Supplementary material for the paper
Parameter estimation and determinability analysis
applied to Drosophila gap gene circuits

M. Ashyraliyevy J. Jaeger and J. G. Blom

1 Technical aspects

Here, we outline some general remarks one should be aware of to apply the methodology in
practice.

1. If the model is given by a system of Partial Differential Equations (PDEs), then
by applying a spatial discretization, it can be reduced to the system of Ordinary
Differential Equations (ODEs) (1)Y). However, in such a case one has to be
careful with the choice of the grid size of the spatial discretization. On the one
hand, the grid should be fine enough, so that the numerical errors introduced
by spatial discretization are negligible in comparison with the level of noise in
the data. On the other hand, requiring an extremely fine grid would increase
the size of the system (1). The latter may be crucial in terms of computational
complexity.

2. When the model includes algebraic equations, the systems of ODEs (1) and
(6) change to Differential Algebraic Equations (DAEs). Since we use an implicit
solver for the time integration, the method we have described is readily applicable
for that type of models.

3. Given f and yy in (1), the partial derivatives %, %, %‘g‘; (¢=1,...,m) in (6)
can be, in principle, found analytically. However, for large scale problems when f
has a complicated nonlinear form, this can be a tedious work to do. In such cases,
these derivative functions can be generated automatically by using a symbolic
mathematics package, like Maple [1] or Mathematica (Wolfram Research, Inc).

4. Numerically solving (6) has limitations for large scale problems due to compu-
tational costs. Another approach to approximate the matrix J(6) could be by
means of divided differences. The j-th column of J(#) is then given by
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where the vector 67 is obtained by a small perturbation (5@ in the j-th entry of
6. In this case, for one Levenberg-Marquardt (LM) step system (1) has to be nu-
merically integrated m + 1 times. With regard to the computational costs, when
f is non-linear, it is more expensive than the approach where the linear systems
of variational equations are solved. Another drawback of the divided difference
method is that the numerical approximations introduce additional errors.

5. For large scale problems computation on a single processor can become unfeasible
and one needs to use a parallel machine. Parallelization of the computational
work when (1) and (6) are solved numerically is only possible at the level of
the time step of the integrator. Therefore, it will be inefficient due to heavy
communication. The advantage of the divided difference approach is that in
this case (1) is solved for m + 1 different values of 6 independently of each
other. Therefore, parallelization of the computational work by divided difference
method is trivial and can be very efficient.

6. Variational equations (6) coupled with (1) result in a system consisting of m + 1
subsystems of the size n. The Jacobian of the coupled system has the following
form:
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The structure of the Jacobian reveals the one-way coupling of the system. Using
an implicit scheme we can exploit this specific coupling between (1) and (6) in an
efficient way. At each time step 7 integrating first (1) provides the solution vector

y. This requires the LU decomposition of Imfrg—;. Using this LU decomposition

the calculation of % from (6) reduces to a simple forward substitution and
backsubstitution.

2 Results of parameter estimation in the full search case

The mathematical model of pattern formation of gap genes in Drosophila melanogaster,
given by (17), includes 66 unknown parameters. These include the regulatory weight matrix
W of size 6 x 6 with the entries W) representing the regulation of gene a by gene b, six
maternal coefficients m, representing the regulatory effect of Bcd on gene a, six promoter
thresholds h,, six promoter strengths R,, six diffusion coefficients D,, and six decay rates
Ag-

In the full search case, all 66 parameters are estimated such that the model fits the given
data set. The search space for parameters is defined by the linear and nonlinear constraints
given by (19) and (20), respectively. Additionally, the linear constraints —10.0 < h, < 0.0
are used for promoter thresholds of gape genes hb, Kr, gt, and knz.

Starting with 80 different initial values for the parameter vector from [2], the least squares
estimation using the LM method yields 64 parameter sets having no significant patterning
defects for the expression of gap genes. In Figure 2.1 the model responses for all 64 parameter
sets (green lines) are compared to the data (red lines) at nine time points 7; (0 < i < 8)



when measurements were taken. The model responses for the obtained parameter sets have
the same quality and therefore, in our analyses, we have taken into account all of them.
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Figure 2.1: Comparison between data (red lines) and the patterns obtained by parameter
sets yielded from the LM search (green lines). Graphs show relative protein concentration
(with a range from 0 to 255 fluorescence units) plotted against position on the A-P axis
(the region of interest from 35% to 92% A-P position is scaled to [0, 1])

Scatter plots in Figures 2.2-2.3 show the range of the estimated parameter values. For



each individual parameter indicated on the horizontal axis, its estimated values (red circles)
are plotted along the vertical axis. Most of the parameters have a broad range of possible
values, meaning that they are not uniquely found. The only exceptions are some entries in
the regulatory weight matrix, such as Wgad, Wib whe wkr, ngtt , Wi, Wil and W
Note that for some of the regulatory weights all estimated values lie either on positive or
negative part of the plane irrespective of width of the range of possible values. So, based
only on estimated values, one can make qualitative conclusions (A1)-(A4) (see paper) about
the type of the regulation for corresponding weights, i.e activation or repression. Our results
are in good agreement with the results obtained in [2, 3, 4].

2.1 Confidence intervals of parameter estimates in the full search
case

We compute dependent and independent confidence intervals for each obtained parameter set
by (13) and (14), respectively. The sizes of the confidence intervals give the indication about
the determinability of corresponding parameters. Figure 2.4 shows the confidence intervals
for all regulatory weights and maternal coefficients in the gap gene model. Dependent
(green lines) and independent (red lines) confidence intervals are plotted along the vertical
axis for all 64 parameter sets. Small dependent confidence intervals in comparison with
corresponding independent confidence intervals indicate the presence of correlations between
parameters. In such case considering only dependent confidence intervals is not sufficient
and therefore we base our conclusions only on independent confidence intervals.

Notice the difference in the order of magnitude of the independent confidence intervals
for different parameters. It means that parameters qualitatively differ from each other in
terms of determinability. There is a set of eight regulatory weights which have relatively
small confidence intervals for all 64 parameter sets. It includes the regulatory weights W,{gT,
Wi whe WK wkni Wghtb, ngtt , and W;t"i. The remaining regulatory weights have
larger confidence intervals. Despite of it, for some regulatory weights, it is possible to
make qualitative conclusions about the type of the corresponding regulation. For instance,
independent confidence intervals for regulatory weight ngg " do not extend significantly to
the positive part of the plane. Therefore, one can make the conclusion that Kr does not
activate gt, i.e Kr represses gt or does not regulate it.

Based on the confidence intervals, we get the qualitative conclusions (B1)-(B4) for the
essential regulatory weights in the gap gene system. However, the obtained qualitative
conclusions are weaker than the conclusions made by considering only the values of parameter
estimates.

Finally, we note that promoter thresholds h, promoter strengths R, diffusion coefficients
D, and decay rates A\ for all genes have extremely large independent confidence intervals
(see Figure 2.5). So, all these parameters are nondeterminable.
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Figure 2.2: Scatter plots of regulatory weights W and maternal coefficients m (full search

case).
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Confidence intervals
Gt Kr Hb Cad

Kni

TI

02|
04|

T T -

-02 |
04 F

-02
04

0.4
0.2

-0.2
-0.4

;ﬁi‘i} i ﬂqﬁrf ]

0.4
0.2

0.2
0.4

0 10 20 30 40 50 60

10 20 30 40 50 60

Parameter sets

10 20 30 40 50 60
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Figure 2.5: Confidence intervals for parameters h, R, D and A (full search case).



2.2 Correlations between parameters in the full search case

By using formula (16), we find the correlation matrix for each parameter set. To detect
the most significant correlations between parameters present in all correlation matrices, we
calculate the averaged matrix, which we call the mean correlation matrix, whose entries are
mean values of corresponding correlation coefficients in the individual correlation matrices.
Figure 2.6 shows the mean correlation matrix. The obtained mean correlation matrix has a
block diagonal structure such that each block corresponds to a given gene and contains the
correlation coefficients between parameters which enter in the model equations for the same
gene.
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Figure 2.6: Mean correlation matrix (full search case).

A closer look at the most significant correlations in the blocks corresponding to gap genes
hb, Kr, gt, and kni (see panels (a,b,c,d) of Figure 6 in the paper) reveals that for these genes
the regulation by Cad, the regulation by Bcd, and auto-regulation are all strongly correlated
with their corresponding promoter threshold A, which may explain the poor determinability
for these regulations.



Note that the correlations corresponding to the most significant entries in the mean
correlation matrix (with absolute values greater than 0.5) are statistically present in all in-
dividual correlation matrices because corresponding standard deviations are relatively small
(less than 0.2).

Parameters entering in the model equations for cad are all correlated with each other
except D.qq which seems to be completely uncorrelated. Similar to it, parameters from
the model equations for tll are also correlated with each other though these correlations
somewhat weaker in comparison with correlations between parameters for cad. Correlations
and therefore nondeterminability of the parameters in the model equations for cad and tll
may stem from the fact that they are not regulated by gap genes [6].

Finally, we note that for all genes promoter strengths R, are strongly correlated with
the corresponding decay rates A, meaning that the change in the production is compensated
by the change in decay in the model. Strong correlations between them are likely to be the
reason for the nondeterminability of these parameters.

2.3 Results of parameter estimation with W/ =0

kni

Repression of kni by Hb is well-known. In order to show that this regulation is not necessarily
required for the gap gene model to fit the given dataset, we perform parameter estimation by
using LM method with W,?TZ = 0, fixed during the search. The obtained parameter set has
RM S = 9.24 and produces correct patterns. In Figure 2.7 the model response for obtained
parameter set (green lines) is compared to the data (red lines). Table 2.1 gives estimated
values for parameters.

cad hb Kr gt kns tl
Regulatory matrix
cad  -0.030960 -0.042535 -0.033565 -0.031222 -0.019038 -0.020498
hb 0.042596  0.017928  0.007505 -0.001396 -0.164417 -0.000023
Kr 0.050071  0.006310  0.0265645 -0.037528 -0.008158 -0.095337
gt 0.045165  0.013300 -0.082837  0.022023  0.009215 -0.044591
kna 0.048618  0.000000 -0.025891 -0.103259  0.056123 -0.097551
tl 0.026991  -0.044042 -0.071046 -0.022854  -0.095755  0.009204
Other parameters
0.004999  0.017453  0.029278  0.032057 -0.013666  0.014765
6.494384  -4.945290 -5.836957 -6.032681 -4.167530 -1.538291
14.514200 18.666910 17.012730 27.507000 14.958820 21.700990
0.300000  0.061481  0.300000  0.300000  0.300000  0.300000
ty1/2  20.000000 12.501420  9.243277  5.913411 10.398300 13.591250

O3

Table 2.1: Parameter values obtained by LM method for gap gene model with W}*. = 0.

kni

10



250

200
150
100

50

250
200
150

Relative Protein Concentration

100
50

LA

0 02 04 06 08 10 02 04 06 08 10 02 04 06 08 10 02 04 06 08 1

A-P Position

Figure 2.7: Comparison between data (red lines) and patterns obtained by parameter set
with W}**. = 0 (green lines) for the expression of gap genes Kr, Kni, gt, and hb at Ty (first
row), Ty (second row), and Ty (last row).

3 Results of parameter estimation in the case of fixed
promoter thresholds

In the gap gene model (17), we fix four promoter thresholds h for gap genes hb, Kr, gt,
and kni to the value —3.5, similar to the approach used in [2, 3, 4]. Then the remaining 62
parameters are estimated by using the LM method.

Similar to the full search case, parameters are estimated such that the model fits the
given data set and the search space for parameters is defined by the linear and nonlinear
constraints given by (19) and (20), respectively. Starting with the same 80 initial values for
the parameter vector as in the full search case, the least squares estimation using the LM
method yields 60 parameter sets having no significant patterning defects for the expression
of gap genes. In Figure 3.1 the model responses for all 60 parameter sets (green lines) are
compared to the data (red lines) at all time points when measurements were taken. Graphs
show gene concentrations (along y-axis) plotted against the position on the A-P axis.

The model responses for the obtained parameter sets have the same quality and therefore,
in our analyses, we take into account all of them. Note that qualitatively the patterns
obtained in the fixed case (Figure 3.1) are comparable to corresponding patterns produced
with parameter estimates in the full search case (see Figure 2.1).
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Figure 3.1: Comparison between data (red lines) and the patterns obtained by parameter
sets yielded from the LM search (green lines). Axes are as in Figure 2.1.

Scatter plots in Figures 3.2-3.3 show the range of the estimated parameters in the fixed
case. For each individual parameter indicated on the horizontal axis, its estimated values
(red circles) are plotted along the vertical axis.

In addition to eight regulatory weights which have small range of the values in the full
search case, there are nine regulatory weights having the same property in the fixed case,

12
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Figure 3.2: Scatter plots of regulatory weights W and maternal coefficients m (fixed case).

cad cad cad hb Kr Kr gt kni kni s
such as Wipe, Wi, Wk, Wi', Weea, Wier, Wieig, Weny, and WgTt. The remaining

parameters have a broad range of values.

3.1 Confidence intervals of parameter estimates in the case of fixed
promoter thresholds

We compute dependent and independent confidence intervals for each obtained parameter
set by (13) and (14), respectively. Figure 3.4 shows the confidence intervals for regula-
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Figure 3.3: Scatter plots of parameters h, R, D and t1/5 = In(2)/X (fixed case).

tory weights and maternal coefficients in the gap gene model. Dependent (green lines) and
independent (red lines) confidence intervals are plotted along the vertical axis for all 60 pa-
rameter sets. Similar to full search case, small dependent confidence intervals in comparison
with corresponding independent confidence intervals give us indication for presence of cor-
relations between parameters. Therefore, we consider only independent confidence intervals
in our assessment of the parameter determinability.

There is a quantitative improvement indicated by smaller confidence intervals for some
regulatory weights and maternal coeflicients in the fixed case in comparison with the results
obtained in the full search case. In addition to eight regulatory weights which have small
confidence intervals in the full search case, there are five regulatory weights, such as Wﬁgd,
W,%’ , WIC(“Td, W;fd, and chgf, having the same property in the fixed case. The remaining
weights have larger confidence intervals.

Based on the confidence intervals, we summarize the qualitative conclusions for the
essential regulatory weights in the gap gene system.

e Cad activates gap genes hb, Kr, gt, and kni. Note that independent confidence inter-
vals for this weights in all solutions entirely fall into positive part of the plane.

e Activation of hb, Kr, and gt by Bed is confirmed in some solutions. However, there
are also many solutions when the independent confidence intervals for these weights
include zero. Therefore, one can make only the qualitative conclusion that Bcd does

14



not repress hb, Kr, and gt. Note that it is weaker conclusion than predicting the
activation for these weights from Table 1 (paper).

e No conclusions can be made for regulation of kni by Bcd because the independent
confidence intervals significantly extend to negative part of the plane.

e Autoactivation for gap genes hb, Kr, and gt is confirmed. Independent confidence
intervals for these weights entirely fall into positive part of the plane with only a few
exceptions in each case.

e Autoactivation of kni is less confirmative. Model only predicts that kni does not
repress itself which is weaker conclusion than predicting the autoactivation for this
weight from Table 1 (paper).

e Tl does not regulate hb.

e Tl does not activate gap gene gt which is weaker conclusion than predicting repression
for this weight from Table 1 (paper).

e No conclusions can be made for regulation of Tll on Kr and kni.

e Mutually exclusive gap genes gt and Kr repress each other. Despite of the large sizes,
the independent confidence intervals for these weights entirely fall into negative part
of the plane in almost all parameter estimates.

e No conclusions can be made for regulation of Ab on kni and kni on hb because their
independent confidence intervals significantly extend to positive part of the plane;

The obtained qualitative conclusions have better agreement with the theory in comparison
with the conclusions (B1)-(B4). However, they are still weaker than the conclusions made
by considering only the values of parameter estimates.

We note that similar to full search case, promoter strengths R, diffusion coefficients D,
and decay rates )\ for all genes and promoter thresholds h for cad and tll have extremely
large independent confidence intervals (see Figure 3.5) meaning that all these parameters
are nondeterminable.

15
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3.2 Correlations between parameters in the case of fixed promoter
thresholds

By using formula (16), we find the correlation matrix for each parameter set in the fixed
case. To detect the most significant correlations between parameters present in all correla-
tion matrices, we calculate the mean correlation matrix shown in Figure 3.6. The obtained
mean correlation matrix has a block diagonal structure. However, there is also a number
of significant entries in off-diagonal blocks. In the absence of dominating correlations be-
tween regulatory parameters and thresholds h, we can now identify biologically significant
parameter correlations (see paper).

Similar to the full searcg case, the correlations corresponding to the most significant
entries in the mean correlation matrix (with absolute values greater than 0.5) are statistically
present in all individual correlation matrices because corresponding standard deviations are
relatively small (less than 0.2).

Cad Hb Kr Gt Kni TI
!1
Cad r10.8
0.6
Hb
r10.4
0.2
Kr
-0
Gt r4-0.2
- 4-0.4
Kni
F4-0.6
l -0.8
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Figure 3.6: Mean correlation matrix (fixed case).
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