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Summary

Let f = > anq™ be a normalised eigen-newform of weight k¥ > 2 and p an
odd prime which does not divide the level of f. We study a reformulation of
Kato’s main conjecture for f over the Z,-cyclotomic extension of Q. In par-
ticular, we generalise Kobayashi’s main conjecture on p-supersingular elliptic
curves over Q with a, = 0, which asserts that Pollack’s p-adic L-functions gen-
erate the characteristic ideals of some +-Selmer groups which are cotorsion over
the Iwasawa algebra A = Z,[[Z,]].

We begin by studying the p-adic Hodge theory for the p-adic representation
associated to f in the case when a, = 0. It allows us to give analogous defi-
nitions of Kobayashi’s +-Coleman maps and +-Selmer groups. The Coleman
maps are used to show that the Pontryagin duals of these new Selmer groups
are torsion over A as in the elliptic curve case. As a consequence, we formulate
a main conjecture stating that Pollack’s p-adic L-functions generate their char-
acteristic ideals. Similar to Kobayashi’s works, we prove one inclusion of the
main conjecture using an Euler system constructed by Kato.

We then prove the other inclusion of the main conjecture for CM modular
forms, generalising works of Pollack and Rubin on CM elliptic curves. As a key
step of the proof, we generalise the reciprocity law of Coates-Wiles and Rubin.

Next, we study Wach modules associated to positive crystalline p-adic rep-
resentations in general and generalise the construction of the Coleman maps.
By applying this to modular forms with much more general a,, we define two
Coleman maps and decompose the classical p-adic L functions of f into linear
combinations of two power series of bounded coefficients generalising works of
Pollack (in the case a, = 0) and Sprung (when f corresponds to an elliptic curve
over Q with a, # 0). Once again, this leads to a reformulation of Kato’s main
conjecture involving cotorsion Selmer groups and p-adic L-functions of bounded
coefficients. One inclusion of this new main conjecture is proved in the same
way as the a, = 0 case.

Finally, we explain how the +-Coleman maps can be extended to Lubin-Tate
extensions of height 1 in place of the Z,-cyclotomic extension. This generalises

works of Tovita and Pollack for elliptic curves over Q.
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Chapter 1

Introduction

1.1 Background

Let p be an odd prime and let G4, be the Galois group of the extension Q. of
Q by p power roots of unity. We denote by A(Gs) the Iwasawa algebra of G,
over Zyp. If A denotes the torsion subgroup of G and 7 is a fixed topological
generator of the Zy-part of G, then A(Goo) = Z,[A][[y — 1]].

Let E be an elliptic curve defined over Q which has good ordinary reduction
at p. The p-adic L-function L, g € Q ® A(Go) of Mazur and Swinnerton-Dyer
interpolates complex L-values of E. It is conjectured that L, g is in fact an
element of A(G).

The p-Selmer group of E over any number field F' is defined to be

v
where the product is taken over all places of F. If we let Sel,(E/Qs) =
lim Sel,(E'/F') where F' runs through the finite extensions of Q in Qu, then
Sel,(E/Qo) is equipped with an action of A(G). It turns out that the Pon-

tryagin dual

Sel,(E/Qso)” = Homes(Sely (E/ Qoo ), Qp/Zy)

is finitely generated over A(G ), and a theorem of Kato-Rohrlich (conjectured
by Mazur) states that it is in fact A(G o )-torsion. If 5 is a character on A, we can
associate to the n-isotypical component of Sel,(E/Qq )" a characteristic ideal,

and the main conjecture of cyclotomic Iwasawa theory for E at p asserts that
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this ideal is generated by the n-component of L, g (written as L; ) l.e. there

is a pseudo-isomorphism (a homomorphism with finite kernel and cokernel)

Selp (E/Qo0)"" — [ Zplly = 111/ (f3)

i=1
for some f; € Zp[[y — 1]] such that fi--- f, = L p.

The construction of p-adic L-functions has been generalised to more general
primes and modular forms in [AV75, MTT86]. Let f = > a,q¢™ be a normalised
eigen-newform of weight k > 2, level N and character e. Fix an odd prime p
such that p{ N. If a is a root of X2 — a, X + €(p)p*~! such that v,(a) < k —1
where v, is the p-adic valuation of C, with v,(p) = 1, then there exists a p-adic
L-function L, , interpolating complex L-values of f. Perrin-Riou [PR95] has
established a theory of p-adic L-functions for p-adic representations coming from
motives and formulated a main conjecture for such representations. When the
motive corresponds to a modular form, Perrin-Riou’s main conjecture has been
reformulated by Kato [Kat04] using the theory of Euler systems. If f is ordinary
at p (i.e. ap is a p-adic unit) and « is the unique unit root of the quadratic
above, then L, , € Q®A(Gw), and the main conjecture again asserts that L, ,
generates the characteristic ideal of Sel,(f/Qx)Y. In op.cit., Kato has shown
that L, o is contained in the characteristic ideal of Sel,(f/Q )Y under some
technical assumptions; his proof relies on the interpolating property of an Euler
system associated to f (which we refer to as the Kato zeta elements).

When f is supersingular at p (i.e. pla,), two problems arise: on the one hand,
the p-adic L-functions obtained in [AV75, MTT8&6] are no longer elements of Q®
A(Gw) (they have unbounded coefficients), and on the other hand, Sel,(f/Qo)"
is no longer A(G o )-torsion. Perrin-Riou’s (and hence Kato’s) main conjecture
can therefore not be translated into a statement relating L, o and Sel,(f/Qoo)
as in the ordinary case. When a,, = 0, a remedy was made possible by the works
of Pollack [Pol03]: If a; and ay are the roots of X2 + ¢(p)p*~1, Pollack showed

that there is a decomposition
+ 7+ o
Lp.a; =logy Ly + ailog, ) Ly

for 1 = 1,2, where Lif € AMGx) ® Q and log;k are some fixed power series

which only depend on k. When f corresponds to an elliptic curve E over Q,
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Kobayashi formulates a main conjecture giving an arithmetic interpretation of
these new p-adic L-functions in [Kob03]. In analogy to the ordinary reduction
case, he defines the plus and minus Selmer groups Sel;t (E/Qu) by modifying
the local conditions at p in the definition of the usual Selmer group. Let T}, E be
the Tate module of E. Kobayashi shows that Selﬁ(E/Qoo)V is A(G o )-torsion

by defining the so-called plus and minus Coleman maps
Col® : H (Q,, T,E) — A(Gs),

which construction depends on the structure of the formal group attached to
E. Kobayashi’s modified main conjecture then asserts that L;t”;’ generate the
respective characteristic ideals of SelgE (E/Qx)V"" with 1 as above and it is
equivalent to Kato’s and Perrin-Riou’s main conjectures. On proving that Col*
send the localisation of the Kato zeta elements to Li Iz Kobayashi proved one
inclusion of the main conjecture as in the ordinary case. When the elliptic curve
has complex multiplication, the full conjecture has been proved by Pollack and
Rubin [PRO4].

Sprung [Spr09] has extended the results of Pollack and Kobayashi to p-
supersingular elliptic curves with a, # 0 (which forces p to be 2 or 3). He

constructed a matrix M whose entries are functions of logarithmic growth de-

Lo\ _ 3y (Lo
Lys Ly

with Lg, L, € A(Gx) ® Q. He also constructed the associated Coleman maps

pending only on a, such that

Col”?, Col” : HE (Q,, T,E) — A(Gxo),

which send Kato’s zeta elements to Lg and L respectively. Using these Coleman
maps, Sprung defined two Selmer groups Selg(E /Qs0) and Sel) (E/Qu) and

formulated the corresponding main conjectures.

1.2 Main results

The Taniyama-Shimura conjecture, proved by Wiles et al, asserts that elliptic
curves over Q correspond to modular forms of weight 2. Therefore, it is natural

to ask which results on elliptic curves can be generalised to modular forms of
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higher weights. In this thesis, we discuss how this can be done for the results of
p-supersingular elliptic curves we stated above.

Since the p-adic L-functions of Pollack are defined for any modular forms
(by which we mean normalised eigen-newform) f of any weights & > 2 with
ap = 0, one expects that it should be possible to generalise works of Kobayashi
to higher weight forms formulating a main conjecture involving L; 2 By Kuri-
hara [Kur02], we can interpret Kobayashi’s Coleman maps for an elliptic curve
E/Q as pairings with some special points of the formal group associated to F
under the exponential map. For an arbitrary f, Deligne [Del69] showed that
there exists a p-adic representation Vy of Gg = Gal(Q/Q) associated to f,
which generalises the definition of Tate modules for elliptic curves, whereas the
exponential map of Bloch and Kato from [BK90], which is a map on Deis(Vy),
generalises the exponential map for a formal group. These observations suggest
the possibility of defining Col™ for general f by p-adic Hodge theory in place of
formal groups.

Indeed, in this thesis, we show that the +-Coleman maps
Col™ : Hyy (@, Vy) = A(Go) © Q,

can be constructed by studying De,is(V) and the Perrin-Riou exponential [PR94]
associated to Vy, which interpolates values of Bloch-Kato’s exponential. This
is the content of Chapter 2. We first review some properties of Perrin-Riou’s
exponential and relate them to the Kato zeta elements. We then establish a
divisibility property, namely that the images of the Perrin-Riou map of certain
elements are divisible by Pollack’s +-logarithms. This allows us to define Col*
to be the quotient of the Perrin-Riou map by logi x- Using the same machinery,
we show that the Coleman maps of Sprung can be defined using the Perrin-Riou
map also. As a consequence, we show that Sprung’s works can be generalised
to general weight 2 modular forms.

In Chapter 3, we study the kernels of the Coleman maps. In particular, we
assume p > k—1 so that V; is Fontaine-Laffaille. In this case, there is a structure
theorem for Vy, which allows us to establish a few elementary properties of
the cohomology H'! of Vy and generalise the description of the kernels given in
[Kob03]. Under the same assumption, we study the images of the Coleman maps

in Chapter 4. We prove a necessary and sufficient condition for the divisibility
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by logi > which allows us to give a fairly explicit description of the images.

In Chapter 5, we generalise Kobayashi’s definition of Seli By studying
Poitou-Tate exact sequences, we relate Selzj,E to the kernel of Col™ as described
in Chapter 3. We then show that Sel;t(f/(@oc) is indeed A(G )-cotorsion and
the Zy[[y — 1]]-characteristic ideals at an isotypical component of A contain the
respective Pollack’s p-adic L-functions by applying our Coleman maps to the
Kato zeta elements. In particular, we show that L;E 7 # 0 by a simple application
of the non-vanishing results for the complex L-values of f by Rohrlich [Roh88|
and Shimura [Shi76]. This gives a reformulation of the main conjectures of
Kato and Perrin-Riou stating that L;t’f generates the characteristic ideal of
SeI;IE (f/Qoo)¥"" where 7 is a character on A.

In Chapter 6, we generalise works of Pollack and Rubin [PR04] for elliptic
curves to show that the main conjecture holds for CM modular forms (under
some technical conditions). The main ingredient of the proof is a generalisation
the reciprocity law of Coates-Wiles and Rubin, which we prove by studying
properties of elliptic units associated to a CM form.

We remove the assumption a, = 0 in Chapter 7. We study the (¢, Gso)-
module associated to V. By Fontaine, for any Z,-linear representation 7" of
Gq, there is a canonical isomorphism H{ (Q,,T) = D(T)¥=', where D(T)
denotes the (y, G )-module of T', a module over the p-adic completion Ag, of
the power series ring Z,[[r]][7 '] and ¢ is a certain left inverse of ¢. It therefore
suffices to define our Coleman maps on D(T)¥=1! instead of HE (Q,,T).

We do this via Berger’s theory of Wach modules [Ber03], which is a refined
version of (¢, G )-modules for crystalline representations, originally studied by
Wach in [Wac96]. Wach modules have the advantage that they are finitely
generated modules over the simpler ring Z,[[r]], and if V is a d-dimensional
positive crystalline representation of Gg, satisfying a mild technical condition,
then D(V)¥=! = N(V)¥=!. For any such representation and a basis of N(V),

we construct in Section 7.1 a family of Coleman maps
Col; : N(V)¥=! - A(Goo) ®Q (1 <i<d)

by showing that (1 —¢) (N(V)¥=!) is contained in a free A(Go) ® Q-module of
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rank d, say with basis nq,...,nqs. We then define Col; by the relation

d
(1-g)z= Z Col;(x)n;

for x € N(V)¥=1.

Let f be a normalised new eigenform of level N with p{ N as above (either
ordinary or supersingular). We pick a ‘good basis’ of Deyis(Vy) and lift it to a
basis of N(Vy). This gives two Coleman maps

Col; : HIIW(QP7 Vi) = AGo) ®Q,

i = 1,2. We define the Selmer groups Selé(f/@oo) by modifying the local
condition of the usual Sel, at p using ker(Col;) and define the p-adic L-functions
L,; € A(Gx) ® Q as the image of the Kato zeta element under Col;.

When f is supersingular at p, we show that there is a decomposition

Lp « f/ 1)
X =M (=P 1.1
(Lp=ﬂ) (Lp,2 ( )

for some 2 x 2-matrix M with entries of logarithmic growths. When p is large
compared to k, there is a canonical choice of M depending on k and a, only.
This generalises the decompositions of Ly, «, Lp g given by Pollack when a, = 0
and by Sprung when f corresponds to an elliptic curve defined over Q. In order
to show that the two approaches are compatible, we prove that the Perrin-Riou
map used in Chapter 2 is related to (1 — ¢) by a simple formula.

When f is ordinary at p, our Coleman maps also give rise to two p-adic
L-functions in A(Gs) ® Q. Let o and 3 be the unit and non-unit eigenvalues
of the Frobenius respectively. The Kato zeta element gives rise to two p-adic

L-functions Ly, o, and L, g. The analogue of (1.1) becomes

()= D () (12

which is a generalisation of a result of Perrin-Riou [PR93] for p-ordinary elliptic
curves. Note that the first Coleman map gives the usual p-adic L-function of
f and the corresponding Selmer group is simply Sel,(f/Qs) as constructed in
[Kat04], whereas the second Coleman map gives a new p-adic L-function i/p,g
and a new Selmer group. which we show is A(G . )-cotorsion and its Pontryagin

dual is annihilated by L, 2 at each A-isotypical component.
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The decompositions (1.1) and (1.2) allow us to show that L, 1, L,2 # 0
and the respective Selmer groups are A(G)-cotorsion. We then reformulate
Kato’s and Perrin-Riou’s main conjectures relating these p-adic L-functions to
the characteristic ideals of Sel;( f/Qs)Y. As above, we prove that one inclusion
holds.

There are two appendices in this thesis. We prove some elementary linear
algebra results on Lubin-Tate extensions in Appendix A. They are used to
give the description of ker(Col®) given in Chapter 3 and that of Im(Col*) in
Chapter 4. In Appendix B, in place of the cyclotomic extension of Q,, we extend
the construction of the +-Coleman maps to Lubin-Tate extensions of height 1 by
studying a generalisation of Perrin-Riou’s exponential given by Zhang [Zha04b].

Roughly speaking, Chapters 2 to 6 are based on [Lei09b], Chapter 7 is based

on [LLZ10] and the two appendices are mainly taken from [Lei09a].

1.3 Notation and basic properties
1.3.1 Extensions by p power roots of unity

Throughout this thesis, p is an odd prime. If K is a field of characteristic 0,
either local or global, Gk denotes its absolute Galois group, x the p-cyclotomic
character on G and Ok the ring of integers of K. For an integer n > 0, we
write K, for the extension K (p,n) where p,n is the set of p™th roots of unity
and K, denotes U,>1K,,. The Z,-cyclotomic extension of K is denoted by K,
and K™ denotes the p"-subextension inside K.

For n > m, we write Tr,, /,,, for the trace map from Q. to Qp m. Let G,
denote the Galois group Gal(Qp,/Qp) for 0 < n < co. Then, Goo = A x T’
where A = G is a finite group of order p — 1 and I' = Gal(Qp o0 /Qp1) = Z,.
We fix a topological generator v of T" and write u = x(7). In particular, u is a
topological generator of 1+ pZ,.

Given a finite extension K of Q,, Ao, (respectively I'p, ) denotes the Iwa-
sawa algebra of G (respectively I') over O. We further write Ax = Ap,, ®Q
and 'k =To, ® Q. When K = Q, (so Ox = Z,), we simply write A for Az .
If M is a finitely generated I'p, -torsion (respectively I'i-torsion) module, we
write Charr,, (M) (respectively Charr, (M)) for its characteristic ideal.

Given a module M over Ao, (respectively Ax) and a character 6 : A — Z),
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M? denotes the d-isotypical component of M. For any m € M, we write m® for

the projection of m into M?. The Pontryagin dual of M is written as M.

1.3.2 Fontaine rings

Let E = {(2(@,2®,...) € CY : (2+V) = 2} and write A for its Witt
vectors and B = A[p_l]. For each n, we fix a primitive p"”th root of unity (,n
such that C]fn“ = (pn. We write ¢ for the lift of (¢pn), € Ein Aand 7 =¢+ 1.
We have g -7 = (1 + )X — 1 for all g € Gg, and t = log(c) € Bgr. We also

have the following rings:

— ~

Ag, = Zy[n]] C Ag, = Zy[[n]][r~"] C A,
By, = AS [P CBo, = Ag,[p'] C B
where " denotes the p-adic completion.
Let Bjﬁg,@,) be the set of f(m) € Qp[[n]] such that f(X) converges everywhere
on the open unit p-adic disc. In particular, ¢ € B:qg@p. We have a derivation
d: IB%ji'g@p — Bxg

The Frobenius is written as ¢, so ¢(7) = (1 + m)? — 1 and ¢ denotes its left

@, With & = (1 +m)

inverse that satisfies
pou(f(m) == 3 fClr+1)—1),
o

We write ¢ for () /.

1.3.3 Crystalline representations

Let V' be a p-adic representation of Gg, which is crystalline. We denote the
Dieudonné module by D(V) = Des(V). If 5 € Z, D/(V) denotes the jth
de Rham filtration of D(V'). If 2z € Q, n((t)) ®g, D(V), denote the constant
coefficient of z by dv (2) € Qpn ®q, D(V).

We write Doo (V) = 15361’:/’:0 68; D(V), which is contained in B;’;&Qp @ D(V).
The map ¢ ® ¢ on BI&QP ® D(V) is simply written as ¢ and the map 0 ® 1 is
written as 0. Note that d acts on D4 (V) bijectively, so & makes sense for any
Jj €.

Let T be a lattice of V which is stable under G@p. For integers m > n, we

write Cory, /n for the corestriction map

Hl(Qnmv A) - HI(QPJL? A)
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where A =V or T. Let H}_ (T) denote the inverse limit lim H'(Q,,,,T) with
respect to the corestriction and Hi (V) = Q ® H} (T). Moreover, if V arises
from the restriction of a p-adic representation of Gg and T is a lattice stable

under Gg, we write

HYT) = limHY(Z[(m, 1/p),T),
HY(V) = QeHYT).

The (¢, G )-module of V' is denoted by D(V). The canonical A-module

isomorphism defined by Fontaine is written as
hiy : D(V)¥=! — Hy, (V) (1.3)

and we write hé@p,n,v for its composition with the projection from Hi (V) to

HY(Qppn, V).
Let V(j) denote the jth Tate twist of V, i.e. V(j) =V ® Que; where Gg,

acts on e; via x/. We have
D(V(j)) =tD(V) @ e;.
For any v € D(V), v; = v ® t Je; denotes its image in D(V (5)). We write
Twjy « Hi, (V) — Hi, (V(5))

for the isomorphism defined in [PR93, Section A.4], which depends on our choice

of (pn. For each n and j, we write

€XPn,j - Qp,n @ D(V(5)) — H' (Qp.ns V(5))

for Bloch-Kato’s exponential defined in [BK90].

1.3.4 Power series

Let r € R>o. We define

He=4 Y Cno-o-X"€C,A][X]]: supm# <ooVoeA
n>0,0€A n n

1

where | - |, is the p-adic norm on C, such that |p|, = p~' (the corresponding

valuation is written as vp,). We write Hoo = Ur>oH, and

HT(GOO) = {f(7 - 1) 1 fe HT}
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for r € R>o U {oo}. In other words, the elements of H, (respectively H,(Gwo))
are the power series in X (respectively v — 1) over C,[A] with growth rate
O(log,). If F,G € H are such that F' = O(G) and G = O(F), we write
F~G.

We write the additive Fourier transform on Heo (G ) as

. =0
M: Hoo(Goo) — Cp@BYg

foy=1) = f(y=1)-(1+mn).

We identify Hoo(Goo) with its image under 9. In particular, A is identified
with A", Ag, with BE=, ete.

1.3.5 Modular forms

Let f = > a,q™ be a normalised eigen-newform of weight k£ > 2, level N and
character e. Write Fy = Q(a,, : n > 1) for its coefficient field. Let f = 3" a@,q"
be the dual form to f, we have Fy = F.

We write L(f,s) for the complex L-function of f. If 8 is a finite character
of Goo, we write L( fy, s) for the twisted L-function of f by 6.

We assume that p f N and fix a prime of F above p. We denote the com-
pletion of Fy at this prime by E and fix a uniformiser w. We write V; for
the 2-dimensional E-linear representation of Gg associated to f from [Del69].
When restricted to Gq,, Vy is crystalline and its de Rham filtration is given by

‘ D(Vy) ifi<0
D*(Vy) =< Ew if1<i<k-1 (1.4)
0 ifi >k
for some 0 # w € D(Vy). Hence, the Hodge-Tate weights of V; are 0 and 1 — k.
The action of ¢ on D(V}) satisfies ¢% — ayp + €(p)p*~1 = 0.
If v € V, we write v* for the component of v on which the complex conju-

gation acts by +1.



Chapter 2

Construction of the
Coleman maps

In this chapter, we define the plus and minus Coleman maps for a modular form

f as in Section 1.3.5 under the following condition:

e Assumption (1): a, = 0 and the eigenvalues of ¢ on D(V}) are not

integral powers of p.

We first review the definition of Perrin-Riou’s exponential from [PR94] for
general crystalline representations and results of Kato [Kat04] on general modu-
lar forms. We then prove a divisibility property of the image of the Perrin-Riou

pairing under assumption (1) in order to define Col®.

2.1 Perrin-Riou’s exponential

Throughout this section, we fix V' a crystalline p-adic representation of Gg,
such that the action of ¢ on D(V') has no eigenvalues which are integral powers

of p. Let j be an integer. Since ¢ acts on ¢ via multiplication by p and
D(V(5)) = t7D(V) ®¢;,

the eigenvalues of ¢ on D(V (j)) are not integral powers of p either.

Since V(j )%, is also a crystalline representation, it is a sum of characters.
But a character is crystalline iff it is the product of an unramified character and a
power of x (see for example [Bre0l, Example 3.1.4]). Therefore, our assumption

on the eigenvalues of ¢ implies that V' (j)%e. = 0.

11
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For each j € Z and n > 0, under our assumptions on the eigenvalues of ¢,

the exponential map exp,, ; induces an isomorphism

expy, ; : Qpn @DV (7)) /D(V(5)) = Hp(Qp,ns V(5))-

When n > 1, there is a well-defined map

En,V(j) : DOO(V(j)) - Qp,n ® D(V(j))
g — (@) "G —1)

where G € B;Eg’QpQ@D(V(j)) is such that (1—¢)G = g (see [PR94, Section 3.2.2]).

Moreover, (exp,, ; 0=, v(j))n>1 are compatible with the corestriction maps. In

other words, the following diagram commutes:

€XPpy1,5 OZn+1,v())

Do (V(4)) HY(Qpnt1, V(i)

= Corn+1/n
€XPp, j 020,V (4)

HY(Qpn: V(5))-

The definition of the Perrin-Riou exponential is given by the following the-

orem, which is the main result of [PR94].

Theorem 2.1.1. Let h be a positive integer such that D~"(V) = D(V). Then,

for all integers 7 > 1 — h, there is is a unique family of A-homomorphisms
Qv i)ty 1 Doo(V(5)) = Hoo(Goo) © Hi, (T(5))

such that the following diagram commutes:

Do (V(]) ———C0 Hec(Goc) © L (T())

En,V(j)\L \Lpr
(h+j—1)lexp, ;

Qp,n ® D(V(])) Hl(QPJ“ V(]))

where n > 1 and pr stands for projection. Moreover, we have

Twiv () v (j)htj 0 (0@ te—1) = =Qv (1) htjt-
Proof. [PR94, Section 3.2.3] O

Remark 2.1.2. By [PR94, Section 3.2.4], if g € Ba;wzo ®@ Do (V(j)) where
Do (V(5)) is the subspace of D(V(j)) in which ¢ has slope o, then Qv ;) n+;(9)

is O(logg+a), i.e. contained in Hpta(Goo) @ Hi (T(4)).
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Remark 2.1.3. The theorem also implies the following congruence for r > 0:

(=1)" Tw, vy (Qviynei(9) =

(h+j+7r=Dlexp, ;i 0Zny(i4r © (07" @17 e )(g) mod (7 —1).
2.2 Perrin-Riou’s pairing

Let M be a finite extension of @, and we further assume that V' is a vector
space over M and the action of Gg, is compatible with the multiplication by
M, ie. V is a M-linear representation of Gg,.

We fix T' an Ops-lattice of V' which is stable under Gg,. We write V* for
the M-linear dual of V and T* for the Oy;-linear dual of T'. Since H(Q, ,,T)
and H'(Q,n,T*(1)) are Op[Gy]-modules, Hi, (T) and Hj, (T*(1)) are Ap-
modules. By [PR94, Section 3.6.1], there is a non-degenerate pairing

<, > H (1) x HL(T*(1)) — Ao,

((xn)"’ (yn)n) = ( Z [xgwyn}n 'J)

oeGy,

where [, ], is the natural pairing
HY(Qpn,T) x H'(Qpn, T*(1)) — Our.

The pairing <, > extends to

(HOO(GOO) & H%w(T)> X (HOO(GOO> ® H11w<T*(1))> — Hoo(Goo),

Aoy Aoy

which we also denote by <,>. Let j and h be integers satisfying conditions of
Theorem 2.1.1. If n € D(V(5)), then (1+7)®n € Do (V(j)). Using the pairing

<, >, we define a map:

L7 HE(TG) (1) = Hoo(Goo)
z = <QuGag((l+m)@n)z>.
Note that EZJ modulo T?" ™" — 1 induces a map into M [G,], which we denote

by EZ;%. Also, ﬁg’j extends naturally to a map on H} (V(5)*(1)), which we

write as EZ’J also.
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2.2.1 Explicit formulae of L]

The following result is possibly well-known. Due to the lack of reference, we

include the proof here for completeness.

Lemma 2.2.1. Under the notation above, letn € D(V (j)). Then, the projection

of
1

(h+j5—-1)
into HY(Qp ., V(5)) is given by

Qv (), (1 +7m) @ 1)

P exp, ; (Zlflo Cpr-m @ ™7 () + (1 — w)‘l(n)) ifn>1
expo, ((1-27) (1= 9) () ifn=0.

Proof. Let g € Do (V (5)). We write A;(g) = 9%(g)(0) for i € Z and

(2.1)

Qz

"1
27 ogp1+7r ® Ai(g).
i=0

By [PR94, Section 2.2], the sum > °  ¢"(g) converges. Let

h
G= Zap —&—Z%ogp + ) Qu;
n=0 =0

where v; € D(V(5)) is such that A;(g) = (1 — p'p)v; (such v; exist by our
assumption on the eigenvalues of ¢), then (1 — )G =g. For g = (1+ ) ® n,
we have A;(g) = n and v; = (1 — plp)~1n for all i. If n is a positive integer, a

simple calculation shows that

@G -1y = { S D) B (22)

Therefore, we have

Gl 1) = 3 (Gom D e +(1—9) ()
m=0
= Z_: Conm @ 9™ (1) + (1= ) 1" (n)
m=0

Hence, by Theorem 2.1.1, the nth projection of Qv (;) n1;(g)/(h+j—1)!is given
by the image of

(P®p) "G(Gn — 1) X (Z Cpn-m @ @™ "(77)+(1s0)1(77)> (2.3)
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under the exponential map exp,, ;. For the Oth level, it is given by the image of

Try 0 (;so-lc:«p—l)) - %Trl/o(c,,@so-l(n)m—sorl(n))

% (-1loe '+ @E-1)1-9) 1)
(1-2-) -

under the map expy ;, so we are done. O

For n > 1 and n € D(V(j)), we write

n—1
Yn(n) :=p~" (Z Cpni @ @' () + (1 — w)‘l(n)> :
1=0

Remark 2.1.3 and properties of the twist map (see e.g. [PR94, Sections 3.6.1
and 3.6.5]) implies that for z € HI_(7(5)*(1)) and r > 0,

1
(h+j+r—1)

= Z [expmj-‘r?“('}/n,j-&-r(777')6)7 Z—r,n]n -0 mod (r)/p - 1)
ceGy

Tw, (L} (z))
(2.4)

where Tw, acts on Hoo(Goo) Via o — x(0)"0 for 0 € G and z_,.,, is the image
of z under the composition

1 o O , * pro o , *

Hiy (T'(5)" (1)) ———— Hy (T + )" (1) — H (Qpn, T(j +7)"(1)).
By [Kat93, Chapter II, Section 1.4], we also have
. X /
[expn,jﬂ.(), LL = Try, /o ®id ([, expn,j+r(')]n)
where expy, ;. is the dual exponential map
expjgp - HH(Qpn, V(i +7)7(1) — DUV +7)"(1))

and the pairing

[1n Qe @D(V(j+7)) X Qpn @D(V(j +7)"(1)) = Qpn @M (2.5)

is induced by the natural pairing

D(V(j + 1)) x D(V(j +7)*(1)) — M.
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To ease notation, we simply write [, ], for [,]/, when it does not cause confusion.

We can now rewrite (2.4) as:

1

—  _Tw, h
Ggrr—n (@)
* n—1

= Z Trn0 [’Yn,jJrr(nr)aaeXpn,jH«(zﬂ“,n)]n co mod (v*  —1)

ved, (2.6)

n—1
= Z ’YnijLT(nT)Uo—a Z expz,j+r(zir,n)ail mod (’Yp - 1)
oeGy, oceGy

Note that we have recovered the pairing P, of [Kur02]. We write the quantity
in (2.6) as P, (1, 2—y»). Following the calculations of [Kur02], we can deduce

the following special values of £7:

Lemma 2.2.2. For an integer r > 0, we have

0

Let 0 be a character of G, which does not factor through G,_1 withn > 1, then
-
(h+j+r—1)

T 2 @) [ el ()],
oeGy,

X" (L} (2))

where T denotes the Gauss sum.

2.3 Modular forms and Kato zeta elements
The details of the results in this section can be found in [Kat04].

2.3.1 L-functions and p-adic L-functions

Let f be as in Section 1.3.5. For any v € Vy such that vt # 0, it determines a
lattice Og-lattice Tt of V¢. We choose v such that T is stable under Gg. Note
that as a representations of Gg, V; = V¢(k—1). Hence, Ty determines a lattice
Ty of V; naturally.
Let
per : D' (V) — V;
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be the period map defined in [Kat04]. Fix 0 # w € D'(V}) and let Q4 € C*
such that per(w) = Q,v% + Q_v~. The p-adic L-functions associated to f are
given by the following.

Theorem 2.3.1. Let a be a root of X2 —a, X +e(p)p*~1 such that v,(a) < k—1.
Under the notation above, there exists a unique Ly, o € Hoo(Goo) (depending on
the choice of w and v) such that for any integer 0 < r < k—2 and any character
0 of G,, which does not factor through G,_1 with n > 1,

Cp o™ "

7(0)Q2+

X"0(Lpa) = L(f,0,7)
where ¢, . is some constant, only dependent onn and r and + = (—1)¥="0(-1).

Proof. [AV75], [MTT86] or [Kat04, Theorem 16.2]. O

If f corresponds to an elliptic curve Ey over Q, there is a canonical choice
of w and T, namely, the Néron differential and T),(Ey)(—1) (see [Kur02, Sec-
tion 2.2.2]) where T,(E[) denotes the Tate module of E; at p.

2.3.2 Kato’s main conjecture

In order to state Kato’s main conjecture, we have to review two important

results from [Kat04] first.
Theorem 2.3.2. Under the notation above, we have:
(a) H?(Ty) is a torsion Ao, -module.

(b) H'(T}) is a torsion free Ao, -module and H'(V}) is a free Ag-module of

rank 1.
Proof. [Kat04, Theorem 12.4] O
Theorem 2.3.3. Fiz a character 6 : A — Z/(p — 1)Z.

(a) Let 6 be a character of G,, and + = (—=1)*""0(—1) where r is an integer
such that 1 <r <k —1. Write

ko Qprn ® DO(Vf(k -r) — V

TRY +— Z 0(c)o(z)per(y)™.
oeGy,
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There exists a unique E-linear map (independent of 6 and r)
Vi — HY(V); V= Zy,

such that kg sends the image of z, in Qp, @ DO(Vi(k — 1)) (under the

composition of the localisation, the twist map and the dual exponential) to
d.-L(f,0,r) vE
and d, is a constant which only depends on r.

(b) Let Z(Ty) C H*(V¢) denote the Ao, -module generated by z,+ € Ty and
write Z(Vy) = Z(T¢) ® Q. Then, the quotient H'(V})/Z(Vy) is a torsion

Ag-module and

Charp, (H*(V})°/Z(V})°) € Charr,, (H2(V})?).

(c) If the homomorphism Gg — GLo, (Ty) is surjective, then Z(Ty) C H*(T%).

Moreover, H'(T}) is a free Ao, -module of rank 1 and

Charr,, (H'(T))° /Z(Ty)°) C Charp,, (E(Ty)°).

Proof. [Kat04, Theorem 12.5] O
Kato’s main conjecture states that:

Conjecture 2.3.4. The inclusion Z(Ty) C H'(Ty) holds. Moreover, if § : A —
Z/(p — 1)Z is a character, then

Charr,,, (H'(Ty)° /Z(T})°) = Charr,, (H*(T})°).

We call elements of Z(Vy) Kato zeta elements. In particular, we write z?ato

for the one corresponding to our choice of v € Vy fixed in Section 2.3.1 and call
it the Kato zeta element associated to f.

We fix o € V; and @ € D™ (Vj(k)) for the dual form f similarly. Below, we

relate the Kato zeta element z?ato associated to f to the p-adic L-functions of

f defined by Theorem 2.3.1 via the map Ef]’j . For simplicity, we write zXat =

z?ato from now on.
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Let V' = V;(1), then we can take h = 1 and j > 0 in Theorem 2.1.1 by (1.4).
For n € D(Vy), we simply write

Ly =L HE, (Tr(k — 1)) = Hoo(Goo) (2.7)
for the map we defined in Section 2.2, with M = F.

Theorem 2.3.5. For a as in Theorem 2.3.1, there exists 1., an eigenvector
of v on D(Vy) with eigenvalue o such that [ne,] = 1. Moreover, the image of

2K ynder the composition

HY (V7) — Bl (V) 5" B (Vilk = 1) 225 Moo (Goc)
is the p-adic L-function Ly, where the first map is just the localisation and

Twi_1 denotes ka,l,vf,
Proof. [Kat04, Theorem 16.6] O
We sometimes abuse notation and write the above composition as £, also.

Remark 2.3.6. Let oy and az be the roots of X? — ap,X + e(p)p*=t. Then,
the slope of ¢ on D(Vy) is equal to t = max(vy(o),vp(ag)). Since h = 1
and the slope of ¢ on D(Vy(1)) is t — 1, all elements of Im(L,)) are O(log;) by
Remark 2.1.2.

It follows immediately from Lemma 2.2.2 that, with the same notation as in
the lemma, we have:

-1

() =t (1= £2) 0= 0 ) x|
P 0 (2.8)
COL(E) = oy 070 [ ) vt (7],
ceGy

2.4 The +-Coleman maps

2.4.1 +£-logarithms

Let f be as above such that assumption (1) holds. If a3 and «s are the roots of
X2 —a,X +e(p)p~t, then ay = —ag. Moreover, v,(a1) = vy(az) = (k—1)/2,
so Remark 2.3.6 implies that Im(L,) C Hx—1)/2(G) for any n € D(Vy).
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In [Pol03], Pollack defines:

E i

° 1
log;k = 1;

w <.
I
w =}

I
log;,C = 1;[ 10_:1

where ®,,, denotes the p™th cyclotomic polynomial.

1
p

By considering the special values of Ly, and Ly ., as given by Theo-
rem 2.3.1, Pollack shows that we have the following divisibility properties over

Hoo(Goo) N E[A][[y —1]]:

+
Ing,k | aoLipa; — 1Ly a,,

Ing,k | proéz_LP,Oll'

This enables him to define

" oLy o0, —a1Ly o,

L = : , (2.9)
pof (g — ) log;k
Ly, = S 4 L (2.10)
g (g —ai)log,

It is easy to see that this gives a decomposition of Ly, ,,, namely

Lyo, = 1og;k L;’f +aglog, L, ¢ (2.11)

for ¢ € {1,2}.
To ease notation, we suppress the subscript f and write L;,t for L; 2 The

growth rates of these elements are given by:
k—
Theorem 2.4.1. log;:k log,, ). ~ log,? and Li 0(1).

Proof. [Pol03, Lemma 4.5 and Theorem 5.1] O

2.4.2 Definition of the Coleman maps

Recall that £, (25*°) = Ly, for i = 1,2 by Theorem 2.3.5. Hence, if we

write
(&%) —Qj _ -
7]+ _ Q2Moy Nay and N~ = Nay = Nay :
Qg — O Qo —

then £, (z%%%°) = log;t’k LE by (2.9), (2.10) and the linearity of £. In fact,

more is true:
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Proposition 2.4.2. Ifz € Hy (T7), then we have the divisibility logik |L,)=(z)
over Hoo(Goo) N E[A][[y — 1]].
Proof. Recall that [w, @] = 0, [74,,@] = 1 and ¢? = a? on D(V}). Therefore,
explicit calculation shows that

Mo = (p(w) + @iw)/[p(w), o]
for ¢ € {1,2}. Hence,

77+ZM and = —o

[p(w), @] [o(w), @]
Let r be an integer. Since ¢? = —e(p)p*~2"~3 on D(Vy(r + 1)), we have
¢ ") =0 modw if n is odd,
¢ "(N41) =0 modw if n is even.
For 0 <r <k — 2, we have
Im(exp;, ,41) = Qpan®E -0 r 1=Qpn® ]D)O(Vf-(k —1-7))
and
D°(Vi(r+1)) = E - wyp1.
Hence, the fact that DO(Vy(r + 1)) and D°(VF(k — 1 — r)) are orthogonal com-
plements of each other under [,] and (2.8) implies
X"0(L,+(z) =0 if n is odd,
X"0(L,-(z)) =0 if n is even
where @ and n are as defined in Lemma 2.2.2. Recall that x(v) = u, so we have
equivalences X"0(®., (u""Y)) = @, (0(7)) = 0 iff (7) is a primitive p™th root

of unity iff § factors through G,,1; but not G,,. Hence all the zeros of log;t, >

which are all simple, are also zeros of £, +(z), so we are done. O

Remark 2.4.3. An alternative proof for this proposition is given in Section 4.1.

k—1
Recall that £,+(z) = O(log,? ) and Theorem 2.4.1 says that log;—i,€ ~
kE—1

log,? , so we have £, + (z)/logi,C = 0(1). We define
Col™ : Hi, (Tf(k — 1)) — Ap
L, (z)

Z — .
I
1ogp7 &
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We call these two maps the plus and minus Coleman maps. Note that we

sometimes abuse notation and write Col® for the composition

Twg_1 Coli

H'(Ty) — Hiy (Ty) — Hi(Tf(k = 1)) == Ap

and its natural extension to H'(V7). In particular, we have Col* (zKato) = L;)t.

Similar to L+ ,, we write Col,il for the map Col* modulo I'*"" — 1.

Remark 2.4.4. The Coleman maps in [Kob03] are defined using a pairing with
points coming from the formal group associated to an elliptic curve, instead of
images of the Perrin-Riou exponential. It is not hard to see that the defini-
tion given above agrees with the one given by Kobayashi on comparing [Kob03,

Proposition 8.25] and (2.6).

2.5 The case k =2

Let f be a modular form as in Section 1.3.5 with & = 2. We temporarily remove
the condition a, = 0 in assumption (1) and replace it by v,(a,) > 2 (so that
vp(a) = vp(B) = 1/2) in the rest of this section. The aim of this section is to
rewrite Sprung’s construction of the Coleman maps for elliptic curves over Q
with a, # 0 using the Perrin-Riou pairing.

Define for n > 1

(6 )= (5 =) (8 ) e e

It satisfies the following.

Lemma 2.5.1. Let i € Z and write

»\-1 a, eY Yo"

Then, AL converges in M(2,H(Gw)) as n — oo for any fized i. Write A%,

1/2
D

on Go which factors through G,, but not G,,_1, then 0(AL)) = 0(AL™) for all

for the limit, then all entries of A', are O(log,’*). Moreover, if § is a character

m>n-—1.

Proof. [Spr09, Lemma 3.21] O
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Proposition 2.5.2. For any z € Hi (V7(1)) and 0 # w € D' (Vy), the entries

of the row vector
(ﬁap(w) (Z) =Ly, (Z)) 140_01

are both divisible by log,(v)/(y —1).

Proof. For n € Z, write
a — /"
w, = "
a—f

where o and 3 are the roots of X2 — a,X + €(p)p. Then,

@" = Unp — PUn—1 (2.12)

n
0 p _ —PUpn—1 bun
— 1 ap —Up Un—',— 1 '

Therefore, if n > 1 and 6 is a character of G, which factors through G, but

on D(Vy) and

not G,,_1 (so 6(7) is a primitive p"~'th root of unity), we have
-1y __ -ny\ _ [ TPU—n-1 PU—n 0 0 6111_2 T}I_Q
oAz = o) = (TP e ) (O Mo (G T

(2

where the last matrix is the identity if n = 2.

To prove the proposition, it is equivalent to proving that

0( (Lot(2) ~Lo() AL) =0 (2.14)

for any @ as above. By Lemma 2.2.2, we have

1
w(6)

0(Ly(2)) = Y 07N @) (v)s expl (2]

ceGy

for any v € D(Vy) and z € Hy, (Vz(1)). Hence, by (2.13) and the proof of
Proposition 2.4.2, in order to show that (2.14) holds, it suffices to show that

(o telon) —pmron)) (P P ) (0 )

—U_p, U_pt1 -1 a,

is congruent to 0 modulo D°(V¢(1)). But this follows easily from the fact that

1 _ —PU_n-1 bU—n 0 0 _
(pu_n+1 u_n) ( s u_n+1> (_1 ap> =0

and (2.12), so we are done. O



CHAPTER 2. CONSTRUCTION OF THE COLEMAN MAPS 24

By Remark 2.3.6, the image of £, is O(log}gm) for any v € D(Vy), so we

obtain two Coleman maps:

Definition 2.5.3. For « = 9,v and z € Hi,(Vz(1)), Col*(z) € Ap is defined
by

(Colﬁ(z) Col’(z)) -log,(7)/(y — 1) = (Lpw)(2) —Lu(2)) AZL (2.15)
In particular, we can define two p-adic L-functions
Ly = Col*(2"**) € Ap
where * = 9, v.

On choosing [p(w),®] = 1 for simplicity, we have, under the notation of

Theorem 2.3.5,
Mo =pW)—pw and g =pW) - aw.

Note that det(AZ') = log,(v)/(y — 1), we therefore obtain a decomposition:

Lpa = (To =TI, = (0% = O)L; (2.16)
Lys = (Y4 —aYL )L — (0% —a®l,))Ly (2.17)
1 1
where Al = (380 ¥8°> This generalises (2.11).

Remark 2.5.4. The results above hold for any modular forms of weight 2. This
setting is slightly more general than that in [Spr09].



Chapter 3

Kernels of the Coleman
maps

In addition to assumption (1), we assume the following holds.
e Assumption (2): p >k — 1.

Under these two conditions (which we assume to hold until the end of Chap-
ter 6), we give an explicit description of the kernels of the plus and minus Cole-
man maps defined in Chapter 2. In particular, we generalise [Kob03, Propo-
sition 8.18], which describe the kernels of Col® in the case of elliptic curves

defined over Q.

3.1 Properties of H'!

Recall that when f corresponds to an elliptic curve Ey over Q and T (1) is the
Tate module of E, we have E¢[p™] = V;/T¢(1) as Gg-modules. Therefore, the
following lemma generalises [Kob03, Proposition 8.7], which says that E; has

no p-torsion defined over Q.
Lemma 3.1.1. For all j € Z andn >0, (V;/Ty)(j)C%n = 0.

Proof. Tt is enough to show that (Vy/Ty)“%. = 0. Since Vy /Ty = lim Ty /=" T},
X

it in fact suffices to show that (T /wTy)%er< = 0.

By assumption (2), a result of Fontaine (a proof can be found in [Edi92])

k—1

25

says that
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where py is the representation Gg — GL(Ty/wTy), I is the inertia group of

G, and ¢ and ¢’ are fundamental characters of level 2, i.e.

ker ¢ = kerv)’ = GQ;,.( b2 1/p)-

Hence, if o € Gal(Qp*( »*~y/p)/Q,"( »/p)), 1 is not an eigenvalue of py (o), as

p+ 11k —1 by assumption (2). Hence, there exists an element in the above

Galois group which lifts to Gg, ., and (Ty/ @)% =0 as required. O
We now give two immediate corollaries.

Corollary 3.1.2. The projection Hi, (T7(j)) — H'(Qpn, T7(j)) is surjective

for all j and n.

Proof. Tt is enough to show that

0t /m + H (Qp,ns Tf (7)) — H (Qp,m, T(5))

is surjective for all n > m. On taking Pontryagin dual, it is equivalent to
showing that

ves/n t H' (Qpun, Vi /T (k =1 =) = H'(Qpon, Vi /Ty (k =1~ j))
is injective. But this immediately follows from the inflation-restriction exact
sequence and Lemma 3.1.1, which says that V;/T;(k — 1 — j)“e. = 0. O
Corollary 3.1.3. Foralln and j as above, H*(Qp.n, Tt (5)) — H*(Qp.n, V¢ (j))-
Proof. From the short exact sequence 0 — T¢(j) — V¢ (j) — Vi /T¢(j) — 0, we
obtain a long exact sequence

s = (Vi /Ty (5) 5 — HY (Qpn, Ty (5)) = H (Qpns Vi () — -+ -

Hence the result by Lemma 3.1.1. O

In particular, H'(Qpn,Tf(j)) can be identified as an Op-lattice of the E-
vector space HY(Qp 1, V¢(j)).

Another property of H' which we need is the injectivity of the restriction

HY(Qpm, Vi (5)) > HYQpon, Vi ()

for n > m. But this follows easily from the inflation-restriction sequence and
the fact that V(j)¢% = = 0 (immediate from Lemma 3.1.1). In particular,
the same can be said about Hj. We regard H(Q,m,A) as a subgroup of
H}(Qp,n, A) for A =Ty(j) or V¢(j) in the next section.
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3.2 Some subgroups of H}

Let nT be as defined in Chapter 2. For 1 < j < k — 1, we define two E[G,,]-

modules
R ;=Y E 7 nf)” modw C Qyn®D(Vy(4))/D"(Vy(5)),
o€ (3.1)
Ry;= Y E-y (ny)° modwC Qpn®D(Vy(5))/D(Vs(4))
oceGy

Remark 3.2.1. For 1< j <k — 1, we have isomorphisms of E[G,]-modules
Hi(Qpn, Vi (5)) = Qppn 9 DV (1))/D°(V¢(5)) = Qpon ® E.
Under this identification, the corestriction map
c0tp/m + Hj (Qpn, Vi () — Hp(Qpm, Vi ()
corresponds to the trace map
Tty /m ®id: Qprn @ F — Qpm @ E.

By Remark 3.2.1, we can identify Ri ; with subsets of Q) , ® E' and we have

the following description.

Lemma 3.2.2. By identifying Qp , @D(V (5))/D°(V(5)) with Qpn,®E, we have

L= Y Y BGiE

m evenoc€G

R,,=> > E-(u+E

m oddoc€Gy,

(3.2)

where m < n in the summands.

Proof. Recall that

n—1
Yng=p " (Z i ® '+ (1 - w)”)
=0

and n* are given by the following:

+ Sﬁ(w) n - _ w
K o E K P 7

Hence, we can apply Corollary A.2.1 to Ri ; provided that

(p—DA =) (7)) Z ¢ () modw,
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which can be checked under assumption (1) (see the proof of Proposition B.5.1
for details in a more general setting). The result then follows from the fact that

©™(w) =0 mod w iff m is an even integer (c.f. proof of Proposition 2.4.2). O
In particular, on applying Lemmas A.1.1 and A.1.2 to (3.2), we have
R' +R,,=Qn®FE and R/, NR,  =FE
under the identification given by Remark 3.2.1. Let
Q;n ={r € Qpn:Try/mi1(z) € Qpm Vm € Sff}

where S are defined by

St = {me€0,n—1]:m even},
S, = {mel0,n—1]:m odd}.

Then, Rij can be identified with Qin ® E:
Lemma 3.2.3. For j and n as above, Qin QR F = Rij.
Proof. By (3.2), it is easy to check that Rf’j C Qin ® F, so
dimg R}, ; < dimg (QF, ® E) .
Since R:’j + R, ;= Qpn ®E, we have
Q,9E+Q,,®E=R + R, =Q,,QF.

Ifz € Qf,NQ, ,, then Try /i1 (x) € Qp o for all m < n—1, hence z € Q.
Therefore, we have Q,f, NQ, ,, = Q.

Hence, by the formula
dim A + dim B = dim(A + B) + dim(A N B),

we have

dimg (Qf, ® E) = dimg R, ;
and we are done. O

Let H} (Qp.n, V4 (§))* denote the image of Rrim' under exp,, ;, then Remark 3.2.1

and Lemma 3.2.3 implies that it is equal to

{x € H}(Qp,mvf(j)) L 0Ty /m41() € H}(Qp,mvf(j)) Vm € Si:} :
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By Corollary 3.1.3, if we define
H(Qpn, Tr())* = Hp(Qpn, Vi () N HF(Qpon, Tr (),
then it is equal to
{z € H}(Qpn, Ty(j)) : cOtpjmi1(z) € Hi(Qpm, Tr(5)) Ym € Sy}

generalising the definition of E* in [Kob03].

3.3 Description of the kernels
Let z € Hy (T7(k —1)). Under the notation of Chapter 2, we have
k-1

Lyx(z) = Olog,* ),

so L,+(z) = 0 iff
Pn,r('f]:t7 Z—r,n) =0

for all n > 0 and more than (k — 1)/2 different values of r with 0 < r < k — 2.

Recall that

Pn,r(’v Zfr,n) =r! Z [eXpn,r+1(7n,r+1(‘)a)a Zfr,n]n op
ceGy

Therefore, ker P, .(n*,-) is just the annihilator of
{expy 1 (Va1 (07)7) 10 € G}
under the pairing
H Qpp, Vi(r +1)) x H(Qpn, Tk —1—71)) = E
which coincides with the annihilator of H}(Qp,,, Tf(r 4 1))* under the pairing
HYQpn, Ty(r + 1)) x H(Qpn, Tf(k =1 —=7)) — Op. (3.3)

We denote this annihilator by HL(Qpn, TF(k —1—17)).
Define

Hllwvi(Tf(k —1-r)= hin H}t(@p,n7Tf(k —1-—7)).
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As logik #0and L, = logik Col*, we have
k—2

ker £,+ = ker (Coli) = m Tw, (Hiy o (T7(k —1—1)))
r=0

by Corollary 3.1.2.
In fact, by the proposition below, it suffices to take just one term in the

intersection.

Proposition 3.3.1. Tw, (H%mi (Tf(k —1-1))) = Hi, +(TF(k — 1)) for all
integers v such that 0 < r < k — 2.

Proof. Since Col*(z) = O(1) forallz € Hi,, (Tf(k—1)), it is uniquely determined
by its values at an infinite number of characters (see e.g. [Pol03, Lemma 3.2]).
Hence, if there exists a fixed r such that inr(ni,znﬁ_r) = 0 for all n, then

Col*(z) = 0. Therefore, we have
ker(Coli) = Tw, (Hllwyi (Tf(k —1- r)))
and we are done. O
Corollary 3.3.2. We have
ker £,+ = ker (Coli) = Tw, (Hllwi (Tr(k—1—1)))

for any integer 0 < r < k — 2.

3.4 Properties of the kernels

We have seen that ker(Coli) can be written in terms of H1, about which we

now say a little bit more.

3.4.1 A description using the dual exponential

Proposition 3.4.1. Let 0 <7 < k —2. For any x € Hp(Qpp, Tk — 1 —1))
and m < n, write Ty = expl, 1 (COry /(). Then, HL(Qpn, Tk —1—1))

coincides with the following set:

{x € Hi(Qpn, Tf(k—1—7)) : 20 =0 and xp, = x";;le € Sf} .
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Proof. On the one hand, (3.3) factors through

L H @y Ty(k = 1))
H} @y Ty~ 1)

On the other hand, the pairing defined by (2.5) factors through

H}(@p,mTf(l)) — Lp.

(Qun @DV (r+1)/DO (Vs (r+1)) ) x (@ @D (Vy(k=1=7))) = Qpn @ E.
Hence, the compatibility of the two pairings, namely

/

[expn,rJrl(')? ]n = Trn/O ®1d[7 eXP;,rH(')]m

implies that H(Qy ., Tf(k — 1)) is the exp}, ., ,-preimage of

(@, @ DS+ 1)/BOVyr+ 1))

But we have:
(QF, & B+ D)/DWsr+1)) = (QF,) & B (Vyk—1-1)

1
where ( ;tn) is the orthogonal complement of @in under the pairing

Qp,nx@p,n - Qp

(z,y) — Tryo(zy).
By Corollary A.2.1, it is easy to check that
1
{r € Qpn: Tryjo(z) =0 and Try, miq(2) € Qo Ym e ST} C ( fn)

By comparing dimensions of the two subspaces (see the proof of Lemma 4.3.1
below for some explicit calculations), we see that equality holds and we are

done. O
Hence, on combining this with Proposition 3.3.1, we have:

Corollary 3.4.2. Let z = (z,)n € Hi (TF(k — 1)), then Col®(z) =0 iff
* * 1 *
eXpo,kfl(Zo) =0 and expm,l(zm) = ];expm7171(zm_1)Vm S

where SE = Up>155.
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3.4.2 Pontryagin duality
The Pontryagin duality gives a pairing:

HY(Qpn, Vi /Ty(r+1)) x H{(Qpp, T(k — 1 —7)) — E/Op. (3.4)
We can describe the annihilator of H}(Qj, ., Tf(k — 1 —r)) under this pairing
explicitly:

Lemma 3.4.3. H}(Qp’n,Tf(r—i— )EQE/Op — HY(Qpn, Vy/Tr(r+1)) and it
can be identified as the annihilator of HL(Qpn, Tr(k —1—1)) under (3.4).
Proof. By definitions, we have an exact sequence
0— HY(Qpn, Tk —1—7)) = H (Qpn, Tk —1— 1)) —
Hom(H }(Qpn, Ty(r +1))*, Og).
Taking Pontryagin duals, we have
H}(Qp,nv Tf(r + 1))i®E/OE - Hl(@p,na Vf/Tf(T + 1)) -
Hi(Qpn,T5(k—1—7))" — 0.

Therefore, the second part of the lemma follows from the first. Recall that

(V¢ /Ty (r 4+ 1))%%n = 0 by Lemma 3.1.1, so we have
Hi (Qpn, Ty (r+1))RE/Op «— H}(Qpn, Vi /T (r+1)) C H' (Qpn, Vi/Ty(r+1)).
Hence, it suffices to show that we have inclusion
Hf(Qpn, Ty (r + 1))*®E/Op — Hj(Qpn, Ty (r + 1))®E/Op.
But this follows from [Kob03, Lemma 8.17]. O

We write H}(Qpn, Vi/Tr(§))* for Hj(Qpn, Ty(5))*®E/Og, which is iden-
tified as a subgroup of H}(prn, Vi/T¢(j)). Note that it corresponds to the
definition of E*(Q,.,) ® Q,/Z, given in [Kob03] and this is used to define Sel;t
in Chapter 5.



Chapter 4

Images of the Coleman
maps

In this chapter, we describe the images of Col® (under assumptions (1) and (2)).
By Corollary 3.1.2, any elements of H*(Q, ,,, Ts(k—1)) can be lifted to a global
element of Hf (TF(k —1)). Hence, we can in fact think of £, ,, and ColE as
maps from H'(Qpn, T7(k — 1)) to E[G,]. This allows us to give a description
of Im(Col®) by studying Im(Col¥).

In [Kob03, Section 8], the images of the plus and minus Coleman maps for

elliptic curves over QQ are shown to be the following:

Im(Colt) = (y—1)Ao, + (Z a> Aoy,

oEA
Im(Col™) = Aop,.

In particular, the A-invariant part of Im(Coli) is the whole of I'p,. For a
general f, we unfortunately do not know whether the images of the Coleman
maps are inside Ap, or not. However, after multiplying by a power of w, we will
show that the A-invariant part of Im(Col™) agree with the above descriptions

and the same can be said for the whole of Im(Col ™).

4.1 Divisibility by ®,,(v)

We have seen that the image of £, + is divisible by log;k. We give a necessary
and sufficient condition for such divisibility at the finite level below.

Recall that G, = Gal(Qs/Q) =2 A x T where A is a finite group of order

33
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p—1,I' =7, and v is a fixed topological generator of I'. We have

n—1

OplGn] = OpAlW]/(v" —1)

and

m—1 m—1 m—1

(I)m('y) =1+A~P —|—wa1’ +...+,7(P—1)P

Therefore, if m > n, then ®,,,(v) = p in Og|G,], so we only consider m < n

here.

Lemma 4.1.1. Let m <n and

f= > o0y €0g[G].

r mod pn—1
ocEA

m

For each 0 € A and r mod p™, write

br,a =Crot Cryopm o+ + Cr—pm o-

Then, f is dwisible by ®,,(v) in Og|Gy) iff by = bs, whenever r = s

m—1

mod p

Proof. Let f = g®,(y) and g = > ay s -0 -7 € Og[G,]. Then the coefficient
of 09" in f is given by

Or.o & Qr_pm—1 5+ + Qp_(p—1)pm—1 g-

Hence, b, , as defined in the statement of the lemma is just the sum of the
coefficients a, , of g with s =7 mod p™~ 1. Hence by s = bs» whenever r = s
mod p™~1.

Conversely, let "¢, - 04" € Og|G,] and define b, , as in the statement

of the lemma. Assume that b, , = by, for all r = s mod p™~L. Let f,(y) =
> Cro- 80 f =3 fo-0. We have

fU (Cpm ) = Z Z Cs,o C;;m

r mod p™ \s=r(p™)

> brolm

r mod p™
r
S D S
s mod pm—1 r=s(pm=—1)
= 0.

Hence, ®,,(~) divides f and we are done. O
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Applying this to the image of £+ ,,, we have:

Corollary 4.1.2. For any z € H (Qpn, Tf(k — 1)), Ly ,,(2) is divisible by
®,,.(7) over E[G,] if m € SE.

Proof. The image of L,+ ,(z) is given by the following composition
HY(Qpn, T(k — 1)) = Homo,, (H'(Qp,n, T4(1)), Op) — E[G.]

where the first isomorphism is induced by the pairing (3.3) and the second map
is given by
Hom@E (Hl(QPKM Tf(]-))v OE) - E[Gn]

- 4.1
0 3 Oexp, (), 4D
TEGn

with 6 extended to an element of Homg(H'(Qp ., V¢(1)), E) in the natural
way. Therefore, it is enough to show that yml(nli)f mod w, 7 € G, satisfy the

relations described in Lemma 4.1.1. Let o € A. For n = T, we write

Mo =Y, Yma(m)””

s=r(p™)

=P (L= ) ) + G @6 )+ + G @97 ()

r

~

mfl(

Therefore, if ¢~ m) =0 mod w, then 1, , =15, for r =s mod P as

(Cpm )" = ((m)?"". Hence, by the definitions of n* as given in the proof of

Proposition 2.4.2, we are done. O

By considering its image modulo (u*j'y)pnf1 — 1 similarly, one can deduce

Proposition 2.4.2. We can in fact say a bit more about the image of L, + ,,.

Lemma 4.1.3. With the notation above, if L+ ,(2) = > ¢ro -0 -7", then

>, Cro is independent of o.

Proof. For each o € A, we have
> a7 =p T (L= ) ) + G @ e ()T

But ¢~ '(n;) =0 mod w, so we are done. O

We will see later on that these conditions in fact characterise the images of

L,+ , completely.
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4.2 TImages of log;;k in Og[G,]

We now fix an integer j such that 0 < j <k — 2.

Lemma 4.2.1. Let x € 1 + pZ,. There exists a constant ¢ such that for any

positive integer n, v,(z?" —1) =n +c.
Proof. Let & = 14 m where m € pZ,, so vy,(m) > 1. We have expansion
n n i n i
2 —1=(1+m)P —1=mP —|—< P )m” _1+~--+(p )m.
p

For r > 0, vp((p:)) =n—u,(r), so

o <<p:> mr) — oy (m) — vy(r) + n.

If r = p®a where p{a and a > 1, then

(7)) > (Go)n).

Therefore, the set {vp ((”:)mr) r> 0} takes its minimum value at r = p° for
some s.

Consider the curve
f@) =p'v,(m) —t, for t € R,

It has a unique global minimum when p! = (v,(m)logp)~!, so the curve is

strictly increasing on ¢ > 0. Therefore, for a fixed n, the minimum of the values

() -t

is just v,(m) + n, which is attained at a unique s, hence the result. O

Corollary 4.2.2. If m > n, then ®,,(u™7v)/p is congruent to a unit of Z,

modulo v7" " — 1.

Proof. By definition,

) —Ji~ ™ 1
D (uy) = %a
(u=Iy)P" = =1

so as elements of Og[G,,], we have

1 . —ir™ _ 1
7(I)m(u_]'7) = “ P— .
p p(u=P" " —1)

But u € 1+ pZ, by definition, so we are done by Lemma 4.2.1. O
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k—2

Remark 4.2.3. We have logik =pl7FAL H wE(u™7v) mod (’y”nil—l) where
3=0

A+ is a unit of Zy, and wk is defined by

wil+X) = [ ®m(+X)/p,
1<m<n/2
w,(1+X) = II 2w +X)/p

1<m<(n+1)/2

4.3 The images of Col*

Let Rni) ; be the vector spaces defined by (3.1). We have:

Lemma 4.3.1. The dimensions of the E-vector spaces Rij are given by

dimp R, = 1+ Y p™ 2 (p-1)°
1<m<n/2
dimgR,;, = p—1+ Z PP p — 1)

1<m<(n—1)/2

Proof. By Lemmas A.1.1 and A.1.2 and (3.2), we have

dimp R:,j = dime Qp + Z dim@p Q;Zm)
1<m<n/2
dimpg R;’j = dimg, Q, + Z dimg, Qé?m+1)

1<m<(n—1)/2

where Qz(,m) denotes the Q,-vector space generated by {(Jm : 0 € Gy, }. For

m > 1,
dime (@ém) — dimQp Qpm — dime Qp,m—-1
— pm—l(p _ 1) _pm—2(p _ 1)
= p"P(p—1)
and dimg, (@;1) = p — 2, so we are done. O

The dimensions of these vector spaces enables us to obtain the following:

prlo1

Proposition 4.3.2. Let f = Z Z aro-o-u" € E[G,). If wF is as defined
ceA r=0
in Remark 4.2.3, then:

(a) There exists z € H*(Qp,n, Vi(k — 1)) such that Col,, (z) = f mod w}f (7).
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(b) If moreover Zanal = Za’“"” for all 01,00 € A, then there exists
T s

z € HY(Qpn, Vi(k — 1)) such that Colf (2) = f mod w; (7).

Proof. We only prove (b), as (a) can be proved in the same way. Define

U, = {g = chg co-y" € E|Gy] : 10g;,C |g,Z:cmrl = chglvo’l,()'g € A} .

Then U, is a vector subspace of E[G,] over E. By remark 4.2.3,

k—2
log, = p' Ay [[wi(wy) mod (77"~ 1)
7=0
for some Ay € OF. Since wi(u™7(1 + X)) and (1 4+ X)?" — 1 are coprime
for j > 0, log;:,C lg iff wi(v)|g. But ®,,, and @,,, are coprime if m; # ma, so
w (7)]g Mf @,,,(7)|g for all even m < n.

Let g =3 ¢y, -0 -u". For each even m < n, let
bgfg) = Cro + Crgpmo 0t Cropm g

Then, by Lemma 4.1.1, ®,,(v)|g iff bgﬁ) = bgfﬁ) for all 0 € A and r = s

m—1 m—1

mod p For each such m and o € A, there are p values of modulo

p™~ 1 each is equated to p — 1 different values. Since |A| = p — 1, there are
p™ Y(p — 1)? linearly independent equations for each m. Together with the
equations of Zr Cr,o, there are in total
p-2+ Y p"p-1)
1<m<n/2

equations describing the coefficients of elements of the U,, which gives the
codimension of U,, over E in E[G,].

By Corollary 4.1.2 and Lemma 4.1.3, for z € H'(Qyn, Vi(k — 1)), L+ »(2)
lies inside the above subspace. But the dimension of the image is given by

dimpg R:;l which is the same as the dimension of U,, by Lemma 4.3.1, so
ﬂn*m (Hl(@pmv Vf'<k5 - 1))) =Un
as E-vector spaces and there exists some z such that £,+ ,,(2) = g. This implies

n—1

log;:k Colf (2) = flog;:k mod (v —1).
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The factors of w, (u=77) on both sides can be cancelled out for j > 0 as
w;"(u™77) is coprime to w; (7). Since

n—1

Py = Dt (e () =97 - 1,
we deduce that
Colf(z) = f mod ((y — Dw, (7)),

which implies (b). O

4.4 The images of Col*

In the previous section, we studied the images of H'(Qp,,, V¢(k — 1)) under
Colf. To understand the images of Col, we have to understand those of

HY(Qpn, T(k — 1)) as well.
Lemma 4.4.1. For all n, there exist rf € 7 such that
+
ﬁ”i’"(Hl (Qp,ns Tf(k 1)) = Cni,n(Hl(Qp,na Vf(k - 1)) Nw™ Op[G,].

Proof. Note that expnyl('ynyl(nli)) # 0. As an element of H(Q,,,Tf(1)), it
lifts to a cocycle on Gg, ,. By considering the image of this cocycle in V¢(1),
which is invariant under the action of G,,, there exists 7 such that

+

w 'n expn,l(/yn,l(/r]i)T) € Hl (prna Tf(l)) \ w’Hl(me” Tf(l))

for all 7 € G,,.
Recall from (4.1) that £, + ,, is given by:

Hompg (H'(Qp,, Vi(1)), E) — E[G,]

01— > 0(exp, s (Yna ()77,
TEGn

where we have identified Homp (H'(Qpn, V¢(1)), E) with H(Qpn, Vi(k —1)).
Under this identification, H'(Qy.,, T 7(k — 1)) corresponds to the set of maps
which send H'(Q,,,, T¢(1)) (which is identified as a subset of H'(Qy., V¢(1))

as discussed in Chapter 3) to Og. Therefore, we have
0 5)7) 10 € H (Qpon, Tk — 1)} = =" O
{0(exp, 1 (1 (nE)7) £ 0 € H' Qs Ty(k — 1)} = &' O

for all 7 € G,,. This implies that the LHS of the equation in the statement of

the lemma is contained in the RHS.
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Conversely, if 2 €RHS, then there exists § € H'(Qp,,, Vi(k — 1)) such that
> rea, 9(expn’1('yn,1(771i)7)7 = z by Proposition 4.3.2. In particular,

+
0 (w7 exp, 1 (a(F)7) € Op

for all 7 € G,,. Hence, there exists § € H' (Qpn, Tf(k — 1)) such that 6 and 0
agree on T eXpn)l(fyn’l(nli)T) which shows that z €LHS. O

Lemma 4.4.2. Let vt be the integers defined in Lemma 4.4.1, then there exist
c+ such that rt = —e(k — 1)|n/2] + cx for n sufficiently large where e is the

ramification degree of E.
Proof. By Remark 2.3.6,
Qvf(l),1<(1 +7m)® 771i) = O(log;()kil)/zﬁ

which implies that the nth component of Qv (1) :1((1 + 7) ® ni), which is

€XPp 1 (’Yn,1(77fc)) satisfies
€XPn,1 (%,1(77%)) e welk=1)[n/2)+cx Hl(@p,n,Tf(l))

for some constant ¢+ independent of n.
Recall that Hj, (Tf(1)) is free of rank 2 over Ap,. Fix a basis 21, 22, say.
Note that (14 7) @ ni form a A g-basis for Du (V¢). The determinant of

Ap

1)1 Hool(Goc) © Doo(V5(1)) = Hox(Goc) | Hhy(T5 (1)

with respect to these bases, as a Heoo (G oo )-homomorphism, is given by
k—2
. .
[] log, (w/7) ~logi™"
j=0

up to a unit of Ag (this is the §(V)-conjecture of [PR94], which can be deduced
from the explicit reciprocity law of Colmez [Col98]). But Theorem 2.4.1 says

that logik ~ logg“_l)/? Hence, we in fact have
Qv ((T+7m)® nF) ~ 10g1(7k71)/2 .
Therefore, we can choose c+ such that
expp 1 (Yua (1)) ¢ w BTN Q) Ty (1)),

sort = —e(k—1)|n/2] + cx, for n sufficiently large. O
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On combining these two lemmas, we have:

Corollary 4.4.3. If 0 is the trivial character on A, then there exist s* such
that
Col* (HL, (T;(k — 1))’ = =* To,.

Proof. By Proposition 4.3.2 and Lemma 4.4.1, for sufficiently large n,

2

k—
s (Z 0’) : H Ox(uy) € Lot (HY(Qpon, Tj(k — 1))

ocEA 7=0
where
oia+x) = [ @m+X),
1<m<n/2
O, (1+X) = I @1 +X).

1<m<(n+1)/2

Hence, by Remark 4.2.3 and Lemma 4.4.2, there exist constants s (independent

of n) such that

o (Z o> logyy € Lyt (H (Qpon, T(k — 1))

gEA
and

Lot (H Qs Ti(k — 1)) € @ log, Op[Gol.

But logik Col* = L+, so we have
@' 3" o € Col™ (H(Quun, Tr(k — 1))  mod &7 (7).
cEA

Therefore, we are done since

lim Ao, /@ (7) = Aoy, and AL, = (Z a> Ao, .

gEA

O

Remark 4.4.4. It is clear that we can replace 6 by an arbitrary character on

A for the minus map in the corollary.



Chapter 5

+-Selmer groups

Throughout this chapter, with the exception of Sections 5.3.2 and 5.4, assump-
tions (1) and (2) are not necessary.
Let f be a modular form as in Section 1.3.5, K a number field, the p-Selmer

groups of f over K are defined by the following:

Sel)(f/K) = ker <H1(K7 Vi/Ty(1)) — HHI(Kme/Tf(l))>
= yer [ H T B, Ve /Ty (1))
Sel,(f/K) = ke <H (K, Vi /Ty (1)) IZIH}(Kme/Tf(l))>

where v runs through the places of K.

We write k,, for Q adjoining all the p™th roots of unity and Q,, = Uk,,. Since
there is a unique place above p in k,,, we write this place as p as well. Note that
the completion of k,, at p is isomorphic to Q,, ,,. For f satisfying assumptions (1)
and (2), let H}(Qpn, Vy/Ty(1))* be as defined in Section 3.4.2. For all n > 0,
we define the plus and minus Selmer groups by

HNQpn, Vi /Ty (1))
Hp(Qpn, Vi /Ty (1))* )

In this chapter, we show that Sel,(f/Qc) is not Ap,-cotorsion when f is

Sel (f /kn) = ker (Selp( Flkn) —

supersingular at p. When f satisfies assumptions (1) and (2), we show that

Seli,IE (f/Qoo), the direct limit of Sel?f(f/kn), is Ap,-cotorsion.

5.1 Restricted ramification

We now describe the Selmer groups defined above using restricted ramification.

Let S be a finite set of places of a number field K containing all infinite places,

42
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all primes above p and those dividing N. Then, by [Rub00, Lemma 1.5.3],

H' (G, Vi /Ty (1)) = ex <H1<K7 VilTy ) = 1}9 H} (K, vf/Tf<1>>>

(5.1)
where Gg i is the Galois group of the maximal extension of K unramified

outside S. Therefore, we can rewrite Sel, as

) —ver [ 1 L HUUK, Ve Ty (1))
Sel, (f/K) =k <H (Gs.x, Vi /Ty (1)) g%H}(KU,Vf/Tf(l))>' (5.2)

If f satisfies assumptions (1) and (2), we write
H}“(kn,m Vf/Tf(l))i = H}‘(kn,v, Vf/Tf(l))

for v {p. Then,

(kno, Vi/Ty(1))
kn,mvf/Tfu))i)' >3

Hl

Sely (f/kn) = ker (Hl(as,kn,vf/Tfu)) - D gy
ves T f

The next lemma enables us to give a similar alternative description of Selg

as well.

Lemma 5.1.1. With notation above, we have H}(Kv7 Vi/T¢(1)) =0 forv{pN.

Proof. If v is an infinite place, we in fact have H'(K,,V;/T¢(1)) = 0 as p is
odd (see e.g. [Rub00, Section 1.3.7]).

We now assume that v is a finite place not dividing pN. Since vt p,
H(K,,Vi(1)) = Hy (Ko, Vi(1))

by definition and H}(Kv, V¢ /T¢(1)) is defined to be the image of H} (K., V¢(1))
in H'(K,,V;/T¢(1)) under the natural map

HY(Ky, Vi(1)) — H' (K, Vi /Tr(1)).
By [Rub00, Section 1.3.2],
Hy (K, V(1) 2 V(D) /(Fr = 1) V(1)

where I is the inertia group of K, and Fr is the Frobenius of K*/K,. Hence,
it suffices to show that 1 is not an eigenvalue of Fr. But v is a good prime (i.e.
v 1 N), so the eigenvalues have absolute value qfﬁ‘”/ % Where ¢y 1s the rational

prime lying below v. Hence we are done. O
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If S is as above, Lemma 5.1.1 and (5.1) implies that
HY(Gs,x, Vi /Ty (1)) = ker( NE Ve Tr(1) — [ ] H' (K., Vi /Ty (1 )))
vegS

Therefore, by the definition of Selg, we have:

Self,(f/K):ker( NGk, Vi /Ty(1)) — €D H' (K, Vi /T (1 ))). (5.4)

veES
As stated in the proof of Lemma 5.1.1, H'(K,, V;/T¢(1)) = 0 if v is an infinite
place. We can therefore simplify (5.4) further:

Selp (f/K) =ker | H'(Gs,x,Vi/Tr(1)) — @ H' (K., Vi/Tr(1) | . (5.5)
veESy

where Sy denotes the set of finite places in S.

5.2 Poitou-Tate exact sequences

Here, we briefly review results on Poitou-Tate exact sequences. Details can be
found in [PR95, Section A.3].

With the above notation, let .S be a finite set of places of K containing those
above p and the infinite places, then we have an exact sequence

P HO (K., Vi /Ty(1)) = H*(Gsx, T5(k — 1)) — H'(Gsx, Vi /T(1))
vESy

— @ H'(K,,Vy/Ty(1))
UESf
(5.6)

where Sy is again the set of finite places in S. On combining (5.6) and (5.5),

we have

P HO(K., Vi/Tr(1)) — H*(Gsx, Ty(k —1))¥ — Sel) (f/K).
vESy

By taking duals and the fact that
HO(KU’ Vf/Tf(l))v = HQ(KU7Tf(k - 1))7

we obtain

Sel) (f/K)Y = ker | H*(Gs.x, Ty(k — @B HA(K,,Tf(k - 1) | (5.7)
vESy
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For each v € Sy, let
A, C H(K,,Tf(k—1)) and B, C H'(K,,V;/T¢(1))

be Og-modules so that they are orthogonal complements to each other under

the Pontryagin duality. Define

HE(K, Vy /Ty (1)) = ker (Hl(Gs,K,vf/Tfa)) ~ P Hl(Kv,Vf/Tf(l))) .

B
vESy v

Then [PR95, Proposition A.3.2] says that we have an exact sequence
Hl(KU,Tf(k - 1))

H (G, Tl = 1) — @) —— — HA(K, Vi /Ty (1)
7J€Sf (58)
—>H (GS'Kva @HQ v7 f _1))
UESf

Hence, we can combine (5.7) and (5.8) to obtain:

(G s Tk~ 1) — @) ™ (K’”f S N 59
vESy v .

— Selo (f/K)¥ — 0.
5.3 Cotorsionness

5.3.1 Sel,(f/Q) is not Ay, -cotorsion

We now prove our claim about Sel,(f/Qs)" in the introduction. Let K = ky,.
Take

B, = H}(kn,vv Vf/Tf(l))

for v € Sy in (5.9), then
Ay = Hj(kn o, T(k — 1))

by [BK90, Proposition 3.8]. Hence, on combining (5.2) and (5.9), we have

1 (QPJH k ko, Uy 7(]6 1))
H (Gs,,Tf(k—1)) — (Qp,n7Tf(k @@ Hl (mon T (k — 1))
— Selp(f/kn) — Sel)(f/kn)¥ — 0.

(5.10)

We are interested in taking inverse limit over n. For the terms coming from

places dividing N, we can apply the following.
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Lemma 5.3.1. For each integer n > 0, fix a prime v(n) of Q, , not dividing p
such that v(n 4 1) lies above v(n), then

HY(ky oo, Tk — 1
i 1( oo Trh—1)

n,cor

Proof. The Pontryagin dual of the said inverse limit is lim H } (Fnwmy, Vi/Tr(1)),
so the result follows immediately from Lemma 5.1.1 if v(n) { N. The general case

is proved in [Kat04, Section 17.10] by considering p-cohomological dimensions.

O

Therefore, on taking inverse limits in (5.10), we have

Hi, (Ty(k — 1))

Hg(TF(k — 1)) — m

- Selp(f/QOO)v - Selg(f/(@m)v -0
(5.11)
where Hy(-) = lim H}(me, Jand Hg() = lim HY (G, .s,-) = H'(-) (see [Kob03,

Proposition 7.1]).
Proposition 5.3.2. Sel,(f/Qs)" is not torsion over Ao, .

Proof. We actually know more or less everything about the terms appearing in
the exact sequence (5.11) now.

By Theorem 2.3.2, Hy(T7(k — 1)) is a torsion-free Ap,-module of rank 1.
By [PRO0, Theorem 0.6], Hy(T7(k — 1)) = 0. By [PR94, Proposition 3.2.1],
Hi,, (Tf(k — 1)) is of rank 2 over Ap,. By [Kob03, proof of Proposition 7.1],
which is a purely algebraic proof and generalises to modular forms directly,
Selg(f/(@oo)v is Ao, -torsion. Therefore, Sel,(f/Qs )Y has Ap,-rank at least 1

and we are done. O

5.3.2 Sel;t(f/(@oo) is Ap,-cotorsion

We again set K = k,,. Let

Bv :{ Hjic(kn,vvvf/Tf(l)) N 1fU|N
HYQpn, Vi/Tr (1)) ifv=p.

By [BK90, Proposition 3.8] and Lemma 3.4.3, we have

0 _{ HH(ky,, Ty(k 1) i olN
Hi(Qpn, Ti(k—1)) ifv=p.
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Hence, on combining (5.3) with (5.9), we obtain the following exact sequence:

i H' (Qpn, Ty(k — o Tp(k —1))
HI(GS,kn,Tf(k—l))—) I (me,Tf(k‘ @é‘iHl(kan(k 1))
— sel;,t(f/kn) — Seld(f/kn)" — 0.

(5.12)

Therefore, on taking inverse limits in (5.12) and applying Lemma 5.3.1, we
have
Hi,, (T(k — 1))

+ v y
Hi, 1+ (TF(k — 1)) — Sel, (f/Qx)" — Selg(f/(@oo)

H}g(Tf(k —-1)) —

(5.13)
where Hf,, o (T7(k — 1)) is as defined in Chapter 3, i.e.

lim HY (Qpn, Tr(k — 1)).
Proposition 5.3.3. Sel]f(f/(@oo) is Aoy -cotorsion.

Proof. Recall that ker(Col™) = H},, . (Tj(k—1)) and Col*(zX2*) = L. There-
fore, if Lpi # 0, it would imply that the cokernel of the first map in (5.13) is
Aop,-torsion and the result would follow from the fact that Selg( 7/Qu0)Y

Ao, -torsion. Hence, we are done by the following lemma. O
Lemma 5.3.4. L;t # 0.

Proof. The case when f corresponds to an elliptic curve is proved in [Pol03,
Corollary 5.11]. The general case can be proved similarly.

By [Pol03], if 6 is a character on G,, which does not factor through G,
and 0 <7 <k — 2, then

XTG(L;_) = C;T(H)L(f? 6,7+ 1) if n is even,
X"0(L,) = Cyp (O)L(f,0,r +1)  ifnis odd

where C:£ (f) are nonzero constants. By [Roh88], L(f,6,1) = 0 for finitely
many 6 if k =2. If Kk >3, L(f,0,r+1) #0 for r+ 1 < (k — 1)/2 by [Shi76,

Proposition 2]. Hence we are done. 0
Corollary 5.3.5. The first map in (5.13) is injective.

Proof. Tt follows from Theorem 2.3.2 and Lemma 5.3.4. O
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Remark 5.3.6. It is clear from the proof of Lemma 5.5.4 that L;t’g # 0 for
any character  on A. Therefore, SeI;t(f/Qoo)e is o, -cotorsion and we can

associate to it a characteristic ideal, namely
+ v,0
Charr,, _ (Sel; (f/Qo0)™") .

5.4 Main conjectures

We now formulate a main conjecture and relate it to that of Kato.
By Corollary 5.3.5 and the fact that Selg(f/Qoo)V = H*(T7(k — 1)) (see

[Kur02]), we have an exact sequence
0 — Hy(T7(k—1)) — Im(Col®) — Sel (f/Qu)¥ — H(T(k—1)) — 0. (5.14)
If 0 is a character on A, then
Charr,, (HY(T5(k — 1))? /Z(T5(k — 1))°) = Charr,, (HX(Tj(k — 1))")
if and only if
Charro, (Se=(f/Qx)""?) = Charpg, (Im(Col*)/LE9).

In other words, Kato’s main conjecture (for f) is equivalent to the following

conjecture.
Conjecture 5.4.1. Charr,, (Sel; (f/Qo)"?) = Charr,, (Im(Col™’)/L*?).
Moreover, by Corollary 4.4.3 and Remark 4.4.4, we have:

Corollary 5.4.2. Let 6 = £. When 6 = 1 or 6 = —, Conjecture 5.4.1 is
equivalent to

Charrg, (Sel£(f/Qu)"?) = (@~ LE7).

Remark 5.4.3. It is clear that the RHS in Conjectures 5.4.1 and 5.4.2 are
contained in the LHS if we replace I'o, by 'y by Theorem 2.5.3.
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CM forms

We now follow the strategy of [PR04] to prove that equality holds in Corol-
lary 5.4.2 (with @ = 1) for CM forms.

6.1 Generality of CM forms

We first briefly review the theory of CM modular forms. Details can be found
in [Kat04, Section 15].

Let K be an imaginary quadratic field with idele class group Cx. A Hecke
character of K is simply a continuous homomorphism ¢ : Cx — C* with
complex L-function

L(¢,s) = [[(1 = o(v)N(w)~*) "
v
where the product runs through the finite places v of K at which ¢ is unramified,
¢(v) is the image of the uniformiser of K, under ¢ and N (v) is the norm of v.

Let f be a modular form as defined in Section 1.3.5 with complex multiplica-

tion, i.e. L(f,s) = L(¢, s) for some Hecke character ¢ of an imaginary quadratic

field K. Then, for a good prime p,

_ i 1—o(p)p2 if p is inert in K
1— s k—1-2s __ B .
"+ o {(1 — PP )1 — (P)p) il (p) = PP in K.

Therefore, a, = 0 if p is inert in K. If p splits into PP, a, = ¢(P) + ¢(P). It is
known that ¢(B) + ¢(P) is a p-adic unit, hence f is ordinary at p. Therefore,
for a good prime p{ N, a, = 0 iff f is supersingular at p. We fix such a p which

is odd.

49
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Let O be the ring of integers of K. We denote the conductor of ¢ by f.
For an ideal a of K, K(a) denotes the ray class field of K of conductor a. We
write K for the union U, K (p™f). Then, the action of Gg on V} factors through
Gal(K/Q). The same is then true for V;(j) for all j as Qo C K.

More specifically, Vy = V(¢) & 7V (¢) where V(¢) is the one-dimensional
E-representation of G associated to ¢ and 7 is the complex conjugation. The
action of Gg is given by

ooy = 4 @@), (o)) if o € G,
7(e.0) {((TUT)(y)vTU(I)) otherwise.

In addition to assumptions (1) and (2), we assume:
e Assumption (3): f is defined over Q, ¢ = 1 and K has class number 1.

Then, as a Q,-vector space, V; is isomorphic to K, (where K, denotes the
completion of K at p) and we can take Ty to be the lattice corresponding to

O,. We write p for the character given by

p:Grg — Aut(Vy/Ty(1)) = O;

For simplicity, we write A for V¢ /Ty(1) from now on.

Recall that K. denote the Z,-cyclotomic extension of K. We write K,
for the unique Z2-extension of K and £ denotes Op[[Gal(K,,/K)]]. Given a
Z,[|Gal(K/K)]]-module Y, we write Yp for

Y ®z,(1Gai(kc/ 1)) Zp[[Gal(F/ K]

and Y£ = Yp(p~') where F = K, or K,,.
Let F' be an extension of Q. Following [Rub85], we define a modified Selmer
group:

H(F,, A)

Sely,(f/F) =ker | H'(F,A) =[] HIF A)

vip

For a finite abelian extension F' of K, we define groups Cr, Er and Up as
in [PRO4]: Up is the pro-p part of the local unit group (O ® Z,)*, EF is the
closure of the projection of the global units O into Up and C'r is the closure of
the projection of the subgroup of elliptic units (as defined in [Rub91, Section 1],
see also Section 6.1.1 below) into Ur. We then define

C=1limCp, £E=limFEr and U =limUpr
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where the inverse limits are taken over finite extensions F' of K inside I and
the connecting map is the norm map.
Finally, let M be the maximal abelian p-extension of K which is unramified

outside p and write X for the Galois group of M over K.

6.1.1 Elliptic units

We now briefly review the definition of elliptic units associated to K. Let a
and b be non-zero ideals of Ok such that a is prime to 6b and the natural
map O — (Ok/b)* is injective. There exists an elliptic function on C/b
with zeros and poles given by 0 (with multiplicity N(a)) and the a-division
points respectively. There exists a unique such function if we impose some
norm compatibility condition on its values as a varies. We write 46, for this
unique function and let 42y =4 0p(1)~L. Then, 42, € K(b)* for any a and b
as above. For a fixed b, the group of elliptic units in K (b) is defined to be the
group generated by 427 where o € Gal(K(b)/K) and the roots of unity in K (b).

6.2 Properties of Sel}

In this section, we generalise [PR04, Theorem 2.1]. We do this by generalising
three results of [Rub85].

Lemma 6.2.1. There is an isomorphism Sel,(f/K.) = Sel,(f/K.).

Proof. By definitions, we have the following exact sequence:

HY (K., A)

0 — Sel,(f/K.) — Sel;(f/Kc) — m.

Therefore, it suffices to show that H'(K.,,A) = Hj(K.p,A). By [BK90,
Proposition 3.8],

(Hl (Keps A)

\%
= lim H} (K, TF(k — 1)).
H}(Kc,p,m) m A7 2k = 1)

Hence, it suffices to show that the said inverse limit is 0.
Note that Gal (Kp,n/Kign_l)) = A, we have the inflation-restriction exact

sequence
0— HY(A, Tp(k — 1)%n) — HY (K™, Tp(k — 1)) — H' (Kpn, T(k — 1))

— H*(A, Tp(k — 1)%%pn ).
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As K, /Q, is unramified, the proof of Lemma 3.1.1 implies
Tp(k — 1)%%pn =0
for all n. Therefore,
HY (KD, Tp(k — 1)) 2 H (Kpp, Tp(k — 1))2.
By [PR00, Theorem 0.6], we have
lim Hj(Kpp, Ti(k — 1)) =0,
hence we are done. O

This corresponds to [Rub85, Theorem 2.1], which holds for any infinite ex-
tensions of K contained in K. Since we have used a result on the inverse limit of
H ]10 over K, ,,, the proof above would unfortunately not work in such generality.

We now generalise [Rub85, Proposition 1.1].
Lemma 6.2.2. There is an isomorphism Sel,(f/K) = Hom(X, A).
Proof. Since the action of Gx on A factors through Gal(K/K), we have
H'(K,A) = Hom(Gx, A).

We can therefore identify Sel’ (f/K) with a subgroup of Hom(Gx, A). Also, the
triviality of the action implies that A is unramified at all places of K. There-
fore, H}(IC,, A) = Hy, (Ky, A) for all v { p by [Rub00, Lemma 3.5(iv)]. Hence,
Sel’,(f/K) corresponds to the subgroup Hom(X, A) C Hom(G, A). O

Before we continue, we state a result of Rubin:

Lemma 6.2.3. Fori=1,2, H(K/K., A) = 0.

Proof. See [Rub85, proof of Proposition 1.2]. O
Now, we can generalise [Rub85, Proposition 1.2].

Lemma 6.2.4. There is an isomorphism Sel,,(f/K.) = Sel;(f/lC)Gal(K/Kc),
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Proof. We have the inflation-restriction exact sequence
0— HY(K/K., A) — H (K., A) 5 H' (K, A)S*/K) — g2(K/K., A)
where 7 is the restriction map. Consider the following commutative diagram:

HY(K,.,A) - HY(K,A)

| |

HY (Ko, A)HN (Ko, A) —— HY (Ko, A)/H(KCyr, A)

where v t p is a place of K. and v’ is a place of K above v. It clearly implies

that
7 (Sel, (f/K.)) C Sel,(f/K).
Write v’ for the place of K.(f) below v/, then v' is unramified in /K. (f).

Therefore, the map
ro s H Ik (), A) — H' (I, A)
where I denotes the inertia group is injective. This implies that
HY (K)o, A)/Hp(Ko(D)or, A) — H' (Ko, A)/H} (Ko, A)

is injective because the H} coincide with Hy,. But Gal(K.(f)/K.) has trivial
Sylow p-subgroup, hence the bottom row of the commutative diagram above is

injective. Therefore, we have
T_I(Selg,(f/lC)) C Sel;,(f/Kc).
Hence, we have an exact sequence:
0— HYK/K., A) — Sell(f/K.) = Sell (f/K)S*/Ke) — HA(K/K., A).
Hence, we are done by Lemma 6.2.3. O

We can now give a generalisation of [PR04, Theorem 2.1]:
Corollary 6.2.5. Sel,(f/K.) = Homo (X, K,/Op).
Proof. Combining the Lemmas 6.2.1, 6.2.2 and 6.2.4, we have

Selp(f/K.) = Sel,(f/K.)
Sel;)(f/lc)Gal(lC/Kc)

1

¢

~ HOIII(X, A)Gal(lC/Kc)

But Alc, = K,/O,(p), hence the result. O
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6.3 Reciprocity law

o4

In this section, we generalise the reciprocity law given by [PR04, Theorem 5.1].

We first review a result of Rubin.

Theorem 6.3.1 (Rubin). The £-module Cy s free of rank 1.

Proof. By [Rub91, Theorem 7.7], Ck,, = J(K,)J,, where J(K,,) is the augmen-

tation ideal of £ and J,, is the annihilator of the roots of unity of K, in £. But

since p # 1 and p # x, we have
I(Em)(p™") =T3u(p™") = L(p™),
hence the result.
We now generalise [PR04, Proposition 4.1]:

Lemma 6.3.2. H}(K,,, A) = Homo Uy , K,/Op).
Proof. As in the proof of Lemma 6.2.2, we have

H'(K,, A) = Hom(Gx,, A).
But we also have an isomorphism

HY (K., A) = HY(K,, A)CI05/ Ken)

by the inflation-restriction sequence and Lemma 6.2.3.

Hence, by local class field theory, we have

HY (K., A) = Hom(GKp’A)Gal(’Cp/Kc,p)

c,pr

= Homop (U, A)
(see [Rub87, Proposition 5.2]). By the proof of Lemma 6.2.1, we have
Hj(Kep, A) = H' (K, A),

hence we are done.

O

In particular, we have a pairing <, >: H}(Kc,p,A) X U}'}C — K,/0,. We

now prove the explicit reciprocity law.
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Proposition 6.3.3. There exists a generator £ of Clp(m over £ such that for
any finite extension F' of K contained in K., 0 a character on G = Gal(F/K),

x € H(Fp, A) and r a non-negative integer, we have

. L L(fyr,1 - o
S 00) <am @ p e 5= p IS gyt )0

+
ceG Qf oeG
(6.1)

where (—1) = £ and expl_,p1 V(1) is the inverse of the exponential map
expp, v, 1)+ Fp @ D(Vy(1))/D°(Vy (1)) = H(Ep, Vi(1)).

Proof. Let zpej = (zpnf)n be the system of norm-compatible elliptic units in

1En K(p"f) defined in [Kat04, Section 16.5], then gz, is a multiple of z,ns for

all a and p"f satisfying the conditions in Section 6.1.1. Therefore, if we write £

as its image in Cf(m, it must be a generator of Cf(m over £ by Theorem 6.3.1.
Let z € Hj(F,,Ty(1)) and y € H'(F,, Tf(k — 1)), we have

S 00)am gl = 3 00Ty [expil v, ) (57 5y, @)
ceG ceG

= Z 6(o) [expgjyvf(l)(x‘”),eXp*Fp,vf(kfl)(yT)]
o,7eCG

= > 0o (T [expy) ) (077 expE, v, (7))
o,7€G

[Z 0(0) exprly, 1) (@), 3 07 (7) expi, v, <yf>] .

oeG TEG

Consider the Kummer exact sequences:

C u

l l

lim 7 (K}, 0, (1))

lwm i®
lim H' (Ox/[1/p], T5(k — 1)) — lim HYK], T7(k —1)).

By [Kat04, Proposition 15.9 and (15.16.1)], the image of zps in
lim H' (O [1/p], T5(k — 1))

is zX3%° (up to a twist) and so & satisfies

L(fg-1,1)w_
S0 () expiy v, (€)= %

T€G f
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Therefore, we have:

o —r —r - o L(f(}*lv 1)(1)_1
S 00) <am @ e >=p |3 0lo) expyl ) (a7), TS
ceG ce€G f
as required. O

6.4 Proof of the main conjecture

On replacing Q,, , by Kj n, we define H} (K, ,, W)* and hence Self(f/Koo) as
in Chapter 5 where W = A or Ty(1). Let G = Gal(K/Q). As in the proof of

Lemma 6.2.1, the inflation-restriction exact sequence implies that
H (Qpn, W) = HY (K}, W)Y

for W = A or Ty(1), so we recover Seli( f/Qoo) on taking G-invariant. Similarly,
on replacing Q, , and K, , by Qz(j"_l) and K,(,n_l) respectively, we define the
+-Selmer groups Selzf( f/Q.) and Selfgt( f/K:). Under our assumptions, they
coincide with the A-invariants of Selff( f/Qs) and Selff( f/Koo) respectively.
Analogously, we have HY (F,Tf(k — 1)) for F = K, ,, K5 or @Y. Since
K,/Q, is unramified, all the results from the previous chapters generalise di-
rectly on replacing Q, by K.

Via the isomorphism defined in Lemma 6.3.2, we define V¥ C Uy to be the
subgroup corresponding to the elements of Homep (H} (Kep, A), Kp/Op) which
factor through H (K. p, A)E. Then, by [PR04, Theorem 4.3],

Sel>(f/K.) = Homo (Xf_ /a(VE), K,/ O,)

where « is the Artin map on U, which enables us to generalise [PR04, Theo-

rem 7.2]:

Theorem 6.4.1. Let s be the integer from Corollary 4.4.3, then
Charr,, (Homo (Sel (f/K.), K,/0y)) = (p_si L;) .

Proof. By the above isomorphism and [PR04, Theorem 6.3], we have:

Charp,, (Homo (SGI;IE (f/Kc)»Kp/Op))
= Charp,, (XF /o(VF))
= Charp,, (U /(VF+CL)).
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By Corollary 4.4.3, the quotient

HY(Qep, Tk = 1))/ HL(Qe,p, Ty (k — 1))

is free of rank one over I'z,. Hence, by (4.1) and the proofs of Lemma 4.4.1 and

Corollary 4.4.3, the I'z,-module
Hom (H}(Qe,p, Ty (1)) %, Z,)

is also free of rank one and it has a generator fi such that

o S:E n—1
> felexp,  (na(ni)7))o =p* logy, mod (¥ —1). (6.2)
ceG,

Note that we have abused notation by writing eXpn,1(7n71(n1i)) for its image in
Hl((@](g"_l), T¢(1)) under the corestriction.
As in [PR04, Theorems 7.1 and 7.2], we have

Hom (H}(@c,va)ia Qp/Zp) = Hom (H}(Qc,pan(l))inp) )
Homo (H}(Kep, A)F, K,/0,) = Hom (H}(Qep, A)F,Q,/Z,) ® O

Let u® (resp. 9F) be the image of fi (resp. & from Proposition 6.3.3) in
Home (Hf(K A K /Op). Then 9% = h*p® for some ht € Tp,. Asin

c,ps

[PRO4, proof of Theorem 7.2], there is an isomorphism
Uy |(VE+Cf ) =To, /W To,.
Hence we have:
Charr,, (Homo (Sel, (f/K.),K,/0p)) = h*To,.

Let F be a finite extension of K contained in K., 6 a character of G, the
Galois group of F over K, x € H}(FP,A), r and integer, then 9% = htp*
implies

D 0(0)9* (a7 @p™) = 0(h*) Y O(o)u* (2" @p") (6.3)

oceG ceG
We now take z = eXpn,l(’le(?hi))- By (6.2), the RHS of (6.3) is just
p~ (hF)0(logE ). Hence, (6.1) implies that the LHS of (6.3) equals to the

following:

f11
pr— > 0(0) v ()7 @1

oceG
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where § = 6(—1). We now compute ) . 0(0)Yn1 (1755)7.
Take F' to be KZ(,"_D and 0 a character of conductor p™. Then

> 0(0)1maln = Z (Zéru@so 771)+(1—<P)‘1(77f))>

ceG oeG
= p" Z 0(0)¢5 ® o™ (ni)
oceG
= p ") "(nf)

where 7(f) denotes the Gauss sum of 6. Since ¢? + ¢(p)p*=3 = 0 on D(V;(1)),

we have
e ) = ()" T p (W) /[p(w), @] (for n odd),
o) = (—e@P") 7 p(w)/lpw),w] (for n even).
Hence, (6.3) implies:
PO o) = (el 0 P (o oda),
p* O )0(logt,) = (e(p)pkl);'r(ﬂ)L(f?)—;{’) (for n even).

Therefore, by the interpolating properties of L;t at these characters, we have:

p* O(h) = 0(L,) (for n odd),

st
p* O(h™) O(L,}) (for n even).

But h* and Lff are both O(1) and the above holds for infinitely many n, so

ht = p*SiL;‘E. Hence we are done. O
By taking G-invariants, we have the following.

Corollary 6.4.2. Charr, (Sel?f(f/@c)v) = (p’SiL]f).



Chapter 7

Wach modules and modular
forms

Let f be a modular form as in Section 1.3.5. In this chapter, we explain how
some of our earlier results can be generalised for more general a,. In particular,
we construct Coleman maps for f at an arbitrary good prime - either ordinary
or supersingular. When v,(a,) is large in a precise sense, we give a reformula-
tion of Kato’s main conjecture as in Chapter 5 by carrying out some explicit

calculations.

7.1 Positive crystalline representations

7.1.1 Generality of Wach modules

We first review some results on Wach modules. Proofs can be found in [Ber03,
Ber04, BB10].

Let E be a finite extension of Q, and V' a crystalline representation of G,
which is E-linear, with Hodge-Tate weights in [a,b]. The Wach module of V' is
the unique E ®q, Bap—module N(V) in D(V) such that the following conditions

are satisfied:
1. N(V) is free of rank d = dimg(V') over E ®q, Bap;
2. the action of G preserves N(V') and is trivial on N(V)/aN(V');

3. o(®N(V)) € a°N(V) and 7°N(V)/p*(x’N(V)) is killed by ¢*~¢, where
©*M denotes the R-module generated by (M) if M is a R-module
equipped with an action of .

59
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When V is positive, we endow N(V') with the filtration
Fil' N(V) = {2 e N(V) | ¢(z) € ¢'N(V)}.
Then, N(V)/7N(V) is a filtered E-linear ¢p-module, and there is an isomorphism
N(V)/xN(V) =2 D(V'). Moreover, we can recover D(V) from N(V') as
D(V) = (Bl q, @5 N(V))7™.

If T is an Op-lattice in V' stable under Gq,, then N(T') = N(V)) N D(T) is
an Op ®z, Aap—lattice in N(V), and the functor T' — N(T) gives a bijection
between the G, -stable lattices T' in V and the O ®z, A(Sp—lattices in N(V)

satisfying
1. N(T') is free of rank d = dimg(V) over O ®z, AEP;
2. the action of G, preserves N(T');
3. o(7®N(T)) C 7°N(T) and 7°N(T)/p* (7’ N(T)) is killed by ¢*~2.

Let m be an integer. For the Tate twist T(m) of T, its Wach module is
related to that of T" by

N(T(m)) = 7" N(T) ® epn.

Theorem 7.1.1 (Berger). Let T be as above, then (¢*N(T))¥=0 is a free Ao, -
module of rank d. Moreover, if nl, . .. ,ng is a basis of N(T'), then there exists

a basis ny,...,ng such that n; =nd mod m for all i and
AI+mpn @ ™em)...,(1+m)eng @7 "epn)

form a Ao, -basis of (p*N(T(m)))¥=Y for all integers m.

7.1.2 Construction of Coleman maps

Assume that V' is a positive d-dimensional E-linear representation of G, with
Hodge-Tate weights —ry < —rg—1 < -+ < —r; < 0 and it has no quotient
isomorphic to E(—rq). Fix an Og-lattice T' in V stable under G, and a basis
ny,...,nq of N(T) given by Theorem 7.1.1 and write P for the matrix of ¢ with

respect to this basis. Then, as column vectors,

90(”1) ny
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Moreover, the determinant of P is ¢"** "¢ up to a unit.
Let m = Z?:l i, then D(T(m))¥=! = N(T(m))¥=! by [Ber03, Theo-
rem A.3]. So, if z € D(T(m))¥=1, there exist unique z1,...,24 € Op ® Aap

such that
ni

c=n"(x1 - ma)| ! | @em. (7.1)

nd
Let v1,...,v4 be a basis of D(V') over E and write A, for the matrix of ¢
with respect to this basis. We have

D(V)C (E® qug@?) ® N(V)

and there exists a matrix M € M(d, E® B}, ) such that

rig,Qp
vy ni
=M| :
vq Nq

The determinant of M is equal to (¢/7)™ up to a unit in £ ®BI&QP. Moreover,
the isomorphism N(V)/#N(V) 2 D(V) means that we may assume M |,—¢ = I,

the identity matrix. The compatibility of the action of ¢ implies that
T _ 4T
p(M)P" = A M. (7.2)

We can now rewrite (7.1):

x=(xr1 - xd)-<t>mM_1 ;7 (7.3)

with (¢t/7)"M~1 € M(d,E ® IBSj;ngp) and {v;m =1, @t ey, i =1,...,d}
gives a basis of D(V (m)).

Lemma 7.1.2. For any x as above, the entries of the row vector

Col(z) = (z1 -+ a)¢"(PT)"' — (p(z1) - (za))

are elements of (OE ® A&p)

Proof. Since the determinant of P is ¢ up to a unit in Og ®A6p, the entries of

Col(z) are indeed elements of 03@1&6}). It remains to show that ¢)(Col(x)) = 0.
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But () = mq, (7.1) implies that

¢(n1)
z = (21 zq) ¢"(PT) " p(r™™) : @ em
p(na)
Hence,
ni
U(x) =9 ((x1 za) ¢"(PT) ") m ™| 1 | @en
ng
Therefore, ¢ (z) =  implies that
1/,((351 xd)qm(pT)*l) = ($1 xd).
Hence the result. O

Definition 7.1.3. For 1 <i < d, we define
_ $=0
Col; : D(T(m))¥=! — (OE ® Aafp)
by sending x to the ith component of Col(x) as defined in Lemma 7.1.2.

It is clear that Col; depends on the choice of basis. The precise dependence

is given by the following.

Lemma 7.1.4. Let ny,...,ng and ny,...,n,; be two bases of N(T') with
ny nj
=M
ng n,

Then, the respective Coleman maps defined by these two bases, Col and Col
are related by Col(z)p(M) = Col'(x) for all x € D(T(m))¥=1.

Proof. For any z € D(T(m))¥=!, write x = x1n1+- - -+xgng = 0+ +a/n).
Then,
Let P and P’ be the matrices of ¢ with respect to nq,...,ng and nj,...,n}

respectively, then P M = ¢o(M)P'"". Therefore,

Col'(z) = (z} -+ ) q"(P")™ = (p(ah) -+ ()
=(x1 - za) " MEPT) T = (plz1) - () (M)
=(z1 - wa) g"(PT)o(M) = (p(x1) -+ @(xa)) o(M).

Hence the lemma. O
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By simple calculations, Col(z) can be related to (1 — ¢)(x):

(1—y)(z) = Col(x)go(w)meT L ®enm (7.4)
ng
= Col(x)y T ®en (7.5)
ng
(o) e
= Col() ( — PrM— . (7.6)
I Vdm

Remark 7.1.5. By (7.5), we can prove Lemma 7.1.2 using the fact that ¢ (x) =
v iff o (1)) =0,

Note that Col; defined above are not Ap,-homomorphisms. However, by
(7.5), (1 — p)(x) € (p*N(T(m)))¥=0 for any = € D(T(m))¥='. Therefore,
Theorem 7.1.1 allows us to define:

Definition 7.1.6. For i = 1,...,d, we define Col, : D(T(m))¥=! — Ao, by

the relation

d
(1-¢)(z) = Z Col; () - [(1 + m)p(n; @ T em)]

for x € D(T(m))¥=!

We are interested in both sets of Coleman maps which arise from a modular
form. Although the former is not Ap,-homomorphism, it has the advantage of

being more explicit than the latter. It is clear that these maps can be extended

to a map on D(V(m))¥=! (with images in (E ® IB%EJ and Ag respectively).

On abusing notation, we write these maps as Col; and Col,; as well.

7.2 p-supersingular modular forms

Let f be as in Section 1.3.5 with v,(ap) > 0. On choosing appropriate bases,
we obtain two pairs of p-adic L-functions (as elements of E ® B&wzo and Ag
respectively) associated to f by applying the Coleman maps from Section 7.1
to the restriction of Vy to Gg,. We then study some of their basic properties

and consequences.
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7.2.1 Construction of p-adic L-functions

For simplicity, we assume that e(p) = 1. In particular a, = a,. Recall that we
have de Rham filtration

) Elll D El/2 if 4 S 0
D'(Vy) =< Euny if1<i<k-1 (7.7)
0 ifi >k
for some basis v1, 5 over E. By Theorem 2.3.5, v is not an eigenvalue of ¢

1-k

and we may choose vo = p'~"p(v1) so that the matrix A, of ¢ with respect to

b )
pk—l ap

as ©% — app + p*1 = 0. We call such a basis a ‘good basis’ for D(Vy).

this basis is given by

Let 1,72 be a ‘good basis’ of D(V). Then, the matrix of ¢ with respect to
this basis is again equal to A, also since a, = a,.

Pick a basis ni, ng of N(Vf) lifting 71, U5 as given by Theorem 7.1.1. It then
determines lattices Ty and Ty as in Section 2.3.1. Note that VF is irreducible
with Hodge-Tate weights 0 and —k + 1, so it has no quotient isomorphic to a
Tate twist of E. Therefore, we obtain two sets of Coleman maps associated to

f, namely

=0
Col; : D(Tj(k — 1))*=!  — ((’)E ® A@) ,

Col;

<2

DTy - 1) — Aoy,
for i € {1,2}. We can then define two pairs of p-adic L-functions:

Definition 7.2.1. For i = 1,2, define L,; = Col;(z) € (E ®B6p)w:0 and
Epy,; = Col,(z) € A where z is the image of the localisation of zX¥*° (after

twisting) under (hi, )1

Below is a list of assumptions which we need for establishing some of the

properties of these Coleman maps and p-adic L-functions.

Assumption (A): k> 3.

Assumption (B): a, is not of the form p’ + pF=2-7 for some integer j.

Assumption (C): v,(apy) > [(E—2)/(p—1)].

Assumption (D): p >k — 1.
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Additionally, we always assume that the eigenvalues of ¢ on D(V}y) are not

integral powers of p as before.

7.2.2 Properties

Decomposition of p-adic L-functions

Let a and 3 be the roots of the quadratic X% —a,X +pF~1. By Theorem 2.3.1,
we can associate to o and 3 p-adic L-functions L, o and L, g respectively. We
show that there is a decomposition of these p-adic L-functions in terms of L, ;
and L,;, i = 1,2. This generalises (2.9) and (2.10) for the case a, = 0 and
(2.16) and (2.17) for the case k = 2.

Let vy, v and 7y, 73 be ‘good bases’ for D(Vy) and D(Vf) respectively. Then,
vip € DY(Vy(1)) and o1 p—1 € D(Vi(k — 1)) for i = 1,2. Under the pairing

[ ]:D(VF(1) x D(V(k — 1)) - D(E(1)) = E - ext ™, (7.8)

we have [v11,71 ,-1] = 0. By applying ¢, we have [vo1,75 1] = 0, too. We
also have (V11,72 k—1] = —[v2.1, 71,6—1] # 0. Without loss of generality, we may

assume this common quantity is 1.
Proposition 7.2.2. Let v; and ; be as above. For all x € D(Tf(k — 1))=*,
M (=L, (hiy () Lo, (hiy(2))) = (Coli(z) Cola(z)) M’

as row vectors, where L, is as defined by (2.7) for n = vi,vp and M’ =
k—1
(ﬂiq) PTM~=' and 9 is as defined in Section 1.3.4.
Proof. Proved by S. Zerbes, see [LLZ10, Proposition 3.19]. O
Let 1, and ng be as in Theorem 2.3.5, then

Ly, (ZKatO) =Lpa and Ly, (ZKam) =Lpg.

vy —vp and np = B~ 'v1 — vy, Therefore,

m m

/ 11 12

M = ,
mo1 Moo

Definition 7.2.1 and Proposition 7.2.2 implies

By elementary calculations, n, = a~

on writing

M(Lp o) = (a_lmu +mi1)Lp1 + (a_1m22 + ma1) Ly 2,

M(Lyp) = (B 'maz+mi1)Lp1+ (87 'maz +ma1)Lyo.
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Hence, L, and L, 5 can be written as

L

(B~ 'mag + ma1)M(Lyp o) — (a 'mag + mo1)M(Ly )

(31— a~1) det(M)

o2 = (a=T = 51) det(M)

Let € D(Vy(k —1))¥='. By Proposition 7.2.2 and (7.6),

(1 - (p)l‘ = 9)? e} ‘CLVl o hllw(x)DZ,k—l — Dﬁ o El,yg o} hllw(x)pl,k—l

Therefore, by the definition of Col,,

Col, Col,) - [(1+m)M'| =M (~L,, oht, L., ohl).
Tw Iw

Let M =M~ 1[(1+m)M’'] € M(2,H(Gw)), then
(%1 QQ) M = (_£V2 © h%w EVl © hllw) .
Therefore, by exactly the same calculation as above, we have:

L

Py (@ 'myy + myy)Lpy + (0 "mgy + 1y ) Ly o

Lyp (ﬁ_lmlz + mn)ip,l + (5_1m22 + m21)l~/p,2
where (mij) =M.

Interpolating properties

Proposition 7.2.3. Let 0 be a primitive character modulo p, then

IN/ _ T 9) L(f9*1? 1)
E—1 0(—1)
p Qf
0.

>

=

3

Z

Nt
|

)

Similarly, if 0 is the trivial character, then

ap_pk_2_1 . L(fv]-)

k—1 +
D Q;

(1)

9(I~/p,1)

G(I/p,?)

Proof. Since

9

(B~ mag + mi)M(Ly o) — (@™ 'mag +mi)M(Ly )

66

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)
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and M|,—g = I, we have M'| __1) = Ag for any pth root of unity ¢. By
the compatibility of Fourier transforms (see Theorem 7.4.1 below), we have

0(M) = AL for any character  modulo p. By (7.12) and (7.13), we have

= “ta, = 1)0(Lya) — (e ta, — 1)0(L,,
H(Lp7l) _ (B )(él_)a(l)pkl )6( ﬁ))

0(L,) — (B~ H0(Ly.a) — (@~ 'p" 0Ly )
P, (a1 — B D)ph1 :
Hence, we are done by the values of 6(L,, ) and 0(L, ) as given in [AV75] and

[MTTS6). O

Corollary 7.2.4. If assumption (A) holds, then im’ # 0 fori € {1,2}. More-
over, if n is a character of A, then i;)l # 0.

Remark 7.2.5. We see that the interpolating properties of Ly, and L,y at
characters modulo p are independent of the choice of ni,ns as long as we have

fized a pair of ‘good bases’ for D(Vy) and D(VF).

Remark 7.2.6. It is not hard to see that M~ (L, ;) has the same interpolating
properties as ﬂp,i at characters modulo p for i = 1,2 because the action of G

on N(T7(k—1)) is trivial modulo 7, so M(Ly,;) = Ly mod () by comparing
(7.5) and Definition 7.1.6.

7.2.3 Infinitude of zeros

We generalise [Pol03, Theorem 3.5] beyond the case a, = 0 using our decompo-

sition of Ly, o and Ly g.

Proposition 7.2.7. Let n be a character of A, then either L} , or Lz,ﬁ has

infinitely many zeros.
Proof. Assume the contrary, then [Pol03, Lemma 3.2] implies that L} , and
L) 5 are O(1).

By [BB10, Lemmas 3.3.5 and 3.3.6], the entries of M are O(log,") where
m = max{v,(c),v,(8)} < k — 1. Therefore, with the notation above, m;; =

O(log,") for i, j € {1,2}. In particular, the 7-component of

(87 maz +ma1)Lpa — (@ ma + ma1) Ly

k-1
D
which forces L;1 = 0 contradicting Corollary 7.2.3 and Remark 7.2.6. O

is O(logy"). By (7.9), the quantity above is divisible by (t/mq)*~! ~ log
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As in [Pol03, Theorem 3.5], we have:

Corollary 7.2.8. If a ¢ Fy(n), then both L] , and LZﬁ have infinitely many

ZETO0S.

7.3 Modular forms with v,(a,) > [(k—2)/(p—1)]

Under assumption (C), a canonical basis for N(T) has been constructed in

[BLZ04]. In this section, we study this basis and prove the surjectivity of Coly

and Col, .
Define
2n+1 2n
log"(1+7) = H 7 (@) and log(1+4+7) = H z p(q).

n>0 p n>0

Write m = |(k —2)/(p — 1)| and let z; be elements of Q, such that

log™ (1 + ) ot
P <log+(1+7r)) :Zzﬂ7

i>0

then [BLZ04, Proposition 3.1.1] says that

k—2
z= Z zmt € Zy[[n]).

Theorem 7.3.1 (Berger-Li-Zhu). Under assumption (C), i.e. vp(ap) > m,
there is a canonical basis of N(Tf) such that the matriz of ¢ with respect to this

0 -1
qk—l Sz

It is easy to check that this basis reduces to a ‘good basis’ of D(VF). We define

basis, P, is given by
where § = a,/p™.

the Coleman maps with respect to this basis. For any = € D(T7(k — 1))¥=!
with

x=m'"" (w1 a2) (Z;) ® k-1,

we can express Col;(z), i = 1,2, in terms of z; and xs:

Coly(z) = mo—@(x1)+ 0221, (7.14)

Coly(z) = —¢"tay — p(xs). (7.15)
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7.3.1 Surjectivity
Image of Coly

We first give a few preliminary lemmas.

Lemma 7.3.2. Ifn >0, then @"(M_l)(Ag)” =" Y (PT) ... p(PTYPT M.

Moreover, as n — 00, the quantity above tends to 0.

Proof. The equality follows from (7.2) and induction. For the limit, note that
M|z—o = I, hence ¢""(M) — I as n — oo. Since the eigenvalues of A, are a

and 8 and o™, " — 0 as n — oo, we are done. O

Lemma 7.3.3. Letx = 7'~ * (a;l CC2) (Zl> ® eg—1. Then, Y(x) is given by
2

n2

e (4

Proof. Recall that ¢(7) = mq, we have

= e e ()

— k-1 1k [p(n1)

= (x1§z + Z9 q xl) () (@(W)) ,
hence the result O
Lemma 7.3.4. For all n > 1, the constant term of ¥(q™) is p"~ 1.

Proof. Induction. O

Lemma 7.3.5. If g(7) € E® IB%"'p, then there exist unique a; € E for 1 <i <
k — 1 such that g(7) = 251:11 a;(m+1)" mod 7F1.

Proof. Proved by S. Zerbes (see [LLZ10, Lemma 4.5]). O
=0
Proposition 7.3.6. Under assumption (C), we have (Wk’l(QE ®A6P> C
Coly (D(Tj(k — 1))¥=1).
Proof. Recall that (7.4) says
(1 — )z = (Coly(z) Coly(z)) - (mq)'~*PT (Zl> ® ep—_1-
2

1[)7
For any 41 € (WH@E ® A@p) , Theorem 7.3.1 implies that

y:=(y1 0)-(mg)t*PT (Z;) ®ep—1 = (0 yi/m*1) (Z;) ® ep_1.
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If n is a non-negative integer, we have

©"(y) (0 " (y1/mt 1)) "1 (PT) - o(PT)PT (ZD ® ep-1

= 0 /) e () e e

Hence, Lemma 7.3.2 implies that ¢"(y) — 0 as n — oo and the series © :=
Ym0 ®"(y) converges to an element of D(T7(k — 1))¥="' with (1 — )z = y.
Therefore, y; = Coly (z). O

Proposition 7.3.7. Under assumptions (B), (C) and (D), the map Col; :
$=0
D(Vi(k —1)) — (E ® Bép) is surjective.
$H=0
Proof. By Proposition 7.3.6, if 3, € (Wk_lE(X)Bap) , then y; € Im(Coly).
$=0

For an arbitrary y; € (E ®B6p) , there exists ¥’ in the E-linear span of
{(1+m)"}1<i<k such that y; +(y’) is divisible by 7¥~! by Lemma 7.3.5. Then,
as in the proof of Proposition 7.3.6,

et (0 e (7))

n>0

converges to an element x € N(Vp(k — 1)). By Lemma 7.3.3 and the fact that
Y(y1) = 0, we have

Yl) -z = ¥ <(0 (1 + )/ ) <Z;)>
oo ()

Let 2/ = ¢ + ni—F (:C1 x2) (Zl) where r; € E® ng. Then
2

W(a') — ' =7tk (v —z1 +P(x10z2 4+ 32) —x0 — UV(¢" 1)) <m> :

n2

Hence, ' € D(Vy(k —1))¥=" iff

ry = —(d*tay), (7.16)

y x1 — Y(2162) + Y2(¢"1ay). (7.17)

Let 1 = Zf;ll B;(1+ )" with 3; € E. Since the degrees of 6z and ¢! are at
most k—2 and (p—1)(k—1) respectively, the degrees of 1(210z) and ¥?(¢*x;)
are at most (k—2+k —1)/p and ((p — 1)(k — 1) + k — 1)/p? respectively. But
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we assume that p > k — 1, so both 1 (21z) and ¥?(¢*~'x;) are scalar multiples

of (14 m). Write

k—1 k—2
y = a;(1+ )t and 0z = Z%(l—!-ﬂ')i
i=1 =0

where a;, v; € E. Then, (7.17) holds iff

Bi fori>2

B — Z Bivj + Bp2—(k—1)(p—1)

i+j=p

Qg

851

where v; = 3; = 0if i < 0. But p*> — (k—1)(p — 1) > 1 and p|y,—1 by defi-
nition, so the matrix relating (o;)1<i<x—1 and (5;)1<i<k—1 is upper triangular
with nonzero entries on the diagonal. Therefore, there is a bijection between
(vi)i<i<k—1 € E*=1 and (Bi)i<i<k—1 € E*=1. In other words, given any 3’ as
above, there exists a unique z; (and hence x) such that 2’ € D(Vz(k—1))¥=".
For any 0 < j < k — 2, we can therefore choose y; (and hence y’) such that

21 =7/ mod 7 *!. In this case,

Coli(z) = wyi+o)— v 1) —p(z1) + 2102

—p(¢"tay) — o(x1) + 2162 mod wF 1

(—p*277 —p/ +a,)7? mod 7T,

where we deduce the last line from the previous one using Lemma 7.3.4 and the

fact that mq = (7). Therefore, we are done by assumption (B). O
Image of Col,

By Theorem 7.1.1, there is a natural isomorphism of A g-modules
3+ (@ N(Vi(k = 1) — A

In particular, J is additive and linear over E. We write n! = p(n; @ 71 % e, _1)

for i € {1, 2}.

Proposition 7.3.8. Lety € (¢*N(Tf(k — 1)))¥=0 be of the form y = yanh for
some ys € (OE ® A6P>¢:07 then there exists 2 € Aoy, and T € N(Tf(k— 1))¥=1
such that

J(y) —J o Col(z) = (0, 2).
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Proof. Proved by S. Zerbes, see [LLZ10, Corollary 4.31]. O

Theorem 7.3.9. If assumptions (B), (C) and (D) hold, then the map Col, :
D(Vi(k —1))¥=! — Ap is surjective.

Proof. By Proposition 7.3.7, there exists # € D(T(k —1))¥=" such that

Col(z) = @™ (1 + 7)n) + yans

for some y, € (OE ® A@) and an integer m. Proposition 7.3.8 says that
there exist z € Ao, (G) and & € D(T(k —1))¥=" such that

3ganh) — 3 o Col(3) = (0, 2)
But J(@w™(1 4 7)n}) = (w™,0), hence J o Col(z) — J o Col(z) = (w™, z) and

Col, (x — &) = w™. In particular, 1 is in the image and we are done. O

7.4 Compatibility of Coleman maps

We now show the compatibility of the definitions of the Coleman maps defined
in Chapter 2 and the ones from Section 7.2. We first state a result of D. Loeffer:

Theorem 7.4.1. If F € Hoo(Gs) and n > 2, then the following are equivalent:
(1) M(F) is divisible by @, (1 +7) = " (q).
(2) F is zero at all primitive Dirichlet character modulo p™.
(3) F is divisible by ®,,_1(7).
For n =1, the same holds with (2) replaced by
(2°) F is zero at all Dirichlet character modulo p.

Proof. Proved by D. Loeffler, see [LLZ10, Theorem 5.4]. O

7.4.1 The case a, =0

When a, = 0, we can work out the matrix M’ defined in Proposition 7.2.2

explicitly.

Lemma 7.4.2. The matriz M’ is given by

( 0 (log* (1 + w))k-l)
—(log™ (1 +)/g)" ! 0 |
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Proof. With respect to the basis ny,ng of N(Vf) over ]Béap, as chosen in [BLZ04],

the matrices of ¢ and g € G, are given by

log* (14-7) k=1
(0 -1 () 0
P = <qk—1 0 > and 0 ( log~ (147) )’“—1 ’
g(log™ (1+m))

(7.18)

which implies that
~ ((log™ (1 + 7))kt 0
M= ( 0 (log™ (1 +m)¥~1) (7.19)
The result then follows from explicit calculations. O

Lemma 7.4.3. We have ¢(log™ (1 + 7)) = log™ (1 4+ 7) and p(log™ (14 7)) =
Blog™ (1 +m).

Proof. Immediate. O

Lemma 7.4.4. Let F € Hoo(Goo). Then F is divisible by 10ng,c if and only if
M(F) is divisible by ¢ (1ogi(1 + W))kil.
Proof. Let m > 1. Since the action of Tw; on Hoo(Goo) corresponds to that

of # on C, ® B:Eg’&o for any j, we have ®,,(u=77)|F iff ¢™(q)|07 (9M(F)) by

Theorem 7.4.1. But ¢™(q) and 9(¢™(q)) are coprime. Hence, by induction on

k, we conclude that

Proposition 7.4.5. There exists a* € A} such that

_ 0 —a” log,,
M= (a+ log;:k 0 '

Proof. As a Ag-module, X* := p(log*(1+ 7)) 1E® B&w:o is generated by
(1+7)p(log* (147))5 1. By Lemma 7.4.4 and the fact that 9 preserves orders,
i)ﬁ(logik Ag) = X*. Hence the result. O

Recall that the +-Coleman maps are defined by
logt, Col™ = £,, and log,, Col™ = L,,.

Therefore, by (7.11), we have:



CHAPTER 7. WACH MODULES AND MODULAR FORMS 74

Corollary 7.4.6. Let a™ be as in Proposition 7.4.5, then a~ Col, = Col™ and

at Col, = Col™.

Description of kernels

By the calculations above, we see that Col; is related to Col™ by the following:
log,, ;, Col™ = M(p(log™ (1 + 7)1 Col, ohl,,)

In particular, we have ker(Col;) = hi (ker(Col™)) and a similar statement
can be made about Col™ and Coly. We now find ker(Col;) for i = 1,2 using
(7.14) and (7.15) and show that they do agree with ker(Col®) as described in
Chapter 3.

By (7.3) and the formula for M above, we have for any z € D(Vy(k—1))¥=",

T = Ty -1 + Tal k1 Where
z1 =2} (log” (1 4+ 7)1 and zp = 2h(logt (1 +m))* 1

for some ', 2}, € E®IB§6P. We write f; for the power series such that f;(7) = x;,

i=1,2.
Lemma 7.4.7. Let x be as above. Then p*=2f1(0) + f2(0) = 0.
Proof. By [Ber03, Theorem I1.6], we have
eXPS,l (h@v(m)) =(1 —Pflwil)a\/(ﬂ”) (7.20)
where V' = V¢(k —1). Since Oy (z) = f1(0)71 x—1 + f2(0)72 k1, we have
(1—p e ) ov(x) = (f1(0) —p~ " f2(0)) vrk—1 + (P* 2 f1(0) + f2(0)) va k1.
The image of expf; is contained in D°(Vi(k —1)), so p*~2 f1(0) + f2(0) = 0. O
Lemma 7.4.8. Let v € D(Vp(k — 1)¥=1, and write x = T1D1 -1 + T2l -1
as above. Then
(i) x € ker(Coly) if and only if p(x1) = —pF~1ep(21);
(i) x € ker(Coly) if and only if p(x2) = —pF~14(z2).

Proof. We only prove this for Coly, as the proof for Cols is analogous. Note that
the condition that ¢(x) = x translates to ¥(z;) = —p'~Fxy and ¥ (xs) = ;.
But Coly (z) =z, — ¢(z}) = 0 iff 25 = ¢(z1). Hence the result. O
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Proposition 7.4.9. Let x be as above, then
(i) x € ker(Coly) if and only if the following equations hold

T 1 (fiGr —1) = P fi(Gra—1), n=2  (7.21)
Trjo(fi(G—1) = —(1+p*)A(0); (7.22)

(ii) x € ker(Cols) if and only if

7p27kf2(cpn—2 -1, n>2

—(1+p"72) f2(0).

Trn/n—l(f?(Cp" - 1))
Tryj0(f2(¢p — 1))

Proof. We prove the proposition for Col;. Recall that
Z f1 C(1+m) — 1)
¢r=1
Hence, ¢(z1) = —p*~19(z1) implies that
S A +7) —1) = —p* R (fi (). (7.23)
¢r=1
Let n > 2. On substituting = by (,» — 1 in (7.23), we have
Trp /o1 (f1(Gr = 1) = D [1(Cn — 1) = =p* Ff1(Gpn—2 — 1),
¢r=1
Similarly, we obtain the second condition by substituting 7 by 0 in (7.23).

Conversely, assume that (7.21) holds for all n > 2, then o(f;) +pF~1(f1) =
0 at (pn — 1. Recall that 1 = 2} (log™ (1 + 7))*~! where 2} € E® Bap. Since

(1) +p* (1) = (o)) + (" ah)) (log™ (1 + ),

the power series in Q ® Z,[[X]] corresponding to (¢(x;) + 1 (¢*~12})) has in-

finitely many zeros, so it must be zero itself and we are done. O

Corollary 7.4.10. For x € D(Vi(k — 1))¥=!, write e,(x) for the image of
the nth component of hi, (x) under the dual exponential expy . Let i =1

(respectively i = 2), then = € ker(Col;) iff
eo(r) =0 and e, 1 (x) = p~len(x) Vn € ST

where SE are as defined in Chapter 3.
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Proof. Again, we only prove this for i = 1. By [CC99, Théoreme IV.2.1], we
have e, (z) = p~ "9y (¢~"(x)) for all n > 1. But =2 is the multiplication by
—pF~ on D(VF(k — 1)). Using again that Im(exp}; ;) C D°(V), we sce that

eon(z) = p 2 (=p)" BV 1 (Gon — )i pa
eant1(z) = p 2 (=p)" Y fo((pant — 1)y

and fa(Cpen — 1) = fi1((pzn-1 — 1) = 0 for all n > 1. Therefore, (7.21) holds for
any 2n — 1 and it holds for 2n if and only if ez, (2) = Troy41/2n(€2n41(2)) =
ptean—1(z).

Now eg(z) = (f1(0) — p~' f2(0)) 71 k-1 by (7.20) and p*~2f1(0) 4 f2(0) = 0
by Lemma 7.4.7, so

eo(z) = (1 +p" ) f1(0) 01 g1 = —(p* "+ p 1) f2(0) D1 1.

The condition (7.22) is therefore equivalent to fi1(0) = 0, which in turns is

equivalent to eg(z) = 0. O

Therefore, the two descriptions of the kernels (Corollaries 3.4.1 and 7.4.10)

agree via the isomorphism hj,.

7.4.2 The case k=2

We now assume that f is a modular form as in Section 2.5. Since condition (C)

holds and k = 2, with respect to the canonical basis of N(V;) given above, P is

(2 ;pl) : (7.24)

Write BY_ (respectively B!) for the matrix obtained from A% (respectively

simply

A?) by replacing @,,(y) by ¢ 1(q) for all m. Then, we have:
Lemma 7.4.11. Under the notation of Section 7.2, M = BY..

Proof. By (7.24), (B;™)T = P(p(P)---(p”_l(P)A;”. For g € G, we write
Gy = By g ((B;M7T) . Then,
P (o)~

Hence, if we write Gy for the limit of ng) as n — 00, then

P-o(Gy)-g(P)™" =Gy,
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It is easy to check that G satisfies Gg,4, = Gg, - 91(Gy,) for any g1, 92 € Goo.
Hence, we recover the action of G, on the Wach module N(V}). In other words,

G is the matrix of g with respect to the basis n1, na chosen in Section 7.3. Since

Gy = (BT g ((BL)T) " and Gglr=0 = I, we have
n Goo
B, (n;) € ((E QB o,) ® N(Vf)) = D(V})
and M = BY_. O
We write A¢ = det(A)A~1 if A is an invertible matrix, then we have:

Corollary 7.4.12. The matriz M’ can be obtained from (AZ1)¢ by replacing
D by ©(q)™

Proof. Explicit calculation. O

Recall that (2.15) says that
(Low) (@) —Lu(z)) AL = (Col’(z) Col”(z)) log(7)/(v — 1)
for any z € Hy, (VF(1)). Hence, on setting v = —w, (7.11) implies that
(Col, Coly) MAL! = (Col” oh}, Col”ohl, )log,(v)/(y — 1). (7.25)

By considering the determinant of Qy, (1)1 (see the proof of Lemma 4.4.2),

we see that the images of
(Col, Coly) and (Col” ColY)

are isomorphic as A gp-modules, so (7.25) implies that there exists A € GLa(Ag)
such that MAZ! = [log,(v)/(y — 1)]A. Hence,

(ﬁl QQ) A= (COlﬂ Ohllw COIU ohllw) :

We also see that M and (A 1)¢ agree up to an element in GLo(Ag) which is
a generalisation of Proposition 7.4.5 because of the description of M’ in Corol-

lary 7.4.12.
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7.5 p-ordinary modular forms

We now assume that f is ordinary at p. Then, V; has no quotient isomorphic
to E(—k + 1), so results from Section 7.1 hold.

As before, we assume €(p) = 1. Let a be the root of X2 — a,X + p*F~!
which is a p-adic unit and let 8 be the one with p-adic valuation £k — 1. By
[Kat04, Section 17], there exists an 1-dimensional Gg,-subrepresentation VJQ in
V. Moreover, Vfi has Hodge-Tate weight 0 and ]D(fo) can be identified with
the a-eigenspace of ¢ in D(Vf). We fix a nonzero element v, € ]D)(Vjé). Then,
vy is a basis of N(Vf) over £ ® Bap. Let 75 be a nonzero B-eigenvector of ¢ in
]D)(Vf). We lift 71, 75 to a basis n1 = D1, no of N(Vf), which defines a lattice T'f

in V5 as in the supersingular case. Then, the change of basis matrix M, with

()= ()

Uy n2

is lower triangular. By considering determinant, we can choose ns so that the
diagonal entries of M are 1 and (¢/m)*~!. With respect to this basis, the

associated Coleman maps Col; and Col;, ¢ € {1,2} given in Section 7.1 enable

us to define:

Definition 7.5.1. For i = 1,2, define L,; = Col;(z) € (E ®B+p)¢:0 and
Ep,i = Col,(z) € Ag as in Definition 7.2.1.

Since ¢(n1) = any, the matrix P as defined in Section 7.1 is upper triangular

and there exists a unit u in £ ® IB%(EP such that

a o
P= (O uqk1> :

(1—¢)(x) = (Coly(x) Coly(x)) (O‘(Wtq)kl 0) (”1vk—1>. (7.26)

* U Vg k—1

Therefore, (7.6) becomes

Lemma 7.5.2. Let v1, vo be a basis of D(Vy) such that ¢(v1) = ary and
o(va) = Bra. Then

Vi1, Vig—1] =0

fori=1,2 where [ , | is the pairing as in (7.8).
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Proof. Assume my = [v11,71 5-1] # 0. Since [, ] is compatible with ¢, we
have
el g—1] = [evia), o(P16-1)]
pitmy = [Oép71V1,1,@p17k171,k—1]
pk_lml = a2m1.

1

Hence, a® = p*~!, which is a contradiction. The proof for i = 2 is similar. [

As in Section 7.2.2, we may assume that [v1 1,72 5-1] = —[vo1, 71 -1] = 1

and an analogue of Proposition 7.2.2 says that

u

1 1 a7 0
M (=L, (hiy () Loy (bl (7)) = (Coli(z) Coly()) {7 :
In particular, if we apply this to the Kato zeta element, we have

a t \k—1
(—M(Lpp) M(Lpa)) = (Lpa Lp72)< <wq*> 2)

ZKato)

where L, g = Ly, ( . On applying Theorem 7.4.1, we have

= ~ v 1 0
(_Lpﬁ Lp,a) = (Lp,l Lp72) (av 2gp7k ﬁ)

where log,, ;, = Hf;g log, (x(7)777)/(x(v) ™7y —1) and @, 0 € Aj,.

We now say something about L, ; and L, ;. When V; is not locally split at
p, Ly, g is conjecturally equal to the critical slope p-adic L-function constructed
in [PS09]. By [Kat04, Theorems 16.4 and 16.6], L, 3 has the same interpolating
properties as Ly, o, namely:

Co,r

Bn

L(foor,r+1)  and  X0(Lyp) = 20 L(fpr,r+ 1)

X"0(Lp,a) = 3n
(7.27)

where 0 is a finite character of conductor p” > 1,0 <r <k —2 and ¢y, is some
constant independent of o and (3. Note that the values given by (7.27) do not
determine L,, g uniquely, but it allows us to show that L, 1, f/p,l # 0.

e Assumption (A’): V; is not locally split at p and k > 3.

Proposition 7.5.3. If assumption (A’) holds, then L, L | %0 for any char-

acter n of A.
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Proof. As in the proof of Proposition 7.2.3, the fact that M|,—9 = I implies

that M'|—_1) = Ag for any (P = 1, where A, = is the matrix of ¢

a 0
0 g
with respect to oy, . Therefore, M(L, 5)((—1) = oLy 1((—1). Since Vy is not
locally split and k > 3, by the above discussion, n(L, 3) = %mL(fn7171) #0
for any primitive character n modulo p as in the supersingular case. Therefore,

L} 1(0) # 0. The result for E;”l then follows immediately by Remark 7.2.6.

In particular, we see that the interpolating properties of 9~!(L,, 1) and f/p,l

at characters modulo p are the same as that of L, g after multiplying a constant.

Remark 7.5.4. If V; does split locally at p, we can choose ny = vy and M

would be diagonal. Then, we have
Lyg =" ((t/m)" ' Ly1) = tlog, ; Ly,

But it is not known that whether Ly, g is nonzero or not.

7.6 Main conjectures

For i = 1,2, let ker(Col,),, be the image of ker(Col,) in H*(Qp,n, T7(k—1)) under
the composition of hj,, and the natural projection. We write H} (Qpn, V/Ty(1))

for the annihilator of ker(Col,),, under the pairing
HY(Qpn, Tk = 1)) x H'(Qpon, Vi /T1 (1)) — E/Op.

This enables us to define

i 1
Sel, (f/Q(ppn)) = ker <Selp(f/(@(ﬂpn)) H (Qp,n,Vf/Tf(l)))

— .
H} (Qp,na Vf/Tf(l))l

and Selj,(f/@oo) = lim Selé,(f/@(,upn )). The results in Chapter 5 generalise

directly and (5.13) becomes

H'(T7(k — 1)) — Im(Col;) — Sel (f/Qo0)” — H*(Tf(k — 1)) — 0. (7.28)

Proposition 7.6.1. Under assumption (A) (if f is supersingular at p) or as-
sumption (A°) (if f is ordinary at p), Sel;(f/(@oo) is Aoy, -cotorsion fori=1,2.

Moreover, Selj,(f/(@oo)" is T o -cotorsion and there exists some n; > 0 such that
@™ L), € Charr,_(Sel,(f/Qo0)"")

where 1 is any character on A unless f is supersingular at p and i = 2 in which

case 1 1is the trivial character.
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Proof. This is exactly the same as the corresponding results from Section 5.4.
As in (5.14), the first arrow of (7.28) is now injective by the fact that L ; # 0

and there exist n € Z such that
0 — H'(Tf(k — 1))/Z(T§(k — 1)) — Im(Col,) /(@™ Ly,:) — Sel’ (f/Qo0)”

— H*(T(k — 1)) — 0.
(7.29)

O

Corollary 7.6.2. Let n be as above. If assumption (A) (or (A’) depending
on whether f is supersingular or ordinary at p) and the homomorphism Gg —

GLo, (Tf) is surjective, then Kato’s main conjecture is equivalent to
Charr, (Sel’(f/Q@u)"") = Charr,,, (Im(@i)”/(w"iiz’i)» (7.30)
Proof. Tt follows immediately from (7.29). O
By the surjectivity of Col,, we have:

Corollary 7.6.3. If assumptions (A)-(D) hold and n is as above, then Kato’s

main conjecture tensor Q, i.e.
Charr,, (H'(Vy)"/Z(Vy)") = Charr,, (H*(V})"),

18 equivalent to

Charp,, (Sel}(f/Qu)""" @ Q) = (Egl) (7.31)

As before, one inclusion is immediate for both (7.30) and (7.31).



Appendix A

Results in linear algebra

In this appendix, we prove some elementary results in linear algebra which we
have used in the main part of the thesis. Some of them are needed in Appendix B

as well.

A.1 Linear algebra over Lubin-Tate extensions

Lemma A.1.1. Let K be a field of characteristic 0 and K = Kqg C --- C K, a
tower of Galois extensions. Write K(") = ker(Try,/n—1) and KO = K. Then,

as K -vector spaces, we have
Kn=K9¢gKVg... KM,

Proof. By induction, it is enough to show that K, = K,_; ® K. It is clear
that K,_1 N K™ ={0}. If 2 € Ky, 2 = (x — 7 Trpyjp—1(2)) + 70 Tryp—1 ()

where r, = [K,, : K,,_1]7!, so we are done. O

Take K = Q,. Let 7 be a uniformiser of Q, such that 7 = p mod p* and
gr = (1+ X)P + (m —p)X — 1. This is called a good lift of Frobenius in [IP06].
Let K, be the extension of @, generated by the 7"-torsion of the Lubin-Tate
group associated to g, with Galois group G,,. Let 7, be a primitive 7"-torsion

and define

Tn — %Trn/n_l(wn) =m,+1 ifn>1,
n= Wl—ﬁTh/o(?Tl):WrFﬁ ifn =1,
1 ifn=0.

It is then clear that 7/, € K("),

82
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Lemma A.1.2. Under the notation of Lemma A.1.1, {n)° : 0 € G} generates
K™ over Qyp.-

Proof. By [IP06, Proposition 4.4], we have
Kn = Qp[Gn]ﬂ_n + Kn—l-

Let 2 € K. Since Try/n—1mn € Ky—1, We can write x = deGn a,m? +y
for some a, € Q, and y € K,,_1. But Try, /1 = Trpy )y w7 = 0 for all o, we

have y = 0. Hence we are done. O

Proposition A.1.3. Let n > 0 be an integer and

n

o= me: for some z; € Q.

i=0

Then, the Q,-vector space generated by {a” : 0 € G} is given by
o KO,
i:x; 7#0
Proof. We proceed by induction on |S|. The case |S| = 1 follows directly from
Lemma A.1.2
Write V for the Q,-vector space generated by {a” : 0 € G,,}. Clearly,

Ve @ KO
i 70
n—1
Without loss of generality, we assume that x, # 0. Let § = Zxﬂr; Then,
i=0

by induction, {87 : 7 € Gy—1} generates ;g\ (1) K® over K. Fix 7 € G,,_1,
then

Z ol = pﬁ‘r + (Trn/nfl ﬂ-f:L)T = pﬂ‘r-

c€Gn,0|K T

n71:
Therefore, for any 7 € G,,—1, 87 € V and 7[° € V for any o € G,,. Hence we

are done. O]

A.2 Linear algebra of cyclotomic extensions

We now apply results above to the extension Q, ,, of Q.
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n
Corollary A.2.1. Let n = ag + Zaicpi where a; € Q, with a1 # (p — 1)ao,
i=1
then the Q,-vector space generated by {n° : o € Gy, } is given by
UEDBDBRVRGS
reSoceG,

where S = {r € [1,n] : a, # 0}.

Proof. Take m = p and 7, = (pn — 1. Then, n), = (pn for n > 1 and 7] =
¢p+(p—1)~1. Therefore, the result is immediate if a; = 0 by Proposition A.1.3.
If a1 # 0, then

n= (a() — pall) +a17T/1 —i—Zaﬂr;.

i>1

Hence, we can again apply Proposition A.1.3. O

Corollary A.2.2. Let n=1+4(p + (2 + -+ + Gpn, then n is a normal basis of
Qp,n over Qp.

Proof. Combine Lemma A.1.1 and Corollary A.2.1. O



Appendix B

Coleman maps over
Lubin-Tate extensions

In this appendix, we explain how the construction of Col™ can be generalised
to Lubin-Tate extensions of height 1 in place of the cyclotomic extension. This

is the contents of [Lei09a].

B.1 Perrin-Riou’s exponential map over Lubin-
Tate extensions

We first review the generalisation of Perrin-Riou’s exponential to Lubin-Tate
extensions given in [Zha04b]. Fix 7 a uniformiser of Z,. Let a be the p-adic
unit in Z,; such that 7 = ap. Let g be a lift of Frobenius with respect to m and
denote the Lubin-Tate group associated to 7 (which is independent of g up to
isomorphisms over Z,) by F. We write -] : Z, — End(F) for the natural ring
homomorphism associated to F.

Let K, denote the extension of QQ, obtained by adjoining the 7"-torsions
of F and write G, for the Galois group of K, over Q, for 0 < n < co. In
particular, G, = (Z/p™)* and Go = Gy x Gal(Ko /K1) 2 Z/(p — 1) X Zy.
Note that GG, denotes something less general in the main part of the thesis, but
since it should not cause confusions, we use the same notation here. We abuse
notation in a similar manner for other objects in later parts of the appendix.

Let x be the character of Gg, given by its action on the Tate module of F.
Then, ow = [k(0)]F(w) for all w € F[r*°] and ¢ € Gq,. Moreover, x = x1 for

some unramified character .

85
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Let = denote the completion of the maximal unramified extension of Q,
and O its ring of integers. Let n : G,, — F be an isomorphism between the

multiplicative group and F, then n € O[[X]]. Moreover,
n(X) = QX + (higher degree terms)

where 2 is a p-adic unit. The lift of Frobenius g satisfies gon = n?o((1+X)P—1)
where ¢ is the Frobenius of Gal(Q}"/Qp), which acts on 1 by acting on its

coefficients. In particular, Q¥ = af).

Definition B.1.1. We define Z[[X]]¥ to be the set of power series f over =
such that o f(X) = f((1+ X)¥(?) — 1)Vo € Gy, .

Remark B.1.2. [Zha04b, (1.13)] says that Z[[X]]¥ contains .
The significance of Z[[X]]¥ is given by the following:
Lemma B.1.3. Let f € Z[[X]]¥ and ¢ a p™th root of unity. Then f((—1) € K,,.

Proof. By definition, o f(X) = f((1+ X)¥(®) — 1) for any o € Gq,- Therefore,

we have

o(f(¢=1) = (@7 =1)
— f(Cxw)w(o) —1)
= f(¢F =)

If, in addition, o € Gk, then k(o) € 1+ p"Z,. Hence, o(f(( — 1)) = f({—1)

n?

for any o € Gk, , so we are done. O

n)

Fix a crystalline representation V of Gg,. We write r(V') for the slope of ¢
on D(V). We again assume that the eigenvalues of ¢ on D(V) are not integral
powers of p. On abusing notation, we write ¢ for the map ¢ ® ¢ on Z @ D(V).
For k € Z, we write V(k¥) for the representation of V twisted by x*. Then,
D(V (k%)) = t;*D(V) where t, = Qt since Gg, acts on t, via r by [Zha04b,
Section 2].

Lemma B.1.4. The de Rham filtrations satisfy D*(V (k%)) = t-7/D* (V).
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Proof. By definitions, we have

D'(V(s)) = (t/D(V))Nt'Bl;
= t7(DV)NEHYBL)
= t7(D(V) Nt BL;) (since Q is a p-adic unit)
= 9D (V).
Hence we are done. O

Let B be a Banach p-adic space. For r € R>q, D,.(Q,, B) denotes the set of
tempered B-valued distributions of order 7 (i.e. of order O(log,,)) on the locally
analytic functions with compact support in Q,. It is equipped with an action
¢p, which is defined by [ fep(u) = [ f(px)p. Similarly, if A is a compact open
subset of Q,, D, (A, B) denotes the set of tempered distributions of order r on
A with values in B.

We define D,.(Q,, E®D(V))¥ to be the subset of D,.(Q,, E@D(V')) consisting
of all the distributions p satisfying:

o ( /@ p fu) - /@ SWio)n o € G,

Remark B.1.5. Let p € D,.(Zp, 2@ D(V)). Then, u € D, (Z,,Z @ D(V))¥ iff
its Amice transform A, (X) = fzp(l + X)%u is in Z[[X]]Y @D(V) (see [Zha04b,
Proposition 2.4(i)]).

We define D,(2),Z @ D(V)) to be limD, (2X,Z® D(V(x*))) where Tw

P =
Tw
is the twist map given by p +— (—tx)~tu. It is well-defined by [ZhaOda,
Lemma 3.6]. We define ﬁr((@p, E®D(V)) similarly. By [Zha04b, Theorems 3.3

and 3.6], the generalised Perrin-Riou exponential is given by:

Theorem B.1.6. Let h be a positive integer such that D~"(V) = D(V). Then,
there is a map

— _ _ Goo
Eh,‘/ : DT (va =2Q D(v))g&m@g&—l,w - Hl (K007 Dr—i—r(V)-‘rh (Z; ) D(V)))

such that for k >1—h

/Z 2" B (1)

. <(1 —p) (1 - w)

P

(k+h—1)lexp,
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where € is as defined in [Col98, Section V.1] and exp,, denotes the exponential
map for the p-adic representation V (kF) as defined in [BK90).

B.2 Distributions on Z;
Let 1 € Dy (Zy, E@D(V))¥, then p € Dp(Z), 2@ D(V))? iff

> AL+ X)=1)=0

¢cr=1
where A, is the Amice transform as defined in Remark B.1.5. On the space of
power series satisfying this condition, D = (14+X) % acts bijectively. Moreover,

for such a p,
DA G —1) = [ e () i (B.1)
Zy p

see e.g. [Col98, Section I.5].
Lemma B.2.1. Any p € D.(ZS, 2@ D(V))¥ can be lifted to
i € D (Qp, E®D(V))PE=" Y.

Moreover, the image of such a lift under Ey v is independent of the choice of

the lift.

Proof. [Col98, Lemma IX.2.8 and Remark IX.2.6(iii)] and [Zha04b, Lemma 3.5].
O

Given any p € D.(Z),E® D(V))?, we abuse notation and write Ep, v (1) =
Ey, v (1) where [i is a lift of 44 given by Lemma B.2.1. The fact that ppQe () = 1

/p = ( / f(px)ﬁ) (B.2)

for any f and A C Q. It allows us to compute some special values of .

implies that

Lemma B.2.2. pr a* = (1—pFe)~t (DFA,(0)).

Proof. Since fi restricted to Z, equals , (B.1) implies that

/

Hence, by applying (B.2) to the decomposition

/xkﬂ:/ xkﬁ+/ z* 7,
z PZyp z

X
P

aFie = /X a*ue = D A,,(0).

X
D ZP

¥
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we have

/ o =phe (/
Z, z

so we are done. O

xkﬁ> + D" A,,(0),

P

Lemma B.2.3.
/Z (p )af i = 2:10“c C (DAL (G — 1)) + ™ (1 = pPo) T (D" AL(0)).

Proof. Since Zp = Z; UpZ; U---U p”le; Up"Zy, we have

n—1
= 3 [ G) e [ ()
i—0 iZX p Py p
7 Z z n n -~
= Z . / <n_i>fﬂ’“u +p"e / a
-0 p 7

P

where the last equality follows from repeated applications of (B.2). Hence the
result by (B.1) and Lemma B.2.2. O

B.3 Special values of the Perrin-Riou exponen-
tial

With the notation above, we define

It is then clear that

Moreover, we have:
Lemma B.3.1. We have 7 € Z[[X]]¥.

Proof. Let o € Gg, and ¢ a pth root of unity. By [Zha04b, (1.13)], n € E[[X]]¥,
so on(X) = n((1 + X)¥) —1). If we replace X by (1 + X) — 1, we have

a(n(¢(1+X) — 1)) (om)(¢7(1+X) — 1)
n((¢7(1+ X)) —1)

= ("1 + X)) —1).
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Hence, on summing over (? = 1, we have

o[ donCa+X)-1)] = > omC1+X)-1)
¢r=1 ¢cr=1
= Z n(¢*9) (1 + X)) —1)
=
= D0+ X)P —1) (as r(o) € Z).
=

Hence, we have

> n(C(l+X) —1) € E[[X])".

¢r=1

But we already know that n(X) € Z[[X]]¥, so we are done. O

Let £ € D(V), then 7(X) ®¢ defines an element pe € Do(Z,, 2 D(V)) with
a0~ [ 1+

By Lemma B.3.1 and Remark B.1.5, e € Do(Z,;, E®D(V))¥. On applying the

Perrin-Riou exponential, we have:

Proposition B.3.2. With the notation above, we have forn > 1 andk >1—h
[ ol Baue) = (b= Dt (0.40)
1+p"Zp

where vy, 1 (€) is defined by
]% (Z D Gt~ ) ® 6+ (11— ) (D) © @))
i=0

with &, = &t7F.

Proof. The result follows from combining Theorem B.1.6 with Lemmas B.2.2,

B.2.3 and the fact that ¢(t) = pt. O
Our assumption on the eigenvalues of ¢ implies that there is an isomorphism
H' (Koo, Dr (2, V)9 = Di(Go) @ Hy, (F, V)

[T (,/ fy )
14+p"Z,
where H} (F,V) := lim H'(K,,,V) and D,(G) = D, (G, Q,) (see e.g. [Col98,

cor

Proposition 2]). Under this identification, we have

En,v (ke) € Dpir(v)(Goo) ® Hiy, (F, V).
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Write Twy, : Hi, (F,V) — Hi, (F,V (k")) for the twist map. Recall that
Twi(p) = (—tx) "% p, so Proposition B.3.2 implies that if n > 1, the nth com-
ponent of Twi(Ep v (1)) is given by

(k+h — 1) expy (1n.x(£)) (B.3)

where exp;, = exp,, , now denotes the exponential map
K, @ D(V (k")) — HY (K, V(k")).

We have suppressed the subscript n for simplicity, as it should not cause confu-
sions.

Recall that G = G x I where I' = Z,,. We fix a topological generator vy
of I', then D, (G ) can be identified with the set of power series in v — 1 over
Qy[G1] which are O(log,,).

We now assume that V' is a M-representation of Gg, where M is a finite

extension of Q,. Then, as in Section 2.2, we have a pairing
<, > Dy (Goo) @ Hiy (F, V) X Dy (Goo)®Hy, (F, V(1)) = Dinn(Goo) @ M
for all m,n € R>( and we can define the following.
Definition B.3.3. For a fized £ € D(V), we define a map
L:Z THi, (F. V(1) = Dewyn(Goo)
z — <Epv(ue)z>.

The same calculation as that in Section 2.2.1 shows that for n > 1

(ka E?(Z))” = (h + k — 1)’ Z [expk('ymk(g)”), z—k,n]na
oceGy,
= (h+k=DID mr€)70, D expi(zZy,,)0
ceGy oceG,

where z_j, , denotes the image of z under
Hi, (F, V(1)) = Hi, (F, V(1) (57%) = H (K, V*(1)(57%))
and Twy, acts on D, (v)11,(Goo) by 0 — k(0)*0 for 0 € Go.
Let 8 be a character on G, which does not factor through G,_;. Since
D‘kﬁ“’i%(cpnﬂ —1) € K,,—; by Lemma B.1.3, we have

0 ( > vn,k@)“a) = pi > DR (G — 1)70(0) @ 97" (&)

O'EGn UEGn



APPENDIX B. COLEMAN MAPS OVER LUBIN-TATE EXTENSIONS 92

Hence, as in Section 2.2.1, we have for k > 1—h

1
mﬁke(ﬁ}g(z))

- pi > DT (G~ 1)70(0) © 0T (E), D expi(2%y )00

oeGy, oeG, n
(B.4)

B.4 Construction of the +-Coleman maps

From now on, we fix a modular form f as in Section 1.3.5 with a, = 0 and
e(p) = 1 (the latter is solely for simplicity) such that the eigenvalues of ¢ are
not integral powers of p. Let V = V;(1). In particular, r(V) = (k—1)/2 -1 .
On taking h = 1 in Theorem B.1.6 and writing £ for L}g, we have

Im(Le) C Dig—1)/2(Goo) @ £ VE € D(V).

Let u = k(7), we modify the +-logarithms of Pollack to define

k—2 oo ;
Dy, (u™77)
+ . 2n Y
Ing,k = Hip ,
j=0n=1
_ e Pop_1(u7)
o = T[IT 27

I
-

0n

J

We can now give a generalisation of Proposition 2.4.2:

Lemma B.4.1. Let £t = p(w) and € = w where 0 # w € DO(V), then
1og§k |Lex(2z) for all z € HY, (F,V*(1)).

Proof. We have ¢?"(w) € D°(V(x")) for all integers n and 0 < r < k — 2.
Therefore, by (B.4), we have

K'0(Ler (z)) = 0 if nis odd,

K'0(Le-(z)) = 0 if niseven

where 0 is a character of G,, which does not factor through G,_;1. Hence, the

zeros of log;tk are also zeros of L¢+(z), so we are done. O

In particular, since L¢x(2z) € D(x_1)/2)(Goo) ® E, we have Le+ (z)/logik =
O(1). Hence, we have:
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Definition B.4.2. The plus and minus Coleman maps are defined to be

Col* : Hi (K, V*(1)) — Dy(Ge)®E

zZ Efi(z)/logik.

B.5 Kernel

For any positive integer n, we write m, = n® " ((y» — 1). Then, ¢ (7,) = 0

where ¢®) = go---0g. Moreover, g(m,) = 7,1 and K,, = K(m,). We from
—

n
now on assume that g is a good lift of Frobenius as explained in Appendix A.

Fix a lattice T in V; which is stable under Gg. Write
T=T1) CV =Ve(1).

To describe the kernel of Coli, we assume p > k — 1. In this setting, all the
results in Section 3.1 carry through.

Let z € H}, (K, T*(1)). By Proposition 3.3.1, z € ker(Col®) iff there exists
0 <m < k — 2, such that z_,, , is in the annihilator of the E-vector space

generated by {exp,, (Vnm(¥)7) : 0 € G,,} for all n > 0. We take m = 0 below.

Proposition B.5.1. The vector subspace over E of H} (K, V(K)) generated by
the set {exp(vn,0(€¥)7) : 0 € G,,}, is equal to

{z e H}(Kn, V) :cory mi1® € H}(Km, V)¥m € S,jf} .

Proof. Recall that by the proof of Lemma B.1.3, we have og(¢—1) = g(¢*(?) —1)
for any g € Z[[X]]¥, 0 € Gg, and ¢ a p power root of unity. Therefore, for n > 1
> 9(CGn —1) = Tryyn19(Gn —1).

¢r=1
If n =1, then
S 9(C — 1) = 9(0) + Trijo 9(¢y — 1).

(r=1
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Hence, under the notation of Appendix A, we have

P rno(E) = Z 77" (Gpni — 1) @ ™€) +71(0) @ (1 — )71 (€)

- 7 (Gmi — 1) —}3 S 0 T (G — 1) | @66

i=0 ¢r=1

| i 1 -
= 2 i @) - T el (-9 (),

-
Il
=]

Recall that ¢ = —p*~3 on D(V), so we have

(1—p) ' = (1+ ).

1+ph=3

In particular, —ﬁ ®EF 4+ (1 — )7 1(€F) ¢ DO(V). Moreover, ¢"(w) € D(V)

iff 7 is even, hence {7,,,0(¢*)7} generates

K+ > K9 @EaDV)/D(V)

iesE
by Corollary A.1.3. By translating the proof of Lemma 3.2.3, the result follows.
O

We write H}c (K, V)* for the vector space described in the proposition and
define H}(KmT)i = H}(Kn,T) N H}(Kn, V)*. Then,

Hi(K,,T)* = {z € H}(K,,T) : corpjmi12 € Hf (K, T))Vm € St}
and ker(Col®) is given by
Hiy o (T*(1)) == lim HL (K, T*(1))

where H1 (K, T*(1)) is defined to be the annihilator of H}c (K,,T)* under the
pairing

HYK,,T*(1)) x HY(K,,T) — Op.

Finally, we state a few possible further generalisations which proofs we omit.
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Remark B.5.2. A generalisation of Proposition 3.4.1 can be proved straight-
forwardly.

Remark B.5.3. The images of Col® can be described in the same way as in

Chapter 4.

Remark B.5.4. The Coleman maps can also be extended to relative Lubin-Tate

groups generalising those defined for elliptic curves in [Kim07].

A detailed discussion about relative Lubin-Tate groups can be found in

[Lei09al.

B.6 Selmer groups

We now briefly discuss how the kernels obtained above can be used to define
+-Selmer groups for number fields other than Q.

Let F be a number field with [F' : Q] = d. We assume that p splits completely
in F. Let p1,...,pq be the primes of F' above p and Fi,/F a Zy,-extension such
that p; is totally ramified in Fi, for all 7. We write F}, for the nth layer, i.e. the
p"-subextension.

Note that Fy, is isomorphic to Q, for ¢ = 1,...,d. By [IP06, Section 4.2],
Foo p./Fp, is contained in a Lubin-Tate extension for some uniformiser 7 of Q,
such that 7 € p(1 + pZ,). Therefore, we can define Col* for the corresponding

Lubin-Tate extension and they can be restricted to
lim B (Fyp,, (1)),
since we have an isomorphism
H'(Fpp,, T*(1) = H' (K., T* (1),

which can be proved as in the proof of Lemma 6.2.1. It is then easy to check
that the description of the kernels generalise directly, as discussed in Section 6.4.

For each n > 0, we can define as in [IP06]

N B H' (Foy,, V/T)
Selp (f/F’ﬂ) - ker (Selp(f/F) - ];[ H}(Fn,Piva)i @ QP/ZP)

and Sel,; (f/Fuo) = lim Sel (f/Fy).
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Unfortunately, unlike the cyclotomic case, Sel]f( f/Fs) is not A-cotorsion in
general. However, they do satisfy a control theorem (c.f. [Kob03, Theorem 9.3])
and their coranks can be used to describe those of Sel,(f/F,) (c.f. [IPO06,
Proposition 7.1]). Since the proofs for these results given in [IP06, Kob03] are
purely algebraic and do not involve properties of elliptic curves, they generalise

to general f with no difficulties.
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