
Supplementary material for the paperParameter estimation and determinability analysisapplied to Drosophila gap gene iruitsM. Ashyraliyev�, J. Jaeger and J. G. Blom
1 Tehnial aspetsHere, we outline some general remarks one should be aware of to apply the methodology inpratie.1. If the model is given by a system of Partial Di�erential Equations (PDEs), thenby applying a spatial disretization, it an be redued to the system of OrdinaryDi�erential Equations (ODEs) (1)1). However, in suh a ase one has to beareful with the hoie of the grid size of the spatial disretization. On the onehand, the grid should be �ne enough, so that the numerial errors introduedby spatial disretization are negligible in omparison with the level of noise inthe data. On the other hand, requiring an extremely �ne grid would inreasethe size of the system (1). The latter may be ruial in terms of omputationalomplexity.2. When the model inludes algebrai equations, the systems of ODEs (1) and(6) hange to Di�erential Algebrai Equations (DAEs). Sine we use an impliitsolver for the time integration, the method we have desribed is readily appliablefor that type of models.3. Given f and y0 in (1), the partial derivatives �f�y , �f��i , �y0��i (i = 1; : : : ;m) in (6)an be, in priniple, found analytially. However, for large sale problems when fhas a ompliated nonlinear form, this an be a tedious work to do. In suh ases,these derivative funtions an be generated automatially by using a symbolimathematis pakage, like Maple [1℄ or Mathematia (Wolfram Researh, In).4. Numerially solving (6) has limitations for large sale problems due to ompu-tational osts. Another approah to approximate the matrix J(�) ould be bymeans of divided di�erenes. The j-th olumn of J(�) is then given by�Y(�)��j � Y(~�j)�Y(�)Æ~�j ;�E-mail address: M.Ashyraliyev�wi.nl1) Throughout this �le we diretly refer to equations used in the main paper1



where the vetor ~�j is obtained by a small perturbation Æ~�j in the j-th entry of�. In this ase, for one Levenberg-Marquardt (LM) step system (1) has to be nu-merially integrated m+1 times. With regard to the omputational osts, whenf is non-linear, it is more expensive than the approah where the linear systemsof variational equations are solved. Another drawbak of the divided di�erenemethod is that the numerial approximations introdue additional errors.5. For large sale problems omputation on a single proessor an beome unfeasibleand one needs to use a parallel mahine. Parallelization of the omputationalwork when (1) and (6) are solved numerially is only possible at the level ofthe time step of the integrator. Therefore, it will be ineÆient due to heavyommuniation. The advantage of the divided di�erene approah is that inthis ase (1) is solved for m + 1 di�erent values of � independently of eahother. Therefore, parallelization of the omputational work by divided di�erenemethod is trivial and an be very eÆient.6. Variational equations (6) oupled with (1) result in a system onsisting of m+1subsystems of the size n. The Jaobian of the oupled system has the followingform: 0BBBB�
�f�y 0 : : : 0�2f��1�y + �2f�y2 �y��1 �f�y 0:: 0... 0 . . . 0�2f��m�y + �2f�y2 �y��m 0 ::0 �f�y

1CCCCA
The struture of the Jaobian reveals the one-way oupling of the system. Usingan impliit sheme we an exploit this spei� oupling between (1) and (6) in aneÆient way. At eah time step � integrating �rst (1) provides the solution vetory. This requires the LU deomposition of Im�� �f�y . Using this LU deompositionthe alulation of �y��i from (6) redues to a simple forward substitution andbaksubstitution.

2 Results of parameter estimation in the full searh aseThe mathematial model of pattern formation of gap genes in Drosophila melanogaster,given by (17), inludes 66 unknown parameters. These inlude the regulatory weight matrixW of size 6 � 6 with the entries W ba representing the regulation of gene a by gene b, sixmaternal oeÆients ma representing the regulatory e�et of Bd on gene a, six promoterthresholds ha, six promoter strengths Ra, six di�usion oeÆients Da, and six deay rates�a. In the full searh ase, all 66 parameters are estimated suh that the model �ts the givendata set. The searh spae for parameters is de�ned by the linear and nonlinear onstraintsgiven by (19) and (20), respetively. Additionally, the linear onstraints �10:0 � ha � 0:0are used for promoter thresholds of gape genes hb, Kr, gt, and kni.Starting with 80 di�erent initial values for the parameter vetor from [2℄, the least squaresestimation using the LM method yields 64 parameter sets having no signi�ant patterningdefets for the expression of gap genes. In Figure 2.1 the model responses for all 64 parametersets (green lines) are ompared to the data (red lines) at nine time points Ti (0 � i � 8)2



when measurements were taken. The model responses for the obtained parameter sets havethe same quality and therefore, in our analyses, we have taken into aount all of them.
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 0  0.2 0.4 0.6 0.8  1A-P PositionFigure 2.1: Comparison between data (red lines) and the patterns obtained by parametersets yielded from the LM searh (green lines). Graphs show relative protein onentration(with a range from 0 to 255 uoresene units) plotted against position on the A{P axis(the region of interest from 35% to 92% A{P position is saled to [0; 1℄)
Satter plots in Figures 2.2-2.3 show the range of the estimated parameter values. For3



eah individual parameter indiated on the horizontal axis, its estimated values (red irles)are plotted along the vertial axis. Most of the parameters have a broad range of possiblevalues, meaning that they are not uniquely found. The only exeptions are some entries inthe regulatory weight matrix, suh as W adkni , WhbKr, Whbgt , WKrhb , W gtgt , W knigt , W tllad, and W tllhb .Note that for some of the regulatory weights all estimated values lie either on positive ornegative part of the plane irrespetive of width of the range of possible values. So, basedonly on estimated values, one an make qualitative onlusions (A1)-(A4) (see paper) aboutthe type of the regulation for orresponding weights, i.e ativation or repression. Our resultsare in good agreement with the results obtained in [2, 3, 4℄.2.1 Con�dene intervals of parameter estimates in the full searhaseWe ompute dependent and independent on�dene intervals for eah obtained parameter setby (13) and (14), respetively. The sizes of the on�dene intervals give the indiation aboutthe determinability of orresponding parameters. Figure 2.4 shows the on�dene intervalsfor all regulatory weights and maternal oeÆients in the gap gene model. Dependent(green lines) and independent (red lines) on�dene intervals are plotted along the vertialaxis for all 64 parameter sets. Small dependent on�dene intervals in omparison withorresponding independent on�dene intervals indiate the presene of orrelations betweenparameters. In suh ase onsidering only dependent on�dene intervals is not suÆientand therefore we base our onlusions only on independent on�dene intervals.Notie the di�erene in the order of magnitude of the independent on�dene intervalsfor di�erent parameters. It means that parameters qualitatively di�er from eah other interms of determinability. There is a set of eight regulatory weights whih have relativelysmall on�dene intervals for all 64 parameter sets. It inludes the regulatory weights WKrhb ,W tllhb , WhbKr, WKrKr , W kniKr , Whbgt , W gtgt , and W knigt . The remaining regulatory weights havelarger on�dene intervals. Despite of it, for some regulatory weights, it is possible tomake qualitative onlusions about the type of the orresponding regulation. For instane,independent on�dene intervals for regulatory weight WKrgt do not extend signi�antly tothe positive part of the plane. Therefore, one an make the onlusion that Kr does notativate gt, i.e Kr represses gt or does not regulate it.Based on the on�dene intervals, we get the qualitative onlusions (B1)-(B4) for theessential regulatory weights in the gap gene system. However, the obtained qualitativeonlusions are weaker than the onlusions made by onsidering only the values of parameterestimates.Finally, we note that promoter thresholds h, promoter strengths R, di�usion oeÆientsD, and deay rates � for all genes have extremely large independent on�dene intervals(see Figure 2.5). So, all these parameters are nondeterminable.
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 0  10  20  30  40  50  60Parameter setsFigure 2.4: Con�dene intervals for regulatory weights and maternal oeÆients (full searh ase).
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2.2 Correlations between parameters in the full searh aseBy using formula (16), we �nd the orrelation matrix for eah parameter set. To detetthe most signi�ant orrelations between parameters present in all orrelation matries, wealulate the averaged matrix, whih we all the mean orrelation matrix, whose entries aremean values of orresponding orrelation oeÆients in the individual orrelation matries.Figure 2.6 shows the mean orrelation matrix. The obtained mean orrelation matrix has ablok diagonal struture suh that eah blok orresponds to a given gene and ontains theorrelation oeÆients between parameters whih enter in the model equations for the samegene.
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A loser look at the most signi�ant orrelations in the bloks orresponding to gap geneshb, Kr, gt, and kni (see panels (a,b,,d) of Figure 6 in the paper) reveals that for these genesthe regulation by Cad, the regulation by Bd, and auto-regulation are all strongly orrelatedwith their orresponding promoter threshold h, whih may explain the poor determinabilityfor these regulations.
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Note that the orrelations orresponding to the most signi�ant entries in the meanorrelation matrix (with absolute values greater than 0:5) are statistially present in all in-dividual orrelation matries beause orresponding standard deviations are relatively small(less than 0:2).Parameters entering in the model equations for ad are all orrelated with eah otherexept Dad whih seems to be ompletely unorrelated. Similar to it, parameters fromthe model equations for tll are also orrelated with eah other though these orrelationssomewhat weaker in omparison with orrelations between parameters for ad. Correlationsand therefore nondeterminability of the parameters in the model equations for ad and tllmay stem from the fat that they are not regulated by gap genes [6℄.Finally, we note that for all genes promoter strengths Ra are strongly orrelated withthe orresponding deay rates �a meaning that the hange in the prodution is ompensatedby the hange in deay in the model. Strong orrelations between them are likely to be thereason for the nondeterminability of these parameters.2.3 Results of parameter estimation with W hbkni = 0Repression of kni by Hb is well-known. In order to show that this regulation is not neessarilyrequired for the gap gene model to �t the given dataset, we perform parameter estimation byusing LM method with Whbkni = 0, �xed during the searh. The obtained parameter set hasRMS = 9:24 and produes orret patterns. In Figure 2.7 the model response for obtainedparameter set (green lines) is ompared to the data (red lines). Table 2.1 gives estimatedvalues for parameters.ad hb Kr gt kni tllRegulatory matrixad -0.030960 -0.042535 -0.033565 -0.031222 -0.019038 -0.020498hb 0.042596 0.017928 0.007505 -0.001396 -0.164417 -0.000023Kr 0.050071 0.006310 0.026545 -0.037528 -0.008158 -0.095337gt 0.045165 0.013300 -0.082837 0.022023 0.009215 -0.044591kni 0.048618 0.000000 -0.025891 -0.103259 0.056123 -0.097551tll 0.026991 -0.044042 -0.071046 -0.022854 -0.095755 0.009204Other parametersm 0.004999 0.017453 0.029278 0.032057 -0.013666 0.014765h 6.494384 -4.945290 -5.836957 -6.032681 -4.167530 -1.538291R 14.514200 18.666910 17.012730 27.507000 14.958820 21.700990D 0.300000 0.061481 0.300000 0.300000 0.300000 0.300000t1=2 20.000000 12.501420 9.243277 5.913411 10.398300 13.591250Table 2.1: Parameter values obtained by LM method for gap gene model with Whbkni = 0.
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 0  0.2  0.4  0.6  0.8  1A-P PositionFigure 2.7: Comparison between data (red lines) and patterns obtained by parameter setwith Whbkni = 0 (green lines) for the expression of gap genes Kr, Kni, gt, and hb at T1 (�rstrow), T4 (seond row), and T8 (last row).
3 Results of parameter estimation in the ase of �xedpromoter thresholdsIn the gap gene model (17), we �x four promoter thresholds h for gap genes hb, Kr, gt,and kni to the value �3:5, similar to the approah used in [2, 3, 4℄. Then the remaining 62parameters are estimated by using the LM method.Similar to the full searh ase, parameters are estimated suh that the model �ts thegiven data set and the searh spae for parameters is de�ned by the linear and nonlinearonstraints given by (19) and (20), respetively. Starting with the same 80 initial values forthe parameter vetor as in the full searh ase, the least squares estimation using the LMmethod yields 60 parameter sets having no signi�ant patterning defets for the expressionof gap genes. In Figure 3.1 the model responses for all 60 parameter sets (green lines) areompared to the data (red lines) at all time points when measurements were taken. Graphsshow gene onentrations (along y-axis) plotted against the position on the A{P axis.The model responses for the obtained parameter sets have the same quality and therefore,in our analyses, we take into aount all of them. Note that qualitatively the patternsobtained in the �xed ase (Figure 3.1) are omparable to orresponding patterns produedwith parameter estimates in the full searh ase (see Figure 2.1).
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 0  0.2 0.4 0.6 0.8  1A-P PositionFigure 3.1: Comparison between data (red lines) and the patterns obtained by parametersets yielded from the LM searh (green lines). Axes are as in Figure 2.1.
Satter plots in Figures 3.2-3.3 show the range of the estimated parameters in the �xedase. For eah individual parameter indiated on the horizontal axis, its estimated values(red irles) are plotted along the vertial axis.In addition to eight regulatory weights whih have small range of the values in the fullsearh ase, there are nine regulatory weights having the same property in the �xed ase,
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suh as W adhb , W adKr , W adgt , Whbhb , WKrad , WKrKr , W gtad, W kniad , and W kniKr . The remainingparameters have a broad range of values.3.1 Con�dene intervals of parameter estimates in the ase of �xedpromoter thresholdsWe ompute dependent and independent on�dene intervals for eah obtained parameterset by (13) and (14), respetively. Figure 3.4 shows the on�dene intervals for regula-
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tory weights and maternal oeÆients in the gap gene model. Dependent (green lines) andindependent (red lines) on�dene intervals are plotted along the vertial axis for all 60 pa-rameter sets. Similar to full searh ase, small dependent on�dene intervals in omparisonwith orresponding independent on�dene intervals give us indiation for presene of or-relations between parameters. Therefore, we onsider only independent on�dene intervalsin our assessment of the parameter determinability.There is a quantitative improvement indiated by smaller on�dene intervals for someregulatory weights and maternal oeÆients in the �xed ase in omparison with the resultsobtained in the full searh ase. In addition to eight regulatory weights whih have smallon�dene intervals in the full searh ase, there are �ve regulatory weights, suh as W adhb ,Whbhb , W adKr , W adgt , and W adkni , having the same property in the �xed ase. The remainingweights have larger on�dene intervals.Based on the on�dene intervals, we summarize the qualitative onlusions for theessential regulatory weights in the gap gene system.� Cad ativates gap genes hb, Kr, gt, and kni. Note that independent on�dene inter-vals for this weights in all solutions entirely fall into positive part of the plane.� Ativation of hb, Kr, and gt by Bd is on�rmed in some solutions. However, thereare also many solutions when the independent on�dene intervals for these weightsinlude zero. Therefore, one an make only the qualitative onlusion that Bd does14



not repress hb, Kr, and gt. Note that it is weaker onlusion than prediting theativation for these weights from Table 1 (paper).� No onlusions an be made for regulation of kni by Bd beause the independenton�dene intervals signi�antly extend to negative part of the plane.� Autoativation for gap genes hb, Kr, and gt is on�rmed. Independent on�deneintervals for these weights entirely fall into positive part of the plane with only a fewexeptions in eah ase.� Autoativation of kni is less on�rmative. Model only predits that kni does notrepress itself whih is weaker onlusion than prediting the autoativation for thisweight from Table 1 (paper).� Tll does not regulate hb.� Tll does not ativate gap gene gt whih is weaker onlusion than prediting repressionfor this weight from Table 1 (paper).� No onlusions an be made for regulation of Tll on Kr and kni.� Mutually exlusive gap genes gt and Kr repress eah other. Despite of the large sizes,the independent on�dene intervals for these weights entirely fall into negative partof the plane in almost all parameter estimates.� No onlusions an be made for regulation of hb on kni and kni on hb beause theirindependent on�dene intervals signi�antly extend to positive part of the plane;The obtained qualitative onlusions have better agreement with the theory in omparisonwith the onlusions (B1)-(B4). However, they are still weaker than the onlusions madeby onsidering only the values of parameter estimates.We note that similar to full searh ase, promoter strengths R, di�usion oeÆients D,and deay rates � for all genes and promoter thresholds h for ad and tll have extremelylarge independent on�dene intervals (see Figure 3.5) meaning that all these parametersare nondeterminable.
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3.2 Correlations between parameters in the ase of �xed promoterthresholdsBy using formula (16), we �nd the orrelation matrix for eah parameter set in the �xedase. To detet the most signi�ant orrelations between parameters present in all orrela-tion matries, we alulate the mean orrelation matrix shown in Figure 3.6. The obtainedmean orrelation matrix has a blok diagonal struture. However, there is also a numberof signi�ant entries in o�-diagonal bloks. In the absene of dominating orrelations be-tween regulatory parameters and thresholds ha we an now identify biologially signi�antparameter orrelations (see paper).Similar to the full searg ase, the orrelations orresponding to the most signi�antentries in the mean orrelation matrix (with absolute values greater than 0:5) are statistiallypresent in all individual orrelation matries beause orresponding standard deviations arerelatively small (less than 0:2).
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