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Abstract—We propose using the autoregressive hidden Markov
model (HMM) for speech synthesis. The autoregressive HMM
uses the same model for parameter estimation and synthesis in
a consistent way, in contrast to the standard approach to statis-
tical parametric speech synthesis. It supports easy and efficient
parameter estimation using expectation maximization, in contrast
to the trajectory HMM. At the same time its similarities to the
standard approach allow use of established high quality synthe-
sis algorithms such as speech parameter generation considering
global variance. The autoregressive HMM also supports a speech
parameter generation algorithm not available for the standard
approach or the trajectory HMM and which has particular ad-
vantages in the domain of real-time, low latency synthesis. We
show how to do efficient parameter estimation and synthesis with
the autoregressive HMM and look at some of the similarities and
differences between the standard approach, the trajectory HMM
and the autoregressive HMM. We compare the three approaches
in subjective and objective evaluations. We also systematically
investigate which choices of parameters such as autoregressive
order and number of states are optimal for the autoregressive
HMM.

Index Terms—Acoustic modeling, autoregressive hidden
Markov model, autoregressive processes, hidden Markov models
(HMMs), speech, statistical parametric speech synthesis.

I. INTRODUCTION

IT has been shown that it is possible to synthesize natural
sounding speech with hidden Markov models (HMMs) and

the quality of the best HMM-based statistical parametric speech
synthesis systems now rivals the best unit selection synthesis
systems [1]. A breakthrough that helped make this possible
was realizing how to use dynamic feature information during
synthesis, by respecting the constraints between static and
dynamic features [2].

However the established approach to HMM-based speech
synthesis is inconsistent in the enforcement of these constraints
[3]. During synthesis we take the constraints between static
and dynamic features into account, whereas during parameter
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estimation we assume the static and dynamic feature sequences
are independent.

This is a recognized problem and has been addressed pre-
viously. Zen et al. showed how a trajectory HMM could be
employed so that the same model is used for parameter es-
timation and synthesis [3]. Synthesis quality improved as a
result. However parameter estimation for the trajectory HMM
is more complicated than for the standard HMM, requiring
gradient-based parameter estimation, and exact expectation
maximization training is intractable. The challenge remains to
find a model which can easily and consistently be used for both
parameter estimation and synthesis.

In this paper we propose using the autoregressive HMM
[4]–[7] for speech synthesis. The autoregressive HMM relaxes
the traditional HMM conditional independence assumption,
allowing state output distributions which depend on past output
as well as the current state. In this way the autoregressive
HMM explicitly models some of the dynamics of speech and
introduces the continuity and context dependence needed for
good quality synthesis. This approach is also flexible, providing
a simple way to turn a sequence modeling problem into a finite-
dimensional regression problem.

Autoregressive HMMs have been used before for speech
recognition [4]–[6], [8], but have not been extensively in-
vestigated for speech synthesis.1 A basic formulation of the
autoregressive HMM for statistical parametric speech synthesis
showing how to do expectation maximization-based parameter
estimation and parameter generation considering global vari-
ance was given in [11]. Details of how to do decision tree
clustering for the autoregressive HMM were given in [12]. As
mentioned above the autoregressive HMM and trajectory HMM
both remedy an inconsistency present in the standard approach,
and the effect of this inconsistency was investigated in [13].
Quillen investigated the problem of stability of autoregres-
sive coefficients for speech synthesis using the autoregressive
HMM, and in addition found that using alignments derived
from a speech recognition system to estimate autoregressive
HMM parameters led to an improvement in an objective metric
compared with embedded re-estimation from a flat start [14].

The present paper builds on previous work by directly com-
paring the standard approach to the autoregressive HMM with
autoregressive decision tree clustering, comparing the autore-
gressive HMM to the trajectory HMM in subjective evalua-
tions, extensively investigating how to set parameters such as
autoregressive order and number of states for the autoregressive

1For the autoregressive HMM considered here the observations are acoustic
feature vectors. This is distinct from the hidden filter HMM [9], [10] for which
the observations are waveform samples.
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HMM, and presenting theoretical comparisons between the
autoregressive HMM and the standard approach and trajectory
HMM.

The algorithms described in this paper for parameter estima-
tion and synthesis using the autoregressive HMM have been
implemented in an open source extension [15] to the HMM-
based speech synthesis system (HTS) [16].

The remainder of this paper is laid out as follows. In Section
II we review the standard approach to statistical parametric
speech synthesis. In Section III we specify the autoregressive
HMM model and show how to do efficient parameter esti-
mation, decision tree clustering and synthesis. In Section IV
we look at some of the similarities and differences between
the standard HMM synthesis framework, the trajectory HMM
and the autoregressive HMM. In Section V we report results
of experiments comparing the autoregressive HMM with the
two other models, and investigating the appropriate choice
of model structure parameters for the autoregressive HMM.
Finally in Section VI we discuss our experimental results and
give conclusions.

II. BACKGROUND

A. Statistical Parametric Speech Synthesis

Speech synthesis aims to synthesize speech from text. In a
typical statistical parametric speech synthesis system the text is
represented as a sequence of labels l = l1:J of length J and the
speech audio is represented as a sequence of acoustic feature
vectors (or speech parameters) c = c1:T of length T encoding
spectral, fundamental frequency and aperiodicity information
[1]. The parameters (ν, λ) of a parametric statistical model
P (c | l, ν, λ) are learned from data, and this model is used to
synthesize audio for previously unseen text. This approach is
referred to as parametric since the feature vectors are used as
speech parameters for a vocoder which converts between the
feature vector sequence and audio.

The generative model P (c | l, ν, λ) is broken down into two
separate components: a state transition model P (θ | l, ν) which
probabilistically generates a hidden state sequence θ = θ1:T

given a label sequence, and an acoustic model P (c | θ, λ) which
probabilistically generates a feature vector sequence given this
state sequence. Typically the hidden state consists of the current
label, the index of the current label within the label sequence,
the current sub-label (or state), and the number of frames
remaining2 in the current sub-label.

The state transition model has Markovian form P (θ | l, ν) =∏
t P (θt | θt−1, l, ν). This paper concerns the form of the

acoustic model P (c | θ, λ).

B. The Standard HMM Synthesis Framework

A simple form of acoustic model is P (c | θ, λ) =
∏
t P (ct |

θt, λ), which assumes the feature vectors (ct) are conditionally
independent given the state sequence. Together the Markovian

2When using explicit duration models [17], [18] to model the duration of
each sub-label, the hidden state is augmented with the number of frames
remaining in the current sub-label and the transition structure is updated
accordingly. This converts the state transition model from semi-Markovian to
Markovian and allows efficient inference [19], [20].

θ1 θ2 θ3 θ4 θ5 θ6

c1 c2 c3 c4 c5 c6

Fig. 1. Graphical model for a conventional HMM. Here θ = θ1:6 is the state
sequence and c = c1:6 is the feature vector sequence. The dependence on the
label sequence l and parameters (ν, λ) is not shown. Note that this is not the
model used during training in the standard HMM synthesis framework, which
augments the static feature vector sequence with dynamic features.

state transition model and this simple acoustic model form a
hidden Markov model (HMM) P (c, θ | l, ν, λ). The correspond-
ing graphical model is shown in Fig. 1.

This simple acoustic model may be extended to take into
account correlations between frames. This is conventionally
done by augmenting the (static) feature vector sequence c with
dynamic features to obtain an observation vector sequence
o = o1:T and then using an HMM to model o. During synthesis
we consider only those observation sequences o that arise from
augmenting some static feature vector sequence c. This pro-
cedure allows the information encoded in the dynamic feature
parameters to be used during speech parameter generation. We
refer to the combination of modeling o with an HMM during
training but restricting to c during synthesis as the standard
HMM synthesis framework.

This approach is inconsistent since the model used during
training is different to the model used during synthesis. Al-
ternatively the model used during training can be viewed as
a model defined over static features c only, in which case it
correctly enforces the constraints between static and dynamic
features but is unnormalized, i.e. the probability of the set of all
sequences of static features is not one [3].

III. AUTOREGRESSIVE HMM

The autoregressive HMM [4]–[7], [11] uses an acoustic
model of the form

P (c | θ, λ) =
∏
t

P (ct | ct−K:t−1, θt, λ) (1)

where K ∈ N is referred to as the order or depth of the
model. Together the Markovian state transition model and this
acoustic model form an autoregressive HMM P (c, θ | l, ν, λ).
A graphical model for the case K = 2 is shown in Fig. 2.
Note that the conventional (static feature vector-only) HMM as
shown in Fig. 1 is an autoregressive HMM with depth 0. The
autoregressive HMM models the correlations between frames
by explicitly encoding the dependence of the feature vector at
time t on the feature vectors in the recent past. This approach
provides a simple way to turn a sequence modeling problem
into a finite-dimensional regression problem. It is flexible since
in principle almost any regression model can be used for P (ct |
ct−K:t−1, θt, λ).

In this investigation we use a very simple form of regression
model where the dependence on ct−K:t−1 is linear-Gaussian
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θ1 θ2 θ3 θ4 θ5 θ6

c1 c2 c3 c4 c5 c6

Fig. 2. Graphical model for an autoregressive HMM of depth 2. Here θ =
θ1:6 is the state sequence and c = c1:6 is the feature vector sequence. The
dependence on the label sequence l and parameters (ν, λ) is not shown.

and the dependence on θt is given by a decision tree:

P (ct | ct−K:t−1, θt, λ) =
∏
i

P (cit | cit−K:t−1, θt, λ) (2)

P (cit | cit−K:t−1, θt, λ) = N
(
cit;m

i
q(c

i
t−K:t−1), (σ2)iq

)
(3)

mi
q(v)

∆
=

D∑
d=1

aidq f
id(v) (4)

where i indexes components of the feature vector, q is the leaf
associated with state θt, and each f id : RK → R is a basis
function that computes a real-valued summary of the recent
past output cit−K:t−1. The parameters λ of the autoregressive
HMM are the autoregressive coefficients (aidq : q, i, d) and the

variance parameters ((σ2)iq : q, i). We use D ∆
= K + 1 basis

functions of the form f id(v)
∆
= vd (the dth component of v) for

1 ≤ d < D and f iD(v)
∆
= 1, so the mean mi

q(c
i
t−K:t−1) is

a state-dependent linear combination of the recent past output
plus a bias. The initial context c−(K−1):0 is taken to be zero in
this investigation. Specifying this initial context is necessary to
define P (ct | ct−K:t−1, θt, λ) for t ≤ K.

We refer to the sequence of a component of the feature
vector over time ci = ci1:T as a trajectory. We have taken the
basis functions f id to be functions of the recent past output
in the same component i. This is consistent with the common
assumption when modeling speech that the trajectories (ci)
for different components of the feature vector are independent
given the state sequence θ. However it causes no problem if the
basis functions depend on all recent past output ct−K:t−1, or
even on the present output up to the given component c1:i−1

t .

A. Parameter Estimation

The autoregressive HMM permits efficient parameter es-
timation using expectation maximization [6], [11]. Here we
summarize the re-estimation formulae used to compute updated
parameter values given the state occupancies γq(t) obtained
using the Forward-Backward algorithm [21].

We define accumulators

γq
∆
=
∑
t

γq(t) (5a)

siq
∆
=
∑
t

γq(t)c
i
tc
i
t (5b)

ridq
∆
=
∑
t

γq(t)f
id(cit−K:t−1)cit (5c)

Rideq
∆
=
∑
t

γq(t)f
id(cit−K:t−1)f ie(cit−K:t−1) (5d)

where q ranges over decision tree leaves, i ranges over feature
vector components and 1 ≤ d, e ≤ D.

The re-estimation formulae giving the updated parameter
values (âidq , (σ̂

2)iq) are

D∑
e=1

Rideq âieq = ridq (6)

(σ̂2)iq =
1

γq

(
siq −

D∑
d=1

âidq r
id
q

)
(7)

where q ranges over decision tree leaves, i ranges over feature
vector components and 1 ≤ d ≤ D. Note that computing the
(âidq ) using (6) involves storing and inverting a D × D matrix
for each q and i. A typical depth 3 model has D = 4.

The value of the expectation maximization auxiliary function
at its maximum (âidq , (σ̂

2)iq) is

− 1

2
T (log 2π + 1)− 1

2

∑
q

γq
∑
i

log(σ̂2)iq. (8)

B. Decision Tree Clustering

The standard approach to decision tree clustering [22] is
modified for the autoregressive HMM [12]. As in the standard
approach each leaf is recursively split using the question that
maximizes the change in auxiliary function value, unless the
maximum achievable change is less than a clustering threshold
ξ in which case we do not split that leaf.

The accumulators (5) for an arbitrary leaf may be obtained
by summing the corresponding state-level accumulators in the
usual way. Thus we can use (7) to compute (σ̂2)iq and so
compute the change in auxiliary function value (8) for a hy-
pothesized split.

For the autoregressive HMM the updated parameter values
(âidq , (σ̂

2)iq) together with state occupancies (γq) are not in
general sufficient to recover the accumulators (5) [12]. This
means we must pass the decision tree clustering algorithm
the accumulators themselves, and not just the re-estimated
parameter values together with occupancies as for the standard
HMM synthesis framework.

The minimum description length (MDL) criterion [23] allows
automated setting of the clustering threshold ξ for the standard
HMM synthesis framework. It sets

ξ =
1

2
ρk logN (9)

where k is the number of free parameters per leaf, N is the
total occupancy of the root node, and ρ is a heuristic scaling
factor which should theoretically be 1. We refer to ρ as the MDL
tuning factor. Previous experiments indicated that ρ = 1 is not
appropriate for the autoregressive HMM, and suggested using
ρ = 0.3 instead [12].
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C. Synthesis

As discussed in Section IV-E below, the autoregressive HMM
with linear basis functions uses a similar form of Gaussian
distribution P (ci | θ, λ) to that effectively used by the standard
HMM synthesis framework. This common structure makes it
possible to use both the standard speech parameter generation
algorithm (case 1 in [2]) and speech parameter generation
considering global variance [24] with the autoregressive HMM
simply by passing the relevant Gaussian parameters into these
standard synthesis algorithms.3

In fact there is a way to compute the mean trajectory for
the autoregressive HMM (with linear basis functions) that is
even simpler than the standard speech parameter generation
algorithm. The mean functions mi

q(c
i
t−K:t−1) in (4) are affine-

linear, and expectation is a linear operator. Therefore the mean
vector sequence µi ∆

= E[ci | θ, λ] can be computed efficiently
by a simple one-pass forward recursion over time:

µit = mi
θt(µ

i
t−K:t−1). (10)

We refer to this as the autoregressive speech parameter gen-
eration algorithm. A minor memory saving when using this
algorithm is to discard the variance parameters ((σ2)iq), which
do not appear in (10). As we will see in Section IV-C this
algorithm has particular advantages in the case of real-time, low
latency synthesis.

IV. COMPARISON

In this section we look at some of the similarities and differ-
ences between the the standard HMM synthesis framework, the
trajectory HMM and the autoregressive HMM.

A. Consistency

The autoregressive HMM and trajectory HMM are both
consistent—they use the same normalized (probabilities sum to
1) model during training and synthesis. As discussed in Section
II-B the standard HMM synthesis framework is inconsistent,
with an unnormalized model effectively used during training.
One of the consequences of the lack of normalization present
during training in the standard approach is that it greatly under-
estimates predictive variance [13].

B. Efficiency of Parameter Estimation

Parameter estimation for the autoregressive HMM and the
standard HMM synthesis framework is more efficient than for
the trajectory HMM.

For the simplest form of training assuming a fixed state
sequence, the autoregressive HMM and standard HMM syn-
thesis framework have separable closed form solutions for

3It might be thought that for speech parameter generation considering global
variance the autoregressive HMM and the trajectory HMM would require a
different weighting factor than the standard HMM synthesis framework since
the latter underestimates predictive variance [13] and so penalizes trajectories
away from the mean more harshly than the autoregressive HMM and the
trajectory HMM. In practice this has been found not to be necessary since in all
three cases the extra term in the global variance cost function essentially acts as
a hard constraint to set the global variance of the synthesized utterance to the
mean of the global variance pdf.

the maximum likelihood parameters. In contrast the trajectory
HMM does not have a closed form solution for the variance
parameters, and requires a gradient descent scheme to optimize
these [3]. The mean parameters do have a closed form solution,
but it is not separable over the parameters for different states
and involves solving a potentially large set of linear equations.

For the autoregressive HMM and standard HMM synthesis
framework the distribution P (c, θ | l, ν, λ) factorizes over time
with respect to the state sequence θ, which allows the Viterbi
and Forward-Backward algorithms to be used. In contrast the
trajectory HMM must resort to an approximate delayed deci-
sion Viterbi decoder for alignment.

The above two points mean that the autoregressive HMM and
standard HMM synthesis framework both support efficient re-
estimation using expectation maximization and efficient deci-
sion tree clustering whereas the trajectory HMM does not.

It should be noted that the autoregressive HMM can be
less efficient during training than the standard HMM synthesis
framework if very large depths are used. Accumulation re-
quiresO(D2) memory and the M-step of re-estimation requires
O(D3) time, whereD = K+1 is the number of basis functions,
in contrast to the standard HMM which requiresO(D) memory
and time, where D is the number of windows. However for the
typical depths used in this paper of K = 2 or K = 3 this effect
is not substantial.

C. Low Latency Synthesis

As discussed in Section III-C the autoregressive HMM sup-
ports a speech parameter generation algorithm not available
for the standard approach or the trajectory HMM. This autore-
gressive speech parameter generation algorithm has particular
advantages in the case of real-time, low latency synthesis.

The standard speech parameter generation algorithm (case
1 in [2]) involves a Cholesky decomposition and requires
O(T ) time to compute the first frame. This means latency can
potentially be high, and both latency and memory usage are
not predictable at design time since utterances vary in length.
In practice a time-recursive version [25] of the speech param-
eter generation algorithm is often used in real-time synthesis
systems and other applications that would otherwise use the
standard speech parameter generation algorithm and which
require low latency [25]–[27]. This time-recursive algorithm is
approximate and slower but has predictable latency, memory
and CPU requirements.

In contrast the autoregressive speech parameter generation
algorithm above requires only O(1) time to compute the first
frame, and so is exact, low latency, and has predictably small
memory and CPU requirements.4

D. Stability

The autoregressive HMM suffers from a potential pathology.
We refer to a set of autoregressive coefficients (aidq : d) as
stable if the autoregressive linear filter given by the same

4Note that latency is still high when using speech parameter generation
considering global variance with the autoregressive HMM. In general for low
latency synthesis post-filtering [28], [29] is more practical than using speech
parameter generation considering global variance.
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coefficients is bounded input, bounded output (BIBO)-stable
[30]. If the autoregressive coefficients for a state are unstable
and the duration of the state during synthesis is much longer
than the typical duration of that state during training, then it is
possible for the mean trajectory to diverge outside the range of
values which are plausible for that feature vector component.

In principle (6) could be replaced with an equation that
estimated the maximum likelihood solution given the con-
straint that the re-estimated coefficients are stable. Alternatively
Quillen has suggested two heuristic schemes to ensure the re-
estimated autoregressive coefficients are stable [14].

In this paper we make no effort to ensure estimated coef-
ficients are stable. Divergent trajectories are unlikely to occur
with standard synthesis algorithms and duration models since
typical durations of states during synthesis are similar to those
during training. Indeed in practice we have only ever observed
divergent trajectories occasionally when using unusual align-
ments and poorly trained systems, even though there are many
states with unstable coefficients in a typical trained system.
Allowing states with unstable autoregressive coefficients may
even be beneficial to synthesis quality since this provides a
slightly richer model class.

We suspect that this pathology is either impossible or much
less likely to occur for the standard HMM synthesis framework
and trajectory HMM with conventional windows.

E. Decomposition Into Local Contributions

There is a strong similarity in the form of the distribution
P (ci | θ, λ) used by the standard HMM synthesis framework,
the trajectory HMM and the autoregressive HMM with linear
basis functions. In all three cases P (ci | θ, λ) is (proportional
to) a multidimensional Gaussian with band diagonal precision
matrix [3], [21].

Furthermore there is a strong similarity in the way the
parameters of this Gaussian depend on the state sequence θ.
For all three models the precision matrix Pθ and b-value bθ,
which is related to the mean trajectory µθ by Pθµθ = bθ, may
be decomposed as a sum of overlapping local contributions,
where successive local contributions are functions of the state
at successive times e.g. θ1, θ2, θ3, θ4 [21]. Schematically

Pθ =




bθ =




. (11)

The difference between the models is in the form of the local
contributions. For the standard HMM synthesis framework and
the trajectory HMM each local contribution to the precision
matrix Pθ is a state-dependent sum of the outer product of a
fixed set of vectors, whereas for the autoregressive HMM each
local contribution to Pθ is the outer product of a state-dependent
sum of a fixed set of vectors [21].

F. The Trajectory HMM as a Generalized Autoregressive HMM

Any trajectory HMM can be viewed as an instance of a gen-
eralized form of autoregressive HMM [31]. For the trajectory
HMM with conventional windows (±1 frame)

P (c | θ, λ) =
∏
t

P (ct | ct−2:t−1, θt−1:T , λ) (12)

where the dependence on ct−2:t−1 is linear-Gaussian. The
corresponding equation for the autoregressive HMM is (1). This
shows that the trajectory HMM may be rewritten in the form of
a linear-Gaussian autoregressive model, but where the parame-
ters of the linear-Gaussian distribution at each time depend not
only on the current state, but also on the remaining duration
of the current state, the duration of the next state, etc. This
conceptual viewpoint is sometimes useful when comparing the
behavior of the trajectory HMM and the autoregressive HMM.

V. EXPERIMENTS

We performed two sets of experiments to investigate the
autoregressive HMM for speech synthesis. Firstly we com-
pared the autoregressive HMM to the standard HMM synthesis
framework and to the trajectory HMM in both subjective and
objective evaluations. Secondly we investigated the possible
choices for structure parameters such as depth and number of
states for the autoregressive HMM using objective evaluations.

A. Experimental Metrics

We use naturalness as judged by human opinion scores as
the metric for the subjective evaluation [32]. For the objective
evaluations we use two metrics.

Test set log probability (TSLP) is the log probability the
model assigns to an unseen test set

TSLP((l, cnat), λ)
∆
= logP (cnat | l, λ) (13)

where (l, cnat) is an unseen pair of label sequence and natural
feature vector sequence. We quote TSLP values per frame.

Mel cepstral distortion (MCD) [33] is a measure of the
difference between a synthesized mel cepstral sequence and the
corresponding natural mel cepstral sequence. We use a form of
MCD based on dynamic time warping. Full details are given
in Section B. To compute the MCD score for an unseen pair
(l, cnat) we take csynth to be the feature vector sequence output
by the standard speech parameter generation algorithm for the
label sequence l.

Test set log probability and mel cepstral distortion provide
complementary views of a model. TSLP is a natural measure
of how well a model predicts unseen frames, and achieving
a high TSLP requires a model to have both accurate mean
trajectories and accurate trajectory covariances. It also allows
us to detect over-fitting. MCD provides useful information
about the accuracy of the mean trajectories independent of the
trajectory covariances.
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B. Experimental Systems
We built a standard HMM synthesis system, a trajectory

HMM system, and several autoregressive systems.
The systems were trained on the CMU ARCTIC corpus [34]

for the single speaker ‘slt’ (approximately 1 hour), with 50
held-out utterances. The original waveforms had a sampling
frequency of 16 000 Hz. The spectral portion of the feature
vector consisted of 40-dimensional mel cepstra (mcep) [35]
with frequency warping factor α = 0.42, the fundamental
frequency portion of the feature vector consisted of logF0, and
the aperiodicity portion of the feature vector consisted of 5-
band aperiodicity [36]. We used STRAIGHT vocoding [37].
A frame shift of 5 ms was used, and F0 was estimated using
STRAIGHT (min 80 Hz, max 350 Hz).

The standard and autoregressive systems were built using
HTS 2.1 [16]. The similarity in parameter estimation and syn-
thesis methods between the autoregressive HMM and standard
HMM synthesis framework allowed us to implement the au-
toregressive HMM relatively easily using HTS, though there
are some important adjustments required such as passing the
decision tree clustering algorithm accumulators rather than re-
estimated parameters as discussed in Section III-B.

All systems used a 5-state (by default) left-to-right topology
for modeling at the phone level, with Gaussian explicit duration
models for each state used during both parameter estimation
and synthesis [18]. We made a minor modification to HTS to
ensure explicit duration distributions are properly normalized
wherever they are used, though the M-step re-estimation equa-
tions were not modified. In the standard version of HTS these
distributions are not fully normalized due to the fact a Gaussian
pdf is being used for a random variable with range the positive
integers.

For the autoregressive systems the spectral and aperiodicity
portions of the feature vector were modeled using the autore-
gressive HMM, with a depth of 3 and an MDL tuning factor
of 0.3 by default. For the standard system these portions of
the feature vector were modeled using the standard HMM with
the conventional three windows [16], a single Gaussian with
diagonal covariance per state, and an MDL tuning factor of
1.0. For all systems the F0 portion of the feature vector was
modeled using standard multi-space distributions [38] with the
conventional three windows [16] and an MDL tuning factor
of 1.0. This means that even the autoregressive systems suffer
from some inconsistency between training and synthesis since
the F0 portion of the feature vector is still modeled using the
inconsistent standard approach.

It is possible to model F0 using the autoregressive HMM.
Perhaps the most natural approach would be to use a continuous
F0 model such as that used by Yu [39], though more compli-
cated approaches would also fit naturally within the autoregres-
sive framework. Investigation of these further departures from
the standard approach is left for future work.

The training regime for the standard and autoregressive
systems was adapted from the HTS speaker dependent train-
ing demo [16], with monophone initialization based on ini-
tial phone-level alignments derived from a monophone speech
recognition-style system followed by monophone embedded re-
estimation, decision tree clustering, embedded re-estimation,

TABLE I
SYSTEMS USED TO COMPARE THE AUTOREGRESSIVE HMM TO EXISTING

MODELS

system description

N natural speech
S standard HMM synthesis framework

SB system S with artificial 3× variance boost
T trajectory HMM
A autoregressive HMM (standard structure parameters)

AM autoregressive HMM (modified structure parameters)

another round of decision tree clustering, and further embedded
re-estimation.

The trajectory HMM system took the trained standard system
as a starting point, and re-estimated the spectral leaf parameters
based on a fixed alignment.

The synthesized trajectories for all systems were produced
using speech parameter generation considering global variance
[24]. The extensions to HTS and the HTS demo we used to
implement the autoregressive HMM are released open source
and are available for download [15].

C. Experiment 1—Comparison to Existing Models

To evaluate the autoregressive HMM for synthesis we com-
pared the baseline standard HMM system, the trajectory HMM
system and two autoregressive systems using both subjec-
tive and objective metrics. The systems under comparison are
shown in Table I. System A is a “conventional” autoregressive
system (5 states, depth 3, MDL tuning factor of 0.3) which
has structure parameters which give good TSLP. System AM
is an autoregressive system with structure parameters tuned to
have good MCD (5 states, depth 2, MDL tuning factor of 0.18).
System SB is system S with a uniform variance boost (see
below for details).

The subjective evaluation was conducted with systems N, S,
T, A and AM following a methodology similar to that used for
the Blizzard Challenge [32]. The listening test consisted of 10
sections of 5 utterances each. For all sections listeners were
asked to rate the naturalness of each utterance on a scale of
1 to 5 inclusive. Prompts were the 50 held-out utterances in a
fixed order. Listeners were allotted to one of 5 groups, and the
ordering of the systems for each group was determined with a
balanced Latin square design. The listening test was presented
via an interactive website over two weeks.

For the objective evaluation we computed test set log prob-
ability and MCD on the 50 held-out utterances. For this exper-
iment only (comparison to existing models) we computed the
TSLP as logP (c0:39 | θ∗, λ) where c0:39 is the spectral portion
of the feature vector sequence and θ∗ is the median alignment
(Section A) computed using all portions of the feature vector se-
quence c. Alignments based on system A were used to evaluate
system A, system AM to evaluate system AM, and system S to
evaluate systems S, SB and T. A fixed state sequence was used
because the true test set log probability, which is obtained by
marginalizing P (c, θ |λ) over θ, is difficult to compute for the
trajectory HMM and the standard HMM synthesis framework.
Note that for the standard HMM synthesis framework the test
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TABLE II
COMPARISON OF THE AUTOREGRESSIVE HMM TO EXISTING MODELS

system mcep
leaves

opinion score approx
mcep-only

TSLP (nats)
MCD (dB)

mean median

N - 4.7 5 - -
S 812 2.4 2 29.3 5.6

SB 812 - - 46.9 5.6
T 812 2.6 3 47.6 5.5
A 771 2.1 2 47.9 5.9

AM 2879 2.4 2 47.6 5.6

N S T A AM

1
2

3
4

5

op
in

io
n 

sc
or

e

Fig. 3. Box plot showing results of the subjective evaluation.

set log probabilities we compute are for the model effectively
used during synthesis, i.e. the trajectory HMM with the same
parameters, not the model used during training.

In total 36 native English speakers (various dialects) com-
pleted the evaluation. Table II shows a summary of the results.
Fig. 3 is an opinion score box plot [40], and a matrix of
statistically significant differences between the various systems
is shown in Table III. Fig. 4 shows a complementary cumulative
plot of these results, which displays more information than
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Fig. 4. Complementary cumulative plot showing results of the subjective
evaluation in more detail. For an opinion score s, the ordinate gives the
proportion of participant responses that were s or greater. For any given opinion
score larger ordinate values are better.

TABLE III
PAIRWISE COMPARISONS OF SIGNIFICANT DIFFERENCES BETWEEN

NATURALNESS USING BONFERRONI-CORRECTED MANN-WHITNEY U
TESTS (� INDICATES A SIGNIFICANT DIFFERENCE AT 1%)

N S T A AM

N � � � �
S � � � �
T � � � �
A � � � �

AM � � � �

the box plot. We can see that the modified autoregressive
system (AM) has extremely similar performance to the standard
HMM synthesis framework (S). The trajectory system (T)
does slightly better than these two systems, and the default
autoregressive system (A) does noticeably worse than these
two systems. The statistical significance test has S, T and AM
possibly identical in performance with A statistically different
from the other three. The results also show that MCD was more
useful than TSLP as a surrogate for human judgment when
selecting model structure parameters for the autoregressive
system.

The objective results are presented in Table II. To provide
some intuitive calibration of the TSLP and MCD scales, the
reader may be interested to know that using full context instead
of monophone models results in a typical improvement of
roughly +0.4 to +0.6 nats for approximate mcep-only TSLP,
and roughly −1.1 dB to −1.3 dB for MCD.

We can see that the trajectory system (T) and the modified
autoregressive system (AM) are comparable in terms of test
set log probability. The default autoregressive system (A) does
quite a bit better than any of the other systems. The standard
system (S) has extremely low test set log probability, due to
the fact it systematically underestimates predictive variance
[13]. For interest we also computed the test set log probability
of the standard system with a multiplier of 3 applied to the
covariance of each trajectory (equivalently, a multiplier of 3
applied to every variance parameter in the system).5 This results
in a system (SB) that no longer systematically underestimates
predictive variance and has a much greater test set log proba-
bility. However there is still a large gap between the variance-
boosted standard system (SB) and the normalized models.
These results suggest that the autoregressive HMM performs
favorably compared to existing models as a probabilistic model
of speech.

The MCD results are qualitatively similar to the subjec-
tive listening test results. The modified autoregressive system
(AM) and the standard HMM synthesis framework (S) have
very similar MCD, with the trajectory HMM system (T) very
slightly better and the default autoregressive system (A) no-
ticeably worse. Thus the trajectory HMM appears to provide
the best model of the mean trajectory. These results suggest
that the autoregressive HMM inherently provides a slightly

5The value of 3 is close to optimal for all mcep components, in the sense of
maximizing test set log probability amongst the family of all possible uniform
variance boosts. In preliminary experiments we observed that the optimal
uniform variance boost for standard systems is often roughly the number of
windows (here 3).
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poorer model of the mean trajectory than the standard HMM
synthesis framework, but that MCD performance on the level of
the standard approach can be obtained with the autoregressive
HMM by using more leaves (system AM).

It should be noted that the MCD results appear to depend
strongly on the precise form of MCD used. In preliminary
experiments with forms of MCD using a fixed alignment rather
than dynamic time warping, we found that for some methods
of computing the alignment systems S and AM were similar in
MCD score, but for other methods of computing the alignment
system S was noticeably better than system AM.

D. Experiment 2—Model Structure Investigation

Our second set of experiments investigated the possible
choices for model structure parameters such as number of
states, depth and MDL tuning factor for the autoregressive
HMM. The customary values used for the standard HMM
synthesis framework may not be optimal for the autoregressive
HMM, and some parameters such as depth have no direct
analog in the standard framework. Investigating these choices
involves evaluating an extensive set of systems, and so we chose
to measure objective performance only.

Using the systems A (5 states, depth 3, MDL tuning factor
0.3) and AM (5 states, depth 2, MDL tuning factor 0.18) as
starting points, we varied the model structure parameter under
investigation. All other aspects of the systems were as specified
in Section V-B.

Ideally for each number of states and depth considered we
would choose the optimal MDL tuning factor. However just
choosing the MDL tuning factor which achieves the best score
on the test set would involve substantial re-use of the test set,
and conducting a full 3-dimensional search with a held-out
validation set or using cross validation would be computation-
ally intensive. Therefore we only used MDL tuning factors
of 0.18 and 0.3, except for the depth 0 case where an MDL
tuning factor of 1.0 was suspected on theoretical grounds (the
depth 0 autoregressive HMM is just a conventional HMM) and
experiments confirmed this was better.

We also report the test set log probability and MCD of the
monophone system below, since this is not sensitive to the
choice of MDL tuning factor.

1) Depth: We trained autoregressive systems of various
depths. The depth was varied for the spectral portion of the
feature vector only. We found that local maxima during training
were a problem, with the training set log likelihood for depth 5
monophone models lower than for depth 4 monophone models
in spite of the fact depth 4 models are a special case of depth 5
models. Thus we decided to train more carefully, starting with
depth 0 models and gradually increasing the depth of the model
with several iterations of embedded re-estimation in between.

The results are shown in Fig. 5. The optimal test set log
probability is at depth 3 with system A, and depths 3, 4 and 5 are
all close to optimal. We can see that increasing the depth gives
decent improvements in TSLP up to depth 3, and thereafter
results in minor degradation. The optimal MCD is at depth
1 with system AM, and depths 1, 2 and 3 are all close to
optimal. We can see that increasing the depth gives a decent
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Fig. 5. How depth affects (top) test set log probability and (bottom) mel
cepstral distortion. The monophone versions of system A and system AM differ
only in depth and so have identical results in this figure.

improvement in MCD up to depth 1, and thereafter results in
minor degradation.

The gradual training procedure used here was not used in the
other experiments. Without gradual training depth 3 system A
is still optimal in terms of TSLP, but depth 2 system AM is now
optimal in terms of MCD and−0.10 dB better than depth 1. For
the depth 3 system A and depth 2 system AM used elsewhere
the difference made by gradual training was minimal (TSLP
within 0.04 nats and MCD within 0.02 dB).

We therefore suggest 2 or 3 is the most appropriate choice of
depth for the autoregressive HMM.

2) Number of States: We trained autoregressive systems
with various numbers of states. The results are shown in Fig. 6.
We can see a clear peak in TSLP at the conventional value of 5
states for system A, and 5 and 6 states are both close to optimal.
The optimal MCD is at 5 states with system AM, and 5, 6 and
7 states are all close to optimal.

The convention of using 5 states inherited from the standard
HMM synthesis framework is thus appropriate for the autore-
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Fig. 6. How number of states affects (top) test set log probability and (bottom)
mel cepstral distortion.

gressive HMM.
We noticed an effect where the training set log likelihood

was lower for the monophone models with 6 to 8 states than
with 5 states, which at first seems surprising. However instead
of being a local maxima effect as in the case of depth, prelim-
inary investigations suggest that this is mainly caused by the
minimum duration restriction. Since each state is restricted to a
minimum duration of 1 frame, a 5-state model has a minimum
phone duration of 5 frames and an 8-state model has a minimum
phone duration of 8 frames. This warrants further investigation.

3) MDL Tuning Factor: We trained autoregressive systems
with various MDL tuning factors used during decision tree
clustering. The MDL tuning factor was varied for the spectral
portion of the feature vector only. The results are shown in
Fig. 7. For the TSLP of system A we can see that there is no
clear peak, with any MDL tuning factor from 0.20 to 0.35,
corresponding to a total of roughly 600 to 1600 mcep leaves,
being close to optimal. For the MCD of system AM we see a
narrower range of good MDL tuning factors, with any value
from 0.17 to 0.20, corresponding to a total of roughly 2000 to
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Fig. 7. How MDL tuning factor affects (top) test set log probability and
(bottom) mel cepstral distortion.

3500 mcep leaves, being close to optimal. It should be noted
that the number of leaves increases very rapidly as we lower the
MDL tuning factor from 0.18—system AM has around 1000
mcep leaves at an MDL tuning factor of 0.3, 2900 leaves at
0.18, 6400 leaves at 0.15, and 16 000 leaves at 0.13.

We therefore suggest a value between 0.18 and 0.3 is the
most appropriate choice of MDL tuning factor for the autore-
gressive HMM.

VI. DISCUSSION

We have seen that the form of autoregressive HMM with
linear basis functions explored here appears to be capable of
matching but not bettering the naturalness of the standard HMM
synthesis framework. The consistency of the autoregressive
HMM means that it does not grossly underestimate predictive
variance in the same way as the standard HMM synthesis
framework [13], and even once this flaw is corrected (system
SB above) the autoregressive HMM has a better model of
trajectory covariance as evidenced by a much greater test set
log probability. The autoregressive HMM seems to provide
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an inherently slightly poorer model of the mean trajectory
than the standard HMM synthesis framework, but this can be
compensated for by using more leaves.

Compared to the standard HMM synthesis framework, the
trajectory HMM has slightly better mean trajectories, much
better trajectory covariances, and a higher naturalness score.
Compared to the autoregressive HMM, the trajectory HMM has
better mean trajectory modeling, but appears to have slightly
worse trajectory covariance modeling.

We have also seen that for the autoregressive HMM we
obtain higher naturalness on this corpus using a depth of 2 and
an MDL tuning factor of 0.18, which roughly corresponds to
optimizing MCD, rather than a depth of 3 and an MDL tuning
factor of 0.3, which roughly corresponds to optimizing TSLP.

It is interesting to consider reasons the autoregressive HMM
might model the mean trajectory worse than the trajectory
HMM. One natural candidate is the fact that the trajectory
HMM inherently incorporates a notion of lookahead (see Sec-
tion IV-F), and so the mean trajectory starts to smoothly transi-
tion to a value suitable for the next state while still in the current
state. In contrast the autoregressive HMM must encode such
information by judicious use of right-context questions in the
decision tree. This warrants further investigation.

It is worth noting that while the autoregressive HMM appears
to provide the best trajectory covariances, none of the models
go very far towards capturing the true trajectory covariance
structure present in speech, as evidenced by the fact that sam-
pled trajectories from all three models sound bad [13].

APPENDIX A
MEDIAN ALIGNMENTS

Here we briefly describe median alignments. When a left-
to-right topology is used for modeling at the label and sub-
label levels as is common, each label sequence l defines a
sequence of (label, sub-label) pairs. At each time t the marginal
posterior P (θt | l, c, ν, λ) defines a distribution over the index
of the current (label, sub-label) pair within this sequence. The
median alignment θ∗ is obtained by at each time t choosing
θ∗t to be median of this distribution. Computationally median
alignments are easily obtained using the Forward-Backward
algorithm. Median alignments have nicer theoretical properties
with respect to marginalization than Viterbi alignment, though
in practice there is often little difference between the two.6

APPENDIX B
DTW-BASED MEL CEPSTRAL DISTORTION

We use the following form of MCD based on dynamic time
warping:

MCD(c, c̃)
∆
=

k

T (c)
min
π∈Π

∑
(s,t)∈π

(
39∑
i=1

(
cis − c̃it

)2)0.5

(14)

6It might be thought that median alignments may have pathologies such as
later labels appearing before earlier labels. This would not necessarily be a
problem for our application if it did occur. However for the form of models we
use, the median alignments are in fact guaranteed to correspond to valid state
sequences. In particular they are always left-to-right, and satisfy the constraint
that each sub-label must last for at least 1 frame.

where k ∆
=
√

2 ·10/log 10, c and c̃ are feature vector sequences,
c0:39 is the spectral portion of a feature vector sequence c,
T (c) is the number of frames in a feature vector sequence c,
π ⊂ N × N is a relation between frames in the natural and
the synthesized feature vector sequences, and Π is the set of
admissible relations. A relation π ⊂ N × N is admissible if
there is a sequence ((sp, tp))

P
p=1 such that (s1, t1) = (1, 1),

(sP , tP ) = (T nat, T synth), (sp+1−sp, tp+1− tp) is either (0, 1),
(1, 0) or (1, 1) for p = 1, . . . , P−1, and the sets {(sp, tp)} and π
are equal. The minimum over admissible relations is computed
using dynamic time warping. We compute the MCD between
a natural feature vector sequence cnat and a synthesized feature
vector sequence csynth as MCD(cnat, csynth).
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