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SUMMARY 
_____________________________________________________________________ 
 
 Research on cooperatively breeding species has shown that their population 

dynamics can differ from those of conventional breeders.  Populations of obligate 

cooperators are structured into social groups, the link between individual behaviour 

and population dynamics is mediated by group-level demography, and population 

dynamics can be strongly affected both by features of sociality per se and by resultant 

population structure.  Notably, groups may be subject to inverse density dependence 

(Allee effects) that result from a dependence on conspecific helpers, but evidence for 

population-wide Allee effects is rare.  To develop a mechanistic understanding of 

population dynamics in highly social species, we need to investigate how processes 

within groups, processes linking groups, and external drivers act and interact in space 

and time to produce observed patterns.   

 Here, I consider these issues as they relate to meerkats, Suricata suricatta, 

obligate cooperative breeders that inhabit southern Africa.  I use mathematical and 

statistical models, in conjunction with long-term data from a wild meerkat population, 

to explore population dynamics, group dynamics, group demography, Allee effects, 

and territory dynamics in this species.  I start out by examining broad-scale patterns, 

and then examine some of the constituent processes. 

 In Chapter Two, I assess the ability of phenomenological models, lacking 

explicit group structure, to describe population dynamics in meerkats, and I assess 

potential population-level Allee effects.  I detect no Allee effect and conclude that 

explicit consideration of population structure will be key to understanding the 

mechanisms behind population dynamics in cooperatively breeding species. 

 In Chapter Three, I focus on annual group-level dynamics.  Using 

phenomenological population models, modified to incorporate environmental 

conditions and potential Allee effects, I first investigate overall patterns of group 

dynamics and find support for only conventional density dependence that increases 

after years of low rainfall.  To explain the patterns, I examine demographic rates and 

assess their contributions to overall group dynamics.  While per-capita meerkat 

mortality is subject to an Allee effect, it contributes relatively little to observed 

variation, and other (conventionally density dependent) demographic rates – 

especially emigration – govern group dynamics.    
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 In Chapter Four, I investigate group dynamics in more detail.  I model 

demographic rates in different sex, age, and dominance classes on short timescales.  

Using these to build predictive and individual-based simulation models of group 

dynamics, I examine the demographic mechanisms responsible for declines in group 

size after dry years.    Results reveal the delayed effect of environmental conditions, 

partially mediated by group structure. 

 In Chapter Five, I explore meerkat territorial patterns.  Using mechanistic 

home-range models, I examine group interactions, habitat selection, territory 

formation, and territory movement.  I use meerkat data to test proposed improvements 

to these models, and I use the model results to start building a picture of spatial 

processes in meerkat population dynamics, laying the groundwork for future research. 

 This thesis highlights the role of environment and social structure in 

characterizing population dynamics.  I discuss the implications of my findings for the 

population dynamics of cooperative breeders and for population dynamics generally, 

noting the importance of sub-populations in drawing conclusions about socially 

complex systems. 
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CHAPTER 1 
_____________________________________________________________________ 

General Introduction 

1.1  Overview 

 The study of population dynamics aims to explain temporal changes in 

population size, density, and composition.  Understanding the patterns involved is one 

of the fundamental aims of ecology, and work has long been devoted to this end. 

 Interpreting patterns of population change is, in fact, relevant across 

disciplines: fisheries and forestry managers attempt to maximise the benefits derived 

from natural populations; conservationists work to minimise the negative ecological 

impacts of an ever-expanding human population, and to promote recovery where 

possible; public health workers labour to stop the spread of disease.  All of these rely 

on understanding how populations behave, and how they respond to internal and 

external pressures.  

 Natural selection is, itself, a population process.  Genotypes are favoured 

when their frequencies increase relative to competing genotypes, so that evolution 

occurs as a result of differential rates of natality and mortality, relative to rates within 

and across species.  Thus, population dynamics function as the backdrop against 

which selection must act (Coulson et al. 2006). 

 Cooperative breeders, in which non-breeding individuals help reproductive 

individuals raise offspring in stable social groups, have received a great deal of 

attention and generated controversy in the context of both evolution (e,g, Nowak et al. 

2010, Abbot et al. 2011) and conservation (e.g. Courchamp et al. 1999b, Courchamp 

et al. 2000, Courchamp and Macdonald 2001).  Given the level of interest in these 

aspects of cooperative breeders' biology, their population dynamics - relevant to other 

study - have received relatively little attention.  Population characteristics of 

cooperative breeders do, though, create the potential for complex dynamics.  

Populations are divided into groups, generating attendant spatial structure and the 

potential for territorial interactions; groups are divided into breeding and non-

breeding demographic classes, with likely effects on patterns of change; and 

cooperation itself has the potential to influence dynamics by imposing minimum 

group-size thresholds.  
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  Here, I present work to improve our understanding of population dynamics in 

cooperatively breeding meerkats, Suricata suricatta.  This species has been the focus 

of much behavioural research, examining evolutionary causes and ecological 

consequences of cooperation, but meerkat population dynamics, per se, have not been 

modelled empirically.  Detailed behavioural and life-history data, collected from more 

than a decade of field studies on this species, afford the opportunity to investigate 

dynamical patterns associated with cooperation, spatial structure, environmental 

variation, and age structure in a stochastic environment.  By improving our 

understanding in these areas, I aim to answer important basic questions, help place 

existing work in context, and lay the groundwork for future research. 

 Throughout this thesis, I combine mathematical and statistical models with 

data to investigate meerkat population dynamics in gradually increasing complexity.  I 

start by using relatively simple models to describe patterns of population-level 

dynamics.  I then consider group-level dynamics, starting with simple models and 

eventually decomposing patterns into contributions from individual demographic rates 

in different social classes of individuals.  Finally, I model territorial patterns, as an 

initial step towards combining findings relating to group-level patterns into a coherent 

description of overall population-level dynamics.   

 In the rest of this chapter, I introduce relevant underlying concepts and 

relevant sources of variation.   I also provide general background about modelling and 

a brief description of pertinent meerkat biology.  Further background and examples 

relevant to each analysis follow in the respective chapters. 

1.2 Population Processes  

 Fundamentally, only four processes: birth, death, immigration, and emigration, 

add individuals to or remove individuals from any population.  Details of these four 

demographic rates can vary considerably from one population to another, but several 

underlying relationships consistently play important roles (Berryman 1999).  These 

relationships involve exogenous (e.g. resource-dependent) and endogenous (density-

dependent) regulating and de-regulating processes.  The specific combination of 

processes at play for a given population determines the pattern of dynamics observed. 
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1.2.1 Resources, Environment, and Predation  

 Resources are central to population and community dynamics, as without 

sufficient water, nutrients, and space, organisms cannot survive and reproduce.  

Patterns of primary productivity underlie all food webs, with each trophic level 

providing food for the next.  The resulting patterns of resource distribution help 

determine the distribution of dependent species (Fretwell and Lucas 1969), and these 

patterns, in turn, have exerted crucial influence on species' evolution (e.g. Clutton-

Brock and Harvey 1978).   

 In part through their influence on resource patterns, environmental conditions 

also play an important role in population dynamics.  Climate and conditions influence 

primary productivity, but also make the physical environment more or less hospitable, 

with effects on body condition, reproduction, survival, and dispersal throughout food 

webs (e.g. Cumming and Bernard 1997, Coulson et al. 2001, Hallett et al. 2004, 

Ozgul et al. 2010, Packer et al. 2005).   

 While all populations are ultimately resource-dependent, resource availability 

is not the proximate driver of dynamical patterns in all populations (i.e. not all 

populations are resource-limited).  As recent catastrophic human impacts clearly show 

(e.g. Worm et al. 2006), population-dynamic patterns can also be influenced by higher 

trophic levels.  The numerical effects of predation directly affect population 

dynamics, and the associated risks and benefits have wide-ranging effects on relevant 

patterns of behaviour and space use (Lima and Dill 1990). 

1.2.2 Negative Density Dependence 

 Many of the external factors that influence population dynamics are only 

relevant in the context of population density.  Resource availability, for example, 

depends on the resources accessible to each individual within a population, and, on 

average, declines as more individuals fill an area.  In addition, some processes are 

directly dependent on population density.  For example, many predators vary their 

rate of predation on a given species out of proportion to its abundance (Holling 1965).  

As a result, rates of birth, death, and dispersal, as well as overall rates of change in 

population size and density, are likely to be density-dependent (e.g. Coulson et al. 

2008). 

 The idea that population size is regulated by density-dependent processes is 

one of the most fundamental concepts in population biology (Berryman 1999).  
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Without some form of density dependence in the rate of population change, 

population size would follow a "random walk," with the potential to grow without 

bound (but invariably declining to zero; Murdoch 1994).  In reality, competition 

among individuals increases with population density (Berryman 1999).  Population 

sizes tend to fluctuate about stable equilibria, above which population size declines 

and below which it increases.  This pattern is termed "negative" (or conventional) 

density dependence.  Whether density-dependent regulation acts locally, on birth and 

death rates, or at larger scales, on rates of dispersal and colonisation, the pattern 

persists (Murdoch 1994).  

1.2.3 Allee Effects 

 While increasing population density is most commonly thought to inhibit 

population growth, the opposite can also be true.  Negatively density-dependent 

processes, such as competition for food or nesting sites, are likely to dominate at high 

densities, but other, positively density-dependent processes may have more influence 

at low densities (Allee 1931).  These "Allee effects" can result from disadvantages 

associated with small or sparse populations, such as an inability to find mates, or from 

advantages associated with larger or denser populations, such as improved 

thermoregulation or anti-predator defence (Courchamp et al. 1999a).  

 Two classes of Allee effects exist: "component" Allee effects are positive 

associations between population size or density and components of fitness; 

"demographic" Allee effects are positive associations between population size or 

density and overall mean fitness (Stephens et al. 1999).  While component Allee 

effects have the potential to result in demographic Allee effects, the connection is not 

guaranteed.  Conventionally density-dependent demographic rates can swamp 

component Allee effects, resulting in conventional dynamics overall (Stephens et al. 

1999).   

 Allee effects, and especially demographic Allee effects, have implications for 

ecology, evolution, and conservation, and findings have been extensively reviewed 

elsewhere (e.g. Courchamp et al. 1999, Stephens and Sutherland 1999 Stephens et al. 

1999, Courchamp et al. 2008).  The implications for conservation are of particular 

concern: low - or negative - rates of population growth in small or sparse populations 

present an added pressure for threatened species and can hamper reintroduction or 

conservation efforts (Stephens and Sutherland 1999).  Given the increasing number of 
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species placed at risk by anthropogenic threats, the causes and consequences of Allee 

effects are relevant areas of study.  

1.3 Modelling the Processes 

 Population dynamics involve complex interactions among individuals and 

between trophic levels, and the resultant patterns are rarely simple.  In addition, 

population characteristics and interactions must often be measured by proxy, and 

comprehensive information is elusive.  As a result, mathematical models that can 

describe underlying processes and draw necessary links between data are a 

cornerstone of population-dynamics research.  While all models are ultimately wrong, 

well-placed and well-designed models can be useful, helping to interpret complex 

data and pointing out where our understanding falls short (Box 1976).   

 Mathematical models are often classed as either "phenomenological" or 

"mechanistic."  The former provide descriptions of observed patterns, and can be used 

to identify relationships between variables (such as population size and population 

growth rate), while the latter combine mathematical descriptions of underlying 

processes, generating descriptions of resultant relationships that can be interpreted in 

the context of those processes.  Both types of model can be useful in identifying and 

understanding biological processes, and in making predictions for conservation or 

management. 

 Models provide formal descriptions of hypothesised relationships or pattern-

generating processes (both deterministic and stochastic) and help to hone scientific 

understanding.  In the context of population dynamics, models relate patterns of 

demography, spatial distribution, or other population changes to underlying drivers, 

such as resource density, predator abundance, climatic factors, and features of the 

focal population itself.  By critically confronting models with data (Hilborn and 

Mangel 1997), we can identify those descriptions of reality which are inadequate.  

Discarding inadequate descriptions and retaining good descriptions for further 

improvement, we correct misconceptions and refine ideas in an iterative pursuit of 

knowledge (Box 1976). 

1.4 Structure in Populations 

 Simple models, treating populations as homogenous entities, and 

incorporating simple density dependence, have a long history in studies of population 
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dynamics.  Primarily, such modelling represents a reasonable way to initially 

approach a problem: simple models are easiest to understand and have the potential to 

describe relevant processes in relatively accurate - if coarse - ways.  In addition, even 

simple models can produce interesting mathematical results (e.g. chaos; May 1974) 

that occupy theoreticians.  All models simplify reality to some extent, but much can 

be learned from investigating how violations of simple models' assumptions lead to 

deviations from their predicted patterns. 

 Information about wild populations can be difficult to obtain, and may often 

be limited to estimates of a species' abundance (e.g. Frank and Brickman 2000).    In 

this case, commonly used, simple methods of modelling population dynamics can 

seem (and may be) appropriate.  Real populations are not homogeneous, however, and 

incorporate some degree of structure: individuals differ in size and age, and 

population density can vary from location to location.  These features can have 

important impacts on population processes.  Evidence suggests that elucidation of 

process details and consideration of population structure are critical for accurate 

descriptions of population dynamics (Frank and Brickman 2000, Clutton-Brock and 

Coulson 2002, Packer et al. 2005). 

1.4.1 Demographic Structure  

 Within any population, each demographic rate can manifest differently in 

different sexes or ages of individuals.  Demographic models decompose population 

fluctuations into contributions from different sex-, stage-, or age-classes (Coulson et 

al. 2008).  Classical approaches (Leslie 1945) considered average rates of mortality 

and fecundity across age or stage classes, and yielded the conclusion that every 

population should inherently approach a stable age distribution based on those rates 

(Schoen and Kim 1991). 

 The state of any population and specifics of each system are, in reality, 

important determinants of dynamical behaviour.  Two populations of the same size 

but different age structures can behave very differently under otherwise identical 

conditions (Coulson et al. 2001, Clutton-Brock and Coulson 2002).  Demographic 

structure can alter the dynamics of disease, invasion, and at-risk populations, and 

drawing conclusions about any population based on properties of its asymptotic 

dynamics may be of limited use (Fulford et al. 2002, Koons et al. 2005, Ozgul et al. 

2009, Miller and Tenhumberg 2010).   
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1.4.2 Spatial Structure 

 Just as populations are not homogeneous with respect to age, sex, and stage, 

they are rarely homogeneously distributed in space.  This is important, as how 

animals use space in their quest to extract resources, avoid predators, and gain access 

to mates has consequences for population and community dynamics (Fagan et al. 

2007, Wang and Grimm 2007, Morales et al. 2010).   

 One of the simplest concepts used to describe spatially structured populations 

is that of a classical metapopulation (Levins 1970), in which localised populations 

suffer stochastic extinction and are recolonised by dispersers.  The metapopulation 

approach focuses on the role of dispersal in population dynamics.  Other approaches 

tend to focus on births and deaths (Hanski 1999), even though dispersal plays a 

crucial role in population dynamics (Bowler and Benton 2005).  Metapopulation 

models also highlight that overall population persistence is a dynamic equilibrium of 

local extinction and colonisation.  Absent from the classical formulation is the role of 

localised sub-population regulation, though more modern studies have included this 

feature (Hanski 1999). 

 Ignoring local dynamics can be confusing, and even misleading.  In the same 

way that equally sized populations with different age structure can behave differently, 

superficially similar, but differentially structured, populations can behave differently.  

For example, when local dynamics involve Allee effects, ignoring sub-populations 

can lead to the false conclusion that the population is conventionally density-

dependent overall (Frank and Brickman 2000).  The Allee effects may not manifest at 

the population level until too many sub-populations have collapsed to retain a viable 

population overall.  This scenario, drawn from fisheries science, shows the potential 

for inappropriate management decisions when a population's spatial structure is 

overlooked. 

1.4.3 Social Structure 

 The patchy distribution of resources across landscapes determines the 

grouping of animals and strongly influences their social systems (Brown and Orians 

1970, Clutton-Brock and Harvey 1978), and social structure within populations can 

have its own effects on dynamics.  Species that form social groups often defend 

territories against other groups (Macdonald 1983), and males commonly defend 

resources or females (Clutton-Brock and Harvey 1978).  In each case, social 



Chapter One — Introduction 

 8 

interactions restrict the free movement of individuals - and acquisition of resources 

(Fretwell and Lucas 1969) - within the landscape.   

 Social interactions at least partially drive patterns of local density-dependence.  

Direct intraspecific competition can determine the form of density dependence 

(Brännström and Sumpter 2005), and hierarchies within social groups can directly 

restrict access to resources or mates (e.g. Clutton-Brock et al. 2008).  

 Social interactions also affect dispersal decisions (Bowler and Benton 2005) 

critical to overall population dynamics and persistence (Hanski 1999).  In group-

forming species, coordinating dispersal with other individuals can be important for its 

success (Young 2003), and even in solitary species, social cues can alter dispersal 

decisions (Cote and Clobert 2007).  Dispersal decisions influence spatial (and social) 

dynamics, but can also affect the patterns of birth and death (e.g. Haydon et al. 2008, 

Young 2003) traditionally considered to be the core of population dynamics. 

1.5 Population Dynamics of Cooperators 

 A number of species have evolved to breed cooperatively, most likely 

facilitated by monogamous breeding systems and the closely related social groups that 

result from delaying dispersal (Lukas and Clutton-Brock 2012).  In some cases, 

cooperation has become obligate, so that helpers are required for successful breeding 

or survival (Courchamp et al. 1999b).   

 As cooperators form stable social groups of breeders and non-breeders, their 

population dynamics are affected by demographic, spatial, and social structure.  Here, 

the link between individual behaviour and population dynamics is mediated by group-

level demography. Breeders and non-breeders contribute differently to demographic 

rates within groups, which function as local populations, with inherent potential for 

local density dependence.  Population dynamics can be strongly affected both by 

features of sociality per se and by resultant population structure (e.g. Hanski 1999, 

López-Sepulcre and Kokko 2005, Packer et al. 2005).  Groups interact with each other 

socially, often aggressively.  In addition, dispersal - important for inbreeding 

avoidance - ties the subpopulations together and provides the opportunity for vacated 

habitat to be filled. 

 Because of the reliance on conspecific helpers, especially in obligate 

cooperative breeders, Allee effects may play an important role in the population 

dynamics of cooperative species (Courchamp et al. 1999b).  This could have worrying 
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implications for vulnerable populations of cooperatively breeding species, such as in 

the high-profile case of African wild dogs, Lycaon pictus (Courchamp et al. 2000, 

Courchamp and Macdonald 2001).  Although component Allee effects might seem to 

be guaranteed for groups of cooperators (Courchamp et al. 1999b), few studies have 

assessed the potential for demographic Allee effects.  Wild dogs have perhaps 

received the most study in this regard (Courchamp et al. 2000, Courchamp and 

Macdonald 2001, Somers et al. 2008, Gusset and Macdonald 2010, Woodroffe 2011), 

but some studies find little support for Allee effects, even in this archetypal case 

(Somers et al. 2008, Woodroffe 2011).  Clearly, more work is required. 

1.6 Meerkats 

In the following chapters, I use behavioural and life-history data, collected 

over more than a decade of intensive research at the Kuruman River Reserve in the 

South African Kalahari (Figure 1.1), to investigate population dynamics in this highly 

social species.  Given the structured nature of meerkat populations, and their situation 

within a highly stochastic environment, investigation of population-dynamic 

processes will benefit from the detailed data available.  These data provide the 

potential to understand components of meerkat population, group, dispersal, and 

spatial dynamics, and start to piece the various aspects together into an overall 

picture.  

Meerkats are cooperatively breeding mongooses (family Herpestidae) that 

inhabit arid regions of southern Africa.  They form groups of up to 50 individuals, 

within each of which a long-lived, behaviourally dominant pair largely monopolises 

reproduction (Clutton-Brock et al. 2008, Hodge et al. 2008, Sharp and Clutton-Brock 

2010).  Subordinates of both sexes help to care for dependent offspring, accruing 

inclusive fitness benefits (Doolan and Macdonald 1996b, Clutton-Brock et al. 1999b).  

Helpers provision pups, "babysit" at the natal sleeping burrow, and take turns on 

sentinel duty, and non-breeding females also allolactate (Clutton-Brock et al. 1999b, 

Clutton-Brock et al. 2002).    
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  Though meerkats are desert-adapted, stochastic seasonal rainfall strongly 

affects regional ecology and, consequently, prey availability and meerkat demography 

(Doolan and Macdonald 1997, Clutton-Brock et al. 1999a, Clutton-Brock et al. 

1999b, Hodge et al. 2008).  Females usually produce multiple litters per year, but 

reproduction peaks in January, at the height of the rainy season, and is all but absent 

by July, in the depths of the dry season (Clutton-Brock et al. 1999b).   

 Seasonal patterns also drive dispersal.  When pregnant, dominant females 

commonly evict subordinate females, in an effort to avoid infanticide (Clutton-Brock 

et al. 1998a).  Around the same time, subordinate males engage in reproductive 

prospecting forays and sometimes form “roving coalitions” in an attempt to disperse 

(R. Mares, in preparation).  Many evicted females return to their social groups, but 

can form new groups with unrelated coalitions of males (Doolan and Macdonald 

1996b, Young 2003).  Female immigration into established groups is extremely rare 

(Stephens et al. 2005), and those that cannot return from eviction or establish a new 

group die.   

Past work has identified group-level patterns relevant to meerkat population 

dynamics.  Density dependence at the level of the group affects birth, death, and 

dispersal processes (Clutton-Brock et al. 1999a, Young 2003, Clutton-Brock et al. 

2008, Hodge et al. 2008), and evidence suggests component Allee effects at the group 

level: the probabilities of breeding, individual and litter survival, and group 

persistence in bad years all seem to increase with group size (Clutton-Brock et al. 

1999a, Hodge et al. 2008).  Authors have argued that each additional group member 

Figure 1.1: Satellite images showing (A) the location of the Kuruman River Reserve (black star) 
within South Africa (source: www.maplibrary.org) and (B) detail of the study site, showing the dry bed 
of the Kuruman river running northeast to southwest (source: maps.google.com).   
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improves survival and reproductive prospects for the group, and it has been tempting 

to extend this argument, assuming that meerkat groups experience Allee effects in 

their overall dynamics (Clutton-Brock et al. 1999a, Courchamp et al. 1999b), but the 

assertion remains untested.   Meerkat population-level dynamics remain entirely 

unexplored.   

 Social groups give structure to meerkat populations, and patterns of social 

dominance create structure within groups.  Social groups defend territories against 

their neighbours (Young 2003, Jordan et al. 2007, Mares et al. 2012), and dispersal 

creates a dynamic pattern, as new groups form and others die out.  Additionally, 

stochastic environmental conditions are likely to cause fluctuations in groups' 

demographic structure, leading to varying patterns of dispersal and overall population 

dynamics.  These processes, and the spatially structured population context in which 

they operate, remain largely unexplored. 

1.7 Thesis Outline  

 Building mathematical and statistical models, and confronting them with 

detailed data, I aim to elucidate patterns of meerkat population dynamics, and provide 

mechanistic explanations for some of the observed patterns.  I describe patterns of 

change in population density and then consider how processes within groups, 

processes linking groups, external drivers, and spatial patterns contribute to these 

broad-scale dynamics. 

 In Chapter Two, I use phenomenological population-dynamics models to 

investigate patterns of inter-annual change in meerkat population density.  I assess 

different functional forms lacking explicit consideration of group structure and 

incorporate an effect of annual rainfall.  I also assess potential Allee effects at the 

population level, as might be expected if component Allee effects produce group-level 

Allee effects and group dynamics are synchronised.   

 In Chapter Three, I consider inter-annual group-level dynamics.  Again, I use 

phenomenological population models, modified to incorporate environmental 

conditions and potential Allee effects, to investigate overall patterns of group 

dynamics.  I then examine patterns of environmental and density dependence in 

constituent demographic rates - birth, death, immigration, and emigration - and assess 

their contributions to overall group dynamics.  By decomposing group dynamics in 

this way, I describe the basic mechanisms behind observed patterns. 
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 In Chapter Four, I investigate group dynamics in more detail.  I again model 

demographic rates, but here consider more detailed responses of different sex, age, 

and dominance classes over short timescales.  Using the resulting models to build 

predictive and individual-based simulation models of group dynamics, I examine the 

demographic mechanisms responsible for dispersal-related declines in group size after 

dry years, identified in the previous chapter.   

 In Chapter Five, I explore meerkat territorial patterns.  While chapters Two 

and Three describe patterns within groups, they do not explicitly consider group 

interactions or the specific spatial context.  The goal of Chapter Five is to start 

building an understanding of the spatial processes that influence meerkat dynamics 

and of how group-level and inter-group patterns combine to produce the patterns of 

dynamics described in Chapter Two.  At the same time, the detailed data available for 

meerkats provide an excellent opportunity to test potential improvements to relevant 

models.  Using mechanistic home-range models, I examine group interactions, habitat 

selection, territory formation, and territory movement.  I use meerkat data to test 

proposed improvements to these models, and I use the model results to start building a 

picture of spatial processes in meerkat population dynamics, laying the groundwork 

for future research. 

 In Chapter Six, the general discussion, I discuss some of the implications of 

my findings for meerkats, the population dynamics of cooperative breeders, and for 

population dynamics generally, noting the importance of sub-populations in drawing 

conclusions about socially complex systems.  I highlight the importance of spatial 

processes in population dynamics, especially for territorial species like meerkats, and 

I propose related future work that will help bridge the gap between our knowledge of 

group dynamics and population dynamics overall. 
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CHAPTER 2 
_____________________________________________________________________ 

What do simple models reveal about the population dynamics 
of a cooperatively breeding species? 
 
This chapter was published as: 

Bateman, A. W., T. Coulson, and T. H. Clutton-Brock. 2011. What do simple 
models reveal about the population dynamics of a cooperatively breeding 
species? Oikos 120:787-794. 

I designed the study, with input from T. Coulson; T. Coulson and T. H. Clutton-Brock 

contributed to discussion; T. H. Clutton-Brock provided access to data; and I analysed 

the data and wrote the paper. 

2.1 Abstract 

 Research on cooperatively breeding species has shown that their population 

dynamics differ from those of conventional breeders.   Populations of cooperators are 

structured into groups, and group-level Allee effects are likely common.   We assess 

the ability of phenomenological models, lacking explicit group structure, to describe 

population dynamics in cooperative meerkats (Suricata suricatta), and we assess 

potential Allee effects at the population level.  Using maximum likelihood model 

fitting and information theoretic model selection, applied to time series data from a 

wild meerkat population, we find simple models that incorporate rainfall and 

conventional density dependence to be the most parsimonious of the models 

considered.  Detecting no population-level Allee effect, we conclude that explicit 

consideration of population structure will be key to understanding the mechanisms 

behind population dynamics in cooperatively breeding species. 

2.2 Introduction 

The population dynamics of cooperatively breeding species – species in which 

breeders receive help from other individuals when raising offspring – are likely to 

differ from those of conventional breeders (Courchamp et al. 2000, Packer et al. 

2005).  The association of breeders and their helpers structures populations into 

groups, creating the potential for unusual local dynamics that interact to produce 

overall population dynamics.   Here, we examine population dynamics in meerkats 

(Suricata suricatta), a cooperatively breeding mongoose from southern Africa, asking 
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whether standard, simple modelling techniques are appropriate and whether 

characteristic group-level dynamics produce similar population-level dynamics.  

Across species, population structure can affect population dynamics.  For 

example, in Soay sheep (Ovis aries) age structure, population density, and 

environmental effects interact to produce observed dynamics (Coulson et al. 2001).  

Group-living species are no exception.  In marmotine rodents, environmental 

variation can interact with group structure: food availability affects dynamics largely 

through changes to fertility rate and age at maturity, but social suppression within 

groups can delay reproduction in young individuals (Dobson and Oli 2001, Oli and 

Armitage 2003).  Many Serengeti species can respond gradually to environmental 

change, but regional populations of lions (Panthera leo) remain stable for years and 

shift to new equilibria in sudden bursts as a result of group structure (Packer et al. 

2005).   

For cooperative species, theoretical and empirical studies suggest that groups 

commonly display depressed growth rates and increased extinction risk at low group 

sizes (Clutton-Brock et al. 1999a, Courchamp et al. 1999b) – positive (or inverse) 

density dependencies referred to as Allee effects (reviewed in Courchamp et al. 

1999a, Stephens and Sutherland 1999, Courchamp et al. 2008).  It has been suggested 

(Courchamp et al. 2000) that cooperators in nature are subject to population-wide 

Allee effects – that the group-level Allee effects “scale up” to the population level – 

but empirical evidence is lacking.  In one case, that of cooperative African wild dogs 

(Lycaon pictus), group-level Allee effects are apparent (Courchamp and Macdonald 

2001) and have been predicted to generate a population-level Allee effect 

(Courchamp et al. 2000), but such an effect appears to be absent (Creel and Creel 

2002, Somers et al. 2008).     

Dynamical synchrony among groups is likely to be important for Allee effects 

to translate from groups to populations.  If group growth rates are not synchronized, 

patterns of population growth are likely to differ from patterns of group growth.  

Simulations  show that unsynchronized sub-populations, each with Allee dynamics, 

can combine to form a population displaying conventional density dependence (Frank 

and Brickman 2000).  If groups are synchronized, either by broad-scale environmental 

effects or by inter-group migration (Bjørnstad et al. 1999), population dynamics are 

more likely to match group dynamics. 
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Studies of population dynamics use a variety of mathematical models to 

describe fluctuations in population sizes or densities.  The models range from simple 

“phenomenological” forms, describing population changes without explicitly 

considering births and deaths, to more complicated “demographic” models, specifying 

birth and death parameters and often incorporating aspects of a population’s structure 

(Coulson et al. 2008).  Although they lack explicit consideration of population 

structure, simple phenomenological models based on measures of size or density have 

long been central to studies of population dynamics.  These models sometimes fail to 

capture dynamics (e.g. Clutton-Brock and Coulson 2002), and there is disagreement 

about how to interpret some model parameters (e.g. Royama 1992, Lande et al. 2002), 

but the models can describe population time series well (e.g. Lande et al. 2002).  

Specific phenomenological models have been developed to capture various processes, 

including Allee effects (Courchamp et al. 2008) and the dynamics of, stage- and age-

structured populations (Lande et al. 2002).  In Soay sheep, an early phenomenological 

model that ignored population structure (Grenfell et al. 1998) fitted data poorly (r2 = 

0.21) compared to structured models (structured Markov model r2=0.92: Coulson et 

al. 2001), but a simplified phenomenological approximation of a structured 

demographic model has since been relatively successful at approximating dynamics 

(r2=0.69: Coulson et al. 2008).  Phenomenological models have also succeeded in 

describing the dynamics of certain cooperative species (e.g. Octodon degus r2=0.94: 

Previtali et al. 2009).   

Meerkat populations involve structure at multiple levels, and groups display 

Allee effects (Clutton-Brock et al. 1999a, Hodge et al. 2008), but meerkat population 

dynamics have not previously been modelled empirically.  As singular cooperative 

breeders (Clutton-Brock et al. 2001b), meerkats form groups of 3 to 50 individuals in 

which a long-lived (Sharp and Clutton-Brock 2010) dominant pair largely 

monopolises breeding attempts (Clutton-Brock et al. 2008, Hodge et al. 2008) and 

subordinate individuals of both sexes help to care for young (Clutton-Brock et al. 

2001a).  The existence of groups gives structure to the meerkat population, and 

division into dominant and subordinate classes provides structure within the groups.  

Group size affects meerkat survival and reproduction, and evidence demonstrates 

Allee effects in components of fitness, and suggests Allee effects on overall fitness, at 

the group level: the probabilities of breeding, individual and litter survival, and group 
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persistence in bad years all increase with group size (Clutton-Brock et al. 1999a, 

Hodge et al. 2008).  

We use phenomenological models to describe the dynamics of a wild meerkat 

population in the South African Kalahari and look for an Allee effect at the population 

level.  Given the past success of simple models at describing dynamics in structured 

populations (Lande et al. 2002, Coulson et al. 2008, Previtali et al. 2009), we expect 

to be able to describe meerkat population dynamics using phenomenological models 

that do not explicitly consider population structure.  If phenomenological models 

lacking explicit structure succeed in describing the dynamics of a meerkat population, 

we can examine how group interactions allow this.  If phenomenological models are 

inadequate, we can proceed to more complex approaches (that consider group 

structure) to describe overall population dynamics.  For a localised meerkat 

population, there is good reason to believe that group dynamics will be synchronized, 

since dispersal occurs between nearby groups (Clutton-Brock et al. 1998a) and 

environmental conditions will be closely correlated.  We thus expect that group level 

Allee effects will result in an Allee effect detectable at the population level.  To 

investigate, we compile a candidate set of discrete-time phenomenological population 

dynamics models, some of which are designed to capture Allee effects, and evaluate 

the models using eleven years of meerkat census data.  We also assess group 

synchrony and the statistical power of our approach to detect an Allee effect. 

2.3 Methods 

2.3.1 Data Collection 

We collected meerkat data from a study population of habituated, wild 

meerkats on and near the Kuruman River Reserve (26o58’S, 21o49’E), an area of 

ranchland near Van Zylsrus in the Northern Cape province of South Africa.  A 

detailed description of the site and local conditions can be found elsewhere (Russell et 

al. 2002).  The study population was open to immigration from and emigration to the 

surrounding area, and the number of social groups in the population fluctuated 

between eight and sixteen (mean 13.18).  Throughout the study period, groups 

formed, disbanded, and died out; previously unknown groups were habituated, thus 

entering the study population; and the study of other groups was discontinued, for 

example, if they moved out of the general study area.  Also, individual groups’ ranges 
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changed over the course of the study.  We therefore used measures of population size 

and range to estimate population density (size/range) for analysis.   

We “censused” individuals older than two months on July 1st each year, in the 

height of the dry season between annual pulses of reproduction (Clutton-Brock et al. 

1999b).  During weekly (and often daily) visits to meerkat social groups, volunteers 

collect life history data (Clutton-Brock et al. 1998a, Clutton-Brock et al. 2008).  From 

these detailed records of each individual’s birth, death, and dispersal events, we 

generated accurate population counts for the period from 1998 to 2008, inclusive.   

To estimate the population’s range, we used burrow location data (meerkats 

spend the night in subterranean sleeping burrows), collected during group visits in the 

two months following each census date, and a bivariate normal kernel with a fixed 

smoothing parameter to calculate a 95% kernel utilization distribution (Worton 1989) 

for the entire population.  Initially, we used spatial “track” data collected with 

handheld GPS units at fifteen-minute intervals during group visits (for details see 

Jordan et al. 2007) to estimate 95% kernel utilization distributions for individual 

groups, using a common smoothing parameter that approximately resulted in contact 

without overlap for ranges of adjacent groups.  Track data have been used previously 

to estimate meerkat group range (Jordan et al. 2007), and we considered the track data 

to be more representative than burrow location data of group ranges, but track data 

were not available for the entire study period.  We thus chose a smoothing parameter 

for use with burrow location data so that, in the years when both datasets were 

available, the population range (as estimated using burrow location data) 

approximated, upon inspection, the combined ranges (as estimated using track data) 

of all the component groups.  While this approach might not be appropriate to 

formally investigate the population’s range, it produced a consistent estimate of the 

area occupied by the meerkat population. 

 Rainfall data were acquired using NASA's GES-DISC (Goddard Earth 

Sciences Data and Information Services Center) Interactive Online Visualization ANd 

aNalysis Infrastructure (Giovanni: NASA 2009).  Giovanni provides monthly rainfall 

estimates based on 2.5o x 2.5o (latitude x longitude) gridded rainfall data from the 

Global Precipitation Climatology Project Version 2.1 Combined Precipitation Dataset 

(an update of the version 2 dataset from Adler et al. 2003). 
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2.3.2 Candidate Models 

 We initially identified a set of plausible discrete-time phenomenological 

models (Tables 2.1,2.2) to describe the meerkat population’s changes in density from 

year to year (its population dynamics).  We used discrete time models because 

meerkat reproduction is highly seasonal; births peak in the height of the rainy season 

and decline to nearly zero during the height of the dry season (Clutton-Brock et al. 

1999b).   

Table 2.1: explanation of variables and parameters in models (Table 2.2) used to describe meerkat 
population dynamics  

variable/ 
parameter Interpretation 

Dt meerkat density at the beginning of year t 

λ0 
maximal growth rate, attained at zero population density in models with standard (negative) 

density dependence 

K carrying capacity 

δ Allee effect parameter for the modified Beverton-Holt model 

α 
parameter derived from λ0 after Allee effect modification of the Beverton-Holt model – no 

longer maximal model growth rate, but with a similar effect 

d Allee effect parameter for model modification suggested by Barrowman et al. (2003) 

  
parameter derived from λ0 after Allee effect modification suggested by Barrowman et al. 

(2003) – no longer maximal model growth rate, but with a similar effect 

κ 
parameter derived from K after Allee effect modification suggested by Barrowman et al. 

(2003) – no longer carrying capacity, but with a similar effect 

Xt ln(Dt) 

β autoregression parameter for the stage-structured life history model† 

Rt total rainfall in year t 

γi coefficients relating rainfall to carrying capacity (or κ, see above) 

† interpreted as  ln(φ/μ)
lnD1+μ 

   evaluated at K, where μ is the annual adult mortality rate, φ is the annual 
adult recruitment rate, and D is density (Lande et al. 2002) 

 
Our initial candidate model set consisted of simple phenomenological models 

that use one year’s density to predict the next.  The Beverton-Holt (Beverton and Holt 

1957) and Ricker (Ricker 1954) models (Table 2.2 eqs. 1,3) are standard, widely used 

discrete-time population models (Brännström and Sumpter 2005).  The stage-

structured life history model (Table 2.2 eq. 5) of Lande et al. (2002) was designed to 

describe dynamics for species – like meerkats – with populations divided into 

breeding and non-breeding stage classes.  It was derived by linearising a stage-
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structured demographic model about its carrying capacity equilibrium point, allowing 

model parameters to be interpreted based on their constituent demographic rates.  The 

linear form of the model is an approximation that relies on small to moderate 

departures from equilibrium, and although the model was formulated as an 

autoregressive time series model, which could have incorporated multiple years of 

density for prediction (Lande et al. 2002), we used the first-order version, because 

meerkats reach sexual maturity at one year of age.   

Table 2.2: discrete-time population dynamics models  used to describe meerkat population density  

model equation reference 

(1) Beverton-Holt model     0

0 t-1
t λ -1

t-1 K

λ DD =
1+D  (Beverton and Holt 1957) 

(2) modified Beverton-
Holt  model     δ

δ
t-1

t δα 1
t-1K K

αDD =
1+ - D  (Beverton and Holt 1957) 

(3) Ricker model     t-11-D K
t t-1 0D = D λ  (Ricker 1954) 

(4) modified Ricker 
model    

 t-1t-1

t-1

1-D κD
t t-1D +dD = D   

(Ricker 1954, 
Barrowman et al. 2003) 

(5) stage-structured life 
history model   

†  t t-1X = ln(K) + β X -ln(K)  (Lande et al. 2002) 

(6) modified stage-
structured life 
history model 

†‡  t-1

t-1

D
t t-1D +dX = ln( ) + ln(κ) + β X -ln(κ)  (Lande et al. 2002, 

Barrowman et al. 2003) 

NOTE: When we consider one and two years prior rainfall, K is replaced by γ1Rt-1 and γ1Rt-1+ γ1Rt-1, 
respectively (similarly for κ).   

† models (5) and (6) are formulated in Xt = ln(Dt) 
‡ to generate model (6), we transformed model (5) to the linear scale, modified it to incorporate an 
Allee effect, and then converted it back to the log scale 

 
We also considered modified forms of our initial models able to describe 

positive density dependence at low population densities (an Allee effect).  The 

modified Beverton-Holt model (Table 2.2 eq. 2) was proposed by the parent model’s 

authors to capture inverse density dependence (Beverton and Holt 1957).  We 

modified the Ricker and stage-structured life history models (Table 2.2 eqs. 4, 6) 

using an adaptation suggested by Barrowman et al. (2003) to capture Allee effect 

dynamics: we multiplied the population growth function by a factor of D/(D+d), 

where D is density and d is an Allee effect parameter.  Under this phenomenological 

modification, d is the density at which a population in the next timestep would be half 

as dense as predicted by the same model without the Allee parameter.  
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Although meerkats are desert adapted (Clutton-Brock et al. 1999b), they 

benefit from rain.  Increased rainfall affects aspects of meerkat demography such as 

litter production (Doolan and Macdonald 1997, Clutton-Brock et al. 1999b) and pup 

growth and survival (Russell et al. 2002).  To improve the initial models, based solely 

on density, we extended each model to incorporate measures of annual rainfall as 

predictors.  Because rainfall influences the abundance of prey (largely invertebrates) 

available to meerkats (Doolan and Macdonald 1997), and therefore the number of 

individuals the environment can support, we incorporated rainfall into models as a 

predictor of carrying capacity.  Most models included an explicit carrying capacity 

term, K, or a term, κ, derived from carrying capacity in the parent model (Table 2.2 

eqs. 4, 6).  In these cases we assumed K (or κ) to be directly proportional to rainfall, 

R, in previous years: t 1 t-1 2 t-2K = γ R + γ R + ....  We took Rt to be the total rainfall from 

the census date (July 1st) at the start of model year t until the end of that model year 

(June 30th of the following calendar year).  Each rain period captured one entire rainy 

season. 

We considered models that incorporated rainfall from one year into the past 

and those that incorporated rainfall from two years into the past, because rainfall 

affects food availability (and thereby the meerkat population) in the year it falls but 

could also affect food availability in subsequent years.  For example, when a rainy 

season brings particularly heavy rainfall, remains of the abundant annual vegetation 

that results can persist well into the following year, potentially maintaining high 

levels of prey available to meerkats.   

Thus, our final candidate set was composed of 12 models: three initial 

phenomenological forms and their respective Allee effect modifications, each with a 

version incorporating one year’s rainfall and a version incorporating two years’ 

rainfall.  

2.3.3 Model Fitting and Selection 

We fit all models using maximum likelihood techniques, assuming process 

error to be normally distributed on the log scale (Myers et al. 1995, Hilborn and 

Mangel 1997).  Because of the frequency of meerkat group observation, we were 

almost always aware of the presence or absence of each meerkat on any given day, 

and GPS-recorded burrow locations were highly accurate.  We therefore assumed 

measurement error to be negligible.  For each model fitted, we calculated the small-
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sample-corrected version of Akaike’s information criterion (AICc: Sugiura 1978), r2, 

and adjusted r2 values.  We used each model’s ΔAICc (the model’s AICc minus the 

minimum AICc observed for any model in the set) to assess the models (Hurvich and 

Tsai 1989, Burnham and Anderson 2002).  The most parsimonious model has, by 

definition, a ΔAICc of zero, but we considered all models with ΔAICc less than two to 

be “best” models (Burnham and Anderson 2002).  We used the r2 values to evaluate 

the absolute amount of variation explained by different models and to compare the 

model fits to those found elsewhere.  We report adjusted r2 for completeness; it allows 

assessment of the amount of variation explained by different models, accounting for 

the inherent ability of more complicated models to explain additional variation. 

The data series we used (ten annual changes in population density) is short for 

model fitting and comparison.  Hurvich and Tsai (1989) evaluated AICc, showing it 

to perform well with sample sizes as low as ten, and studies of other species have 

evaluated models based on data sets of a similar size (e.g. Hilborn and Mangel 1997, 

Angulo et al. 2007, Previtali et al. 2009); however, our short time series still raises 

issues of parameter identifiability and model overfitting.  With so few data, it may be 

impossible to accurately estimate model parameters, and fitting a relatively large 

number of models may generate at least one good fit by chance alone.  We chose to 

use a small candidate model set in an effort to avoid overfitting and look closely at the 

information available about parameters related to a possible Allee effect. 

We investigated the likelihood profiles (see Hilborn and Mangel 1997) of the 

Allee effect parameters in the modified Beverton-Holt, modified Ricker, and modified 

stage-structured life history models (δ [≥ 1], d [≥ 0], and d [≥ 0] in eqs. 2, 4, and 6, 

respectively, from Table 2.2).  To generate a parameter’s likelihood profile in a given 

model, we fixed the parameter at regular intervals and calculated the corresponding 

negative log likelihood, with all other parameters free to vary.  Often, a 95% χ2 

confidence interval is presented in this situation (Hilborn and Mangel 1997, Bolker 

2008), but since such an interval relies on a large sample size, we take the slightly 

more conservative approach of presenting the 2-unit support region (Edwards 1992, 

Bolker 2008).  The 2-unit support region is the parameter range over which the 

negative log likelihood differs by at most two from the minimum value (associated 

with the best-fit model).   We present this region to qualify the precision of the 

parameter estimates – less precise estimates have wider 2-unit support regions – while 

avoiding the use of a strict confidence interval.  If an Allee effect were detected (via 



Chapter Two — Population-level Dynamics 

 22 

model selection), the likelihood profiles and support regions of the Allee parameters 

would give an estimate of its strength and reliability.  If an Allee effect were not 

detected, the likelihood profiles could clarify its absence: do even the best-fit Allee 

effect models fail to show an Allee effect, or do the models show an Allee effect and 

simply lack parsimony?  

2.3.4 Power Analysis 

We followed a similar approach to Myers et al. (1995) for assessing the 

statistical power of our attempt to detect an Allee effect using the stage-structured life 

history model incorporating one year’s rainfall.  We first found the best-fit modified 

stage-structured life history model with d set equal to 5 – near the data in the range of 

observations but with a moderate Alee effect – for use as a simulation model.  Then, 

in 1000 simulations, we used that model to generate pseudorandom Monte Carlo data 

corresponding to the observed initial densities, drawing simulated data from a 

lognormal distribution with mean determined by the simulation model and shape 

parameter matching that of the best-fit standard stage-structured life history model.  

Using AICc
 values, we compared the fit of modified and standard stage-structured life 

history models to the Monte Carlo data generated in each simulation.   

2.3.5 Group Synchrony 

We calculated the Pearson moment cross-correlation between changes in log-

group sizes (Bjørnstad et al. 1999) as a measure of group synchrony.  First, for each 

group, we calculated the changes in log-group size, Δt = ln(Nt+1) - ln(Nt), over the 

course of the study.  Then, for each pair of groups, if both groups were present for at 

least two concurrent periods of growth or decline, we calculated the correlation 

between their Δt series – their cross-correlation coefficient.  Finally, we calculated the 

population mean cross-correlation coefficient and generated a 95% bootstrap 

confidence interval for this mean value (Bjørnstad et al. 1999).  The confidence 

interval was based on 1000 calculations of mean sample synchrony, for which we 

drew, with replacement, samples of complete time series from the set of group time 

series.  We excluded correlations between any time series and itself (arising when 

time series were resampled multiple times and equal to one by definition) from all 

calculations of mean synchrony.  
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2.3.6 Software 

We used R 2.8.2 (R Development Core Team 2008) for all analyses and 

simulation.  We used the optim function for model fitting and the kernelUD function 

in the adehabitat package (Calenge 2006) for kernel home range estimation. 

2.4 Results 

2.4.1 Data Series 

Over the course of our study, meerkat population density ranged between 7.5 

and 17.1 individuals per square kilometre (mean 11.7).   The population went through 

two periods of density increase and subsequent decline, peaking in 2001 and 2006 

(Figure 2.1A).  Annual rainfall ranged between 178.6 and 473.4 millimetres (mean 

296.6), and followed a similar trend to density but with peaks in 1999 and 2005 

(Figure 2.1B). 

 

2.4.2 Model Fitting 

According to our information-theoretic approach, the Beverton-Holt, Ricker, 

and stage-structured life history models incorporating one year’s rainfall and the 

stage-structured life history model incorporating two years’ rainfall performed best 

(ΔAICc less than two), with the stage-structured model incorporating one year’s 

rainfall having the lowest AICc value overall.  Table 2.3 gives a complete model 

fitting summary.  We present the best fit predictions and estimated carrying capacities 

for the stage-structured life history model (Figure 2.2).   

Figure 2.1: Population density (A) of meerkats and total annual rainfall (B) on and near the Kuruman 
River Reserve, Northern Cape province, South Africa.  Population censuses occurred on July 1st, and 
rainfall measurements are for the twelve months following that date each year.  
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2.4.3 Allee Effects 

In all models incorporating a possible Allee effect, the Allee parameter 

estimates we did obtain were those that reduced the modified (Allee effect) models to 

their parent (Allee effect-lacking) forms: δ = 1, d = 0, and d = 0 in equations 2, 4, and 

6, respectively.  We were able to generate upper 2-unit support region limits for Allee 

effect parameters in all models except the modified Beverton-Holt model with two 

years’ rainfall (Figure 2.3).  The Allee parameter estimates necessarily formed the 

lower support region limits, given that the estimates were all on the edges of their 

allowable ranges.   

Table 2.3: results of fitting candidate population-dynamics models, incorporating density and annual 
rainfall, to describe meerkat density dynamics 

 Model AICc ΔAICc model df r2 adjusted r2 

Beverton-Holt  -24.26 0.19 3 0.51 0.37 

modified Beverton-Holt -18.27 6.19 4 0.51 0.27 

Ricker -23.78 0.67 3 0.49 0.35 

modified Ricker -17.78 6.67 4 0.49 0.24 

stage-structured life history -24.45 0.00 3 0.51 0.37 

Models 

incorporating 

one previous 

year’s 

rainfall 

modified stage-structured 
life history 

-18.45 6.00 4 0.51 0.27 

Beverton-Holt  -22.30 2.15 4 0.66 0.49 

modified Beverton-Holt -12.92 11.53 5 0.66 0.39 

Ricker -21.19 3.26 4 0.61 0.42 

modified Ricker -11.84 12.61 5 0.61 0.29 

stage-structured life history -22.59 1.87 4 0.67 0.51 

Models 

incorporating 

two previous 

years’ 

rainfall 

modified stage-structured 
life history 

-13.59 10.86 5 0.67 0.41 
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Our estimated statistical power to detect an Allee effect was 0.238: in 1000 

power analysis iterations, AICc for the modified (Allee effect) model was less than 

AICc for the standard model 114 times and exceeded AICc for the standard model by 

less than two 124 times (for a combined total of 238 out of 1000).   

2.4.4 Group Synchrony 

 We calculated a total of 77 pairwise correlations between changes in log group 

size.  The average population-wide synchrony was 0.22, with a 95% bootstrap 

confidence interval of -0.01 to 0.46. 

Figure 2.2: Stage-structured life history model (solid line) fit to population density (points) of 
meerkats on and near the Kuruman River Reserve, Northern Cape province, South Africa.  The model-
estimated carrying capacity (dashed line) is a linear combination of 1 (A) or 2 (B) years’ annual 
rainfall.  Overall, the version of the model incorporating one year’s rainfall (A) was the most 
parsimonious.   

Figure 2.3: Likelihood profiles of the Allee effect parameters, d and δ, for modified Beverton-Holt, 
modified Ricker, and modified stage-structured life history models.  Models were used to describe 
density dynamics of meerkats, on and near the Kuruman River Reserve, incorporating 1 (A) and 2 (B) 
years of prior rainfall data.  d > 0 and δ > 1 indicate the presence of an Allee effect.   indicates the 
upper boundary of the 2-unit support region (see text).  Note different scales. 
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2.5 Discussion 

We explored the ability of phenomenological, discrete-time population 

dynamics models to describe the dynamics of a meerkat population, and we looked 

for an Allee effect in that population.  The most parsimonious models from our 

candidate set describe meerkat dynamics moderately well (r2 0.51 to 0.67) at observed 

population densities, but none of these models indicate a population-level Allee 

effect.   

Although we did not consider groups explicitly, we expected group-level 

Allee effects, combined with group synchrony, to produce a population-level Allee 

effect.  The Allee effect models in our candidate set lacked parsimony, providing 

limited evidence of conventional density dependence in the meerkat population.  Our 

estimated Allee effect detection power was, however, not high (slightly under 0.24).  

We were hampered by the short time series at our disposal, and thus cannot draw firm 

conclusions about Allee effects in our study population. 

When an Allee effect does exist in a population, demographic and 

environmental variability can make it difficult to detect, so an inability to detect an 

Allee effect does not mean it is unimportant in the population’s dynamics (Liermann 

and Hilborn 2001).  Clutton-Brock et al. (1999b) noted that all small meerkat groups 

went extinct in the 1994-1995 season of exceptionally low rainfall; while survival was 

relatively constant in good and bad years, observed reproduction dropped to nil during 

the 1994-1995 season (Clutton-Brock et al. 1999a), hinting at an Allee effect 

mediated by an interaction between environmental conditions and demographic rates.  

Our models indicate that meerkat population densities are heavily influenced by 

rainfall (Figure 2.2), and it could take an exceptionally poor year, and perhaps some 

inopportune demographic stochasticity, to reveal such an Allee effect at the 

population level.   

On the other hand, a population can exhibit conventional density dependence 

even when its component sub-populations exhibit inverse density dependence (Frank 

and Brickman 2000). The lack of synchrony among meerkat groups could produce 

this pattern: any Allee effects that affected small groups may have been masked by 

conventional density dependence in large groups, and the existence of some large 

groups might serve, through dispersal, to rescue smaller groups from collapse 

(Courchamp et al. 2008).   Alternatively, conventional density dependence in 
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dispersal, disperser mortality, or group establishment could mask inverse density 

dependence in within-group survival and reproductive success.  It is, however, 

impossible to quantify group-level Allee effects, or how synchrony and rate-specific 

density dependence affect them, using only population time series.  Bjørnstad et al. 

(1999) note that synchrony-generating mechanisms are best studied by examining 

dispersal and the demographic rates affected by extrinsic synchronizing agents, and 

similar examinations could identify conventional density dependence in contributions 

to overall dynamics. 

Though our models broadly show how density and environment affect the 

meerkat population, we would ultimately like to know how population density relates 

to individual-level processes of birth and death and how those relationships are 

mediated by groups.  If our aim is to understand the mechanisms behind population 

dynamic processes, it will be important to understand demography (Coulson et al. 

2001, Dobson and Oli 2001).  For example, we now know that increased rainfall leads 

to increased meerkat population density, but even if we can identify weather-

dependent dynamics and describe dynamics as a whole through phenomenological 

modelling, we must examine environmental effects on demographic parameters such 

as survival, reproduction, and dispersal to understand the mechanisms by which 

environment and observed dynamics are linked in structured populations (Coulson et 

al. 2001).   

As an example, dominance structure influences reproduction within meerkat 

groups, which could in turn affect population growth differently when different 

numbers or sizes of groups are present.  In marmotine rodents, environment and social 

structure can affect dynamics through their effects on age at maturity (Dobson and Oli 

2001, Oli and Armitage 2003).  Our best model implicitly considered the population’s 

stage structure by incorporating age at maturity, which we took to be one year.  In 

meerkats, dominants control reproduction in subordinates (Clutton-Brock et al. 2001b, 

Clutton-Brock et al. 2008); dominants are much more fecund than subordinates 

(Hodge et al. 2008, Sharp and Clutton-Brock 2010); and, while meerkats are sexually 

mature by one year, individuals are rarely dominant by one year of age.  Our best 

model thus simplifies an important aspect of meerkat biology that we know to affect 

dynamics in other cooperative species. Models that ignore stage structure within 

groups cannot shed light on processes that involve aspects of that structure and will be 

unable to explain resulting variation.   
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Our results demonstrate that it is important to consider population dynamics 

and Allee effects at the appropriate scale (Frank and Brickman 2000).  Consideration 

of meerkats at the population level only would have failed to detect inverse density 

dependence we know to be present from long-term behavioural studies.  The 

relevance of this density dependence to meerkat dynamics overall remains to be seen, 

and further work will focus on this.  As the number of species that may fall victim to 

Allee effects increases (Courchamp et al. 2008), the in-depth understanding that can 

be afforded by long-term demographic studies will become ever more important.  

Only through the investigation of group dynamics and their interaction with 

population-level dynamics will we be able to understand how the density dependence 

observed in groups of cooperators translates into observations at larger scales. 
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CHAPTER 3 
_____________________________________________________________________ 

Density dependence in group dynamics of a highly social 
mongoose, Suricata suricatta 
 
This chapter was published as: 

Bateman, A. W., A. Ozgul, T. Coulson, and H. Clutton-Brock. 2011. Density 
dependence in group dynamics of a highly social mongoose, Suricata 
suricatta. Journal of Animal Ecology 81:628-639. 

I designed the study; A, Ozgul, T. Coulson, and T. H. Clutton-Brock contributed to 

discussion; T. H. Clutton-Brock provided access to data; and I analysed the data and 

wrote the paper. 

3.1 Abstract 

 For social species, the link between individual behaviour and population 

dynamics is mediated by group-level demography.  Populations of obligate 

cooperative breeders are structured into social groups, which may be subject to 

inverse density dependence (Allee effects) that result from a dependence on 

conspecific helpers, but evidence for population-wide Allee effects is rare.  We use 

field data from a long-term study of cooperative meerkats (Suricata suricatta) – a 

species where local Allee effects are not reflected in population-level dynamics – to 

empirically model inter-annual group dynamics.  Using phenomenological population 

models, modified to incorporate environmental conditions and potential Allee effects, 

we first investigate overall patterns of group dynamics and only find support for 

conventional density dependence that increases after years of low rainfall.  In order to 

explain the observed patterns, we examine specific demographic rates and assess their 

contributions to overall group dynamics.  Although we find that per-capita meerkat 

mortality is subject to an Allee effect, it contributes relatively little to observed 

variation in group dynamics, and other (conventionally density dependent) 

demographic rates – especially emigration – govern group dynamics.   Our findings 

highlight the need to consider demographic processes and density dependence in sub-

populations before drawing conclusions about how behaviour affects population 

processes in socially complex systems. 
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3.2 Introduction 

Across species, populations are often subdivided into smaller units, such as 

social groups, among which local dynamics interact and combine to produce 

population-wide patterns.  Regardless of the level of organisation, observed dynamics 

are a consequence of local birth, death, immigration, and emigration processes.  To 

understand a population’s dynamics, we therefore need to understand the dynamics of 

its sub-units and the demographic components that contribute to those dynamics 

(Coulson et al. 2001, Ozgul et al. 2009). 

For populations of group-living species, social structure likely has important 

demographic consequences, and can lead to dynamics that are qualitatively different 

from those of homogeneous populations.  In Serengeti lions (Panthera leo), for 

example, periods of population equilibrium were punctuated by periods of abrupt 

increase while environmental conditions improved gradually (Packer et al. 2005), and 

models that ignore lions’ social structure fail to reproduce the observed population 

dynamics.  This is likely true for other highly social species.  

Obligate cooperative breeders – species characterised by the presence of non-

breeding individuals that help to raise offspring in social groups – are notable in this 

context for two reasons.  First, they present good opportunities to study the 

relationships among demography, group-level dynamics, and population-level 

dynamics.  Second, they can be subject to Allee effects (positive, or inverse, density 

dependence in individual demographic rates or per-capita growth rates; Clutton-Brock 

et al. 1999a, Courchamp et al. 1999b) acting at the group level but potentially 

inconspicuous at the population level (Bateman et al. 2011a).  While Allee effects 

have been widely studied before, the full implications of such effects in obligate 

cooperators are unclear, and empirical investigation would contribute to what has 

been a largely theoretical discussion. 

Allee effects can act at two levels.  Initially, increasing group or population 

size may positively affect one or more components of individual fitness, such as the 

probabilities of survival or successfully raising offspring; Stephens, Sutherland, and 

Freckleton (1999) define such relationships as “component” Allee effects.  These 

component effects may or may not combine to produce overall “demographic” Allee 

effects at the group or population level (Stephens et al. 1999).  Overall population- or 

group-level Allee effects (we avoid the term “demographic” Allee effect to avoid 
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confusion when discussing component demographic rates) are most often measured as 

negative per-capita growth rates of the appropriate unit (Courchamp et al. 2008).  As 

one of the potential proximate causes of population decline, these effects are of 

ultimate relevance for conservation and management and are more easily monitored 

than component-level effects.  To understand when and how component-level effects 

may translate into population-level effects, we need to investigate the link between 

the two levels. 

Allee effects of one form or another may be common in obligate cooperators 

(Courchamp et al. 1999a), because when group members work together (e.g. in 

hunting, thermoregulation, or alloparental care) they can initially overcome 

conventional negative density dependence (Allee 1931).  The downside for some 

species may be negative per-capita growth rates in small groups due to their reliance 

on conspecific helpers, leading to increased risks of group extinction (Courchamp et 

al. 1999b).  We might thus expect some signature of Allee effects at the population or 

group level, but current empirical evidence in obligate cooperators is sparse and 

somewhat ambiguous.  In African wild dogs (Lycaon pictus) there is evidence for 

Allee effects in specific demographic rates (Courchamp et al. 1999b, Courchamp and 

Macdonald 2001), but recent empirical studies offer limited support and no evidence 

for group- or population-level effects (Somers et al. 2008, Gusset and Macdonald 

2010, Mebane Jr and Sekhon 2011).  In meerkats (Suricata suricatta) there is 

evidence of an Allee effect in survival and circumstantial evidence of an Allee effect 

in overall group dynamics (Clutton-Brock et al. 1999a), but it is unlikely that all 

demographic rates are affected (Stephens et al. 2005), and the only empirical study of 

meerkats’ population-level dynamics found no evidence for an Allee effect (Bateman 

et al. 2011a).  According to theory, Allee effects in individual demographic rates 

should not necessarily generate population- or group-level effects, and Allee effects in 

sub-populations should not necessarily scale up to populations overall (Frank and 

Brickman 2000), but further empirical work is required to identify the level at which 

Allee effects break down in populations of obligate cooperators. 

A starting point in understanding the population dynamics of obligate 

cooperators is to understand their group dynamics.  We propose a combination of 

simple group dynamics models and models of constituent demographic rates to link 

patterns of life history and behaviour with patterns of group dynamics.  

Phenomenological discrete-time models provide a well-supported basis to describe 
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the dynamics of populations and sub-populations (Brännström and Sumpter 2005, 

Coulson et al. 2008), but they do not account for contributions from underlying 

demographic rates.  To investigate contributions to group dynamics from birth, death, 

and dispersal, we can combine simple descriptive models that capture density or 

environmental dependence in each rate (Coulson et al. 2008).  Assessing contributions 

from each rate under different conditions can illuminate how various factors affect 

group dynamics and may provide clues as to how Allee effects shape the dynamics of 

obligate cooperators. 

Here, we report an empirical investigation of group dynamics in meerkats.  

Past work has focused on meerkat population-level dynamics, and discussions of 

Allee effects in cooperative breeders have paid special attention to group-level 

processes.  We therefore chose to focus on group-level dynamics to bridge the gap 

between behavioural and population-dynamics work.  Because they are well-studied 

behaviourally, and individual-based demographic data exist from more than a decade 

of field-study in a wild population, meerkats provide an excellent opportunity to 

investigate the dynamics of obligate cooperative breeders.  Employing an 

information-theoretic approach, we use well-established phenomenological discrete-

time models to describe group dynamics and then use simpler models to examine 

contributions from individual demographic rates to group dynamics.  We aim to 

clarify the importance of Allee effects for meerkats, thereby illustrating the 

importance of considering the appropriate scale in population dynamics studies more 

broadly.    

3.3 Methods 

3.3.1 Study Species 

Meerkats – social mongooses that inhabit semi-arid regions of southern Africa 

– form groups of 3 to 50 individuals at approximate population densities of 7-17 

individuals/km2 (Bateman et al. 2011a).  Within groups, reproduction is largely 

monopolised by a long-lived, behaviourally dominant pair (Clutton-Brock et al. 2008, 

Sharp and Clutton-Brock 2010), and subordinate individuals help to care for 

dependent offspring (Clutton-Brock et al. 1999b).  Females produce multiple litters 

per year, but reproduction peaks in January, at the height of the rainy season, and falls 

to almost nil in July, at the height of the dry season (Clutton-Brock et al. 1999b).  
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Before giving birth, dominant females commonly evict subordinate females, 

sometimes permanently but often temporarily, in an effort to avoid infanticide 

(Clutton-Brock et al. 1998a).  Each year, peaking early in the breeding season, some 

subordinate males and females disperse to join existing groups or form new groups 

(Doolan and Macdonald 1996b), but female immigration is extremely rare (Stephens 

et al. 2005).  Although meerkats are arid-adapted, inter-annual variation in rainfall 

strongly affects their reproduction, survival, and overall population dynamics (Doolan 

and Macdonald 1997, Clutton-Brock et al. 1999a, Bateman et al. 2011a).   

3.3.2 Data Collection 

We used individual-based demographic data from a population of habituated, 

wild meerkats on and near the Kuruman River Reserve (26o58’S, 21o49’E), an area of 

ranchland near Van Zylsrus in the Northern Cape province of South Africa.  A 

detailed description of the site and local conditions can be found elsewhere (Russell et 

al. 2002).   

During weekly (and often daily) visits to meerkat social groups, researchers 

collected detailed birth, death, immigration, and emigration records for individually 

marked meerkats (Clutton-Brock et al. 1998a, Clutton-Brock et al. 2008).  Following 

Bateman et al. (2011), we generated from these data group censuses of individuals 

older than two months on July 1st (in the height of the dry season between annual 

pulses of reproduction; Clutton-Brock et al. 1999b) for each year between 1998 and 

2008.   

We often had complete and accurate death and dispersal information for 

individual meerkats (emigrants recorded in neighbouring groups, carcasses found, or 

predation observed).  For cases of unknown fate, we used knowledge of meerkat 

behaviour (Clutton-Brock et al. 1998a, Clutton-Brock et al. 1998b, Clutton-Brock et 

al. 2002, Stephens et al. 2005, Russell et al. 2007) to assign disappearances as either 

apparent emigration or apparent death.  We deemed individuals that had shown signs 

of pre-dispersal (i.e. spent time outside the group) in the month before disappearance 

to have emigrated, disappearances of a dominant individual to be deaths, multiple 

simultaneous same-sex disappearances to be group emigration, and all other 

disappearances to be deaths.  All further references to death and emigration thus refer 

to apparent death and apparent emigration, respectively. 
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 To estimate population density, we divided population census counts by 

estimates of the population’s range.  During group visits, researchers recorded the 

GPS coordinates of sleeping burrows, which we used to estimate a 95% utilization 

distribution from an empirical kernel utilisation distribution (Worton 1989) generated 

with a bivariate normal kernel and fixed smoothing parameter.  Further details of GPS 

data collection and our estimation of population range can be found elsewhere (Jordan 

et al. 2007, Bateman et al. 2011a).  

We acquired rainfall data using NASA's GIOVANNI (Goddard Earth 

Sciences Data and Information Services Center Interactive Online Visualization ANd 

aNalysis Infrastructure) data system (NASA 2009).  GIOVANNI provides monthly 

rainfall estimates based on 2.5o x 2.5o (latitude x longitude) gridded rainfall data from 

the Global Precipitation Climatology Project Version 2.1 Combined Precipitation 

Dataset (an update of the version 2 dataset described in Adler et al. 2003). 

3.3.3 Modeling Approach 

We used an information-theoretic approach (Akaike 1973, Burnham and 

Anderson 2002) to compare models, which represented competing hypotheses, 

describing meerkat group dynamics and demographic rates.  In each instance, we first 

generated a candidate set of discrete-time models.  Next, we used maximum-

likelihood techniques to fit each model to annual meerkat group size data, estimating 

best-fit model parameters in the process (for a detailed description see Hilborn and 

Mangel 1997 or Bolker 2008).  With the resulting negative log-likelihoods, we 

calculated Akaike’s Information Criterion (AIC;Akaike 1973), ∆AIC relative to the 

minimum AIC model, and Akaike model weights for each model (see Burnham and 

Anderson 2002 for details).  Lower AIC values represent “better” (more 

parsimonious) models; ∆AIC 2 indicates a model with substantial support, while 

∆AIC 10 indicates a model with essentially no support; and each Akaike model 

weight (w) is interpreted as the probability that the associated model is the “best” 

(most parsimonious) model, given the candidate model set (Burnham and Anderson 

2002).  

3.3.4 Phenomenological Group Dynamics Models 

The core models for our overall analysis of group dynamics were standard 

discrete-time population dynamics models.  We used these to predict group dynamics 
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in year-long intervals, or time steps, between annual group size observations.  At their 

simplest, these models take the form 

 1 ( )t t tN N N   , (3.1) 

where Nt is group size at the beginning of year t and λ is a density-dependent function 

defining per-capita group growth rate (λt = Nt+1/Nt).  Note that t enumerates a model 

timestep and not a calendar year; each year t spans two calendar years, from July 1st 

of one to June 30th of the next.  

 Many possible models exist in the literature, but most fall into two categories 

describing different types of competition among individuals: contest and scramble 

(Brännström and Sumpter 2005).  In both cases λ declines as Nt increases, but under 

contest competition a number of individuals, as determined by habitat quality, are 

always able to secure sufficient resources, and Nt+1 is an increasing function of Nt, 

whereas under scramble competition each additional competitor reduces the resources 

secured by its conspecifics, and Nt+1 initially increases but then peaks and declines to 

zero for large Nt.  Classic models of contest and scramble competition are the 

Beverton-Holt (Beverton and Holt 1957) and Ricker (Ricker 1954) models, 

respectively.  The Beverton-Holt model takes the form  

  0
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where λ0 is the theoretical per-capita growth rate at Nt = 0, and K is the population 

(group) carrying capacity.  The Ricker model takes the form 
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While refinements to these models and different functional forms might capture other 

subtleties in dynamics, for our purposes, models (3.2) and (3.3) were sufficient to 

describe relevant patterns.   

3.3.5 Incorporating Rainfall and Density   

 Previous research has shown that rainfall in year t, and possibly in year t-1, 

affects population dynamics in year t (Bateman et al. 2011a), and we wanted to 

consider the possibility that population density (meerkats/km2 across the study site) 

affects group-level dynamics.  We therefore extended the Beverton-Holt and Ricker 

models above to incorporate effects of rainfall and population density such that  
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  1 1, , ,t t t t t tN N N R R D   . (3.4) 

To do this, we assumed that λ0 and K are functions of total rainfall in year t-1 and t 

(Rt-1 and Rt, respectively) and density at the beginning of year t (Dt).  As first-order 

approximations of what may be the “true” nonlinear relationships, we used linear 

functions: 

 
0 0 1 2 3 1

0 1 2 3 1

 and
 

t t t

t t t

a a D a R a R
K b b D b R b R
 



   
     (3.5) 

within the phenomenological models, considering a set of models that included 

different combinations of the individual effects of Rt, Rt-1, and Dt (see next section for 

incorporation of Allee effects).  Models that included Rt-1 also included Rt for 

biological realism.  For model fitting, we centred (subtracted the sample mean value) 

and normalized (divided by the sample standard deviation) annual rainfall measures.  

Our initial set included twelve group dynamics models, six variants for each of the 

Beverton-Holt and Ricker basic forms (Table 3.1). 

Making the assumption that errors were negative binomially distributed, we fit 

each candidate model to our set of group time series, estimating one set of parameters 

across all groups in the study population.  Given the nature of our data collection 

regime, observation error is negligible, and we assumed that group dynamics were 

subject to process error only (Hilborn and Mangel 1997).  In practice, this meant that 

the likelihood we calculated for each group size observation, given a model, came 

from a negative binomial distribution with mean predicted by the model 

(incorporating the group’s size in the previous year as well as the appropriate rainfall 

and population density information) and shape parameter fit as an additional free 

parameter.   

3.3.6 Allee Effects in Group Dynamics 

 After fitting the initial candidate models, we assessed the presence of a group-

level Allee effect, taking as a starting point the group dynamics models from the 

initial candidate set with greater than 10% support based on Akaike model weights.  

We modified the form of the per-capita growth rate in these models by raising 

λ(Nt,Rt,Rt-1,Dt) to an Allee exponent term: 

  
 

1 mod 1, , ,

N dt
Nt

t t t t t t tN N N N R R D 



     . (3.6) 
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This modification represents a strong Allee effect, where d is the (positive) Allee 

parameter, or threshold, indicating the group size below which group size declines in 

year t.  K remains unchanged (since λ = 1 at K, and 1a = 1 for all a), but λ0 no longer 

represents initial per-capita growth rate, but rather the theoretical initial per-capita 

growth rate in the absence of an Allee effect.   

Although strong Allee effects are a specific sub-class of Allee effects in 

general, they do not have special properties above their Allee threshold, and more 

general models use an additional degree of freedom.  Given that our data were sparse 

at low initial group sizes (Figure 3.2), our ability to distinguish between strong and 

weak Allee effects was minimal, so we considered only the modification in (3.6).   

 Adopting the approach of Bolker (2008) to estimate confidence intervals for 

parameters on the edge of their allowable ranges, we used the likelihood surface 

approach to calculate 95% confidence intervals for d in each modified model to assess 

precision of the estimated Allee effects.   

3.3.7 Demographic Rates 

 To explain the results of phenomenological modelling, we decomposed group 

dynamics into contributions from constituent demographic rates.  For any social group 

(and indeed for any unit of population generally) changes in group size must obey 

 1t t t t t tN N B M I E      , (3.7) 

where Bt, Mt, It, and Et enumerate recruitment (here at two months of age), mortality, 

immigration, and emigration, respectively, in year t.  Rearranging (3.7), we can write 

   1
t t

t t t

E M
t t t t t t t N B IN N B I N B I 
          

     1 t t

t t t t t t

E M
t t t N B I N B IN B I           

    1 1t t t t tN B I E M     , (3.8) 

where ,  ,  ,t t tB M I and tE are the per-capita versions of Bt, Mt, It, and Et, respectively.  

Note that (3.8) makes the implicit assumption that mortality and emigration are 

preceded by recruitment and immigration and that the rates of influx, tB  and ,tI  are 

relative to initial group size (Nt) and are bounded below by zero, while the rates of 

efflux, tM  and ,tE are relative to the total number of individuals present in the 
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associated group at some point in year t (Nt+Bt+It) and lie between zero and one 

(inclusive).   

 The different properties of each influx and efflux rate, as described above, 

necessitated different modeling approaches.  We used a linear function of Nt, Rt, and 

Rt-1 (the model terms from the most parsimonious group-dynamics model – see results 

section), plus interactions, to predict each log-transformed mean per-capita rate of 

influx,  ,influx i tr , so that 

  0 1 2
 ,

...t t
influx i t

c c N c Rr e   
 . (3.9) 

Because Bt and It take integer values, we fit models to observed values of these influx 

rates,  ,influx i tr , assuming negative binomial error distributions: 

   ,  ,~ negative binomial ,influx i t t influx i tr N r   , (3.10) 

where η is the negative binomial shape parameter, which we fit as a free parameter for 

each rate.  We assumed that each logit-transformed mean per-capita rate of efflux was 

a linear function of Nt, Rt, Rt-1, plus interactions, so that 

   0 1 2
1...

 , 1 t tc c N c R
efflux i tr e

     . (3.11) 

For an individual, present in a given group in year t, (3.11) represents the probability 

of death or the probability of emigration by the start of year t+1.  We modeled 

observed values of Mt and Et assuming a binomial distribution: 

   ,  ,~ binomial ,efflux i t efflux i t t t tr p r n N B I    . (3.12) 

While we did not include interaction terms in the linear functions for λ0 and K 

in the group dynamics models, λ0 is the initial value and K controls the steepness of 

the per-capita group growth rate in those models.  By including interaction terms in 

the per-capita demographic rate models, we allowed the predictor variables to have 

potentially similar control over each predicted demographic rate. 

Our candidate model set for the demographic rates consisted of the models 

described above with distinct ci coefficients for each rate (Table 3.2).  We found the 

most parsimonious model for each rate independently and then combined those 

models to generate predictions of Nt+1 as follows.   
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 Let  1,  ,  t t t tN R R  , the set of conditions in year t.  Using P( | )t tB x   

and P( | ),t tI x   given by (3.9) and (3.10), the distribution for total influx, 

( t t tB I   ), becomes 

 
0

 P( | ) P( | ) P( | )t t t t t t
j

x B j I x j  




       . (3.13) 

Now, tM  and ,tE  given by (11), are the probabilities of mortality and emigration, 

respectively, for an individual present in a given group in year t.  1   t t tS M E    is, 

therefore, the probability that an individual present in year t is present at the start of 

year t+1.  The conditional group size distribution for year t+1 becomes 

 1 P( | , ) P ( ,  )t t t binomial t t tN x p S n N       . (3.14) 

Summing over all possible values of Фt, we get the unconditional distribution for Nt+1:  

 1 1
0

 P( | ) P( | ) P( | , )t t t t t t t
j

N x j N x j  


 


        , (3.15) 

from which we calculated the expected values of Nt+1: 

 1 1 1θ
0 0 0

( ) ( | θ ) P( | θ ) P( | θ , )
t

t t t t t t t t
x x j

N x P N x x j N x j
  

  
  

 
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j S N j




      , (3.16) 

using the fact that the expected value of a binomial random variable with parameters n 

and p is n∙p. 

3.3.8 Assessing Model Contributions 

To estimate the explanatory power of the most parsimonious models, as 

selected by AIC, and of different model components, we used R2, which gives the 

proportion of total variation in data explained by a model fit to those data.  As a 

measure of goodness of fit, standard R2 has its limitations, but it provides a reasonable 

sense of how well a model describes data (Kvålseth 1985).   

Because a random walk is the appropriate null model for population dynamics 

with pure process error, we would not expect each group’s size to fluctuate about 

some mean value, but rather about tN  , where λ is a constant value (typically one, 

not dependent on θt) for all t.  We used ̂ , the maximum-likelihood constant estimate 
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for λ(Nt) in (3.1), to estimate λ and calculated R2 based on predicted and observed 

group sizes, taking total sum of squares to be 
all groups, 

2
1

ˆ( )
t

t tN N    . 

We also used R2 to assess the explanatory power of different model 

components.  The difference between the R2 value of a maximally parsimonious 

model and the R2 value of the same model without a component of interest gives an 

estimate of that component’s contribution to the model fit (Coulson et al. 2008).  We 

assessed the contributions of Rt, Rt-1, and density dependence in λt (by using the mean 

value of Nt in estimation of λt) for the phenomenological dynamics models, and we 

assessed the contributions of Rt, Rt-1, and Nt overall and through their contributions to 

individual demographic rates, as well as the contribution from each demographic rate 

model (by fixing the predicted rate at its observed mean), in the combined model of 

demographic rates in (3.15). 

3.3.9 Statistical Software 

We carried out analyses in R (R Development Core Team 2011).  To minimize 

model negative log-likelihoods, we used the optim optimiser for models of 

demographic rates and the genoud optimiser from the rgenoud package for group 

dynamics models (genoud combines optim’s quasi-Newton optimization algorithm 

with a genetic optimization algorithm in an effort to avoid “getting stuck” at local 

optima; Mebane Jr and Sekhon 2011).  For kernel home range estimation we used the 

kernelUD function in the adehabitat package (Calenge 2006).  

3.4 Results   

3.4.1 Data 

We recorded a total of 104 group-years over the ten years of the study.  Group 

sizes on July 1st ranged from 4 to 47 individuals, with a mean of 17.7; population 

density on July 1st ranged from 7.5 to 17.1 individuals per km2, with a mean of 11.7; 

and annual rainfall ranged from 178.6 to 473.4 mm, with a mean of 294.4.  

3.4.2 Phenomenological Models 

The best models from our candidate set were those that incorporated both 

annual rainfall in year t and annual rainfall in year t-1.  Overall, the Ricker model of 

this form was the most parsimonious, but the corresponding Beverton-Holt model had 
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a ∆AIC of less than two.  Together, these models shared more than 85% of model 

support, while no other model had more than 10% support (Table 3.1).  

Table 3.1: results of model fitting for phenomenological group dynamics models, with most 
parsimonious (“best”) models shown in bold 

model predictors for λ0, K df –ln() ∆AIC model weight (w) 
– 3 350.5 13.5 0.001 

Dt 5 347.6 11.8 0.002 

Rt 5 349.9 16.5 0.000 

Rt, Rt-1 7 339.7 0 0.601 

Dt, Rt 7 346.2 13.0 0.001 

Ricker 

Dt, Rt, Rt-1 9 339.5 3.6 0.099 

– 3 350.1 12.7 0.001 

Dt 5 348.0 12.5 0.001 

Rt 5 349.6 15.8 0.000 

Rt, Rt-1 7 340.5 1.7 0.258 

Dt, Rt 7 346.7 14.0 0.001 

Beverton-Holt 

Dt, Rt, Rt-1 9 340.5 5.7 0.035 

 
The parameter estimates in the best Ricker model gave λ0 = 1.45 + 0.16∙Rt – 

0.21∙Rt-1, and K = 27.34 – 0.62∙Rt + 14.06∙Rt-1, with a negative binomial shape 

parameter of 15.71.  The parameter estimates in the best Beverton-Holt model gave λ0 

= 1.72 + 0.23∙Rt – 0.34∙Rt-1, and K = 24.47 – 0.20∙Rt + 12.32∙Rt-1, with a negative 

binomial shape parameter of 15.02.  This meant that in both best models the main 

effects of rainfall were those associated with Rt-1; the best models both describe group 

dynamics in which per-capita group growth rates decline in large groups after years of 

low rainfall (Figure 3.1).   
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3.4.3 Allee Effects 

 We fit Allee effect-modified versions of the best-fitting Ricker and Beverton-

Holt models (which we refer to as “Allee-Ricker” and “Allee-Beverton-Holt” models, 

respectively).  In both cases, the maximum-likelihood Allee parameter estimates were 

zero, reproducing the dynamics of the non-Allee effect parent model forms.  AIC 

values for the Allee models were simply two units higher due to one additional 

parameter but the same negative log-likelihood as their non-Allee counterparts.   

 95% confidence intervals for the Allee parameters were [0, 4.3] for the Allee-

Ricker model and [0, 4.0] for the Allee-Beverton-Holt model.  Comparing the 

maximum-likelihood fit of the Allee-Ricker model with Allee parameter 4.3 to the 

maximum-likelihood fit overall (Figure 3.2), we see that the two models give almost 

identical predictions across the range of observed group sizes and that very few 

observations exist for small groups which might arbitrate between the two model 

forms. 

Figure 3.1: Phenomenological group-dynamics model predictions and observed group sizes (circles), 
after years of higher-than-median rainfall (black) and lower-than-median rainfall (grey), for meerkats 
on and near the Kuruman River Reserve, South Africa, between 1998 and 2008.  Ricker (solid lines) 
and Beverton-Holt (dashed lines) models use group size in a given year (Nt) to predict group size in the 
next year (Nt+1).  Curves show average model predictions, weighted by the number of observations in 
appropriate years.  Dotted 1:1 line represents no year-on-year change. 
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3.4.4 Demographic Rates 

 Different per-capita rates were best predicted by different combinations of 

variables (Table 2).  Of the models considered, the most parsimonious model for 

mean per-capita recruitment was exp(–0.11 – 0.04∙Nt + 0.1∙Rt), with a negative 

binomial shape parameter of 5.52; the most parsimonious model for mean per-capita 

immigration was exp(–0.19 – 0.03∙Nt), with a negative binomial shape parameter of 

0.16; the most parsimonious model for per-capita mortality rate was [1+exp(1.39 + 

0.03∙Nt – 0.76∙Rt-1 – 0.22∙ Rt + 0.03∙Nt∙Rt-1 + 0.02∙Nt∙Rt)]-1; and the most parsimonious 

model for per-capita emigration rate was [1+exp(1.83 – 0.03∙Nt + 0.10∙Rt-1 + 

0.01∙Nt∙Rt-1)]-1.   

Annual per-capita recruitment declined with increasing initial group size and 

increased with annual rainfall (Figure 3.3A).  Per-capita immigration declined with 

increasing initial group size (Figure 3.3B).  Per-capita mortality tended to decline with 

increasing initial group size (the only rate-specific Allee effect), with the trend more 

pronounced after years of high rainfall (Figure 3.3C).  Per-capita emigration increased 

with increasing initial group size and was lower, especially in large groups, after years 

of high rainfall (Figure 3.3D).  

 Combining all the demographic rates together into a “combined demographic” 

model yielded group dynamics predictions (Figure 3.4) similar to those from the best 

phenomenological models.  While the effect of past rainfall was not as strong as in the 

phenomenological models, it was still clearly present.   

Figure 3.2: Allee-Ricker models relating group size in a given year (Nt) to group size in the next year 
(Nt+1) for meerkats.  The black curve shows the best-fit model (with no apparent Allee effect due to an 
Allee parameter estimate of zero); the grey curve shows the model refit with its Allee parameter fixed 
at 4.3 (on the edge of the 95% confidence interval as estimated for the best-fit model).  Curves present 
average model predictions, weighted by the number of observations in each year.  Dotted 1:1 line 
represents no year-on-year change.  Rug shows observations of initial group size (plus a small amount 
of random noise to illustrate distribution). 
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Table 3.2: results of model fitting for component demographic rates, with maximum parsimony 
models used in further analyses shown in bold 

demographic rate model predictors df –ln() ∆AIC model weight (w) 
Nt 3 301.3 5.7 0.022 

Nt , Rt-1 4 301.3 7.5 0.009 

Nt , Rt 4 297.5 0 0.381 

Nt , Rt-1, Nt∙Rt-1 5 300.1 7.2 0.011 

Nt , Rt,  Nt∙Rt 5 297.4 1.8 0.153 

Nt , Rt-1, Rt 5 297.5 2.0 0.143 

Nt , Rt-1, Rt, Nt∙Rt-1 6 296.3 1.7 0.164 

Nt , Rt-1, Rt,  Nt∙Rt 6 297.4 3.8 0.057 

recruitment 

Nt , Rt-1, Rt, Nt∙Rt-1, Nt∙Rt 7 296.3 3.7 0.061 

Nt 3 141.7 0 0.252 

Nt , Rt-1 4 141.4 1.5 0.116 

Nt , Rt 4 141.5 1.7 0.110 

Nt , Rt-1, Nt∙Rt-1 5 141.4 3.5 0.043 

Nt , Rt,  Nt∙Rt 5 141.4 3.5 0.043 

Nt , Rt-1, Rt 5 141.4 3.4 0.045 

Nt , Rt-1, Rt, Nt∙Rt-1 6 141.4 5.4 0.017 

Nt , Rt-1, Rt,  Nt∙Rt 6 141.3 5.3 0.018 

immigration 

Nt , Rt-1, Rt, Nt∙Rt-1, Nt∙Rt 7 141.2 7.2 0.007 

Nt 2 281.1 21.0 <0.001 

Nt , Rt-1 3 280.0 20.8 <0.001 

Nt , Rt 3 278.1 17.0 <0.001 

Nt , Rt-1, Nt∙Rt-1 4 271.9 6.6 0.032 

Nt , Rt,  Nt∙Rt 4 277.0 16.8 <0.001 

Nt , Rt-1, Rt 4 277.4 17.6 <0.001 

Nt , Rt-1, Rt, Nt∙Rt-1 5 269.8 4.4 0.094 

Nt , Rt-1, Rt,  Nt∙Rt 5 276.1 17.1 <0.001 

mortality 

Nt , Rt-1, Rt, Nt∙Rt-1, Nt∙Rt 6 266.6 0 0.873 

Nt 2 376.5 52.5 <0.001 

Nt , Rt-1 3 349.9 1.3 0.138 

Nt , Rt 3 374.2 49.9 0.000 

Nt , Rt-1, Nt∙Rt-1 4 348.3 0 0.267 

Nt , Rt,  Nt∙Rt 4 373.5 50.5 <0.001 

Nt , Rt-1, Rt 4 349.1 1.6 0.117 

Nt , Rt-1, Rt, Nt∙Rt-1 5 347.4 0.4 0.222 

Nt , Rt-1, Rt,  Nt∙Rt 5 348.0 1.5 0.123 

emigration 

Nt , Rt-1, Rt, Nt∙Rt-1, Nt∙Rt 6 347.0 1.4 0.132 
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 The combined demographic model, unlike the best-fitting phenomenological 

models, can describe a group-level Allee effect if Allee effects of sufficient 

magnitude exist in individual demographic rates.  In two years, 2000 and 2006, the 

Allee effect present in the mortality model was strong enough to produce an overall 

group-level Allee effect in the combined demographic model (Figure 3.5).     

Figure 3.3: Annual per-capita demographic rates across the observed range of initial group sizes (Nt) 
for meerkat groups on and near the Kuruman River Reserve, South Africa, between 1998 and 2008.  
Curves show average model predictions, weighted by the number of observations in appropriate years.  
Circles show corresponding observations.  A: recruitment rate (recruits/Nt; note different scale) in years 
of higher-than-median (black) and lower-than-median (grey) annual rainfall; B: immigration rate 
(immigrants/Nt); C: mortality rate (deaths/[Nt + recruits + immigrants]) after years of higher-than-
median (black) and lower-than-median (grey) annual rainfall; D: emigration rate (emigrants/[Nt + 
recruits + immigrants]) after years of higher-than-median (black) and lower-than-median (grey) annual 
rainfall.   
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3.4.5 Model Contributions 

 The best group dynamics models explained between 32% and 39% of the 

observed variation in group size, with the Ricker model explaining the most variation 

(Table 3.3).  In all three models (Ricker, Beverton-Holt, and combined demographic), 

rainfall in year t-1 was responsible for far more of the explanatory power than rainfall 

in year t (43-49% compared with 2-7%, respectively).  Within the component 

demographic model, the sub-model describing per-capita emigration explained more 

variation than did any other per-capita rate model.  The majority of the explanatory 

power of the emigration model resulted from the inclusion of Rt-1 terms, and inclusion 

Figure 3.4: Predictions from “combined demographic” group-dynamics model (solid lines) and 
observed group sizes (circles), after years of higher-than-median rainfall (black) and lower-than-
median rainfall (grey), for meerkats on and near the Kuruman River Reserve, South Africa, between 
1998 and 2008.  The model combines sub-models of component demographic rates to predict change 
between group size in a given year (Nt) and group size in the next year (Nt+1).  Curves show average 
model predictions, weighted by the number of observations in appropriate years.  Dotted 1:1 line 
represents no year-on-year change. 

Figure 3.5: Annual per-capita changes in group size (λt) for meerkats on and near the Kuruman River 
Reserve, South Africa, for years 2000 (grey) and 2006 (black).  Circles show observations and solid 
lines show predictions from a model combining sub-models for component demographic rates to 
predict change between group size in a given year (Nt) and group size in the next year.  Dotted line 
represents no year-on-year change. 
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of Rt-1 in the emigration model accounted for the majority of the explanatory power of 

Rt-1 in the combined demographic model overall. 

Table 3.3: explanatory power of group dynamics models and contributions from model components.   

model model form 
† R2 ‡ ∆R2 % of explanatory power 

attributed to model component 
maximum parsimony model 0.39 – – 

(Rt-1) 0.20 0.19 49 

(Rt) 0.37 0.02 6 
Ricker 

λt density-independent 0.29 0.10 27 

maximum parsimony model 0.38 – – 

(Rt-1) 0.20 0.18 47 

(Rt) 0.35 0.02 7 

Beverton-

Holt 

λt density-independent 0.29 0.08 22 

maximum parsimony model 0.32 – – 

(all Rt-1 terms) 0.19 0.13 43 

(          "          in recruitment) N/A – – 

(          "          in immigration) N/A – – 

(          "          in mortality) 0.31 0.01 5 

(          "          in emigration) 0.22 0.10 32 

( all Rt terms) 0.32 0.01 2 

(          "          in recruitment) 0.32 0.01 2 

(          "          in immigration) N/A – – 

(          "          in mortality) 0.33 -0.01 -4 

(          "          in emigration) N/A – – 

( all Nt terms) 0.17 0.15 47 

(          "          in recruitment) 0.29 0.04 12 

(          "          in immigration) 0.32 0.00 0 

(          "          in mortality) 0.29 0.03 10 

(          "          in emigration) 0.28 0.05 15 

recruitment set to mean value 0.27 0.05 17 

immigration set to mean value 0.32 0.00 0 

mortality set to mean value 0.30 0.03 8 

combined 

demographic 

emigration set to mean value 0.20 0.12 38 
† Parentheses indicate omission of specified term(s) from the associated maximum parsimony model to 
assess explanatory power. 

‡ R2 values were calculated based on expected and observed group sizes, assuming a null model with 
constant λt (a random walk model).   
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3.5 Discussion 

We investigated the relationship between demographic processes and group 

dynamics in meerkats, obligate cooperative breeders for which group dynamics have 

been assumed to exhibit Allee affects.  Although we found a component Allee effect 

in rates of mortality, all other demographic rates were conventionally density 

dependent.  Combination of component rate models successfully reproduced group 

dynamics, as described by phenomenological models.  Mortality rates contributed 

relatively little to group dynamics, however, and the associated component Allee 

effect failed to produce an overall (demographic) Allee effect at the group level.  

3.5.1 Overall Group Dynamics 

Using field data from a long-term study, we compared competing models of 

inter-annual meerkat group-size dynamics, assessing support for models describing 

contest and scramble competition, effects of rainfall and population density, and a 

group-level Allee effect.  Because neither the Ricker nor the Beverton-Holt model 

form was clearly better at describing group dynamics, we were unable to distinguish 

between contest and scramble competition.  We found good support for effects of two 

years’ past rainfall but little support for an effect of population density.  The best 

model explained almost 40% of the observed variation in group size but did not 

include an Allee effect.  Observations for groups smaller than five individuals were 

limited (Figure 3.2), and uncertainty in the Allee parameters reflected this.  Still, the 

most parsimonious descriptions of meerkat group dynamics within the range of 

observations, and even the best-fitting Allee effect models themselves, did not include 

an Allee effect.  Instead, conventional density dependence was evident and increased 

after years of relatively low rainfall (Figure 3.1), an effect that accounted for nearly 

half of the best model’s ability to explain group dynamics (Table 3.3). 

The lack of an obvious Allee effect, and stronger conventional density 

dependence after low-rainfall years, is somewhat surprising, given that past studies 

have suggested that meerkats derive considerable benefits from living in larger groups 

(Clutton-Brock et al. 2001c, Hodge et al. 2008) and that small groups suffer 

disproportionate negative effects in bad years (Clutton-Brock et al. 1999a).  There are 

two potential explanations for this inability to detect an Allee effect: we may have 

missed an Allee effect present in small groups, or Allee effects in component 

demographic rates may not translate to the group level.  
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3.5.2 Constituent Demography 

To assess contributions to group dynamics from different demographic 

components, we constructed a group dynamics model from models of individual 

demographic rates.  First, we used simple models to describe the effects of rainfall 

and group size on recruitment, immigration, mortality, and emigration.  Next, we 

assembled the models of individual rates into a combined demographic model of 

group dynamics.  The resulting model predictions matched those of our earlier 

phenomenological models well (Figures 3.1, 3.4) and explained a similar amount of 

variation (Table 3.3), lending support to our subsequent assessment of each model 

term’s explanatory power.   

Our treatment of individual demographic rates illuminates the observed 

patterns of group dynamics.  As previously described (Clutton-Brock et al. 1999a), 

meerkat mortality tends to decrease with increasing group size (Figure 3.3C).  

Recruitment, immigration, and emigration, however, are conventionally density 

dependent (Figures 3.3A,B,D).  Emigration accounted for the largest proportion of 

variation explained by the combined demographic model.  Mortality – the only 

demographic rate subject to an Allee effect – accounted for relatively little (Table 

3.3). This explains why overall group dynamics, as described by the best 

phenomenological models, did not exhibit an Allee effect.   

The combined demographic model did exhibit a demographic Allee effect in 

two out of ten years, but this is likely a case of overfitting: the combined demographic 

model has more parameters and actually exhibits a poorer fit to the data than the best 

phenomenological models (Table 3.3), and the apparent Allee effect is not well-

supported by the data (Figure 3.5).   

3.5.3 Interpretation 

The existence of inverse density dependence in meerkat mortality rates – the 

feature of meerkat biology that initially sparked interest in potential Allee effects 

(Clutton-Brock et al. 1999a) – has at least two possible interpretations.  First, meerkat 

sentinel behaviour may help individuals in larger groups to avoid predation, and 

second, small groups may suffer from an inability to compete for hospitable territories 

(Clutton-Brock et al. 1999a).  Because reduced mortality in small groups after years 

of low rainfall coincides with reductions in population density (Bateman et al. 2011a), 

which likely reduces intergroup competition, our results offer support for the latter.  
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Conventional density dependence in recruitment seems at first paradoxical, 

since dominant female reproductive output, which constitutes the majority of 

reproductive success for any group (Clutton-Brock et al. 1999b, Clutton-Brock et al. 

2008), increases with group size (Hodge et al. 2008).  The simple explanation is that 

recruitment increases do not keep pace with increasing group size, leading to reduced 

per-capita recruitment in larger groups (Figure 3.3A).   A similar result is likely to 

explain patterns observed in wild dogs, in which breeding females produce more 

offspring in larger groups but population dynamics show conventional density 

dependence (Mebane Jr and Sekhon 2011). 

Dispersal patterns are consistent with a pattern of dominant control over 

female group membership and almost exclusive male immigration.  Subordinate 

females jeopardize dominant reproductive success through infanticide (Young and 

Clutton-Brock 2006, Hodge et al. 2008), which dominants avoid by evicting potential 

same sex rivals (Stephens et al. 2005, Young et al. 2006), leading to increased 

eviction rates in larger groups (Clutton-Brock et al. 2008).  There is some indication 

that dominant reproductive output levels-off at group sizes of 20 to 25 (Hodge et al. 

2008) – the approximate stable group size (Figures 3.1, 3.4) – and female emigration 

is predicted to be under dominant control over most of the range of group size we 

observed (Stephens et al. 2005).  Taken together, these suggest that dominant females 

use eviction to regulate group size in order to maximize their own reproductive 

success.  Males, on the other hand, tend to emigrate of their own accord, but we 

would also expect male emigration to increase with group size, since larger groups 

can produce larger, more successful multi-male “coalitions” (Young et al. 2007) to 

seize dominance at neighbouring, typically small (Figure 3.3B) groups.   

Dispersal processes have the ability to affect population dynamics beyond 

their direct contributions to group dynamics.  Dispersers may join existing groups, 

form their own groups, or die before joining new groups.  Over large spatial scales, 

the surrounding population may be heterogeneous, with group formation and 

augmentation rates varying accordingly.  The average emigration rates that we 

observe are substantially higher than those of immigration (Figure 3.3).  Combined 

with the fact that patterns of local population density closely correspond to group size 

dynamics (Lehmann and Rousset 2010, Bateman et al. in press) this suggests that 

group formation and extinction have reached an equilibrium, locally at least, and 
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dispersers either die or leave the area.  More work will be required to elucidate further 

consequences of dispersal.  

The importance of rainfall in meerkat group dynamics is not surprising, but 

our results help clarify the effects.  A number of studies have shown the positive 

effect of rainfall on breeding success (Doolan and Macdonald 1997, Clutton-Brock et 

al. 1999b, Hodge et al. 2008), likely mediated by rain’s effect on food availability 

(Doolan and Macdonald 1997) and physical condition (English et al. 2011) and 

physical condition’s effect on reproductive success (Doolan and Macdonald 1997, 

Hodge et al. 2008).  The increase in apparent emigration after years of low rainfall 

(Figure 3.3D) is, however, the single aspect of demography with the largest effect on 

group dynamics (Table 3.3).  This increase may be due to increased extra-group 

mortality rates that result from reduced physical condition in temporary female 

evictees and male prospectors.  Alternatively, changes to group age structure may 

play a more important role.  In a year of low rainfall, reproduction is limited (Figure 

3.3A), increasing the proportion of subordinates above one year of age in the 

subsequent year.  Because older subordinates are more likely to disperse and suffer 

eviction (Clutton-Brock et al. 2002, Clutton-Brock et al. 2008), such an effect could 

result in an increase in emigration rates after dry years. More detailed, age-specific 

analyses will be required to differentiate between these two scenarios.   

3.5.4 Conclusions  

In addition to the birth and death processes that regulate any population, group 

size in social species is regulated by immigration and emigration decisions on the part 

of individuals.  The factors affecting these decisions vary: dominant female meerkats 

may control group sizes through eviction of subordinates at a cost to subordinate 

fitness (Stephens et al. 2005), while female lions remain in prides of a size that 

maximizes territory defensibility and reproductive success at the cost of foraging 

success (Packer et al. 1990, Mosser and Packer 2009, VanderWaal et al. 2009).  

Regardless, these behavioural decisions combine with birth and death processes to 

produce a stable group size and can lead to density dependence in groups similar to 

that observed in many non-social populations.  Classic phenomenological population 

models, designed with birth and death in mind, were thus able to describe average 

meerkat group dynamics.    
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Our results modify our view of meerkat group dynamics.  Past work has 

invoked an Allee effect to explain observed patterns of group dynamics, particularly 

the high rates of group extinction, especially of small groups, in bad years (Clutton-

Brock et al. 1999b, Courchamp et al. 1999b).  As previously noted (Clutton-Brock et 

al. 1999b), group growth rates are low (group size predictions are never far from the 

1:1 lines in Figures 3.1 and 3.4), but the conventional density dependence we describe 

here likely explains past results.  Given the stochastic nature of group dynamics and 

meerkats’ susceptibility to environmental fluctuations, we would expect small groups 

to be prone to extinction, even if changes in mean group size are conventionally 

density dependent.   

We have highlighted the importance of sub-population processes and the idea 

that those processes can display conflicting patterns, leading to non-intuitive 

dynamics.  Allee effects may represent a case study for such dynamical complexity 

across species.  Past evidence for an Allee effect in one aspect of meerkat 

demography lead to the assumption that group dynamics were inversely density 

dependent, but this now seems inaccurate.  Given that meerkat group-level dynamics 

appear conventionally density dependent, it is unsurprising that an Allee effect has not 

been found in meerkat population-level dynamics (Bateman et al. 2011a).  Although 

Allee effects have broad theoretical support (Courchamp et al. 2008) and have been 

sought across taxa, there are relatively few convincing population-wide examples 

(Myers et al. 1995, Gregory et al. 2010).  In such a situation, with obvious 

implications for conservation and management decisions, it would be prudent to 

consider population dynamics in the context of population structure (Frank and 

Brickman 2000) and demographic sub-processes before drawing firm conclusions. 

Our analysis of meerkat demography suggests that different drivers affect 

different demographic rates, but we ignored inter-individual variation in those rates.  

Because meerkats live in groups made up of multiple age and dominance classes, 

demographic rates (such as dispersal) differ among classes, and different drivers 

within each class could increase the impact of this class structure on dynamics 

(Coulson et al. 2008), future work will focus on incorporating class structure into our 

model
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CHAPTER 4 
_____________________________________________________________________ 

Social structure mediates environmental effects on group size 
in an obligate cooperative breeder, Suricata suricatta 
 
This chapter has been accepted for publication as: 

Bateman, A. W., A. Ozgul, J. F. Nielsen, T. Coulson, and T. H. Clutton Brock. 
in press. Social structure mediates environmental effects on group size in an 
obligate cooperative breeder, Suricata suricatta. Ecology. 

I designed the study, with input from A. Ozgul and T. Coulson; A, Ozgul, T. Coulson, 

and T. H. Clutton-Brock contributed to discussion; T. H. Clutton-Brock provided 

access to behavioural and life-history data; J. F. Nielsen performed genotyping and 

conducted genetic analyses; and I analysed all other data and wrote the paper. 

4.1 Abstract 

 Population dynamics in group-living species can be strongly affected both by 

features of sociality per se and by resultant population structure.  To develop a 

mechanistic understanding of population dynamics in highly social species, we need 

to investigate how processes within groups, processes linking groups, and external 

drivers act and interact to produce observed patterns.  We model social group 

dynamics in cooperatively breeding meerkats, Suricata suricatta, paying attention to 

local demographic as well as dispersal processes.  We use generalised additive models 

to describe the influence of group size, population density, and environmental 

conditions on demographic rates for each sex and stage, and we combine these models 

into predictive and individual-based simulation models of group dynamics.  Short-

term predictions of expected group size and simulated group trajectories over the 

longer term agree well with observations.  Group dynamics are characterized by slow 

increases during the breeding season and relatively sharp declines during the pre-

breeding season, particularly after dry years.  We examine the demographic 

mechanisms responsible for environmental dependence.    While individuals appear 

more prone to emigrate after dry years, seasons of low rainfall also cause reductions 

in reproductive output that produce adult-biased age distributions in the following 

dispersal season.  Adult subordinates are much more likely to disperse or be evicted 

than immature individuals, and demographic structure thus contributes to crashes in 

group size.  Our results demonstrate the role of social structure in characterizing a 



Chapter Four — Stage-structured Group Dynamics 

 54 

population’s response to environmental variation.  We discuss the implications of our 

findings for the population dynamics of cooperative breeders and population 

dynamics generally. 

4.2 Introduction 

Population dynamics of social, group-living species can differ markedly from 

those of solitary species comprising relatively homogeneous populations.  Social 

structure per se can have dynamical consequences, such as thresholds for successful 

emigration or group persistence (Packer et al. 2005, Courchamp et al. 1999b), and 

group living also implies spatial structure, with associated complications relating to 

dispersal, regional synchrony, and population persistence (e.g. Hanski 1999).  

Although such structure does not guarantee atypical dynamics (Frank and Brickman 

2000, Bateman et al. 2011a), the potential needs to be considered when examining the 

population dynamics of social species.  Local processes, such as social interactions; 

broad-scale processes, such as dispersal; and external drivers, such as environmental 

conditions, can all play a role (Bjørnstad et al. 1999, Packer et al. 2005, Ozgul et al. 

2009).  To develop a mechanistic understanding of dynamics in a given population, 

we must ask how these processes act and interact to produce broader patterns. 

Whereas studies of uniform populations can afford to focus, implicitly or 

explicitly, on changing population-wide rates of birth and death (e.g. Coulson et al. 

2008), studies of socially structured populations must also consider local (group-

level) dynamics and dispersal processes.    Even the simplest metapopulation models 

reveal the potential importance of dispersal among habitat patches (Hanski 1999), and 

recent work has highlighted the important role that local dynamics play in the overall 

dynamics of group-living species (Packer et al. 2005, Ozgul et al. 2009).   

Group dynamics and dispersal are, in fact, closely related.  We can describe 

dispersal in three phases: emigration, transience, and immigration, of which two 

(emigration and immigration) are directly tied to groups where individuals must 

weigh information relating to resource availability, survival prospects, and 

reproductive potential (Bowler and Benton 2005).  Immigration and emigration 

directly contribute to dynamics within groups, and within-group processes likely play 

a particularly important role in the dispersal of social species.  Group conditions, 

through their influence on the costs and benefits associated with remaining in or 

leaving any group, are major determinants of dispersal – when and how individuals 
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emigrate from their natal group and where, or if, they join a new group – are affected 

by the social environments within those groups (Bowler and Benton 2005, Clutton 

Brock and Lukas 2011).  Changes in group composition alter the social landscape, 

and thus the incentives surrounding dispersal.  One sex is often philopatric, remaining 

in the natal group to breed, while the other sex emigrates to seek mating opportunities 

elsewhere (Clutton Brock and Lukas 2011), but the presence of kin may lead to kin 

competition or inclusive fitness benefits that select for or against different dispersal 

strategies in different situations (Bowler and Benton 2005).   

Linked by emigration and subsequent immigration, or group formation, group 

dynamics combine to produce population dynamics.  Thus, if we aim to understand 

what drives population-level patterns, we must first understand group-level patterns.  

Within groups, how do intrinsic demographic processes combine and interact with 

extrinsic drivers, such as fluctuations in environmental conditions, to produce group 

dynamics?  Relative to other demographic rates, how does dispersal contribute to 

group dynamics, and how do group dynamics, in turn, affect dispersal?  How do 

social structure and social interactions influence these processes?   

Here, we report a detailed investigation of group dynamics in highly social 

meerkats, Suricata suricatta.  Meerkats provide an excellent system in which to 

investigate social group dynamics: they are well-studied behaviourally, and detailed 

life history data, at fine temporal-resolution, exist for multiple groups over more than 

a decade of field study in a wild population.  We use these data to construct an 

empirical model, with the aim of better understanding meerkats’ group-level 

demography, the patterns of emigration and immigration linking groups, and how 

these processes influence each other and are influenced by highly stochastic 

environmental conditions.   

Past work has shown that dispersal plays an important role in regulating 

meerkat group size and that sharp declines after dry years result from increased rates 

of emigration (Bateman et al. 2011b).  It remains unclear, however, whether elevated 

rates of apparent emigration are due to an effect on per-capita rates after dry years 

(potentially including biases in detection, e.g. undetected mortality that mimics 

emigration resulting from reduced body condition) or whether they result from shifts 

in the age structure of groups (Bateman et al. 2011b).  The model we describe here 

has been motivated in part by these observations. 

Our model is spatially implicit, considering groups in a descriptive context of 
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environmental and population conditions, and demographically explicit, modeling 

mortality, recruitment, immigration, and emigration in two-month timesteps as 

functions of intrinsic and extrinsic predictors.  We treat different sex-, age-, and 

dominance-classes separately, allowing for different patterns in each component 

demographic rate.  By incorporating finer temporal and demographic structure than 

used in previous models, we show how different processes are related seasonally and 

over the course of our study and clarify the relationships among environment, 

dispersal, and demographic structure in this social species.  Specifically, we 

investigate the causes of declines in group size after dry years, assessing the 

contributions of elevated emigration rates per se and those that result from shifts in 

age structure within groups. 

4.3 Study Species 

Meerkats are arid-adapted social mongooses native to southern Africa.  Living 

at approximate population densities of 7-17 individuals/km2 (Bateman et al. 2011a), 

they form groups of up to 50 individuals.  Seasonal rainfall strongly affects the 

regional ecology and thereby meerkat reproduction, survival, and overall population 

dynamics (Clutton-Brock et al. 1999a, Bateman et al. 2011a).  Long-term rainfall 

(over the previous nine to ten months) is also a good predictor of meerkat body 

condition (English et al. 2011). 

Dispersal shapes meerkat social structure and group dynamics.  Females are 

considered philopatric, but in each social group a long-lived dominant pair produces 

the majority of offspring (Clutton-Brock et al. 2008, Sharp and Clutton-Brock 2010), 

and the dominant female, when pregnant, often evicts subordinate females – 

sometimes permanently – to suppress their reproduction and avoid infanticide 

(Clutton-Brock et al. 1998a, Clutton-Brock et al. 2008).  Subordinate males engage in 

reproductive prospecting forays, and occasionally form “roving coalitions” that can 

seize dominance at other groups, often displacing resident males, or form new groups 

with unrelated female evictees (Doolan and Macdonald 1996b, Young 2003).  As 

obligate cooperative breeders, subordinates of both sexes nonetheless assist in raising 

the closely related dominants’ dependent offspring, thus accruing inclusive fitness 

benefits (Doolan and Macdonald 1996b, Clutton-Brock et al. 1999b).  Although 

dispersal may lead to direct fitness benefits, the individual risks are high (Stephens et 

al. 2005), and it reduces group size and thereby the survival prospects of non-
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dispersing kin (Clutton-Brock et al. 1999a, Bateman et al. 2011b).   

Dominant females come into oestrus soon after giving birth and produce 

multiple litters, usually of one to seven pups, per year (Hodge et al. 2008).  The 

breeding season peaks in January, to coincide with seasonal rains, and reaches a low 

in July (Clutton-Brock et al. 1999b).   Gestation lasts for about 70 days (Young et al. 

2006).  Pups remain at the natal burrow for about 25 days after birth, attended by one 

or more older individuals while the rest of the group forages (Clutton-Brock et al. 

2002).  Females suckle pups for up to two months, but pups are nutritionally 

dependent on other group members until almost three months of age (Clutton-Brock 

et al. 1999b, Clutton-Brock et al. 2002).  Individuals contribute little to cooperative 

activities until about six months, and are not sexually mature until about a year 

(Clutton-Brock et al. 2002).  

As might be expected in the semi-arid regions of southern Africa, seasonal 

rainfall has a strong effect on meerkat population and group dynamics (Clutton-Brock 

et al. 1999a, Bateman et al. 2011a, Bateman et al. 2011b), a relationship that, at the 

group level, appears to be mediated largely by environment-dependent dispersal 

(Bateman et al. 2011b).  Annual emigration rates increase markedly in large groups 

after years of low rainfall, but the mechanism remains unclear; individuals may fail to 

return from eviction or prospecting when they are in poor physical condition, or group 

composition may become biased towards mature individuals ready to disperse in the 

year after a poor reproductive season (Bateman et al. 2011b).  Rainfall also appears to 

affect reproduction, reportedly by increasing the frequency of breeding and rate of 

pup survival rather than the size of litters (Doolan and Macdonald 1997, Clutton-

Brock et al. 1999b, Hodge et al. 2008). 

Group- and population-level density dependence affect meerkat demography 

(Clutton-Brock et al. 1999a, Clutton-Brock et al. 2008, Hodge et al. 2008, Bateman et 

al. 2011a, Bateman et al. 2011b).  Evidence suggests that annual population-level 

dynamics, at least, are affected by population density (Bateman et al. 2011a), and 

group size has an effect on group-level dynamics as well as many life-history traits, 

including recruitment, survival, and dispersal rates (Clutton-Brock et al. 1999a, 

Clutton-Brock et al. 2008, Hodge et al. 2008, Bateman et al. 2011b). 
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4.4 Methods 

4.4.1 Data Collection 

We used individual-based demographic data from a population of habituated, 

wild meerkats on and near the Kuruman River Reserve (26o58’S, 21o49’E), an area of 

ranchland near Van Zylsrus in the Northern Cape province of South Africa.  Details 

pertaining to the site are available elsewhere (e.g. Clutton-Brock et al. 1999a).  

During weekly (and often daily) visits to meerkat social groups between January 1998 

and December 2008, researchers collected detailed life-history records for 

individually marked meerkats (Clutton-Brock et al. 1998a, Clutton-Brock et al. 2008).  

These records detailed group composition and individual reproduction (including pup 

birth and survival), mortality, immigration, and emigration. 

When multiple females are pregnant simultaneously in a group, usually only 

the last female to give birth produces a surviving litter, because she kills the pups of 

females that give birth earlier (hence dominant females’ tendency to evict 

subordinates before reproduction; see Clutton-Brock et al. 1998a, Clutton-Brock et al. 

2008).  As a result, pups could usually be attributed to a specific female using 

behavioural data.  In some instances, however, multiple females produced litters 

almost simultaneously, and pups could not be reliably attributed to one of them.  In 

these cases, we relied on genetic maternity assignment.  Tissue samples, taken from 

pups upon emergence and other individuals after anaesthetisation or death, were 

genotyped at up to 18 variable microsatellite loci (Nielsen et al. 2012).  A 

combination of behavioural records and genetic data were used with two programs, 

Colony2 2.0.1.1 (Wang 2004) and MasterBayes 2.47 (Hadfield et al. 2006), to infer 

parentage for as many members of the population as possible.  When assigning 

maternity for individual births, any females known to have given birth in the 

appropriate group at the appropriate time were considered candidate mothers, and the 

gestational status of females, dominance status, and group membership were used as 

phenotypic predictors in MasterBayes. Only assignments with at least 80% 

individual-level confidence were considered when combining the parentage 

inferences from both programs to generate a categorical pedigree (Nielsen et al. 

2012).  If genetic information was unavailable or ambiguous for a litter, we randomly 

assigned pups to the candidate mothers. 
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We often had reliable information regarding death and dispersal; emigrants 

were recorded in nearby groups, carcasses were found, and predation was observed.  

When an individual’s fate was unclear, we used knowledge of meerkat behaviour (e.g. 

Clutton-Brock et al. 1998a, Clutton-Brock et al. 2002, Stephens et al. 2005) to assign 

the disappearance as either apparent emigration or apparent death.  We deemed any 

disappearance in which an individual had shown signs of pre-dispersal in the month 

prior to be emigration, disappearance of a dominant individual to be death, multiple 

simultaneous same-sex disappearances to be group emigration, and all other 

disappearances to be deaths (Bateman et al. 2011b).  Further references to death and 

emigration therefore refer to apparent death and apparent emigration, respectively. 

 To estimate population densities, we divided population-wide census counts 

by estimates of the population’s geographic range.  We estimated population range as 

the 95% confidence region from an empirical kernel utilization distribution (Worton 

1989) fit to GPS sleeping burrow location data (collected by researchers during group 

visits) using a bivariate normal kernel and fixed smoothing parameter.  Further details 

of GPS data collection and our estimation of population range are available elsewhere 

(see Bateman et al. 2011a).  

We used rainfall data from the Global Precipitation Climatology Project 

Version 2.1 Combined Precipitation Dataset (an update of the version 2 dataset 

described in Adler et al. 2003).  Raw data were monthly rainfall estimates on a 2.5o x 

2.5o (latitude x longitude) grid, which we accessed from NASA's GES-DISC (the 

National Aeronautics and Space Administration’s Goddard Earth Sciences Data and 

Information Services Center) Interactive Online Visualization ANd aNalysis 

Infrastructure (Giovanni; NASA 2009).    

4.4.2 Model Overview 

We extended the methods of Coulson et al. (2008), incorporating immigration 

and emigration in addition to natality and mortality, to model meerkat group 

dynamics.  Broadly, this meant fitting functions to describe rates of immigration, 

emigration, juvenile recruitment, and mortality in discrete time windows and then 

combining these functions to predict group dynamics one timestep, or period, at a 

time.  Because meerkats of different age, sex, or dominance status can exhibit extreme 

differences in relevant demographic rates (e.g. dominant females produce almost all 

pups), we fit separate demographic functions for different “classes” of meerkats, 
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considering six classes in total: dominants, immature subordinates (<one year old), 

and adult subordinates (≥one year old) for each of males and females.   

We used two month observation periods, dividing the year into six sequential 

pairs of consecutive calendar months (January/February, March/April, May/June, 

July/August, September/October, and November/December).  Two months is the 

approximate minimum interbirth interval for meerkats, and a longer window would 

have introduced the potential complication of single females producing multiple litters 

in one timestep, while too short a window would have resulted in extremely low 

demographic rate estimates.   

For a detailed explanation of out modelling approach, see Appendix A.  In 

short, we used generalised additive models (GAMS; Wood 2006) and information-

theoretic model selection to developed maximum-parsimony descriptions of 

recruitment (broken into the probability of litter production, litter size, and pup 

survival to recruitment), mortality, immigration, and emigration rates for each stage 

class in relation to time of year, group size, population density, current rainfall, and 

rainfall in the past ten months.  We then combined the component rate models into an 

overall model of group dynamics to predict each group’s expected size two months 

ahead. 

4.4.3 Model Assessment 

We used R2, the proportion of total variation in data explained by a model fit 

to those data, as an estimate of the explanatory ability of our final model (Coulson et 

al. 2008).  We are aware that R2 has its limitations, but with appropriate care R2 

provides a good measure of goodness of fit (Kvålseth 1985).  See Appendix A for a 

detailed description of our R2 calculations, relative to a trendless random walk model. 

We also used R2 to assess the explanatory ability of various aspects of the final 

model (Coulson et al. 2008).  To do this, we used the relative decrease in R2 from the 

full model to a reduced model, not including an aspect of interest, as an estimate of 

that aspects’s contribution to the overall fit.  In this way, we assessed contributions 

from the five predictor variables (by refitting the model without each variable in turn); 

age, sex, and dominance structure (for example, to assess the effect of including sex-

specific models, we estimated demographic rates for each age-by-dominance class as 

the weighted mean of the appropriate sex-specific rates); and each demographic rate 

(by fixing the predicted rate at its observed mean).  To investigate potential 
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explanations for emigration-induced declines in group size following dry years 

(Bateman et al. 2011b), we also assessed the contributions of current rainfall, past 

rainfall, and age-structure through emigration alone. 

4.4.4 Simulations 

To place the final model’s goodness of fit estimate in context and to visualise 

overall model behaviour, we adapted the predictive model into an individual-based 

simulation model and generated a set of 10,000 Monte Carlo simulated group 

trajectories.  See Appendix A for further details. 

4.4.5 Statistical Software 

We performed all statistical analyses and simulations in R version 2.13.1 (R 

Development Core Team 2011).  We used the kernelUD function from the adehabitat 

package (Calenge 2006) to estimate kernel utilization distributions, the gam function 

from the mgcv package (Wood 2006) to fit GAMs, and the optim function (from the 

stats package) for numerical optimisation.  

4.5 Results 

4.5.1 Data Series 

We had data from a total of 32 groups, with between 5 and 15 (mean 11.8) 

groups under study at any one time.  Group size ranged between 2 and 47 (mean 15.5) 

individuals, with periodic changes in group size somewhat synchronous, especially 

during major crashes in 2003 and 2007 and an apparent minor crash in 2001 (Figure 

4.1A).  Population density ranged between 5.2 and 17.1 (mean 10.7) individuals/km2, 

following the same general trends as the observed group sizes (Figure 4.1A).  Group 

density ranged between 0.5 and 0.9 (mean 0.7) groups/km2.  

The data included records for a total of 1205 individuals.  There were 406 

apparent deaths.  766 individuals apparently emigrated, compared to 155 individuals 

that joined existing groups and 105 individuals that founded new groups (including 

immigrants from outside the study population).  638 pregnancies resulted in 343 

emergent litters with a total of 1256 pups, 1010 of which survived to recruitment age.   
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Rainfall was 90.4±49.5 (mean±standard deviation), 90.2±54.4, 14.7±14.0, 

2.3±2.3, 29.3±13.4, and 70.2±37.6 in January/February, March/April, May/June, 

July/August, September/October, and November/December, respectively (Figure 

4.1B), and ten-month rainfall averaged 203.2±74.2, 202.3±76.6, 279.7±96.8, 

292.0±100.7, 264.1±101.4, and 227.0±83.3 for the same periods.  Rainfall reached 

lows in the 2002/2003 and 2006/2007 rainy seasons, just before major reductions in 

group-size (Figure 4.1B).  

4.5.2 Component Rate Models 

As with any modelling exercise, the design and selection of our component 

rate models involved trade-offs.  Our aim was not to provide definitive descriptions of 

our system, but to identify key relationships - the most parsimonious descriptions at 

our disposal.  We do not attempt to draw specific conclusions about the precision of 

individual parameter estimates; instead we discuss strong trends and take a relatively 

holistic view of the "best" models.   

Reproduction showed two main trends: subordinate females reproduced far 

less than dominants (Table 4.B1, Figure 4.2), mainly due to a lack of litter production 

rather than reduced litter size or pup survival, and reproduction was severely reduced 

Figure 4.1: Observed initial meerkat group sizes (A, grey lines), meerkat study population density (A, 
black line), and rainfall (B) for two-month periods between January 1st 1998 and January 1st 2009 at the 
Kuruman River Reserve, South Africa. (C) shows 150 group trajectories simulated from the individual-
based stochastic version of a meerkat group dynamics model.  The model pseudorandomly simulated 
reproduction, mortality, immigration, and emigration in two-month timesteps based on generalized 
additive model characterizations of meerkat demographic rates, parameterized using field data.  Each 
trajectory was seeded with one of five observed group compositions from the first half of 1998.  *In 
reference to population density, “individuals” refers to individuals/km2. 
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in dry years (Figures 4.3, 4.B7-4.B10), again due to reductions in litter production.  

Litter production generally peaked in January and reached a low in July but increased 

with short-term rainfall and occurred throughout the year if conditions were wet 

(Figures 4.B7-4.B10); litter production all but ceased in off-peak months when 

conditions were dry, but dominants tended to produce January litters regardless of 

rain (Figure 4.B7).  Extremes in ten months’ total rainfall reduced the probability of 

litter production, with dry conditions in the ten months prior to July particularly 

detrimental (Figures 4.B7, 4.B8).  Dominant females produced more litters in large 

groups, while the reverse was true (per capita) for subordinates (Figures 4.B7, 4.B8).  

The mean litter sizes (for litters of at least one emergent pup) were 3.82 for dominants 

and 3.29 for subordinates.  Pup survival for dominant female litters peaked around 

January in slightly wetter than average conditions (both just after birth and in the 

preceding ten months), while pup survival for subordinate litters benefited from 

increased rainfall in the relevant period and varied little with season.  All pups were 

most likely to reach recruitment age in groups of slightly more than twenty 

individuals (Figures 4.B9, 4.B10). 

 
Figure 4.2: Factors effecting crashes in meerkat group sizes.  Reduced rates of reproduction (A) in 
dominant females (solid line) after relatively dry rainy seasons (reproduction in subordinates – dashed 
line – is consistently low) contribute to adult-biased age structure (B) in subordinate females (solid 
line) and males (dashed line).  This combines with patterns of emigration in subordinate females (C) 
and males (D) – emigration rates are much higher in adults (solid lines) than in immature individuals 
(dashed lines) and increase following dry conditions – to bring about large emigration events.  Hatched 
and solid grey regions show the ranges, across observed group sizes, of mean model predictions 
corresponding to solid and dashed population-mean observations, respectively. 
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Rates of within-group mortality were very low (Figure 4.3).  For most classes, 

mortality was highest in the dry season, but dominant males also tended to die in the 

wet season if conditions in the previous ten months had been dry, and seasonal effects 

were less apparent in females (Figures 4.B1-4.B6).  The effects of rain and population 

density varied across demographic classes, but individuals in larger groups 

consistently enjoyed reduced mortality (Figures 4.B1-4.B6). 

Rates of emigration generally peaked between July and September, and were 

much higher for subordinate adults than for other meerkat classes (Table 4.B1, 

Figures 4.2, 4.B11-4.B15).   For adult subordinates, emigration was similar for both 

sexes, tending to occur most in September from large groups when conditions had 

been dry in the past ten months or when conditions were relatively wet (Figures 

4.B13, 4.B15).  For adult subordinate females, however, emigration was rare in wet 

conditions after the past ten months had been dry and at high population densities. 

Male-only immigration into established groups also peaked between July and 

September, but increased with rain in a given period and was highest when rain in the 

previous ten months was slightly above average Figure 4.B16).  Absolute rates of 

immigration declined initially with group size, reaching a minimum for groups of just 

over twenty, and increasing thereafter; however, the equivalent per-capita rates of 

Figure 4.3: Demography of a single meerkat group between January 1st 1998 and January 1st 2009.  
Lines show observations (grey) and generalized additive model expectations (black) for recruitment 
(A), mortality (B), immigration (C), and emigration (D) during two-month periods.  The resultant 
changes in group size (E) relate group size at the start of each period (F) to group size at the start of the 
next period (the model relates each group size observation to a single subsequent prediction). 
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immigration were maximised in small groups and remained consistently low for 

groups of more than ten individuals (Figure 4.B16).  The negative binomial shape 

parameter for the distribution of immigration in a given period was 0.086, producing a 

heavily right-skewed distribution with mode at zero.  

Rates of recruitment and immigration showed higher levels of stochastic 

noise, relative to mean model predictions, than did rates of mortality and, in 

particular, emigration.  For immigration, this was due to the considerable aggregation, 

but rarity, of the process.  For recruitment, it was due to the fact that a single 

dominant female, either breeding or not breeding, was responsible for most 

reproduction within each group; reproductive models combined to predict 

intermediate but sustained levels of recruitment throughout the breeding season, but 

large litters produced an abundance of pups while failures to breed produced none, 

and both were common (Figure 4.3).  On the other hand, emigration tended to occur 

in more concentrated bursts across more individuals, leading to less stochasticity on 

average (Figure 4.3). 

4.5.3 Crash Dynamics 

The abrupt decreases in group size seen in “crash” years (Figure 4.1A,C) were 

due to a combination of recruitment and emigration processes, partially mediated by 

changes in group composition.  Three factors - current rainfall, past rainfall, and 

changes in age structure - contributed substantially to the model's ability to describe 

these environment-dependent patterns of emigration (10%, 14%, and 9%, 

respectively, overall contributions to the models explanatory ability; Table 4.B2).  

Litter production all but ceased in dry conditions (except at the peak of the breeding 

season; Figure 4.B7), and recruitment, especially in the periods surrounding the usual 

July/August low season, therefore suffered after dry years (Figure 4.2A).  Emigration 

also fell during the usual season in dry years (Figures 4.B13, 4.B15).  These effects 

led to an increase in the ratio of adult to immature subordinates in the following 

emigration season (Figure 4.2B).  Per-capita emigration rates were elevated after low-

rainfall years, and the emigration rates of adult subordinates were much higher than 

those of immature subordinates (Figure 4.2C,D).  When paired with the changes in 

subordinate age structure, this led to sharp declines in group size.   
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4.5.4 Predictive Model 

Combining the component rate models into an overall model to predict each 

group’s expected size two months ahead explained about 40% of the observed 

variation in group size (Table 4.B2).  Of the explanatory variables considered, 

seasonality accounted for 60% of the model’s overall explanatory ability, current and 

past rain each accounted for 15%, and group size, followed by population density, 

accounted for most of the rest (Table 4.B2).  Taken together, demographic structure 

(allowing for different demographic rates across meerkat classes) accounted for 

almost 30% of the model’s explanatory ability, with dominance structure responsible 

for the most (Table 4.B2).  Of the various demographic rate models, those of 

emigration accounted for two thirds of the explanatory ability of the overall model, 

with those of reproduction (and in particular of the probability of litter production) 

accounting for almost a fifth of the overall explanatory ability; immigration and 

mortality models accounted for relatively little (Table 4.B2).   

4.5.5 Individual-based Simulations 

As a set, the individual-based simulations of group dynamics captured 

observed patterns well (Figure 4.1C).  Simulated dynamics corresponded with 

observed annual patterns and past models of annual dynamics; in particular, the 

simulations reproduced the major crashes in 2003 and 2007, as well as the minor 

crash in 2001, and the intervening periods of growth and relative stability (Figures 

4.1C, 4.B17, 4.B18, Bateman et al. 2011b).  Simulated groups also generally 

displayed appropriate patterns of seasonal growth and decline, tending to grow 

moderately from January through June and crash or remain relatively static 

(depending on year) from July through December (Figure 4.B17).   Model fits for 

empirical group trajectories were statistically similar to model fits for model-

simulated trajectories (Figure 4.B19).   

4.6 Discussion 

Our model shows that meerkat group size dynamics are governed primarily by 

reproduction and emigration.  On average, groups increase moderately between 

January and July (Figure 4.B17A) due mainly to production of recruits by the 

dominant female.  From July to January recruits are produced at lower numbers, and 

group size tends to decrease (Figure 4.B17B) as a result of emigration, especially in 
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large groups if the past rainy season was relatively dry.  This model provides detail at 

a much finer temporal resolution than past models (Bateman et al. 2011b) and allows 

us to investigate the role of social structure on group dynamics.   

In particular, our model provides detail surrounding the social and 

environmental mechanisms behind declines in group size following low-rainfall years.  

Sharp declines in the size of large groups after dry rainy seasons are due partially to 

the effect of rain on stage-specific dispersal rates, but also to rainfall’s effects on 

reproduction, subsequent shifts towards older age-structure, and differences in age-

dependent dispersal rates.  Reduced rates of reproduction in dry years lead to relative 

declines of non-dispersive immature individuals within groups, and, as a result, 

group-wide per-capita rates of emigration increase in the following dispersal seasons.  

Thus, although we can attribute less of our model’s short-term explanatory ability to 

recruitment than to emigration (Table 4.B2), we see that the former is integral in 

explaining trends in group dynamics, and the model’s realistic simulated dynamics 

over the longer term support this.   

Past work was only able to identify elevated average emigration rates after dry 

years (Bateman et al. 2011b), leaving the question of mechanism entirely unanswered.  

Rather than ruling out one of the potential explanations for group-size declines 

following dry years (Bateman et al. 2011b), our model reveals a system in which 

demographic shifts and rain-related changes in behaviour both appear to be important. 

4.6.1 Model Performance 

The model provided a good description of dynamics in a socially complex and 

environmentally variable system.  The component rate models described the major 

contributing rates (recruitment and emigration) well at the population level (Figure 

4.2), and emigration predictions closely matched observations at the group level, but 

recruitment within each group proved more difficult to capture (Figure 4.3).  Because 

most reproductive events produced multiple recruits, small errors in predicting litter 

production led to larger errors in predicting the number of recruits in any period.  

Nevertheless, the overall model’s predictions matched observed patterns of change 

(e.g. Figure 4.3E) and explained more than 40% of the observed variation in group 

size.   

Individual-based simulation confirmed the ability of the model to match 

observed patterns over longer timescales.  Simulated group dynamics qualitatively 
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matched observed group dynamics (Figures 4.1C, 4.B17, 4.B18), with year-by-year 

patterns in the set of simulated trajectories matching those from the set of real groups, 

including group-size crashes after particularly low-rainfall years (compare Figure 

4.1A and 4.1C).  The simulations also provided a description of average annual 

dynamics in relation to past rainfall that is very similar to that provided by classical 

phenomenological population dynamics models (compare Figure 4.B18 to Figures 1 

and 4 in Bateman et al. 2011b). 

We note that, because of our constrained definition of a group (at least one 

female present), we were forced to abandon simulated groups that became all-male.  

This mirrors practice in the field, but does not explicitly account for the formation of 

what are, in effect, large cohorts of male dispersers.  Something similar holds for all-

female groups, which we did follow in our simulations, but which effectively 

represent large cohorts of female dispersers. 

4.6.2 Group-level Implications  

Group size plays an important role in the frequency with which dominant 

females evict subordinates and the frequency with which subordinates disperse.  

Though the likelihood that a dominant female reproduces increases with group size, it 

increases little once her group surpasses thirty individuals, and the survival prospects 

of her pups appear to suffer in large groups (Figure 4.B7, Hodge et al. 2008).  Large 

groups are also more likely to produce large cohorts of emigrant females, which are 

better able to form new groups (Young 2003).  Thus, although female group 

membership is thought to be largely under dominant control, it appears to be in the 

interests of both dominants and subordinates that emigration should increase in larger 

groups (Young 2003, Stephens et al. 2005), and the propensity of subordinate females 

to emigrate could explain paradoxically low rates of challenges to the status of 

dominant females (Sharp and Clutton-Brock 2011).  

High rainfall in a given period and low rainfall in the preceding ten months are 

both associated with relatively high rates of subordinate emigration in both sexes.  

The former corresponds to favourable current conditions while the latter is associated 

with poor physical condition in meerkats (English et al. 2011).  Females disperse 

either to establish new groups or because they fail to return to their group after being 

forced out by the dominant female, in her effort to avoid reproductive conflict and 

infanticide (Clutton-Brock et al. 1998a, Stephens et al. 2005, Clutton-Brock et al. 
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2008).  Notably, female emigration is reduced in dry years, at precisely the same time 

that dominant litter production suffers and reproductive conflict is thus at a minimum 

(Clutton-Brock et al. 1998a, Clutton-Brock et al. 2010).  Males disperse to establish 

new groups and to find extra-group mating opportunities (Doolan and Macdonald 

1996b, Young 2003).  Both eviction for females and prospecting for males are 

physiologically costly, stressful events (Young 2003, Young et al. 2006, Young and 

Monfort 2009).  While favourable environmental conditions are likely to give rise to 

group formation attempts, poor physical condition, combined with high levels of 

physiological stress, is likely to be associated with elevated extra-group mortality 

rates that show up here as increased rates of apparent emigration.  The lack of 

apparent adult subordinate female emigration in wet conditions after dry periods 

could be due to those females being in too poor a condition to emigrate successfully 

but having access to sufficient resources to avoid eviction-related mortality.   

Our approach was good at predicting the timing and population-wide mean 

levels of  male-only immigration but unable to accurately predict group-specific 

immigration.  Occasionally, when immigrant males expelled resident males, this led 

to errors in the prediction of emigration as well (e.g. Figure 4.3C,D).  Our inability to 

precisely predict immigration was largely due to the fact that male immigration is rare 

and clustered (i.e. males tend to immigrate in groups).  Future attempts to investigate 

the effects of immigration may, therefore, be best served by simulation-based 

approaches in place of assessment of mean rates. 

4.6.3 Population-level Implications 

Although we did not explicitly consider population-level dynamics in our 

model, they appear to be closely tied to group dynamics (Figure 4.1A), and population 

density closely parallels median group size.  If this pattern persists beyond our study 

population, it would suggest that group territories, in size at least, are relatively stable, 

and that the population-level response to favourable conditions is largely an increase 

in density through group augmentation.  Aggressive interactions between meerkat 

groups are common, with large groups often chasing smaller groups out of their range 

(Young 2003), and this probably hinders new group formation under otherwise 

favourable conditions.  High population density does appear to inhibit adult 

subordinate female emigration; in a saturated local environment, group-establishment 

prospects would be limited, and dispersal would provide little benefit at high cost.   
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Group turnover does occur, however, and few of the groups we followed were 

present for the duration of the study.  Some moved out of the study area, but others 

disbanded or died out.  Not surprisingly, the few groups we observed to collapse 

entirely were small (although this appears to be due to stochasticity rather than 

inverse density dependence – Allee effects; Bateman et al. 2011b), and their collapses 

generally coincided with low-rainfall years or emigration-mediated declines in group 

size (Figures 4.1, 4.B18).   

As large emigration events directly precede the rainy season, group formation 

resulting from dispersal would be well-timed to take advantage of favourable 

conditions.  After crash years, newly formed groups might be better able to compete 

with reduced existing groups or take over territory from groups that perished, and this 

might contribute to increased rates of apparent emigration after dry years.  It also 

suggests that dispersal in poor years, even if it puts some groups at risk, may facilitate 

population recovery after periods of decline. 

Although not strictly equivalent, the meerkat system resembles a 

metapopulation and, given the patterns of demography and dispersal, presents the 

potential for source-sink dynamics (Hanski 1999).  Large groups appear to act as 

sources, their emigrants able to augment other groups and colonise empty habitat 

patches or regions of marginal habitat (collectively sinks).  These sinks, in turn, could 

have an important stabilising effect on the population of source groups, which are 

both intrinsically stochastic and susceptible to extrinsic environmental stochasticity 

(Hanski 1999).  Given the location of our study population, in what seems to be 

meerkats' preferred territory (along a dry riverbed; Clutton-Brock et al. 1999b) 

surrounded by marginal habitat, the potential for interesting local and regional source-

sink dynamics certainly exists. 

Male dispersal behaviour has the potential to strongly affect population 

dynamics.  Because resident males are sometimes forced to emigrate when foreign-

group males move in, single dispersal events potentially have knock-on effects 

population-wide.  Immigration events appear to be able to spur even larger, otherwise 

unpredicted emigration events (e.g. Figure 4.3C,D).  Groups thus reduced in size 

might be less able to defend territories, shifting otherwise stable patterns (see above).  

Pre-dispersal behaviour may also affect population dynamics: past work indicates that 

group interactions may drive male prospecting behaviour and affect disease 

transmission (Doolan and Macdonald 1996b, Drewe et al. 2009b).   
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4.6.4 Broader Implications 

For meerkats, environmental fluctuations alter stage structure across groups, 

contributing to observed dynamical patterns.  Past work has shown that differentially 

stage-structured populations of the same size can respond differently under identical 

conditions (Coulson et al. 2001) and that stage structure has implications for the 

dynamics of disease, invasion, and at-risk populations (Fulford et al. 2002, Koons et 

al. 2005, Miller and Tenhumberg 2010).  There is growing consensus that 

investigations of stage-structured populations relying on characterizations of 

asymptotic dynamics provide limited insight into the behaviour of those populations 

under conditions of interest (Koons et al. 2005, Ozgul et al. 2009, Miller and 

Tenhumberg 2010).   

Spatial and social structure add complexity to the investigation of population 

dynamics and can affect population responses to given sets of conditions (Packer et al. 

2005, Ozgul et al. 2009).  Local processes combine to produce population-wide 

patterns, but the relationships are not always simple, and when local conditions affect 

per-capita demography, observed dynamics can differ markedly from population 

mean predictions (Morales et al. 2010).  Even in relatively simple systems, large-scale 

dynamics can be difficult to explain based on local dynamics (Hanski and Meyke 

2005).  Here, however, we have a socially complex species for which observed group 

dynamics, though exhibiting stochastic noise, are closely correlated and match 

patterns of change in local population density (although population density seems to 

decline slightly just before sharp declines in group size; Figure 4.1A).   

4.6.5 Conclusion 

By considering the effects of social and environmental factors on contributions 

to group dynamics at fine temporal resolution, we were able to describe the 

mechanisms by which environmental conditions control group size in meerkats.  

Climatic variation influences dispersal behaviour and leads to changes in groups’ 

demographic structure, producing lagged changes in group size.  Our detection of this 

mechanism relied on an integrated modeling approach that considered stage-

structured demography at a fine timescale. 

Population dynamics in socially structured populations are the result of both 

within-group and among-group processes.  In reality, the two processes are intimately 

tied to one another, and in order to improve our understanding of spatially structured 
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population dynamics, we must work towards integrated models that consider both in 

concert (Bowler and Benton 2005).  The dispersal-related processes that we identified 

as important to meerkat group dynamics are also the processes that have the largest 

potential effect on population-level dynamics, and future work will focus on the 

connections among group dynamics, inter-group movement, group formation, and 

population-level dynamics. 

4.A Appendix A: Details of model formulation and assessment 

4.A.1 Combining Demographic Rates 

For a group of size nt at the beginning of any observation period, t, we can 

calculate the group’s size at the beginning of the next period by accounting for 

observed recruitment of juveniles, rt; mortality, mt; immigration, it; and emigration, et, 

in period t:  

 1t t t t t tn n r m i e      . (4.A1)  

Allowing for different rates in each class, c, we get 

  1 , , , ,
 c

t t c t c t c t c t
all

n n r m i e      . (4.A2) 

Now, if we treat nt+1 as the value of a random variable, Nt+1, that has yet to be 

observed by the beginning of period t (and do similar for each demographic rate in 

period t), we can take the expectation across all possible values of Nt+1 to get 

          1 , , , ,
 c

E E E E Et t c t c t c t c t
all

N n R M I E
       . (4.A3) 

In this context, we use the convention that an uppercase Latin character represents a 

random variable, while the corresponding lowercase character represents an observed 

value of that random variable.   

We assumed it possible to describe the expected value of each component rate 

from (4.A3) using a smooth function of local conditions (usually) in period t: 

    ,E
cc t RATE tRATE f X , (4.A4) 

where 1, 2, ,{ , ,..., }t t t k tx x xX  is the set of relevant conditions in period t.  To estimate 

functions for the expected demographic rates, we used generalized additive models 

(GAMs) fit to demographic data corresponding to the appropriate two-month 

windows.  A GAM fits additive combinations of linear and nonlinear functions of 

given predictor variables to achieve a parsimonious description, via a link function, of 
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a univariate response variable (see Wood 2006).  We fit each GAM using data 

available from all groups throughout the course of our study.  

The predictors we considered for each demographic rate included both 

intrinsic and extrinsic variables.  We included group size, measured as the number of 

group members older than two months (recruitment age – see below), to assess group-

level density dependence, and we included population density, measured as meerkats 

per square kilometre across the study population, to assess population-level density 

dependence.  To assess annual patterns in demographic rates we included season, as 

indicated by the two-month time period, which, though technically a discrete-valued 

measure, we considered as a continuous variable to avoid overly flexible models.  

Finally, we included rainfall in a given two-month period and, separately, rainfall in 

the preceding ten months, both measured as deviations (standardised by the season-

specific standard deviations) from the appropriate seasonal averages taken over the 

course of the study. 

Given the potentially important predictor variables, we used an information-

theoretic approach to select the most parsimonious model from a candidate set of 

plausible models.  We developed the candidate model set (Table A1) to include 

models that incorporated reasonable combinations of smooths of the predictor 

variables and their two-way interactions (fit as tensor product smooths; Wood 2006).  

After fitting each GAM, we used Akaike’s Information Criterion (for AIC in the 

context of GAMs, see Wood 2006) to compare the models and adopted the minimum-

AIC model for future use.  In fitting the models, we used a cyclic cubic spline basis 

for season and a standard cubic spline basis for all other predictors; three knot 

locations for each predictor except season, for which we used four knot locations to 

allow more reasonable cyclic smooths; and a degrees-of-freedom inflation factor (the 

gamma argument of the fitting function – see Statistical Software) of 1.4, to avoid 

overly flexible smooths (Wood 2006). 

 We used a similar generalized additive modelling approach for part or all of 

each component demographic rate.  Unless otherwise specified, we fit GAMs to per-

capita demographic rates (see below), using a binomial error structure with a logit link 

function.  Because each component demographic rate has slightly different properties, 

however, the details of our approach differed slightly for each.   
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4.A.2 Recruitment 

We treated the number of juveniles recruited as the result of a multi-step 

process dependant on litter production (by dominant or adult subordinate females 

only), the size of any litter produced, and pup survival to recruitment age (Kendall 

and Wittmann 2010).  We assumed that each female of class c gave birth to an 

emergent litter in period t-1 with probability E(Bc,t-1), that litter size for mothers of 

class c followed a zero-truncated generalized Poisson distribution (Kendall and 

Wittmann 2010) with expectation E(Lc), and that pups born to a mother of class c in 

period t-1 survived to at least recruitment age to be counted at the start of period t+1 

with probability E(Sc,t).  The generalized Poisson distribution has been proposed for 

modelling litter sizes, because it avoids attributing likelihood to excessively large 

litters, and truncating (and rescaling) the distribution to omit zero allowed the 

probability of a litter of size zero to be incorporated into the litter-production stage 

(Kendall and Wittmann 2010).  We set recruitment age to two months, which meant 

that pups born in period t-1 reached recruitment age in period t and were counted as 

group members at the beginning of period t+1 at between two and four months of age 

(three months – the midpoint of this range – is the approximate age of nutritional 

independence for meerkats; Clutton-Brock et al. 2002).  Under the above conditions, 

the expected per-capita recruitment attributable to a female of class c in period t 

becomes (Kendall and Wittmann 2010) 

        , , 1 ,E E E Ec t c t c c tR B L S    (4.A5) 

for dominant and adult subordinate females and zero otherwise.  Expected recruit 

production for a class of size nc,t at the beginning of period t is therefore 

        , , , 1 ,E E E Ec t c t c t c c tR n B L S    . (4.A6) 

 We modelled expected pup survival, E(Sc,t), according to the standard 

approach described above, using a GAM incorporating smooths of local conditions in 

period t, but we treated expected litter production, E(Bc,t-1), and expected litter size, 

E(Lc), differently.  We assumed that expected litter production depended on local 

conditions in period t-2 rather than period t-1, because gestation in meerkats is 

approximately 70 days (Clutton-Brock et al. 2008), and pups born in period t-1 were, 

therefore, most commonly conceived in period t-2.  The model forms we fit for litter 

production were identical to the standard GAM model forms, except that they 

incorporated predictor variable from period t-2 rather than period t.  For expected 
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litter size, we fit one truncated generalized Poisson distribution to the observed litter 

sizes for each reproductive class of females.  To do this, we used numerical 

optimisation to find the distribution parameter values that maximised the total log 

likelihood of the appropriate observed litter sizes across time periods.  This allowed 

us to use the appropriate distribution, at the cost of excluding covariate predictors. 

4.A.3 Mortality and Emigration 

We used our standard GAM approach to model expected per-capita rates of 

emigration and mortality, ,E( )c tE  and ,E( )c tM , respectively, so that the expected rates 

of class-specific emigration and mortality took similar forms: 

 
   
   

, , ,

, , ,

E E ,  and

E E .
c t c t c t

c t c t c t

E n E

M n M

 

 
 (4.A7) 

Dominant female emigration is almost never observed, so we made the assumption 

that it does not occur and did not include it in our models.  Although resident males 

may disperse when immigrants arrive (Doolan and Macdonald 1996b, Young 2003), 

the associated close temporal correlation meant we were unable to include the effect 

in our models.  

4.A.4 Immigration 

Unlike the other rates, immigration in period t is not readily attributable to any 

individuals present at the beginning of the period, and we observe immigration almost 

exclusively in adult males.  We therefore modelled expected immigration not as a per-

capita rate but as the mean of a count variable.  Because immigration commonly 

occurs when “coalitions” of males join a group (Doolan and Macdonald 1996b, 

Young 2003), we assumed the number of immigrants to be distributed negative-

binomially, to allow for aggregation (overdispersion relative to a Poisson random 

variable).  We used the standard candidate model set, but with a negative binomial 

error structure and natural log link, and fit the negative binomial shape parameter 

using outer iteration (Wood 2006).  
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4.A.5 Final Model  

The final model took the form: 

             1 , , 1 , , ,
 

E E E E E E Et t c t c t c c t c t c t t
all c

N n n B L S M E I            (4.A8) 
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            E .
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n n f L f f f f
 

          X X X X X  

Within this final model, each function, f, was the maximum-parsimony GAM from 

the appropriate candidate model set. 

4.A.6 Calculation of R2 

We calculated R2 based on predicted and observed group sizes, taking total 

sum of squares to be
all groups, 

2
1 1[ E ( )] ,

t
t null tn N   where Enull(Nt+1) is the expected value of 

Nt+1 under the null model.  In (4), we implicitly treated each observed demographic 

rate in (2) as the value of a function, f, plus error, ε:   

  
,, c c tc t RATE t raterate f  X , (4.A9) 

so that  

  
,1 1

 , 
E

c tt t rate
all rates c

n N     .  (4.A10) 

Given the high quality of the data involved (in each two-month timestep we have 

near-perfect knowledge of each group’s composition), we make the simplifying 

assumption that deviations of nt+1 from E(Nt+1) represent process error only.  For a 

population dynamics model with pure process error, the appropriate null model is a 

random walk, so that Enull(Nt+1) = nt and total sum of squares
all groups, 

2
1[ ] .

t
t tn n   

4.A.7 Monte Carlo Simulations 

We initially seeded 2,000 trajectories with the conditions from the first three 

timesteps for each of five groups present at the beginning of the study.  To attain each 

group trajectory, we used the final models for each component demographic rate, with 

their associated error distributions, to simulate individual recruitment, mortality, 

immigration, and emigration within a group, and thereby group dynamics, in two-

month timesteps over the course of the study period.  To simulate any individual 

demographic rate for a given timestep, we made a pseudorandom draw from the 

distribution defined by the appropriate model’s predicted mean and error structure, 
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taking group sizes from the simulation data but all other predictor variables from the 

true population values for the given timestep. 

 While the demographic rate models defined the probabilities associated with 

rates in each timestep, we needed additional rules and assumptions to produce a 

functional individual-based model.  As we defined them, the probabilities of mortality 

and emigration were mutually exclusive; therefore we determined whether each 

individual of class c remained in its group in timestep t by drawing from a single 

binomial distribution with P(death or emigration) = P(death) + P(emigration) = 

, ,E( ) E( ).c t c tM E   We drew the ages of immigrants from the distribution of 

immigrant ages observed across all groups in the field data.  We kept track of each 

simulated individual’s age throughout the course of the simulations, advancing its age 

class as appropriate.  When a dominant individual died (or a dominant male 

emigrated), we “promoted” the oldest same-sex individual within the group.  We 

assigned pup sex stochastically, with a 50% chance of each sex.  We stopped 

simulating a group’s trajectory when its group size fell below two or it contained only 

males (since our assumptions about demography did not allow for female influx in 

such a situation). 

 Once simulation was complete for a group trajectory, we used the predictive 

model to calculate the expected group size for each period, given the simulated 

conditions for the previous periods.  With this information, we calculated 10,000 R2 

values (one for each trajectory), representing the distribution of goodness of fit when 

the model was used to predict the individual-based stochastic version of itself. 
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Table 4.A1: Candidate model set for generalized additive models.  S = two-month “season” of period 
t*, R2 = normalized rainfall in period t (relative to the long-term seasonal mean), R10 = normalized 
rainfall in the ten months prior to period t (relative to the long-term seasonal mean), GS = group size at 
the start of period t, PD = estimated population density for period t; s() indicates a cubic regression 
spline smooth of a single variable, while te() indicates a tensor product smooth of two variables using 
cubic regression spline bases†. 

model ID model form for 
,c tRATEf ‡ 

1 s(S)  
2 te(S,R2) 
3 te(S,R10) 
4 te(S,R2) + te(S,R10) 
5 te(S,R2) + te(S,R10) + te(R2,R10) 
6 s(S) + s(GS) 
7 te(S,R2) + s(GS) 
8 te(S,R10) + s(GS) 
9 te(S,R2) + te(S,R10) + s(GS) 
10 te(S,R2) + te(S,R10) + te(R2,R10) + s(GS) 
11 te(S,GS) 
12 te(S,R2) + te(S,GS) 
13 te(S,R10) + te(S,GS) 
14 te(S,R2) + te(S,R10) + te(S,GS) 
15 te(S,R2) + te(S,R10) + te(R2,R10) + te(S,GS) 
16 te(S,GS)  + te(R2,GS) 
17 te(S,R2) + te(S,GS)  + te(R2,GS) 
18 te(S,R2) + te(S,R10) + te(S,GS)  + te(R2,GS) 
19 te(S,R2) + te(S,R10) + te(R2,R10) + te(S,GS) + te(R2,GS) 
20 s(S) + te(GS,PD) 
21 te(S,R2) + te(GS,PD) 
22 te(S,R10) + te(GS,PD) 
23 te(S,R2) + te(S,R10) + te(GS,PD) 
24 te(S,R2) + te(S,R10) + te(R2,R10) + te(GS,PD) 
25 te(GS,PD) + te(S,GS) 
26 te(S,R2) + te(GS,PD) + te(S,GS) 
27 te(S,R10) + te(GS,PD) + te(S,GS) 
28 te(S,R2) + te(S,R10) + te(GS,PD) + te(S,GS) 
29 te(S,R2) + te(S,R10) + te(R2,R10) + te(GS,PD) + te(S,GS) 
30 te(GS,PD) + te(S,GS)  + te(R2,GS) 
31 te(S,R2) + te(GS,PD) + te(S,GS)  + te(R2,GS) 
32 te(S,R2) + te(S,R10) + te(GS,PD) + te(S,GS)  + te(R2,GS) 
33 te(S,R2) + te(S,R10) + te(R2,R10) + te(GS,PD) + te(S,GS) + te(R2,GS) 

*Models for litter production incorporated conditions from period t-2 instead of period t (see text). 
† All smooths of season used cyclic cubic regression spline bases. 
‡ As the smooth components of GAMs are, by default, centred, each model also includes a constant 
parameter, omitted here for brevity. 
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4.B Appendix B: Details of final model, submodels, and simulations 

Table 4.B1: Maximum parsimony generalised additive model forms used to describe demographic 
rates for different meerkat classes.  The forms given describe the linear predictor of each generalised 
model.  S = two-month “season” of period t, R2 = normalized rainfall in period t (relative to the long-
term seasonal mean), R10 = normalized rainfall in the ten months prior to period t (relative to the long-
term seasonal mean), GS = group size at the start of period t, PD = estimated population density for 
period t. 

demographic 
rate meerkat class maximum parsimony model form 

dominant females -3.02 + f(S,R10)df=1.3 + f(GS)df=1.0 
adult subordinate females -3.59 + f(S,R2)df=2.3 + f(S,GS)df=0.8 + 

f(R2,GS)df=1.6 
immature subordinate females -3.48 + f(S,R2)df=1.7 + f(S,R10)df=0.1 + 

f(R2,R10)df=0.0 + f(S,GS)df=0.0 + 
f(R2,GS)df=0.7 

dominant males -3.39 + f(S,R2)df=1.0 + f(S,R10)df=2.8 + 
f(GS,PD)df=4.0 + f(S,GS)df=0.6 + 
f(R2,GS)df=0.7 

adult subordinate males -3.97 + f(S,R2)df=3.2 + f(S,R10)df=0.6 + 
f(GS,PD)df=3.8 + f(S,GS)df=0.5 

mortality 

immature subordinate males -3.63 + f(S,R2)df=3.9 + f(S,R10)df=0.8 + 
f(R2,R10)df=0.6 + f(GS,PD)df=3.0 + 
f(S,GS)df=0.0 + f(R2,GS)df=1.5 

dominant females -0.93+ f(S,R2)df=4.8 + f(S,R10)df=5.4 + 
f(R2,R10)df=2.8 + f(GS,PD)df=3.0 + 
f(S,GS)df=0.0 + f(R2,GS)df=1.8 

litter 
production† adult subordinate females -3.90 + f(S,R2)df=3.7 + f(S,R10)df=4.4 + 

f(GS,PD)df=3.5 + f(S,GS)df=0.0 
dominant females 1.60 + f(S,R2)df=4.1 + f(S,R10)df=0.1 + 

f(R2,R10)df=3.2 + f(GS,PD)df=6.1 + 
f(S,GS)df=2.3 pup survival 

adult subordinate females 1.28 + f(GS,PD)df=6.8 + f(S,GS)df=0.0 + 
f(R2,GS)df=1.0 

adult subordinate females -3.06 + f(S,R2)df=5.8 + f(S,R10)df=6.0 + 
f(R2,R10)df=4.0 + f(GS,PD)df=4.7 

immature subordinate females -7.11 + f(GS,PD)df=7.7 + f(S,GS)df=2.3 + 
f(R2,GS)df=1.0 

dominant males -3.15 + f(S,R2)df=3.1 + f(S,GS)df=0.6 
adult subordinate males -3.06 + f(S,R2)df=5.0 + f(S,R10)df=6.0 + 

f(R2,R10)df=2.8 + f(S,GS)df=1.0 + 
f(R2,GS)df=3.3 

emigration 

immature subordinate males -5.08 + f(S,R2)df=4.5 + f(S,GS)df=0.0 + 
f(R2,GS)df=0.8 

immigration males -2.24 + f(S,R2)df=4.2 + f(S,R10)df=0.0 + 
f(R2,R10)df=0.9 + f(GS)df=1.7 

†Models for litter production incorporated conditions from period t-2 instead of period t (see text). 
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Table 4.B2: Explanatory power of group dynamics model and model components 

model form† R2 ‡ ΔR2  
fraction of explanatory  

power attributed to  
model component 

full model 0.414 – – 
    

(Season) 0.165 0.249 0.60 
(Rperiod) 0.349 0.064 0.15 
(R10months) 0.350 0.063 0.15 
(GroupSize) 0.393 0.021 0.05 
(PopDensity) 0.408 0.005 0.01 

    
(age structure) 0.376 0.038 0.09 
(dom structure) 0.340 0.074 0.18 
(sex structure) 0.403 0.011 0.03 

    
mean immigration 0.414 0.000 0.00 
mean mortality 0.408 0.005 0.01 
mean litter production 0.346 0.068 0.16 
mean pup survival 0.414 -0.001 0.00 
mean reproduction  0.338 0.075 0.18 
mean emigration 0.149 0.264 0.64 
    
(Rperiod in emigration) 0.371 0.042 0.10 
(R10months in emigration) 0.356 0.058 0.14 
(age structure in emigration) 0.378 0.035 0.09 
† Parentheses indicate omission of specified predictor or aspect from the full predictive model in order 
to assess explanatory ability. 

‡ R2 values were calculated based on expected and observed group sizes, assuming a trendless random 
walk null model.   
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Figure 4.B1: Generalised additive model terms from maximum-parsimony model used to predict per-
capita mortality in dominant male meerkats at two-month intervals.  For each component, all 
predictive variables not shown were set at their median level.  S = two-month “season” of period t (0 
and 6 represent May/June), R2 = normalized rainfall in period t (relative to the long-term seasonal 
mean), R10 = normalized rainfall in the ten months prior to period t (relative to the long-term seasonal 
mean), GS = group size at the start of period t, PD = estimated population density for period t.  Lighter 
grey represents higher predictions.  Gaps in the surface represent regions of parameter space without 
empirical support. 
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Figure 4.B2: Generalised additive model terms from maximum-parsimony model used to predict per-
capita mortality in immature subordinate male meerkats at two-month intervals.  For each 
component, all predictive variables not shown were set at their median level.  S = two-month “season” 
of period t (0 and 6 represent May/June), R2 = normalized rainfall in period t (relative to the long-term 
seasonal mean), R10 = normalized rainfall in the ten months prior to period t (relative to the long-term 
seasonal mean), GS = group size at the start of period t, PD = estimated population density for period t.  
Lighter grey represents higher predictions.  Gaps in the surface represent regions of parameter space 
without empirical support. 
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Figure 4.B3: Generalised additive model terms from maximum-parsimony model used to predict per-
capita mortality in adult subordinate male meerkats at two-month intervals.  For each component, 
all predictive variables not shown were set at their median level.  S = two-month “season” of period t 
(0 and 6 represent May/June), R2 = normalized rainfall in period t (relative to the long-term seasonal 
mean), R10 = normalized rainfall in the ten months prior to period t (relative to the long-term seasonal 
mean), GS = group size at the start of period t, PD = estimated population density for period t.  Lighter 
grey represents higher predictions.  Gaps in the surface represent regions of parameter space without 
empirical support. 
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Figure 4.B4: Generalised additive model terms from maximum-parsimony model used to predict per-
capita mortality in dominant female meerkats at two-month intervals.  For each component, all 
predictive variables not shown were set at their median level.  S = two-month “season” of period t (0 
and 6 represent May/June), R10 = normalized rainfall in the ten months prior to period t (relative to the 
long-term seasonal mean), GS = group size at the start of period t.  Lighter grey represents higher 
predictions.  Gaps in the surface represent regions of parameter space without empirical support.  
Shaded region in B represents approximate 95% confidence region and “rug” shows observed predictor 
values. 
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Figure 4.B5: Generalised additive model terms from maximum-parsimony model used to predict per-
capita mortality in immature subordinate female meerkats at two-month intervals.  For each 
component, all predictive variables not shown were set at their median level.  S = two-month “season” 
of period t (0 and 6 represent May/June), R2 = normalized rainfall in period t (relative to the long-term 
seasonal mean), R10 = normalized rainfall in the ten months prior to period t (relative to the long-term 
seasonal mean), GS = group size at the start of period t.  Lighter grey represents higher predictions.  
Gaps in the surface represent regions of parameter space without empirical support. 
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Figure 4.B6: Generalised additive model terms from maximum-parsimony model used to predict per-
capita mortality in adult subordinate female meerkats at two-month intervals.  For each component, 
all predictive variables not shown were set at their median level.  S = two-month “season” of period t 
(0 and 6 represent May/June), R2 = normalized rainfall in period t (relative to the long-term seasonal 
mean), GS = group size at the start of period t.  Lighter grey represents higher predictions.  Gaps in the 
surface represent regions of parameter space without empirical support. 
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Figure 4.B7: Generalised additive model terms from maximum-parsimony model used to predict per-
capita litter production in dominant female meerkats at two-month intervals.  For each component, 
all predictive variables not shown were set at their median level.  S = two-month “season” of period t 
(0 and 6 represent May/June), R2 = normalized rainfall in period t-2 (relative to the long-term seasonal 
mean), R10 = normalized rainfall in the ten months prior to period t-2 (relative to the long-term 
seasonal mean), GS = group size at the start of period t-2, PD = estimated population density for period 
t-2.  Lighter grey represents higher predictions.  Gaps in the surface represent regions of parameter 
space without empirical support. 
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Figure 4.B8: Generalised additive model terms from maximum-parsimony model used to predict per-
capita litter production in adult subordinate female meerkats at two-month intervals.  For each 
component, all predictive variables not shown were set at their median level.  S = two-month “season” 
of period t (0 and 6 represent May/June), R2 = normalized rainfall in period t-2 (relative to the long-
term seasonal mean), R10 = normalized rainfall in the ten months prior to period t-2 (relative to the 
long-term seasonal mean), GS = group size at the start of period t-2, PD = estimated population density 
for period t-2.  Lighter grey represents higher predictions.  Gaps in the surface represent regions of 
parameter space without empirical support. 
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Figure 4.B9: Generalised additive model terms from maximum-parsimony model used to predict per-
capita survival in pups of dominant female meerkats at two-month intervals.  For each component, 
all predictive variables not shown were set at their median level.  S = two-month “season” of period t 
(0 and 6 represent May/June), R2 = normalized rainfall in period t (relative to the long-term seasonal 
mean), R10 = normalized rainfall in the ten months prior to period t (relative to the long-term seasonal 
mean), GS = group size at the start of period t, PD = estimated population density for period t.  Lighter 
grey represents higher predictions.  Gaps in the surface represent regions of parameter space without 
empirical support. 
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Figure 4.B10: Generalised additive model terms from maximum-parsimony model used to predict per-
capita survival in pups of adult subordinate female meerkats at two-month intervals.  For each 
component, all predictive variables not shown were set at their median level.  S = two-month “season” 
of period t (0 and 6 represent May/June), R2 = normalized rainfall in period t (relative to the long-term 
seasonal mean), GS = group size at the start of period t, PD = estimated population density for period t.  
Lighter grey represents higher predictions.  Gaps in the surface represent regions of parameter space 
without empirical support. 
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Figure 4.B11: Generalised additive model terms from maximum-parsimony model used to predict per-
capita emigration in dominant male meerkats at two-month intervals.  For each component, all 
predictive variables not shown were set at their median level.  S = two-month “season” of period t (0 
and 6 represent May/June), R2 = normalized rainfall in period t (relative to the long-term seasonal 
mean), GS = group size at the start of period t.  Lighter grey represents higher predictions.  Gaps in the 
surface represent regions of parameter space without empirical support. 
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Figure 4.B12: Generalised additive model terms from maximum-parsimony model used to predict per-
capita emigration in immature subordinate male meerkats at two-month intervals.  For each 
component, all predictive variables not shown were set at their median level.  S = two-month “season” 
of period t (0 and 6 represent May/June), R2 = normalized rainfall in period t (relative to the long-term 
seasonal mean), GS = group size at the start of period t.  Lighter grey represents higher predictions.  
Gaps in the surface represent regions of parameter space without empirical support. 
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Figure 4.B13: Generalised additive model terms from maximum-parsimony model used to predict per-
capita emigration in adult subordinate male meerkats at two-month intervals.  For each component, 
all predictive variables not shown were set at their median level.  S = two-month “season” of period t 
(0 and 6 represent May/June), R2 = normalized rainfall in period t (relative to the long-term seasonal 
mean), R10 = normalized rainfall in the ten months prior to period t (relative to the long-term seasonal 
mean), GS = group size at the start of period t.  Lighter grey represents higher predictions.  Gaps in the 
surface represent regions of parameter space without empirical support. 
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Figure 4.B14: Generalised additive model terms from maximum-parsimony model used to predict per-
capita emigration in immature subordinate female meerkats at two-month intervals.  For each 
component, all predictive variables not shown were set at their median level.  S = two-month “season” 
of period t (0 and 6 represent May/June), R2 = normalized rainfall in period t (relative to the long-term 
seasonal mean), GS = group size at the start of period t, PD = estimated population density for period t.  
Lighter grey represents higher predictions.  Gaps in the surface represent regions of parameter space 
without empirical support. 
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Figure 4.B15: Generalised additive model terms from maximum-parsimony model used to predict per-
capita emigration in adult subordinate female meerkats at two-month intervals.  For each 
component, all predictive variables not shown were set at their median level.  S = two-month “season” 
of period t (0 and 6 represent May/June), R2 = normalized rainfall in period t (relative to the long-term 
seasonal mean), GS = group size at the start of period t, PD = estimated population density for period t.  
Lighter grey represents higher predictions.  Gaps in the surface epresent regions of parameter space 
without empirical support.  
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Figure 4.B16: Generalised additive model predictions from maximum-parsimony model used to 
predict per-group immigration of male meerkats at two-month intervals.  For each component, all 
predictive variables not shown were set at their median level.  S = two-month “season” of period t (0 
and 6 represent May/June), R2 = normalized rainfall in period t (relative to the long-term seasonal 
mean), R10 = normalized rainfall in the ten months prior to period t (relative to the long-term seasonal 
mean), GS = group size at the start of period t.  Lighter grey represents higher predictions.  Gaps in the 
surface represent regions of parameter space without empirical support.  D shows immigrants per 
existing group member; shaded region represents approximate 95% confidence region and “rug” shows 
observed predictor values. 



Chapter Four — Stage-structured Group Dynamics 

 97 

 

 

 

Figure 4.B17: Ricker plot of observed (circles; area proportional to number of observations) and 
simulated (shaded squares) meerkat group size (N) dynamics over three two-month observation periods 
(t) from January 1st to July 1st (A) and July 1st to January 1st (B) for the period January 1st 1998 to 
January 1st 2009.  Simulated dynamics were based on generalized additive model characterizations of 
meerkat demographic rates, parameterized using data from the Kuruman River Reserve, South Africa.  
2 000 simulations were seeded with each of five sets of observed group compositions from the first half 
of 1998 and run until the earlier of group disappearance and January 1st 2009.  Final group sizes 
indicated as zero represent simulation-ending group sizes of both zero and one.  *legend indicates rates 
of observation out of 100 000 simulated group-years. 

Figure 4.B18: Ricker plot of observed (circles; area proportional to number of observations) and 
simulated (shaded squares) meerkat group size (N) dynamics over six two-month observation periods 
(t) from July 1st to the following July 1st between 1998 and 2008 after years with higher-than-median 
(A) and lower-than-median (B) annual rainfall.  Simulated dynamics were based on generalized 
additive model characterizations of meerkat demographic rates, parameterized using data from the 
Kuruman River Reserve, South Africa.  2 000 simulations were seeded with each of five sets of 
observed group compositions from the first half of 1998 and run until the earlier of group 
disappearance and July 1st 2008.  Final group sizes indicated as zero represent simulation-ending group 
sizes of both zero and one.  *legend indicates rates of observation out of 100 000 simulated group-
years. 
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Figure 4.B19: R2 values for the stage-structured demographic model of group dynamics (described in 
the main text) used to predict simulated (A) and observed (B) meerkat group trajectories, assuming a 
trendless random walk null model.  The vertical dashed line shows the overall estimated R2 of the 
model used to predict all observations. 
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CHAPTER 5 
_____________________________________________________________________ 

Territoriality and home-range dynamics in meerkats, Suricata 
suricatta 
 
Aspects of this chapter are the result of collaboration with M. A. Lewis and G. Gall.  

M. A. Lewis contributed through discussions concerning mathematical models, and 

G. Gall collected sand-type data on the Kuruman River Reserve, South Africa.   

5.1 Abstract 

 Multiple approaches have been used to study patterns of space use across 

species, among them resource selection analysis, mechanistic movement modelling, 

and statistical home range modelling.  Mechanistic home-range models combine the 

benefits of these approaches, describing emergent territorial patterns based on fine-

scale individual- or group-movement rules, incorporating interactions with neighbours 

and the environment.  Using mechanistic home-range models, we explore meerkat 

territorial patterns.  We consider scent marking, direct group interactions, and habitat 

selection.  Notably, larger groups do not seem to enjoy an advantage in controlling 

larger territories, and groups appear to prefer dune edges along a dry riverbed.  We 

also extend models to accommodate descriptions of territory formation and territory 

movement.  We use meerkat data to test the proposed improvements to these models, 

and We use the model results to start building a picture of spatial processes in meerkat 

population dynamics.   

5.2 Introduction 

 In order to survive and procreate, individuals must perform a suit of relevant 

activities - avoid predators, forage, compete with conspecifics, and search for mates - 

all within a limited spatial context.  Individuals' space-use decisions, and the resulting 

spatial patterns, mediate among these activities (e.g. Clutton-Brock and Harvey 1978, 

Davies 1980, Lima and Dill 1990).  Territorial patterns, specifically, can have 

important impacts on population dynamics (López-Sepulcre and Kokko 2005, Packer 

et al. 2005, Wang and Grimm 2007), and answering related questions - what drives 

patterns? how are environmental and social factors involved? how do patterns change 

over time? - is critical to understanding the dynamics of territorial species.  
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 Through radio telemetry and, more recently, the global positioning system 

(GPS), empirical space-use data have become widely available, presenting valuable 

opportunities to ask questions and test theory concerning space-use patterns.  

Common approaches to data analysis (such as kernel home-range estimation and 

resource selection analysis; Worton 1989, Boyce and McDonald 1999, Getz et al. 

2007) are, however, phenomenological in nature, lacking a theoretical basis in the 

movement processes that generate associated patterns (Moorcroft and Lewis 2006).  

Mechanistic home-range models (Lewis and Murray 1993, Moorcroft and Lewis 

2006) provide an alternate approach to studying patterns of space-use in social 

carnivores.  These models link fine-scale behaviour to resultant territorial patterns, 

and offer direct links to telemetry data (Moorcroft and Lewis 2006). 

 In general, spatial patterns arise from animals moving in (and interacting with) 

their environment (Börger et al. 2008).  For many species, each individual's 

movement is ultimately restricted in space and comes to define a home range: habitat 

of which the individual makes regular use, without reference to specific types of 

behaviour (Burt 1943, Brown and Orians 1970).  In some species, a subset of each 

individual's home range forms its territory: a region of near-exclusive use associated 

with some form of defence or display behaviour (Burt 1943, Fretwell and Lucas 1969, 

Brown and Orians 1970).  Territoriality constrains how animals distribute themselves 

in the environment, for example, by altering access to available resources, with 

important consequences for species and their communities (Brown and Orians 1970, 

Lewis and Murray 1993, Wang and Grimm 2007, Börger et al. 2008). 

 In many of the carnivora, individuals form stable social groups that jointly 

defend shared territories (Macdonald 1983).  Here, the distinction between home 

range and territory can break down, and the pattern of space use often becomes that of 

a "defended home range" (Börger et al. 2008).  Defence may take the form of physical 

violence, but interactions can also be mediated by nonviolent cues that carry 

information about implied threats (Gosling and Roberts 2001).  In many cases, 

carnivores use scent marks to indicate territory ownership (Peters and Mech 1975, 

Bowen and McTaggart Cowan 1980, Wells and Bekoff 1981, Kruuk et al. 1984, Gese 

and Ruff 1997, Boydston et al. 2001, Sillero-Zubiri and Macdonald 2006, Jordan et 

al. 2007), and individuals often avoid (Peters and Mech 1975, Bowen and McTaggart 

Cowan 1980) and "overmark" (Peters and Mech 1975, Wells and Bekoff 1981, 

Sillero-Zubiri and Macdonald 2006, Jordan 2007) in response to foreign scent marks.  
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As a result, scent marking and its related behaviours can reinforce territorial patterns 

without recourse to direct aggression.   

   Lewis and Murray (1993) incorporated scent-marking, over-marking, and 

scent-mark avoidance behaviours into random walk models of animal movement to 

develop mechanistic home-range models of carnivore territoriality.  Further 

improvements have used terrain- and resource-sensitive movement rules to capture 

stable patterns in spatially variable environments (Moorcroft et al. 1999, 2006).   

 Here, we modify the Lewis-Murray model and apply it to a population of wild 

meerkats, Suricata suricatta.  Our primary aim is to understand the spatial distribution 

of meerkat groups in their habitat, paying attention to interactions with other groups, 

the effects of group size, and the influence of habitat features.  Ultimately, we would 

like to use the knowledge gained here to inform models that link descriptions of 

group-level and intergroup processes to offer insight into population-level dynamics.  

Such an approach will benefit from an understanding of dynamical aspects of 

territoriality, such as the formation of new groups and movement of existing groups.  

We therefore extend the Lewis-Murray model to examine processes of home-range 

formation and movement.  This simultaneously offers relevant insight into meerkat 

territoriality and goes some of the way towards addressing concerns, discussed below, 

raised about mechanistic home-range models as they have been used in the past. 

5.3 Study Species and Site 

 Meerkats are highly social carnivores that inhabit the Kalahari region of 

southern Africa.  They live at approximate population densities of 7-17 

individuals/km2 and form groups of up to 50 individuals (Bateman et al. 2011a, 

Bateman et al. 2011b).  Within each group, a socially dominant pair largely 

monopolises breeding, and socially subordinate individuals (typically the offspring of 

the breeding pair) assist in pup rearing, predator vigilance, and territory defence 

(Doolan and Macdonald 1997, Clutton-Brock et al. 2008).  

 Group members defend shared home ranges against other groups (Young 

2003, Jordan et al. 2007), and resident males invest in repulsion of prospecting males 

(Mares et al. 2012).  Direct interactions take multiple forms: stereotyped "war dance" 

threat displays, chases, physical fights, and violent burrow excavations that 

sometimes result in deaths (in order of increasing severity; Jordan et al. 2007, Drewe 

et al. 2009b).  Group size confers benefits in these instances; in any aggressive 
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interaction greater group-size disparity increases the chances that the smaller group 

will flee, and decreases the chances of a physical fight (Young 2003). 

 Meerkats scent mark their territories using urine, feces, and anal gland 

secretions (Decker et al. 1992, Jordan 2007).  Overmarking is common, and 

defecation often occurs at shared latrine sites (Jordan 2007, Jordan et al. 2007, Mares 

et al. 2011).  While shared latrines occur at boundaries between group home ranges, 

they are more dense within territory cores and are used most heavily in the breeding 

season, and they have therefore been implicated in mate defence, rather than territory 

defence per se (Jordan et al. 2007; but see Mares et al. 2011). 

 Females are considered philopatric, almost never joining established groups, 

but both sexes periodically disperse in same-sex coalitions and attempt to found new 

groups (Young 2003, Bateman et al. in press).  Larger dispersal groups are more 

successful at establishing new breeding groups (Young 2003), but the group-

formation process has otherwise been little-studied.  The process by which new 

groups establish their own home ranges remains unexplored. 

 Newly established breeding groups must often carve out home ranges from 

already populated habitat.  Before forming new groups, dispersers can go through a 

period of "floating" (Peters and Mech 1975, Young 2003), and newly formed meerkat 

groups often make wider use of space than established groups.  Groups regularly form 

from dispersing coalitions of nearby origin, so that newly formed groups are at times 

situated next to the natal groups of their founders (T. Clutton-Brock, unpublished 

results).  Though "parent" and "daughter" groups do engage in violent direct 

interactions (Drewe et al. 2009b), other behavioural evidence suggests how each 

group's avoidance of the other's territory may build up gradually over time.  Meerkats 

often fail to recognise group members by sight; when individuals return to their group 

after being separated while foraging they are liable to be greeted with an aggressive 

war dance (usually reserved for hostile inter-group interactions) until the two factions 

are in close proximity and individuals can use scent or other cues to aid recognition.  

Based on this observation, it is conceivable that direct interactions between a new 

group and its parent group could become aggressive before scent cues or mental maps 

associated with home-range behaviour adapt to the realities of local group 

compositions. A new group's territory would emerge over time in such a context, 

because its members would not initially recognise the territory or scent marks of the 

other group as foreign.   
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 Established group home ranges are often relatively stable (sometimes over a 

period of years; T. Clutton-Brock, unpublished data), but shifts do occur.  Moorcroft 

et al. (1999, 2006) showed how removal of a social group could alter the space use of 

neighbouring groups.  With meerkats, however, territories at times appear to shift 

longer distances than could reasonably be explained by this reconfiguration process.  

This may happen because groups move their territories in response to a changing 

“landscape” of aggressive interactions or scent marks that results from group 

formations and extinctions.   

 Patterns may also shift in response to habitat features, such as periodically 

dense sour grass, Schmidtia kalahariensis, growing in previously over-grazed 

riverbed habitat on the Kuruman River Reserve (personal communication, T. P. 

Flower, field site manager, 2004-2007).  Sour grass can impede movement, likely 

reducing meerkat foraging efficiency, and meerkats seem to avoid it. 

 The arid Kalahari environment is characterised by a cold, dry winter 

(approximately May to September) and a hot, wet summer (approximately October to 

April; Doolan and Macdonald 1996).  Prey availability shows strongly seasonal trends 

(Doolan and Macdonald 1996a, 1997), and although meerkats can breed year-round, 

most reproduction occurs in the summer to take advantage of seasonal prey 

abundance (Doolan and Macdonald 1997, Bateman et al. in press). 

 Throughout the year, groups forage together in close association, mainly 

consuming arthropods and small vertebrate prey (Doolan and Macdonald 1996a).  

Groups forage during the day, returning to a sleeping burrow each night.  Most groups 

make use of several burrows within their home ranges, switching every few days 

(Young 2003, Manser and Bell 2004).  Until pups are three or four weeks old, they do 

not forage with the group and are babysat at their natal burrow (Clutton-Brock et al. 

1999b), though adults may move them between burrows during this time (Jordan et al. 

2007).   

 Our study site consists of ranchland on and near the Kuruman River Reserve 

(26o58’S, 21o49’E), near Van Zylsrus in the Northern Cape province of South Africa.  

The site includes a regionally typical mix of habitats: a stretch of the dry Kuruman 

river, nearby herbaceous "flats," and sparsely grassed dunes.  Details pertaining to the 

site are available elsewhere (Clutton-Brock et al. 1999a, Russell et al. 2002). 
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5.4 Mathematical Models  

 Mechanistic home-range models are derived from mathematical descriptions 

of fine-scale movement, assuming an underlying spatially biased random walk 

process, and take the form of systems of partial differential equations (see Moorcroft 

and Lewis 2006 for derivations).  Early random walk models (Holgate 1971, Okubo 

1980) generated stable home-range patterns with simple balances between spatial 

diffusion and attraction to a "localising centre" (i.e. a den site or core foraging area: 

Moorcroft et al. 1999).  Lewis and Murray (1993) incorporated territorial scent-

marking behaviours to produce realistic territorial patterns (see Moorcroft et al. 1999), 

and Moorcroft and Lewis incorporated habitat selection behaviours (see Moorcroft et 

al. 2006).  Because the models describe spatial probability ("utilisation") distributions, 

representing the probability of finding a focal group at any point in space at a given 

time, they can be directly tied to data.  Thus, mechanistic home-range models connect 

underlying movement processes, territorial behaviour, resource selection, and spatial 

utilisation patterns (Moorcroft and Lewis 2006, Moorcroft and Barnett 2008), making 

important progress towards a general understanding of home-range behaviour (Börger 

et al. 2008).   

 Börger et al. (2008) comment that a truly mechanistic model should be able to 

recreate observed patterns without fixing an aspect of the associated process (i.e. a 

localising centre) a priori, also noting that applications of Lewis-Murray-type models 

have been largely restricted to stable patterns in territorial carnivores.  While our 

models remain targeted to territorial carnivores, we attempt to address some concerns 

about fixed localising centres and exclusively stable patterns. 

5.4.1 General Model 

 To model meerkat home ranges, we developed a set of competing mechanistic 

home-range models that describe how groups' expected locations, i.e. their home-

range utilisation distributions, change over time within the study area.  The general 

form of these models relates temporal change in utilisation distributions to random 

and directed movement using a system of partial differential equations (PDEs).  For 

each group, i:  

   2

diffusive (random) movement advective (directed) movement

( , ) ( , ) ( , ) ( , ) ( , )i
i i i

u t u t D t u t t
t


  


x x x x C x  , (5.1)  
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where variables and parameters are as described in Table 5.1.    indicates spatial 

derivatives, (∂/∂x, ∂/∂y). 

Table 5.1: symbols used in the text.  Where applicable, variables and parameters are 
nondimensionalised as in Lewis and Murray (1993) and Moorcroft et al. (2006). 

symbol†  interpretation 
x spatial location, (x,y), rescaled so that x,y [0,1]  
t time 

ui (x,t) two-dimensional utilisation distribution (a probability density function) for 
group i at location x = (x,y) and time t 

D(x,t) spatial diffusion rate, describing the tendency for a group's location to 
become less and less certain, if movement were left unchecked 

Ci (x,t) velocity of group i’s advective flux (directed movement), which in practice 
serves to check diffusive group movement 

JD,i diffusive flux 
JC,i advective flux 
d diffusion constant 
c advection constant 

pi (x,t) intensity of group i’s scent marks at x and t 
n number of groups in the spatial region under consideration 

ˆ ( )iv x  unit vector directed from x toward group i’s localising centre  
χi (t) location of group i’s localising centre at time t 
Ni number of individuals, over two months of age, in group i 
m rate of overmarking, relative to the base scent marking rate 
αh sensitivity to habitat features, h(x) 

h(x) habitat features: elevation, sand type, or change in sand type (see text) 
κ exponential coefficient determining rate at which interaction strength of 

parent and daughter groups approaches normal level (see text) 
k discrete analogue of κ 
γ rate of localising-centre movement, down aversion gradient (see text) 
g discrete analogue of γ 
αr strength of movement down “grass gradient," associated with riverbed 

habitat (see text) 
r(x) riverbed habitat on the Kuruman River Reserve (used as a proxy for 

growth of sour grass during late 2007 and early 2008; see text)  
†Note that symbols in bold face represent vectors 
 
 We can re-write (1) in terms of diffusive and advective flux (JD,i and JC,i, 

respectively): 

    ( , ) ( , ) ( , ) ( , ) ( , )i
i i i

u t u t D t u t t
t


     


x x x x C x  

, ,             ( , ) ( , )D i C it t    J x J x , (5.2)  

Diffusive flux reflects a tendency for the location of an unhindered group to become 

less certain over time (a passive, random process), and advective flux arises, in our 
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case, from the tendency of each group to retreat towards a localising centre (an active, 

responsive process). 

 Much of the time, meerkat home ranges are relatively stable, year-to-year.  

Given appropriate forms of D(x,t) and Ci(x,t), (5.2) can produce stable patterns at 

equilibrium (i.e. when ∂ui(x,t)/∂t = 0), maintained by a balance between diffusion and 

advection.  We modelled these stable home-range patterns. 

5.4.2 Boundary Conditions  

 We model interactions in a self-contained domain of interest, Ω, with (5.2) 

subject to zero-flux boundary conditions.  Mathematically, this is written: 

, ,0 ( , ) ( , )D i C it t    n J x J x , (5.3)  

where n is the unit vector, directed out of Ω at the boundary. 

5.4.3 scent marking  

 The Lewis-Murray model describes diffusive group movement, scent-

marking, overmarking, scent-mark avoidance, and scent-mark decay: 

 2

advection, directed away from conspecific 
scent marks, towards localising centre

( , ) ˆ( , ) ( , ) ( ) ( , )
n

i
i i i j

j i

u t d u t u t c p t
t 

 
       

x x x v x x


,  (5.4A) 

scent mark
decayscent mark deposition

( , ) ( , ) 1 ( , ) ( , )
n

i
i i j i

j i

p t u t mN p t p t
t 

 
     

x x x x


 . (5.4B) 

Here, in addition to the basic model with constant diffusion rate, we have included the 

potential for scent marking to occur in proportion to group size, as noted by 

Moorcroft and Lewis (2006).  This occurs through the inclusion of Ni in the scent-

mark deposition term (fixing Ni = 1, for all i, recovers the size-insensitive model).  

We refer to this model as the scent-mark (SM) model. 

 When a group encounters foreign scent marks, it biases its movement towards 

its localising centre.  While this pattern may be most applicable for central-place 

foragers, it corresponds broadly to the behaviour observed in multiple social 

carnivores (Moorcroft and Lewis 2006).  This represents a less-than-mechanistic 

aspect of our models, and others have explicitly modelled other processes, such as 

memory, that can produce similar behaviour (e.g. Van Moorter et al. 2009).  For our 
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purposes, we consider the assumption of a localising centre to be a phenomenological 

description of attraction to a territory core. 

5.4.4 Direct Group Interactions 

 As an alternative to the Lewis-Murray model, we considered the possibility 

that home ranges are restricted in size by direct interactions with neighbouring 

groups.  In this case, instead of retracting in response to scent marks, groups retract in 

response to interactions, assumed to occur according to the law of mass action (i.e. in 

proportion to the product of two groups' expected density at a given location) so that: 

velocity of movement directed 
away from regions of group 

interaction, towards localising centre

ˆ j

i j

n
N

i i i jN N
j i

c u u


 C v


. (5.5) 

Here, there is no need to keep track of scent marks, and we have suppressed 

dependence on space and time for convenience.  Once again, we include group size in 

the model, assuming that groups avoid regions of space in proportion to the size 

advantage of competing groups with which  they interact there.  We measure a group's 

size advantage in a given interaction as the proportion of interacting meerkats it 

represents, which strongly correlates with the propensity for groups to win 

interactions (unpublished results; see Young 2003).   

 In initial numerical approximations (see Methods) using (5.5) in (5.1), the 

resulting (ui)2 factor produced unrealistic, "pointy" home ranges, i.e. probability 

density functions declined quickly from maxima at localising centres.  We therefore 

modified (5.5) so that: 

2

advection, directed away from space 
used by group , towards localising centre

ˆ j

i j

n
Ni

i i i jN N
j i

j

u d u u c u
t 



 
       

v


. (5.6) 

Such a modification can be interpreted to mean that groups integrate their experience 

of group interactions in the context of knowledge of their own pattern of space use, so 

as to avoid regions used by other groups (not just regions in which they interact with 

other groups).  We refer to this model as the "direct-interaction" (DI) model, and note 

that in the absence of group-size dependence, the DI model is equivalent to the SM 

model with an overmarking rate, m, of zero (Moorcroft and Lewis 2006). 
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5.4.5 Habitat Selection 

 To account for habitat-specific patterns of space use, we employed additions 

to the model introduced by Moorcroft et al. (2006).  Group diffusion and advection 

rates come to depend on features of the habitat at each location, such that:  

 ( )hhD e d x , (5.7A) 

 ( ) ˆh

n
h

i i j
j i

e c u



 xC v ,  (5.7B) 

for the DI model without group-size dependence (similarly for the other models).  

Mechanistically, this relies on changes to group's underlying movement behaviour 

that lead to more time being spent in favourable habitat, where αhh(x) is small.  Such 

a model seems reasonable, as meerkats have been reported to move quickly between 

profitable foraging patches, in which they move more slowly (Doolan and Macdonald 

1996a).  

 By considering several candidates for h(x), we could compare related 

hypotheses concerning habitat selection.  We did not have direct estimates of prey 

availability or risk across the study site, so we chose plausible correlates.  We chose 

to consider elevation, sand type (red "ferrous" versus light-coloured "clay" sand), and 

a measure of sand-type "edges" as candidates for h(x).  The first two correlate with 

regions of dunes and riverbed/flats.  For the last, we considered local spatial variance 

in sand type, as an indicator of the interface between ferrous and clay sands.  See 

Methods for details.  In the interest of full model-selection honesty, we note that we 

did not identify the potential importance of edge habitat until after fitting the territory-

formation models, but there is a priori reason in the literature (Turbé 2006) to 

consider this habitat type.   

 We used the equilibrium conditions of PDE systems (5.4) and (5.6), with the 

modifications described in (5.7), to model stable meerkat home ranges.  At other 

times, home-range patterns change in time, and we developed models (below) to 

describe two of these scenarios: group formation and home-range shifts.   

5.4.6 Territory Formation  

 We suggest a model in which the strength of interaction between parent and 

daughter groups is time dependent, approaching the population-wide value from an 

initial value of zero.  For the groups involved: 
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( ) ( )

{ , }
ˆ (1 )h D

i i

h t t
i i j jj i K j K

e c u u e  

 

     
 xC v , (5.8) 

for the DI model without group-size dependence (similarly for the other models).  

Here, Ki is the set of relevant "kin" groups (i.e. the parent or daughter groups), and tD 

is the time at which the daughter group forms. 

5.4.7 Group Movement  

 We propose a mechanism for home range movement whereby a group's 

idealised localising centre moves in relation to the same stimuli that generate 

advection.  Groups experience varying advection speed, |Ci(x,t)|,  in different areas of 

habitat, as produced by social factors (scent marks, group interactions) and modulated 

by habitat features.  For simplicity we term the advection speed "aversion," because it 

is the average rate of movement from less desirable to more desirable habitat.  Groups 

should be drawn to areas with low aversion, where there is little motivation to avoid 

nearby regions.  We  therefore propose that a group's localising centre moves down 

the aversion gradient, averaged across the group's home-range, 

 ( ) ( , )i i it u t dxdy


  A C x , (5.9) 

 to areas of habitat with lower advection speeds, such that:  

( ) ( )i
i

d t t
dt

  
x A . (5.10)  

5.4.8 Terrain Avoidance 

 In the period during which we fit the group-movement model, meerkat groups 

seemed to completely avoid a relevant region of the riverbed within the Kuruman 

River Reserve (T. P. Flower, personal communication).  This may have been due to 

extensive sour grass growth in the area, while sour grass was kept in check by high 

grazing pressure on the adjoining ranches. 

 To accommodate this feature of meerkat space use, we adapted the terrain-

avoidance model modification used by Moorcroft et al. (2006).  Here, groups move 

down a "grass gradient," included, by proxy, as sand type in the reserve-specific area 

of riverbed: 

( ) ˆ ( )h

n
h

i i j r
j i

e c u r 


 
   

 
xC v x ,  (5.11) 

for the DI model without group-size dependence (similarly for the other models).   
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5.5 Methods  

 We modelled meerkat home ranges during three distinct periods.  Currently, 

our models are not sufficiently developed to capture the full detail of meerkat 

territorial dynamics over the long term (and the associated model fitting would have 

been prohibitive, in any case).  In an attempt to gain preliminary insight, we chose the 

specific periods to examine stable territorial patterns, territory formation, and territory 

movement such that the processes were plausibly tractable within an often complex 

and dynamic context.  During period one (P1: January 1st, 2003 to December 31st, 

2003) groups were relatively stable.  During period two (P2: July 1st, 2004 to 

December 31st, 2005) a new group formed from dispersing propagules of two adjacent 

groups.  During period three (P3: June 15th, 2007 to February 14th, 2008) an existing 

group's home range shifted in space.   

5.5.1 Data Collection and Processing 

 During the relevant periods, researchers made weekly (and often daily) visits 

to habituated groups of individually marked meerkats.  Visits occurred while meerkats 

were foraging, either before or after their mid-day period of inactivity.  During these 

visits, researchers collected detailed life-history information and recorded spatial 

locations of the groups using handheld GPS units.  We used life-history data to 

generate group-size measurements (number of individuals older than two months, 

averaged over census counts made every two months) and group pedigrees.  To 

manage spatial autocorrelation, we resampled one GPS point from each morning and 

afternoon group observation session. 

 We acquired elevation data for the study site from the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer Global Digital Elevation Model, 

(ASTER GDEM) Version 2 (Abrams 2000).  ASTER GDEM is a product of Japan's 

Ministry of Economy, Trade, and Industry and the United States' National Aeronautics 

and Space Administration (NASA).  We standardised elevation data to fall between zero 

and one in the region of interest. 

 To generate sand-type data, we combined ground-based point observations of 

clay and ferrous sand (Gall 2012) with imagery from NASA's Landsat 7 satellite, 

provided courtesy of the United States Geological Survey.  Using logistic regression, 

we classified sand-type observations based on at-sensor reflectance of Landsat bands 

one and five (and their interaction) from October 18th 2002.  We then used predictions 
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from the regression model to give each Landsat image pixel a score ranging from zero 

(clay sand) to one (ferrous sand). 

 We resampled elevation and sand-type data (using a weighted mean 

algorithm) to correspond with the resolution of our spatial discretisation of the home 

range models (see below).  Then, to identify locations at the interface between clay 

and ferrous sand, we calculated the standard deviation of sand-type values for each 

pixel and its set of four orthogonally adjacent pixels.  We standardised this edge 

measurement to fall between zero (when the standard deviation was maximised) and 

one (when the standard deviation was minimised), so that regions of assumed habitat 

preference were represented consistently across h(x) candidates. 

 We refer to the three standardised candidates for h(x) as DEM, SAND, and 

EDGE, respectively (see Figure 5.B1 for versions used in P1 models). 

5.5.2 Model Discretisation, Fitting, and Comparison 

 Because no simple analytical solutions exist for the PDE home-range models 

above, we implemented them using finite-difference methods to approximate 

equilibrium states (Smith et al. 2012).  This involved discretising equations in space 

and time and using central difference formulae to approximate derivatives (see 

Appendix A for details of SM model discretisation).   For a given model and set of 

parameters, we simulated the time-dependent model to find approximate equilibrium 

solutions for the relevant systems of PDEs.  At equilibrium, ui depends on ratio of ci 

and αg to d (Moorcroft et al. 1999), so we fixed d at 0.1 in all simulations.  For 

modelling stable home ranges in period one, we used this implementation directly.   

 For a given model form, parameter combination, and set of localising centres, 

we used the discretisations, described above, to model meerkat home-range 

distributions.  Conveniently, these distributions are probability density functions and 

can be used directly to calculate the likelihood of empirical observations, given the 

model.  By model-fitting convention, we use the negative log likelihood, summed 

across all relocations for all appropriate groups in all relevant timesteps: 

 
,

ln( ) ln ( )
T

P P P i

T
i l

T i l

u
  

       
T G L

x , (5.12) 

where TP and GP are the sets of timesteps and groups used for fitting, respectively, in 

the period of interest; ,

T

P iL  is the set of GPS relocations for group i, during timestep T 
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in the period of interest; T
iu  is the home-range distribution for group i in timestep T; 

and lx is the position of the lth relocation for group i in timestep T.  We fit each model 

to data by numerically optimising model parameter combinations to minimise (5.12). 

 In P1, we modelled stable home range patterns over twelve months (i.e. we 

considered only one timestep during this period).  We fit sixteen candidate models, as 

described above and outlined in Table 5.2.  We fit models in a square region (Ω1), 

oriented north-south and defined by universal transverse mercator (UTM) coordinates 

34J 579125 7011500 in the southwest and 34J 586875 7019250 in the northeast.  

Within Ω1, we employed a 100 by 100 point grid for discretisation.  Ω1 captured all 

well-documented groups (identified as B, D, E, F, GG, L, MM, RR, W, V, XX, Y, 

and ZZ) on and near the Kuruman River Reserve during P1.  Because of potential 

edge-effects, however, we only considered non-edge groups (E, F, GG, L, W, V, and 

Y) in likelihood calculations.  We used the centroid of each group's relocation data as 

the group's localising centre (Moorcroft et al. 1999), and fit c, m, and αh, as 

appropriate, as free parameters. 

 When implementing the territory-formation and group-movement models (in 

P2 and P3), we made a quasi-equilibrium assumption that home range patterns 

equilibriate quickly relative to the dynamic processes that alter home ranges (territory 

formation and movement).  Biologically, this translates to the assumption that groups 

make use of their territories, thereby generating patterns of space use, on a shorter 

time scale than that at which underlying determinants of space use change.  

Mathematically, we approximate continuous change by allowing stable homeranges to 

change step-wise, according to discretised changes in group interaction strength or 

localising centre location.   

 When temporally discretising the models, we chose timestep lengths to allow 

efficient model fitting, while offering reasonably fine-scale descriptions of processes 

that actually occur in continuous time.  We assumed that relevant function values 

applied throughout entire timesteps, so that each set of equilibriated home-range 

patterns was associated with a set of empirical observations over several weeks (see 

below).   

 We discretised exponentially increasing interaction strength in (5.9) with:  
( )1 1Dt t k Te e      , (5.13) 
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where {0,1, 2,...}T   numerates the timestep under consideration, and the 

replacement of ρ with r highlights the lack of direct equivalency between the two 

exponents.  In discretising (5.9), we made the approximation: 

( ) ( )    
T Ti i

i i
d t t g

dt T



      


χ χA A , (5.14) 

where ∆T is equal to one (i.e. a single timestep) and T
iχ is the change in localising 

centre position from one timestep to the next (here, T is an index, rather than an 

exponent).  Then the localising centre location at T+1 is 

1 .
TT T
ii i g   χ χ A  (5.15) 

 Although the SM model provided the best fit to data in P1 (see Results), the DI 

model fit was similar (Figure 5.B3).  The DI model was also much faster to fit, since 

scent marks in the discretised SM model take considerable computation time to 

equilibriate.  We therefore used the DI model to investigate group formation and 

territory movement, as the inclusion of multiple timesteps itself increased the time 

required for each model fit.  Because of their poor performance in P1, we did not 

include group size or elevation in the candidate model sets for P2 and P3. 

 To model group formation, we focused on three groups during P2: initially 

adjacent groups GG and Y and their daughter group, CD (formed at the beginning of 

October, 2004).  In order to minimise edge effects, we chose the model domain (Ω2: 

north-south square from 34J 580500 7014250 in the southwest to 34J 585750 

7019500 in the northeast) to include surrounding groups (B, E, L, RR, V, and W), but 

we based likelihood calculations on the three focal groups only.  We used a 68 by 68 

spatial grid, to match the spatial scale in P1, and divided the eighteen-month period 

into six timesteps of three months.  Our candidate model set (see Table 5.3) included 

models with the group-formation modfication, (5.8), and models in which all groups 

interacted at full strength throughout .  For each timestep in P2, we simulated models 

as in P1, except when interactions between parent and daughter groups increased 

according to (5.8), with the exponential term discretised as in (5.12) and k fit as a free 

parameter.   

 To model territory movement in P3 we focused on group CD's range shift to 

the northeast of the study site.  We based likelihood calculations on the single group, 

but again chose the model domain (Ω2: north-south square from 34J 582500 7013500 

in the southwest to 34J 588500 7019500 in the northeast) to include, where possible, 
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peripheral groups (GG, KU, RR, V, and W).  We used a 77 by 77 spatial grid, again to 

match the scale in P1, and divided P3 into eight one-month timesteps (since groups 

have a tendency to move relatively quickly).  We started timesteps halfway through 

each month to correspond with the extinction of groups GG and V (at the end of 

timesteps two and six, respectively) and the formation of group KU (at the start of 

timestep four).  Our candidate model set (Table 5.4) included models with and 

without the territory-movement, (5.10), and terrain-avoidance, (5.11), modifications.  

We determined localising centres empirically, as in P1, for CD in the first timestep 

and for peripheral groups, where possible.  Subsequently, we allowed CD
Tχ  to move 

according to (5.15), with g fit as a free parameter.  For models without territory 

movement, CD
Tχ  remained fixed at its initial location.  For RR and V after timestep 

four, and for KU after timestep six, relocation data were extremely sparse or missing, 

and we based each group's localising centre on it's relocation data in all previous 

timesteps combined.  Given that RR and KU remained in the same approximate 

positions subsequently (T. Clutton-Brock, unpublished data), this would seem to be a 

reasonable solution to the problem of missing data.  We fit αr as a free parameter. 

 To compare models in each period of interest, we used Akaike's information 

criterion (AIC; Akaike 1973) and the Bayesian information criterion (BIC; Schwarz 

1978).  AIC has been criticised in the past for favouring overly complex models, 

especially when used with large datasets (Kass and Raftery 1995).  BIC penalizes 

model complexity while taking dataset size into account, and Bayesian derivations of 

both AIC and BIC are possible, indicating that the associated prior assumptions are 

strongest for AIC (Kass and Raftery 1995, Bolker 2008).  BIC may, therefore, be a 

good criterion for model comparison with large datasets, though opinion is divided 

(e.g. Burnham and Anderson 2002).  Given the size of our dataset, we present both 

criteria, which are minimised for "best" models.  Between models, AIC and BIC 

differences of less than two provide weak evidence that the minimum-information-

criterion model is better, while differences of more than ten provide strong evidence 

(Burnham and Anderson 2002, Bolker 2008). 
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5.5.3 Statistical Software 

 We performed model optimisation and spatial data manipulation using R 

2.15.0 (R 2011).  We used the landsat (Goslee 2011), raster (Hijmans and van Etten 

2012), and rgdal (Keitt et al. 2012) packages for spatial data manipulation.  We used 

Google Earth (Google Inc. 2012) to generate and export reserve-extent data to 

calculate grass cover in 2007-2008 (riverbed portion of SAND data within the 

confines of the study site: Figure 5.B2).  For improved speed, we implemented PDE 

discretisations in the C programming language and interfaced the compiled code with 

R.  We could then easily incorporate spatial information and other model features, 

fitting parameter values with R's optim optimiser.   

5.6 Results 

 We fit mechanistic home-range models, describing territorial patterns in 

meerkat social groups that form as a balance between random diffusion and advection 

directed towards a home-range core.  In modelling stable patterns, we compared 

model formulations in which advection resulted from contact with other groups' scent 

marks (the SM model) to those in which advection resulted from direct interactions 

with other groups (the DI model).  We also considered modifications that incorporate 

group size and habitat selection based on elevation, sand type, and sand-type 

interface.   

 We then extended the direct-interaction model to investigate territory 

formation and territory movement.  First, we considered increasing effective 

interaction strengths between parent and newly-formed daughter groups.  Next, we 

considered movement of a group's attracting core area, towards regions of low 

advection speed. 

5.6.1 General Model 

 The model that best described stable meerkat home-range patterns was the SM 

model, (5.4), without dependence on group size (Ni set to one, for all i) and with h(x) 

= EDGE (Table 5.2).  The model describes space use that adapts to neighbouring 

groups and is concentrated along the edges of the riverbed and flats habitats (Figure 

5.1). 
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 AIC and BIC gave similar results.  In general, models without group size 

performed better than those including group size, and sand-type edge was a better 

predictor of space use than was sand type itself, which was in turn better than 

elevation (and all habitat types were better than nothing; Table 5.2).  While models 

that included scent marking performed better than the direct-interaction models, the 

best SM model and the best DI model produce very similar results (Figure 5.B3).  SM 

models described utilisation distributions that were slightly more flat-topped and 

steep-sided. 

 Though all models captured the general pattern of space use where groups 

were tightly packed in the riverbed, and group spacing is determined empirically in 

the model, habitat features greatly improve the fit within groups' home ranges (Figure 

5.B4). 

Figure 5.1: Stable meerkat home-range distributions on the Kuruman River Reserve, South Africa, 
between January 1st, 2003 and December 31st, 2003.  Contour lines represent individual groups' 
utilisation distributions, produced by the Lewis-Murray scent-marking model (see text), without group-
size dependence and incorporating movement in relation to sand-type edge habitat.  Points represent 
GPS relocations of actual meerkat groups.  Group identifiers (black text) show the location of groups' 
relocation centroids, used as localising centres in the model.  
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Table 5.2: Model-fitting summary for mechanistic home-range models.  Model fit to 1504 meerkat 
group relocations recorded in 2003, when patterns were stable. 

model terrain  group† 
size c/d‡ m αh  ln( )   number of 

parameters ∆AIC ∆BIC 

SM − − 2.40 0.0253 − -4220.88 2 111.0 105.7 
SM − + 0.12 0.0023 − -4170.76 2 211.3 206.0 
SM DEM − 2.50 0.0196 0.770 -4227.15 3 100.5 100.5 
SM DEM + 0.11 0.0022 0.421 -4174.90 3 205.0 205.0 
SM SAND − 2.47 0.0118 0.522 -4253.22 3 48.4 48.4 
SM SAND + 0.12 0.0017 0.587 -4211.88 3 131.0 131.0 
SM EDGE − 2.47 0.0169 0.946 -4277.40 3 0.0 0.0 
SM EDGE + 0.13 0.0013 0.945 -4226.04 3 102.7 102.7 
DI − − 5.87 − − -4206.14 1 138.5 127.9 
DI − + 6.18 − − -4123.51 1 303.8 293.1 
DI DEM − 6.87 − 0.970 -4218.44 2 115.9 110.6 
DI DEM + 6.07 − 0.762 -4130.23 2 292.3 287.0 
DI SAND − 5.44 − 0.556 -4248.11 2 56.6 51.3 
DI SAND + 5.64 − 0.627 -4173.07 2 206.7 201.3 
DI EDGE − 5.74 − 0.944 -4267.75 2 17.3 12.0 
DI EDGE + 6.02 − 0.945 -4190.95 2 170.9 165.6 

† Observed mean group sizes were: 19.14 (B), 14.71 (D), 28.43 (E), 30.86 (F), 9.43 (GG), 13.86 (L), 
8.14 (MM), 21.86 (RR), 26.57 (V), 16.86 (W), 4.80 (XX), 18.14 (Y), and 15.71 (ZZ).  

‡ Equilibrium home range patterns depend on the ratio of advection to diffusion constants 

5.6.2 group-formation model 

 Territorial patterns in the fifteen months after group CD formed were best 

captured by a model in which interactions between GG and CD and between Y and 

CD (parent and daughter groups) increased over time (Table 5.3).  Again, EDGE 

performed better than SAND in predicting space use (Table 5.3).  The model 

produced a pattern whereby CD's use of space initially overlapped that of Y and GG 

(Figure 5.2) - a pattern clearly present in the data but absent from the model without a 

gradual increase in interaction strength (compare Figure 5.2 to Figure 5.B5). 

Table 5.3: Model-fitting summary for direct-interaction mechanistic home-range models incorporating 
a group-formation submodel, which allows for increasing interaction strength between parent and 
daughter groups (see text).  Models fit to 908 meerkat group relocations across six three-month 
timesteps between July 1st, 2004 and December 31st, 2005.  A dash ("−") indicates that the associated 
term was not included in the model. 

terrain c/d† αh k ln( )   number of 
parameters ∆AIC ∆BIC 

SAND 0.556 -0.453 − -1775.42 2 194.4 189.6 
SAND 0.976 -0.584 0.300 -1871.79 3 3.6 3.6 
EDGE 0.516 0.740 − -1784.51 2 176.2 171.4 
EDGE 0.936 1.197 0.311 -1873.61 3 0.0 0.0 

† Equilibrium home range patterns depend on the ratio of advection to diffusion constants 
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5.6.3 territory-movement model 

 The territory-movement model including terrain (as a proxy for sour grass) 

avoidance best described changes in group CD's space use, performing better than 

models with a static localising centre (Table 5.4).  While h(x) = EDGE generated the 

absolute minimum  AIC  and BIC values, h(x) = SAND generated a fit that is 

statistically as good (Table 5.3).      

 The best model (incorporating EDGE) captures many features of CD's space 

use, presenting a description whereby patterns change as a result of both changes in 

the set of surrounding groups and shifts in CD's localising centre (Figure 5.3).  The 

disappearance of GG and V, and the appearance of KU, shifted CD's space use about 

its localising centre, and the localising centre tended to move away from neighbouring 

groups into less crowded habitat.  The model incorporating SAND provides a broadly 

similar description (Figure 5.B6). 

Figure 5.2: Territory formation in group CD.  Contour lines show utilisation distributions, as described 
by a direct-interaction home-range model (see text) in which interaction strength of CD with Y and GG 
(its parent groups) starts at zero in timestep 1 and increases through timestep 5.  Groups spend more 
time at interfaces between sand types (white background).  Timesteps are three months each, starting 
July 1st, 2004 and ending December 31st, 2005.  Points represent GPS relocations of actual meerkat 
groups.  Group identifiers (black text) show the location of groups' relocation centroids, used as 
localising centres in the model. 
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terrain c/d† αh αr g/d† ln( )   number of 
parameters ∆AIC ∆BIC 

SAND 0.524 0.73 − − -221.891 2 115.5 109.1 
SAND 0.528 0.74 − -4.94 x10-4 -222.053 3 117.2 114.0 
SAND 0.958 1.30 0.301 − -268.697 3 23.9 20.7 
SAND 0.733 1.30 0.173 1.91 x10-3 -281.215 4 0.9 0.9 
EDGE 0.577 1.30 − − -241.958 2 75.4 68.9 
EDGE 0.572 1.30 − 1.06 x10-3 -242.994 3 75.3 72.1 
EDGE 0.644 1.30 0.098 − -247.986 3 65.3 62.1 
EDGE 0.660 1.26 0.107 3.31x10-3 -281.658 4 0.0 0.0 
† Equilibrium home range patterns depend on the ratio of advection to diffusion constants 
 

 

5.7 Discussion 

 Mechanistic home-range models, fit to meerkat space-use data, successfully 

described meerkat home ranges based on interactions with neighbouring groups and 

habitat selection patterns.  These models provided particularly good descriptions of 

stable space-use patterns for groups from the core of the study area (to which models 

were fit; Figure 5.1), and modifications to the basic models captured features of 

dynamic patterns in periods of group establishment and movement (Figures 5.2, 5.3). 

Table 5.4: Model-fitting summary for direct-interaction mechanistic home-range models incorporating 
the territory-movement submodel (see text).  Models fit to 187 relocations of the "CD" meerkat group 
across eight one-month timesteps between June 15th, 2007 and February 14th, 2008.  A dash ("−") 
indicates that the associated term was not included in the model. 

Figure 5.3: Territory movement in group CD.  Contour lines show utilisation distributions, as 
described by a direct-interaction home-range model, in which CD's localising centre moves down the 
average advection-speed gradient (see text for details) from one timestep to the next.  Timesteps are 
one month, starting June 15th, 2007 and ending February 14th, 2008.  Groups spend more time at 
interfaces between sand types (white background).  Points represent group GPS relocations.  Group 
codes (black text) show the location of localising centres, determined (except for CD) by the centroid 
of each group's GPS data in the corresponding timestep. Grey "CD"s show the location of group CD's 
empirically determined localising centre in timestep 0. 
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5.7.1 Scent Marking 

 Our results suggest that meerkat groups use scent-marking to reinforce space-

use patterns.  Caution would be prudent in drawing conclusions, however, since 

untested model formulations, involving memory or other feedback patterns, could 

generate similar stable patterns.  That said, scent cues are clearly important in meerkat 

behaviour, and scent marking has been implicated in meerkat mate guarding and 

territory defence (Jordan 2007, Jordan et al. 2007, Mares et al. 2011).  For dominant 

males, which must guard against cuckolding and complete group takeovers by foreign 

males (Spong et al. 2008, Mares et al. 2012), scent marking related to mate guarding 

and to territory defence may manifest in very similar ways (Mares et al. 2011).  With 

respect to fecal marking in meerkat groups, dominant males engage in the most mark 

deposition and mark inspection (Jordan 2007, Mares et al. 2011), and groups' 

responses may be strongly influenced by dominant males' behaviour (Mares et al. 

2011).   

 Observed patterns of scent marking are consistent with those we would expect 

if our best models are accurate.  In a timeframe that largely overlapped with the one 

we used to fit our model of stable territorial patterns (period P1), Jordan et al. (2007) 

found that latrine use was not concentrated in home-range borders, consistent with our 

best model's prediction of a low overmarking rate (consider Figure 5.B3).  Also, while 

all individuals scent mark to some extent, group size and composition seem to have 

little effect on overall rates of fecal marking (Jordan 2007), an observation consistent 

with the lack of group-size dependence in our best-fitting models.  

5.7.2 Group Size and Establishment 

  The lack of evidence for a direct group-size effect was somewhat surprising, 

given the benefits associated with group size in meerkats' inter-group interactions 

(Young 2003).  It arguably offers circumstantial evidence that scent marking, 

performed disproportionately by a single dominant male in each group, mediates 

territorial interactions.   

 On the other hand, territorial group-size independence is wholly consistent 

with the observation that meerkat mean group size closely tracks population density 

(Bateman et al. in press), which changes in response to environmental conditions 

(Bateman et al. 2011a).  It would seem that group size fluctuates over time within 

relatively consistent territories.  Data from foxes, Vulpes vulpes, suggest a close 
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analogue; fox pairs calibrate territory size to resource availability in bad years, with 

group size increasing, rather than territory size shrinking, in years of plenty 

(Lindström 1989).  In fact, establishment of territories based on food availability in 

poor conditions, and maintenance of those territories even in good conditions, may be 

a common pattern in the carnivora (Bertram 1975, Macdonald 1983).   

 Although group size does not seem to influence home-range size directly, our 

model of group establishment suggests a mechanism whereby large, productive 

groups could benefit.  Larger meerkat groups tend to produce more numerous large 

dispersing coalitions, and therefore have the potential to establish more new groups 

(Young 2003, Bateman et al. in press).  If our model is correct, it proposes a 

mechanism by which related groups could "carve out" territory.  Even if parent and 

daughter groups do not actually tolerate each other per se (violent interactions 

certainly occur; Drewe et al. 2009b), the resulting influence on surrounding groups 

may be the same.  Elevated density of overlapping breeding groups (Figure 5.2) 

would effectively push neighbouring groups out of an area, helping to avail habitat for 

the newly formed group.  In this way, breeders might help to ensure that their progeny 

gained access to adequate habitat.  

5.7.3 Habitat Selection and Seasonal Patterns 

 From our models, habitat type is clearly an important factor in determining 

meerkat space use.  At a local scale, evidence suggests that meerkats prefer regions at 

the interface between clay-sand flats and ferrous-sand dunes (Figures 5.1-5.3).  

Notably, the inclusion of sand type (the next best predictor of space use; Table 5.2) 

produced ambiguous results: in the stable-territory models, groups showed a 

preference for clay sand, but in territory-formation models, groups showed the 

opposite preference (Tables 5.2, 5.3; territory-movement models must balance habitat 

preference with movement preference, so do not allow such clear interpretation).  This 

has at least two potential explanations.  First, annual conditions could have affected 

patterns; 2003 was a particularly dry year, while 2004/2005 was wet, and sour grass 

growth (as in 2007/2008) or prey availability in the riverbed may have played a role.  

Second, different choices of modelling domain may have forced apparent sand-type 

preference to switch between the model periods, when true preference is for edge 

habitat.  In fact, this observation is what led to our consideration of edge habitat in the 

first place (as reported in section 5.4, Mathematical Models).   
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 At a broad scale, meerkats seem to prefer the riverbed region to surrounding 

habitat (Clutton-Brock et al. 1999b), though at a finer scale they may seasonally 

prefer dune edges to the riverbed itself (Turbé 2006).  Levels of both foraging success 

and predation risk are likely to affect this pattern.  In nearby Botswana, substrates 

with a high clay content (like the riverbed and flats) appear to exhibit greater primary 

productivity, per unit rainfall, than low-clay substrates (Nicholson and Farrar 1994).  

The riverbed and flats also offer more "bolt hole" refuges than do the dunes (Manser 

and Bell 2004) and may offer lower levels of predation risk (Turbé 2006).  Meerkats 

seem to prefer less productive, but less risky, flats habitat during the dry season, when 

foraging necessitates risk-prone digging, but they move to dune edges in the wet 

season, when an abundance of surface prey facilitates less risky, and highly profitable, 

foraging behaviour there (Turbé 2006)  

 We did not assess seasonal changes in interaction patterns or habitat 

preferences.  Given the computational cost in fitting our models, even with only a few 

parameters, we deemed this infeasible for the current study.  As a result, a preference 

for edge habitat in our models may represent an average across seasons, though 

seasonal trends are not immediately apparent from GPS data (Figures 5.2, 5.3).  

Future work should focus on this aspect of space use.  Specifically, seasonal and inter-

annual fluctuations in the rain-limited environment of the Kalahari, as well as 

seasonal breeding-related behaviours (see below), may play important roles in 

patterns.  Analysis of prey availability and risk across habitat types and climatic 

conditions would be valuable (e.g. see Moorcroft et al. 2006). 

 Notably, breeding status can change territorial patterns (e.g. jackals, Canis 

mesomelas and C. adustus: Loveridge and Macdonald 2001; shrews, Sorex araneus: 

Wang and Grimm 2007).  For meerkats, babysitting of pups at the natal burrow 

necessitates central-place foraging, while more fluid movement patterns are possible 

at other times (Turbé 2006).  Also, when males prospect for extra-group matings, 

often during peak female fertility (Young et al. 2007, Mares et al. in preparation), they 

sometimes seem to draw their groups with them towards neighbouring groups (Mares 

et al. in preparation, T. H. Clutton-Brock unpublished data).  As prospecting is related 

to male dispersal (Young 2003), such a process may also be able to explain some 

range shifts, if groups are drawn by dispersing male coalitions. 
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5.7.4 Territory Movement 

 From our model of territory movement, it appears that factors affecting 

movement patterns within a territory can also partly explain shifts in territory 

location.  Our approach partially addresses one of the major criticisms of many 

mechanistic home-range models - that territorial patterns rely on a focal point chosen 

a priori (even if it is estimated from the data; Börger et al. 2008).  Our models were, 

however, unable to capture dramatic shifts in localising centre, and much of the 

change in home range patterns resulted from altered local interactions as surrounding 

groups formed and disappeared, a process that has been noted previously (Moorcroft 

et al. 2006).   

 Other factors, which we did not consider, could easily influence group 

movement.  For example, the availability of sleeping burrows, which are most dense 

in the riverbed, flats, and low dunes (Turbé 2006), could influence large-scale habitat 

selection.  Also, even if group size does not obviously affect stable territorial patterns, 

large groups do enjoy advantages in group interactions (Young 2003) and seem to 

have more scope to position or reposition their home ranges by forcing other groups 

out of desirable habitat (T. P. Flower, personal communication).   

5.7.5 Modelling Considerations 

 Due to dependence on initial conditions, any mechanistic model used with real 

data must be anchored in empirical observation.  Because a model's localising centre 

and the centroid of its resulting home-range distribution do not necessarily coincide, 

the centroid of relocation data is not, inherently, the most representative choice of 

localising centre (e.g. locating the localising centre for group ZZ further to the 

northeast would have likely produced more realistic results: Figure 5.1).  The use of 

the relocation centroid represents, however, a convenient and robust simplifying 

assumption that has produced good empirical results (Moorcroft et al. 1999, 2006, 

Smith et al. 2012, this study).   

 The concept of a localising centre is, itself, a simplification.  Except perhaps 

when young pups remain at their natal burrow (Turbé 2006), meerkats do not have a 

clear single point of attraction in their home ranges.  The idea of a core foraging area 

(Moorcroft et al. 1999) may apply, but, in reality, the multiple burrows within each 

meerkat group's home range may serve as multiple attraction points (Don and 

Rennolls 1983).   
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 Memory processes likely play an important role in space-use patterns.  Van 

Moorter et al. (2009) propose a home-range model in which movement from any 

given location relies on a "dynamic attractor field" incorporating the "utility" of 

multiple surrounding locations and both working and reference memory of already-

visited locations.  Their model can produce stable home ranges without the need for 

territorial interactions, a characteristic that may be necessary for studying meerkat 

space use in sparsely populated habitat (e.g. group CD in the latter timesteps of P3: 

Figure 5.3, and peripheral groups generally).  More broadly, individual (and group) 

movement decisions depend on state, phenotype, and experience, but our current 

understanding of how animals integrate multiple sources of information is 

rudimentary (Morales et al. 2010).  The use of memory in movement models has, so 

far, been a largely theoretical exercise, but its addition to mechanistic home-range 

models for use with empirical data is plausible (Morales et al. 2010).  This might be a 

fruitful avenue for future research. 

5.7.6 Further Implications and Future Work 

 Beyond the inherent relevance to spatial patterns themselves, territorial 

patterns are highly relevant to population dynamics more generally.  Indeed, the 

dynamics of populations are inherently spatial processes, and even the simplest mass-

action models are based on underlying simplifications of space-dependent models 

(Morales et al. 2010).  Spatial structure can strongly influence population dynamics 

(Frank and Brickman 2000, Fagan et al. 2007), and group living and territoriality, 

specifically, can have important impacts on demography, dispersal, and community 

structure (Packer et al. 2005, Fagan et al. 2007, Wang and Grimm 2007).  If we aim to 

develop mechanistic understanding of population processes, we therefore need to 

develop mechanistic understanding of the associated spatial processes.  Whether we 

aim to understand the biology of a given species, or patterns across species, 

understanding spatial patterns is crucial. 

 Dispersal is one aspect of population dynamics for which spatial patterns are 

of utmost importance, and which has yet to be empirically explored in detail for 

meerkats. Improving knowledge of how groups select habitat, locally and at the 

landscape level, will be critical to understanding dispersal patterns.  Emigration, in 

particular, plays a strong role in meerkat group dynamics (Bateman et al. 2011b, 

Bateman et al. in press), and dispersal is an important (and sometimes under-
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emphasized) aspect of population dynamics generally (Bowler and Benton 2005, 

Clobert et al. 2009).  Territorial patterns directly affect groups' access to resources, 

with implications for individual condition that may impact dispersal decisions, and 

patterns of group movement and space use are likely to alter the movement and 

settlement decisions of dispersers (Clobert et al. 2009).  Thus, understanding 

determinants of home-range behaviour is likely key to understanding all three phases 

of dispersal: emigration, transience, and settlement (Bowler and Benton 2005). 

 Multiple approaches have been used in the past to study spatial patterns, 

among them resource selection analysis, mechanistic movement models, and 

statistical home range models.  Our approach has incorporated aspects of each, 

informed by behvaioural knowledge, to take advantage of a rich empirical dataset and 

extend existing models.  In the future, the potential to unify behavioural, spatial, 

demographic, and evolutionary aspects of population dynamics into coherent models 

(e.g. Lewis and Moorcroft 2001, Haydon et al. 2008) presents exciting possibilities 

(Börger et al. 2008).   

 Future work will aim to explore further details of meerkat territoriality, such 

as seasonal patterns and group movement.  Ultimately, we hope to link knowledge of 

spatial patterns with work on group dynamics and dispersal to gain further insight into 

the ecological and evolutionary processes at play for this cooperative breeder. 

5.A  Appendix A: Details of Partial Differential Equation Discretisation 

 We present the discretisation for the SM model without habitat selection or 

terrain avoidance.  Implementation of these modifications, and of the DI model, is 

trivial, given the steps outlined below. 

 Let , ,a b n
iu  and , ,a b n

ip  be discrete analogues of ( , )iu tx  and ( , )ip tx , respectively, 

for space indices [1, ]a A  and [1, ]b B  (the region Ω) and time index n ≥ 1.  The 

associated discrete space- and time-steps were ∆x = 1/(A-1), ∆y = 1/(B-1) and ∆t on 

the order of 0.0002 (adjusted downwards if error propagation became a problem).  We 

used discretised bivariate normal distributions, centred at each group's localising 

centre, as initial conditions for , ,a b n
iu  and , ,a b n

ip .  Starting at timestep n=1, we iterated 

the following discretised equations over all a,b in Ω until ∆u/∆t was less than 0.1 for 

all a, b, and i (in initial testing, this produced results that were extremely close to 
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those attained when we allowed the simulation to run to machine tolerance, a much 

slower process).   

5.A.1 Scent-mark Distribution  

 We discretised  
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j i
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5.A.2 Space Use (Interior) 
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for all a,b in the interior of Ω.  

5.A.3 Space Use (Boundary) 

 The zero-flux boundary condition is:  

 ˆ0
j i

i i i jd u cu p


      
v n . (5.A5) 

On the x-boundaries of Ω, n is (-1,0) at x = 0 (a = 1) and (1,0) at x = 1 (a = A), and in 

either case, (5.A5) becomes  

 ˆ0
j i

i ji i
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
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Using a first-order approximation of ∂ui/∂x, the discretisations for a=1 and a=A are: 
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(similarly for the y-boundaries). 

5.A.4 Error Management 

 To deal with small errors that arose, we used two additional updating rules: 1) 

if any , , 1a b n
iu   is less than zero, set it to zero, and 2) divide all , , 1a b n

iu   by 

, , 1 , 1, 1 1, , 1 1, 1, 11 1

4
1 1

a b n a b n a b n a b n
i i i i

A B
u u u u

a b
x y

       
 

  

 

     (used to approximate iu dxdy

 ). 

5.B Appendix B: Additional figures  

 
Figure 5.B1: Candidates for h(x): DEM (a) - elevation data from a digital elevation model, with lighter 
grey indicating higher elevations; SAND (b) - sand type, with white indicating clay and grey indicating 
ferrous sand; and EDGE (d) - sand-type edge, with white indicating high standard deviation in SAND 
values across a pixel and its four orthogonally adjacent neighbours.  DEM and SAND are average 
values for a 100 by 100 grid, with extreme locations centred on the coordinates shown, and EDGE was 
derived directly from SAND. 
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Figure 5.B2: Riverbed habitat on the Kuruman River Reserve (derived from SAND data in Figure B1), 
relevant to territory-movement model (see text).  White regions used as proxy for presence of sour 
grass between July 1st, 2004 and December 31st, 2005.  

Figure 5.B3: Stable meerkat home-range distributions produced by the Lewis-Murray scent-marking 
model (a) and the direct-interaction model (b), on and near the Kuruman River Reserve, South Africa, 
between January 1st, 2003 and December 31st, 2003.  Contour lines represent individual groups' 
utilisation distributions, points represent GPS relocations of actual meerkat groups, and group 
identifiers (black text) show the location of groups' relocation centroids, used as localising centres in 
the model. 
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Figure 5.B4: Stable meerkat home-range distributions produced by the Lewis-Murray scent-marking 
model, on and near the Kuruman River Reserve, South Africa, between January 1st, 2003 and 
December 31st, 2003.  Contour lines represent individual groups' utilisation distributions without 
habitat selection (a); where groups prefer low elevation habitat (b); where groups prefer clay sand, in 
white, over ferrous sand (c); and where groups prefer sand-type edges and scent marking rate depends 
on group size (d).  Points represent GPS relocations of actual meerkat groups, and group identifiers 
(black text) show the location of groups' relocation centroids, used as localising centres in the model.   
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Figure 5.B5: Territory formation in group CD.  Contour lines show utilisation distributions, as 
described by a direct-interaction home-range model (see text) in which interaction strength between all 
groups is consistent throughout. Groups spend more time at interfaces between sand types (white 
background).  Timesteps are three months each, starting July 1st, 2004 and ending December 31st, 2005.  
Points represent GPS relocations of actual meerkat groups.  Group identifiers (black text) show the 
location of groups' relocation centroids, used as localising centres in the model. 

Figure 5.B6: Territory movement in group CD, where groups spend more time on clay sand (white 
background) than ferrous sand (grey background).  Contour lines show utilisation distributions, as 
described by a direct-interaction home-range model, in which the localising centre of group CD moves 
down the group's average advection speed gradient (see text for details) from one timestep to the next.  
Timesteps are one month each, starting June 15th, 2007 and ending February 14th, 2008.  Points 
represent GPS relocations of actual meerkat groups.  Group identifiers (black text) show the location of 
groups' localising centres in the model, determined (except for CD) by the centroid of each group's 
relocation data in the corresponding timestep. Grey "CD"s show the location of group CD's empirically 
determined localising centre in timestep 0. 
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CHAPTER 6 
_____________________________________________________________________ 

General Discussion   

6.1 Overview 

 The population dynamics of cooperative breeders are likely to differ from 

those of conventional breeders.  Population structure, resulting from social grouping 

within populations and distinct breeding roles within groups, and Allee effects, 

resulting from cooperation, both play potentially important roles.  Understanding 

observed patterns of population and group dynamics and the resulting implications for 

individual and inclusive fitness, requires elucidation of the underlying mechanisms.  

In this thesis, I used mathematical and statistical models to analyse detailed meerkat 

(Suricata suricatta) data from over a decade of field study in the Kalahari.  I initially 

examined broad-scale patterns, and then considered details of two constituent 

processes: group dynamics and territorial dynamics. 

 In Chapter Two, I used simple population-dynamics models to identify 

conventional density-dependence and an effect of rainfall in inter-annual population-

level dynamics.  I did not detect a population-level Allee effect, although statistical 

power was low due to the short time series available.  Potential conclusions were 

limited, since models were blind to the underlying processes. 

 In Chapter Three, I went on to consider group-level dynamics at the same 

inter-annual timescale, where dynamics again appeared conventionally density-

dependent, and group size declined sharply after (not during) years of low rainfall.  

Breaking group dynamics into constituent demographic rates, I showed that 

conventional density dependence resulted because only survival (a relatively minor 

contributor to group dynamics) exhibited an Allee effect, and that crashes in group 

size after dry years resulted from spikes in emigration.   

 In Chapter Four, I examined in more detail the patterns identified in the 

previous chapter by considering contributions from individuals of different age, sex, 

and dominance classes on a shorter timescale.  Dynamical patterns are, in part, a 

result of stage structure within groups: breeding is reduced and mature subordinates 

do not emigrate as frequently in dry years, but emigration resumes in immediately 

subsequent years, by which time age structure has shifted towards the older age 

classes more likely to disperse. 
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 In Chapter Five, I modelled the territorial processes by which established 

social groups interact, as well as some of the dynamics of group formation and 

movement.  Intriguingly, larger groups did not seem to enjoy an advantage in 

controlling larger established territories.  While this chapter was, in part, an exercise 

in further developing mechanistic home-range models, it will also help tie knowledge 

of group dynamics and future work on dispersal into a coherent model of overall 

population dynamics.  

6.2  Density Dependence and the Allee Effect  

 I found support for only conventional density dependence in population-level 

meerkat dynamics.  Given the short time series used in Chapter Two, detection of a 

population-level Allee effect would have been unlikely, even if one exists.  Still, 

given past evidence for component Allee effects in survival and reproduction 

(Clutton-Brock et al. 1999a, Courchamp et al. 1999b, Hodge et al. 2008), and what 

previously appeared to be rain-induced demographic Allee effects in another meerkat 

population (Clutton-Brock et al. 1999a), a population-level effect would not have 

been surprising.   

 Work on other species, across taxa, suggests that Allee effects may actually be 

less common than some authors have supposed (Myers et al. 1995, Gregory et al. 

2010).  One explanation is that species prone to low population sizes or densities 

would be subject to strong selection pressure against Allee effects, and we should 

perhaps expect to see behavioural "ghosts of Allee effects past," rather than Allee 

effects themselves (Courchamp et al. 2008).  Still, some Allee effect mechanisms, 

such as a reduced ability to find mates, may be ubiquitous at very low densities.  More 

study will be required to determine if, or at what density, meerkat populations are 

subject to an Allee effect. 

 The lack of a demographic Allee effect at the group level (Chapters Three and 

Four) was surprising.  Past studies have shown positive associations between group 

size and survival (Clutton-Brock et al. 1999a) and group size and reproduction 

(Hodge et al. 2008).  My findings support the pattern for survival, but not for 

reproduction.  The reason for the lack of effect in reproduction seems to lie in the 

distinction (often not made explicitly) between individual reproductive success and 

average per-capita reproductive success.  Because of the inherent relationship 

between the two, what appear to be component Allee effects for a dominant breeder 
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can often produce entirely conventional density dependence, when viewed from an 

average group member's perspective (Figure 6.1), i.e. as a component of the relevant 

per-capita group growth rate (Stephens et al. 1999). 

 

 This distinction may help to reconcile other, seemingly conflicting reports, 

notably in wild dogs.  A number of studies have found positive relationships between 

group size and breeding success in wild dogs (Courchamp and Macdonald 2001 and 

references therein, Gusset and Macdonald 2010, Woodroffe 2011), but others have 

failed to find population-level density dependence in reproduction (Creel and Creel 

2002) or have found overall negative density dependence (Somers et al. 2008).  

Reproductive output per group (comparable to individual recruitment in Figure 6.1A) 

resembles curves i and ii in Figure 6.1A (Creel and Creel 2002, Woodroffe 2011), 

which may or may not produce Allee effects in per-capita reproductive success.  As 

with meerkats (Chapters Three, Four), data are sparse for small groups, making the 

relevant form of any recruitment function difficult to identify.  In stochastic 

environments, however, extinction of small groups is common, regardless of potential 

Allee effect (Chapter Four, Dennis 2002).  Also, population-level patterns depend on 

Figure 6.1: Illustration of relationship between hypothetical component Allee effects in reproductive 
success (recruitment) of the focal breeder in a social group (A) and the equivalent per-capita patterns 
when reproductive success is averaged across all members of the social group (B).  All curves, y, in B 
are transformations of the correspondingly patterned curves in A, such that yB = yA/(group size).  
Curves i and ii both show strong positive associations between group size and recruitment for the 
individual breeder (A), but only ii retains a positive association in average per-capita recruitment (B).  
In general, a group-level component Allee effect only persists if the slope of a line, passing through the 
origin and a point on the relevant individual-level recruitment curve, increases as that point moves 
along the curve away from the origin (as for the lower portion of ii in A).  Example curves i and ii in A 
are defined by conventional and Allee-effect Beverton-Holt functions (Beverton and Holt 1957), 
respectively.  Note that curves in B are undefined at zero group size, and are shown as smooth 
functions for the purposes of illustration only.  Grey curves are shown for reference.   
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the dispersal processes that link groups and potentially fill vacant habitat, in addition 

to group-level density dependence (Hanski 1999). 

 Density-dependent patterns are potentially also habitat- and environment-

dependent (wild dogs are, for example, affected by heterospecific competitor density; 

Creel and Creel 2002).  An Allee effect in meerkats was first discussed after 

extremely low rainfall in the Kgalagadi Transfrontier Park (straddling the border 

between South Africa and Botswana) led to reproductive failure and reduced survival 

there (Clutton-Brock et al. 1999a).  Evidence for an Allee effect was based on limited 

data, however, and the patterns were not inconsistent with the dependence of meerkat 

group dynamics on rainfall, paired with the high degree of observed demographic 

stochasticity, that I have described in the previous chapters.   

 While I did not identify a clear demographic Allee effect in meerkat group 

dynamics, demographic rates may combine to produce a demographic Allee effect 

under certain conditions.  For example, during periods of extremely low rainfall, 

within-group mortality (which is inversely density-dependent; Chapters Three, Four) 

might play a more important role in determining local dynamics.  Alternatively, 

recruitment might come to resemble curve ii from Figure 6.1.  In Chapter Three, the 

combined demographic model did describe an Allee effect in two years (Figure 3.5), 

though this may have been an artefact of overfitting.  Again, more work will be 

required to elucidate the patterns in small groups. 

6.3 Population/Group Similarity 

 The evidence I have presented suggests that both group-level and population-

level dynamics in meerkats are largely conventionally density-dependent, and that 

patterns at the two levels are synchronised (Chapters Two-Four).  At the group level, 

patterns of density dependence change with environmental conditions, with groups 

experiencing stronger conventional density dependence after low-rainfall years, and 

this appears to translate into corresponding changes in population density.   

 Given the close correspondence between mean group size and population 

density (Figure 4.1A), it would seem that the short population time series made 

identification of one-year lag in the effect of rainfall - as seen in group dynamics - 

difficult to detect.  The second chapter's population model including two years' 

rainfall did, after all, offer the best, though not most parsimonious, fit. 



Chapter Six — Discussion 

 135 

 That population-level patterns so closely match group-level patterns is slightly 

surprising, given the potential for inter-group processes (e.g. dispersal, recolonisation, 

and source-sink dynamics) to cause patterns at the group and population levels to 

diverge.  There is a chance that the correlation is, at least in part, an artefact of 

sampling from groups in the population.  The vast majority of groups in the core of 

the study area are, however, under study at any one time.  It seems likely that 

consistent responses to environmental conditions produce consistent patterns across 

the population. 

6.4 Stage-structured Response to Environmental Conditions 

 The strong effect of rain on meerkat demography is consistent with past work 

on meerkats and the Kalahari system (Doolan and Macdonald 1996a, Clutton-Brock 

et al. 1999a, Clutton-Brock et al. 1999b), and the demographic patterns I identified 

(Chapter Four) fit with the existing picture of meerkat reproduction, developed 

through behavioural studies.  That social factors influence group-size regulation is of 

fundamental importance to population dynamics across social carnivores (Macdonald 

1983), and this certainly holds for meerkats, where the interaction between dominants 

and subordinates mediates environmental effects, especially for females. Past work 

has shown that rain increases the number of litters produced in a given year (Clutton-

Brock et al. 1999b) and that pregnant dominant females tend to evict mature 

subordinate females (Clutton-Brock et al. 1998a).  Essentially, rain drives food 

availability, improving body condition (English et al. 2011) and facilitating 

reproduction, and reproduction drives conflict between dominant and subordinate 

females, leading to dispersal of subordinates (Stephens et al. 2005, Clutton-Brock et 

al. 2010).  Less work has focused on male emigration behaviour, but males tend to 

prospect according to female fertility and dispersal cues (R. Mares, in preparation), 

which may result in the synchronised patterns of male and female emigration I 

described (Chapter Four).  

 Dominant females breed less, and therefore evict fewer subordinates in a dry 

year.  In the year immediately following, groups contain proportionately more mature 

females, and eviction (and resultant emigration) increase, on average, across groups.  

Group sizes decline dramatically as a result (Chapter Four).  

 This stage-structure-dependent mechanism behind changes in group size 

highlights the importance of transience in population dynamics.  For any population 
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with a given pattern of age-dependent demographic rates, the age distribution should 

become stable over time (Schoen and Kim 1991).  In stage-structured populations, 

however, we must do more than characterise asymptotic dynamics to gain insight into 

patterns of interest (Koons et al. 2005, Ozgul et al. 2009, Miller and Tenhumberg 

2010).  In a changing environment, patterns of demography are likely to change.  

Ungulates, like meerkats, exhibit stage-specific patterns that respond differently to 

changes in environmental conditions and density (Coulson et al. 2001, Clutton-Brock 

and Coulson 2002).  As a result, a population in a stochastic environment could 

remain in constant transience towards ever-changing, theoretically "stable" stage 

structures.   

6.5 Dispersal 

 While classical approaches to population demography (Leslie 1945) tend to 

focus on birth and death, more recent approaches have integrated dispersal into 

analyses (Hunter and Caswell 2005, Ozgul et al. 2009).  Here, I have shown how 

(apparent) emigration is one of the key drivers of meerkat group dynamics.  This 

provides an interesting contrast to classical demography, and highlights the important 

role played by dispersal processes in local dynamics, in addition to their role at a 

meta-population scale (Hanski 1999, Bowler and Benton 2005).   

 In stochastic environments, where local extinction is common, recolonisation 

is important for population persistence (Hanski 1999).  Patterns of meerkat group-

level demography, while consistent with the view that dominants control group 

composition to avoid reproductive conflict (Stephens et al. 2005, Clutton-Brock et al. 

2010), could also facilitate recolonisation of empty habitat.  Dispersal is a highly 

stressful process (Young and Monfort 2009), and the improved body condition 

associated with rainfall (English et al. 2011) is likely to improve dispersal success.  

By retaining potential dispersers during poor conditions (dry years), and expelling 

them en masse when conditions improve, dominant females may maximise the 

potential to seed new breeding groups formed of their progeny.   

 Dispersal and regionally correlated environmental conditions can synchronise 

local dynamics (Bjørnstad et al. 1999).  Here, climate plays an extremely important 

role in group dynamics, and while groups tend to diverge in size somewhat when 

conditions are good, crashes after years of low rainfall have a synchronizing effect 

(see Figure 4.1A).  This happens via the effects, described above, of reduced rain on 
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emigration rates.  Population synchrony is generally thought to be detrimental to 

population persistence (Earn et al. 1998), but synchronising crashes in meerkat group 

size are a result of dispersal.  As a result, the very process that synchronizes meerkat 

dynamics may also protect the population from extinction risk that might otherwise be 

associated with synchronised small groups.   

 The risk associated with apparent local synchrony in meerkat group dynamics 

might not bear out for other reasons.  Firstly, spatial variation in weather patterns 

could preclude large-scale population synchrony (Hanski and Meyke 2005).  

Secondly, the patterns of immigration and emigration found here (negatively density-

dependent immigration and positively density-dependent emigration) have been 

shown to stabilise dynamics in other systems (Bowler and Benton 2005).  

Alternatively, immigration - though relatively rare - may reduce synchrony if 

immigrant males primarily come from large groups and disproportionately reduce 

their destination group's size by expelling residents (see e.g. Figure 4.3).   

 More than just a link between groups, dispersal is of critical importance to 

fitness in cooperative breeders.  The extremely limited prospects for reproductive 

success within the small, localised sub-populations that social groups comprise, 

combined with the inevitable extinction of each such group in a stochastic 

environment, make dispersal a necessity.  Dispersal can also offer substantial genetic 

benefits by reducing the chance of inbreeding (Clutton-Brock and Lukas 2012).  

Ultimately, only offspring that survive, disperse, and breed successfully themselves 

contribute to the genetic makeup of future generations.  For meerkats, high 

reproductive skew means that dominant individuals are responsible for the vast 

majority of breeding success, and while females can inherit dominant breeding 

positions in their natal groups, males depend on dispersal to gain dominance (Spong 

et al. 2008). 

 Many studies use lifetime reproductive success as a proxy for fitness.  This 

can be misleading in changing environments, where population growth - and therefore 

average fitness - fluctuate (Coulson et al. 2006).  In meerkats, environmental 

conditions influence dispersal rates as well as reproduction.  In order for reproductive 

output to be interpretable with respect to evolutionary implications for group-living 

species, it should be placed in the context of group structure and dispersal; studying 

"fitness" in cooperative breeders without understanding dispersal may be misleading. 
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 Though viewing groups as population units indicates conventionally density-

dependent demography, taking dispersal into account paints a potentially different 

picture.  While average within-group per-capita reproductive success is maximised in 

small groups (Chapters Three, Four), larger groups produce more emigrants (Chapters 

Three, Four) in larger coalitions (Young 2003), and larger dispersing coalitions 

appear more likely to successfully establish new breeding groups (Young 2003).  

Depending on the specific rates of reproduction, emigration, and group establishment 

in relation to group and coalition size, large groups might actually produce more 

effective offspring per capita (i.e. those contributing to future reproduction in the 

population).  Thus, meerkats may still be subject to a group-level Allee effect, in 

terms of average fitness within groups (Stephens et al. 1999), when all relevant 

demographic rates are considered in a population context.   

6.6 Beyond the Group  

 In Chapters Three and Four, I focused on processes within groups.  A good 

deal of what goes on in the meerkat population, however, happens between groups or 

outside of the group context.  Dispersal is actually a multi-step process, made up of 

emigration, transience, and settlement phases (Bowler and Benton 2005).  With 

respect to meerkats, I have considered the emigration phase, but the specifics of 

transience and settlement have not been explored in adequate detail (but see Young 

2003).  Once dispersers have emigrated from their original social groups, they 

function outside of a breeding group until they can successfully form a new group or 

immigrate into an existing one, though they must interact with other groups during 

this time.  Territorial patterns, and thus their implications for population dynamics, 

are also heavily influenced by interactions between groups. 

 For social species, the transience phase of dispersal involves finding other 

groups of individuals to establish or join a social group.  This relies on dispersers' 

abilities to survive and search.  As previously discussed, increased group size is 

associated with increased coalition size and success in meerkats (Young 2003), and 

population density may also influence dispersal ability by affecting body condition or 

hormone levels (Cote et al. 2010).  The availability of other dispersing groups is also 

of critical importance.  Mate-finding Allee effects can be associated with sparse 

populations (Courchamp et al. 2008), and the problem may be exacerbated for social 

species where each dispersing unit takes up multiple individuals.  A mate-finding 
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Allee effect has been found in at least one population of wild dogs (Somers et al. 

2008), and it seems reasonable that this could be the most important Allee-effect 

mechanism for this species, given other, somewhat ambiguous results (see above).  A 

similar mate-finding Allee effect could be relevant for meerkats, in which new groups 

commonly form from dispersing male and female coalitions.  Behavioural 

observations also suggest that male coalitions of meerkats may refuse to establish new 

groups with female coalitions that are too small (T. H. Clutton-Brock, personal 

communication).  Whether such an observation affects meerkat dynamics at the 

densities I have considered, or whether effects are apparent in poorer conditions, like 

those observed in the Kgalagadi, remains to be investigated. 

 During the settlement phase of dispersal in territorial species, individuals must 

either find empty habitat to colonise or take over occupied habitat. For group-living 

territorial species, this means that individuals or coalitions must invade established 

social groups or form social groups of their own and successfully claim empty habitat 

or gain habitat from another group.  The details of this process depend on territorial 

behaviours and the patterns they generate.   Our lack of understanding of how 

territorial behaviour and territorial patterns relate for meerkats motivated my 

preliminary modelling of territory formation and dynamics in Chapter Five. 

Territories arise from intra-specific interactions in the context of resource 

availability and predation risk.  The resultant patterns have the potential to affect 

processes ranging from individuals' ability to find mates and disperse to the 

interaction between predators and prey (Lewis and Moorcroft 2001, López-Sepulcre 

and Kokko 2005, Packer et al. 2005, Wang and Grimm 2007, Haydon et al. 2008), 

and they affect population dynamics in both asocial and social species.  In asocial 

species, for example, territoriality seems likely to reduce the carrying capacity of a 

system, because territorial defence that is optimal for individual success is not optimal 

for the population as a whole (López-Sepulcre and Kokko 2005).  In lions, Panthera 

leo, territoriality seems to preclude smooth population increases in response to 

gradually improving conditions, because new prides must be of a minimum size to be 

viable (Packer et al. 2005).   

 Contrary to expectation, I found no evidence that group size influences a 

group's territorial interactions over a given period.  If this pattern persists over time, it 

would help to explain the apparently close relationship between group sizes and 

population density.  Whether group size is tied to population density over larger 
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spatial scales will depend on how dispersers and established groups respond to 

available habitat (see Chapter Five), and on the regional consistency of environmental 

conditions. 

 Spatial patterns of resource availability can strongly affect population patterns 

(Brown and Orians 1970, Clutton-Brock and Harvey 1978) but results can be 

complicated.  Meerkats show preferences for different habitat types (Chapter Five), 

and under different conditions, these preferences may change depending, for example, 

on food availability and predation risk (Turbé 2006).  In wet conditions, that might 

otherwise be considered beneficial, dense vegetation may impede foraging (Chapter 

Five).  Perhaps partially as a result, meerkat demographic rates can respond 

nonlinearly to patterns of rainfall (Chapter Four).  Territoriality also interferes with 

the tendency for animals to distribute themselves according to resource patterns 

(Brown and Orians 1970), and may affect responses to environmental conditions.  The 

patterns are not simple, and more work is required. 

Animal movement patterns, and features such as territoriality that modify 

those patterns, help to determine how individuals interact within populations and 

communities.  The degree to which individuals mix dictates the modelling detail 

required to tie animals' behaviour with features of the environment to describe and 

predict population-dynamic patterns (Morales et al. 2010).  Cooperative breeders 

living in stable social groups present a challenge for standard models.  As techniques 

develop to integrate previously separate aspects of theory and make use of 

increasingly available spatial data (e.g., optimality of home-range patterns in the 

context of predator-prey dynamics: Lewis and Moorcroft 2001; demographic patterns 

in relation to spatial movement: Haydon et al. 2008), the prospect of coherently 

modelling interacting demographic and spatial processes becomes ever more plausible 

(Morales et al. 2010).   

6.7 Conclusion 

I have presented the first empirical consideration of population- and group-

dynamics in meerkats.  I described environment-dependent patterns of group-level 

demography and dynamics consistent with meerkat behaviour.  Also, I began to 

describe spatial patterns that appear consistent with a close link between group- and 

population-level dynamics.  Surprisingly, I found that group size did not offer 

considerable benefit demographically or territorially.  Initial work in relation to 
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dispersal behaviour indicates benefits of increased group size (Young 2003), but 

further work is required to establish the effects of dispersal (and related spatial 

processes) in the system.   

For meerkats, future study should focus on processes that link groups together 

in a population and on how intra- and inter-group dynamics combine to produce 

population-level dynamics.  Central to this are dispersal patterns, the fate of 

emigrants, and the process of group establishment in the context of changing 

population density, territorial patterns, and environmental conditions.  Spatial 

patterns: how groups move and interact, how dispersing coalitions find each other to 

form new groups, what makes habitat available for newly formed groups, how 

conditions affect spatial processes, and how these processes feed back on 

demography, are all important.  Elaboration of the basic patterns I describe, explicitly 

considering disease (see Drewe et al. 2009a), predation risk (discussed in Clutton-

Brock et al. 1999a), and additional demographic complexity (e.g. natal and immigrant 

dominant males do not behave consistently; Spong et al. 2008) could also prove 

fruitful.  

The meerkat system presents an excellent opportunity to study population 

dynamics in a structured population, with the possibility of inverse density 

dependence without the immediately pressing conservation concerns associated with 

many other species.  Ultimately, understanding how individuals function within 

groups within a population will help place observed behaviour in accurate 

evolutionary context and may help us understand the dynamics of other cooperative 

species.  Combining models with data, the potential exists to elucidate the links from 

behaviour to local patterns to population-wide patterns to selection pressure that 

modifies behaviour (Morales et al. 2010). 
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