).
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4.2.1 Response before lock-in

The flame response before lock-in is examined because it will determine how

decoupled the heat release can be from the applied perturbations. A globally

unstable flame is considered first, followed by a marginally globally stable flame.

4.2.1.1 Globally unstable flame

Flame 5 is used as a representative flame because it exhibits most clearly the

dynamics common to all five globally unstable flames. As an added benefit,

its oscillations are particularly clean and axisymmetric – probably because the

coflow stream shields the sensitive buoyant plume from external disturbances such

as indoor drafts and ambient noise – which should help in the search for spectral

features and trends.

4.2.1.1.1 Forcing near the fundamental: fn

With ff (16 Hz) slightly above fn, figure 4.5a shows time traces of the intensity

from Flame 5 forced at five amplitudes: 0.025 ≤ A ≤ 0.30. For comparison, a

time trace of the same signal from the same flame but without forcing is also

shown (bottom). The corresponding PSD curves are shown in figure 4.5b.

The response of this flame is qualitatively similar to that of the low-density jet

from chapter 3. When unforced, the flame has a global mode at a discrete natural

frequency, represented in the PSD by a sharp peak at fn = 14.7 Hz. There are

similar, but weaker, peaks at the harmonics. The presence of harmonics indicates

that the natural varicose oscillation of the flame is not perfectly sinusoidal.

When forced at a low amplitude (A = 0.025), the flame responds at ff as well

as fn. Around these two frequencies, there are multiple spectral peaks. Known as

sidebands, they are caused by nonlinear interactions between the natural mode

and the forcing (as explained on page 79). Their presence suggests that the flame

is quasiperiodic, behaving like a typical forced oscillator before lock-in1.

Additional spectral peaks arise at low frequencies, f < 3 Hz. Among these,

the highest corresponds to the beat frequency: |ff−fn|. In the time traces (figure

1In dynamical systems, quasiperiodicity tends to arise when a self-excited oscillator is driven
at a low amplitude and at a frequency that is not a rational multiple of the natural frequency.
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(b) PSD

Figure 4.5: (a) Time trace and (b) PSD of the intensity from Flame 5 forced
at a frequency, ff = 16 Hz, slightly above the natural frequency, fn = 14.7 Hz:
ff/fn = 1.09. Data are shown for five forcing amplitudes, 0.025 ≤ A ≤ 0.30, and
for the unforced case, all at x/d1 = 10. The onset of lock-in occurs at Aloc = 0.075.

4.5a), this beating phenomenon can be seen as low-frequency (long-wavelength)

modulations of the signal amplitude.

As A increases from 0.025 to 0.050, fn shifts towards ff , which remains fixed.

This decrease in |ff − fn| leads to an identical decrease in the dominant beat

frequency. Meanwhile, the spectral peaks around fn and ff become closer and

their envelope widens. By A = 0.050, they are almost imperceptible, although a

subtle bias can be seen for f < fn, as indicated by the more marked tail on that

side of the spectral envelope.

Once A reaches a critical value of 0.075, the natural mode locks into the

forcing: the PSD becomes dominated by ff and its harmonics (i.e. 2ff , 3ff ,...),

with no sign of the original natural mode. The PSD of the locked-in flame looks

similar to that of the unforced flame, except that the dominant frequency is ff .

The above features are seen not only when ff > fn but also when ff < fn.

Figure 4.6 is analogous to figure 4.5 but for ff = 14 Hz or ff/fn = 0.95. A

comparison of these two cases reveals both similarities and differences between

forcing above and below the natural frequency. The similarities are mostly in the
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(b) PSD

Figure 4.6: (a) Time trace and (b) PSD of the intensity from Flame 5 forced
at a frequency, ff = 14 Hz, slightly below the natural frequency, fn = 14.7 Hz:
ff/fn = 0.95. Data are shown for five forcing amplitudes, 0.025 ≤ A ≤ 0.30, and
for the unforced case, all at x/d1 = 10. The onset of lock-in occurs at Aloc = 0.075.

shape of the PSD: almost all of the features seen for ff > fn (figure 4.5b) are

seen for ff < fn (figure 4.6b). In fact, even the subtle bias in the PSD envelope

seen before lock-in is present, although with ff < fn the tail of that envelope is

now more marked on the high-frequency side of fn.

As for the differences, the main one is in the amplitude of the flame oscillations,

particularly around lock-in. When forced to lock into a frequency < fn (figure

4.6), the flame oscillates with an amplitude that is higher than the unforced

amplitude. When forced to lock into a frequency > fn (figure 4.5), however, the

flame oscillates with an amplitude that is lower than the unforced amplitude.

This difference appears even before the flame fully locks in (A = 0.025–0.050 in

both cases) and remains after it does, despite the fact that further increases in

A cause the oscillation amplitude to increase for either ff < fn or > fn. This

amplitude dependence on ff is also detectable in the magnitude of the PSD

peaks (figures 4.5b and 4.6b) and will be examined more carefully in §4.2.2.
Sample images of Flame 5 oscillating through one complete cycle are shown

in figure 4.7 for both ff < fn (ff/fn = 0.95) and ff > fn (ff/fn = 1.09), as
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well as for the unforced case. For the unforced case (figure 4.7e), the roll-up of

toroidal vortices due to the natural (hydrodynamic) global mode causes the flame

intensity to vary axisymmetrically with high temporal repeatability. The flame

intensity is strongest just downstream of the passing vortex core, but is weakest

just upstream of it, suggesting that the variations in heat release are caused by

variations in flame stretch. According to Lingens et al. (1996b) and Katta and

Roquemore (1995), the heat release from a laminar diffusion flame is a strong

function of the strain rate at the fuel–oxidiser layer. High strain rates, as induced

by the passage of a vortex, can lead to decreases in the flame temperature and

the reaction-zone thickness, thus leading to decreases in the local heat release.

As A increases for ff < fn (figure 4.7c), the flame surface becomes more con-

voluted, exhibiting seemingly larger curvatures. This is probably due to nonlinear

interactions between the vortical waves from the applied forcing and the vorti-

cal waves from the natural mode. At lock-in (figure 4.7a), the flame oscillations

are particularly strong. This is probably because the toroidal vortices, which no

longer roll up naturally but are driven by the forcing, are now of sufficient size

and strength that they are able to readily penetrate to the reaction zone and

readily affect its curvature and thickness.

As A increases for ff > fn (figure 4.7d), the flame initially remains similar

to the unforced flame. At lock-in (figure 4.7b), however, the flame oscillations

are markedly weaker, with no noticeable roll-up of coherent structures. These

observations concur with the data presented earlier (figures 4.5 and 4.6).

To complement figure 4.7, figure 4.8 shows axial distributions of the PSD

from Flame 5 for the same forcing conditions. The primary purpose of this figure

is to show that all of the spectral features noted earlier at x/d1 = 10 can be ex-

tended throughout the flame body. The secondary purpose is to show generally

how the PSD varies in space. Close upstream, the PSD is weak because the

chemiluminescent intensity – and hence the SNR – is low. With downstream

development, however, it increases across the entire measured bandwidth, satu-

rating at x/d1 ≈ 10 or around where most of the data in this chapter is examined.

This is also the location where, just before lock-in (figure 4.8d), the spectral peaks

around ff and fn have the widest envelope. Finally, once Aloc is reached (figures

4.8a and 4.8b), lock-in occurs simultaneously everywhere in the flame.
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(a) ff = 14 Hz, A = 0.075 (Locked-in) (b) ff = 16 Hz, A = 0.075 (Locked-in)

(c) ff = 14 Hz, A = 0.025 (Not locked-in) (d) ff = 16 Hz, A = 0.025 (Not locked-in)

(e) Unforced

Figure 4.7: Image sequence of Flame 5 oscillating through one complete cycle.
The forcing conditions range from (e) unforced, to weakly forced without lock-in
(c) below and (d) above fn, to strongly forced with lock-in (a) below and (b)
above fn. For the cases with lock-in (a, b), the images are separated in time by
a quarter period of the forcing. For the cases without lock-in (c, d, e), the images
are separated in time by a quarter period of the natural mode (fn = 14.7 Hz). The
sequences run from left to right, and the white arrow in subfigure (e) indicates
the axial station at which the data are examined (x/d1 = 10). The field of view
extends downstream to x/d1 = 29.
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(a) ff = 14 Hz, A = 0.075 (Locked-in) (b) ff = 16 Hz, A = 0.075 (Locked-in)

(c) ff = 14 Hz, A = 0.025 (Not locked-in) (d) ff = 16 Hz, A = 0.025 (Not locked-in)

(e) Unforced

Figure 4.8: PSD of the intensity from Flame 5 as a function of downstream
distance, x/d1. The forcing conditions are the same as those in figure 4.7.
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(b) PSD

Figure 4.9: (a) Time trace and (b) PSD of the intensity from Flame 5 forced
at a frequency, ff = 19 Hz, well above the natural frequency, fn = 14.7 Hz:
ff/fn = 1.29. Data are shown for eight forcing amplitudes, 0.05 ≤ A ≤ 0.90, and
for the unforced case, all at x/d1 = 10. The onset of lock-in occurs at Aloc = 0.20.

The flame responds to forcing not just when ff and fn are close together but

also when they are far apart. Figure 4.9 is analogous to figures 4.5 and 4.6 but

for ff = 19 Hz or ff/fn = 1.29. It shows that when ff is far from fn, lock-in

still occurs, though it does not involve fn shifting to ff progressively. Instead

it occurs abruptly once A reaches a critical value: Aloc = 0.20. Before lock-in

(A = 0.05–0.10), there is beating between fn and ff , as indicated by the low-

frequency peak in the PSD at around 4.3 Hz. The amplitude of this peak is

higher than the amplitude of the ff peak. On approach to lock-in (A = 0.15–

0.20), the amplitude of the natural mode at fn falls to the background noise level.

After lock-in (A = 0.30–0.90), further increases in A give rise to identical sets of

spectral peaks between DC and ff as well as between the harmonics of ff .

The flame dynamics can be understood more easily by inspecting phase por-

traits and Poincaré maps. A phase portrait is a three-dimensional plot of the

system motion (here I) against that same motion shifted by a time delay, and by

two time delays1. A two-dimensional slice through that set of phase trajectories

1As noted in chapter 2, the optimal time delay is found by computing the first zero-crossing
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gives the Poincaré map. The phase portraits and Poincaré maps for Flame 5

forced at 16 Hz (the forcing conditions of figure 4.5) are shown in figure 4.10.

For the unforced flame (figure 4.10a), the phase trajectory is closed, indicating

that the flame oscillates periodically at a limit cycle (of fn). A cross-section of

this trajectory contains data points scattered around two blobs. If the system

were free of noise, the trajectory would be perfectly closed and the Poincaré map

would show two discrete points.

The blobs are elongated for this flame but are circular for the low-density jet

from chapter 3. The cause of this is not known but may be related to asymmetries

in the flame intensity signal. A comparison of figures 4.5a and 3.6a shows that

the amplitude modulation in the flame signal occurs mostly at the top of the

waveform (at high intensity values), whereas the amplitude modulation in the

jet signal occurs at both the top and bottom. In other words, the amplitude

modulation in the flame signal is not symmetric about the mean: the troughs

remain relatively steady while the crests move up and down significantly. This

behaviour may explain why the Poincaré maps for the flame show trajectories with

lots of movement along one axis but not much movement along the other axis.

As for why the troughs of the flame signal remain steady, several explanations are

plausible. Local extinction is one, although inadequate camera sensitivity could

also produce a similar effect.

As A increases, the phase trajectory follows the surface of a torus. In the

Poincaré map (figure 4.10b), this is seen as two rings. The appearance of a torus-

like surface is characteristic of quasiperiodicity. For weak forcing (A = 0.025–

0.050), the rings grow as A increases. For strong forcing (A = 0.075–0.30), they

close again to another limit cycle, this time at ff . The final limit cycle resembles

the one for the unforced flame, but has slightly less scatter because the flow is

now forced by an external signal.

For completeness, the phase portraits and Poincaré maps for Flame 5 forced

at 14 Hz are shown in Appendix F. They are qualitatively similar to those for

ff = 16 Hz and therefore need not be discussed again.

of the autocorrelation function, as recommended by Abarbanel (1996).
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(f) A = 0.30

Figure 4.10: Phase portraits (left) and Poincaré maps (right) for Flame 5 forced
at 16 Hz (ff/fn = 1.09) with five amplitudes, plus the unforced case.
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4.2.1.1.2 Forcing near the first subharmonic: fn/2

Lock-in can also be achieved by forcing the flame near the first subharmonic of

its natural fundamental frequency. With ff (8 Hz) slightly above fn/2 (7.35 Hz),

figure 4.11a shows time traces of the flame intensity for seven forcing amplitudes:

0.10 ≤ A ≤ 0.70. For comparison, a time trace of the same signal from the same

flame but without forcing is also shown (bottom). The PSD curves for these

signals are shown in figure 4.11b, and their phase portraits and Poincaré maps

are shown in figure 4.12.

When unforced, the flame oscillates periodically at a limit cycle (fn = 14.7 Hz)

with substantial energy in the harmonics, as expected. When forced at a low

amplitude (A = 0.10), it responds at both ff and fn, also as expected. There

is again beating between fn and ff , giving rise to a spectral peak at fn − ff =

14.7 − 8 = 6.7 Hz, on the low-frequency side of ff . Further interactions occur

between this primary beat frequency and ff itself, giving rise to another spectral

peak, this time at ff − (fn − ff) = 8 − (14.7 − 8) = 1.3 Hz. The nonlinear

interactions between the natural, forcing, and beat frequencies become stronger

as A increases. The result is that just before lock-in (A = 0.30), a train of spectral

peaks develops in the PSD (figure 4.11b) and a torus-like structure develops in

the phase portrait and Poincaré map (figure 4.12c). Taken together, these features

indicate that the flame oscillates quasiperiodically before lock-in, with the forcing

and the natural mode competing nearly equally for control of the oscillations.

Once A reaches a critical value of 0.35, subharmonic lock-in occurs. The time

traces, nevertheless, show that the waveform of the flame intensity signal is far

from sinusoidal: it contains secondary crests halfway between primary crests.

The primary crests, at a frequency of 8 Hz, are caused by the flame locking

into the forcing. The secondary crests, at the same frequency but shifted in

phase by π, team up with the primary crests to create a strong spectral peak

at the second harmonic of the forcing signal, 2ff . The phase portrait at lock-in

(figure 4.12d) shows a trajectory that goes through two loops before overlapping

onto itself. Compared to a single-loop trajectory, this twin-loop trajectory takes

twice as long to complete a limit cycle, which is why it is often referred to as a

‘period-2 oscillation’. A telltale sign of a period-2 oscillation is the appearance
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Figure 4.11: (a) Time trace and (b) PSD of the intensity from Flame 5 forced
at a frequency, ff = 8 Hz, slightly above the first subharmonic, fn/2 = 7.35 Hz:
ff/(fn/2) = 1.09. Data are shown for seven forcing amplitudes, 0.10 ≤ A ≤ 0.70,
and for the unforced case, all at x/d1 = 10. The onset of lock-in occurs at
Aloc = 0.35.

of four discrete points in the Poincaré map. Figure 4.12d does indeed show four

discrete blobs, and these remain relatively intact as A increases. The time traces,

meanwhile, show that the oscillation amplitude of the (subharmonic) locked-in

flame is much lower than that of the unforced flame. A similar reduction in

the oscillation amplitude was seen earlier for ff slightly above fn (figure 4.5a),

so seeing it here for ff slightly above fn/2 is not entirely surprising. Still, this

behaviour will be examined more carefully in §4.2.2.
At higher forcing amplitudes (A = 0.50–0.70), there is a spectral peak at the

first subharmonic of the forcing frequency: ff/2 = 4 Hz (figure 4.11b). Its pres-

ence suggests that the flame is undergoing a period-doubling motion, commonly

associated with vortex pairing.
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(h) A = 0.70

Figure 4.12: Phase portraits (left) and Poincaré maps (right) for Flame 5 forced
at 8 Hz (ff/(fn/2) = 1.09) with seven amplitudes, plus the unforced case.

104



4.2.1.1.3 Forcing near the second harmonic: 2fn

The flame dynamics become more complex when the forcing is applied near the

second harmonic of the natural fundamental frequency. With ff (29 Hz) slightly

below 2fn (29.4 Hz), figure 4.13 shows time traces and PSD curves of the flame

intensity for five forcing amplitudes (0.10 ≤ A ≤ 0.90) and for the unforced case.

The phase portraits and Poincaré maps are shown in figure 4.14.

When unforced, the flame oscillates periodically at a limit cycle (fn = 14.7 Hz)

with substantial energy in the harmonics, as expected. When forced at a low

amplitude (A = 0.10), it responds with typical nonlinear interactions between ff

and fn, including some between ff/2 and fn. According to the phase portrait

(figure 4.14b), the flame could be quasiperiodic, although the noisiness of the

data makes it difficult to be certain.

When forced at moderate amplitudes (A = 0.30–0.50), the flame appears to

oscillate predominately at ff , according to the PSD. This would normally be

sufficient to classify it as being locked-in. The time traces and the phase portraits

(figures 4.14c and 4.14d), however, suggest that the dynamics are much richer

than that. The time traces show a complex modulation of the signal amplitude,

with sharp gradients and no clear dominance of a sinusoid at ff . The phase

portraits show an apparent period-2 oscillation, although both the path of the

trajectories and the randomness of their Poincaré sections suggest that the flame

may be approaching a chaotic state. Consequently, the flame is not considered

to be locked-in at these forcing conditions.

When forced at high amplitudes (A = 0.70–0.90), the flame exhibits a fun-

damental change in its response, but is still not considered to be locked-in. Its

PSD contains significantly more broadband noise, with spectral peaks appearing

– almost randomly – across the measured bandwidth, although the component

at ff still dominates. Curiously, the first subharmonic of ff becomes damped,

its spectral energy spreading to two new modes straddling ff/2. The phase por-

traits (figures 4.14e and 4.14f) continue to show behaviour suggestive of chaos,

with random trajectories that never overlap onto themselves. The time trace at

A = 0.90 shows a marked reduction in amplitude, perhaps due to local flame

extinction arising from interruptions to the fuel flow.

105



0 1 2 3 4
Time [s]

  
  I

[1
0
4

co
u
n
ts

d
iv

.−
1
]

  
  

  

(a) Time trace

0 10 20 30 40 50
Frequency [Hz]

0  

0.10  

0.30

P
S

D
[2

0
d
B

H
z−

1
d
iv

.−
1
]

0.50  

0.70  

0.90

Aff

  
(b) PSD

Figure 4.13: (a) Time trace and (b) PSD of the intensity from Flame 5 forced
at a frequency, ff = 29 Hz, slightly below the second harmonic, 2fn = 29.4 Hz:
ff/2fn = 0.99. Data are shown for five forcing amplitudes, 0.10 ≤ A ≤ 0.90, and
for the unforced case, all at x/d1 = 10.
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Figure 4.14: Phase portraits (left) and Poincaré maps (right) for Flame 5 forced
at 29 Hz (ff/2fn = 0.99) with five amplitudes, plus the unforced case.
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4.2.1.1.4 Consolidated PSD

The flame response at other forcing frequencies can be examined in the consol-

idated PSD: a contour plot of the PSD with the response frequency on the

horizontal axis and ff on the vertical axis. Figure 4.15 shows this for Flame 5

forced at four amplitudes: A = 0.10, 0.30, 0.50, and 0.70. On each subfigure,

there are three black lines running diagonally from the bottom left to the top

right. These are used as guidelines to show the response at ff and at its har-

monics (2ff and 3ff). There are similar (red) guidelines for fn and its harmonics

(2fn and 3fn), as well as (blue and green) ones1 for interactions between ff and

the harmonics of fn.

Several features are common to all the consolidated PSD plots. The natural

mode is indicated by a contiguous stripe that runs vertically at fn through all

values of ff except those to which the flame is locked-in. Its second (2fn) and third

(3fn) harmonics are similarly indicated. At lock-in2, the forcing dominates and

the response therefore consists of a stripe along the diagonal f = ff . The ff band

in which lock-in occurs expands vertically as A increases (figure 4.15a→4.15d), a

feature that will be examined more carefully in §4.2.2.
Away from lock-in, nonlinear interactions occur between the natural mode

and the forcing, giving rise to spectral peaks at low f as well as around ff and

fn – especially if the two are close. Similar interactions occur between ff and

the harmonics of fn, but not between fn and the harmonics of ff . The result is

that between the vertical stripes marking fn and its harmonics, there are spectral

peaks set in a distinctive diamond pattern. The diamond pattern is most visible at

low values of A because that is when the natural and forced modes interact most

equally, limiting the locked-in regions to a narrow band of frequencies around fn.

For completeness, plots of the consolidated PSD for the other globally unsta-

ble flames (Flames 1–4, table 4.1) are shown in Appendix H.

1These are shown only on subfigure 4.15a in order to minimise clutter.
2The ability of a self-excited flame to lock into external forcing has also been observed

in a real thermoacoustic system, the Cambridge Intermediate Pressure Combustion Facility.
Appendix G shows, by courtesy of Dr. David Dennis, two examples of the consolidated PSD
(dynamic pressure) from the combustor, in which a liquid-fuelled spray flame is forced acous-
tically by a siren. As in figure 4.15, lock-in can be detected as an interruption of the response
around the natural frequency (the break in the vertical cyan stripe).
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(a) A = 0.10 (b) A = 0.30

(c) A = 0.50 (d) A = 0.70

Figure 4.15: Consolidated PSD for Flame 5 forced at four amplitudes:
A = (a) 0.10, (b) 0.30, (c) 0.50, and (d) 0.70. The spectra are of the chemi-
luminescence at x/d1 = 10.
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4.2.1.2 Marginally globally stable flame

A marginally globally stable flame (Flame 6) is examined for comparison with

the globally unstable flame (Flame 5) of the previous section.

4.2.1.2.1 Forcing near the fundamental: fn

Following the outline of §4.2.1.1.1, this section begins with a case in which ff

(16 Hz) is slightly above fn: ff/fn = 1.12. Figure 4.16a shows time traces1 of

the intensity from Flame 6 forced at seven amplitudes: 0.05 ≤ A ≤ 0.50. For

comparison, a time trace of the same signal from the same flame but without

forcing is also shown (bottom). The PSD curves are shown in figure 4.16b, and

the phase portraits and Poincaré maps are shown in figure 4.17.

When unforced, Flame 6 is virtually steady, oscillating with an amplitude just

1.9% of that with which Flame 5 oscillates. It is not perfectly steady because

the baseflow is convectively unstable near the injector, where small perturbations

amplify, causing measurable perturbations downstream. The PSD contains two

broad peaks, at 14.8 and 16.1 Hz, and weak harmonics.

These two broad peaks are replaced by one sharp peak, at fn = 14.3 Hz,

whenever forcing is applied – however low its amplitude and even if its frequency

is far from fn (not shown). According to the high-speed videos, this new natural

frequency corresponds to the typical global mode in a jet diffusion flame, which

develops as axisymmetric toroidal vortices (§1.3.3). Based on this evidence, it is

speculated that the forcing activates an underlying global mode in Flame 6, one

that should behave similarly to the natural global mode in Flame 5.

Such behaviour is not uncommon in hydrodynamics. According to Ho and

Huerre (1984), Flame 6 typifies a lightly damped global mode, oscillating only in

the presence of continuous external forcing. A canonical example is the ‘preferred

mode’ in a constant-density jet2, which, when forced, responds like a damped

1The divisions on the ordinate axis for Flame 6 are a factor of 10 smaller than those for
Flame 5: 103 versus 104 counts division−1. This difference arises because Flame 6 oscillates
with a much lower amplitude than does Flame 5.

2Sometimes called the ‘jet-column mode’, this instability arises from the spatial amplifica-
tion of background noise, due to interactions between the diametrically opposed shear layers at
the potential core. It is not to be confused with the ‘shear-layer mode’, which oscillates at a
higher frequency and arises from the most amplified wave of the initial shear layer.
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Figure 4.16: (a) Time trace and (b) PSD of the intensity from Flame 6 forced
at a frequency, ff = 16 Hz, slightly above the natural frequency, fn = 14.3 Hz:
ff/fn = 1.12. Data are shown for seven forcing amplitudes, 0.05 ≤ A ≤ 0.50, and
for the unforced case, all at x/d1 = 10. The onset of lock-in occurs at Aloc = 0.20.

linear oscillator near resonance. The gain of this mode, Crow and Champagne

(1971) have shown, is broadly receptive to forcing, peaking for St ≡ fd/U ≈ 0.3,

where f is the passage frequency of the vortical structures at the end of the

potential core. Thus, although Flame 6 is what Huerre and Monkewitz (1990)

would call ‘marginally globally stable’, it is in fact globally unstable for this thesis,

because the focus is on the forced response. The study of a globally stable flame

with a strongly damped global mode is left for future work.

Once the marginal global mode in Flame 6 is activated by forcing, it responds

just like a natural global mode does. In particular, all of the spectral features

seen in Flame 5 (§4.2.1.1.1) are also seen in Flame 6. They include (i) nonlinear

interactions between the natural, forcing, and beat frequencies, which all coexist;

(ii) a bias in the PSD towards frequencies on the side of fn opposite to ff ; (iii)

quasiperiodicity before lock-in (figure 4.17c); and (iv) the ability of the flame to

lock into the forcing above some critical value of A. These features have been

discussed before (§4.2.1.1.1) and need not be discussed again.
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Figure 4.17: Phase portraits (left) and Poincaré maps (right) for Flame 6 forced
at 16 Hz (ff/fn = 1.12) with seven amplitudes, plus the unforced case.
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As is the case for Flame 5, the above features are seen not only when ff > fn

but also when ff < fn. Figure 4.18 is analogous to figure 4.16 but for ff = 13 Hz

or ff/fn = 0.91. A comparison of these two figures reveals the same similarities

and differences noted earlier (§4.2.1.1.1, page 94) between forcing above and below

the natural frequency. The reader is referred to that discussion for a reminder of

the details. For completeness, the phase portraits and Poincaré maps for Flame

6 forced at 13 Hz are shown in Appendix I.
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Figure 4.18: (a) Time trace and (b) PSD of the intensity from Flame 6 forced
at a frequency, ff = 13 Hz, slightly below the natural frequency, fn = 14.3 Hz:
ff/fn = 0.91. Data are shown for five forcing amplitudes, 0.05 ≤ A ≤ 0.25, and
for the unforced case, all at x/d1 = 10. The onset of lock-in occurs at Aloc = 0.15.
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4.2.1.2.2 Forcing near the first subharmonic: fn/2

The similarities in response between Flame 6 and Flame 5 arise also when the

forcing is applied near the first subharmonic of the natural fundamental frequency.

With ff (8 Hz) slightly above fn/2 (7.15 Hz), figure 4.19a shows time traces of

the intensity from Flame 6 forced at seven amplitudes: 0.10 ≤ A ≤ 0.70. For

comparison, a time trace of the same signal from the same flame but without

forcing is also shown (bottom). The PSD curves are shown in figure 4.19b, and

the phase portraits and Poincaré maps are shown in figure 4.20.

The main observation is that once its global mode is activated by forcing,

however weak and whatever the value of ff , Flame 6 responds similarly to Flame

5 – even though the global mode in the latter flame develops naturally. The

discussion for this section is therefore similar to that for §4.2.1.1.2.
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Figure 4.19: (a) Time trace and (b) PSD of the intensity from Flame 6 forced
at a frequency, ff = 8 Hz, slightly above the first subharmonic, fn/2 = 7.15 Hz:
ff/(fn/2) = 1.12. Data are shown for seven forcing amplitudes, 0.10 ≤ A ≤ 0.70,
and for the unforced case, all at x/d1 = 10. The onset of lock-in occurs at
Aloc = 0.50.
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Figure 4.20: Phase portraits (left) and Poincaré maps (right) for Flame 6 forced
at 8 Hz (ff/(fn/2) = 1.12) with seven amplitudes, plus the unforced case.
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4.2.1.2.3 Forcing near the second harmonic: 2fn

The similarities in response between Flame 6 and Flame 5 extend to the case in

which the forcing is applied near the second harmonic of the natural fundamental

frequency. With ff (28 Hz) slightly below 2fn (28.6 Hz), figure 4.21a shows time

traces of the intensity from Flame 6 forced at four amplitudes: 0.10 ≤ A ≤ 0.70.

For comparison, a time trace of the same signal from the same flame but without

forcing is also shown (bottom). The PSD curves are shown in figure 4.21b, and

the phase portraits and Poincaré maps are shown in figure 4.22.

As with forcing near the fundamental (§4.2.1.2.1) and forcing near the first

subharmonic (§4.2.1.2.2), forcing near the second harmonic produces a response

that is similar to that which is produced by the naturally globally unstable flame

(Flame 5). The discussion for this section is therefore similar to that for §4.2.1.1.3.
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Figure 4.21: (a) Time trace and (b) PSD of the intensity from Flame 6 forced
at a frequency, ff = 28 Hz, slightly below the second harmonic, 2fn = 28.6 Hz:
ff/2fn = 0.98. Data are shown for four forcing amplitudes, 0.10 ≤ A ≤ 0.70,
and for the unforced case, all at x/d1 = 10.
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Figure 4.22: Phase portraits (left) and Poincaré maps (right) for Flame 6 forced
at 28 Hz (ff/2fn = 0.98) with four amplitudes, plus the unforced case.
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4.2.1.2.4 Consolidated PSD

Plots of the consolidated PSD for Flame 6 are presented in figure 4.23. Not

surprisingly, they show the same qualitative features found in the analogous plots

for Flame 5 (figure 4.15). At lock-in, the response is dominated by the forcing,

represented by a stripe along the diagonal f = ff , with no sign of the natural

global mode. Away from lock-in, the nonlinear interactions between the natural,

forcing, and beat frequencies give rise to a distinctive diamond pattern.

There is, however, one feature that seems to be unique to Flame 6. For

A ≥ 0.30 (figures 4.23b–4.23d), but only in the band fn < ff < 2fn and only

away from lock-in, the natural mode does not oscillate at a single frequency

(originally fn = 14.3 Hz). Instead it oscillates at two different frequencies: a

strong component at 15.9–16.1 Hz and a weaker, more sporadic one at 14.8 Hz.

These two natural frequencies are not new: they are the frequencies at which this

marginally globally stable flame oscillates when it is unforced (§4.2.1.2.1). Al-

though intriguing, this frequency-shifting behaviour will not be examined further

in this thesis.
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(a) A = 0.10 (b) A = 0.30

(c) A = 0.50 (d) A = 0.70

Figure 4.23: Consolidated PSD for Flame 6 forced at four amplitudes:
A = (a) 0.10, (b) 0.30, (c) 0.50, and (d) 0.70. The spectra are of the chemi-
luminescence at x/d1 = 10.
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4.2.2 Response at lock-in

The flame response at lock-in is examined because it will determine just how

detrimental lock-in actually is for thermoacoustic systems. The first relationship

to be considered is that between the minimum forcing amplitude required for lock-

in, Aloc, and the normalised forcing frequency, ff/fn. This is shown in figure 4.24a

for all six flames. The data are representative of every axial station (0 ≤ x/d1 ≤
29) because, once Aloc is reached, lock-in occurs simultaneously everywhere in the

flame. The diagonal lines through the data around ff/fn = 1 are linear fits. For

lock-in around the fundamental, the data at ff/fn < 1 are regressed separately

from the data at ff/fn > 1. For lock-in around the subharmonic, the data are

not regressed at all because the trends do not fit a linear model.

Several features are shared by all six flames. When ff is near fn or fn/2, Aloc

is low; otherwise it is high. Around the fundamental, Aloc increases in proportion

to |ff − fn|, indicating a Hopf bifurcation to a global mode (Appendix B). This

linear relationship gives rise to ∨-shaped curves, similar to those seen for other

self-excited flows: low-density jets (figures 1.10 and 3.9), crossflowing jets (figure

1.11), cylinder wakes (figures 1.8 and 1.9), and premixed flames (figure 1.12).

For each flame, despite the use of strong forcing, there is a limit to how far ff

can deviate from fn before lock-in is not possible: ff/fn ≈ 1.2–1.4. Around the

subharmonic, the relationship between Aloc and |ff − fn| is not as linear as that
around the fundamental, although the overall trends are similar.

Several differences exist between the six flames. As noted in §2.2 and §4.1.2.2,
adding coflow weakens their global instability, which should make them more

receptive to forcing, enabling lock-in to occur at lower A. Such behaviour is

indeed observed when Flame 1 is compared to Flame 2, and when Flame 4 is

compared to Flame 5. The flames with coflow (Flames 2 and 5) lock in more

readily than do their counterparts without coflow (Flames 1 and 4). This is seen

not only for ff around fn but also for ff on the high-frequency side of fn/2.

Another way to weaken global instability is to reduce the fuel concentration.

According to figure 4.24a, reducing [CH4] from 100% (Flame 1) to 80% (Flame 3)

to 60% (Flame 4) has only a small effect on Aloc. Although the curves seem to shift

downwards, the change is so small that it is within the experimental uncertainty.
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Figure 4.24: Lock-in for the six CH4–N2 jet diffusion flames: (a) map of the
lock-in boundaries and (b) normalised RMS response at x/d1 = 10 at the onset
of lock-in. Flames 1–5 are naturally globally unstable, while Flame 6 is globally
unstable only when forced. On subfigure (a), the error bars denote the increment
by which A is varied, and the diagonal lines through the data around ff/fn = 1
are linear fits. On subfigure (b), the horizontal line denotes a response of unity.

Reducing [CH4] further to 40% (Flame 6), however, causes a marked decrease in

the slopes of the ∨-shape. This suggests that the flame with a weak global mode

(Flame 6) locks in more readily than do the flames with strong global modes

(Flames 1, 3, and 4).

A final observation concerns the asymmetry of the lock-in curves about fn:

lock-in occurs more readily for ff/fn > 1 than it does for ff/fn < 1. This

asymmetry is more pronounced for the flames with coflow (Flames 2 and 5) than

for those without coflow (Flames 1, 3, 4, and 6). As §4.2.4 will show, simple model

equations, such as the van der Pol oscillator, have symmetric lock-in curves, which

means that the asymmetry is a feature of the flow, and not a feature of lock-in.

Previous work has shown that when there is competition between two modes at

different frequencies, one will take over and saturate nonlinearly before the other

(Pier, 2003). A possible explanation of asymmetric lock-in is that forcing applied
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at higher frequencies induces higher peak accelerations at the flame base1. In

isothermal jets, higher peak accelerations have been found to promote vortex-

ring formation (Külsheimer and Büchner, 2002). Forcing at higher frequencies

could therefore cause toroidal vortices to roll up earlier, perhaps closer to the

injector. If the vortices caused by the forcing roll up before the vortices caused

by the natural global mode, they will dominate, increasing the tendency of the

flame to lock in. A detailed analysis of the downstream development of the forced

and natural modes is left for future work2.

The fact that lock-in occurs asymmetrically suggests that there may be other

asymmetries between forcing above and below fn. To investigate this, figure

4.24b shows the flame response at the onset of lock-in as a function of ff/fn.

Here the flame response is defined as the RMS intensity fluctuation at A = Aloc

normalised by the same quantity but without forcing: I ′rms, loc/I
′
rms, unf . As before,

a representative axial station (x/d1 = 10) is considered, although the findings are

applicable to most of the flame body (Appendix J). In the definition of the flame

response, the RMS is used because it is independent of frequency, providing a

weighted average of the signal energy over time3. Data are shown for the globally

unstable flames (Flames 1–5) but not for the marginally globally stable flame

(Flame 6). That is because this latter flame is virtually steady when unforced,

meaning that it has a fundamentally different normalisation. The response of

this flame will be considered separately, in figure 4.25.

Figure 4.24b shows that there are several features common to all the globally

unstable flames. When lock-in occurs for ff/fn slightly above 0.5 or 1, the flame

response is always below unity4 – reaching a minimum of 0.17–0.55 at 1.12 <

1For sinusoidal forcing, the peak acceleration is proportional to frequency.
2The lock-in curve for the low-density jet from chapter 3 is also asymmetric, but in the

opposite direction. As figure 3.9 shows, Aloc is lower on the low-frequency side of fn than it
is on the high-frequency side. This must be interpreted with caution, however, because A in
those experiments is assumed to be proportional to the loudspeaker voltage (measurements of
the velocity perturbation were not available). Nevertheless, if valid, the fact that the asymmetry
is in the opposite direction implies that it is caused by the exact mechanism through which the
forcing influences the flow development, and is not a general feature of all jets.

3By Parseval’s theorem, the RMS of a time-domain signal is equal to the square root of the
total area under the PSD. Typically it is used as a universal measure of the power contained in
the fluctuations of the signal when no single frequency is of particular interest. Later in §4.2.3,
the response at just ff will be examined via the flame describing function.

4The only exception is around the subharmonic of Flame 1.
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ff/fn < 1.22, depending on the particular flame. A response that is below unity

implies that the flame oscillates with an amplitude lower than that with which

it oscillates when unforced1. When lock-in occurs for ff/fn slightly below 1,

however, the flame response is always above unity – reaching a maximum of

1.37–3.04, again depending on the particular flame.

In order to examine this asymmetry more closely, figure 4.25 shows contours

of the flame response as a function of A and ff/fn – and therefore not just at

the onset of lock-in. As before, two representative flames are considered: one

globally unstable (Flame 5, §4.2.1.1) and one marginally globally stable (Flame

6, §4.2.1.2). Measured at x/d1 = 10, the flame response is defined as the ratio of

the RMS intensity fluctuation with forcing to the same quantity without forcing:

I ′rms, for/I
′
rms, unf . Also shown on the figure are selected data from figure 4.24a

indicating the onset of lock-in.
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Figure 4.25: Flame response at x/d1 = 10 as a function of forcing amplitude and
frequency: (a) globally unstable and (b) marginally globally stable. The critical
forcing amplitude required for lock-in, Aloc, is indicated by the circular markers.
On the colorscale, a flame response of unity is in green, with values above unity
in warmer (red/yellow) hues and values below unity in cooler (blue/cyan) hues.
In subfigure (b), the highest value of A is only 0.70 (not the usual 0.90) because
Flame 6 blows off at A > 0.70.

1This implication is valid only if all frequency components are considered, because here the
response is defined by the RMS and not at any particular frequency.
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For the globally unstable flame (figure 4.25a), as A increases for ff/fn slightly

above 0.5 or 1, the response first decreases below unity, reaches a minimum near

the onset of lock-in (circular markers), and then increases back towards unity.

For ff/fn slightly below 1, however, the response increases above unity and then

saturates. Forcing very close to the fundamental causes a response that is between

these two extremes. For ff/fn > 1.36, lock-in is not possible even with the use of

high A. Instead, over a wide band of forcing frequencies (1.36 < ff/fn < 2.38),

increasing A causes a gradual rise in the response above unity, which peaks at

A ≈ 0.30− 0.50 before decreasing for higher A.

For the marginally globally stable flame (figure 4.25b), introducing even a

little forcing causes a response greater than unity, regardless of ff . This occurs

because the response is normalised with respect to the unforced response, which

is exceptionally low for this quasisteady flame. The response amplitudes are

therefore an order of magnitude higher than those of the globally unstable flame

(figure 4.25a). For most combinations of A and ff , the response is relatively

constant but high, indicating that the flame is broadly receptive to forcing. There

is a band of frequencies immediately below the natural frequency (0.84 < ff/fn <

0.98) in which the flame is particularly receptive to forcing. In this band, the

response increases abruptly at the onset of lock-in and then keeps increasing until

A ≈ 0.50 before decreasing for higher A.

In summary, lock-in occurs most readily for flames with weak global instability

and for ff near fn, as expected. What was not expected, though, was that the

lock-in behaviour would depend on whether ff is above or below fn. When forced

below fn, the flame is more resistant to lock-in, and its oscillations at lock-in are

stronger than those of the unforced flame. When forced above fn, the flame is

less resistant to lock-in, and its oscillations at lock-in are weaker than those of

the unforced flame. This last finding suggests that, for thermoacoustic systems,

lock-in may not be as detrimental as it is thought to be.
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4.2.3 Flame describing function

In the analysis of thermoacoustic systems, the flame response is usually charac-

terised by the flame describing function (FDF ). The flame is considered to act

as a filter that transforms an input signal to an output signal: i.e. velocity fluc-

tuation due to forcing → flame intensity fluctuation. The FDF is thus similar

to the transfer function, which measures how sensitive a flame is to a disturbance

of a given ff . Unlike the transfer function, however, the FDF depends on A as

well as ff , and hence can be defined for systems that are nonlinear. This is a use-

ful feature because in real systems it is almost always the nonlinear combustion

dynamics that controls the saturation of thermoacoustic oscillations. Nonlinear-

ity also plays a central role in triggering, and is the process by which energy at

one frequency can excite other frequencies. According to Durox et al. (2008),

inserting the FDF into the dispersion relations can yield limit-cycle amplitudes,

frequency shifts during transient growth, mode switching, and even hysteresis.

The FDF is calculated by taking the ratio of the relative heat-release fluctua-

tion to the relative velocity (or pressure) fluctuation, both at the same frequency:

ff . The focus is on this frequency because, when integrated over many cycles, the

contribution to acoustic energy gain from every other frequency sums to zero1.

Focusing on ff alone, however, overlooks the fact that the forcing can affect the

heat release at other frequencies, and that these components can affect the tran-

sient behaviour of the system. When applied to self-excited flames, the FDF has

another limitation: the nonlinear interactions between ff and fn, as well as those

involving their harmonics, are not captured2. These drawbacks aside, though,

the FDF is presented below in order to permit comparison with other studies.

The global FDF is considered first:

FDFg ≡
∑N

i=1(I
′
ff
/I)x/d1=i

A
, (4.1)

1This is true only if the pressure signal is sinusoidal; otherwise, the higher-order harmonics
also contribute and should be considered.

2On the consolidated PSD, the FDF is equivalent to inspecting the response along the
diagonal f = ff . Thus, although defined for nonlinear systems, the FDF is in fact a quasilinear
indicator because it cannot capture the response at f 6= ff .
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Figure 4.26: Gain and phase of the global FDF for Flames 1–6 forced at four
amplitudes: A = (a) 0.10, (b) 0.30, (c) 0.50, and (d) 0.70. The filled markers
denote locked-in conditions.
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where N is the image height. The numerator, I ′ff/I, is the complex amplitude

of the FFT (not the PSD) of the local intensity fluctuation at ff normalised

by the local time-averaged intensity. The denominator is the forcing amplitude:

A ≡ |u′1, ff |/U1. The gain is simply the absolute value, and the phase is the angle

by which the flame signal leads the forcing signal1.

Figure 4.26 shows the gain and phase of FDFg for all six flames. At every

value of A, |FDFg| peaks just below ff/fn = 1. Above ff/fn = 1, it dips but

then rises as ff/fn increases. Although a quantitative comparison between the

flames is made difficult by the scatter, all the gains seem to saturate to around

the same values as A increases. Likewise, ∠FDFg does not vary markedly either:

it shifts between ±π around ff/fn = 1, indicating that the flame leads the forcing

when ff/fn < 1 but that the forcing leads the flame when ff/fn > 1.

All the flames are long relative to the wavelength of their global modes: the

average flame length2 is measured to be ≈ 0.32 m and the instability wavelength

can be approximated as U1/2fn ≃ 0.065 m, for a ratio of nearly 5:1. Consequently,

the flames do not oscillate as a whole, everywhere in phase. This can be seen

in figure 4.27, which shows the spatiotemporal evolution of the intensity from

Flame 5 (unforced). As noted earlier, the variations in intensity are caused by

the roll-up and passage of toroidal structures. Before one structure advects out

of the flame, another forms at the base. This suggests that both the gain and

phase of the FDF should depend on x/d1 as well.

The FDF is redefined locally in order to examine how the response varies

along the flame length. This is done by using the local pixel intensity (without

the summation) in the definition: FDFl ≡ (I ′ff/I)x/d1/A. Figure 4.28 shows the

gain and phase for Flame 5, while figure 4.29 shows the same for Flame 6 (for

Flames 1–4, see Appendix K). The data are plotted against downstream distance3,

0 ≤ x/d1 ≤ 29, for four forcing amplitudes. The black horizontal bars at the top

and bottom of each plot indicate lock-in. The colorscale for gain varies from plot

1The phase is computed with cross-correlation, as per Balasubramanian and Sujith (2008).
Note that leading by more than π is equivalent to lagging by less than π.

2The flame length is determined by inspecting a series of randomly sampled wide-angle pho-
tographs of the flame intensity, and is defined as the axial station where the most downstream,
but contiguous, piece of flame is visible.

3The data near the injector, x/d1 ≤ 5.3, are unreliable owing to a low SNR.
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Figure 4.27: Spatiotemporal evolution of the intensity from Flame 5 (unforced).

to plot, but that for phase does not: blue hues show that the flame leads the

forcing and red hues show that the forcing leads the flame.

The local gain depends on both frequency and space. As ff decreases below

fn, the spatial distribution of |FDFl| shifts downstream and spreads axially. Its

maximum occurs at the lowest frequency for which lock-in is possible, which is

consistent with the behaviour of the global gain (figure 4.26) and the local nor-

malised RMS response (figure 4.25). As A increases, |FDFl| saturates to similar

values in all the flames and new regions of high gain appear far downstream.

The local phase also depends on both frequency and space. The axial distance

between the peaks of ∠FDFl is a measure of the wavelength of the instability,

which propagates as a vortical wave at the speed of advection1. This separation

distance decreases as ff increases because the wavelength shortens with frequency.

At lock-in (black horizontal bars), the spatial distribution of ∠FDFl is particu-

larly defined because the dispersion between vortical waves of different frequencies

is reduced. In some cases (figures 4.28a and 4.29a–4.29d), there is a new phase

peak, which may be related to the emergence of a higher-order harmonic.

Finally, perhaps the most important observation is that the spectral-spatial

distribution of FDFl differs between Flame 5 and Flame 6 (and indeed between

all the flames): different flames release heat in different places depending on the

1If the disturbance propagated as an acoustic wave at the speed of sound, the phase would
not vary much with downstream distance (Birbaud et al., 2007).
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particular combination of ff and A. This means that two local FDF s from two

different flames cannot be compared to each other even if they are measured at

the same axial station. The global FDF s shown in figure 4.26 are the cumulative

result of such gain and phase variations along the flame length.

In summary, the global FDF s of all the flames are similar to each other:

the maximum gain occurs just below fn, there is a small reduction in gain just

above fn, and the phase increases as ff increases through fn and through 2fn.

Stability analyses based on the FDF are valid only in the long-time limit and

would therefore predict similar behaviour from all the flames. This, however,

does not account for the response at f 6= ff , which would affect the transient

behaviour. The implication of this for a thermoacoustic system in which the

flame and acoustics are coupled is left for future work.
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Figure 4.28: Gain and phase of the local FDF for Flame 5 forced at four ampli-
tudes: A = (a) 0.10, (b) 0.30, (c) 0.50, and (d) 0.70. The data are shown as a
function of downstream distance: 0 ≤ x/d1 ≤ 29. The frequencies at which there
is lock-in are indicated by the black horizontal bars at the top and bottom of the
plots. (Continued on next page)
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Figure 4.28: Continued from previous page.
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Figure 4.29: Gain and phase of the local FDF for Flame 6 forced at four ampli-
tudes: A = (a) 0.10, (b) 0.30, (c) 0.50, and (d) 0.70. The data are shown as a
function of downstream distance: 0 ≤ x/d1 ≤ 29. The frequencies at which there
is lock-in are indicated by the black horizontal bars at the top and bottom of the
plots. (Continued on next page)
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Figure 4.29: Continued from previous page.
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4.2.4 Van der Pol oscillator

The forced flame system is modelled with the forced van der Pol (VDP) oscillator.

This particular model is used because, as explained in §1.4.1.1, it is one of the

simplest models with self-excited solutions, an essential feature for modelling self-

excited flows. As in the experiments, the forcing is sinusoidal (right hand term):

ẍ− ǫ(1− x2)ẋ+ ω2
nx = Avdp sin(ωf t), (4.2)

where Avdp is the forcing amplitude and ωf is its angular frequency. The parame-

ter ǫ, which controls the degree of self-excitation and nonlinear self-limitation, is

fixed at an arbitrarily small value of 0.1. The natural angular frequency, ωn, is 1.

Equation (4.2) is solved numerically using a fourth-order Runge–Kutta method.

This is done for a range of forcing frequencies (0.3 ≤ ωf ≤ 2.5) and amplitudes

(0 ≤ Avdp ≤ 0.4) in order to replicate the experimental conditions.

With ωf (1.03) slightly above ωn, figure 4.30a shows time traces of the steady-

state solution for five forcing amplitudes: 0.05 ≤ Avdp ≤ 0.13. For comparison,

a time trace of the same signal from the same oscillator but without forcing is

also shown (bottom). The corresponding PSD curves are shown in figure 4.30b.

These figures are analogous to those for the self-excited Flame 5 (figure 4.5).

The forced response of the VDP oscillator is qualitatively similar to that of

the flame. When unforced, the VDP oscillator has a dominant natural frequency,

represented in the PSD by a sharp peak at ωn = 1. There are, however, no

harmonics because the solution is perfectly sinusoidal.

When forced at a low amplitude (Avdp = 0.05), the VDP oscillator responds

at ωf as well as ωn, with multiple spectral peaks arising between these two fre-

quencies. Thus, like the flame, the VDP oscillator is quasiperiodic before lock-in.

As Avdp increases from 0.05 to 0.10, ωn shifts towards ωf , which remains fixed.

The spectral peaks around ωn and ωf become closer and their envelope widens.

By Avdp = 0.112, that envelope develops a subtle bias for ω < ωn, as indicated

by the more marked tail. Once Avdp reaches a critical value of 0.115, the VDP

oscillator locks into the forcing. This occurs because the stable equilibrium points

of the VDP oscillator change as the amplitude of the forcing term changes (see

§7.5 of the book by Jordan and Smith, 2007).
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Figure 4.30: (a) Time trace and (b) PSD of the motion of the VDP oscillator
forced at a frequency, ωf = 1.03, slightly above the natural frequency, ωn = 1.
Solutions are shown for five forcing amplitudes, 0.05 ≤ Avdp ≤ 0.13, and for the
unforced case, all with ǫ = 0.1. The onset of lock-in occurs at Aloc = 0.115.

The similarities between the VDP oscillator and the flame are also apparent in

the phase portraits and Poincaré maps: figure 4.31. When unforced, the solution

starts off as a limit cycle, but becomes quasiperiodic as Avdp increases towards

lock-in. After lock-in, it converges to a new limit cycle and the phase trajectory

converges to a new orbit.

The consolidated PSD (figure 4.32) resembles the analogous plot for the flame

(figure 4.15). The vertical stripe is the response of the natural mode. When

forced around ωn, however, this response locks into the forcing, represented by

the diagonal stripe at ω = ωf . There is no diamond pattern because the VDP

oscillator is sinusoidal.

The lock-in map is shown in figure 4.33, with Aloc indicated by circular mark-

ers. The colorscale is the VDP response, defined as the RMS of the forced solution

normalised by that of the unforced solution: x′rms, for/x
′
rms, unf . This response de-

creases below unity as Avdp increases towards lock-in, regardless of whether ωf

is above or below ωn. At lock-in, it reaches a minimum, and its value decreases

as ωf deviates from ωn. The lock-in curve is ∨ shaped and symmetric about ωn.
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Although most of these features are observed in the flame, two are not: (i) the

flame response at lock-in is above (not below) unity when ff < fn; and (ii) the

flame’s lock-in curve is not symmetric about fn.
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Figure 4.31: Phase portraits (left) and Poincaré maps (right) for the VDP oscil-
lator forced at ωf = 1.03 with five amplitudes, plus the unforced case.
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(a) Avdp = 0.03 (b) Avdp = 0.12

(c) Avdp = 0.21 (d) Avdp = 0.30

Figure 4.32: Consolidated PSD for the VDP oscillator forced at four amplitudes:
Avdp = (a) 0.03, (b) 0.12, (c) 0.21, and (d) 0.30. This figure can be compared to
figure 4.15, which is for a self-excited flame (Flame 5).
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Figure 4.33: Response of the VDP oscillator as a function of ωf and Avdp. The
critical forcing amplitude required for lock-in, Aloc, is indicated by the circular
markers. On the colorscale, a response of unity is in green, with values above
unity in warmer (red/yellow) hues and values below unity in cooler (blue/cyan)
hues. This figure can be compared to figure 4.25a, which is for a self-excited flame
(Flame 5).
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Chapter 5

Conclusions

This final chapter is divided into two parts: the first is a summary of the results

from chapters 3 and 4, and the second is a list of suggestions for future work.

5.1 Summary

In this thesis, the assumption that hydrodynamically self-excited flows are insen-

sitive to forcing was tested experimentally. This was done by acoustically forcing

two different self-excited flows: a non-reacting jet and a reacting jet. Both jets

have regions of absolute instability at their base and this causes them to ex-

hibit varicose oscillations at discrete natural frequencies. The forcing was applied

around these frequencies, at varying amplitudes, and the response examined over

a range of frequencies (not just at the forcing frequency). The overall system was

then modelled as a forced van der Pol oscillator.

The results show that, contrary to some expectations, a hydrodynamically self-

excited jet oscillating at one frequency is sensitive to forcing at other frequencies.

When forced at low amplitudes, the jet responds at both frequencies as well as

at several nearby frequencies, and there is beating, indicating quasiperiodicity.

When forced at high amplitudes, however, it locks into the forcing. The critical

forcing amplitude required for lock-in increases with the deviation of the forcing

frequency from the natural frequency. This increase is linear, indicating a Hopf

bifurcation to a global mode.

The lock-in curve has a characteristic ∨ shape, but with two subtle asym-

metries about the natural frequency. The first asymmetry concerns the forcing
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amplitude required for lock-in. In the non-reacting jet, higher amplitudes are

required when the forcing frequency is above the natural frequency. In the re-

acting jet, lower amplitudes are required when the forcing frequency is above the

natural frequency. The second asymmetry concerns the broadband response at

lock-in. In the non-reacting jet, this response is always weaker than the unforced

response, regardless of whether the forcing frequency is above or below the natural

frequency. In the reacting jet, that response is weaker than the unforced response

when the forcing frequency is above the natural frequency, but is stronger than

it when the forcing frequency is below the natural frequency.

In the reacting jet, weakening the global instability – by adding coflow or by

diluting the fuel mixture – causes the flame to lock in at lower forcing amplitudes.

This finding, however, cannot be detected in the flame describing function. That

is because the flame describing function captures the response at only the forcing

frequency and ignores all other frequencies, most notably those arising from the

natural mode and from its interactions with the forcing. Nevertheless, the flame

describing function does show a rise in gain below the natural frequency and a

drop above it, consistent with the broadband response.

Many of these features can be predicted by the forced van der Pol oscil-

lator. They include (i) the coexistence of the natural and forcing frequencies

before lock-in; (ii) the presence of multiple spectral peaks around these compet-

ing frequencies, indicating quasiperiodicity; (iii) the occurrence of lock-in above

a critical forcing amplitude; (iv) the ∨-shaped lock-in curve; and (v) the reduced

broadband response at lock-in. There are, however, some features that cannot

be predicted. They include (i) the asymmetry of the forcing amplitude required

for lock-in, found in both jets; (ii) the asymmetry of the response at lock-in,

found in the reacting jet; and (iii) the interactions between the fundamental and

harmonics of both the natural and forcing frequencies, found in both jets.

Taken together, these results have conflicting implications for thermoacous-

tics. On one hand, they show that a flame’s response at the forcing frequency

cannot be eliminated simply by ensuring that it has a hydrodynamically self-

excited mode at another frequency. In fact, the flame responds at several discrete

frequencies, potentially exciting other acoustic modes in the combustor. On the

other hand, the results also show that when lock-in occurs with the forcing fre-
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quency above the natural frequency, the flame oscillations are suppressed relative

to the unforced case. This suggests that lock-in may not be as detrimental as it

is thought to be.

5.2 Future work

Although this thesis has uncovered several features of forced self-excited jets that

have not been seen before, two particular areas could benefit from further work.

The first concerns the fact that the global FDF s were similar for all six flames

(§4.2.3), despite the varying strengths of global instability. The most plausible

explanation for this anomaly is that because the field of view of the chemilumines-

cence videos did not cover the entire flame, the data did not represent the entire

heat release. This meant that if some flames released more heat downstream (i.e.

out of the field of view) than did others, the global FDF would not be able to

account for it. The experiments should therefore be repeated with a wide-angle

lens1. Alternatively, shorter flames, such as premixed flames, could be studied.

Like the diffusion flames studied here, some premixed flames – when stabilised

behind a bluff body – contain sufficient regions of absolute instability that they

are globally unstable (Anderson et al., 1996). As an added benefit, such premixed

flames also contain less soot, although an image intensifier would be needed to

measure the heat-release oscillations accurately if line-specific chemiluminescence

(e.g. CH* or OH*) were to be used.

The second area concerns the type of forcing used to perturb the flame. In

this thesis, it was open loop: the forcing signal was fixed, independent of the

response of the system being forced. In real combustors, however, the frequency

and amplitude of the thermoacoustic modes that force the flame depend on the

heat release from the flame itself – in particular on how that heat release interacts

with the natural acoustic modes of the chamber. A more realistic approach would

be to consider the system as two coupled oscillators: one representing the flame

and the other the chamber acoustics. Each oscillator would have its own natural

frequency, and so would the coupled-oscillator system. In the laboratory, this

1The room in which the experiments were performed was too small to enable the entire
flame to be imaged.
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could be achieved by adding feedback between the flame system and the forcing

system. For example, a photodiode could be set up to measure the oscillation

amplitude of the flame intensity at some axial station. Its output would be used

as input to an electronic oscillator1, which would drive a loudspeaker that acts on

the flame. Alternatively, if the preference is for premixed flames – which tend to

have a higher natural frequency and hence a shorter, more manageable acoustic

wavelength – an acoustic cavity could be installed around the flame in order to

provide real thermoacoustic feedback.

Other areas in which there is scope for further work include:

- Improving the VDP oscillator: Although the VDP oscillator can predict

most of the jet features, it fails to predict (i) the asymmetry of the forcing

amplitude required for lock-in, found in both jets; and (ii) the asymmetry

of the response at lock-in, found in the reacting jet. One of the next logical

steps is to modify the original VDP oscillator so that it can predict both

of these asymmetries. The VDP oscillator could also be modified so that

its lock-in boundaries can be quantitatively related to those of actual flows.

This would involve changing the magnitude of the limit-cycle amplitude

term (whose value is unity in this thesis), which can be inferred from the

amplitude of the natural flow oscillation.

- Measuring the alignment between the velocity and density profiles: An in-

structive exercise would be to examine how this alignment affects the in-

ception and development of global instability, particularly the susceptibility

of a flame to lock into external forcing. Given uninterrupted access to a

laboratory, this could be done relatively easily using proven experimental

techniques, such as particle image velocimetry, for the velocity profile, and

Rayleigh scattering, for the density profile.

1Such as a resistor-inductor-capacitor circuit or an operational-amplifier circuit, whose nat-
ural frequency can be tuned around that of the flame.
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Appendix A

Predicting the global frequency

Even before Chomaz et al. (1988) established a definitive link between local ab-

solute instability and global instability, several researchers had already proposed

criteria by which to predict the global frequency. The majority of such criteria

were derived from local stability arguments, and three of the most widely used

are listed in table A.1.

To test these criteria, Monkewitz and Nguyen (1987) compared the predicted

global frequencies to experimental data from real globally unstable flows. Guided

by the findings, these researchers suggested that the criterion of Pierrehumbert

(1984) is best suited for flows that are unbounded. They also suggested that

the criterion of Koch (1985) is most applicable to flows with small (but positive)

absolute growth rates and with solid boundaries for efficient wave reflection. As

for their own proposed criterion, they thought that it should perform best for

flows with solid boundaries and large regions of absolute instability.

Although capable of predicting the global frequency, the three criteria per-

formed poorly when applied to the (initial) temporal growth rate. In numerical

simulations of wake flows, for example, Hannemann and Oertel Jr (1989) found

reasonable agreement in the global frequency: 2.5% error with the criterion of

Pierrehumbert (1984), 1.06% error with that of Koch (1985), and 14% error with

that of Monkewitz and Nguyen (1987). However, they also found that the corre-

sponding growth rates were more than double those reported by their simulations.

This discrepancy is not entirely unexpected, though, as all three criteria are based

on linear stability and should therefore be valid only at the onset of instability,

not at the nonlinear saturated state for which the simulations were done.
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Table A.1: Criteria for predicting the global frequency.

Source Proposed criterion

Pierrehumbert
(1984)

The global frequency is dominated by the most unstable mode

within the absolutely unstable region. It is, in other words,
dominated by the stationary mode with the highest temporal
growth rate. The frequency of this mode is the real part of
the branch point value where the imaginary part of the branch
point frequency is at a maximum.

Koch (1985)
The global frequency is dominated by the local resonance act-
ing at the most downstream location of absolute instability. It
is, in other words, dominated by the local absolute frequency
at the streamwise location where the flow first transitions from
being absolutely unstable to convectively unstable. The reso-
nance is due to coalescence between upstream-travelling and
downstream-travelling waves.

Monkewitz and
Nguyen (1987)

The global frequency is dominated by the local resonance act-
ing at the most upstream location of absolute instability. It is,
in other words, dominated by the local absolute frequency at
the streamwise location where the flow first transitions from
being convectively unstable to absolutely unstable.

In summary, criteria based on local stability can be used to predict the global

frequency fairly accurately. Using the same criteria to predict the corresponding

growth rate, however, can lead to large errors.
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Appendix B

Forced Stuart–Landau model

The linear dependence of the critical forcing amplitude required for lock-in, Aloc,

on the difference between the forcing and natural frequencies, |ff − fn|, can be

predicted by the forced Stuart–Landau model (Landau and Lifshitz, 1959)1. In

hydrodynamics, the Stuart–Landau model is used to describe the temporal evo-

lution of flow oscillations. It involves expanding, as a sum, a non-stationary per-

turbation to a steady solution of the Navier–Stokes equations, followed by a trun-

cation of all high-order nonlinear terms except for one. According to Provansal

et al. (1987), if the imaginary part of this remaining (third-order) nonlinear term

is also neglected, what remains can be expressed as:

du

dt
= (σr + iσi)u−

1

2
(lr)|u|2u+ Aeiωf t, (1)

where u is the velocity fluctuation, σ is the coefficient of the linear term (σi being

the natural angular frequency), lr is the real part of the nonlinear term, A is the

forcing amplitude, and ωf is the forcing angular frequency. If a solution to (1)

has the general form |u|eiφ, where φ is the phase of u, then it must satisfy the

following differential equations:

d|u|
dt

= σr|u| −
1

2
(lr)|u|3 + A cos(ωf t− φ), (2)

1This model was proposed by Landau in the 1940s to describe the macroscopic features of
superconductors, specifically second-order phase transitions. It is a phenomenological model
in that it describes the observable features of phenomena without explaining the underlying
microscopic mechanisms. About a decade after its proposal, the model was extended by Stuart
(1958, 1960) to the stability of plane parallel flows.
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|u| dφ
dt

= σi|u|+ A sin(ωf t− φ). (3)

For lock-in to occur, the solution must satisfy two further conditions: (i)

the oscillation amplitude must not vary with time, meaning d|u|
dt

= 0, and (ii) the

oscillation must be at the same frequency as the forcing, which restricts the phase

to be φ = ωf t+ ψ, where ψ is a constant phase shift. Using these two conditions

to solve (2) and (3) gives the following at the limit of lock-in:

Aloc

|u| = |ωf − σi|, (4)

or in non-angular-frequency form:

Aloc

|u| = 2π|ff − fn|. (5)

This confirms the linear dependence of Aloc on |ff − fn|. The expected value

of the slope, 2π, cannot be checked in this thesis, however, because the forcing

amplitude, A, and the response amplitude, |u|, are measured as different physical

quantities. The forcing amplitude is measured as the velocity perturbation at

the injector outlet. The response amplitude is measured either as the velocity

somewhere downstream (low-density jet, chapter 3) or as the chemiluminescent

intensity (jet diffusion flame, chapter 4).

As noted by Monkewitz et al. (1990), the Stuart–Landau model also predicts

that for small deviations from the bifurcation point (R − Rbif ≈ 0, where Rbif

is the value of the control parameter at the onset of bifurcation) and in the

absence of forcing (A = 0), the temporal growth rate, σr in (2), is to a first

approximation proportional to (R − Rbif ). Consequently, with cubic damping

(lr > 0), the saturation amplitude is:

|u|sat ∝ (R− Rbif )
1/2 for A = 0, R ≥ Rbif , R− Rbif ≈ 0. (6)
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Appendix C

Technical drawings of Injector B

Figure C.1: General rendering (Injector B).
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Figure C.2: Assembly drawing (Injector B).
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Figure C.3: Outer contraction (Injector B).
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Figure C.4: Inner contraction (Injector B).
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Figure C.5: Outer settling chamber (Injector B).
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Figure C.6: Inner settling chamber (Injector B).
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Figure C.7: Base (Injector B).
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Figure C.8: Loudspeaker adaptor (Injector B).
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Appendix D

Timing diagram for data acquisition

Figure D.1: Timing diagram of the data acquisition process used in the experi-
ments. AI, analogue input; TTL, transistor–transistor logic.
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Appendix E

Signal conditioner for TMM measurements

Figure E.1: Circuit diagram for the TMM signal conditioner. The circuitry shown
is for one of two identical channels. Each channel has an adjustable gain (fixed
at 60 dB for this thesis), a low-pass filter (the spectral response is shown in figure
E.2), and a power source for transducer excitation.
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Figure E.2: Spectral response of the TMM signal conditioner. Each channel is
tested independently, with the pressure transducer disconnected. The input volt-
age, sinusoidal and floating, is provided by a function generator (Thurlby Thandar
InstrumentsR© TG120). The output voltage, also sinusoidal but grounded, is mea-
sured with a digital oscilloscope (TektronixR© DPO3014).
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Appendix F

Phase portraits for Flame 5 forced at 14 Hz:

ff/fn = 0.95
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Figure F.1: Phase portraits (left) and Poincaré maps (right) for Flame 5 forced
at 14 Hz (ff/fn = 0.95) with five amplitudes, plus the unforced case, all at
x/d1 = 10.
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Appendix G

Pressure spectra in a real thermoacoustic sys-

tem

(a) Some injector (b) Another injector

Figure G.1: Consolidated PSD of the dynamic pressure in a combustor containing
a liquid-fuelled spray flame forced by a siren. Provided by Dr. David Dennis,
the data shown are for two different injectors, both installed in the Cambridge
Intermediate Pressure Combustion Facility. Supporting the findings of this thesis,
the plots show that lock-in can occur in a real thermoacoustic system and that,
away from lock-in, there are rich interactions between the forcing and the self-
excited mode. For intellectual property reasons, numerical values on the axes
have been deliberately withheld.
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Appendix H

Consolidated PSD for Flames 1–4

This appendix starts on the next page.
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(a) A = 0.10 (b) A = 0.30

(c) A = 0.50 (d) A = 0.70

Figure H.1: Consolidated PSD for Flame 1 forced at four amplitudes:
A = (a) 0.10, (b) 0.30, (c) 0.50, and (d) 0.70. The spectra are of the chemi-
luminescence at x/d1 = 10.
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(a) A = 0.10 (b) A = 0.30

(c) A = 0.50 (d) A = 0.70

Figure H.2: Consolidated PSD for Flame 2 forced at four amplitudes:
A = (a) 0.10, (b) 0.30, (c) 0.50, and (d) 0.70. The spectra are of the chemi-
luminescence at x/d1 = 10.
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(a) A = 0.10 (b) A = 0.30

(c) A = 0.50 (d) A = 0.70

Figure H.3: Consolidated PSD for Flame 3 forced at four amplitudes:
A = (a) 0.10, (b) 0.30, (c) 0.50, and (d) 0.70. The spectra are of the chemi-
luminescence at x/d1 = 10.
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(a) A = 0.10 (b) A = 0.30

(c) A = 0.50 (d) A = 0.70

Figure H.4: Consolidated PSD for Flame 4 forced at four amplitudes:
A = (a) 0.10, (b) 0.30, (c) 0.50, and (d) 0.70. The spectra are of the chemi-
luminescence at x/d1 = 10.
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Appendix I

Phase portraits for Flame 6 forced at 13 Hz:

ff/fn = 0.91
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Figure I.1: Phase portraits (left) and Poincaré maps (right) for Flame 6 forced
at 13 Hz (ff/fn = 0.91) with five amplitudes, plus the unforced case, all at
x/d1 = 10.
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Appendix J

Applicability of local data to the flame body

Although the data shown in figure 4.24b are from just one axial station (x/d1 = 10),

their major features are seen throughout the flame body. For example, figure J.1

shows the local response of Flame 5 at A = Aloc as a function of x/d1 for three val-

ues of ff : one slightly above the first subharmonic, ff = 8 Hz or ff/(fn/2) = 1.09;

one slightly above the fundamental, ff = 16 Hz or ff/fn = 1.09; and one slightly

below the fundamental, ff = 14 Hz or ff/fn = 0.95. The absolute response

I ′rms, loc is shown in subfigure (a), the normalised response1 I ′rms, loc/I
′
rms, unf is

shown in subfigure (b), and the mean response I is shown in subfigure (c).

All three responses vary along the flame length for each individual ff , but the

relative trends between them do not. For lock-in around the fundamental (ff = 14

and 16 Hz), the absolute response has an axial profile resembling that of the

unforced response: it starts off weak but increases to a peak at x/d1 ≈ 14.5 before

decreasing and then increasing again, albeit less steeply at the end. An inspection

of the high-speed videos shows that the location of that peak corresponds to the

roll-up of toroidal vortices. These coherent structures, Lingens et al. (1996b) have

shown, periodically distort the flame, causing a weak response (thin reaction zone)

in regions of high stretch and a strong response (thick reaction zone) in regions

of low stretch. For lock-in around the subharmonic (ff = 8 Hz), the absolute

response starts off weaker than that for the other values of ff , peaking farther

downstream and with a lower amplitude, before levelling off. Eventually, though,

it rises again, over 23 ≤ x/d1 ≤ 29, this time to a much higher value.

The normalised responses arising from the above behaviour are consistent

1This is normalised with respect to the unforced response at the same x/d1.
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Figure J.1: Axial variation of the oscillation amplitude of Flame 5 at the onset of
lock-in for three values of ff : (a) absolute response, (b) normalised response, and
(c) mean response. Data at x/d1 < 5.3 are not shown because the SNR there is
inadequate.

with the major features of the local data at x/d1 = 10 (figure 4.24b). There are,

nevertheless, notable exceptions at either ends of the image limits. Far upstream

(5 ≤ x/d1 ≤ 7), the normalised response for ff/fn = 1.09 is not yet below unity.

This upstream region is where the chemiluminescent intensity is weakest and the

SNR only marginal, making the data here the least reliable. Far downstream

(23 ≤ x/d1 ≤ 29), the normalised response for ff/(fn/2) = 1.09 is much greater

than unity. This downstream region is where saturation of the image sensor is

most severe – evidence of which can be detected in the mean response – which

introduces an unknown bias to the data. These exceptions aside, however, the

major features of the local data at x/d1 = 10 (figure 4.24b) are seen throughout

the flame body: 7 ≤ x/d1 ≤ 23.
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Appendix K

Local FDF for Flames 1–4

This appendix starts on the next page.
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Figure K.1: Gain and phase of the local FDF for Flame 1 forced at four ampli-
tudes: A = (a) 0.10, (b) 0.30, (c) 0.50, and (d) 0.70. The data are shown as a
function of downstream distance: 0 ≤ x/d1 ≤ 29. The frequencies at which there
is lock-in are indicated by the black horizontal bars at the top and bottom of the
plots. (Continued on next page)
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Figure K.1: Continued from previous page.
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Figure K.2: Gain and phase of the local FDF for Flame 2 forced at four ampli-
tudes: A = (a) 0.10, (b) 0.30, (c) 0.50, and (d) 0.70. The data are shown as a
function of downstream distance: 0 ≤ x/d1 ≤ 29. The frequencies at which there
is lock-in are indicated by the black horizontal bars at the top and bottom of the
plots. (Continued on next page)
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Figure K.2: Continued from previous page.
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Figure K.3: Gain and phase of the local FDF for Flame 3 forced at four ampli-
tudes: A = (a) 0.10, (b) 0.30, (c) 0.50, and (d) 0.70. The data are shown as a
function of downstream distance: 0 ≤ x/d1 ≤ 29. The frequencies at which there
is lock-in are indicated by the black horizontal bars at the top and bottom of the
plots. (Continued on next page)
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Figure K.3: Continued from previous page.
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Figure K.4: Gain and phase of the local FDF for Flame 4 forced at four ampli-
tudes: A = (a) 0.10, (b) 0.30, (c) 0.50, and (d) 0.70. The data are shown as a
function of downstream distance: 0 ≤ x/d1 ≤ 29. The frequencies at which there
is lock-in are indicated by the black horizontal bars at the top and bottom of the
plots. (Continued on next page)
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