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Abstract

I investigate the relationship between the gluon distribution obtained using a dipole

model fit to low-x data on F2(x,Q2) and standard gluons obtained from global fits with

the collinear factorization theorem at fixed order. I stress the necessity to do fits of

this type carefully, and in particular to include the contribution from heavy flavours

to the inclusive structure function. I find that the dipole cross-section must be rather

steeper than the gluon distribution, which at least partially explains why dipole model

fits produce dipole cross-sections growing quite strongly at small x, while DGLAP based

fits have valence-like, or even negative, small-x gluons as inputs. However, I also find that

the gluon distributions obtained from the dipole fits are much too small to match onto

the conventional DGLAP gluons at high Q2 ∼ 50GeV2, where the two approaches should

coincide. The main reason for this discrepancy is found to be the large approximations

made in converting the dipole cross-sections into structure functions using formulae which

are designed only for asymptotically small x. The shortcomings in this step affect the

accuracy of the extracted dipole cross-sections in terms of size and shape, and hence also

in terms of interpretation, at all scales.
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1 Introduction

In the description of structure function data the most conventional approach used is the collinear

factorization theorem, where total cross-sections are determined in terms of parton distributions

and hard parton cross-sections up to corrections of O(Λ2
QCD/Q2), i.e. higher-twist corrections.

The most complete method is to perform a so-called global fit [1, 2] to all data sensitive to

parton distributions, so that the consistency of the fit to a variety of different data sets is

guaranteed. This is currently done at either NLO or NNLO in the strong coupling αS and

appears to work very well. However, there are some indications [3] that the procedure is a little

unreliable at small values of x where a resummation of large ln(1/x) terms may be important

[4], and by definition this whole approach fails at low values of Q2 (where low appears to be

somewhere from 0.5 to 4 GeV2).

An alternative approach which circumvents the problem of low Q2 and is particularly appli-

cable to small x is the colour dipole approach [5, 6, 7, 8]. Recently there have been a variety of

fits, or at least comparisons, to small-x structure function data using the dipole picture [9]-[16].

In this the free parameters of the fit are all mainly associated with the dipole cross-section,

which it is very difficult to calculate from first principles but which may be modelled, with

varying degrees, and different types of theoretical justification. If one also wants a finite photo-

production cross-section, a non-zero value must be chosen for the light-quark masses, appearing

as a parameter in the dipole wavefunction which is calculated at LO, i.e. zeroth order in αS.

It must be noted that in order to apply the approach to very low Q2 one must assume that

perturbation theory is valid and higher order QCD corrections to e.g. the photon wavefunction

are meaningful and under control in this limit. This is yet to be proved. With this caveat in

mind it is true that a variety of approaches to modelling the dipole cross-section can be made

to match data very well.

Even though there is no essential connection, the dipole cross-section approach is often

linked to, and used together with, the approaches which deal with parton saturation at small

x. It is commonly believed that the complications of small x and low Q2 are entwined, with the

assumed large parton distributions at small-x leading to significant reduction of the evolution

due to the mixing of leading-twist parton evolution with higher-twist multi-parton operators

at low Q2 [17, 18] (though it is fair to say that the values of x and Q2 which are relevant are

not so commonly agreed). There has recently been a great deal of work attempting, as far as

is possible, to calculate the dipole cross-sections within this framework of large densities and

saturation (see e.g. [19], or for a slightly different viewpoint [20]), and many of the dipole fits,

including some of the most successful, are based on these ideas. In some quarters this has led to

very strong claims that saturation has been discovered. However, there is a conundrum. This

picture of steeply growing parton distributions at small x and low Q2 tamed by saturation is

in conflict with the conventional DGLAP fits which actually result in a small or even negative

gluon (and consequently FL(x, Q2)) at small x and Q2. It is essential to understand this before

making any strong claims for saturation.
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In this paper I will investigate the cause of this inconsistency. I will base this investiga-

tion very much on the completely standard assumption that the QCD factorization theory is

completely reliable, correct and quantitative at fairly high Q2 (as long as x is not too small).

Hence the parton distributions obtained from global fits must be quantitatively correct in this

region. I will use the known relationships between the dipole cross-sections and standard parton

distributions to work back from a fit to data performed in the dipole framework to obtain the

corresponding partons. First, I will examine the question of whether a large/steep dipole cross-

section actually means a large/steep gluon distribution, finding that the dipole cross-section is

always steeper at small x than its corresponding gluon distribution. This partially explains the

differing conclusions obtained from the DGLAP and dipole approaches, but is not the whole

story. In order to investigate the consistency of the two approaches I obtain a gluon distribution

which evolves in the same way as a DGLAP gluon (at least for reasonably high Q2) from a

dipole model type fit to structure function data. I then make a comparison between the gluon

distribution obtained at fairly high Q2 from this dipole model fit and the gluon from a standard

set of parton distributions. This gives strong evidence as to whether dipole motivated fits are

truly quantitative, and whether the results from these fits are to be taken seriously in detail.2 I

find that the comparison between the two illustrates a serious discrepancy, and point out that

the reason for this discrepancy is the approximation inherent in the LO dipole wavefunctions.

I conclude that this result casts doubt on whether we should indeed treat the results of fits to

HERA data using the dipole picture as telling us anything truly quantitative, and I explain my

reservations. Improvements in the quantitative form of the gluon distributions obtained from

dipole model inspired fits rely mainly on increasing the precision of the wavefunctions used to

obtain the structure functions from the dipole cross-section.

2 The Relationship Between The Dipole Cross-Section

and The Gluon Distribution

The relationship between the gluon distribution and the dipole cross-section was essentially

worked out as soon as the dipole approach was proposed [7], but it is nicely discussed in a

pedagogical manner in [21] which explicitly shows the relationship between the dipole picture

and the kT -factorization theorem [22] at LO, and also shows how this relationship breaks down

beyond LO. My discussion partly follows this paper. The diagrams contributing to deep inelastic

2The results of the fit to data using my particular model for the dipole cross-section, or equivalently gluon

distribution, could also be thought of as providing some evidence as to whether or not saturation effects are

important when using a dipole model fit. However, since the whole purpose of the paper is to question the

validity of this approach as far as any strong conclusions are concerned, the implications from my particular

model as to the degree of saturation are really only a side issue.
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scattering at LO are shown below, where the incoming gluons have finite transverse momentum
~k.

1−z, ~p

z,−~p

x,~k x,~k

1−z, ~p

z,−~p

x,~k x,~k

Within the LO kT -factorization theory we can write, for example, the longitudinal γ⋆p

cross-section as

σL(x, Q2) ∝
∫ 1

0
dz[z(1 − z)]2

∫

d2k

k4

∫

d2p
(

1

Q̂2 + p2
−

1

Q̂2 + (p + k)2

)2

f(xg, k
2) (1)

where f(xg, k
2) is the unintegrated gluon distribution and Q̂2 = z(1 − z)Q2. A similar result,

but slightly more complicated formula, also holds for σT . Staying at strictly LO in ln(1/x) in

the kT -factorization theory, we work in the limit x → 0, i.e. since

ln(x) = ln(xg) + ln(Q̂2/(Q̂2 + k̂2 + (p′)2)), (2)

where ~p′ = ~p − (1 − z)~p, we simply make the identity x = xg. In this limit Eq.(1) can be

simplified significantly. Integrating over z and p, which in this limit does not involve f(x, k2)

we have the standard kT -factorization expression, which can be written in terms of the structure

function as

FL(x, Q2) =
∫

dk2

k2

αS2Nf

6π
hL(k2/Q2)f(x, k2). (3)

Taking the double Mellin transformation
∫

dQ2Q2−2γ and
∫

dx xN we have the familiar expres-

sion.

F̃L(N, γ) =
αS2Nf

6π
h̃L(γ)f̃(N, γ)/γ ≡

αS2Nf

6π
h̃L(γ)g̃(N, γ), (4)

where g(x, Q2) =
∫ Q2

0
dk2

k2 f(x, k2) is the integrated gluon distribution, and h̃L(γ) is the longitudi-

nal impact factor first calculated in [23]. An exactly analogous expression can be calculated for

F2(x, Q2), though it is usually expressed in terms of dF2/d lnQ2 in order to preserve finiteness

in the infrared limit, i.e.

dF2(x, Q2)

d lnQ2
=

∫

dk2

k2

αS2Nf

6π
h2(k

2/Q2)f(x, k2). (5)
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If the gluon distribution can be expressed in the simple form g(N, Q2) ∼ (Q2)γ(αS ,N) this

leads to

Fi(N, Q2) =
αS2Nf

6π
hi(γ(αS, N))g(N, Q2) (6)

which taking the inverse Mellin transformation becomes

F (x, Q2) =
αS2Nf

6π
h(γ(αS, ln(1/x))) ⊗ g(x, Q2). (7)

This is the standard result of the LO in ln(1/x) kT -factorization theorem. Contrary to what

seems to be common belief, the kT -factorization theorem is well defined beyond this order.

Indeed, in [23] it is demonstrated that kT -factorization may be thought of as simply a reordering

of the calculations performed within the collinear factorization theorem, and as such it is as

well defined as collinear factorization, i.e. to all orders at leading twist.

There is an alternative way to proceed from the starting point of Eq.(1). By using the

identity
1

Q̂2 + p2
=

1

2π

∫

d2r exp(ip · r)K0(Q̂r) (8)

and integrating over p2, using the independence of xg on p2 in the x → 0 limit, one can

equivalently write

σ =
4π2

3

∫ 1

0
dz

∫

d2r|Ψ(r, z, Q)|2
∫

dk2

k4
αSf(x, k2)(1 − J0(kr)). (9)

|Ψ(r, z, Q)|2 is the probability for a photon of virtuality Q2 to fluctuate into a a dipole pair, as

calculated in [7], and is explicitly

|ΨT (r, z, Q)|2 =
6α

4π2

∑

f

e2
f([z

2 + (1 − z)2]ǫ2K2
1 (ǫr) + m2

fK
2
0(ǫr)) (10)

|ΨL(r, z, Q)|2 =
6α

π2

∑

f

e2
f (Q

2[z2 + (1 − z)2]K2
0 (ǫr)), (11)

where ǫ2 = z(1 − z)Q2 + m2
f , and mf is the mass of a given quark flavour. Hence, Eq.(9) can

be interpreted as

σ =
∫ 1

0
dz

∫

d2r|Ψ(r, z, Q)|2σ̂(x, r2), (12)

where

σ̂(x, r2) =
4π2

3

∫

dk2

k4
αSf(x, k2)(1 − J0(kr)) (13)

may be associated with the dipole-proton cross-section. In the LO ln(1/x) limit this and Eq.(4)

are really equivalent, but because in Eq.(4) we have reference to the gluon density, which we

think of as evolving perturbatively, and have an explicit factor of αS, we think of this equation

only having validity for Q2 ≫ Λ2
QCD. In principle the same issues exist for Eq.(12), with

σ̂(x, r2) depending on both the (unintegrated) gluon distribution and αs, as seen in Eq.(13).

However, ignoring these complications and proposing models for σ̂(x, r2) valid for all r, Eq.(12)

4



is often used down to the photoproduction limit of Q2 = 0, albeit requiring regularization from

finite light quark masses. However, as discussed in [21] the form of the expression in Eq.(12) is

definitely not preserved beyond the leading ln(1/x) limit, with inclusion of real gluon kinematics

spoiling the diagonalization in the transverse size ~r of the incoming and outgoing dipoles.

At LO we can investigate what the equivalence of the two approaches tells us. In the

standard kT -factorization theorem approach Fi(N, Q2) is given by Eq.(6), or its equivalent for

d F2(N, Q2)/d lnQ2. Taking the Mellin transformation with respect to x of the intermediate

expression Eq.(9) and using the equivalence we obtain

Fi(N, Q2) =
αS2Nf

6π
hid(γ(αS, N))hdg(γ(αS, N))g(N, Q2) ≡

αS2Nf

6π
hi(γ(αS, N))g(N, Q2),

(14)

where hid(γ) comes from the probability of the photon splitting to the dipole, while hdg(γ)

comes from the relationship between the dipole cross-section and the gluon distribution in

Eq.(13). Therefore, the effective coefficient function for the hard cross-section hi(γ(αS, N))

can be interpreted as the product of a photon-dipole coefficient function hid(γ(αS, N)) and

a dipole-gluon coefficient function hdg(γ(αS, N)), both of which are calculable. For the more

phenomenologically interesting case of dF2/d lnQ2 we find from a straightforward calculation

hdg(γ) =
4γΓ(1 + γ)

(1 − γ)Γ(2 − γ)
, (15)

h2d(γ) =
(1 + 3/2γ − 3/2γ2)

1 − γ

4−γΓ4(2 − γ)Γ2(1 + γ)

Γ(4 − 2γ)Γ(2 + 2γ)
, (16)

h2g(γ) =
3/2(2 − 3γ + 3γ2)

3 − 2γ

Γ3(1 + γ)Γ3(1 − γ)

Γ(2 + 2γ)Γ(2 − 2γ)
, (17)

and the equivalence in Eq.(14) is easily verified.

The implications of this turn out to be rather interesting. Each of these effective coefficient

functions can be expanded as a power series in γ about γ = 0, where each has been normalized

so that h(0) = 1. For dF2/d lnQ2 we obtain,

h2(γ(ᾱS/N)) = 1 + 2.17γ + 2.30γ2 + 5.07γ3 + 3.58γ4 + 8.00γ5 + · · · (18)

In order to interpret this we need to know more about γ. Strictly speaking, these expressions

are all derived within the LO in ln(1/x) framework. In this case the gluon anomalous dimension

is given by the LO BFKL equation. This results in the power-series expansion

γ(αS/N) =
ᾱS

N
+ 2.4(

ᾱS

N
)4 + 2(

ᾱS

N
)6 + 17(

ᾱS

N
)7 + · · · , (19)

where ᾱS = (3/π)αS. In x space this results in a splitting function

xPgg(αS, x) = ᾱS + 2.4(
ᾱ4

S ln3(1/x)

3!
) + 2(

ᾱ6
S ln5(1/x)

5!
) + 17(

ᾱ7
S ln6(1/x)

6!
) + · · · . (20)
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This steep growth of xPgg as x decreases leads to a quickly increasing small-x gluon distri-

bution as Q2 increases. However, substituting γ(αS/N) into Eq.(18) we see that the effective

coefficient function also grows quickly at small N , or equivalently at small x, and consequently

d F2(x, Q2)/d lnQ2 grows quite a lot more quickly than g(x, Q2) with decreasing x.

Expanding the other expressions in Eq.(17) in powers of γ we obtain

hdg(γ(ᾱS/N)) = 1 + 2.23γ + 3.49γ2 + 3.95γ3 + 4.22γ4 + 4.06γ5 + · · · (21)

h2d(γ(ᾱS/N)) = 1 − 0.07γ − 1.05γ2 + 3.77γ3 − 4.94γ4 + 6.53γ5 − · · · . (22)

Hence, hdg(γ) has a power series expansion in which all the coefficients are positive, and of

rather similar size to those in the expansion of h2(γ), whereas h2d(γ) has a series expansion

where the first two terms are small and negative, and higher terms oscillate. This has an obvious

consequence. To a reasonable approximation all the small-x enhancement of dF2/d lnQ2 relative

to g(x, Q2) is generated by the dipole-gluon cross-section, which is therefore itself steep relative

to the gluon. In the final conversion from the dipole cross-section to dF2/d lnQ2 there is little

change in x dependence.

In practice the LO BFKL prediction for the gluon is not really used in any realistic dipole

model fits to data. It predicts a power-like behaviour at small x of xλ, where λ = 4 ln(2)ᾱS =

2.65αS, whereas the sort of power-like behaviour used is λ ∼ 0.25−0.3. This means an effective

value of αS = 0.1 which is extremely low for scales of a few GeV, where αS = 0.2 − 0.3, which

is where the data exist. Hence some models use behaviour implied by higher order corrections

within the BFKL framework (see e.g. the calculation in [24]), and others just use models

where the gluon is more closely associated with standard LO or NLO in αS perturbative QCD.

Some are more ad hoc. This departure from the LO kT -factorization is already a deviation

from the theoretical framework within which the simple dipole picture is valid, but I will

essentially disregard this particular issue throughout this paper. Whatever the inspiration for

the (unintegrated) gluon distribution, in order to match even the most qualitative trends of the

data one needs a gluon distribution that increases quickly with Q2 at small x, and every model

ultimately has an effective γ(αS, N) that grows quickly at small N and equivalently at small x.

Therefore, the general conclusion on the role of the effective coefficient functions made above

is always true. Since γ is positive and increasing at small x, dF2/d lnQ2 is always steeper in

x than g(x, Q2), and this relative steepness is always associated with the step taking one from

the gluon to the dipole cross-section, with the step taking one from the dipole cross-section to

the physical structure function being largely unimportant as far as the shape is concerned.

This conclusion does not seem to have been made previously, but it is easy to demonstrate

using the very simple dipole model proposed in [9]. In this case the dipole cross-section is given

by

σ̂(x, r2) = σ0(1 − exp(r2/4(x0/x)λ)), (23)

where, for the case of the realistic fit which includes charm as a parton rather than simply

using three light flavours, the parameters obtained from the best fit were σ0 = 29.2mb, x0 =

6
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Figure 1: σ̂(x, r2) and xg(x, Q2) obtained from the original Golec-Biernat Wüsthoff dipole

model [9]. xfg(x, k2) has the same type of shape as xg(x, Q2). A flattening dipole at small x

requires a valence-like integrated or unintegrated gluon distribution.
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4 × 10−5, λ = 0.28. This cross-section clearly saturates at large enough r or small enough x.

Using the relationship between the dipole cross-section and the unintegrated gluon distribution

it is straightforward to obtain

fg(x, k2) =
3σ0

4π2αS

k4(x/x0)
λe−k2(x/x0)λ

, (24)

and this expression is indeed used in [10]. Thus, whilst σ̂(x, r2) → σ0 as x → 0, fg(x, k2) → 0 as

x → 0, i.e. it has a valencelike behaviour fg(x, k2) ∼ x0.28 as x → 0. Using the leading twist rela-

tionship between the unintegrated and integrated gluon distribution, g(x, Q2) =
∫ Q2

0
dk2

k2 f(x, k2),

and using fixed coupling (the general result does not depend on this), we obtain

xg(x, Q2) =
3σ0

4π2αS

[

−Q2e−Q2(x/x0)λ

+ (x0/x)λ(1 − e−Q2(x/x0)λ

)
]

, (25)

which also behaves like x0.28 as x → 0. This is slightly reminiscent of the valencelike gluons

obtained in global fits, except that the valence-like behaviour will always set in at low enough

x in this model (though extremely low x for high Q2), whereas in the DGLAP approach the

valencelike behaviour soon disappears with evolution to higher Q2. The behaviour of the dipole

cross-section at large r is compared to that of g(x, Q2) at low Q2 in Fig. 1, and one clearly

sees that the eventual flattening of σ̂(x, r2) at low x is accompanied by a distinct turnover in

g(x, Q2), with the maximum as high as x ∼ 0.005 at Q2 = 0.5GeV2.

It is certainly reasonable to argue that the simple relationship between the integrated and

unintegrated gluons is not meant to be used in this case, since higher twist corrections to the

gluon will be important. However, again this takes us beyond the regime where the strict

equivalence between the dipole picture and the rigorously defined kT -factorization theorem is

valid. Also, even if one doubts the result presented in terms of g(x, Q2), it is certainly the case

that fg(x, k2) is valencelike. Hence, this simple example shows that the dipole cross-section

becoming large at a small value of x does not necessarily mean that the gluon at this value of x

is also large. This perhaps clouds the issue of what saturation actually means, i.e. does it have

to mean a large parton density. However, it might also go some way towards explaining why

fits including saturation corrections seem to be successful, while standard DGLAP fits produce

very small (or negative) gluons, and small x and Q2.

In order to provide a definitive answer to this apparent contradiction it is necessary to

undertake some rather more precise work. Although the original Golec-Biernat Wüsthoff dipole

model was successful with the HERA data available at the time, it now produces a qualitatively

good fit at best. And some of the more recent fits are direct attempts to improve it, e.g. [13].

Thus in order to make quantitative conclusions it is necessary to relate the gluon distribution

and dipole cross-section from a genuinely good fit to current data.

3 The Model for the Gluon Distribution

In order to make a detailed investigation I will work on the principle that reasonably high Q2

the gluon distribution will behave exactly according to standard fixed order DGLAP evolution.

8



Hence, I propose a simplified model for the gluon which accurately represents this but contains

a minimum of parameters. I will then use the exact relationship between the unintegrated

gluon distribution and the dipole cross-section in Eq.(13), along with the standard identity,

fg(x, k2) =
(

d g(x,Q2)
d ln Q2

)

Q2=k2

, valid at leading twist, in order to obtain the correct expression for

σ̂(x, r2). In the small r2 limit σ̂(x, r2) may be written as

σ̂(x, r2) =
4π2

3
r2

∫

dk2

k2
αSf(x, µ2) ∼

π2αS

3
r2g(x, µ2), (26)

where µ2 = A/r2 [25]. The constant A depends on the precise behaviour of the gluon, but it is

always the case that A ≈ 10. It should not be used as a free parameter in a fit. This expression

is sometimes used to relate the gluon distribution and dipole cross-section. However, it is only

ever approximate and only reasonable for very small r. The completely correct Eq.(13) should

really be used if one is going into the regime of large r and or small Q2 and k2.

In order to attempt to obtain a matching between the dipole model gluon distribution and

a DGLAP one at large Q2 I define a gluon distribution which behaves like a conventional

global fit gluon at high scales. I note that to a very good approximation at LO in αS the gluon

anomalous dimension is γgg(αs(Q
2), N) = ᾱs(Q

2)(1/N−1), only differing from this approximate

form significantly at very high N . Hence, the LO evolution is given by this anomalous dimension

to a good accuracy except for fine details at the highest x. Furthermore, apparently by accident

the NLO correction to gluon evolution is very small, the coefficient of a possible term of 1/N2

happening to be zero. It was shown in [26] that for a flat input at scale Q2
0 the solution to the

evolution equation for Q2 > Q2
0 using this anomalous dimension is roughly

xg(x, Q2) ∝ I0

((

2.4ζ0 log
( log((Q2)/Λ2

QCD)

log((Q2
0)/Λ2

QCD)

))0.5)

exp
(

−1.5 log
( log((Q2)/Λ2

QCD)

log((Q2
0)/Λ2

QCD)

))

, (27)

where ζ0 = ln(x0/x), and strictly speaking x0 is the value of x above which the flat input gluon

distribution falls away to zero, i.e. g(x, Q2
0) ∝ Θ(x0 − x).

This is a very good starting point for a more realistic gluon distribution. The main modifi-

cation to be made is to round off the high-x behaviour to something more like (1 − x)5 rather

than a Θ function at x0, and to take account of this in the evolution. Also, I want a gluon that

can be used all the way down to Q2 = 0 rather than stopping at some input scale, and which

tends smoothly to a flat behaviour in x as Q2 → 0. This is achieved by modifying Eq.(27) to

xg(x, Q2) = A
(

5

5 + ζ

)2

exp
(

−1.5 log
( log((Q2 + Q2

0)/Λ2
QCD)

log((Q2
0)/Λ2

QCD)

))

(28)

×
(

I0

(

2.4
(

η2(1 − exp(−η/4))

η + 2.3
(1 − exp(−η))4 log

( log((Q2 + Q2
0)/Λ2

QCD)

log((Q2
0)/Λ2

QCD)

))0.5)

− 1
)

.

A
(

5
5+η

)2

is the input, with A the normalization. This is simply an empirical modification of

an original formula which was theoretically correct in a slightly idealized framework; and for
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moderate and high Q2, i.e. above a few GeV 2, the gluon does behave very similarly indeed to

the standard DGLAP gluons coming from global fits. ΛQCD = 0.12GeV, which for the one-loop

coupling gives αS(M2
Z) = 0.118, i.e. roughly the correct value, and hence it gets the speed of

evolution correct. Q2
0 = 0.5GeV2, and marks the transition scale around which perturbative

evolution is beginning to break down. Q2
0 and the input shape (5/(5 + η))2 are chosen to give

roughly the correct phenomenological shape in x and Q2 for the lowish Q2 gluon, but neither

is at all fine-tuned. Q2
0 takes on a perfectly typical value for the scale of nonperturbative

physics. It clearly serves the function of slowing the evolution Q2 ∼ Q2
0, but does this in an

x-independent way. I only make the change Q2 → Q2 + Q2
0, independent of any consideration

of x. This model of the gluon is not therefore inspired at all by the idea of slowing evolution

associated with high parton densities at small x, and does not contain saturation effects.

This expression for the gluon is converted into a dipole cross-section using

σ̂(x, r2) =
4π2

3

∫

dk2

k4
αS(k2)f(x, k2)(1 − J0(kr)), (29)

where for consistency αS(µ2) is also slowed at low scales with the same regularization as the

gluon.

αS(µ2) =
4π

β0 log((µ2 + Q2
0)/Λ2

QCD)
. (30)

The results of this paper are largely insensitive to the details of how the low scale coupling is

regularized. The resulting dipole cross-section is then put into a fit to data. The normalization

A is the only really free parameter associated with the gluon in this fit.

Since the shape of the gluon has now been determined, we can investigate the relative shapes

of the gluon distribution and the dipole cross-section without having to know the value of A.

This is illustrated in Fig. 2, where we see xg(x, Q2) and σ̂(x, r2) for a variety of values of Q2

and r. For the largest value of Q2 and correspondingly the smallest value of r both g(x, Q2)

and σ̂(x, r2) rise steeply at small x, and it is difficult to see any particular difference in shape.

However, at the two lower values of Q2, 1GeV2 and 0.2GeV2, g(x, Q2) is clearly flattening out,

and is rising very slowly indeed in the latter case. For the two larger values of r, 2GeV−1 and

10GeV−1 (which would naively correspond to Q2 of about 2.5GeV2 and 0.1GeV2 respectively),

σ̂(x, r2) is clearly still rising steeply, and it is in this regime, which is where any saturation effects

are supposed to be large, that the influence of the effective dipole-gluon coefficient function is

clearly seen. It would seem easy to believe that saturation were occuring due to a large dipole

cross-section, but seems less plausible that this could be interpreted as being due to a steeply

growing density of gluons.

4 Details of the Fit

There are a number of modifications required compared to the standard approach to fits to

data made within the dipole picture in order to get a truly quantitative comparison to the
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at various r. The normalization is determined by the best fit to data.
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conventional DGLAP approach. One extremely important issue is the treatment of heavy

quarks, i.e. charm and bottom. These are often ignored in dipole fits. This is certainly

excusable for the bottom contribution, which only really turns on above Q2 = m2
b ≈ 20GeV2,

and carries a charge weighting of 1/9. However, charm contributes about 40% of dF2/d lnQ2

for Q2 > m2
c , i.e. it turns on from zero to a very sizeable contribution indeed somewhere in the

middle of the dipole regime, and to ignore it is ludicrous.

However, the charm contribution to inclusive F2(x, Q2) is often left out in dipole model

fits. In the original [9] fits, two fits were made, with and without charm. The latter actually

gave a worse fit, and the form of the dipole cross-section changed, the saturation parameter

x0, i.e the value of x at which saturation becomes very important at Q2 = 1GeV2, changed

from x0 = 3 × 10−4 without charm to x0 = 4 × 10−5 with charm, and the overall magnitude

of the dipole cross-section decreased significantly, to about 60% the previous value except at

very large r or extremely small x. Neither of these results is surprising. If one is missing up

to 40% of dF2/d lnQ2 one would expect an enhancement of σ̂(x, r2) and g(x, Q2) of up to 1.67.

Since the leading saturation corrections are ∝ g2(x, Q2), one would then expect the saturation

effects to be much exaggerated when charm is absent, as seen.3 For some reason the results of

the dipole fits are habitually cited using the parameter values from the fits with charm absent.

These parameters are simply wrong, and should not be used. Moreover, they clearly suggest

that saturation effects are quite a lot larger than the results obtained from the more correct

dipole fits.

In order to investigate the importance of the charm contribution to inclusive F2(x, Q2) I

tried performing global fits with this contribution set to zero, i.e. mimicking what is done in

many dipole fits. The procedure for the fit was exactly as in the usual MRST fits other than this

one modification. It seems obvious that, in order to counter the absence of a large part of the

theoretical contribution, the gluon must get bigger at small x to increase evolution. However,

the gluon cannot simply get bigger everywhere because of the momentum sum rule, so it seemed

very likely that αS would also have to get bigger to also try to speed up evolution. The results

were broadly in line with these expectations, but were rather dramatic in other senses. The

main point to note is that the quality of the global fit performed in this manner is terrible,

with χ2 = 4000 for 2000 points, twice that of the normal global fit. At small x it is impossible

to get dF2/d lnQ2 consistently correct at all x and Q2. At low Q2 the gluon wishes to be not

too much bigger than normal, charm not yet being so important in the evolution. However,

such a low Q2 gluon is then much too small to get evolution correct at higher Q2. Conversely

a gluon large enough for the higher Q2 data is far too big for the evolution at low Q2. There

is no way around this within the factorization theorem. Also the increased αS needed to help

the small x fit makes the fit to the rest of the data much worse. The quality of the fit breaks

down everywhere.

This slightly surprising result may be viewed as a very positive one for collinear factorization.

It shows that NLO and NNLO DGLAP calculations are good enough and constraining enough
3Heavy flavours are also absent in the fit in [15]. If charm is included then the fit quality does improve

slightly, but again the parameter x0 decreases, from ∼ 4 × 10−5 to ∼ 10−5 in this case [27].
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to determine that charm has to be there, and to constrain its mass quite accurately, even

without using any data directly sensitive to charm. This suggests one should be suspicious of

good qualitative results obtained from calculation where heavy quarks are ignored, e.g. the

proposed geometric scaling [28]. Such results ought to be incorrect, by up to 40%, until the

heavy flavours are included. It is also an indication of the lack of constraints on a theory if

the free parameters can be readjusted to account for such a large change in the theoretical

prescription. Although the input partons in the DGLAP approach have a large number of free

parameters (it would be very much fewer if only small x data were fit), there is only freedom at

a given Q2
0. How one evolves to other Q2 is precisely defined, and this provides a very strong

constraint, as the above discussion illustrates. Even though many of the dipole models have

few free parameters, they are such that the whole shape in x and r2, or equivalently x and Q2,

can be changed, and in practice this allows much more freedom.

Given the above considerations in my dipole fit I include the charm contribution, which is

done by including the wavefunction for the probability for the photon to fluctuate into a c, c̄

pair. The only parameter is the charm mass, and I use mc = 1.3GeV. I do not include the

bottom since it only contributes at fairly high Q2 and gives a contribution of at most a few

percent, which is comparable to or less than the errors on the data where it contributes. I note

that since the inclusion would give a positive contribution, its effect would have to be to make

the extracted dipole cross-section and resulting gluon a little smaller.

One also has to be careful about the precise details of the light quarks in the fit. In total

three types of diagram enter into the expression for F (x, Q2), shown below.

γ⋆

P

fg(x, k2)

γ⋆

P

fq(x, k2)

γ⋆

q(x, Q2)

P

+ +

In the dipole picture usually only the left-hand diagram is considered, i.e. the whole cross-

section comes form the unintegrated gluon within the proton. However, there is the additional

possibility that the unintegrated quark will emit a gluon which then enters into the same type

of scattering process, as shown in the middle diagram. In the LO kT -factorization theorem

these two diagrams contribute to the total as fg(x, k2) + 4/9fS(x, k2), i.e. it is not just the un-

integrated gluon contributing to dipole cross-section, but really this combination that should

13



appear in Eq.(13). I shall bear this in mind when investigating the results quantitatively.

Finally there is the right-hand diagram which shows the photon scattering from the nonper-

turbative quark distribution (gluons could also be radiated off the vertical quark line, but this

gives a subdominant contribution at small x). Hence, as well as the contribution to the cross

section in Eq.(12) I also include a contribution of the form fNP × Q2/(Q2 + Q2
0), representing

the part of F2(x, Q2) coming from the right-hand diagram. fNP is a free parameter which in

practice is small. The final free parameter is the mass of light quarks mq in the expressions for

the wavefunctions.

I perform a fit to H1 [29], ZEUS [30, 31] and E665 [32] data for x < 0.01 and 0.5GeV2 ≤

Q2 ≤ 50GeV2. The last of these is important since it constrains the x-shape of the structure

function, and hence dipole cross-section, at low Q2 where the HERA data cover only a relatively

narrow range in x. It was included in [9], but has been neglected in some more recent fits. I let

the data normalizations vary within their errors, which is important since the H1 and ZEUS

data choose to be ∼ 2% different in their normalization. The precise range of the data is not

that important, as long as it is fairly wide, since the aim of this paper is not to provide evidence

for my model, or too get as good a fit as possible, but to obtain a quantitatively accurate gluon

distribution from a dipole picture fit. The fit quality would deteriorate outside the two limits,

however, and I will discuss this later.

The best fit is obtained for A = 10.0, f = 0.132 and m2
q = 0.039GeV2. The quality of the

fit is χ2 = 1.1 per point. This is comparable to the best fits in the previous approaches. It is

about as good as one can get for the three different data sets, with H1 and ZEUS data tending

to pull the fit in opposing directions. The size of the dipole cross-section obtained from this fit

has already been shown in Fig. 2. One can see that it exceeds the typical saturation values of

∼ 30mb at very small x and large r2. However, for comparison I find that with this up-to-date

data the simple dipole model of [9] gives χ2 = 2.5 per point, and with best fit parameters of

σ0 = 57.3mb, λ = 0.234 and x0 = 0.00001.4 The fit using my model for the gluon and dipole

cross-section begins to fail for Q2 ≤ 0.5GeV2, with the theory overshooting the data, perhaps

giving an indication that some type of saturation corrections could improve matters. The fit

also fails for Q2 > 50GeV2, where the data are mainly at x > 0.001. This is again due to the

theory overshooting the data, i.e. d F2(x, Q2)/d lnQ2 grows too quickly. Saturation is clearly

nothing to do with this failure – it is a feature of the dipole model with a realistic high-Q2

gluon. I will address this in greater detail below.

In order to try to improve my fit, and perhaps push it to lower Q2, I incorporate one final

modification. I include some higher twist corrections due to the type of diagrams shown below.

4Charm has been included in this fit.
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These are the contributions due to multiple dipole scattering with the proton. It was shown in

[6] that the result of summing such diagrams in the leading ln(1/x) limit is

σ̂(x, r2) = σ0(1 − exp(−σ̂simp(x, r2)/σ0)), (31)

where σ̂simp(x, r2) is the formula for the dipole cross-section we have used so far, i.e. Eq.(13).

Hence, we have a formula similar to that used in [9]. However, the exponentiation is due to

the multiple dipole scattering, while the relationship between a single dipole scattering and

the gluon distribution is unchanged. Hence, it seems that this may be interpreted as dipole

saturation, but not gluon saturation.

The best fit is now obtained with the parameters σ0 = 146.3mb, A = 10.1, f = 0.118 and

m2
q = 0.0249GeV2. The large value of σ0 and the extremely small change in A make it clear

that the saturation effects are not chosen to be at all significant by the best fit. The quality

of the fit only improves very slightly, as is obvious since the dipole cross-section itself hardly

changes. The extrapolation into the region Q2 < 0.5GeV2 is not really improved. The fit

quality remains much the same as long as σ0 ≥ 60mb (a proton radius Rp = 1fm corresponds

to σ0 = 60mb), with A varying by < 3%. For this lower value of σ0 the extrapolation for

Q2 < 0.5GeV2 remains poor. However, it may be argued that for this low Q2 no perturbatively

inspired model is really correct, and nonperturbative physics is essential to describe the data

correctly.

Now that we have the parameter A describing the normalization of the input gluon dis-

tribution we can compare to conventional gluons. The value of A = 10.3 leads to the gluon

distribution shown in Fig. 3 for Q2 = 50GeV2. This is a value of Q2 where the data are still

being fit using the dipole approach, but where saturation effects should have become negligi-

ble except perhaps at the very lowest x. Hence, this gluon should really be very similar to a

conventional gluon obtained from the factorization theorem at this Q2. It is compared to the

MRST2002 NLO gluon [3] in order to test this equality. Clearly it fails quite badly, being ap-

proximately 0.65−0.75 of the DGLAP gluon.5 This is even more striking when one remembers

5Also the MRST NLO gluon is relatively small compared to some other NLO gluons.
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that it should really be compared to g(x, Q2) + 4/9fS(x, Q2). In this case the factor is now

0.5 − 0.65. The biggest suppression in proportional terms is at high x.

Hence, the gluon obtained from the dipole model fit does not match onto the standard

DGLAP gluon at high Q2, where they should converge. Presumably the DGLAP gluon is

correct at Q2 = 50GeV2 since, after all, it is producing the correct slope d F2(x, Q2)/d lnQ2 to

fit a lot of accurate data at and above this scale within what should be a reliable theoretical

framework. At this sort of scale neither saturation corrections nor resummation corrections in

ln(1/x) should be important until very small x. Hence, the dipole motivated fit, with its gluon

mismatch of up to 50%, is quite considerably inaccurate. Examining the two competing gluons

at low Q2 we find that the dipole fit gluon is much smaller than DGLAP at moderate x but

at low Q2 eventually becomes bigger at very small x, due to the fact that my replacement of

Q2 → Q2 + Q2
0 slows the DGLAP evolution for Q2 not too much greater than Q2

0, and the

evolution leads to the biggest absolute changes at small x. In order to decide how far we should

trust the gluon coming from the dipole fit we have to understand the relative behaviour of this

and the DGLAP gluon. It is difficult to say which should be more reliable at small x and low

Q2 until we understand why they fail to match at high Q2.

It is actually not too difficult to do this. The mismatch comes from the effective coefficient

functions or splitting functions in the dipole approach. Let us consider dF2/d lnQ2. This is

controlled by the gluon and the anomalous dimension γDIS(αS(Q2), N). For my model for the

gluon γgg(αs(Q
2), N) = ᾱs(Q

2)(1/N − 1), which is a very good approximation to the LO or

NLO DGLAP anomalous dimension (or NNLO even, at fairly large Q2). Substituting into

Eq.(18) we obtain for the dipole motivated fit

γDIS
dip (αS(Q2), N) ≈

αS(Q2)2Nf

6π

(

1+2.17ᾱS(Q2)
(

1

N
−1

)

+2.30ᾱ2
S(Q2)

(

1

N
−1

)2

+ · · ·
)

. (32)

At reasonably high Q2, and not too low x, the first two terms dominate the evolution. However,

the expression using the exact result for the anomalous dimensions is

γDIS
exact(αS(Q2), N) =

αS(Q2)2Nf

6π

(

(1−1.08N + · · ·)+2.17ᾱS(Q2)
(

1

N
−3.05+ · · ·

)

+ · · ·
)

, (33)

where I have expanded the exact LO and NLO anomalous dimensions about N = 0. More

precisely, the exact LO splitting function
αSNf

2π
(1− 2x + x2) is replaced by

αSNf

3π
δ(1− x), while

the full expression for the NLO splitting function is replaced by
αSNf

3π
2.17(1/x−δ(1−x)). Both

of the first two terms are a lot bigger in this approximation in the dipole approach. Important

corrections which are sub-leading in ln(1/x) are left out of the quark anomalous dimensions and

splitting functions, significantly increasing the speed of evolution for a given gluon distribution.

Alternatively, when performing a fit using this effective splitting function one obtains a smaller

gluon than one should, particularly at moderate x. If one goes to very small x (i.e. smaller

N), the difference between the correct and effective anomalous dimension at LO and NLO (and

NNLO) in αS becomes less significant. Hence, the smaller x gluon can be nearer the DGLAP

result than the moderate x gluon, and the gluon appears steeper than it should be.
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This overestimate of the low order in αS terms can also maintain this shape of the gluon at

small x, even when considering the extra terms in the dipole anomalous dimension compared to

fixed order DGLAP. The terms in the effective splitting function at higher orders in αS contain

parts of the form 1/Nm, which in x-space become lnm−1(1/x). These give a contribution to

d F2(x, Q2)/d lnQ2 of the form

∫ 1

x

dz

z
αn

S lnm(1/z) g(x/z, Q2). (34)

We see that the form of the convolution means that the largest values of the splitting function

at small z, lnm(1/z), are coupled with the largest x in g(x, Q2). However, the overestimate of

the low order in αS splitting functions has led to the high and moderate x gluon being much

smaller than it should be. This minimizes the effect of the extra terms in the dipole splitting

function coming from the ln(1/x) resummation and means that, even with these higher orders

in αn
s lnm(1/x) terms, the small x gluon can be steeper than it should be.

So the difference in the dipole and DGLAP gluons is largely due to the difference in the

effective splitting functions. This can be qualitatively verified by directly modifying the DGLAP

splitting functions in a conventional global fit, i.e. using the form in Eq.(32) for the LO and

NLO splitting functions. The resulting xg(x, Q2)+4/9xfs(x, Q2) for the best fit is shown in Fig.

4. In this case the distribution is indeed much smaller at high and moderate x, in fact almost

identical to that obtained from the dipole fit, but becomes steep at low x. This distribution

is exactly what we would expect. It becomes larger than that in the dipole fit at very small

x because this fit is missing the contributions to the effective splitting function at O(α3
S) and

beyond. These are positive, speeding the evolution, and their absence allows the dipole gluon

to be a bit smaller at the lowest x. These terms, or at least their full form, should be there in a

complete theory, so the “true” gluon should be the standard NLO gluon at high and moderate

x, but a little below this at the lowest x. A probable, “correct” gluon of this form is also shown

in the figure. Indeed, the NNLO gluon is a little smaller than the NLO gluon at the smallest

x, and tends towards the probable gluon. This more “correct” gluon is hence a rather different

shape from the dipole gluon, and this difference in shape would increase as Q2 is lowered.

Now that we clearly understand the reason for the mismatch between the dipole gluon and

the DGLAP gluon at Q2 = 50GeV2 we can also understand why the dipole fit modelled on a

gluon distribution that behaves correctly fails at Q2 > 50GeV2. In this region the contribution

at moderate x to d F2(x, Q2)/d lnQ2 coming from Eq.(32) is just too large when combined

with a normal gluon evolution. In order to get a good fit to the structure function data, the

gluon at x ∼ 0.01 must actually fall with Q2 for Q2 > 50GeV2. This is simply incorrect

phenomenologically, but is achieved accidentally in some dipole models. Similarly the very

good fit at Q2 ∼ 20 − 50GeV2 in dipole model fits is achieved with the wrong gluon, i.e. one

cannot rectify a discrepancy of up to 50% over a short evolution range. At Q2 ∼ 1GeV2 the

missing terms in the splitting function Eq.(32) are still by no means negligible, so the dipole

extracted gluon cannot be truly accurate here. It is also true that in this region there is no good

reason to believe that the DGLAP gluons are very accurate either, and indeed they look rather
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x. All partons are shown for Q2 = 50GeV2.
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odd. A quantitatively correct gluon in this range would require a more complete theoretical

prescription than either approach (and possibly any existing competitor) currently provides.

5 Conclusions

In order to obtain correct results from a fit to structure function data one has to be very careful.

It is not difficult to obtain a good fit to the data, which are very smooth in x and Q2, and many

people have done so since the HERA data began to appear. It is even possible to do so using

physics arguments that are demonstrably wrong. It requires far more care to obtain genuinely

meaningful results with physical interpretations that are in any sense quantitatively correct,

and input quantities that are determined to an accuracy where they may reliably be used in

predicting other quantities. In this paper I have performed a fit using the dipole framework,

and related this to the standard leading twist gluon distribution as accurately as possible in

order to try to understand the seemingly inconsistent results of large, growing distributions at

small x in the dipole approach, and small x valence-like and sometimes negative distributions

in standard perturbative approaches at NLO and NNLO. In doing this I have investigated the

degree of precision with which distributions can be extracted using the dipole approach and

the amount of faith we should have in the quantitative conclusions of such fits.

One major point to make, which should be self-evident but is very commonly ignored, is that

when fitting to the inclusive structure function data one must use heavy quarks in the theoretical

framework for the fits. The charm contribution to the structure function comprises up to 40%

of d F2(x, Q2)/d lnQ2 and alters the qualitative form of results. In fact, the standard DGLAP

fit fails completely if this is left out. However, many dipole fits disregard it, overestimating

the size of the dipole cross-section and the scale at which saturation occurs, even though the

fit is good. Also, it is pointless to show the success of the model in predicting the diffractive

structure function, if charm is ignored in both calculations, as is sometimes done; it must be

included in the extraction of the dipole cross-section and in the calculation of the diffractive

cross-section (and certainly not in just one of the two, as is also sometimes done). If the correct

inclusion of charm improves any results it might add weight to the evidence for a particular

theoretical prescription. Conversely, it seems suspicious if the inclusion of charm makes results

worse.

I discover two reasons which partially explain the apparent discrepancy between steep dipole

cross-sections and valence-like gluons, which are nothing to do with any real discrepancy be-

tween the DGLAP approach and the dipole-motivated approach. Firstly, it is more appropriate

to think of the dipole cross-section as related to the combination xg(x, Q2) + 4/9xfs(x, Q2)

rather than just the gluon. This is because unintegrated quarks in the nucleon can radiate glu-

ons which then go on (possibly with further radiation) to take part in the scattering with the

dipole. In the LO kT -factorization theorem the gluon and quark contribute to this type of pro-

cess in the combination above. This means that, even if at low scales the gluon is valence-like,

the dipoles can pick up a steep behaviour from the quarks.
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Also, the effective coefficient function governing the size of structure functions in terms

of the gluon in kT -factorization may be unambiguously split into a structure function-dipole

part and a dipole-gluon part. The full coefficient function (or splitting function) leads to a

significant enhancement of the growth with decreasing x, and it is found that essentially all

of this appears in the dipole-gluon component. Hence, for a given gluon anomalous dimension

there is a calculable coefficient function which causes the dipole cross-section to be considerably

steeper than the gluon distribution.

Both these effects are in the direction needed in order to reconcile the DGLAP approach

and the dipole approach. However, in order to test fully their compatibility I have constructed

a model for the gluon distribution which evolves quantitatively like a DGLAP gluon for Q2 ≫

0.5GeV2, but where the evolution slows down at low Q2 so that for Q2 < 0.5GeV2 xg(x, Q2) ∼

Q2 and becomes flat in x. This slowing of the evolution is achieved only by altering Q2 in

the expression, making no special case of small x and hence not invoking saturation type

arguments. Using such a gluon, a very good fit was obtained for 0.5GeV2 < Q2 < 50GeV2.

Above Q2 = 50GeV2 a gluon with DGLAP type evolution used within the dipole approach

becomes incompatible with data. The predicted cross-sections are too big at small x for Q2 <

0.5GeV2 and x ∼ 10−5, and some reduction is necessary here, possibly a sign of saturation.

However, the gluon for the good fit is small, and not very steep at low Q2. For x > 10−5 and

sensible values of Rp we never have the condition αs(Q2)πxg(x,Q2)
Q2R2

p
∼ 1, i.e. the naive saturation

requirement [17].

I obtain the important result that the extracted gluon is much too small to match to a

genuine DGLAP gluon at high Q2. This real discrepancy between the DGLAP approach,

which must be correct to a good accuracy for Q2 above 50GeV2 (at least until very small

x), and the dipole approach can be seen to be due very largely to inaccuracies in effective

splitting functions or coefficient functions used when relating the gluon or dipole cross-sections

to structure functions. They are expressions that are only really valid in the leading ln(1/x)

limit, and comparison with the exact perturbative coefficient functions and splitting functions

shows clearly that they give structure functions which are too large. This affects both the size

and the shape of the gluon and dipole cross-section extracted, and the error is greatest at the

moderate x values where the DGLAP gluon is most reliable, rather than at very small x. The

same problems in relating the dipole cross-section to the structure function exist at smaller Q2,

so even though the DGLAP gluon certainly becomes unreliable at low enough Q2, the dipole

cross-section and the resulting gluon are not truly reliable either.

Hence, part of the discrepancy between the dipole approach and the conventional DGLAP

approach is only an apparent discrepancy – the dipole cross-section being rather steeper than

the gluon distribution at small x, though this means that one cannot immediately regard

saturation due to a large dipole cross-section as being quite the same as saturation due to a

large gluon distribution. However, part of the discrepancy is real, with the effective coefficient

function allowing one to calculate the structure function from the dipole cross-section missing

very important contributions which are present in the exact order-by-order in αS calculations.
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These contributions are really there, and should not be ignored. This consistent inaccuracy

in relating the true dipole cross-section to the structure function data means that one cannot

have real faith in the quantitative size and shape of the extracted dipole cross-sections, and

can only treat any claims about the suitability of a particular theoretical foundation based on

a fit to data as justified in very qualitative terms. It has long been realized that one must go

beyond LO kT -factorization theory in a calculation of the gluon to get any sort of reasonable

quality of fit, but it is necessary to do likewise for the wavefunctions in order to be at the level

where one has genuinely quantitative results.

There are various possible avenues. Much work has been done on calculating the NLO

kT -factorization theory impact factors for photon-gluon scattering [33] to go along with the

NLO gluon kernel [34], and these would be useful in extending the validity of the formalism.

The impact factors with exact gluon kinematics have already been calculated [35], and these

could also give useful information about how to improve the calculational framework. It would

be particularly interesting to compare these results with the complete NLO impact factors,

once they are known, to see how well they predict the complete NLO contribution. If they

are successful in doing this one might hope they would be a fairly accurate representation at

even higher orders. However, I feel that, even if one is only fitting HERA data at lowish x,

it is vital to use some calculational framework which combines both the leading terms in a

ln(1/x) expansion and the leading terms in an order by order in αS expansion (along the lines

of that used in e.g. [36]) to be truly accurate, since the latter are always important even at very

small x. Certainly, the use of corrections to the coefficient functions, such as those calculated

using the exact gluon kinematics in [35], do increase the overall normalization of the gluon for

a given structure function, as is required to obtain a closer match to the DGLAP gluon at

high Q2. However, as shown in [21], the simple dipole picture does not really apply beyond

LO in the kT -factorization theory, due to the lack of diagonalization of the cross-section in the

transverse position r, and such calculations are still within the spirit of the kT -factorization

theorem, but are more difficult to interpret in terms of the dipole picture. Hence, constructing

a quantitatively accurate dipole picture cross-section seems to be a particularly challenging

problem.
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