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Abstract

Nonparametric estimation of the copula function using Bernstein polyno-
mials is studied. Convergence in the uniform topology is established. From
the nonparametric Bernstein copula, the nonparametric Bernstein copula
density is derived. It is shown that the nonparametric Bernstein copula den-
sity is closely related to the histogram estimator, but has the smoothing
properties of kernel estimators. The optimal order of polynomial under the
Ly norm is shown to be closely related to the inverse of the optimal smooth-
ing factor for common nonparametric estimator. In order of magnitude, this
estimator has variance equal to the square root of other common nonpara-
metric estimators, e.g. kernel smoothers, but it is biased as a histogram
estimator.
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1 Introduction

The use of multivariate distributions with given marginals (i.e. the copula func-
tion) have been considerably studied in the last thirty years, but mainly from a
mathematical point of view with particular reference to probabilistic metric spaces
(e.g. Schweizer and Skalr, 1983). More recently, the study of these distributions
has received considerable attention from a statistical point of view, particularly in
the case of parametric inference (e.g. Joe, 1997, and references therein). Some ex-
ceptions where nonparametric and semiparametric inference is considered are non
parametric estimation of some extreme value copulae (Capéraa et al., 1997), the
semiparametric estimation of the dependence parameter in parametric families of
copulae (Genest et al., 1995), and nonparametric inference for choosing the best
Archimedean copula (Genest and Rivest, 1993). Moreover, the need to model com-
plex dependence structures has made the use of the copula an invaluable tool in
many applied areas. Recent applications to finance and financial econometrics are
given in Li (1999), Patton (2001), Rosenberg (2000), Longin and Solnik (2001),
and, with more theoretical emphasis, Sancetta and Satchell (2001).

The use of the copula function allows us to divide the problem of marginal
estimation from the one of the copula estimation, e.g. inference functions for
marginals; see Joe (1997) and references therein. This provides a considerable
advantage in applications as a researcher may fully exploit his limited information
in the most efficient way. For example, there could be significant knowledge of
the marginal distribution of two variables, while little confidence on their joint
distribution. For reasons of this nature, it would be convenient to be able not only
to estimate the marginals separately from the whole joint distribution, or copula,
but also to find ways that require fewer assumptions on the side of the practitioner.
Nonparametric techniques have this purpose in mind.

The aim of this paper is to provide a nonparametric estimation procedure that
would allow us to model the copula function nonparametrically in complete inde-

pendence from the marginal. In particular, we consider estimation via Bernstein



polynomials. For this reason, we call our estimator the nonparametric Bernstein
copula. This is just a nonparametric estimator for the general family of copulae
defined as Bernstein copulae (e.g. Sancetta and Satchell, 2001, and Sancetta 2002).
In particular, we will consider the Bernstein operator as a smoother where the co-
efficients are given by the empirical copula. This has the advantage of replacing
a non-smooth distribution estimator with a smooth one. Therefore, simple oper-
ations like differentiation and integration can be carried out and even generalized
for the case of non differentiable distribution functions.

The main contribution of this paper is to develop the L, theory for the nonpara-
metric Bernstein copula density, i.e. convergence of the density of our estimator

under the following norm
I£15= [ 10w
Q

for the following measure space (2, B, 1) . This estimator does not only add to the
large number of nonparametric estimators. It is shown that inside the support of the
copula, the variance of this estimator is of lower order than other commonly used
nonparametric estimators (e.g. histogram and kernel). The intuition for the result
is that Bernstein polynomials do not have a local behaviour as other nonparametric
or polynomial estimators; the more global behaviour comes at the expense of the
well known slow rate of adjustment. In particular, the Bernstein operator is just
the expectation operator with respect to a binomial distribution. In this respect
the result represents a partial solution to the so called curse of dimensionality.
The plan for the paper is as follows. Section 2 briefly recalls the ideas behind
the copula function and Bernstein polynomials. Section 3 considers the properties
of the nonparametric Bernstein copula with given marginals. These marginals can
have either a parametric or nonparametric form. Because of the properties of the
copula, this is of no concern. Since the copula is defined on the k£ dimensional
unit cube, it is natural to consider convergence under the sup norm. From the
nonparametric Bernstein copula we derive and study the nonparametric Bernstein

copula density in Section 4. The link between the nonparametric Bernstein copula
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and other methods of estimation (i.e. histogram and kernel) is established. The
main result of convergence under the Ly norm and weak convergence is stated.
Section 5 provides a brief illustrative example of the nonparametric copula and one
of its competing alternatives. To make the paper more readable, the proofs of the
two theorems in the text are deferred to Section 6. Final remarks can be found in

Section 7.

2 The Copula Function and the Bernstein Oper-
ator

Recall that if X, ..., X} have joint distribution H and one dimensional margins

Fy, ..., Fy, their copula function, C : [0,1]" — [0,1], is defined as
H(X), ., X0) = C (F (X)), - Fu(X))

i.e. it is the joint distribution of uniform [0, 1] marginals. An important property
used in this paper is that the copula is unique if Fy,..., F} are continuous (e.g.
Sklar, 1973). Since we will use Bernstein polynomials to estimate the copula, we
briefly recall a few facts about them. Let C[O,l]k be the space of continuous bounded

functions in [0, 1]" .! For any f €C)y )+ its associated Bernstein polynomial is given

by

where

m vj m—uv;
ij,m(xj) = ( )xj (1—$]) 7,
Uj

and BF is the k dimensional Bernstein linear operator of order m. The summation
in (1) does not need to run over [0, m] for each coordinate, but may vary from one

to another. To ease notation, we do not allow for this generality as it will not be

INotice that any compact interval [a,b]” can be made isomorphic to the unit box.
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relevant for our purposes. On the other hand, a property that will be used in the
sequel is that Bernstein polynomials are dense in C[OJ]k (e.g. Devore and Lorentz,
1993).

Before concluding this section we recall the following representation in terms of

a Riemann Stieltjes integral of a one dimensional Bernstein polynomial 2,

- v
BN = 3 (5) Prnta)
1
= [ fdsn(a) @)
0
where
K,(z,t) = Z <n>x”(1 — )"
n bl ) Y
v<nt
K,(z,0) = 0
is the kernel function that is constant for £ < ¢ < ! and has a jump of (7)z"(1—

)"V att =",

3 The Empirical Bernstein Copula

Our purpose is to define a nonparametric estimation procedure for a copula in terms
of Bernstein polynomials. To this end, we need to define the empirical copula first.
Definition 1. Fori=1,...,k, let X1, ..., Xi, be a sample of n observations with

marginal distribution function F;. The k dimensional empirical copula is given by

Ch (U, oy ug) = %Z[ {ﬂ [F; (z55) < uz]} ,

i=1
where Iy is the indicator function.
Notice that even when F; is unknown, by the Glivenko-Cantelli Theorem, (e.g.

van der Vaart and Wellner, 2000, ch. 2.4) we can use the empirical distribution as

?The k dimensional extension trivially follows.



a uniform strong estimator. Further, by the Glivenko-Cantelli theorem for classes
of functions indexed by indicators of half spaces, the empirical copula is a uniform
strong estimator of the Copula function (e.g., see van der Vaart and Wellner, 2000,
ch. 2.4). In order to make the arguments in the sequel more transparent, we will
refrain from pursuing generalization to dependence.

The empirical copula is not a smooth estimator, so it does not posses a density.
For this reason, nonparametric kernel estimation and related techniques as spline
smoothing are often employed. Nevertheless, the space where a copula is defined
and its specific properties make the use of Bernstein polynomials more suitable. In
fact, the copula function requires that, integrating out all but one variable, we are
left with a one dimensional marginal distribution. Therefore, using the approach
in Sancetta and Satchell (2001), we approximate the copula by a Bernstein poly-
nomial. Notice that in the case of the empirical copula, the result of applying this
linear operator is to have a smooth function. We have the following definition.

Definition 2. The k dimensional nonparametric Bernstein copula is given by

(BfnCn) (ug,...,u Z Z [Z nlI {ﬂ Uis < tvj} }]
I () =y )

where w;s = F; (45) by, = % and all other objects are as defined before.

_J7
It is simple to see that

(BEC,) (ul,...,uk)zn_lsz:;<z ZH {wiost; } ( ) E (1_uj)m_vj>'

v1=0 v=0 j=1

Notice that, so far, we put no restriction on m. For the time being, we can state
the following simple consistency result. At first we need to introduce some notation
that will be used throughout the paper.

Notation.

Cg,, (u) = (BfflCn) (Ugy ey ug)



where u 1s a k dimensional vector;

(BLC,) (u) = / i (8) d K (u, 1),

where Cy, (...) is the k-empirical copula and dyK,,(u,t) is the k dimensional kernel
for the Bernstein operator of order m with k dimensional index t.
Theorem 1. Let {u} (k x 1) be a sequence of independent strictly stationary

uniform [0, 1] random vectors with copula C (u) and empirical copula C,, (u). Then,

— 0,as n, m — o0,

ofz)

From the proof of Lemma 1, the reader can see that independence is only used

sup ‘ / Cry (t) de K (u, t) — C (1)

and

sup ‘ / C (t) deJ,p(u, t) — C (1)

for consistency of the empirical distribution function. Therefore, the result can
be easily extended to weak dependence (see Rio, 2000, for the best known results
in the case of weakly dependent series). It is clear that if we are interested only
in the probability associated to each quantile, there is no advantage in using an
empirical Bernstein copula instead of a simple empirical copula as the additional
error incurred is O (%) However, by defining the empirical Bernstein copula, we
can derive consistent estimators for the density and the conditional distribution.

Now we turn to the study of the nonparametric Bernstein copula density.

4 Nonparametric Bernstein Copula Density

By the properties of Bernstein polynomials, the Bernstein copula is absolutely con-
tinuous and differentiable in each argument. Differentiating the Bernstein polyno-
mials with respect to each argument and rearranging, we see that they are closed
under differentiation (Sancetta and Satchell, 2001, and Sancetta, 2002). Therefore,
differentiating, it is easy to see that the coefficients of the polynomial are equiv-

alent to a k dimensional histogram estimator (see Scott, 1992, for details on the
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histogram estimator),

m—1 m—1 ml“ n k

Z Al,....,k: (7 ZI {ﬂ Ujs S t })

v1=0 vE=0

b fm—1

I e, (@)
j=1 J

where we use ¢p to stress that it is a particular estimator and A, _ j is the k

dimensional partial forward difference operator, i.e.

Pkl {ﬂ (130 <ty } =Y D (g {m [ <ty + %} } |

I1=0  1x=0 j=1

4.1 The Bernstein Operator as an Asymptotically Gaussian

Convolution Operator

It is evident that the nonparametric Bernstein copula density is a smoothed ver-
sion of the histogram estimator. It is the expectation of the histogram estimator
with respect to the binomial distribution, i.e. the Bernstein operator is a convo-
lution operator. In particular, consider the normal approximation to the binomial

distribution, e.g. see Stuart and Ord (1994, p. 138-140). Let

Pantw = (T)ur =,

and
Pom (v) = (2mu (1 — u) m)™2 exp {_2u (In_ m (% — u)2} , (5)
then
S 1 (5) Pun = [ () Punte) o

Further, the error in this approximation is uniform. A formal proof may be given

through the Edgeworth expansion for z = (% — u) . Taking squares of the two



distributions (i.e. the binomial and the Gaussian),

[e.°]

i:f (5) Pam @) = [ £ (=) (Puon (), (6)

—00

where again the error holds uniformly. This last statement is fundamental in the
proof of Theorem 2 below. This result is also valid for higher dimensions. Therefore,

using this approximation, we have

[e.°]

o0 k n k _
532//%;I{ﬂ{uﬁg%}}ﬂ,,m(v)dv

This shows that the asymptotic properties of the estimator ¢z can also be studied in
terms of the properties of the convolution of an histogram with a Gaussian kernel.

This shows that is appropriate to consider m™!

as smoothing parameter as far as
comparisons are concerned. Further, by the properties of convolutions, we should

expect ¢g to have lower variance than the simple histogram estimator.

4.2 Consistency in MSE of the Nonparametric Bernstein

Copula Density

The optimal choice of m depends on the topology we use. We choose m to minimize
the mean square error of the density, i.c. min||éz — ¢/|> where ||...|, is the Ly norm
under the true probability measure, and c is the true copula density. Just increasing
m will reduce the bias but increase the variance of ¢g.

We formally state the condition under which the following theorem is derived.

Condition 1. uy, ....,u, (k X 1) is a sequence of independent strictly stationary
uniform [0,1]" random vectors with copula C (u) and copula density c(u) which
has a finite first derivative everywhere in the k-cube.

Remark. The independence condition is not required, but we use it to make the
proof as concise and transparent as possible. From the proof of Theorem 2 it can
be seen that, mutatis mutandis, the results are still valid under appropriate mizing
conditions by the use of known coupling results. Though we will use differentiabil-

ity in the proof, this is not required. As long as the copula density is bounded and
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continuous (or has finite discontinuities of the first kind), we could define a gener-
alization of Taylor expansion using Bernstein polynomials (e.g. Lorentz, 1953, p.
12-13, or Feller, 1971, p. 230-232) .

We state the main result of the paper. Notice that we use < to indicate greater
or equal up to a multiplicative constant, e.g. a =< b implies 3C' < oo such that
a < Cb.

Theorem 2. Let ¢g be the k dimensional Bernstein copula density. Under
Condition 1
i. Bias(ég) = m™1;

ii. Let N\j = [uj (1 —uy)]?,
(a.) for u; € (0,1),V7,

Nl=

X -1
var (ég) = (n )\j> ms (1+m™),
=1

J

(b.) for u; =0,1,V7,

in mean square error:

(a.) for u; € (0,1),Vy, if m—f — 0 as m,n — oo;

(b.) for u; =0,1,VYy, if mTk — 0 as m,n — oc;

w. The optimal order of polynomial in a mean square error sense is:

(a.) m = nE if u; € (0,1),Vy;

(b.) m =< nwz if u; =0,1,Yy;

v. If m—k > 2, then ég(u) and Cp(u) are Donsker in (0,1), i.e. zp(u) =
Vm n [é5 (u) — Eég (u)] and Zg (u) = /n |Cp (u) — EC (u)| converge to a

zero mean Gaussian process with continuous sample paths and covariance function

E[zp (wy) zp (u2)]
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and

E ZB (ul) ZB (UQ) N

respectively.

The weak limit of the infinite dimensional distribution of the nonparametric
Bernstein copula density and the empirical Bernstein copula are given because
these can be used to devise test statistics for independence based on some norm
of the limiting Gaussian process. It is known that if a class is Donsker, then it
is Glivenko-Cantelli, i.e. convergence holds uniformly over the class (e.g. van
der Vaart and Wellner, 2000, p. 82). Therefore, the results of Theorem 2 hold
uniformly.

For comparison purposes, let h = m~! be the smoothing factor in the usual
sense. The bias is of the same order as the one for the histogram estimator. In
this respect, kernel smoothers would lead to a bias not higher than O (m2). The
reason for not calculating the constant is that in order to find the term that is
O (m™'), it is necessary to take a Taylor series at least to second order. A Taylor
series expansion up to second order requires more stringent conditions than the
ones implied by Condition 1. On the other hand, here we do not make explicit
use of Taylor expansions.®* Notice that it is not possible to reduce the bias to
O (m™2) by shifting the histogram, i.e. using frequency polygons (e.g. Scott,
1992, ch. 4, for details on frequency polygons). In this case the first term in the
expansion would vanish, but other terms of same order would not. An easier way
to see this is to notice that a Bernstein polynomial introduces an error which is
O (m™1); see the proof of Theorem 1 and 2. Therefore, there is no way to reduce
the bias unless we improve on the Bernstein approximation first (see Butzer, 1953,
for linear combinations of Bernstein polynomials which improve on the rate of

approximation).

3An earlier version of this paper made use of Taylor expansions in order to derive the exact
form of the leading terms. However, the use of Bernstein polynomials led to lengthy calculations

that clouded the simplicity of the argument.
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While the bias is of the same order as the histogram estimator, the variance
is of smaller order (except at the edges of the hypercube): wvar (¢g) = O (mg)
instead of O (m’“) as is the case for the histogram and kernel estimators. On the
other hand, for u; = 0,1, for all j’s, the variance is of the same order as for these
other nonparametric estimators. The case u; = 0, 1 for only some j is not included
because the result is just a mixture of the two extreme cases: the variance goes
down by a factor that is O (m%) for all the coordinates inside the k-hypercube
while for the coordinates on the boundaries the contribution to the variance is
O (m).

As m and n go to infinity, it follows that this estimator has a rate of consis-
tency m—f — 0 inside the hypercube, versus mTk — 0 for other common nonpara-
metric estimators, e.g. Gaussian kernel. Inside the hypercube, the optimal order
of smoothing is m = O (nk%‘l) in mean square error sense, versus m = O (nk+r2)
for the histogram and m = O (nk_}r‘l) for a first order kernel.

This implies that the Bernstein polynomials require very little smoothing (i.e.

a large order of polynomial). This is due to the fact that Bernstein polynomials

are fairly slow to adjust.

5 Illustrative Example

In this section, we use some short simulations to study the finite sample perfor-
mance of the nonparametric Bernstein copula density. We choose the Kimeldorf

and Sampson (KS) copula as the true one, i.e.

=

C(u,v)=(u7+0v77=1) 7.

In particular, we let v = .6. The dependence parameter v = .6 corresponds to a
Spearman’s rho equal to .34 (e.g., Joe, 1997, p. 32, for a definition of this measure
of dependence). Figure I shows the plot for the copula density of the KS copula
with dependence parameter v = .6. We notice that this copula density exhibits

lower tail dependence, e.g., an important property when modelling joint financial
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returns. However, this copula is singular at the origin. As a condition in Theorem 2
we used the fact that the copula density is nonsingular. Therefore, comparing this
copula density with the nonparametric one will be of interest for several reasons.
We estimate the nonparametric Bernstein copula density with m = 12 using
a simulated sample of 500 observations from a KS copula with v = .6 (see Joe,
1997, p. 141, for further details on the KS copula). This boils down to finding the

1

histogram estimator with bin width equal to m™, and then applying the Bernstein

operator to it. We plot the estimated copula in Figure I.

Figure I. Kimeldorf and Sampson Copula Density, v = .6.
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In order to study more closely the performance of our estimator, we look at
the integrated absolute error (IAE) and the integrated square error (ISE). The
IAE and ISE are, respectively, the L; and the squared L, norm with respect to the
Lebesgue measure of the difference of the KS copula density and the nonparametric

Bernstein copula density, i.e.

I(dC (u, v) = dCg (u, V) () = / |(dC (u,v) = dCp (u, v))|

[0,1)2
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1(dC (u, v) = dCp (u, 0))ly 40y = / [(dC (u,v) = dCp (u,v)))*
0,1)2

The KS copula density is singular at the origin, so the ISE would be highly af-
fected by values in the neighborhood of the origin. Since nonparametric estimators
cannot detect singularities, it is also informative to produce results for the TAE.
The TAE is less sensitive to extreme values over sets of measure close to zero.

The TAE and the ISE are computed for a simulated sample of 500 observations
from the KS copula with v = .6. Results for different values of m are in Table
I.* We also report the same results when the copula is estimated using the two
dimensional histogram estimator. Further the IAE and the ISE are computed
when the copula is assumed to be the independence copula (recall its density is
1). Since the nonparametric Bernstein copula is obtained from the histogram, it is
natural to make comparisons with the two dimensional histogram. The values for
the deviation of the KS copula density from the independence copula density are

given to provide some benchmark values.

4The results in Table I should be taken cautiously. Simulated data from a copula are obtained
by deterministic transformation of iid uniform [0,1] random variables. Since pseudo-random
numbers are not iid, the implicit dependence (we often found the variables to be correlated as
well) in the raw data will produce simulated data which may not be completely consistent with

the desired copula.
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Figure II. Nonparametric Bernstein Copula Density, m = 12.

(Artificially Generated Data, n = 500)
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TABLE I. TAE and ISE.
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3

IAE

ISE

IAE

ISE

IAE ISE

0o ~NO Ul A~

11
12
13
14
15
16
17
18

0.15350
0.14176
0.13721
0.12755
0.11682
0.12404
0.11955
0.11238
0.11507
0.11662
0.11155
0.11437
0.11979
0.12597
0.12677

1.5664
1.5568
1.5509
1.5361
15251
15188
1.5092
1.5058
1.5094
1.5033
1.4929
1.4956
14921
1.5076
1.5039

0.21968
0.21749
0.24718
0.28075
0.31472
0.34334
0.37963
0.38339
0.39403
0.38975
0.49072
0.53152
0.56853
0.57352
0.65579

1.5853
1.5847
1.5969
1.6074
1.6358
1.6597
1.6882
1.7053
1.7189
1.7263
1.8358
1.9026
1.9418
2.03248
2.12442

0.26928 1.67371

The main result of Table I is that applying the Bernstein operator to the 2 dimen-

sional histogram allows us to decrease the size of the mesh, and consequently the
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bias keeping the uncertainty (i.e. the variance) low. This agrees with the asymp-
totic results in Theorem 2. Further, the results do not seem to be particularly

sensitive to m as opposed to the histogram.

6 Proofs

Proof of Theorem 1. By the triangle inequality,

sup
u

/C’n (t) de K (u, t) — C (u)

IN

sup
u

/ C, (£) de K (1, t) — C (t) de Ko (u, t)'

/ C () de K (w,t) — C ()

+ sup
u

/ (Co (t) — C (t)) de Ko (u, t)

= sup
u

/C(t) Ko (u, ) — C (u)]

+ sup
u

where the equality follows by the properties of linear operators. By the Glivenko-

Cantelli Theorem, (C,, (u) — C (u)) converges to zero as n — oo, it follows that

sup
u

/(C’n (t) —C(t)) dth(u,t)' — 0.
By Lemma 1 in Sancetta (2002, ch. 1), for any € > 0, 3 m such that

<e.

/ C () deK (1w, t) — C ()

sup
u
Since € can be made arbitrarily small by suitable choice of m, the second term can

be made as close as we please to zero. In particular,
k
o)
m

Before proving Theorem 2, we need some additional notation.

sup ‘ / C (t) de I, (u, t) — C (u)

from Theorem 2 in Sancetta (2002, ch. 1). m

Notation. We use u; to indicate the vector of r.v.’s. On the other hand u will

denote a fixed, but arbitrary value. This generates no confusion as long as one is

Odc(uy)

willing to look at a function as a point in the space. Moreover, O;c (u) = Ba.

us=u-
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Proof of Theorem 2. Bias(¢g) = E (¢g) — ¢(u), which we can rewrite as

E/cn (6) de o (u,8) — ¢ (u).

We shall proceed as in the previous proof. Clearly,

E/cn (t) deKpp(u,t) —c(u) < E/[cn (t) — c(t)] de K (u, t)

+E ( / c(t) deK,p (u,t) — c(u))

< B [l - el dkiniue +0 (L),

m
where the second inequality follows from the same argument as in the previous
proof. Since the Bernstein operator is bounded, by Fubini’s theorem, it is sufficient

to consider
Ele, (t) —c(b)],

i.e. the bias for a histogram estimator. Therefore, (e.g. Scott, 1982, p. 81, or just

use (10) below, where no Taylor expansion is required)
Ele, (t) —c(t)]=0(m™").

Therefore,

Bias (¢g) = O (%) .
For the variance, notice that the probability of one observation falling inside a
subset of the hypercube is equal to the probability of a success in a Bernoulli trial.
We know that the probability of n successes, where n is the sample size, is given

by a binomial distribution. By the variance of n independent Bernoulli trials

m—1 m—1 n k
var CB 712 E Ds U1V ps U1 vk H vj,m— 1 ) (7)
s

Jj=1

togtos  totom

m

Ds,vr vy = / e / ¢ (ug) dugs - - - dugs.

Loy, 2
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Consider the following simple identity for any differentiable function f,

wa)duﬂf?H (u—t——)df() )

where the left hand side can be recovered by simple integration of the second term

3=

on the right hand side. By direct application of (8) we have

'u % v2+_
1)17 U2gy -y uks)
DPswy-vp, =
tvl‘i’;
1
— Ups — ty1 — . O1¢ (Us, Ung, ..., Ups) AUy, ) dung - - - dugg.
tvl

9)

Now, by Condition 1, 0ic¢ (u1s, Ugs, ..., ugs) < M for some M < oo. Therefore, the

last term in (9) is bounded by

tvl“!‘#

M / (tvl + i — U18> duls =0 (m*2) .
m

tyl

Substituting into (9),

Applying (8) repeatedly, we have

C(Tyyyeny by _
Psv1--vp, = —( 1m’“ k) + O (m (k+1)) . (10)

Since ps ., < 1, it follows that (17371)1...%)2 = 0 (Psvy--v,) - Therefore, substituting
(10) into (7), we have that

2km 1 m—1 ) k )
var(ép) = ( o +O(m_(k+1))>H(ij,m—1 (w)”-

n
1=0 =0

<
<

18



We use (6) to approximate (11). By Condition 1, ¢ (t,,, ..., t,, ) is bounded, say by
M < co. Recall that t,;, = %, j =1,..., k. Consequently, solve the following type

of integral,

(m—1) vj 2
r, = /c(ﬂ %) s(17) ! ’ dv,

m’ " m 27 (m — 1) uy (1 — uy)]

IN

R
_ v; 2
eXp{ uj((1 2) (71 — w) }
M/ dv;.
27 (m — 1) u; (1 — uy)]

Simply make the following change of variable, z; = u%j}]) ( L uj) , with

m—1
Jacobian /(m — 1) u; (1 — u;). Then

2
r; < / oD x} dz;
2my/(m — 1) u; (1 — uy)

1
V2m(m = 1)u; (1 —uy)

Therefore, I'; = O (m’%) . This shows that integration leads to a drop in asymp-

totic magnitude equal to m~3 for each dimension. Let A; = [u; (1 — uj)]% , then

var (@) < ([zm (m — 1] ﬁ%)l ()

At the edges of the hypercube, i.e. u = 0,1, (Pv me1l (u))2 = P, m—1(u), then
m2k
var (ég) = —— ( (m Hk)))

¢(u )+0<mz )

k
The mean square error (MSE) convergence simply follows by considering the leading

:\3

terms for the square bias and the variance for the two distinct cases: MSE =

Bias (¢g)°+Var (ég) . The optimal order of the polynomial follows by minimization
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of asymptotic MSE with respect to m. Inside the hypercube we have
i MSE < i -2 4 m
om = \om /) \™ n
Sy
= |—-m"+
2n

— O’

which implies m"s" = O (n). Similarly, for the density at the boundaries of the

k-cube,
0
(2 s

A
Q
I
N——
7 N
3\
+[\3
:| 3
N———

which implies mf*2 = O (n) .

The finite dimensional distributions of the nonparametric Bernstein copula den-
sity converge to a normal distribution. This follows from the fact that it is the sum
of bounded random variables and Condition 1 (weaker conditions than iid are
clearly sufficient for the central limit theorem). But the Bernstein copula density
has m — 1 bounded derivatives (recall that Bernstein polynomials are closed under
differentiation) and any Bernstein polynomial is Lipschitz. By Theorem 2.7.1 in
van der Vaart and Wellner (2000, p. 155) the class of functions that satisfy the
properties just mentioned has finite ¢ bracketing numbers of order exp {&fﬁ }
It follows that their entropy integral with bracketing is finite. This is enough to
show (see Ossiander, 1987, for the iid case or Pollard, 2001, for generalizations)
that the Bernstein copula density converges to a Gaussian process with continuous
sample paths. The V m~%n term is required for the leading term in the variance
expansion to be independent of n, i.e. m — oo as n — oo (as usual for other
nonparametric estimators). The same condition applies to the copula because it
is m times differentiable together with the same properties of the density. Clearly,
the simple root-n standardization is employed in this case (integration absorbs the

smoothing parameter). m
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From the proof it is clear that what drives the variance down is the fact that
approximating the square of P, ,,_1 (u) leads to a normal approximation times an
extra term that is O (m’%) . In order to provide more intuition on this result and
the difference between the edges of the box and the points inside it, we provide
the following heuristic explanation. Bernstein polynomials average the information
about the function throughout its support; recall the singular integral representa-
tion in (2). On the other hand, the result at the corners of the hypercube is clear:
the approximation at these points is exact and it is not influenced by the behaviour
of the function in its domain, i.e. it is exactly local so that we just recover the

properties of the histogram estimator.

7 Final Remarks

We defined the empirical Bernstein copula, and showed that it converges under the
sup norm. We showed that the density of this nonparametric copula shares some of
the properties of convolutions with the convolving function being asymptotically
Gaussian. In Theorem 2 we collected a complete set of convergence result for this
estimator. We provided rates of convergence in Lo, the optimal order of polynomial
for the estimator and its weak convergence to a Gaussian process. In particular,
while the bias of our estimator is of the same order as the one for the histogram, its
variance is of lower order than other common nonparametric estimators. This is a
consequence of the convolution properties of the estimator and provides some rem-
edy to the curse of dimensionality. Moreover, the implementation of the estimator
is remarkably simple. Further, the simulation showed that the integrated square
error is not particularly sensitive to the choice of m as opposed to the histogram.

This reduces the risk of choosing the wrong m in empirical work.
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