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Summary

Application of quantum Monte Carlo methods to excitonic and

electronic systems

Robert Matthew Lee

The work in this thesis is concerned with the application and development of quantum

Monte Carlo (QMC) methods. We begin by proposing a technique to maximise the

efficiency of the extrapolation of DMC results to zero time step, finding that a relative

time step ratio of 1:4 is optimal.

We discuss the post-processing of QMC data and the calculation of accurate error bars

by reblocking, setting out criteria for the choice of block length. We then quantify the

effects of uncertainty in the correlation length on estimated error bars, finding that the

frequency of outliers is significantly increased for short runs.

We then report QMC calculations of biexciton binding energies in bilayer systems.

We have also calculated exciton-exciton interaction potentials, and radial distribution

functions for electrons and holes in bound biexcitons. We find a larger region of biexciton

stability than other recent work [C. Schindler and R. Zimmermann, Phys. Rev. B 78,

045313 (2008)]. We also find that individual excitons retain their identity in bound

biexcitons for large layer separations.

Finally, we give details of a QMC study of the one-dimensional homogeneous electron

gas (1D HEG). We present calculations of the energy, pair correlation function, static

structure factor (SSF), and momentum density (MD) for the 1D HEG. We observe peaks

in the SSF at even-integer-multiples of the Fermi wave vector, which grow as the coupling

is increased. Our MD results show an increase in the effective Fermi wave vector as the

interaction strength is raised in the paramagnetic harmonic wire; this appears to be a

result of the vanishing difference between the wave functions of the paramagnetic and

ferromagnetic systems. We have extracted the Luttinger liquid exponent from our MDs

by fitting to data around the Fermi wave vector, finding good agreement between the

exponents of the ferromagnetic infinitely-thin and harmonic wires.
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Chapter 1

Quantum Monte Carlo

This section is intended to serve as a brief introduction to the variational Monte Carlo

(VMC) and diffusion Monte Carlo (DMC) methods. The reader is directed to the existing

literature for a more comprehensive overview [1–6]. We begin with a general description of

stochastic integration before describing the details of the quantum Monte Carlo (QMC)

methods used in this thesis, finally going on to propose a new scheme for efficiently

extrapolating DMC results to zero time step. We use Hartree atomic units (~ = |e| =
me = 4πǫ0 = 1) throughout except where explicitly stated. All of the QMC calculations

presented here were performed using the casino code [3].

1.1 Monte Carlo integration

A wide range of problems relevant to physics may be formulated as integrals. In a large

number of cases, particularly in systems with many degrees of freedom, the solution

is inaccessible to analytical methods. When the integrand is known, however, one can

numerically estimate such integrals. The choices of where to evaluate the integrand and

how to use the resulting values to produce an estimate are where the various existing

methods of numerical integration differ.

The simplest numerical methods are those which sample the integrand on a uniform

grid. The integral is estimated by interpolating between the sampling points using some

function for which the integral is known. Depending on the form of the integrand, such

methods have the potential to be exact, e.g., Simpson’s rule is exact for third and lower
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degree polynomials [7]. For a general problem, however, the accuracy depends on how well

the interpolating functions resemble the integrand. The difference δ between the numerical

estimate and the exact integral in 1D is O(hp), where h is the grid-spacing and p depends

on the order of the method. It follows that for an integral over d-dimensions, reducing δ

by a factor of x requires a factor of xd/p more grid points. This scaling makes solution

of problems involving many degrees of freedom impractical using grid-based methods [4].

More sophisticated methods such as Gaussian quadrature essentially suffer from the same

problem when the integrand is not of a convenient form. Furthermore, uniform sampling

in phase space has the potential to miss features occurring on length scales less than 2h.

We will see that Monte Carlo (MC) integration does not suffer from poor scaling

of the error with dimensionality and that stochastic sampling can avoid the problems

associated with uniform sampling such as those due to assumptions about the form of the

integrand. For stochastic methods, the ‘error’ refers to the width of the distribution of

estimates rather than the absolute deviation from the exact integral. Statistical errors are

in general preferred to systematic errors because they may usually be estimated reliably [3]

— we discuss in Chapter 2 how uncertainty in the estimated statistical error influences

results.

We may demonstrate the more important properties of MC integration with a general

example. Consider a definite integral of the form

I =

∫

V

dR g(R) , (1.1)

where R is a multi-dimensional vector, (this will later be a vector with dN elements

comprising the d-dimensional coordinates of N particles), V defines the region of config-

uration space in which we are interested, and g(R) is some nontrivial function. Provided

that g(R) may be evaluated at any point inside V (or, for methods such as the Gill-

Miller scheme, that its value is already known at some subset of points), Eq. (1.1) can be

estimated numerically [8].

Monte Carlo integration of Eq. (1.1) proceeds by decomposing g(R) into two functions,

I =

∫

V

dR f(R)P (R) , (1.2)
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where P (R) is a probability density function (PDF), i.e.,

P (R) = |P (R)| , R ∈ V ,
∫

V
dR P (R) = 1 ,

(1.3)

and f(R) may be any function that we are able to evaluate throughout V . In writing Eq.

(1.2), we have performed an importance sampling transformation, so-called because P (R)

determines the density of sampling points over which f(R) is averaged. The estimate of

I is given by

I ≈ 1

M

M
∑

i=1

f(Ri) , (1.4)

where {Ri} areM configurations distributed inside V according to P (R), and the estimate

becomes increasingly accurate as M grows. The configurations are usually generated by

the Metropolis algorithm [9], which is described later in this section. In what immediately

follows, we assume that the configurations {Ri} are independent — this is often not the

case, an issue discussed in Chapter 2. Assuming that the central limit theorem holds

for the samples {f(Ri)}, a suitable measure of the error in the estimate of Eq. (1.4) is

σf/
√
M , where σf is given by

σ2
f =

1

M − 1

M
∑

i=1

(f(Ri)− 〈f(R)〉)2 . (1.5)

The choice of importance sampling transformation in Eq. (1.2) thus determines σf , the

prefactor with which the error scales [4]. An intelligent choice of importance sampling

transformation may greatly improve the efficiency of a calculation. For example, if it is

possible to choose P (R) such that f(R) is constant within the limits of the integral [i.e.,

the choice P (R) = |g(R)|/
∫

|g(R)| dR under the condition g(R) ≥ 0 for R ∈ V ], we

could find I exactly by this method — in principle using a single evaluation of f(R).

However, in addition to the restriction g(R) = |g(R)|, this requires knowledge of the

normalisation of P (R), which in this case is essentially the integral we are attempting to

compute.

The advantages of MC integration over other methods are most significant in high-

dimensional (d & 4) spaces; we have already noted that the error scales as M−1/2, inde-

pendently of the dimensionality. Furthermore, when the integrand is sampled at points
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drawn from a continuous PDF, there is no regular grid-spacing through which finer fea-

tures are systematically lost, so there has been no assumption about the smoothness of

the integrand.

We now describe the role of the Metropolis algorithm [9] in the construction of the es-

timator of Eq. (1.4). The algorithm allows one to distribute points in d-dimensional space

according to an arbitrary PDF without any knowledge of that function’s normalisation.

Suppose we are following the above procedure to estimate I; this requires us to generate

i configurations {Ri} distributed according to P (R). The Metropolis algorithm directs

us to take the following steps, starting at a random position R′:

1. Propose a move, R← R′, with probability density T (R← R′).

2. Accept the move with probability

Paccept(R← R′) = min

{

1 ,
T (R′ ← R)P (R)

T (R← R′)P (R′)

}

. (1.6)

3. The new position is R or R′ upon acceptance or rejection, respectively. This new

position is appended to the set of configurations {Ri}. Return to step 1 to propose

the next move and repeat until sufficiently many samples have been collected.

The transition PDF, T (R ← R′), is another choice that affects the efficiency of the

procedure — it is obvious that if we only ever propose moves very close to the starting

position, we will explore phase space very slowly and inefficiently. Equally, proposing

moves where |R − R′| is very large can make Paccept(R ← R′) small, resulting in many

consecutive steps in the walk being at the same position due to move rejection. Clearly

some sort of compromise is required. A common choice of T (R ← R′) is a product of

Gaussians (one for each element of R) centred on R′. The width of the transition PDF

can then be varied to find the maximum efficiency.

In practical applications, it is necessary to discard all of the data gathered before the

system has reached equilibrium — this is the point at which the density has started to

correctly describe the underlying distribution. The length of this equilibration period is

system-dependent and may be estimated as the number of steps such that the root mean

square (RMS) distance diffused by a particle is of the order of the largest physical length

scale in the problem. The RMS distance diffused is
√
2DdnAτ , where D = 1/(2m) is the
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diffusion constant (m is the particle mass andm = 1 for electrons), d is the dimensionality,

n is the number of steps, A is the Metropolis acceptance ratio, and τ is the time step.

Note that τ is the variance of T (R← R′), the (Gaussian) transition PDF [2].

Similarly, for an accurate estimate of the error bar one must correct for serial correla-

tion, as discussed in Chapter 2. It is simple to show that the above procedure yields the

correct distribution in the asymptotic limit [1].

1.2 Quantum Monte Carlo (QMC)

The application of MC integration to the calculation of expectation values in quantum

mechanics is referred to as quantum Monte Carlo. In Sections 1.3 and 1.4, we outline two

widely-used QMC algorithms. In Sec. 1.5, we describe a new scheme for minimising the

statistical error in the DMC energy extrapolated to zero time step.

1.3 Variational Monte Carlo (VMC)

The ground state energy E0 of a quantum system may be written as

E0 =

∫

dR ψ∗
0(R)Ĥψ0(R)

∫

dR |ψ0(R)|2 , (1.7)

where ψ0 is the ground state wave function and Ĥ is the Hamiltonian operator. The vector

R contains the positions of all of the particles in the system. Since the exact functional

form of ψ0 is in general very difficult to find, we appeal to the variational principle to allow

us to make an estimate. Using a trial wave function ψ(R) of our choosing, a variational

estimate E is given by

E =

∫

dR ψ∗(R)Ĥψ(R)
∫

dR |ψ (R)|2 ≥ E0 , (1.8)

where equality holds if and only if ψ = ψ0. In order to evaluate Eq. (1.8), we formulate

it as a MC integral,

E =

∫

dR |ψ(R)|2EL(R)
∫

dR |ψ(R)|2 , (1.9)

where EL = (Ĥψ)/ψ is the local energy. We obtain a VMC estimate by using the

Metropolis algorithm to generate a set of configurations distributed according to |ψ(R)|2

and then averaging the values of EL over those configurations. Decomposing the integrand
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in this way is convenient because the conventional interpretation of |ψ(R)|2 is that it

is a PDF. Assuming that the transition PDF is symmetric, the Metropolis acceptance

probability is

Paccept(R← R′) =
|ψ(R)|2
|ψ(R′)|2 , (1.10)

depending only on the magnitude of the trial wave function at the initial and proposed

positions. The density of configurations is thus large where |ψ|2 is large.

The choice of ψ is the only real difficulty; constructing an accurate trial wave function

for most real problems is far from trivial. However, if a trial wave function satisfies the

relevant boundary conditions and includes some free parameters {αi}, one may system-

atically improve ψ by minimising one of several cost functions with respect to the {αi}.
For example, one can minimise the variance of the local energy

σ2 =

∫

dR |ψ(αi)|2(EL(αi)− 〈EL(αi)〉)2
∫

dR |ψ(αi)|2
, (1.11)

where the functional dependence of ψ and EL on R has been omitted here for clarity.

In practice, wave function properties such as the energy variance of Eq. (1.11) are often

calculated using correlated sampling, where the configurations generated using some set of

parameters {αi} are used to evaluate a quantity for different parameters {α′
i} by applying

appropriate weights to the configurations.

There are several other choices of objective function available, such as the total en-

ergy or the mean absolute deviation (MAD) of the local energy from the median. Vari-

ance minimisation has historically been favoured since it is relatively straightforward to

produce numerically-robust implementations and the variance has a minimum at every

eigenstate [10–13]. Energy minimisation has grown in popularity in recent years due

to the development and implementation of stable algorithms, and the general belief that

minimum-energy wave functions have more desirable properties than those with minimum

variance [4,14]. In particular, the statistical efficiency of the more intensive DMC method

depends on the deviation of the VMC energy from the exact ground state energy [15].

In practice, the best choice of optimisation procedure is system-dependent, and the

optimisation stage appears to be the most problematic part of the majority of QMC calcu-

lations. We discuss briefly in Chapter 3 a potential problem with variance minimisation

in finite electron-hole systems; if the wave function describes some regions of configu-

ration space better than others, one might expect variance minimisation to favour the
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high-quality regions even if they should only contribute a small amount to the ground

state. However, if ψ is capable of describing the exact ground state, minimisation of the

energy, variance or MAD should produce ψ0.

For fermionic systems, a popular choice for ψ is the Slater-Jastrow form [3],

ψ(R) = exp[J(R)]det↑[φn(r
↑
i )]det↓[φn(r

↓
j )] , (1.12)

where the Jastrow function J(R) is a function of interparticle distances [16] and det↑[φn(r
↑
i )]

is a determinant of single particle orbitals {φn} for the electrons with spin ↑. The orbitals
φn can be taken, for example, from density functional theory or Hartree-Fock calculations,

and can contain free parameters for optimisation. The Jastrow factor is symmetric with

respect to particle exchange. The sum over spin coordinates in the expectation value of

Eq. (1.8) has already been performed, so that Eq. (1.12) is spin-independent. The use of

a product of up- and down-spin determinants instead of a spin-dependent wave function

does not alter the expectation values of spin-independent operators [1].

The elegance and strength of the method stem from the freedom to choose whatever

trial wave function one wishes. One can of course use a sum of determinants rather

than a single one, and recent years have seen accuracy improve through the introduction

of backflow transformations, pairing orbitals, and new forms of Jastrow factor [6, 16].

However, it is difficult to achieve equivalent accuracy for different systems, making VMC

energy differences poor. As a result, VMC is usually seen as the starting point for more

expensive and accurate diffusion Monte Carlo calculations.

1.4 Diffusion Monte Carlo (DMC)

The DMC distribution is represented by the density of points in configuration space, so

is more flexible than the VMC wave function.

The DMC method is an approach for solving the imaginary time Schrödinger equation

(Ĥ − ET )Φ(R, τ) = −
∂Φ(R, τ)

∂τ
, (1.13)

where τ = it is the imaginary time and ET is a fixed reference energy, which we may

choose freely. The wave function Φ depends on τ in addition to the particle positions.
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The Hamiltonian is

Ĥ = T̂ + Û = −∇
2
R

2
+ U(R) , (1.14)

where the potential U depends in principle on the positions of all of the particles in the

system (and is often Coulombic), and −2T̂ = ∇2
R
is the Laplacian with respect to all of

the particle coordinates.

The method projects out the ground state component of the initial wave function by

propagating a distribution of walkers in imaginary time. This may be understood by

expressing the solution to Eq. (1.13) as a sum over the eigenstates {φi} of Ĥ (which is

always possible since Ĥ is Hermitian),

Φ(R, τ) =

∞
∑

i=0

ciφi(R)e(ET−Ei)τ , (1.15)

where {ci} is the set of expansion coefficients. Each component of Φ decays exponentially

with imaginary time, unlike the corresponding expansion in real time for which the phase

of each component rotates. This is convenient if we are interested in the ground state

properties of systems; since E0 is the lowest eigenvalue of Ĥ the φ0 component dominates

exponentially as τ →∞.

With an appropriate method for evolving configurations in imaginary time, one could

therefore find the ground state wave function (and energy, etc.) from any starting dis-

tribution that has nonzero overlap with the ground state. The exact Green’s function of

Eq. (1.13) is

Gexact(R← R′, δτ) =
〈

R
∣

∣

∣
e−δτ(Ĥ−ET )

∣

∣

∣
R′
〉

, (1.16)

where δτ is an interval in imaginary time. The explicit form of Eq. (1.16) is in general

unknown. However, if either the kinetic term T̂ or the potential term Û were omitted

from Eq. (1.14), the Green’s function would be known exactly. We may use this fact to

construct an approximation to Eq. (1.16) that is exact in the limit δτ → 0. We do this

by rewriting Eq. (1.16) as

Gexact(R← R′, δτ) =
〈

R
∣

∣

∣
e−δτ(T̂+Û−ET )

∣

∣

∣
R′
〉

=
〈

R
∣

∣

∣
e−δτ(Û−ET )/2e−δτT̂ e−δτ(Û−ET )/2 +O(δτ 3)

∣

∣

∣
R′
〉

≈ e−δτ(U(R)−ET )/2
〈

R
∣

∣

∣
e−δτT̂

∣

∣

∣
R′
〉

e−δτ(U(R′)−ET )/2 , (1.17)
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which does have a known explicit form. We will refer to the last line of Eq. (1.17) as

Gapprox(R← R′, δτ), which is given in full by

Gapprox(R← R′, δτ) = GU(R← R′, δτ)GT(R← R′, δτ) , (1.18)

where we have defined

GU(R← R′, δτ) = exp

(

−δτ
2

[U(R) + U(R′)− 2ET ]

)

(1.19)

and

GT(R← R′, δτ) =
1

(2πδτ)3N/2
exp

(

−|R−R′|2
2δτ

)

, (1.20)

where N is the number of particles. We have assumed in writing Eq. (1.20) that the

system is 3-dimensional. One could then perform a DMC calculation by considering

Gapprox(R← R′, δτ) as the probability of a configuration going from R′ to R in time δτ ,

and this would be accurate for very small δτ . In practice, the distribution of walkers could

be generated initially from VMC. Propagation would then be carried out by repeatedly

displacing the walkers by a Gaussian random number with variance δτ , as described by

Eq. (1.20), and assigning each walker a statistical weight, given by Eq. (1.19).

The simple algorithm described above suffers from two problems. The first is that the

potential term U(R) can vary dramatically throughout configuration space, and indeed it

contains Coulomb divergences for many systems. This can result in one walker dominating

over the rest, leading to stability and sampling problems [4, 7, 17].

The second problem is that the lowest energy state of the Hamiltonian (1.14) is gen-

erally bosonic, and indeed we have not mentioned fermionic antisymmetry anywhere in

the explanation above. In fact, in writing down Eq. (1.20), we assumed that Φ is a PDF

satisfying the conditions of Eq. (1.3). One clearly cannot satisfy Φ = |Φ| for all R for

fermionic systems in general.

Implementations of QMC that do not take any measures to prevent the distribution

from decaying to the bosonic ground state will therefore suffer from what is known as

the fermion sign problem when attempting to simulate fermionic systems. In such cases,

the fermionic component of the initial distribution will vanish exponentially relative to

the bosonic component, by exactly the same argument that we used to explain why the

excited states decay with imaginary time. It is, in practice, impossible to avoid including a
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nonzero bosonic component in a representation of a wave function with a finite distribution

of configurations.

Despite the severity of the problem, methods are in use today which attempt (and

formally succeed) to exactly solve variants of Eq. (1.13). The release-node method involves

assigning walkers negative statistical weights when they cross an odd number of trial

wave function nodes, so that expectation values may be thought of in terms of differences

between two populations of opposite sign [18]. The distribution as a whole (considering

only the absolute values of the weights) tends to the bosonic ground state, so it is necessary

to achieve equilibrium and to accumulate expectation values before the signal-to-noise

ratio becomes too poor for the fermionic distribution to be extracted. Similarly, there

exist approaches where walkers are again given signs, but then pairs of walkers with

opposite signs are annihilated when some measure (e.g., the Euclidian norm of the distance

between walkers in configuration space) reaches a certain threshold. A major source of

difficulty for algorithms involving cancellation of walkers is setting a suitable criterion for

annihilation; new methods working in a discrete antisymmetrised space have shown great

promise, although the scaling of computational cost with system size is unclear [19–21].

However, exact methods for solving Eq. (1.13) for fermions in general scale exponentially

with system size [1, 18, 22, 23].

We avoid the poor behaviour associated with the U(R) term and (exponentially scal-

ing solutions to) the sign-problem by making the only uncontrolled approximation in the

method — this is the fixed node (FN) approximation, by which the DMC distribution is

forced to share the nodes of ψ, the trial wave function [24]. Enforcing the FN approxima-

tion is essentially the same as placing an infinite repulsive potential barrier at the nodes

of ψ; the DMC wave function Φ is forced to go to zero wherever ψ = 0 and the method

satisfies a variational principle [17]. If the nodes of the trial wave function are exact then

the FN DMC energy will be exact.

One can efficiently implement the FN approximation by working with the mixed dis-

tribution f = Φψ, where ψ is the trial wave function, usually optimised at the VMC

level, and Φ is the DMC wave function, which is the lowest-energy wave function that

shares the nodes of ψ. One can obtain the appropriate importance-sampled equation by
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multiplying Eq. (1.13) by ψ,

− ψ∂Φ
dτ

= −1
2
ψ∇2Φ+

1

2
Φ∇2ψ +

(

Ĥψ

ψ
− ET

)

ψΦ , (1.21)

and then rearranging terms to get

− 1

2
∇2f(R, τ) +∇ · (V(R)f(R, τ)) + (EL(R)− ET )f(R, τ) = −

∂f(R, t)

∂τ
, (1.22)

where V(R) = ψ−1(R)∇ψ(R) is the drift velocity and EL(R) = ψ−1(R)Ĥψ(R) is the lo-

cal energy. Equation (1.22) is called the importance-sampled imaginary time Schrödinger

equation [5].

The third term of Eq. (1.22) now depends on the local energy EL rather than U

alone. This is convenient because EL is roughly constant in configuration space when ψ is

accurate, removing the numerical awkwardness of a wildly fluctuating source-sink term.

The FN propagator is similar to the product of Eqs. (1.20) and (1.19), and illustrates

why the importance sampling transformation of Eq. (1.22) is efficient. As before, consider

approximating the exact Green’s function by one that has an explicit form using the

procedure of Eq. (1.17). The two factors that we obtain from performing the earlier

analysis, this time with Eq. (1.22), are [2]

GD(R← R
′
, δτ) =

1

(2πδτ)3N/2
exp

(

−|R−R
′ − δτV(R

′
)|2

2δτ

)

, (1.23)

which accounts for the first two terms of Eq. (1.22), and is called the drift-diffusion Green’s

function, and

GB(R← R
′
, δτ) = exp

(

−δτ
2

[

EL(R) + EL(R
′
)− 2ET

]

)

, (1.24)

which is called the branching factor. The error in the propagator introduced through the

replacement of the exact Green’s function with GDGB is O(δτ 2). This carries forward to

give an error in the mixed distribution (and thus mixed estimators) of O(δτ).
The initial population of walkers is generated at the VMC level, i.e., with the dis-

tribution |ψ2|. A FN DMC calculation is then performed by carrying out the following

steps:

• Denote a walker’s position at the start of an iteration by R′.

• Displace each walker by δτV(R′).

11



• Displace each walker by a Gaussian random number with variance δτ so that the

new position is R.

• Duplicate or annihilate walkers such that the number of copies of a given walker

that continue on to the next iteration is

N = int
[

GB(R← R
′
, δτ) + η

]

, (1.25)

where η is a uniform random number drawn from [0, 1].

After a certain number of iterations, the excited state components of f will have died

away. One can then average expectation values over walkers and time steps to obtain

DMC estimates. In particular, the DMC energy is evaluated by the ‘mixed estimator ’,

which is given by

〈Φ|Ĥ|ψ〉
〈Φ|ψ〉 = lim

τ→∞

∫

dRf(R, τ)EL(R)
∫

dRf(R, τ)
≈ 1

M

M
∑

i=1

EL(Ri) . (1.26)

The length of the equilibration period can be estimated using the formula given at the end

of Sec. 1.1. In practice, there are a number of additional refinements to the algorithm that

improve efficiency and reduce bias, such as an accept/reject step [25] and modifications

to the Green’s function [26, 27]. There also exist several other schemes for treating the

statistical weights [2, 27]. Henceforth, ‘FN DMC’ will be referred to simply as ‘DMC’,

since all of the DMC calculations performed for the work presented in this thesis used the

FN approximation as described above.

It is clear that the drift velocity acts to carry walkers away from nodes. Sampling in

this way effectively enforces the FN approximation because walkers almost never approach

the nodal surface. Rejecting the few node-crossing moves that do occur has been found

to be the least biased way of dealing with them [2]. One might erroneously assume that

by preventing walkers from crossing nodes, the algorithm described above will fail to

cause the walkers to properly explore phase space. Each walker will explore only a single

nodal pocket (region of configuration space where the wave function is of a constant

sign) in a simulation, and there are typically many more pockets than configurations.

Fortunately, the tiling theorem dictates that one can generate any point in configuration

space by permuting the labels of indistinguishable particles in a single nodal pocket. As

a consequence, the FN approximation should not introduce ergodicity problems [28].
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The DMC energy depends only on the nodes of ψ, but expectation values of operators

that do not commute with the Hamiltonian depend on the trial wave function everywhere.

For an operator Â that does not commute with the Hamiltonian, we can remove the first

order contribution from the error in the trial wave function by combining VMC and DMC

results [29]. This is the ‘extrapolated estimator ’, which we use later in Chapters 3 and

4. Let us write the trial wave function ψ as its ground state component Φ plus a small

amount ε of error ∆,

|ψ〉 = |Φ + ε∆〉 . (1.27)

Assuming that Ĥ has time-reversal symmetry, so that Φ, ψ and ∆ may be chosen real,

the variational estimator may be rewritten as

〈A〉var =
〈ψ|Â|ψ〉
〈ψ|ψ〉

=
〈Φ+ ε∆|Â|Φ+ ε∆〉
〈Φ + ε∆|Φ+ ε∆〉

=
〈Φ|Â|Φ〉
〈Φ|Φ〉 + 2ε

[

〈Φ|Â|∆〉
〈Φ|Φ〉 −

〈Φ|Â|Φ〉〈∆|Φ〉
〈Φ|Φ〉2

]

+O(ε2) , (1.28)

and the mixed estimator is

〈A〉mix =
〈Φ|Â|ψ〉
〈Φ|ψ〉

=
〈Φ|Â|Φ+ ε∆〉
〈Φ|Φ+ ε∆〉

=
〈Φ|Â|Φ〉
〈Φ|Φ〉 + ε

[

〈Φ|Â|∆〉
〈Φ|Φ〉 −

〈Φ|Â|Φ〉〈∆|Φ〉
〈Φ|Φ〉2

]

+O(ε2) . (1.29)

It is clear that the O(ε) error in 〈A〉mix is half that of 〈A〉var, so an appropriate estimator

with the linear error removed is

〈Â〉ext = 2〈Â〉mix − 〈Â〉var =
〈Φ|Â|Φ〉
〈Φ|Φ〉 +O(ε2) . (1.30)

We have made a short-time (δτ → 0) approximation to justify two parts of the algo-

rithm described above. First, we wrote the Green’s function as the product GDGB, giving

an error of O(δτ 3). Secondly, we assumed that V(R) is constant between R and R′ for

each step, since at each iteration we displace configurations by δτV(R
′
) — this results in

an error in the Green’s function of O(δτ 2). In practice one must of course use a finite but
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small time step when running DMC calculations. A side effect of this is that consecutive

configurations in imaginary time are serially correlated — in fact this also occurs in VMC

where no short-time approximation is made, since each configuration is generated from

the last. It follows that expectation value data also exhibit serial correlation. This has no

effect on mean values but makes calculation of an accurate statistical error bar nontrivial.

We discuss in Chapter 2 methods for evaluating accurate error bars and the implications

of noisy estimates.

To remove time step bias from DMC expectation values, one typically extrapolates

data to zero time step. We describe in Sec. 1.5 a scheme for distributing computational

effort that minimises the statistical error in the extrapolate.

1.5 Maximising the efficiency of DMC time step ex-

trapolation

As described above, DMC is only accurate in the limit of a small time step δτ . However,

the computational effort required to achieve a given error bar goes as 1/δτ , ruling out the

use of infinitesimal time steps in practice. Hence, where high accuracy is required, two or

more finite time steps {δτi} are generally used and the ground-state energy is obtained by

extrapolating to δτ = 0 [1,3]. Here we explain how the statistical error in a zero-time-step

extrapolate may be minimised by a judicious choice of time steps {δτi}, and the sensible

deployment of a limited total computing time between those time steps.

For sufficiently small δτ , the DMC energy scales linearly with the time step as E(δτ) =

E0+κδτ , where κ is a constant and E0 is the energy at zero time step. Suppose we calculate

E(δτ) at R different time steps {δτi} in the linear-bias regime, where each E(δτi) has an

associated statistical uncertainty ∆i. The error bars fall off with the time step δτi and

the CPU time devoted to the calculation Ti as ∆i = C/
√
δτiTi, where C is a constant.

To determine the ground-state energy at zero time step E0, we minimise the χ2 error of
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the linear fit,

χ2 =

R
∑

i=1

[E(δτi)−E0 − κδτi]2
∆2

i

=
1

C2

R
∑

i=1

Tiδτi[E(δτi)− E0 − κδτi]2 (1.31)

with respect to κ and E0. Setting ∂χ
2/∂κ = ∂χ2/∂E0 = 0, we obtain

E0 =
2
∑R

i=1

∑R
j=1E(δτi)TiTjδτiδτ

2
j (δτj − δτi)

∑R
i=1

∑R
j=1 TiTjδτiδτj(δτj − δτi)2

. (1.32)

Assuming the data are Gaussian-distributed, the square of the standard error in the

extrapolate E0 is

∆2
0 ≈

R
∑

k=1

∆2
k

[

∂E0

∂E(δτk)

]2

= 4C2
R
∑

k=1

Tkδτk

[

∑R
j=1 Tjδτ

2
j (δτj − δτk)

∑R
i=1

∑R
j=1 TiTjδτiδτj(δτj − δτi)2

]2

.

(1.33)

As expected the standard error falls off as the time steps {δτi} are increased and as more

time {Ti} is dedicated to the calculations. However, since we are considering a linear fit,

δτ should not be increased beyond δτmax, the limit of the region in which the bias is linear.

The effort allocated to the calculations also cannot be increased indefinitely because one

is constrained by the total time T =
∑R

i=1 Ti for all of the simulations. We now minimise

∆2
0 subject to the constraint that T is fixed.

Let us first suppose that we are to perform just R = 2 simulations. We start by

fixing the time steps δτ1 and δτ2, and minimising ∆2
0 with respect to the run lengths in

the presence of a Lagrange multiplier to constrain the total run time T . This yields the

optimal simulation durations

T1
T

=
δτ

3/2
2

δτ
3/2
1 + δτ

3/2
2

(1.34)

and
T2
T

=
δτ

3/2
1

δτ
3/2
1 + δτ

3/2
2

, (1.35)

which attempts to reduce the error bar on the calculation with the smaller time step

beyond the distribution of effort T1/T = δτ2/(δτ1 + δτ2) that would aim for error bars of
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Figure 1.1: The uncertainty in the extrapolated DMC energy ∆ against relative step

size, δτ1/δτ2. The distribution of effort for each data set was [T1/T2 = (δτ2/δτ1)
α], where

α = 3/2 is optimal and α = 1 is a common choice. The error bars are normalised by

∆δτmax, the error bar of a DMC run at the upper time step δτ2 if all of the computational

resources (T1 + T2) were dedicated to it.

equal size. The extrapolate is intuitively more sensitive to the error bar on the run with

the smaller time step than the larger. Without loss of generality, we now assume that

δτ2 > δτ1, with δτ2 = δτmax pinned near the boundary of the linear regime, and we search

for the optimal time step δτ1. Using the optimal durations T1 and T2, minimisation of ∆2
0

reveals that the optimal choice of time step is δτ1 = δτ2/4. The corresponding optimal

physical run times are therefore T1 = 8T/9 and T2 = T/9. The full dependence of the

final error upon the relative time step δτ1/δτ2 is shown in the Figs. 1.1 and 1.2.

Now suppose that more than two time steps are used to perform the extrapolation.

We find that ∆2
0 is minimised when the computational effort is preferentially dedicated

to the two points that are nearest to having a relative time step of 4 and have the largest

maximum value of δτ . Computational effort should therefore be focused solely on that

optimal pair as long as the linear regime is well-defined. Clearly, in an idealised model

where we wish to fit a straight line to the data, there no advantage to using more than
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Figure 1.2: The uncertainty in the extrapolated DMC energy against relative step size,

δτ1/δτ2 over a larger range. The effort was distributed according to (T1/T2 = δτ2/δτ1).

R = 2 data points.

This scheme is the optimal extrapolation procedure when the extent of the linear

regime is known. The strategy is thus highly applicable to studies of many similar systems

where the linear regime can be assumed to be the same for multiple runs. For systems

where the behaviour of the time step bias has not been established, one has no alternative

but to perform multiple runs over a wide domain of time steps and determine where the

spectrum first increases superlinearly. In such cases, one can use the RMS distance (as

discussed in Sec. 1.1) diffused by an electron over a single step as an initial order-of-

magnitude estimate for where the linear regime begins. For all-electron atomic systems,

for example, one would expect the linear regime to occur for time steps less than of

the order δτ = 1/(3Z2), where Z is the largest atomic number occurring in the system.

This choice of time step ensures that the RMS distance diffused is equal to one Bohr

radius of the largest atom under study. For a homogeneous electron gas, where the only

physically-significant length scale is defined by the density, the equivalent time step would

be δτ = (r2s)/d, where rs is the radius of the sphere (circle in 2D) that contains one electron

on average, and d is the dimensionality. Time step bias is reduced when the modifications
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of Ref. [27] are made to the DMC Green’s function, and also when higher-quality wave

functions are used.

If one has accumulated a significant set of results for δτ < δτmax in determining the

extent of the linear regime, the prescription for minimising the error in the extrapolate has

the potential to differ from the two-run procedure. If one has a large amount of computing

time remaining after determining δτmax, the two-run approach is unchanged. In the

event that little computing time remains after determining δτmax, one should devote the

remaining time to the run whose contribution falls the quickest with computer time, i.e.,

the run i with the most negative value of ∂∆0/∂Ti, which may be found by differentiating

Eq. (1.33).

The most robust strategy is to avoid higher-order fitting functions and use only data

from within the linear regime for the extrapolation. Though the formalism here can

be extended to study higher-order fitting functions, finding the appropriate regimes for

higher-order terms would require a larger amount of computational effort and there is a

danger of numerical stability and branching problems affecting calculations for very large

δτ . Linear extrapolation is always an option since the leading-order term in the bias is

known to be O(δτ).

As emphasised above, the two-run procedure is useful for managing a limited com-

puting resource in a situation where a number of similar calculations (where the regime

of linear bias is transferable) is to be performed. One should exercise caution when at-

tempting to extrapolate δτ to zero for isolated runs, because ideally the extent of the

linear regime should be determined to the same accuracy as that desired for the final

result. It would be very unreliable to determine δτmax using results with error bars of

order x and to then extrapolate linearly through two points in this region with error bars

an order-of-magnitude smaller than x.

We highlight the benefits of the two-run extrapolation procedure with some example

calculations on the 1D and 2D HEGs, and the Ne atom. For the HEG systems, once

the maximum allowed time step δτmax in the linear regime had been determined, pairs of

runs were performed at δτ2 = δτmax and incrementally smaller time steps δτ1. The pairs

of runs were each performed using the same total amount of computing time. The time

was distributed either to ensure equal-sized error bars or according to the prescription

18



T1/T2 = (δτ2/δτ1)
3/2 to guarantee minimal final extrapolated error. The simulation times

were sufficient to ensure that the data could be reblocked for accurate error estimates —

the reblocking method is explained in Sec. 2.1. The final extrapolated energy estimates

all agreed to within the expected uncertainty, consistent with the assertion that all of the

time steps are within the linear regime. The results shown in Figs. 1.1 and 1.2 highlight

that, for the range of δτ2/δτ1 tested, there is strong agreement between the analytical

prediction and the DMC results. In particular, the error bar on the extrapolate with

the optimal distribution of effort is clearly minimised by the choice δτ2/δτ1 = 4. The

distribution of effort according to T1/T2 = (δτ2/δτ1)
3/2 yields a modest computational

advantage over the choice T1/T2 = δτ2/δτ1.

For the Ne atom, we performed DMC calculations at 20 different time steps, all inside

the linear regime to within the desired accuracy. We then extrapolated through all possible

pairs of points, giving 190 extrapolates. Since the computational effort varied between

different pairs, it was necessary to normalise the errors in the extrapolate by ∆τmax, the

error in the energy at the larger time step if all of the resources for that pair had been

devoted to it. Figs. 1.1 and 1.2 show the comparison between the data and the analytical

prediction. There is good agreement, although the neon data in particular are noisy —

this is because the runs for that system were relatively short so that the random errors

themselves were subject to uncertainty.

In summary, to minimise the statistical error bar on the DMC energy extrapolated to

zero time step, one should perform one DMC calculation at the largest time step δτmax

for which the bias is still linear in the time step and a second DMC calculation with time

step δτmax/4. Eight times as much computational effort should be devoted to the latter

calculation as to the former. One could use a similar approach to efficiently extrapolate

expectation values to other limits within QMC, e.g., to infinite population or to infinite

system size.

In this chapter we have summarised the VMC and DMC methods and proposed an

efficient scheme for extrapolating the DMC time step to zero. In Chapter 2, we discuss

in more detail the calculation of statistical errors from QMC data and examine the effect

of uncertainty in the error on the distribution of results.
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Chapter 2

Random errors in QMC

In this section, we investigate the frequency with which “outliers” occur in QMC results.

We define an outlier as a result located more than a given number of estimated error

bars from the underlying mean value. For example, one may fit a straight line to DMC

energies at small τ . If there are sufficient data points, the linear fit is a good estimate

of the underlying mean; one would usually expect, by the central limit theorem (CLT), a

fraction 0.32 of the points to deviate from the fitted function by more than a single error

bar. Here we address the observation that QMC estimates can lie outside statistical error

bars of the underlying mean more often than one would expect were the error bars correctly

describing the width of an underlying Gaussian distribution. We will demonstrate that

uncertainty in the estimated correlation length is largely responsible for the effect.

We begin with a description of how errors are calculated from QMC calculations, out-

lining reblocking [30] and direct computation of the correlation length. We then directly

observe the numbers of outliers for two systems, the C atom and the Si crystal. By per-

forming a large number of short VMC calculations for each system, we count directly the

number of energies occurring more than Q error bars from the underlying mean (as a

function of Q), where the error is estimated separately for each run. Each estimate of the

statistical error is also implicitly an estimate of the correlation length, as we describe in

the next section.

We then derive an analytic expression for the fraction of points expected to lie more

than Q error bars from the mean under the assumption that the distribution of local

energies is Gaussian. The resulting expression depends on the distribution of estimated
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correlation lengths. Finally, we compare the expected result from this purely Gaussian

model process with that found earlier from VMC, forming conclusions about the validity

of the Gaussian assumption and the origins of outliers.

2.1 Reblocking

As described in Secs. 1.1 and 1.4, configurations and expectation values generated from

a QMC calculation usually show some degree of serial correlation, making it necessary to

account for serial correlation when calculating the statistical uncertainties.

Ideally we would estimate the energy as the average over a set of ν0 independent and

identically-distributed local values. Suppose that the variance of the distribution of local

energies, a quantity that is often estimated in order to gauge the quality of a trial wave

function, is given by σ2
0. Let us denote the sample variance by σ2. The accurate statistical

error bar ∆ is then ∆ = σ0/
√
ν0. In practice, such a calculation will require n > ν0 local

energies due to serial correlation, where ncorr = n/ν0 is the correlation length, and σ2 is

accessible but σ2
0 is not. Let us define ν as the estimate for ν0, the effective number of

steps or independent samples. The estimated error is

∆ =
σ√
ν
= ηerr

σ√
n
, (2.1)

where ηerr is the error factor, equal to the square root of the estimated correlation length.

For clarity, let us briefly summarise the variables that we have just introduced; n is the

number of local energies generated by a QMC calculation, ν0 is the effective number of

energies, ν is the random estimate for ν0, ncorr is the (exact) correlation length, and ηerr is

the error factor, which is a random estimate of the square root of the correlation length.

The reason for writing the estimated error in the form of Eq. (2.1) is that it makes

it clear that the reblocking method of calculating the statistical error is also estimating

the correlation length. A serially-correlated data set of length n is reblocked by grouping

data points into contiguous blocks of length B and forming a new data set of n/B block

averages. Taking weights and non-integer block lengths into account, the reblocked error

is the standard deviation of the block averages divided by the square root of the number

of blocks i.e., the block averages are treated as a new dataset of independent samples.

Qualitatively, when B is larger than the correlation length then the block averages will be
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Figure 2.1: Plot of the error factor ηerr against the block length B. The error factor is the

reblocked error divided by the error with B = 1 (i.e., the unreblocked estimate). The plot

shows VMC data for the all-electron carbon atom and was constructed using 107 local

energies. The dashed line shows the error estimate obtained by choosing the minimum B

for which B3 > 2nη4err holds.

approximately statistically-independent and the error will no longer be an underestimate

due to serial correlation.

Historically, the value of B was chosen heuristically by examining a plot of B against ∆

[or, equivalently, B against ηerr since ηerr(B) = ∆(B)/∆(1)]. An example is shown in Fig.

2.1. The correlation-corrected estimate of ∆ is found by choosing B where the plateau

in the error bar occurs. The reasoning behind this is that increasing B from a value of

1 will initially increase the error bar monotonically as serial correlation is removed from

the data. When the data are roughly independent, increasing B merely has the effect of

reducing the number of points, so that rather than increase with B the error fluctuates

around a constant. When B is comparable to the size of the data set, the estimate of the

error becomes very noisy, as seen for log(B) & 16 in Fig. 2.1.
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Figure 2.2: Plot of an example autocorrelation function Aj = exp(−j). The correlation

length [from Eq. (2.2)] is 2.16.

Imagining the reblocking procedure to have removed all serial correlation is an over-

simplification, however, and misunderstands the nature of serial correlation. One can

calculate ncorr for a data set with n→∞ as

ncorr = 1 + 2
∞
∑

j=1

Aj ,

Aj =
1

σ2
0

〈(Ei − 〈E〉)(Ei+j − 〈E〉)〉i , (2.2)

where Ei is the i-th local energy and Aj is the autocorrelation function. The correlation

length is thus a characteristic scale of Aj, but correlations by no means cease for data

points separated by more than ncorr. This means that a systematic error is introduced by

choosing a finite B in the reblocking procedure. Figure 2.2 illustrates the simple example

Aj = exp(− j
α
), for which we obtain the result ncorr = coth

(

1
2α

)

.

We can easily convince ourselves that Eq. (2.2) gives a suitable measure of the correla-

tion length. Let us consider the model example discussed by López Rı́os [6], although the

analysis we perform here is new. Consider a set of independent energies E1, E2, E3, . . ..
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Let us now artificially introduce serial correlation by including p repeats of each energy,

e.g., E1, E1, E2, E2, E3, E3, . . . corresponds to p = 2. One can easily show that

Aj = 1− j
p
, j < p ,

Aj = 0 , j ≥ p ,
(2.3)

leading to

ncorr = 1 + 2

p−1
∑

j=1

(

1− j

p

)

= 1 + 2

(

p− 1

2

)

= p , (2.4)

which is clearly an appropriate measure of the length over which correlations are impor-

tant.

There exist previous quantitative studies into the best choice of B. In Ref. [31], the

error in the random error is shown to have statistical and systematic contributions of

order
√

2B/n and ncorr/B, respectively. One can define the optimal block size Bopt as

that which minimises the sum of these two terms,

Bopt =
3
√

2nn2
corr , (2.5)

so that for B < Bopt the statistical noise in the error bar is small compared to the

systematic uncertainty originating from the truncation of Aj — the distribution of error

bars is narrow but its peak is far from the accurate value. For B > Bopt, the statistical

error in the error dominates due to the small number of block averages — in this case the

distribution of errors has a broad peak whose centre is close to the accurate value.

In the presence of a reliable estimate for ncorr, Eq. (2.5) is trivial to evaluate. Other-

wise, one must estimate ncorr from the data themselves. This can be done self-consistently

by reducing B from the largest possible value and choosing the last block length encoun-

tered before B3 > 2nη4err is violated. In practice we consider only powers of two for B,

since it is logarithmically-distributed [31]. It is preferable to overestimate the statistical

error and have a small systematic component, since studies usually quote the statistical

error bar and assume the systematic error to be small. The line labelled ‘Best estimate’

in Fig. 2.1 shows the result of following this procedure. Figure 2.3 shows the comparison

between B3 and 2nη4err, demonstrating how the estimate in Fig. 2.1 was determined.

The plot of Fig. 2.1 represents a long run of 107 local energies; the plateau is clear and

choosing the peak by hand agrees closely with the method described above. For shorter

25



0 1 2 3 4 5 6 7
log

10
B

0

1

2

3

4

2n
η er

r4 
 / 

10
9

VMC
2nη

err
4 = B3

B
opt

Figure 2.3: Plot showing where the criterion B3 > 2nη4err for the choice of block length

is satisfied. If B is reduced from its maximum value, the last block length for which the
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solid line labelled ‘These data’ shows the error obtained from demanding that B3 > 2nη4err,

and corresponds to using B = 64 with the 103 local energies. The dash-dot line labelled

‘ηerr from 106 points’ shows the error factor that one obtains from performing a much

longer run.
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runs this is not the case and noise in the plot can make it difficult to discern where ∆

plateaus. Furthermore, even calculations of Bopt are subject to noise in the estimated

correlation length. Figure 2.4 shows an example of this; the calculation was 103 VMC

steps with the CH4 molecule. Separately, we also performed a calculation on the same

system with 106 steps, allowing a much more accurate estimate of ncorr. We construct a

more accurate estimate of the error bar for the shorter run using the estimated correlation

length from the longer run — this is also shown in the plot.

It is clear that uncertainty in the correlation length is equivalent to uncertainty in

the error bar. We now investigate how this affects the distribution of results, focusing in

particular on the numbers of outliers.

2.2 VMC calculations

Before performing any sort of analysis using assumed PDFs, we directly access the dis-

tribution of results from an ensemble of VMC calculations. We have performed VMC

calculations for two typical examples of systems currently studied; the all-electron carbon

atom and a periodic crystalline silicon system. For the C atom we performed 5 × 104,

2×104 and 104 calculations of length 200, 500 and 1000 steps, respectively. The Si system

used a periodic simulation cell containing 54 silicon atoms, where the 1s22s22p6 electrons

were described by pseudopotentials. For the Si system, we performed 1.5× 105, 7.5× 104

and 3× 104 calculations of length 100, 200 and 500 steps, respectively.

Each short calculation yields an energy and estimated error. The errors were obtained

by reblocking each short run individually using the criterion of Eq. (2.5). From the data

we estimate the probability P
(

δĒ > Q∆
)

of observing a VMC energy Ē at a position

more than Q∆ from the true mean E0, where δĒ = |Ē − E0| and ∆ is the estimated

error bar, itself also a random variable. The underlying mean E0 is calculated accurately

using a much longer run or by averaging over all of the shorter runs. If the error bars

exactly described the width of an underlying Gaussian distribution, one would expect

P
(

δĒ > Q∆
)

= erfc(Q/
√
2). Figure 2.5 shows VMC energies and error bars for the C

atom, and the symbols in Figs. 2.8 and 2.9 show the deviation of the VMC results from

the ideal Gaussian case.
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By estimating the statistical error bar for each run (and also computing the uncor-

rected error in each case), we are able to estimate pind, which is the distribution of the

estimated effective number of steps ν = n/η2err, where n is the number of VMC steps

and ηerr is the error factor of Eq. (2.1). An example histogram of pind is shown in Fig.

(2.6); one can see that ν is occasionally estimated to be larger than n. This is clearly

unphysical, stemming from noise in the estimate of the correlation length, and results in

underestimation of the statistical error bar. The distribution pind appears to decay at

large ν as ν−A, where A is between 4.5 and 6.5.

2.3 Gaussian model

We now replace VMC sampling with an ideal process where the underyling distributions

are Gaussian. Our starting point is the distribution of local energies, ploc, from which

energies are drawn at successive points along the random walk in configuration space.

The quantity of interest is again the probability P
(

δĒ > Q∆
)

of observing a sample

mean energy Ē at a position more than Q∆ from the true mean E0.

Let us assume that the distribution of local energies is Gaussian,

ploc(EL) =
1√
2πσ0

exp

(−(EL − E0)
2

2σ2
0

)

, (2.6)

where σ2
0 is the variance of the distribution. Consider drawing n samples {Ei} from

the probability density function (PDF) of Eq. (2.6) using the Metropolis algorithm; as

described above this yields ν0 ≤ n independent samples due to serial correlation. For this

simple case the sample mean, Ē = (1/n)
∑n

i=1Ei, has the distribution

pave(Ē) =

√

ν0
2πσ2

0

exp

(−(Ē −E0)
2

2σ2
0/ν0

)

, (2.7)

which shows the well-known result that the width of the Gaussian mean-energy PDF

reduces as n−1/2 with the number of steps.

The statistical error bar on Ē is calculated from the same set of local energies as the

estimate itself. However, since estimates of the correlation length are subject to noise,

there is uncertainty in the effective number of independent samples. Although this leaves

Ē unaffected, it does influence the estimated error. As before, we define ν as the random

estimate of ν0 and again refer to the PDF pind from which ν is drawn.
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It is well-known that a sum of squares of normally-distributed random numbers follows

the chi-square distribution [32]. Since the error bar ∆ is related to the sample variance

through Eq. (2.1), we can write down the bivariate PDF perr for ∆ and ν,

perr(∆, ν) =
∆ν−2 exp

[

−ν(ν−1)∆2

2σ2
0

]

pind(ν)

(

ν(ν−1)

σ2
0

)
1−ν
2

2
ν−3

2 Γ
(

ν−1
2

)

, (2.8)

where ∆ is only allowed to take positive values and Γ is the Gamma function.

Let us pause to observe the behaviour of the estimated error bar implied by Eq. (2.8),

which is plotted in Fig. 2.7. If for a moment we assume pind(ν) = δ(ν − ν0), i.e., we have

an exact value of the correlation length, and set the derivative of Eq. (2.8) with respect

to ∆ to zero, we find that the modal error is

∆mode = σ0

√

2

ν0
− 1

ν0 − 1
, (2.9)

which leads directly to the well-known σ0/
√
ν0 error bar for large ν0.
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It is straightforward to find analytically the probability of observing an energy more

than Q error bars from the mean as a function of Q and ∆. This is done by integrating

Eq. (2.7),

2

∫ ∞

E0+Q∆

dĒ pave(Ē) = erfc

(

Q∆

σ0

√

ν0
2

)

. (2.10)

To find the desired probability, P
(

δĒ > Q∆
)

, we evaluate the expectation value of Eq.

(2.10) with respect to the distribution of ∆ and ν,

P
(

δĒ > Q∆
)

=

∫ ∞

2

dν

∫ ∞

0

d∆ perr(∆, ν) erfc

(

Q∆

σ0

√

ν0
2

)

, (2.11)

where we have used the fact that the sample mean and sample variance are independent

for Gaussian distributed random variables [33,34]. To evaluate the integral of Eq. (2.11),

we require the distribution pind and an accurate estimate of the true effective number of

steps, ν0. We will take these quantities from the VMC results of Sec. 2.2, so that the

integral of Eq. (2.11) represents an ideal Gaussian process accompanied by the uncertainty

in the number of independent samples (and thus the correlation length) that we observe

in VMC. The integral of Eq. (2.11) may then be evaluated numerically.

2.4 Results

Figures 2.8 and 2.9 show the actual fractions of outliers from the VMC calculations

compared with those predicted by Eq. (2.11), which used pind and ν0 from the VMC

calculations but otherwise assumed a model Gaussian process. The fraction of points

occuring more than Q error bars from the mean has been offset by erfc(Q/
√
2) in the

figures to highlight the deviation from the result when the correlation length is known

exactly, i.e., pind(ν) = δ(ν − ν0).
When n takes smaller values, the uncertainty in the correlation length is greater and

the fraction of points which may be classified as outliers is larger. A poor trial wave

function could also contribute to the effect by reducing the sampling efficiency, although

for the systems studied here we have used the same wave function throughout. In the

case of the C atom, instead of the 0.13 probability of observing an energy more than 1.5

error bars from the mean that one would expect on the basis of Gaussian statistics, the

VMC results are consistent with a 0.25 probability (for runs of 200 local energies). For

the other runs and the silicon system, the effect is of the same order of magnitude.
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Figure 2.8: Enhancement of the probability of observing an energy more than Q error

bars from the mean for 54-atom (216-electron) bulk Si. The square, circular and triangular

symbols show the results of VMC calculations of n = 100, 200 and 500 local energies,

respectively. The number of calculations for each set was (1.5 × 107)/n. The lines show

the results of evaluating the integral of Eq. (2.11), where ν0 and pind were determined

from the VMC data.
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calculations for each set was 107/n. The lines represent the results of evaluating the

integral of Eq. (2.11), where ν0 and pind were determined from the VMC data.

33



0 1 2 3 4 5
Q

1

10

100

1000

10000

1e+05

P(
|E_ -E

0| >
 Q

∆)
 / 

er
fc

(Q
/√

2)

VMC (n = 200)
Theory (n = 200)
VMC (n = 500)
Theory (n = 500)
VMC (n = 1000)
Theory (n = 1000)

Figure 2.10: Plot of the probability of observing an energy more than Q error bars from

the mean as a multiple of the result expected when the correlation length is known exactly.

The calculations are for the all-electron carbon atom.

Uncertainty in the correlation length has a rather dramatic effect on the probability

of observing extreme outliers. Figure 2.10 shows that for the runs of length n = 200, we

observe 104 times more energies lying more than 5 error bars from the mean than expected.

In fact, these data are from 5×104 VMC runs, and since erfc(5/
√
2) = 6×10−7, we do not

expect to observe any energies at all more than 5 error bars from the mean — we actually

observe 385 such results in the VMC data. Similarly, as shown in Fig. 2.10, for the runs

of length n = 1000 we find that a factor of 103 more energies occur more than 5 error

bars from the mean than expected. These are of course very small absolute probabilities,

but the enhancement over the ideal case is striking.

We have highlighted that outliers can occur much more frequently than expected in

QMC results. The effect depends on the system and run length. In certain situations,

there appear to be ways of alleviating the problem. One can produce a return to the

expected distribution of results by using a correlation length estimate from a much longer
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Figure 2.11: Plot of the energies and error bars obtained from VMC with the C atom

and n = 200. The points labelled ‘naive’ are from assuming the data to be independent,

and the points labelled ‘corrected’ are from applying a single estimate of the correlation

length, η2err = 11.1, to all of the shorter runs (multiplying the ‘naive’ results by
√
11.1).

calculation. For the C and Si systems, estimating the error bars for each short run using

a single more accurate estimate of the correlation length (from a longer run of 107 steps

or by averaging over the shorter runs), results in a return to P
(

δĒ > Q∆
)

= erfc(Q/
√
2).

This is perhaps unsurprising. Figures 2.11 and 2.12 illustrate the point; Fig. 2.11 shows

the distribution of energies and error bars from assuming that the local energies are

independent (this is equivalent to reblocking with B = 1). Also shown is the distribution

of error bars obtained by multiplying the errors in the first dataset by ηerr, which was

calculated from a much longer run, thus making them much more accurate. Figure 2.12

shows the probability of observing an energy more than Q error bars from the mean for

the C atom with n = 200 using several methods to estimate the errors; the first is the

naive (data assumed to be independent) estimate, the second is from reblocking each

short run separately (introducing noise into the estimated errors), and the third is from

calculating the error factor accurately once (from a longer calculation) and applying it to

all of the short runs. Using an accurate estimate of the correlation length to estimate the

error bars for all of the shorter calculations essentially returns the frequencies of outliers

to the expected values.
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the mean for the C atom with n = 200. The black squares are from assuming the initial
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correlation length in all of the estimates of the errors for the shorter runs. The result for

exact correlation lengths and Gaussian statistics, erfc(Q/
√
2), is also shown.
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For systems exhibiting singularities in the local energy, such as those with approxi-

mate wave function nodes or unfulfilled cusp conditions, the distribution of local energies

possesses tails ∝ |EL − E0|4, which one might expect to play a role in determining the

frequency with which outliers are observed [35]. This is a commonly encountered situation

and is indeed the case for the two systems that we have considered.

We find that the contribution from the non-Gaussian parts of the energy PDF towards

the frequency of outliers is statistically insignificant. There is considerable evidence for

this statement; first, the integrals based on a purely Gaussian ploc agree very well with

the VMC data, suggesting that uncertainty in the correlation length is almost solely

responsible for the effect. Secondly, attempting to fit a function with power law tails

(of the form suggested in Ref. [35]) to the VMC energies yields very small values for the

weight under the tails (usually within error bars of zero), even though the distribution of

local energies is itself manifestly non-Gaussian. For example, we form a biased estimate

for the weight of the power-law tails by fitting Eq. (48) of Ref. [35] to the distribution

of energies obtained from 104 VMC runs, each of 1000 steps. We find λ3 = 1.1(8) and

λ3 = 0.2(4) for the C atom and the bulk Si system, respectively. The χ2 error in the fit

was 0.95 per data point for the C atom and 1.03 per data point for the bulk Si system.

In addition, in Appendix A.4 we repeat the analysis of this Chapter using the more

complicated heavy-tailed distributions of Ref. [35], finding that the results are largely

unchanged.

Furthermore, a numerical estimate of the linear correlation of the average energy and

the estimated error bar,

corr(δĒ,∆) =

∑

i

(

δĒi − 〈δĒ〉
)

(∆i − 〈∆〉)
√

∑

i

(

δĒi − 〈δĒ〉
)2
√

∑

i (∆i − 〈∆〉)2
, (2.12)

gives small values, roughly consistent with the Gaussian case, in which δĒ and ∆ are

independent. For example, estimating corr(δĒ,∆) using 104 VMC energy estimates for

the C atom, each an average over 1000 local energies, yields a correlation coefficient

of 5.65 × 10−2. Similarly, estimating the correlation coefficient from 7.5 × 104 VMC

calculations for the bulk Si system, each comprising 200 local energies, gives a value of

1.97× 10−2.

For isolated calculations where there are no external estimates of ncorr available, the

37



problem of the increased frequency of outliers is one of gathering sufficient data for an

accurate estimate of the correlation length. This highlights the importance of exploring

ways of improving the efficiency of QMC. Where dependence upon several parameters

is being investigated for large systems, one should calculate accurately the correlation

length with a single long run. Assuming that this value is transferable, the accurate

estimate of the correlation length can then be used to calculate the error bars on related

shorter calculations in two ways: using Eq. (2.1), replacing ηerr with the square root of the

accurately-estimated correlation length, or using Eq. (2.5), allowing the accurate estimate

of ncorr to guide the choice of Bopt. Agreement of the two methods provides a consistency

check.
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Chapter 3

QMC with biexcitons

3.1 Introduction

We begin this chapter with an introduction to excitonic systems and an overview of

previous work.

Semiconductors are materials that at 0K have a full valence band and an empty

conduction band, with a band gap of ≈ 1 eV. Shining light on a semiconductor can excite

an electron from the valence band into the conduction band, generating a hole state in

the valence band. The energy of such an excitation is lower than the sum of the energies

of an isolated electron and an isolated hole because of electron-hole binding. A bound

electron-hole pair is called an exciton.

In closed-shell materials, such as ionic compounds and inert gases, excitons tend to

be small compared to the interatomic spacing; these are called Frenkel excitons [36]. In

materials where the bonding is more covalent in character, such as silicon and gallium

arsenide, excitons have a much larger extent in space [37]. In these cases, excitons are

of the Mott-Wannier type [38]. We focus here on Mott-Wannier excitons for several

reasons. First, the greater radius of a Mott-Wannier exciton implies that its experimental

lifetime will be greater. Secondly, the ability to use a theoretical picture of the underlying

semiconductor that is averaged over many atomic sites (i.e., the material is accounted for

by an appropriate dielectric constant) is very convenient. Thirdly, Mott-Wannier excitons

are generally more mobile than Frenkel excitons, making them a vehicle for transporting

energy without transporting charge and giving them a large number of applications.

39



The creation and recombination of excitons is one of the principal mechanisms by

which light interacts with semiconductors and is important for a large number of devices

and physical phenomena. For example, the functioning of some organic solar cells depends

on excitonic properties. In a dispersed-heterojunction solar cell, where the active region

is a mixture of two organic semiconductors, an incident photon can create an exciton

which then moves diffusively through the material. When the exciton reaches an interface

between the electron donor and acceptor materials, it is likely to ionise, allowing the

electron and the hole to contribute separately towards the current [39]. Excitons are also

instrumental in the functioning of LEDs and photographic devices, and have recently been

suggested as providing a possible route to the realisation of a quantum computer [40]. As

a result, excitonic systems have been the subject of numerous experimental [41–45] and

theoretical [46–49] studies in recent years.

However, it is the phenomenon of Bose-Einstein condensation (BEC) that has mo-

tivated the development of the experimental geometry that we investigate here. The

observation of BEC of ultracold atoms in the 1990s was the culmination of decades of

efforts [50, 51]. One can very easily gain a qualitative understanding of the experimental

difficulties. The thermal de Broglie wave length λ is

λ =
h√

2πmkBT
, (3.1)

where m is the particle mass and T is the temperature. The onset of BEC is expected

when λ is comparable to the interparticle separation, which is proportional to n−1/3 in

3D, where n is the density. This leads to the relation

Tc ∝ n2/3m−1 , (3.2)

where Tc is the condensation temperature. Some of the difficulties of producing a BEC

are encapsulated in Eq. (3.2); the density n must be sufficiently small for the composite

boson picture to be valid, while at the same time the density must be sufficiently high

for condensation to occur at a given temperature. It is also clear that BEC of lighter

particles is easier to achieve than that of heavy particles.

In a similar way to atoms with integer spins, excitons may be regarded as composite

bosons in the low density limit [43, 52]. Inserting reasonable estimates for the exciton

mass and density [43] into Eq. (3.2) yields a condensation temperature of ≈ 1 K, which
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is much higher than Tc for atoms. However, there are some difficulties associated with

observing BEC of excitons rather than atoms. Measurements of excitonic properties are

necessarily external probes of semiconducting systems, where there are many processes

that have the potential to obscure evidence of BEC [53–55]. Furthermore, the electrons

and holes can have a tendency to form an electron-hole plasma rather than an excitonic

state.

Several experimental studies of bulk Cu2O in the 1980s and 1990s claimed to have

observed BEC of excitons [56–58]. Initially, Tc ≈ 2K was expected, which was easily

reached in the experiments [53]. However, later studies found that the Auger recombi-

nation rate had been underestimated in the previous work by as much as two orders of

magnitude [59]. This meant that the exciton densities that were achieved in the exper-

iments were much lower than first thought. Furthermore, the Auger process was acting

to heat the excitons, slowing down thermalisation [41]. As a result, BEC was effectively

ruled out as an explanation for the experimental observations. That the earlier papers

claiming to have observed BEC were largely unchallenged is an indicator of the complex-

ity of the problem. However, as experimental techniques and theoretical understanding

improve, there is one particular physical limitation that hinders the creation of an exciton

BEC in bulk materials.

The greatest obstacle to the observation of BEC of excitons in bulk semiconductors is

that excitons recombine on very short time scales — on the order of nanoseconds. This is

typically too little time for thermalisation to occur. The bilayer, or coupled-quantum-well

(CQW), geometry has been shown to both greatly extend exciton lifetimes and to speed

up the rate at which they cool [41, 42, 45, 60, 61].

The bilayer system comprises alternating thin layers of (typically two) different semi-

conductors with an electric field applied in the growth direction. The bilayer system thus

confines a 2D electron gas and a 2D hole gas in parallel planes separated by a thin layer of

a different material. This can give rise to indirect excitons, which consist of electron-hole

pairs bound across the two layers. Figure 3.1 shows a schematic of the system.

The bilayer geometry possesses several clear advantages over bulk systems for achieving

BEC. Indirect excitons have longer average lifetimes because of the barrier between the

electrons and the holes, and this barrier can be controlled by the growth process. The
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Figure 3.1: A schematic of the bilayer system. The layer thicknesses are typical of exper-

imental values and are taken from Ref. [42].

phase diagram is also reasonably well-understood, allowing choices of density and layer

separation that should yield excitonic phases [49]. Finally, it has been found empirically

that exciton-phonon coupling, the mechanism by which excitons thermalise, is up to

three orders of magnitude greater in bilayer systems than in the bulk, so that thermal

equilibrium is much more accessible [60].

Despite careful study of the bilayer phase diagram [49], our understanding of the

exciton-exciton interaction in bilayer systems is limited. On the one hand there is a re-

pulsive electrostatic interaction between excitons. For example, if the layer separation is

nonzero then the excitons have parallel dipole moments, giving an asymptotically domi-

nant repulsive interaction. Furthermore, the static charge distribution of each exciton has

a permanent quadrupole moment in general (even at zero layer separation, provided the

electron and hole masses differ), giving another repulsive interaction term [48]. On the

other hand, fluctuating dipole (van der Waals) forces result in an attraction between exci-

tons at short range. Because of the existence of the van der Waals forces, it is sometimes

possible for biexcitons (bound states of pairs of excitons) to form.
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Biexciton formation would inhibit exciton condensation and make interpretation of

experimental data more problematic. One could conceive of a condensate of biexci-

tons [62, 63], but the analysis is more complicated and efforts have largely concentrated

on producing condensates of excitons, neglecting the possibility of biexciton formation.

Knowledge of the stability of biexcitons in different geometries is thus vital. Further-

more, a better understanding of the interaction between excitons in CQWs will aid the

determination of the exciton densities achieved in experiments.

The dependence of exciton and biexciton binding energies on the layer separation

has been investigated by Tan et al., who found that, while the exciton binding energy

decays slowly as the inverse of the layer separation, the biexciton binding energy decays

extremely rapidly [47]. Recent studies of the exciton-exciton interaction using a heavy-

hole approximation have found there to be a critical layer separation for each electron/hole

mass ratio, beyond which biexcitons become unstable with respect to dissociation into two

separate excitons [48, 64]. Here, we report QMC calculations of the binding energies of

biexcitons in bilayer systems and exciton-exciton interaction potentials.

This chapter is arranged as follows. In Sec. 3.2 we describe our calculations of the

binding energies of biexcitons and investigate the range of layer separations and mass

ratios for which biexcitons are stable. In Sec. 3.3 we present our data for the exciton-

exciton interaction potential. In Sec. 3.4 we report radial distribution functions (RDFs)

for biexcitons. Finally, we draw our conclusions in Sec. 3.5. We report final energies in

exciton Rydbergs (R∗
y = µe4/[2(4πǫ0ǫ)

2
~
2], where µ = memh/(me + mh) is the reduced

mass of an exciton and me and mh are the electron and hole masses) and lengths in terms

of exciton Bohr radii [a∗B = 4πǫ0ǫ~
2/(µe2)].

3.2 Biexciton binding energies

3.2.1 Model system

We have modelled the coupled-quantum-well system by an idealised two-dimensional (2D)

bilayer, in which the electrons and holes are confined to two parallel planes, and the effec-

tive mass tensors of the electrons and holes are isotropic. In reality, electrons and holes

are free to move within quantum wells of finite width (e.g., one experimental setup [43]
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Figure 3.2: The model bilayer system. The electrons are labelled ‘1’ and ‘2’, and the holes

are labelled ‘a’ and ‘b’.

has well widths of 8 nm and a well separation of 4 nm), although the Coulomb attrac-

tion between electrons and holes should confine the particles to the inner edges of their

respective wells. The model we consider here has two electrons in one layer and two holes

in the other. We have also restricted our attention to biexciton systems in which the two

electrons have opposite spins, as do the two holes, because this is the ground-state spin

configuration. This system is ideal for a QMC approach because of the small number of

particles and the lack of wave function nodes — it is a fairly simple task to obtain exact

energies for the model using DMC.

The biexciton Hamiltonian is

Ĥ = − 1

2me
(∇2

1 +∇2
2)−

1

2mh
(∇2

a +∇2
b)

+
1

r12
+

1

rab
− 1
√

r21a + d2
− 1
√

r21b + d2
− 1
√

r22a + d2
− 1
√

r22b + d2
, (3.3)

where 1 and 2 denote the electron coordinates, a and b denote the hole coordinates, and

r12 = |r1 − r2|, r1a = |r1 − ra|, etc. are the in-plane separations. Figure 3.2 provides an

illustration of the system. We first investigate the biexciton binding at a range of layer

separations d and electron/hole mass ratios σ = me/mh,
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The trial wave function we use is

ψ = exp[J ]ΨeeΨhhΨeh

Ψee = exp

(

c1r12
1 + c2r12

)

Ψhh = exp

(

c3rab
1 + c4rab

)

Ψeh = exp

(

c5r1a + c6r
2
1a

1 + c7r1a
+
c5r2b + c6r

2
2b

1 + c7r2b
+
c5r2a + c8r

2
2a

1 + c9r2a
+
c5r1b + c8r

2
1b

1 + c9r1b

)

+ exp

(

c5r1a + c8r
2
1a

1 + c9r1a
+
c5r2b + c8r

2
2b

1 + c9r2b
+
c5r2a + c6r

2
2a

1 + c7r2a
+
c5r1b + c6r

2
1b

1 + c7r1b

)

, (3.4)

where c1–c9 are parameters and exp[J ] is a Jastrow factor. As described in Ref. [47], some

of the parameter values are fixed by known physical behaviour. We enforce c2, c4, c7, c9 > 0

to prevent singularities in the wave function, and c6, c8 < 0 to ensure that the wave

function is small where electron-hole separations are large. The cusp conditions [65, 66]

are enforced by fixing the values of c1 and c3, and additionally fixing c5 when d = 0. For

d 6= 0, we set c5 = 0.

The ΨeeΨhhΨeh part of the wave function is of the same form as that used by Tan et

al. [47], although our wave function is more flexible because we also multiply by a Jastrow

factor [16]. The Jastrow function J takes the form

J = (r12 − Lee)
3Θ(Lee − r12)

Nee
∑

l=1

ulr
l
12

+ (rab − Lhh)
3Θ(Lhh − rab)

Nhh
∑

l=1

vlr
l
ab

+

Neh
∑

l=1

wl

{

rl1a(r1a − Leh)
3Θ(Leh − r1a) + rl1b(r1b − Leh)

3Θ(Leh − r1b)

+ rl2a(r2a − Leh)
3Θ(Leh − r2a) + rl2b(r2b − Leh)

3Θ(Leh − r2b)
}

, (3.5)

where {ui}, {vi} and {wi} are sets of optimisable parameters and the cutoffs Leh, Lee, and

Lhh were also optimised. The first, second and third sums describe electron-electron, hole-

hole and electron-hole correlation, respectively. The functions are truncated smoothly in

Eq. (3.5) so that the kinetic energy is well-behaved when an interparticle separation moves

through the relevant cutoff. Excluding cutoffs, the Jastrow factor contained 24 parameters

(since Nee = Nhh = Neh = 8) for σ 6= 1, but for σ = 1 the electron-electron correlation

is equivalent to the hole-hole correlation by symmetry and the number of parameters is
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reduced to 16. There are also fewer parameters in Eq. (3.4) when σ = 1 because c1 = c3

and c2 = c4 by the same logic.

The most important feature of Eq. (3.4) is that it can describe states where all four

particles are bound and states comprising two well-separated excitons. Generally, two

separate excitons emerge when one of either c6 or c8 goes to zero.

Our calculations of the binding energy also used a three-body Jastrow factor [3]. For

a typical case where EVMC−EDMC = 3× 10−4R∗
y, the reduction in the VMC energy from

the inclusion of a three-body term was 10−4R∗
y. Although the DMC energy is independent

of the trial wave function, the statistical efficiency of the method is increased and biases

are reduced when the wave function is improved. Obtaining the best possible trial wave

function was especially important for the RDF calculations described in Sec. 3.4, where

the extrapolated estimator of Eq. (1.30) was used to reduce the effect of the error in the

wave function.

We optimised the free parameters of Eq. (3.4) by unreweighted variance minimisa-

tion [67–69] and linear-least-squares energy minimisation [14]. The trial wave function

can describe the dissociated system more accurately than it can describe the bound sys-

tem; hence energy minimisation is the more sensible choice for investigating binding,

although this depends upon initial parameters and configurations. In other words, the

minimum of the energy variance is sometimes a state with two well-separated excitons

even when the ground state is actually a bound biexciton. In principle, performing DMC

with an initial distribution describing the dissociated system could result in a nonzero

binding energy, but in practice the repulsive tails of the exciton-exciton interaction keep

the two quasiparticles apart. There were several cases, especially around the critical

layer separation, where energy minimisation yielded a bound biexciton at the VMC level,

and variance minimisation gave two separate excitons (with a biexciton binding energy of

zero). We also found that simply fixing the wave function parameters to keep the particles

close together and then allowing the ground state to emerge at the DMC level (i.e., using

an inaccurate localised wave function) often allows one to produce the correct binding,

although this is extremely inefficient and likely to suffer from increased bias. However,

the issue of bias is simply one of computation convenience as long as the biexciton binding

is qualitatively correct; one can remove bias by extrapolating to zero time step and using
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a larger population.

3.2.2 Results

For each layer separation d and electron/hole mass ratio σ = me/mh, the biexciton

binding energy was calculated as Eb = 2EX − EXX , where EX is the energy of a single

exciton and EXX is the energy of the four-body biexciton system. The exciton energy EX

was obtained using a numerically exact Runge-Kutta integration technique, (converged

to much greater accuracy than the biexciton QMC results) as described in Ref. [47], while

DMC was used to calculate the biexciton energy EXX . The DMC energies were converged

with respect to time step and population size; any remaining bias is much smaller than

the statistical error bars.

Biexciton binding energies for σ = 0.3, 0.5, and 1 are shown in Figs. 3.3, 3.4, and

3.5, respectively. It can be seen that our results are close to those of Tan et al. [47],

the difference arising from our use of exact single-exciton energies. Tan et al. used Eq.

(3) of Ref. [47] (a rational functional fitted to the exact results) to generate EX values,

introducing a small, systematic error. Removing this error reveals that our DMC data are

in statistical agreement with those of Tan et al. The random errors in our data are much

smaller, so we can locate the layer separation at which the biexciton ceases to be bound.

Tan et al. also fitted an exponential form to their binding energy data, which resulted in

the erroneous conclusion that biexciton binding persists to infinite layer separation. The

exponential fits are also shown in Figs. 3.4 and 3.5.

Our DMC results show some deviation from the binding energies obtained by Schindler

and Zimmermann [48], especially when d→ 0, when Eb → 0, and when the mass ratio is

close to 1, because we have performed a full simulation of all four particles in the biexciton,

whereas they simulated a pair of excitons interacting via a model potential. In fact,

Schindler and Zimmermann calculated an effective exciton-exciton interaction potential

using infinite hole masses (and an analogue of the Born-Oppenheimer approximation), and

then solved the Schrödinger equation for two (finite-mass) particles interacting via their

potential. The deviation of our binding energies from those of Schindler and Zimmermann

is approximately 4 × 10−3R∗
y where Eb → 0. At intermediate d the agreement is much

better, but below d ≈ 0.1a∗B we find larger differences, reaching a maximum of almost
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Figure 3.3: Biexciton binding energy Eb as a function of layer separation d for elec-

tron/hole mass ratio σ = 0.3. The upper panel shows the binding energy for layer separa-

tions close to the critical separation; the lower panel shows the binding energy for small

layer separations.
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Figure 3.4: Biexciton binding energy Eb as a function of layer separation d for elec-

tron/hole mass ratio σ = 0.5. The upper panel shows the binding energy for layer separa-

tions close to the critical separation; the lower panel shows the binding energy for small

layer separations. The dashed line shows the exponential fit of Ref. [47].

49



0.25 0.3 0.35 0.4
d (a

B
*)

0

5

10

15

E
b (

10
-3

R
y*)

DMC (present work)
Schindler & Zimmermann
DMC (Tan et al.)

Figure 3.5: Biexciton binding energy Eb as a function of layer separation d for equal elec-

tron and hole masses (σ = 1). The square shows Schindler and Zimmermann’s estimate

of the critical point at which the biexciton ceases to be bound [48]. The dashed line shows

the exponential fit of Ref. [47].
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Figure 3.6: The region of biexciton stability from DMC calculations compared with

that found by Schindler and Zimmermann [48] and by Meyertholen and Fogler [70]. The

critical points were found by extrapolating the biexciton binding energies to zero using

the fitting form set out in Ref. [70]. The statistical errors are comparable to the size of

the symbols.

0.1R∗
y at d = 0, as shown in Figs. 3.3 and 3.4.

As can be seen in Fig. 3.6, which shows the range of σ and d over which the biexciton is

stable, we find a somewhat larger region of stability for the biexciton than Schindler and

Zimmermann. Let dcrit(σ) be the critical layer separation, beyond which the biexciton is

unbound. As σ → 0, the heavy-hole approximation made by Schindler and Zimmermann

becomes increasingly accurate, and our results for dcrit(0) agree with theirs. On the other

hand, for σ = 1 their interaction potential is less accurate and our value of dcrit(1) is

therefore significantly higher than theirs.
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Meyertholen and Fogler used the stochastic variational method (SVM), which is a

highly accurate variational method in which the energy of a trial wave function (con-

structed from a basis set of correlated Gaussians) is minimised in a similar way to VMC.

Our data are mostly in excellent agreement with those of Meyertholen and Fogler [70],

although at small σ we find a slightly larger region of biexciton stability. This is not an

artifact of the extrapolation, which followed the scheme set out in Ref. [70], for we were

able to find points with nonzero binding energies outside the region of stability defined

by Meyertholen and Fogler. This is consistent with the variational principle that applies

to their results.

One may parameterise the boundary of the region of biexciton stability in Fig. 3.6.

Expressing dcrit in terms of σ + σ−1 ensures that the correct behaviour is observed upon

exchanging the electron and hole masses [i.e., dcrit(σ
−1) = dcrit(σ)]. A suitable fitting

function is

dcrit(σ) =
F√

σ + σ−1
tanh

[

G
√
σ + σ−1

]

+ 0.93 , (3.6)

where the parameter values F = 1.19(5) and G = −0.50(4) give a χ2 error of 0.4 per

data point. The functional form of Eq. (3.6) satisfies most of the conditions derived in

Ref. [70]: d′crit(0) is infinite, d
′
crit(1) = 0 and dcrit(0)− dcrit(σ) ∝

√
σ for σ ≪ 1.

Finally, Tan et al., also estimated the biexciton binding energy expected in the ex-

perimental setup of Butov et al. [42], which is described by Fig. 3.1. The well-width was

estimated to be d = 0.64a∗B, while the electron and hole masses in GaAs are known to be

0.067m0 and 0.45m0 respectively, although these are bulk values. Tan et al., used a hole

mass of 0.134m0 to give σ = 0.5, arguing that the bulk value should be reduced due to

confinement — this gave them a binding energy of Eb = 8.2 × 10−5R∗
y. Even taking the

unmodified bulk values for the effective masses, we find that these parameters correspond

to the region of Fig. 3.6 where biexcitons are unstable with respect to separation into two

excitons; for σ = 0.15 we find dcrit = 0.54a∗B, and for σ = 0.5 we find dcrit = 0.43a∗B, both

of which are below the experimental estimate.
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3.3 Exciton-exciton interaction

In the previous section we simulated all four particles to find the ground state, yielding

information about the stability of biexcitons. Now, we constrain two excitons to lie

a certain distance apart in order to probe the exciton-exciton interaction. This is of

interest to experimentalists, for example, who might wish to assume a certain form for

the interaction in order to estimate exciton densities.

The exciton-exciton interaction potential EI(R) at separation R is defined to be the

energy of a biexciton system in which the centres of mass of the two excitons are con-

strained to be a distance R apart, minus the energies of two isolated excitons. The

Hamiltonian for the constrained biexciton system may be written as

Ĥ = − 1

2µ

(

∇2
1 +∇2

2

)

− 1
√

r21 + d2
− 1
√

r22 + d2

+

∣

∣

∣

∣

R+
µ

me
(−r2 + r1)

∣

∣

∣

∣

−1

+

∣

∣

∣

∣

R+
µ

mh
(−r1 + r2)

∣

∣

∣

∣

−1

−
[

∣

∣

∣

∣

R− µ

mh
r1 −

µ

me
r2

∣

∣

∣

∣

2

+ d2

]−1/2

−
[

∣

∣

∣

∣

R+
µ

me
r1 +

µ

mh
r2

∣

∣

∣

∣

2

+ d2

]−1/2

,

(3.7)

where r1 and r2 are the in-plane electron-hole separations within the two excitons. The

first two potential terms represent the intra-exciton electron-hole potentials, followed

by the hole-hole, electron-electron, and finally the two inter-exciton electron-hole terms.

DMC calculations can then be performed for an effective two-particle system, with in-

plane coordinates r1 and r2. Figure 3.7 illustrates the relationship between the position

vectors in the effective two-particle system and the unconstrained four-particle system of

Sec. 3.2.

The form of trial wave function was the same as that used in Sec. 3.2, but with the

electron and hole coordinates being re-expressed in terms of r1, r2, and the fixed vector

R.

The centre-of-mass constraint may not be used to calculate the interaction potential

at very small exciton-exciton separations for σ 6= 0, because in that limit the repulsion be-

comes strong enough to dissociate the two individual excitons. This means that although

the ground state of Eq. (3.7) at very small R is well-defined, it corresponds to our model
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Figure 3.7: Diagram showing the coordinates used in the constrained exciton system.

The vector normal to the layers is coming out of the page. r1 is the in-plane position of

particle 1 (corresponding to the electron-hole separation vector of the first exciton), r2 is

the in-plane position of particle 2, and R is the centre-of-mass separation.

breaking down. In other words, the ground state of Eq. (3.7) in the limit R → 0 has

average intra-exciton separations 〈|ri|〉 ≫ R; the hole in the first exciton effectively binds

with the electron in the second exciton. We have calculated the exciton-exciton potential

only at separations R for which the excitons remain bound. Figure 3.8 demonstrates this

effect, exhibiting a potential which decreases at small R to physically unreasonable values.

Our DMC calculations yield a smooth exciton-exciton potential. Assuming for a mo-

ment that each exciton contains an electron and a hole directly opposite each other in the

bilayer, the dipole moment of an exciton is p = (0, 0, d) in Cartesian coordinates. Since

the z-component of the exciton-exciton separation is zero, the dipole-dipole interaction

takes the form

EI(R) =
2p · p
R3

=
2d2

R3
. (3.8)

The interaction energies shown in Fig. 3.8 do not deviate from Eq. (3.8) by more than

3.5 × 10−5R∗
y above an exciton-exciton separation of ≈ 7a∗B. The fits to the interaction

potential data are shown in App. A.1. The repulsive tails of the interaction (R > 10a∗B)

calculated for pairs of excitons with 0.1 < σ < 1 all collapse onto a single curve for each

value of d when scaled into excitonic units, showing a maximum deviation from each other
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Figure 3.8: Exciton-exciton interaction potential EI(R) as a function of centre-of-mass

separation R with σ = 1. The solid lines show the fit to the DMC data. Dashed lines

show the dipole-dipole interaction energy [Eq. (3.8)].

and Eq. (3.8) of 8× 10−5R∗
y.

For an electron/hole mass ratio of σ = 0, our results should reduce to the exciton-

exciton interaction under the heavy-hole approximation [48]. Figure 3.9 demonstrates

the agreement with the interaction potential calculated by Schindler and Zimmermann.

Equation (A.1) (in App. A.1) shows a functional form suitable for fitting to our data.

For large layer separations d the interaction is purely repulsive, whereas for smaller d

the interaction is attractive at short range. The critical point in the binding occurs near

the layer separation for which the minimum in the exciton-exciton interaction potential

disappears. Schindler and Zimmermann’s approach uses a model exciton-exciton inter-

action potential which depends on the layer separation d but not the mass ratio σ [48].

Constraining the centre of mass rather than the hole positions allows us to observe the

interaction potential for different mass ratios and layer separations, so that we do not

need to apply the interaction potential obtained in one system to another with different
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Figure 3.9: Exciton-exciton interaction potential EI(R) as a function of hole-hole sep-

aration R for the heavy-hole case (σ = 0) with d = 0.9a∗B. The solid line shows the

interaction potential from Ref. [48].

parameters. The dependence of the interaction potential upon σ is clear from Fig. 3.10,

and is consistent with the results shown in Fig. 3.6, in which biexcitons are stable at

d = 0.9a∗B for σ = 0 but not σ = 1.

For the strictly two-dimensional case (d = 0), we can compare our values of the Haynes

factor, fH = Eb/EX , with those of previous work. Usukura et al. performed numerically

exact variational calculations, finding fH = 0.665 for σ = 0 and fH = 0.193 for σ = 1 [71].

These data agree well with our values of fH = 0.670(3) and 0.19287(2) for σ = 0 and 1,

respectively.

3.4 RDFs in biexcitons

We now return to the full four-particle system of Sec. 3.2 and examine the distribu-

tion of interparticle separations in our simulations. The RDFs of electrons and holes

in biexcitons reveal important information about the physics of biexciton binding. The
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Figure 3.10: Exciton-exciton interaction potential EI(R) as a function of the (con-

strained) centre-of-mass separation R for d = 0.9a∗B and σ = 0 and 1.

electron-electron RDF is defined as

gee(r) =
1

2πr
〈δ(r12 − r)〉 , (3.9)

where the angled brackets denote the average over sets of electron and hole coordinates

distributed as the square of the ground-state wave function. The hole-hole RDF is defined

in a similar fashion. The electron-hole RDF is defined to be

geh(r) =
1

8πr
〈δ(r1a − r) + δ(r2a − r) + δ(r1b − r) + δ(r2b − r)〉 , (3.10)

remembering that r1a, r2a, etc. are the in-plane electron-hole separations. The RDFs may

be accumulated within QMC by binning interparticle distances. The errors in the VMC

and DMC estimates of the RDF [gVMC(r) and gDMC(r)] are linear in the error in the trial

wave function; we present here the extrapolated estimator of Eq. (1.30). Our VMC and

DMC RDFs are very close to one another, so the errors in our extrapolated estimates are

small. The RDFs presented here have been normalised such that

∫ ∞

0

2πrgext(r) dr = 1. (3.11)
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Figure 3.11: RDF gsingleeh (r) for an isolated electron-hole pair from the exact solution of

Eq. (2) in Ref. [47], shown at several layer separations for σ = 1.
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Figure 3.12: Extrapolated electron-electron RDF gextee (r) for bound biexcitons with σ = 1.

The hole-hole and electron-electron RDFs are identical for equal electron and hole masses.

The inset shows the maximum of the RDF in greater detail.
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Figure 3.13: Extrapolated electron-hole RDF gexteh (r) for the biexciton system with σ = 1

and several bilayer separations d.
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Figure 3.14: Biexciton electron-hole RDF relative to the single-exciton RDF, 2gexteh (r)−
gsingleeh (r), at σ = 1 and several bilayer separations d.
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Figure 3.11 shows the electron-hole RDF for a single exciton, gsingleeh , obtained from

the exact numerical solution to Eq. (2) of Ref. [47]. Figures 3.12 and 3.13 show electron-

electron and electron-hole RDFs, respectively, for the biexciton system with σ = 1. At

smaller layer separations the electron-hole RDF exhibits a larger peak at zero interparticle

separation, and decays more rapidly with interparticle distance.

The size of the biexciton is most easily judged by examining the electron-electron RDF

(which is identical to the hole-hole RDF for σ = 1). The size of the biexciton diverges

as the critical layer separation (dcrit = 0.43a∗B for σ = 1) is approached. At zero layer

separation, the electron-electron RDF is negligible for interparticle distances larger than

3a∗B and has a maximum at 0.3a∗B.

Although a second peak cannot be discerned in Fig. 3.13, the quantity 2gexteh (r) −
gsingleeh (r) plotted in Fig. 3.14 allows one to see the inter-exciton electron-hole RDF super-

imposed on the change in the intra-exciton RDF due to the presence of the other exciton.

This has the consequence of approximately removing the intra-exciton contribution from

the biexciton RDF. The peaks in Fig. 3.14 occur at the same separation as those in Fig.

3.12, confirming that excitons retain their identity in bound biexcitons for large layer

separations, even when electrons and holes have equal masses. For zero layer separation

there is no discernable peak, however, and the function rises sharply to a maximum at zero

interparticle separation. This may be due to the large change in the single-exciton RDF

arising from the presence of the other exciton which swamps the inter-exciton electron-hole

RDF. We are thus unable to conclude with certainty that excitons retain their identities

in bound biexcitons throughout the region of biexciton stability. Attempts to describe

biexciton properties by using effective exciton-exciton potentials are expected to be more

successful when the layer separation is large.

3.5 Conclusions

We have carried out a QMC study of the interaction between pairs of excitons in bilayer

systems. The exciton-exciton interaction potential was calculated by constraining the

centre-of-mass separation, which we believe gives a more accurate pair potential at short

range than the potential calculated by assuming the holes to be infinitely heavy [48].
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We find that for large layer separations, excitons retain their identity when they bind to

form a biexciton, suggesting that treating excitons as individual particles is a reasonable

approximation. However, by solving the Schrödinger equation for all four particles in a

biexciton, we find that the range of layer separations and mass ratios over which biexcitons

are stable is somewhat larger than the region of stability predicted using exciton-exciton

pair potentials.
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Chapter 4

QMC with the one-dimensional

electron liquid

4.1 Introduction

Landau’s theory of Fermi liquids has proven tremendously successful at describing a wide

range of systems of interacting fermions. In particular, the theory legitimises the free

electron model by casting fermionic systems in terms of weakly-interacting quasiparticles.

Systems of electrons in 1D provide an intriguing example of departure from the Landau

Fermi liquid paradigm, exhibiting non-Fermi-liquid behaviour for any finite strength of

the electron-electron interaction [72]. Perhaps the simplest model of electrons in one

dimension is the one-dimensional (1D) homogeneous electron gas (HEG), which comprises

electrons on a uniform positively-charged background.

The strong correlation occurring in 1D results in excitations which are collective in

nature rather than electron-like quasiparticles. The theory of Tomonaga and Luttinger

gives an appropriate description of the low-energy spectrum of the 1D HEG [73–75].

There are several experimental signatures of the Tomonaga-Luttinger (TL) liquid which

distinguish it from the normal Fermi liquid; these are largely accessible to transport and

tunnelling experiments. For example, the conductivity of a 1D channel as a function of

temperature is expected to vary logarithmically in the presence of weak disorder for the

Fermi liquid, and as a power law for the TL liquid [76, 77]. Analogous relations hold

for the differential conductivity and the optical conductivity. Spin-charge separation,
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whereby spin and charge excitations propagate at different characteristic velocities, is

also associated with the lack of quasiparticles in the TL liquid [75, 78, 79].

One-dimensional models are easy to envisage, but experimental observation of 1D

behaviour is problematic. Low-dimensional systems are never entirely independent of

their 3D environment, leading to effects that can obscure the 1D behaviour. Further-

more, the presence of impurities has been shown to alter drastically the behaviour of a

TL liquid [72, 80]. However, even in manifestly 3D systems, behaviour unambiguously

characteristic of electrons in 1D arises surprisingly frequently. Features associated with

the Luttinger model have been observed in organic conductors (e.g., tetrathiafulvalene-

tetracyanoquinodimethane and the Bechgaard salts) [81–86], transition metal oxides [87,

88], carbon nanotubes [77,89–92], edge states in quantum Hall liquids [93–95], semiconduc-

tor heterostructures [96–100], confined atomic gases [101–103], and atomic nanowires [104].

Theoretical work on electrons in 1D thus has a large region of potential applicability.

The exactly-solvable Luttinger model describes electrons moving in one dimension

with short-range interactions and linear dispersion. Studies with long-range interactions

have found that the exponents and excitation velocities are nontrivially altered [105].

One thus expects to be able to describe the 1D HEG within the Luttinger model, but the

exact behaviour of the parameters of the model is largely unclear. The interactions that

we study here are long-ranged, possessing a 1/|x| Coulombic tail. This is most applicable

to systems where screening is a small effect, such as isolated metallic carbon nanotubes

and semiconductor structures where there is negligible coupling to the substrate.

The 1D HEG has been studied with a variety of theoretical and computational ap-

proaches. The principal distinction between various studies is the choice of electron-

electron interaction. The bare Coulomb interaction, 1/|x|, which describes an infinitely-

thin wire, is perhaps conceptually the simplest choice, although it is largely avoided in the

literature [106] in its original form due to the divergence at x = 0. Instead, many previous

authors have removed the singularity while retaining the long-range behaviour by inves-

tigating interaction potentials of the form V (x) ∝ (x2 + d2)−1/2, where d is a parameter

related to the width of the wire. This interaction has been studied analytically [105,107]

and numerically [108].

Otherwise, one can derive an effective 1D interaction by factorising the wave function
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into longitudinal and transverse parts and assuming that the transverse component is

the (2D) single-particle ground state of the confining potential. The 1D interaction is

then the matrix element of the 3D Coulomb interaction with respect to the transverse

eigenfunctions [109, 110]. An example of this is the harmonic wire, in which the trans-

verse confinement is provided by a parabolic potential, leading to a Gaussian density

profile in the transverse plane. The full derivation of the harmonic wire interaction is

given in App. A.2. The harmonic wire has been studied with QMC [110–112], variants

of the Singwi-Tosi-Land-Sjölander approach [113–116], and the Fermi hypernetted-chain

approximation [117].

We have studied both the infinitely-thin wire and the harmonic wire using QMC.

In this chapter we present QMC calculations of the momentum density (MD), energy,

pair-correlation function (PCF), and static structure factor (SSF) of the infinitely-thin

wire at a variety of densities and system sizes. The MD results in particular show the

non-Fermi-liquid character of the system and allow us to recover one of the parameters

of the TL model. The total energy data that we provide are essentially exact and may

be regarded as a benchmark for future work. We also present calculations of the MD for

the harmonic wire, again extracting one of the TL parameters.

The rest of this chapter is structured as follows: the models we use are described in

Sec. 4.2. In Sec. 4.3 we outline details of the calculations that are specific to the 1D HEG.

We report the ground state energies of both models in Sec. 4.4.1 and describe the PCFs

in Sec. 4.4.2. In Sec. 4.4.3 we give the SSFs that we find for the infinitely-thin wire and

in Sec. 4.4.5 we give the MDs for both models. We describe the procedure for estimating

a parameter of the TL model in Sec. 4.4.6. Finally, we draw our conclusions in Sec. 4.5.

4.2 Models

4.2.1 Hamiltonian

The Hamiltonians for both of the models studied may be written as

Ĥ = −1
2

N
∑

i=1

∂2

∂x2i
+
∑

i<j

V (xij) +
N

2
VMad , (4.1)
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where VMad is the Madelung energy (the interaction of a particle with its own background

and periodic images), xij = |xi−xj | is the distance between electron i and electron j, and

V (xij) is the Ewald interaction; this is the interaction of an electron at xi with another

electron at xj , all of electron j’s periodic images, and 1/N -th of the uniform positive

background. The two models studied here differ in the V (xij) and VMad terms.

4.2.2 Infinitely-thin wire

The Ewald interaction for the infinitely-thin wire may be written

V (xij) =

∞
∑

n=−∞

(

1

|xij + nL| −
1

L

∫ L/2

−L/2

dy

|xij + nL− y|

)

, (4.2)

which is calculated in practice using an accurate approximation based on the Euler-

Maclaurin summation formula; see Eq. (4.8) of Ref. [118] for details. The Madelung

term [119] for the infinitely-thin wire is

VMad = lim
x→0

{

V (x)− 1

x

}

. (4.3)

The interaction of Eq. (4.2) diverges as 1/xij when xij → 0. In higher dimensions, the

divergence in the interaction energy is cancelled by an equal and opposite divergence in the

kinetic energy, so that nodes do not necessarily occur where two antiparallel spins occupy

the same position [65]. In the infinitely-thin 1D system, the curvature of the wave function

is unable to compensate for the divergence in the interaction potential, so the trial wave

function has nodes at all of the coalescence points (both parallel and antiparallel spin

pairs). The ground state energy is then independent of the spin-polarisation and depends

only on the density. In other words, the Lieb-Mattis theorem [120] does not apply and the

paramagnetic and ferromagnetic states are degenerate for the interaction of Eq. (4.2). We

have examined only the fully spin-polarised case for the infinitely-thin wire. Wires can of

course be artificially spin-polarised through the application of an external magnetic field.

4.2.3 Harmonic wire

The second model we have studied describes electrons in a 2D confinement potential given

by

V⊥(r⊥) = r2⊥/8b
4, (4.4)
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where b is the width parameter and r⊥ is the magnitude of the projection of the electron

position onto the plane perpendicular to the axis of the wire. The Ewald-like interaction

for this model may be written as [110, 121]

V (xij) =

∞
∑

m=−∞

{√
π

2b
exp

{

[(Xij)m]
2} erfc [(Xij)m]−

1

2b(Xij)m
erf [(Xij)m]

}

+
2

L

∞
∑

n=1

E1

[

(bGn)2
]

cos(Gnxij) , (4.5)

where G = 2π/L and (Xij)m = |xij − mL|/(2b). The Madelung term for the harmonic

wire is

VMad = lim
x→0

{

V (x)−
√
π

2b

}

, (4.6)

since the real space part of the interaction at the origin is

lim
x→0

{√
π

2b
exp

(

x2

4b2

)

erfc

( |x|
2b

)}

=

√
π

2b
. (4.7)

Equation (4.5) possesses a long-range Coulomb tail and is finite at xij = 0. A deriva-

tion of Eq. (4.5) is given in App. A.2. The paramagnetic and ferromagnetic states are not

in general degenerate, so we have probed different polarisations, ζ = |N↑ −N↓|/N .

At the start of a calculation, we evaluate Eq. (4.5) on a regular grid covering the range

0 < xij < L/2 and store the resulting values. Later evaluations of the local energy then

use cubic spline interpolation to accurately and efficiently obtain the interaction potential.

This makes evaluation of Eq. (4.5) several orders of magnitude faster.

Figure 4.1 demonstrates that our implementation of the interaction of Eq. (4.5) is in

agreement with an existing code, and that the accuracy may be chosen by truncating

the sums in Eq. (4.5) at different points. The figure shows the calculated energy of an

evenly-spaced array of electrons in different simulation cell sizes for a given density. Since

the interaction of Eq. (4.5) includes periodic images, the energy per electron in each test

system should be the same. We truncated the sums in Eq. (4.5) and chose the spline grid

density such that the error in the interaction potential was O(10−8) Ha.

Another test of the implementation of the finite-width interaction is to ensure that

performing VMC using only a Slater trial wave function (i.e., without backflow or a

Jastrow factor) produces results in agreement with HF calculations. We evaluate the
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Figure 4.1: Plot of the energy of an infinite array of evenly-spaced electrons calculated

using different simulation cell sizes. The green squares show our implementation of Eq.

(4.5) and the blue squares were evaluated using the code of Casula, which was used in

Ref. [110]. It was stated in that paper that the interaction potential was accurate to

O(10−6) Ha, which is consistent with the results of our tests with their code.

Hartree Fock energy [122] for the 1D HEG using the expression

EHF =
1

2

∑

k

θ(k)

[

k2 − 1

L

∑

q

Ṽ (q)θ(k + q)

]

+
VMad

2
, (4.8)

where Ṽ is the Fourier transform of the Ewald interaction and θ(k) = 1 if k is the wave

vector of an occupied state, and θ(k) = 0 otherwise. Figure 4.2 shows that the results of

HF and VMC with a Slater wave function are in statistical agreement for a wide range of

densities.

4.3 Details of calculations

The positions of the wave function nodes are known for the 1D HEG, so DMC is, in

principle, exact. For the infinitely-thin wire, nodes lie wherever two electrons coincide.

For the harmonic wire, the nodes occur where parallel spins coincide.
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Figure 4.2: Plot of the difference between the VMC energy with a single Slater deter-

minant wave function, and the Hartree Fock energy. The results shown are for N = 37.

We used a Slater-Jastrow-backflow wave function [16] for both systems, where the

Jastrow function J is given by

J(R) =

N
∑

i 6=j

[

Np
∑

A=1

aA cos

(

2πA

L
xij

)

+ (xij − Lu)
3Θ(Lu − xij)

Nu
∑

r=0

αrx
r
ij

]

, (4.9)

where {aA} and {αr} are optimisable parameters, Lu is the cutoff, and Np and Nu are

chosen to achieve a compromise between speed, accuracy, and reliability. The use of very

large numbers of parameters can make it difficult for the optimiser to find the appropriate

minimum and risks introducing spurious features into the Jastrow function.

The orbitals in the Slater determinants were plane waves with wave vectors up to

kF = π/(4rs) for the paramagnetic systems and kF = π/(2rs) for the ferromagnetic

systems. The orbitals were evaluated at quasiparticle coordinates related to the actual

coordinates by a backflow transformation [123]. Backflow provides an efficient way of

describing three-body correlations in the 1D HEG, but leaves the exact nodal surface

unchanged.

One method for assessing the wave function quality is to examine the fraction of the
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Figure 4.3: DMC energy of the infinitely-thin wire for several different timesteps and a

linear fit to the data. The plot is for rs = 1 a.u. and N = 37 with 1000 configurations.

correlation energy retrieved, (EHF−EVMC)/(EHF−EDMC), where EHF is the Hartree-Fock

energy, and EDMC and EVMC are the DMC and VMC energies, respectively. We tested

several types of wave function for the infinitely-thin wire with rs = 15 a.u., N = 15,

and ζ = 1; our VMC calculations retrieved 99.9989(9)% of the correlation energy when

we used a two-body Jastrow factor and backflow transformations [the error bars were

O(10−8) a.u.], which is the type of wave function we use throughout this chapter. The

inclusion of three-body terms in addition to backflow did not improve the wave function

quality. Using a three-body term in the absence of backflow transformations allowed the

recovery of the backflow result in most cases. However, backflow appears to provide a

more robust description of three-body correlations for this system. While it is indeed the

case that DMC is formally exact for the 1D HEG, the quality of the trial wave function

is important for the statistical efficiency of the DMC method and the accuracy of the

extrapolated estimator of Eq. (1.30).

The DMC energy did not change beyond statistical error upon varying the number of

walkers between 640 and 2000, so we used ∼ 1000 walkers in our calculations and assumed

population control bias to be negligible. The dependence of the energy upon the DMC
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timestep τ was also investigated; Fig. 4.3 shows that for small τ the energy is constant.

We performed our calculations at a single timestep given by τ = 0.008 r2s . This fairly

conservative choice was made to ensure that time step bias is entirely negligible. The

RMS distance diffused by each electron in a single step was thus slightly less than rs/10.

For the infinitely-thin wire, we used simulation cells containing 37, 55, 73, and 99

particles subject to periodic boundary conditions for our calculations of the energy, PCF,

and SSF. Our MD calculations for the infinitely-thin wire also used a much larger cell with

N = 255, so that the grid of wave vectors on which the MD is defined was reasonably

dense — this was important for the fitting procedure described in Sec. 4.4.6. For the

harmonic wire, we used cells with N = 123, 155, and occasionally 255 for the ζ = 1

systems and cells with N = 22 and 102 for the ζ = 0 systems.

Previous work encountered difficulties in sampling different spin configurations of the

harmonic wire for ζ 6= 1 due to the presence of “pseudo-nodes” at the antiparallel coales-

cence points [112], although these problems were largely overcome by the use of lattice-

regularised DMC (LRDMC) in Ref. [110]. The problem occurred because for strong,

repulsive interactions the wave function becomes small when two antiparallel spins ap-

proach one another. Combined with a small time step this can lead to simulations where

opposite spins exchange positions infrequently and the space of spin configurations is ex-

plored very inefficiently. Use of a small time step is a necessary part of the algorithm

of projector methods like DMC. We have avoided ergodicity problems by using VMC

to study the harmonic wire; as described in Sec. 1.3, in the VMC method there is no

restriction other than ergodicity on the transition PDF and one may propose moves how-

ever one wishes provided that the acceptance probability is modified accordingly. We

use electron-by-electron sampling with the transition PDF given by a Gaussian centred

on the initial electron position. The VMC “time step” in fact bears no relation to real

time and is simply the variance of the transition PDF. In practice, the unmodified time

steps (chosen to achieve a 50% acceptance ratio) used in VMC are usually large enough

to eliminate ergodicity problems in the 1D HEG, although we found some cases where

it was necessary to enforce a lower limit on the width of the transition PDF. Table 4.1

shows the frequency with which electrons changed positions in our simulations for both

high and low density systems with strong and weak confinement. Figure 4.4 shows the
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Figure 4.4: Plot of the electron positions during part of a test run to count the number

of spin swaps. All of the electron positions are folded into a single simulation cell and the

ordering is checked at every iteration (here defined as a proposed single-electron move).

The figure shows a section of the run in which 10 iterations resulted in spin exchanges.

The coordinates are relative to an arbitrarily-chosen electron, i.e., there is an electron at

the origin in the figure — at iterations 3 and 7 all electron positions change because the

electron defining the origin has moved.

electron positions in a short portion of a run with a small system.

4.4 Results

4.4.1 Energy

For the infinitely-thin wire, we used DMC to calculate the exact ground state energy

since there is no ergodicity problem. Table 4.2 shows the DMC energies obtained for

rs = 1, 2, 5, 10, 15, and 20 a.u., with N = 37, 55, 73, and 99 particles. We use the form

E(N) = E∞ + AN−2, where A and E∞ are fitting parameters, to extrapolate the energy

E(N) to the thermodynamic limit E∞. Figure 4.5 demonstrates that this form fits the
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rs (a.u.) b (a.u.) sexch

1 0.1 0.051(1)

1 4 0.160(2)

15 0.1 0.0016(2)

15 4 0.0020(3)

Table 4.1: Frequency with which electrons’ paths cross in VMC simulations of the har-

monic wire. The quantity sexch is the proportion of proposed single-electron moves that

result in a change in the ordering of the particles. A typical calculation comprises between

107 and 108 proposed single-electron moves. The data shown are for N = 22.
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Figure 4.5: Plot of the DMC energy against the reciprocal of the square of the system size

for the infinitely-thin wire. The energy has been offset by the extrapolate E∞ obtained

using the form E(N) = E∞ +BN−2.
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rs (a.u.) N EDMC (a.u. / elec.)

1 37 0.1536513(3)

1 55 0.1539427(2)

1 73 0.1540497(3)

1 99 0.1541147(2)

2 37 −0.20637509(9)
2 55 −0.20628042(7)
2 73 −0.20624573(6)
2 99 −0.20622457(9)
5 37 −0.20397386(3)
5 55 −0.20395138(2)
5 73 −0.20394308(2)
5 99 −0.20393799(2)
10 37 −0.14288342(1)
10 55 −0.14287568(1)
10 73 −0.14287284(1)
10 99 −0.142871058(9)
15 37 −0.110474492(5)
15 55 −0.110470307(4)
15 73 −0.110468755(4)
15 99 −0.110467811(5)
20 37 −0.090782764(5)
20 55 −0.090780068(2)
20 73 −0.090779064(2)
20 99 −0.090778454(2)

Table 4.2: DMC energies for the infinitely-thin wire.
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rs (a.u.) E∞ (a.u. / elec.)

1 0.1541886(2)

2 −0.20620084(7)
5 −0.20393235(2)
10 −0.142869097(9)
15 −0.110466761(4)
20 −0.090777768(2)

Table 4.3: The DMC energies for the infinitely-thin wire extrapolated to the thermody-

namic limit using the form E(N) = E∞ +BN−2.

rs (a.u.) EVMC (a.u. / elec.) ELRDMC (a.u. / elec.)

1 0.0901489(7) 0.09014(1)

2 −0.1631207(8) −0.16311(2)
10 −0.1231560(3) −0.123157(3)
15 −0.0971194(1) −0.097120(2)
20 −0.0807160(2) −0.080717(1)

Table 4.4: Comparison of our VMC energies for the harmonic wire (b = 1 a.u., ζ = 1)

with those of Ref. [110], calculated using the LRDMC method. For both sets of results

the energies were extrapolated to the thermodynamic limit using the functional form

E(N) = E∞ +BN−1 + CN−2, where E∞, B, and C are fitting parameters.

data well, and Table 4.3 shows the extrapolated energies E∞. We discuss in Sec. 4.4.4

why this extrapolation function is suitable.

For the harmonic wire, the trial wave functions in our calculations are of sufficient

quality that the variational energies obtained are in statistical agreement with exact

results in the literature [110]; Table 4.4 shows the comparison.
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Figure 4.6: PCF of the infinitely-thin wire at five densities. The data shown are for

N = 99 and are extrapolated estimates [2gDMC(x)− gVMC(x)].

4.4.2 Pair-correlation function

The PCF g(x) is the normalised probability of finding an electron at the position x

given that there is one at the origin. For homogeneous systems like the 1D HEG, the

PCF is a function of a single variable. The function contains a vast amount of information

about the system; the exchange-correlation hole, which is the region around an electron

in which the density is below average, may be directly accessed through the PCF, and the

PCF also contains information about the phase of the system and the potential energy.

The PCF is accumulated in QMC simply by binning the interparticle distances through-

out the simulation. The parallel-spin PCF is

g↑↑(x) =
1

ρ2↑

〈

N↑
∑

i>j

δ(|xi,↑ − xj,↑| − x)
〉

, (4.10)
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Figure 4.7: PCF of the infinitely-thin wire with rs = 5 a.u. The data shown are extrap-

olated estimates [2gDMC(x)− gVMC(x)].
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Figure 4.8: PCF of the infinitely-thin wire with rs = 15 a.u. calculated with VMC and

DMC, and the extrapolated estimate [2gDMC(x)− gVMC(x)]. The VMC and DMC data

lie on top of one another.
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where ρσ is the average density of electrons with spin σ, xi,σ is the position of the ith

electron with spin σ and the angular brackets denote an average over the configurations

generated by the QMC algorithms. The antiparallel-spin PCF may be written as

g↑↓(x) =
1

ρ↑ρ↓

〈 N↑
∑

i

N↓
∑

j

δ(|xi,↑ − xj,↓| − x)
〉

. (4.11)

The PCF for the harmonic wire was calculated for different confinements and system

sizes by Casula et al. using the lattice-regularised DMC method [110]. Figures 4.9 and

4.10 show the agreement of the present work with the LRDMC results. Figure 4.6 shows

the PCF for the infinitely-thin wire at several values of rs. Figures 4.7 and 4.8 show

the convergence with respect to system size and the agreement of the PCF data between

VMC and DMC, respectively.

4.4.3 Static structure factor

The SSF of the 1D HEG is defined as [72]

S(k) = 1 +
N

L

∫

[g(x)− 1]e−ikx dx , (4.12)

and the SSFs that we present here are for the ferromagnetic infinitely-thin wire. As

explained in the introduction, the antiferromagnetic and ferromagnetic phases are degen-

erate for the infinitely-thin wire, so we do not violate the Lieb-Mattis theorem with our

choice of system.

The SSF, like the PCF, contains information about the phase of the system. Inserting

Eq. (4.10) into Eq. (4.12) shows that the SSF is a measure of the average squared ampli-

tude of density fluctuations with wave vector k [72]. The behaviour of the SSF at k = 2kF

is particularly interesting because this corresponds to fluctuations with period 2rs, which

is the average inter-electron spacing [note that we use kF = π/(2rs) for the ferromagnetic

infinitely-thin wire]. In the liquid phase, the SSF is expected to be roughly independent

of system size at k = 2kF. However, for a Wigner crystal we would expect the SSF at

k = 2kF to scale linearly with the simulation cell length L as the ordered phase extends

throughout the cell [111].

The PCF can only be directly measured in QMC for x < L/2 due to the finite extent of

the simulation cell. Figure 4.11 shows the scaling of the SSF peak at k = 2kF with system

size. The height of the k = 2kF peak in the finite-cell SSFs does not scale as N (and so L)
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Figure 4.11: SSF of the infinitely-thin wire at four system sizes. The data shown are

extrapolated estimates [2SDMC(k)− SVMC(k)] for rs = 2 a.u.. The main plot shows the

behaviour at the peak and the inset shows a large-scale view. The PCF was not extended

beyond L/2.

to any single power but appears to be sub-linear. This is consistent with the well-known

picture of quasi long range order, which is the 1D analogue of a Wigner crystal. Quasi

long range order describes phases where the oscillations in the charge-charge correlation

function decay non-algebraically, i.e., slower than any power law [124]. At k away from

the peak the SSFs appear to agree very well for different cell sizes. Figure 4.12 shows the

deviation of the N = 37, 55, and 73 SSFs from the N = 99 result for rs = 2 a.u. The

most significant deviations occur around the peak.

We further investigated finite-size effects by performing a fit to the oscillatory tails of

the PCF and using the fitted function to extend the PCF far beyond L/2 before using

Eq. (4.12) to calculate the SSF. After testing a number of functional forms, we found

that a good-quality and simple fit to the oscillatory tails of the PCF is form [105, 110]

g(x)− 1 = A cos(2kFx) exp(−B
√
ln x) , (4.13)

where A and B are treated as fitting parameters. The choice of Eq. (4.13) is motivated by

the charge-charge correlation function of Ref. [105]. The parameters we obtained when

fitting Eq. (4.13) to our results are given in Table A.3 in Appendix A.3.
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Figure 4.12: Plot of the difference between the SSFs at different system sizes and that at

N = 99 for rs = 2 a.u.

We fitted Eq. (4.13) to the PCF data for 6rs < x < L/2− 6rs, although we found that

the results were not very sensitive to the region of data included in the fit. The data close

to the origin were not included in the fit since Eq. (4.13) is only a good fit for long-range

correlations. The data at the edge of the cell were excluded because that is the region

midway between the electron at the origin and its next periodic image, and might be

expected to be a region where the PCF suffers particularly badly from finite-size effects.

We then formed the extended PCF by reinstating all of the original PCF data up

to L/2 − 6rs and appending a tail for x > L/2 − 6rs using Eq. (4.13) and the fitted

parameters. Performing the Fourier transform of Eq. (4.12) numerically on the extended

PCF results in a SSF (for rs ≤ 20 a.u.) with a greatly-enhanced peak at k = 2kF, but

that agrees very well with the finite-cell SSF everywhere else. Figure 4.13 shows the

difference between the SSFs obtained from the finite-cell and the extended PCFs. Under

the extension scheme, the peak at 2kF appears to be susceptible to noise; in particular,

the density of k-points at which the SSF is calculated heavily affects the apparent height.

Figures 4.16 and 4.17 show that the fitting function of Eq. (4.13) possesses a peak at

k = 2kF in Fourier space and smoothly decays away elsewhere. The fact that extending
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the PCFs using Eq. (4.13) has no effect other than to increase the size of the k = 2kF peak

in the SSFs, and the agreement between different system sizes, suggest that the electronic

correlation is well-described in our calculations even for the smaller simulation cells that

we have used.

The asymptotically-correct charge-charge correlation function of Schulz [105] that in-

spired Eq. (4.13) also includes higher order terms containing oscillations at wave numbers

given by even multiples of kF. For rs < 15 a.u. we find no discernable features at larger k.

However, a small feature at 4kF starts to develop at rs ≈ 15 a.u., and for rs = 20 a.u. we

observe a clear peak, visible in Figs. 4.13, 4.14, and 4.15. We performed short VMC cal-

culations at extremely low densities, rs = 50 a.u. and 100 a.u., where the electron-electron

coupling is very large, to search for more noticeable features at k > 2kF. We find that

peaks in the SSF do indeed appear at even multiples of kF for these systems, as shown in

Fig. 4.15. The SSF of the rs = 100 a.u. system has clear peaks at k = 2kF, 4kF, and 6kF.

This suggests that one could add higher-order terms to the fit of Eq. (4.13) for the low

density systems and perform the extension scheme again, although this seems unlikely to

produce any interesting new behaviour. The behaviour of the rs = 50 a.u. and 100 a.u.

systems is largely academic since these densities are currently out of experimental reach.
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Figure 4.16: Plot of the fitting function of Eq. (4.13) for arbitrary parameter values.
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Figure 4.17: The function obtained from performing the Fourier transform of Eq. (4.12)

on the fitting function of Eq. (4.13) for arbitrary parameter values. The function possesses

a peak at k = 2kF and smoothly decays everywhere else.
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4.4.4 Finite-size effects

We have described our results for the energy, PCF, and SSF. We now make use of some of

those findings to describe finite-size effects in the 1D HEG. We are interested in the prop-

erties of the 1D HEG in the thermodynamic limit, which we define as where N →∞ and

L→∞ such that the density N/L is constant. Finite-size effects, such as compression of

the exchange-correlation hole and shell-filling effects, mean that the properties calculated

with a finite periodic simulation cell are nontrivially related to those at the infinite-system

limit. We concern ourselves in this section only with the infinitely-thin wire, since the

expectation values described above for the harmonic wire have already been thoroughly

investigated in Ref. [110].

A technique often employed to reduce single-particle finite-size effects in QMC calcula-

tions is twist averaging [125]. We will explain why this is unhelpful for the infinitely-thin

wire. The many-body Bloch theorem states that the wave function ψT satisfies [126]

ψT (x1, . . . , xj + L, . . . , xN) = eiksLψT (x1, . . . , xN) , (4.14)

where ks is the simulation cell Bloch wave number. Averaging over ks in the irreducible

Brillouin zone (BZ) has been shown to reduce greatly single-particle finite-size effects in

two and three dimensions [125,127,128]. Figure 4.18 shows how nonzero ks can alter the

distribution of occupied single-particle states in 2D. The energy as a function of ks in

the first BZ is piecewise parabolic with discontinuities in the gradient occuring where the

occupation numbers change.

In 1D, however, use of a nonzero ks does not result in reoccupation of the orbitals

because the arrangement of single-particle states cannot be changed by shifting the grid

to the left or right. Applying a twist therefore changes the phase of the wave function but

does not alter the distribution of configurations. The potential energy is thus independent

of ks. The kinetic energy, however, does depend on the phase.

Define ψ(ks) as the twist-averaged wave function, and ψ0 as the wave function without
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Figure 4.18: Schematic showing how the application of a twist can result in reoccupation

of the orbitals in 2D. The filled and empty symbols represent occupied and empty states,

respectively. The large circle shows the Fermi energy. In the left panel, no twist has been

applied (ks = 0). In the right panel, the grid of single-particle states has been offset and

the distribution of occupied states has changed.

twist averaging, i.e., ψ(0) = ψ0. The kinetic energy estimator T is

T =

〈

−
N
∑

j=1

∇2
jψ(ks)

2ψ(ks)

〉

ks

=

〈

−1
2

N
∑

j=1

(

−k2s +
2ikse

iks(x1+...+xN )∇jψ0

ψ(ks)
+
eiks(x1+...+xN )∇2

jψ0

ψ(ks)

)〉

ks

=

〈

Nk2s
2

〉

ks

+

〈

−1
2

N
∑

j=1

∇2
jψ0

ψ0

〉

ks

, (4.15)

where the angular brackets denote averaging over ks in the first BZ. The last term on

the third line of Eq. (4.15) is the kinetic energy estimator for the system with ks = 0.

It is easy to show that the extra term 〈Nk2s/2〉ks contributes π2/(24r2sN
2) to the energy

per particle. One could thus simply add π2/(24r2sN
2) to the energy instead of performing

twist averaging. However, as mentioned in Sec. 4.4.1, we extrapolate the energy E(N)

to the thermodynamic limit E∞ using the form E(N) = E∞ + A/N2, where A and E∞

are determined by the fitting procedure. The correction of Eq. (4.15) is thus unnecessary

because it leaves the extrapolated energies unchanged and does not make extrapolation

any easier. Figure 4.20 demonstrates that this analysis is correct; the DMC energy varies

smoothly with the twist as described by Eq. (4.15).
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Figure 4.19: Illustration of the single-particle states in the first Brillouin zone (BZ).

Filled circles represent occupied states, empy circles represent unoccupied states, and the

dashed lines show the boundaries of the BZ. Moving the grid of states to the left or right,

which corresponds to using a nonzero twist, does not alter the occupation of states.
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Figure 4.20: Plot of the variation of the energy with the twist angle. The smooth

parabolic shape is due to the lack of orbital reoccupation. The solid line is the correction

term of Eq. (4.15).
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In order to see why E(N) = E∞+A/N2 is a suitable function for extrapolation of the

energy of the infinitely-thin wire to the thermodynamic limit, we reproduce the first part

of the finite-size error analysis of Ref. [129], which was performed for 3D systems. We

start with the Hamiltonian of Eq. (4.1). Since the interaction potential includes a sum

over simulation cell lattice vectors, the Poisson summation formula [130] may be used to

rewrite the interaction term as a sum over reciprocal lattice vectors, allowing us to restate

the Hamiltonian as

Ĥ = −1
2

N
∑

j=1

∂2

∂x2j
+

1

2L

∞
∑

m6=0

Ṽ (km) [ρkmρ−km −N ] +
N

2
VMad , (4.16)

where Ṽ is the Fourier transform of the interaction potential, ρk =
∑N

j=1 exp(ikxj) is

the density operator in Fourier space, and km = 2πm/L. The reader is directed to

Ref. [72] for a full discussion of Eq. (4.16) — the km = 0 term has been dropped from the

interaction potential as it as been cancelled with electron-background and background-

background terms to yield a Hamiltonian that is well-defined in the thermodynamic limit.

The Madelung term for the infinitely-thin wire is given by Eq. (4.3).

Inserting the definition of the PCF, Eq. (4.10), into the definition of the SSF, Eq.

(4.12), gives

S(k) =
〈ρkρ−k〉
N

, (4.17)

where the angular brackets denote an average over configurations distributed according

to the square of the ground state wave function. Equation (4.17) allows us to write the

average potential energy per electron,
〈

1

2NL

∑

m6=0

Ṽ (km) [ρkmρ−km −N ]

〉

=
1

2L

∑

m6=0

Ṽ (km) [S(km)− 1] . (4.18)

As the simulation cell increases in size, the grid of {km} becomes finer, eventually leading

to the sum of Eq. (4.18) being well-approximated by an integral. The exact expression

for the potential energy in the limit of infinite system-size is

V∞ =
1

4π

∫ ∞

−∞

dk Ṽ (k) [S∞(k)− 1] , (4.19)

where S∞(k) is the exact SSF in the thermodynamic limit. The finite-size correction ∆V∞

to the potential energy is given by the difference between Eqs. (4.19) and (4.18),

∆V∞ =
1

4π

∫ ∞

−∞

dk Ṽ (k) [S∞(k)− 1]− 1

2L

∑

m6=0

Ṽ (km) [S(km)− 1] . (4.20)
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The observations of Ref. [129] may be summarised as follows; first, the −1 terms inside

the square brackets are responsible for a large fraction of ∆V∞. In fact, the contribution

due to these terms is

− 1

4π

∫ ∞

−∞

dk Ṽ (k) +
1

2L

∑

m6=0

Ṽ (km) =
VMad

2
, (4.21)

which is proved rigorously in Ref. [119]. Since we have explicitly calculated and incor-

porated the Madelung term into the Hamiltonian [see Eq. (4.1)], this contribution to the

finite-size error is effectively already corrected for. We thus move on to the next largest

source of error.

The second relevant point in Ref. [129] is that the next correction comes from one of

two potential sources of error (whichever is larger), the first is the difference between S∞(k)

and S(k), and the second is effectively an integration error; the contribution from the first

Brillouin zone in the integral over k in Eq. (4.19) is not even approximately described by

the sum of Eq. (4.18) since the k = 0 term is missing. Our results, shown in Fig. 4.21,

indicate that the SSF around the origin converges quickly to the thermodynamic limit, so

the difference S∞(k)−S(k) is unlikely to be a significant source of error. We thus pursue

the integration error, leading us to evaluate ∆V , where ∆V∞ = VMad/2 + ∆V+(higher

order terms), giving the correction

∆V ∝
∫ π/L

−π/L

dk Ṽ (k)S(k) . (4.22)

To calculate the integral of Eq. (4.22) for the infinitely-thin 1D HEG, we make use of the

(empirical) form of S(k) at small k, and the explicit form of Ṽ (k),

lim
k→0
{S(k)} ∝ |k| , (4.23)

Ṽ (k) ≈ − log

(

k2

4

)

− 2γ , (4.24)

where γ is the Euler-Mascheroni constant. The linear form of S(k) for small k was observed

in our QMC calculations for all of the densities and system sizes studied. Equation (4.24)

is derived from the infinitely-thin wire Ewald interaction, described in Ref. [118].

Inserting Eqs. (4.23) and (4.24) into Eq. (4.22), we find

∆V ∝
∫ π/L

−π/L

dk
[

− log
(

k2/4
)

− 2γ
]

|k| ,

∆V ∝ L−2
[

A+ log
(

L−2
)]

, (4.25)
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Figure 4.21: Plot of the small k behaviour of the SSF for rs = 2 a.u. The SSFs converge

very quickly to the thermodynamic limit and are linear at small k.

where A is a constant. We neglect the log term in Eq. (4.25), so that the correction

becomes ∆V ∝ L−2.

One can employ a similar approach for the kinetic energy, again expressing the correc-

tion as the difference between a sum and an integral over k. The correction is then [129]

∆T ∝
∫ π/L

0

dk k2ũ(k) , (4.26)

where ũ(k) is the Fourier transform of the two-body Jastrow factor. We find the small-

k behaviour of ũ(k) by performing a Fourier transform on a fully-optimised two-body

Jastrow factor from our calculations and directly observing the result. Figure 4.22 shows

a respresentative example; our results are closely-consistent with
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lim
k→0
{ũ(k)} ∝ k−1 , (4.27)

leading very simply to the result

∆T ∝ L−2 . (4.28)

Equations (4.25) and (4.28), and the fact that L = 2rsN , show that the leading-order

finite-size errors in both the potential and kinetic energies go as N−2. We thus conclude

that the function

E(N) = E∞ + αN−2 , (4.29)

where α is a fitting parameter, provides a suitable form for extrapolation of the energy

E(N) to the thermodynamic limit E∞. The plot of Fig. (4.5) shows that our DMC

energies for the infinitely-thin wire fit very well to Eq. (4.29).

4.4.5 Momentum density

The MD is accumulated in QMC as

n(k) =

〈

1

2π

∫

ψ(r)

ψ(x1)
exp[ik(x1 − r)] dr

〉

, (4.30)

where ψ(r) is the trial wave function evaluated at (r, x2, . . . , xn) and angular brackets

denote an average over configurations. The MD is the integral of the spectral function from

minus infinity up to the chemical potential [72]. The spectral function is the probability

density for changing the energy by an amount between ǫ and ǫ+dǫ by adding or removing

a particle in state α. For our purposes, the state α is the wave vector of a plane wave

state. For example, in the non-interacting case the spectral function is δ(ǫ− k2/2), since
injecting an electron with wave vector k leaves the system in a well-defined state, and

equates to simply occupying an additional single-particle state. The MD exhibits a drop

at k = kF because that is where the peak in the spectral function reaches the chemical

potential. If the peak in the spectral function is a δ-function at k = kF (i.e., the spectral

function possesses a quasiparticle peak) then the MD is discontinuous at the Fermi edge.

However, in 1D we expect the excitations to be collective rather than single-particle-like.

The 1D systems should thus have MDs that are continuous at kF, although TL liquid

theory predicts that the gradient will be singular [105].

92



0 0.5 1 1.5 2 2.5 3
k / k

F

0

0.2

0.4

0.6

0.8

1

n(
k)

r
s
 = 1 a.u.

r
s
 = 2 a.u.

r
s
 = 5 a.u.

r
s
 = 10 a.u.

r
s
 = 15 a.u.

r
s
 = 20 a.u.

Figure 4.23: MD of the infinitely-thin wire at several densities. The data shown are for

N = 99 and are extrapolated estimates [2nDMC(k)− nVMC(k)]. The statistical error bars

are much smaller than the symbols and some symbols have been omitted for clarity.
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Figure 4.24: VMC MD of the harmonic wire with b = 0.1 a.u. and ζ = 0 at several

densities. The data shown for each density are for N = 22 and 102 (joined to form one

data set). The statistical error bars are smaller than the symbols.
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Figure 4.25: Comparison of the rs = 10 a.u. MD for the infinitely-thin wire (b = 0, ζ = 1)

with that obtained for the harmonic wire with b = 0.1 a.u. and ζ = 0. The statistical

error bars are similar in size to the symbols. The dashed lines show the values of k at

which Eq. (4.31) was fitted to the data for the calculations of the exponent α.

For the systems with ζ = 1, we have used kF = π/(2rs), whereas for the systems with

ζ = 0, we have used kF = π/(4rs). Figure 4.23 shows the MDs obtained by evaluating

the extrapolated estimator 2nDMC(k) − nVMC(k) for the infinitely-thin wire. The VMC

and DMC results differed by a maximum of ≈ 2 error bars, so that evaluating the extrap-

olated estimator changed the results very little. Note that evaluating the extrapolated

estimator of Eq. (1.30) does not remove the linear error in the MD in the same way as for

other expectation values, since Eq. (4.30) includes wave function ratios. We still use the

extrapolated estimator as a measure of the error, however, since the degree of agreement

between VMC and DMC results is an indicator of accuracy. Figure 4.24 shows the MD

for the harmonic wire with b = 0.1 a.u. and ζ = 0.

A particularly interesting feature of the paramagnetic harmonic wire MD is that as

rs is increased and b is decreased, much of the weight of the function shifts to larger k,

and n(0) reduces to values around 0.5. This is a direct manifestation of the harmonic

wire becoming more like the ferromagnetic infinitely-thin system. One can in some cases
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see a feature resembling the gradient discontinuity appearing at π/(2rs), i.e., at twice

the paramagnetic Fermi wave vector. In particular, for rs = 10 a.u. and b = 0.1 a.u.

the MD possesses a feature at π/(2rs). Upon closer inspection we find that the MD for

the unpolarized system with b = 0.1 a.u. agrees very well with that of the infinitely-thin

wire (b = 0 and ζ = 1). Figure 4.25 illustrates this comparison. It thus appears possible

to in some sense tune the effective Fermi wave vector by adjusting the strength of the

confinement (and the density). A dense paramagnetic system with very weak confinement

shows significant occupation of momentum states up to approximately π/(4rs). Increasing

the effective interaction strength increases this value of k until it eventually saturates at

the ferromagnetic kF . This reflects the fact that in the limit rs → ∞ the pseudo-nodes

at antiparallel-spin coalescence points become true nodes.

4.4.6 Tomonaga-Luttinger liquid parameters

Close to the Fermi wave vector, TL liquid theory suggests that the MD should take the

form [74, 131]

n(k) = n(kF) + A[sign(k − kF)]|k − kF|α , (4.31)

which we have fitted to our results treating n(kF), A, and α as fitting parameters. Note

that within TL liquid theory the exponent α is related to the TL liquid parameter [132]

Kρ by

α =
1

4

(

Kρ +
1

Kρ
− 2

)

. (4.32)

If the range of data included in the fit is described by |k − kF| < εkF, the choice of ε

can present some difficulties. Ideally, one would choose ε→ 0 since Eq. (4.31) is valid for

k → kF, and indeed using the entire range of MD results yields rather poor fits. However,

the estimate of α becomes noisy when ε is small, and at the extreme where just two data

points are included, one can of course obtain any value for α. This leads us to include

fits constructed using a larger range of k values. In practice, we chose to perform a linear

extrapolation to ε = 0 excluding fits where ε < 0.05 for the ζ = 1 systems, as shown in

Fig. 4.26. For the ζ = 0 systems, we excluded fits for which ε . 0.25. The trend that we

observe in the exponent with respect to ε is similar to that found in Ref. [133].
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Figure 4.26: Exponent α [found from fitting Eq. (4.31) to the MD] against the range of

data included in the fit. The range of data is described by |k − kF| < εkF. The symbols

show the fitted exponent values and the solid lines are linear fits to the exponents in the

region ε > 0.05. The data shown are for the infinitely-thin wire.
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Figure 4.27: Exponent α found from fitting Eq. (4.31) to the MD around k = π/(2rs)

for the ζ = 1 systems and k = π/(4rs) for the ζ = 0 systems.

96



Figure 4.27 shows the exponents α obtained for several densities, polarisations, and

confinements. All of the systems show the same general trend; α tends to 0 in the high-

density limit and to 1 in the low-density limit. As mentioned earlier, it is important to

note that for the systems with ζ = 1 we fitted Eq. (4.31) to the MD at π/(2rs), whereas

for ζ = 0 we used π/(4rs). The change in shape of the MD upon varying the interaction

strength that we noted in Sec. 4.4.5, and the apparent shift in the ‘effective’ kF, suggest

that one could also extract a relevant exponent from fitting to other values of k. For

example, we showed in Fig. 4.25 the similarity between the MD with rs = 10 a.u., b = 0.1

a.u., and ζ = 0, and that with rs = 10 a.u., b = 0, and ζ = 1. Despite the similarity of

the MDs for the two systems, the fits used to extract α from each system were performed

at different values of k — a factor of two apart in fact. The result is that the exponent

for the paramagnetic wire is larger, since the Fermi edge for that system has apparently

shifted to k above the fitting region. There is little to guide one in choosing a different

region in which Eq. (4.31) may be fitted to the data, so this appears to be a flaw in the

method for the ζ 6= 1 systems. Presumably, the exponent measured in experiments is that

at the effective Fermi wave vector, so we believe that our results for the ζ = 1 systems

are more representative of physical systems than those of the ζ = 0 systems.

With this in mind, Fig. 4.28 shows the ζ = 1 results alone, since for the ferromagnetic

systems one can clearly and reliably state that kF = π/(2rs) for the whole range of

densities. The exponent α for the infinitely-thin wire is reasonably well-approximated by

the function

α = tanh(rs/8) , (4.33)

which gives a maximum deviation of 0.011(3) from the b = 0 QMC results, which occurs

at rs = 15 a.u. The exponents for the harmonic wire with b = 1 a.u. and ζ = 1 show a

maximum deviation from Eq. (4.33) of 0.057(6), which we find at rs = 5 a.u.

The exponent α has been reported in previous theoretical and experimental studies.

Reference [121] gives the exponents for b = 0.1, 1, and 4 a.u. (with rs = 1 a.u. and

ζ = 0) from VMC calculations. In Fig. 4.29 we have shown how the results given there

compare with ours. It appears that the principal difference between the two studies is

the procedure for deciding upon a fitting region; Ref. [121] does not give details of any
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extrapolation to ε = 0 and it appears that the whole range of n(k) was included in the

fit. Figure 4.29 also includes the exponent we find for the infinitely-thin wire (from VMC

and DMC estimates of the MD) at b = 0.

The exponent α has also been reported from experiments, mostly through measure-

ments accessing the single-particle density of states near the Fermi edge. The exponent for

carbon nanotubes ranges between 0.2 and 0.4, although it is difficult to map the behaviour

of electrons in these systems onto our model since the electronic properties depend on the

folding geometry [77,89–92]. For the Bechgaard salts, which have a 1D carrier density of

rs ≈ 6.9 a.u., exponents between 0.5625 and 0.8 have been reported [82, 134–136], which

agree with all of our ζ = 1 results, and also the ζ = 0, b = 4 results.

4.5 Conclusions

We have presented calculations of the ground state energy, PCF, SSF, and MD of the

infinitely-thin 1D HEG model using VMC and DMC. We observe the development of

peaks at increasingly-large even-integer-multiples of kF in the SSF as the density is low-

ered, consistent with the predictions of Schulz [105].

For the harmonic wire model, we have reported ground-state MDs and TL parameters

for a range of densities and confinements. We used VMC to produce these results; com-

parison of our PCFs, SSFs, and ground state energies with LRDMC results [110] where

available indicates that our results are extremely accurate.

The MDs of the ζ = 0 systems tend towards the MDs of the infinitely-thin wire

and ferromagnetic harmonic wire as b is decreased and as rs is increased, both of which

have the effect of increasing the electron-electron coupling. One interpretation for this is

that correlation is dominating over kinetic confinement, so that antiparallel spin pairs are

avoiding one another almost as much as parallel spin pairs.

The TL parameters calculated for the b = 1 a.u., ζ = 1 system show reasonable

agreement with the infinitely-thin wire results; the maximum deviation of α between the

two systems is 0.051(6), which occurs at rs = 5 a.u. The exponent α, which describes the

behaviour of the MD at kF, takes values between 0 and 1. The exponent for the ζ = 0

systems shows the same general trend, although the value of α is typically higher than for
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the ζ = 1 systems. This seems to be largely a consequence of the shift of the weight in

the MD (including the singularity in the gradient) to larger k as the coupling is increased.
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Chapter 5

Conclusions

In this thesis we have proposed a scheme for efficiently extrapolating DMC results to zero

time step, performed a short investigation into statistical errors, and applied QMC to two

model systems.

The analysis of Sec. 1.5 yielded clear recommendations. When extrapolating DMC

results to zero time step, one should perform two calculations; one at a time step of δτ

and another at δτ/4, spending 1/9 of the computational effort on the former and 8/9 on

the latter. δτ should be fixed at the largest value for which the time step bias is linear

and a linear fit should be used for the extrapolation. The scheme is expected to be most

useful when one can safely assume the extent of the linear regime, which is the case for

studies of many similar systems.

We investigated statistical errors in QMC, focusing specifically on outliers and uncer-

tainty in the correlation length. First, we outlined a self-consistent method for choosing

the optimal block length B when reblocking QMC data. One should reduce B from the

largest possible value and choose the last block length encountered before B3 > 2nη4err

is violated, where n is the number of steps and ηerr is the error factor. Secondly, we

performed a number of VMC calculations with the carbon atom and crystalline silicon

using different random number sequences. This gave us direct access to the distribution

of average energies, error bars, and deviations from the underlying mean as a fraction

of the estimated error. Relative to the result expected for exact correlation lengths and

Gaussian statistics, we observed a significant increase in the frequencies of outliers for

both systems, with the effect appearing much more severe for shorter runs. The proba-
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bility of observing an energy more than 5 error bars from the underlying mean in VMC

calculations on the all-electron carbon atom was enhanced by a factor of between 103 and

104 for runs of length 200 < n < 1000. One can return the distribution of results to that

expected for Gaussian PDFs and exact correlation lengths by using an accurate estimate

of the correlation length obtained from a longer run (or by averaging over the available

data).

There are several similarities between the biexciton system of Chapter 3 and the

one-dimensional electron gas of Chapter 4. Both models replace the microscopic detail

of the environment with a homogeneous medium. Both models also involve confining

the quantum particles so that we can restrict the computational approach to a reduced

number of dimensions. Perhaps most importantly, both model wave functions have nodal

structures that are known exactly. As a result, the DMC approach is ideally-placed to

calculate exact energies. In practice, the trial wave functions that we have been able

to construct are of sufficient quality that our VMC results have also been extremely

accurate and, in some cases, essentially exact. The following paragraphs summarise our

key findings.

In our study of biexcitons in bilayer systems, we performed exact DMC calculations of

the biexciton binding energy as a function of mass ratio σ = me/mh and layer sep-

aration d. When d passes some critical value dcrit(σ), biexcitons dissociate into two

separate excitons. Defining x =
√
σ + σ−1 to account for symmetry, We find that

dcrit(x) = (1.19/x) tanh(−0.5x) + 0.93 accurately describes the region of biexciton stabil-

ity. We also performed calculations where the exciton centres-of-mass were constrained,

so that the problem was reduced to 5 spatial degrees of freedom instead of the original 8.

This yielded exciton-exciton interaction potentials which we were able to parameterise and

which closely followed the expected dipole-dipole repulsion form at large exciton-exciton

separations. Finally, we examined radial distribution functions (RDFs) in biexcitons to

find the spatial extent of bound biexcitons. In terms of size, bound biexcitons are very

similar to isolated excitons. We examined the difference between the isolated exciton

and bound biexciton electron-hole RDFs to determine approximately whether individual

excitons retain their identities when the system is bound. At large layer separations (but

of course still satisfying d < dcrit), we find that bringing two excitons close together gives
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a peak in the inter-exciton electron-hole RDF superimposed on the change in the intra-

exciton RDF due to the presence of the other exciton that is at the same separation as

that of the electron-electron RDF. This suggests that, at least for large layer separations,

excitons retain their identities in bound biexcitons, and implies that methods based on

pair-potentials should be accurate.

In our investigation into the ground state properties of the one-dimensional homo-

geneous electron gas (HEG) we examined two models for the electron-electron interac-

tion. The first was the infinitely-thin wire, where the electrons are coupled by the bare

Coulomb interaction. There is relatively little literature covering the expectation val-

ues of the infinitely-thin wire. We reported calculations of the energy, pair correlation

function (PCF), static structure factor (SSF), and momentum density (MD). Our calcu-

lations of the energy are exact, and comparison of VMC and DMC results indicates that

other expectation values are also extremely accurate. We find that the finite-size error

on the energy per particle decays as N−2 and that twist averaging is ineffective for the

infinitely-thin wire. We are able to resolve peaks in the SSF at even-integer-multiples

of kF , consistent with theoretical predictions and indicative of quasi-long-ranged order.

By performing a fit to the MD around k = kF , we extracted the Luttinger exponent.

Comparing our exponents to those found experimentally for carbon nanotubes, we find

that the results coincide for 2 < rs < 4. Our results for the ferromagnetic harmonic and

infinitely-thin wires and for the harmonic wire with b = 4 and ζ = 0 showed agreement

with experimental results for the Bechgaard salts.

For the harmonic wire, we reported VMC energies, PCFs and SSFs, demonstrating

that our variational calculations are in statistical agreement with exact results in the

literature. We then presented MDs and Luttinger exponents for the harmonic wire, noting

agreement between the ferromagnetic harmonic wire and the infinitely-thin wire. An

interesting effect, which also presented a problem for the determination of the Luttinger

exponent, was that the effective Fermi wave vector appears to change depending on the

density and confinement of the paramagnetic harmonic wire. When the electron-electron

coupling is weak (i.e., when b is large and rs is small), the Fermi wave vector is kF =

π/(4rs) as expected. As the coupling is increased, the effective Fermi wave vector (the

location of the singularity in the gradient of the MD) gradually increases to π/(2rs).
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This is consistent with the development of ‘pseudo-nodes’ in the wave function at the

antiparallel coalescence points, increasing the system’s resemblance to the infinitely-thin

wire, where real nodes occur at these points.
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Appendix A

Appendix

A.1 Fit to the exciton-exciton potential

The exciton-exciton potential curves with σ = 0 in Fig. 3.9 may be fitted to a function of

the form

EI =

(

p1 +
1000

R
+
p2
R2

+
p3
R4

)

exp

(

−p4R
3

1000

)

+

(

2d2

R3
+
p5
R5

+
p6
R6

)

[

1− exp
(

−p7R3
)]

, (A.1)

where d is the layer separation and p1, . . . , p7 are the fitting parameters. The function

has the correct long-range behaviour, EI ∝ 2d2/R3 for R → ∞. The fitting parameter

values are shown in Table A.1.

The interaction potentials in Fig. 3.8 with σ = 1 may be fitted to a function similar

to Eq. (A.1). This time the form is

EI =

(

2d2

R3
+
p1
R5

+
p2
R6

)[

1− exp

(

−p3R
p4

1000

)]

, (A.2)

where the long range behaviour is once again reproduced correctly and each of the terms

in the first bracket has a physical interpretation. The 1/R5 term may be associated with

quadrupole-quadrupole repulsion and the 1/R6 term with van der Waals attraction. The

signs of the fitting parameters are consistent with this interpretation for d = 0.2 and

0.5a∗B. The parameter values are shown in Table A.2.
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Parameter d = 0.9a∗B d = 1.0a∗B d = 1.1a∗B

p1 −70.18 −66.25 −61.89
p2 −4243 −4538 −4804
p3 4296 8422 12560

p4 8.086 7.319 6.420

p5 21520 30740 40610

p6 −15100 −54120 −98510
p7 0.1284 0.1451 0.2424

Table A.1: Coefficients appearing in Eq. (A.1) allowing the reproduction of fits to the

points shown in Fig. 3.9. Performing the fits using data with R ≥ 3a∗B yields χ2 errors of

0.79, 1.1 and 1.4 per data point for d = 0.9, 1.0, and 1.1a∗B, respectively.

Parameter d = 0.2a∗B d = 0.5a∗B d = 0.9a∗B

p1 2302 1463 −6797
p2 −8947 −12580 73200

p3 1316 5.813 24.94

p4 0.1123 4.703 2.465

Table A.2: Coefficients appearing in Eq. (A.2) allowing the reproduction of fits to the

DMC results in Fig. 3.8. Performing the fits using data with R ≥ 2.5a∗B yields χ2 errors of

1.55, and 1.07 per data point for d = 0.2 and 0.5a∗B, respectively. The χ
2 error is larger for

d = 0.9a∗B, the purely repulsive curve, but the maximum deviation from the data points

is only 1.2× 10−3R∗
y.
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A.2 Derivation of the quasi-1D interaction

One may derive Eq. (4.5) from first principles. Suppose that the Schödinger equation

is separable and we may write the wave function as a product θ(r⊥)ψ(x), where x is

the projection of the electron position onto the axis of the wire and r⊥ is the transverse

position.

If the electrons are sufficiently confined in the transverse plane, one may obtain the

1D interaction v(x) by integrating over the transverse part of the wave function,

v(x) =

∫ |θ(r⊥)|2 |θ(r′⊥)|2
[

x2 + |r⊥ − r′⊥|2
]1/2

dr⊥dr
′
⊥ . (A.3)

The confining potential for the harmonic wire is r2⊥/8b
4, where b is a parameter. If

rs ≫ πb/4, one may make the assumption that the electrons occupy only the lowest

sub-band, which is given by

θ(r⊥) =
1√
2πb2

exp

(

− r
2
⊥

4b2

)

. (A.4)

Substituting Eq. (A.4) into Eq. (A.3) yields [113]

v(x) =

√
π

2b
exp

(

x2

4b2

)

erfc

( |x|
2b

)

, (A.5)

which is finite at x = 0 but retains a long-range 1/|x| tail. The Fourier transform of Eq.

(A.5) is

ṽ(k) = E1(b
2k2) exp(b2k2) , (A.6)

where E1 is the exponential integral function.

Having found the real and reciprocal space representations of the 1D interaction in a

harmonic wire, one must perform an Ewald-like sum to enable calculations with periodic

systems. We follow a route similar to that of Ref. [121].

The interaction of an electron at the origin with another at position x, all of that

electron’s periodic images, and its background is given by

φ(x) =
∞
∑

m=−∞

{

v(x−mL)− 1

L

∫ L/2

−L/2

dy v(x−mL− y)
}

, (A.7)

where L is the length of the simulation cell. The objective is to write Eq. (A.7) in terms

of quickly converging discrete sums. The first step is to write Eq. (A.7) in the more useful
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form

φ(x) = γ0(x)−
1

L

∫ ∞

−∞

dy v(x− y) , (A.8)

where

γ0(x) =
∞
∑

m=−∞

v(x−mL) . (A.9)

Equation (A.9) is already in a form that is quick and easy to evaluate, so we turn our

attention to reformulating the integral in the second term of Eq. (A.8). We first perform

the trick of both adding and subtracting a Gaussian term p(y), giving

− 1

L

∫ ∞

−∞

dy v(x− y) = γ1(x) + γ2(x) , (A.10)

where

γ1(x) = −
∫ ∞

−∞

dy v(x− y)p(y) , (A.11)

γ2(x) =

∫ ∞

−∞

dy v(x− y)
[

p(y)− 1

L

]

, (A.12)

and the term that we have added and subtracted is

p(y) =
∞
∑

m=−∞

1

2b
√
π
exp

(

− 1

4b2
(y −mL)2

)

. (A.13)

It is clear that φ(x) may now be written simply as

φ(x) = γ0(x) + γ1(x) + γ2(x) . (A.14)

We first inspect γ1(x), finding that it may be integrated directly to give

γ1(x) =
∞
∑

m=−∞

{

− 1

|x−mL| erf
( |x−mL|

2b

)}

, (A.15)

which is a form suitable for numerical evaluation.

One may take the first step towards simplifying γ2(x) by performing a Poisson sum-

mation on p(y),

p(y) =
1

L

[

1 + 2
∞
∑

n=1

e−(bGn)2 cos(Gny)

]

, (A.16)

where G = 2π/L. Putting Eq. (A.16) into Eq. (A.12) gives

γ2(x) =
2

L

∞
∑

n=1

e−(bGn)2
∫ ∞

−∞

dy v(x− y) cos(Gny) , (A.17)
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which may straightforwardly be rewritten in its final form,

γ2(x) =
2
√
2π

L

∞
∑

n=1

ṽ(Gn) cos(Gnx) e−(bGn)2 , (A.18)

where we have used the result

∫ ∞

−∞

dy v(x− y) cos(Gny) =
√
2π ṽ(Gn) cos(Gnx) . (A.19)

Finally, putting the expressions for the γ functions, Eqs. (A.9), (A.15), and (A.18),

into Eq. (A.14) and remembering that ṽ(k) is given by Eq. (A.6), we obtain the more

computationally convenient form

φ(x) =

∞
∑

m=−∞

{√
π

2b
e(x−mL)2/(4b2)erfc

( |x−mL|
2b

)

− 1

|x−mL| erf
( |x−mL|

2b

)

}

+
2

L

∞
∑

n=1

E1

[

(bGn)2
]

cos(Gnx) . (A.20)

It should be noted that in Ref. [110], Rydberg rather than Hartree units were used so

that the potentials given there differ from Eq. (A.20) by a factor of 2.
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A.3 Pair correlation function fitting parameters

Table A.3 shows the parameters that we obtained when fitting Eq. (4.13) to the extrap-

olated estimates of the PCF for the infinitely-thin wire. We performed fits for rs = 1, 2,

5, 10, 15, and 20 a.u. for systems containing N = 37, 55, 73, and 99 particles. The PCF

data in the range 6rs < x < L/2− 6rs were included.
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rs (a.u.) N A B (a.u.)

1 37 1.908 3.291

1 55 3.090 3.683

1 73 1.940 3.446

1 99 2.113 3.671

2 37 4.851 2.952

2 55 4.573 2.979

2 73 6.047 3.069

2 99 8.545 3.273

5 37 8.029 2.237

5 55 8.310 2.258

5 73 10.061 2.359

5 99 9.262 2.320

10 37 8.465 1.735

10 55 9.349 1.788

10 73 9.066 1.780

10 99 10.206 1.839

15 37 8.520 1.502

15 55 8.363 1.501

15 73 8.918 1.534

15 99 9.788 1.580

20 37 7.754 1.320

20 55 8.361 1.359

20 73 8.625 1.377

20 99 8.895 1.396

Table A.3: Table showing the fitting parameters A and B from Eq. (4.13) obtained from

fitting to the extrapolated estimates of the PCF for the infinitely-thin wire. The fits were

to PCF data in the range 6rs < x < L/2− 6rs.
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A.4 Outliers from distributions with heavy tails

In this appendix we repeat some of the analysis of Chapter 2 starting from the heavy-tailed

distribution of energies given by Trail in Ref. [35].

The notation is the same as before — due to the large number of variables we give all

of their definitions below:

• n — number of local energies;

• ν0 — exact effective number of local energies;

• ν — estimated effective number of local energies;

• σ2
0 — exact variance of distribution of local energies;

• Ē — estimated mean energy;

• E0 — exact mean energy;

• ncorr — exact correlation length;

• η2err — estimated correlation length;

• ∆ — estimated error bar.

Where a variable is described as ‘exact’, it is a parameter of the system and is a single

number, whereas other quantities are drawn from distributions.

As discussed in Chapter 2, singularities in the local energy occur when using approxi-

mate wave function nodes (so that in principle, even where the nodes are correctly placed,

the behaviour of the wave function has the potential to produce singularities in EL), and

when the cusp conditions are violated. The wave function nodes for the C atom and the

bulk Si systems that we studied in Chapter 2 are unknown, so we might expect these

singularities to play an important role in determining the frequency with which outliers

occur. Trail [35] showed that in such cases, the distribution of local energies develops

heavy tails ∝ |EL − E0|4, and derived asymptotic expressions for the PDFs. Here, we

use those distributions to repeat the analysis of Chapter 2 to see if we can recover the

distribution of outliers observed directly within VMC. As we were already able to repro-

duce the VMC results using purely Gaussian energy PDFs with relatively simple analysis,
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we might anticipate that using heavy-tailed distributions will not significantly change the

outcome.

Let us define y = (Ē − E0)
√
ν0/σ0 to bring us in line with the notation of Ref. [35],

where a series expansion of the PDF py of y is derived. The PDF is

py(y) =
1√
2π

[

1 +
η3√
ν0

d3

dy3
+O

(

1

ν0

)]

e−y2/2

−
[

λ3
3π
√
ν0

d3

dy3
+O

(

1

ν0

)]

D

(

y√
2

)

, (A.21)

where η3 and λ3 are system-dependent; η3 describes the skew of the distribution and λ3

describes the weight under the tails and the sharpness of the peak (the kurtosis of the

PDF). In the limit λ3 → 0 and η3 → 0, we should recover the result obtained for Gaussian

distributions. Dawson’s integral D(x) is given by

D(x) = e−x2

∫ x

0

et
2

dt , (A.22)

which may be straightforwardly differentiated. We evaluate Eq. (A.22) numerically using

the relation

D(x) =
x

1 + 2x2 − 4x2

3+2x2− 4x2

5+2x2− 4x2

7+2x2−...

. (A.23)

Computing the derivatives in Eq. A.21 gives

py(y) =
1√
2π
e−y2/2 − λ3

3π
√
ν0

(

(3y − y3)D
(

y√
2

)

+
1√
2
(y2 − 2)

)

+O
(

1

ν0

)

, (A.24)

where we have set η3 = 0 so that we only consider symmetric PDFs – this seems to be an

acceptable assumption for real data. Note that py is related to the distribution pĒ that

we used in Chapter 2 by

pĒ(Ē) =

√
ν0
σ0

py

[

(Ē −E0)
√
ν0

σ0

]

. (A.25)

Figure (A.1) shows the distribution of Eq. (A.24). Henceforth we drop the O(ν−1
0 ) terms.

To find the probability of observing a mean energy more than Q error bars ∆ from the

underlying mean E0, we take the same route as in Chapter 2 of first finding the probability
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Figure A.1: Plot of Eq. (A.24) with η3 = 0, ν0 = 106, σ0 = 1, and a number of values of

λ3.

as a function of Q and ∆,

2

∫ ∞

Q∆
√

ν0
σ0

dy py(y) = erfc

(

Q∆
√
ν0√

2σ0

)

−
√
2λ3Q∆

3πσ0

+
λ3

3π
√
ν0

[

2

(

1−
(

Q∆
√
ν0

σ0

)2
)

D

(

Q∆
√
ν0√

2σ0

)

]

, (A.26)

so that finding the expectation value of Eq. (A.26) with respect to ν and ∆ will give

the desired probability P
(

δĒ > Q∆
)

. Note that when λ3 = 0 only the first term of Eq.

(A.26) remains, which is equal to Eq. (2.10) in Chapter 2.

Helpfully, Ref. [35] also provides the distribution of errors that arises when the PDF

of local energies is described by Eq. (A.21). Translating the result in Trail’s paper into

our language of ∆ and ν, we obtain

perr(∆, ν) =

√
3ν∆

πγ
χ2 exp(χ3)

[

− sgn[χ]K1/3

(

|χ|3
)

+K2/3

(

|χ|3
)

]

pind(ν) , (A.27)

where Kn is the Bessel function of the nth kind and we have defined

χ =
ν∆2 − σ2

0

2γ
(A.28)
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and

γ = σ2
0

[

6λ23
πν

]1/3

, (A.29)

so that γ is a scale parameter controlling the width of the distribution (although the

variance of perr with respect to ∆ is undefined). The PDF pind(ν) is again the distribution

of the estimated effective number of steps.

The above analysis puts us in a position to construct the integral that yields the

desired probability, P
(

δĒ > Q∆
)

. The expectation value of Eq. (A.26) with respect to

Eq. (A.27) gives

P
(

δĒ > Q∆
)

= 2

∫ ∞

2

dν

∫ ∞

0

d∆

∫ ∞

Q∆
√

ν0
σ0

dy py(y)perr(∆, ν) , (A.30)

which we perform numerically.

As before, there are some inputs to Eq. (A.30) for which we require VMC results.

These are λ3, pind(ν), ν0 and σ0, although Eq. (A.30) is very insensitive to the value of

σ0.

Since we have already reproduced the VMC results using purely Gaussian distribu-

tions, we do not expect any new behaviour from Eq. (A.30), and consider it almost as

a consistency check. Let us examine the same example as before (see Chapter 2), the C

atom, using the new PDFs. We find from the VMC data that the values σ0 = 0.637 and

ν0 = 18.07 are appropriate for the n = 200 runs, and also take the PDF pind from VMC

results. As mentioned in Chapter 2, λ3 is problematic to estimate. Fitting Eq. (A.24) to

a histogram of the distribution of energies from VMC yields λ3 = 1.1(8) — the value is

unfortunately noisy because it is dependent on the frequency of samples in the tail regions

of the energy PDF, which are difficult to sample properly. As a result, we have computed

the integral of Eq. (A.30) for several values of λ3 around the value λ3 = 1.1; Fig. A.2

shows the results.

It is clear from Fig. A.2 that the integrals over the heavy-tailed distributions are

capable of reproducing both the VMC results and those from assuming Gaussian energy

PDFs. The agreement is almost perfect at λ3 = 0.5, and the λ3 = 1.1 result is still

close to the VMC data. The value λ3 = 0.5 is within error bars of our earlier estimate

of λ3 = 1.1(8). One should note that the distribution of Eq. (A.27) that was derived

by Trail is strictly-speaking only valid in the limit ν0 → ∞. However, it was shown in
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Figure A.2: The result of numerical evaluation of Eq. (A.24) for several values of λ3. Also

shown are the VMC results and the result obtained in Chapter 2 using purely Gaussian

generating distributions. The results are for the C atom with n = 200. The parameters

were σ0 = 0.637 and ν0 = 18.07, and pind was taken from the VMC results.
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Figure A.3: The result of numerical evaluation of Eq. (A.24) for the C atom with n =

500. Also shown are the VMC results and the result obtained in Chapter 2 using purely

Gaussian generating distributions. The parameters were σ0 = 0.637 and ν0 = 45.2, and

pind was estimated from the VMC results.
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Ref. [35] that this limit is reached surprisingly quickly, and the agreement of our results

for some values of λ3 suggests that Eq. (A.27) is at least a good approximation to the

actual underlying PDF. The reason that the heavy-tailed PDF results do not reduce to

the Gaussian results in the limit λ3 → 0 is that the PDF of Eq. (A.27) does not reduce

to Eq. (2.8), which was the corresponding Gaussian PDF, in the same limit. This is

again due to Eq. (A.27) being only asymptotically accurate. In contrast with the analysis

performed in Chapter 2, the assumption that the sample variance and the sample mean

are independent is approximate when the PDFs possess heavy tails. The results also

suggest that λ3 ≈ 0.5 is perhaps a more accurate estimate of λ3.

Figure A.3 demonstrates the transferability of the estimate of λ3. The estimate λ3 =

0.5 yields good agreement between the theory and the n = 500 VMC results. This is

reassuring, and confirms that λ3 = 0.5 is a reasonable estimate for the C system.

The main result of the analysis presented above is that one can reproduce the dis-

tribution of outliers observed in VMC calculations using either Gaussian or heavy-tailed

energy PDFs, suggesting that the heavy tails in the PDFs are relatively unimportant. The

key ingredient appears to be the distribution of the estimated effective number of steps,

which is related to the distribution of estimated correlation lengths. We conclude from

this that it is uncertainty in the correlation length that is responsible for the increased

frequency of outliers that we observe for the systems studied. It is of course conceivable

that a system with particularly strong singularities in the local energy (i.e., systems for

which λ3 is very large) could give results dominated by the heavy tails in the PDFs.
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[108] C. E. Creffield, W. Häusler, and A. H. MacDonald, Europhys. Lett. 53, 221 (2001).

123



[109] M. Fabrizio, A. Gogolin, and S. Scheidl, Phys. Rev. Lett. 72, 2235 (1994).

[110] M. Casula, S. Sorella, and G. Senatore, Phys. Rev. B 74, 245427 (2006).

[111] L. Shulenburger, M. Casula, G. Senatore, and R. M. Martin, Phys. Rev. B 78,

165303 (2008).

[112] A. Malatesta and G. Senatore, J. Phys.-Colloques 10, 341 (2000).

[113] W. I. Friesen and B. Bergersen, J. Phys. C: Solid State 13, 6627 (1980).

[114] L. Calmels and A. Gold, Phys. Rev. B 56, 1762 (1997).
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