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SUMMARY

In this thesis, we deal with the application of transmission terahertz
spectroscopy as an analysis tool for the study of molecular solids, in par-
ticular organic crystals of pharmaceutical interest. Most of the work has
been performed using two computational packages aimed at the inter-
pretation of the spectra, one based on molecular forcefields (),
the other on solid state density functional theory ().

We compare low temperature determinations of several molecular or-
ganic crystals to calculated spectra, and attempt to assign calculatedmodes
of vibrations to absorption peaks, based on the similarity in frequency
between the measured and calculated peaks.

One of the main aims of this work is to establish the limits of our
forcefield approach, which is based on the approximation that the in-
tramolecular degrees of freedom can be neglected. We analyse the nor-
mal modes of vibration calculated with , evaluating the amount
of rigid molecule rotational and translational contribution to each ei-
genvector as a function of frequency, in order to validate our forcefield
approach. We also compare the two sets of eigenvectors from the -
 and  calculations to assess the similarity between the two ap-
proaches.

We perform the same eigenvectors analysis on several hydrate systems
in order to understand the role of water in the lattice dynamics of crys-
talline hydrates. We attempt a classification of the eigenvectors based on
the strength of the forces involved in themolecular vibrations and based
on the amount of the water contribution to each normal mode.

A set of isostructural crystals is analysed in order to understand the
effect that small variations (in the molecular formula and in the unit cell
arrangement) have on the measured and calculated absorption spectra
of a crystal.

Finally, we discuss the use and development of computational meth-
ods that allow us to have a more realistic description of the molecular
electrostatic in .
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1
INTRODUCTION

T  with a recently emerging analysismethod, tera-
hertz spectroscopy, and its use as a tool applied to the study of
polymorphic molecular solids, in particular organic crystals of

pharmaceutical interest.
In this chapter we introduce the concept of polymorphism and its im-

portance for pharmaceutical science, with a practical example. We will
therefore briefly consider the techniques and tools used for polymorph
analysis and characterisation.

1.1 crystal forms: definitions

Acrystal is a solidmaterial where atoms are arranged in a regular pattern
translationally repeated in all three spatial dimensions. e packing ar-
rangement ofmolecules is the result of the balancing of the intermolecu-
lar forces to form an aggregate in equilibrium. Crystal polymorphism
(from the greek πολύς =many and μορφή = forms) is defined as the abil-
ity of a compound to exist in more than one crystal species.

Polymorphism is a widespread feature in nature. Allotropism, ele-
mental polymorphism, is encountered in asmany as 55 elements [1] and
the difference in behaviour between two forms can be as striking as for
two of the allotropes of carbon, graphite and diamond. For a small mo-
lecule like water (ice in the crystal form) 15 different polymorphs have
been discovered up to now, stable under different conditions of temper-
ature and pressure [2].

Solvates, or solvatomorphic forms are defined as crystal systems of
a molecule in which the solvent of crystallisation is stoichiometrically
included in the crystal lattice. In the common case where water is the
solvent, solvates are called hydrates.

Solvates are not equivalent to polymorphs, as their elemental compos-
ition is not the same as the corresponding neat forms. e presence of

1



2 introduction

the solvent inside a crystal can greatly affect the physical properties of a
crystal: this is discussed in the later sections.

e existence of more than one crystal form of a molecule is by no
means a rare occurrence in organic chemistry: depending on the study
[3, 4], it is estimated that 30% to 50% of small organicmolecules display
polymorphism. ese numbers are even higher considering solvato-
morphic forms, and they range from 56% to 87%.

In the following sectionswewill briefly discuss polymorphism in small
organic molecular crystals of pharmaceutical interest: about 80% of
pharmaceuticalmolecules [5–8] have one ormore additional crystal form.

1.2 polymorphism in the pharmaceutical industry

Most of the drug products are available as oral dosage forms, under
the form of a tablet. Even when the active pharmaceutical ingredient
() in the final formulation is not a solid, the active molecule itself
is usually obtained and isolated as a solid by crystallisation during its
preparation[9]. e properties of the solid form of the drug (and of the
other ingredients in the formulation, e.g. the excipient) are therefore
very important at all stages of life of a drug: its synthesis, its manufac-
turing, its shelf life.

As we already mentioned, there may be significant variations in the
physical properties between solid forms of a molecule (see Table 1.1);
these differences are very important, as they can have profound implic-
ations in the phases of processing [10, 11], formulation [12], and in the
final properties (such as bioavailability) of the marketed drug [13].

It is necessary for the product to be obtained consistently with the
same properties, and the manufacturer must be sure that the interaction
with the potential solvating agents are known at all stages of preparation.
It is also crucial for the consumer that a drug does not convert into an-
other form during its shelf time, as doing so might change its properties:
an example is the formation of a hydrate form of a drug conserved in a
humid atmosphere (such as a bathroom cabinet).

e regulation for the marketing of a drug is therefore very strict re-
garding polymorphism [14], and there is a lot of time and resources
spent by pharmaceutical companies researching the possibility of poly-
morphism and the stability and interconversion of each solid form of a
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Packing properties

Molar volume and density
Refractive index
Conductivity: electrical and thermal
Hygroscopicity

ermodynamic properties

Melting and sublimation temperatures
Internal or structural energy
Enthalpy
Heat capacity
Entropy
Free Energy and Chemical Potential
ermodynamic Activity
Vapour Pressure
Solubility

Spectroscopic properties
Electronic state transitions
Vibrational state transitions
Nuclear spin state transitions

Kinetic properties
Dissolution rate
Rates of solid-state reactions
Stability

Surface properties Surface free energy
Interfacial tensions

Mechanical properties

Crystal habit
Hardness
Tensile strength
Compactibility, tabletting
Handling, flow, and blending

Table 1.1. Some of the physical properties that may display a significant vari-
ation in different crystal forms of a polymorphic system. From [8]

new drug [14, 15].

From the manufacturers’ point of view it would be better if the mar-
keted form of the drug were the most stable crystal form, as this would
bring the risks of problems during preparation and storage down to a
minimum [16]. Unfortunately, the most stable polymorph will also be
the one to display the lowest solubility, since its chemical potential is
the lowest; the same will also be true for the dissolution rate, another
important parameter. erefore, if the medical properties require it, the
formulator may be forced to choose a form that enhances the drug effi-
ciency or (as in the case of Ritonavir discussed in the next section) to opt
for another formulation: for example, an amorphous form, a solution or
an aerosol.

In some cases other properties of a polymorphmay be used to obtain a
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more desirable behaviour in tablets. An example is paracetamol: forms
I and II have a very similar bioavailability [17], but different mechan-
ical properties. e commercially used, stable form I has poor compres-
sion properties [18] that requires the use of binders, while themetastable
form II would not be affected by this problem.

1.2.1 When things go wrong: the case of Ritonavir

One of the most famous quotes regarding polymorphism is an observa-
tion by Walter McCrone [19]:

ose who study polymorphism are rapidly reaching the conclu-
sion that all compounds, organic and inorganic, can crystallize
in different forms and polymorphs. In fact, the more diligently
any system is studied the larger the number of polymorphs dis-
covered.

A peculiar point of view on McCrone’s opinion has been – perhaps
provocatively – expressed by Angelo Gavezzotti [20], reversing the ar-
gument:

…if no effort and no money are spent, no polymorphs will be
found, meaning that most organic substances do oblige and crys-
tallize nearly always in the same crystal form, when not bothered
by the use of exotic solvents or unusual temperature, pressure,
and crystallization conditions.

An answer to this objection can be found in the literature, looking at
a very infamous example where polymorphism played a major role.

Ritonavir (see Figure 1.1) is an antiretroviral drug, (an inhibitor of
HIV protease), discovered in 1992 [21, 22]. Aer clinical trials Abbott
laboratories filed a new drug application (molecule -) in 1995,
and it was marketed in 1996 as Norvir©. Ritonavir at that time was
not found to be polymorphic: only one form was obtained during the
preparation tests. Furthermore, no particular screening was supposed
to be necessary, since Ritonavir is not bioavailable from the solid state:
the two marketed formulations of the drug were in capsules with ethan-
ol/water solutions.

In 1998, however, some batches of Ritonavir capsules failed the dissol-
ution test requirements, and the analysis showed that a new polymorph
(form II) was precipitating.
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Figure 1.1. e molecule of Ritonavir:  [5S - (5R*,8R*,10R*,11R*)]10 -
(Hydroxy - 2 - methyl - 5 - (1 - methylethyl) - 1 - [2 - (1 - methyl-
ethyl) - 4 - thiazolyl] - 3,6 - di oxo-8,11-bis(phenylmethyl)-2,4,7,12-
tetraazatridecan-13-oic acid,5-thiazolylmethyl ester

Form II has a far reduced solubility in ethanol/water solutions com-
pared to form I at the suggested storage temperature of 278K (see Table
1.2). e supersaturationwith respect to form IIwas therefore the reason
behind the failure in the tests.

Furthermore, form II, despite the difficulties of its crystallisation, was
found to be the more stable form: within weeks from the first discovery,
form II was produced in all the production lines, and the product had to
be withdrawn from the market, with obvious problems for the patients
(sudden unavailability of a life saving drug [24]) and for the company
(withdrawing of a best selling product, and need to restart the develop-
ment process [25]). Eventually, a new formulation was marketed, aer
its approval by the Food and Drug Administration [26].

Additional studies on the molecule proved that the difficulties in ob-
serving the more stable form II were due to kinetic reasons [23]: the
formation of form II in solution requires the molecule to be in a higher
energy conformational state. Although form II is thermodynamically
favoured, a high energy barrier made the necessary state hard to reach
in solution. e precipitation of form II in 1998 was possibly due to
seeding agents and/or slightly different and unaccounted variation in
the preparation conditions [25].

Ethanol:water ratio 99:1 95:5 90:10 85:15 80:20 75:25

Form I (mgml−1) 90 188 234 294 236 170
Form II (mgml−1) 19 41 60 61 45 30

Table 1.2. Solubility profile of Ritonavir form I and II at 278K in ethanol:water
mixtures. From [23]
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As a consequence of the unexpected implications of polymorphism
in Ritonavir formulation, pharmaceutical practice and regulations were
tightened, to guarantee a better control of the drug phase diagram, inter-
conversionmechanisms and stability of every newdrug product [27, 28].
In the following years, more thorough polymorph screenings led to the
discovery of an additional metastable polymorph (form IV) and two
solvate forms of Ritonavir [29].

1.3 methods of characterisation

ere is a wide range of methods available for the characterisation of
polymorphism: in this section we will briefly mention some of the most
used laboratory techniques.

1.3.1 Crystallographic techniques

X-Ray Diffraction () is one of the fundamental methods of charac-
terisation of solid state materials, and it is oen described as the “gold
standard” of polymorph analysis. e diffraction of the high energy X-
rays by the electrons in the structure gives unique information on the
periodic arrangement of atoms, as the diffraction of the high energy
photons depends on the positions of the atoms in the lattice [9].

e determination of the atomic positions in the unit cell of a crystal
is possible by the use of Single Crystal  [30]. e requirements for
the diffraction of the radiation by the crystalline environment is that
the distance between crystal planes d, the wavelength of the X-ray light
source λ and the incidence angle of the light with respect to the planes
satisfy Bragg’s law,

nλ = 2d sin θ, (1.1)

where n is integer [31]. During the measurement the crystal is rotated,
so that every possible plane direction is exposed to the source. From
the diffraction pattern of a sufficiently large and pure single crystal it is
possible to work out the unit cell parameters and the atomic positions
in the crystal.

ere is an ever increasing number of crystal structure determina-
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tions: for easier access and analysis of data, most are stored and cata-
logued in databases. e larger collections are the Cambridge Struc-
tural Database for small organic and metallorganic molecules, the Pro-
tein Data Bank () for polypeptides and polysaccarides, and the In-
organic Crystal Structure Database () for inorganic molecules.

Powder  () is another important technique. e analysis is
performedon a powder composed of amultitude of randomly orientated
microcrystals, rather than a single crystal. is has the advantage of a
simpler preparation, since a large single crystal might be very difficult to
obtain for molecular solids. However, the Bragg refraction condition is
not satisfied by a single direction determined by one crystal plane, but
whenever one of the microcrystals is in the right orientation: as a result,
radiation is diffracted on uniform cones at the angle θ, so that there is
loss of information.

Despite this problem,  is very useful: different polymorphic forms
of amolecule have very different diffraction patterns, that can be used as
unique fingerprints. Since the technique is not limited to a single crystal
it can be used to preciselymeasure the composition of amixed powder (a
pattern from a mixture of known components is the sum of the the pat-
terns of the pure phases). Crystal structure determination from powder
 data, although much more difficult than with single crystal, is not
impossible and it is a growing research field [32, 33].

The Cambridge Structural Database

e Cambridge Structural Database () [34] is the main repository
for the crystal structures of small organic and organometallic molecules,
including solvates and salts. e database started in 1965 by collecting
published information of the crystal structures of small molecules and it
is maintained by the Cambridge Crystallographic Data Centre ().
As of January 2012 it contains almost 580 000 structures [35].

Each entry in the database is identified by a unique 6 letter identifier,
eventually accompanied by a two digit number to specify experimental
determinations of a compound (different author/journal/polymorph/-
experimental condition). e  is therefore an invaluable tool to ac-
cess information on up-to-date determination of polymorphs. Solvates
are not stored with the same identifier as the corresponding neat crystal
form, as their elemental composition is different: for example, parace-
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Figure 1.2.  thermograms of the possible interconversion of the three poly-
morphic forms of R-Cinacalcet Hydrochloride. From top to bottom:
form III to I transition (heating and cooling); heating until melting
(mp); heating of form IIwith recrystalisation event; heating of amix-
ture of II and III. From [37]

tamol is identified as  (with 31 different determinations), while
the monohydrate and trihydrate are respectively  and .

e database is accompanied by a set of soware: among the most
useful for our study were , allowing access to the information
in the database and , a powerful visualisation and analysis tool
[36]. With these programs it is possible to generate computed data (such
as  pattern to compare withmeasurement), and retrieve useful stat-
istical information (e.g. number of occurrence of specific intermolecu-
lar interactions or length/directionality of hydrogen bonds).

1.3.2 Thermoanalytical techniques

ermal analysis techniques study the relation of properties as a func-
tion of the temperature change [38, 39]. esemethods can be very use-
ful in the study of phase changes (melting events, crystallisation, glass
transitions, polymorph transition, chemical degradation) as variation of
properties will be particularly noticeable.

Differential scanning calorimetry ()measures the difference of en-
ergy required to vary the temperature of the analyte and a reference,
plotted against temperature variation. An example of this method ap-
plied to polymorph analysis is seen in Figure 1.2 for R-Cinacalcet Hy-
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Figure 1.4. (a) Solid-state 13C  spectra of crystal forms of indomethacin.
1, bottom graph, α-form; 2, top graph γ-form. (b) Structure of in-
domethacin with atoms numbered. From [45]

drochloride (Figure 1.3, only the  shown), a medication used in the
treatment of hyperparathyroidism [40]. e  analysis shows thermal
events corresponding to polymorph interconversions, melting and a re-
crystallisation (fourth graph, recognisable as an exothermic process).

HN

F

F

F

Figure 1.3.

ermogravimetric Analysis () is an analysis technique where the
weight change of a sample is measured as a function of temperature or
time. It can be useful in the analysis of solvatomorphic systems [41–43],
as the analysis can help distinguish between residual solvent and solvent
included in the crystal lattice.

1.3.3 Magnetic resonance

Nuclear magnetic resonance () is an analysis technique based on
properties of spin 1/2 nuclei (most frequently isotopes 1H and 13C) in
a magnetic field. e molecular environment of the nuclei influences
the frequency of resonance of the nuclei (Larmor frequency), and the
resulting shis therefore give information about the sample [44].

While  is most frequently used for measurements of samples in
solution, solid state  () is increasingly used as a methodology
for the study of polymorphism in the pharmaceutical industry [46]. -
 tends to be very specific in distinguishing polymorphic forms, and
it is used as complementary method of analysis. As an example, Figure
1.4 shows the  spectrum of two forms of indometacin, α and γ.
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e peaks of the two polymorphs exhibit different shis depending on
the chemical environment in their respective unit cells (see the labels on
the carbon on the molecular diagram and on the spectrum in Figure 1.4
[45]).

1.3.4 Vibrational spectroscopy

Vibrational spectroscopy studies the absorption of electromagnetic ra-
diation by probing the vibrational modes of a molecule or of one of its
fragments [47, 48].

roughout this work we will use a spectroscopic unit, the wavenum-
ber (cm−1), defined as the inverse of the wavelength of light; the advant-
age is that the energy is directly proportional to the wavenumber.

e frequencies for mid-infrared spectroscopy (mid-) range from
about 4000 cm−1 to 400 cm−1. e highest frequency region comprises
of frequencies that are easily assignable to specific intramolecular bonds:
for example stretching ofN−Hbonds (around3400 cm−1) orC−−O(1600
cm−1 to 1800 cm−1 depending on the group). A lower region of the spec-
trum is called the “fingerprint region”, as the absorptions are peculiar of
each molecule: the corresponding modes of vibration are typically too
complex for a 1:1 assignment to normal modes of vibration.

e main strength of mid- is undoubtedly in the recognition of mo-
lecular features, as the subtle changes in the spectrum of different poly-
morphic forms of a drug are usually very small, and can be also due to
differences in the preparation and in the samples. A number of studies
have confirmed that advancedmethods characterised by increased sens-
itivity, such as Fourier Transform  and Attenuated Total Reflection 
have the necessary accuracy and reproducibility to probe polymorphism
[49–51].

Near infrared spectroscopy (, frequency range 4000 cm−1 to 14 000
cm−1) is associated withmultiple absorption of photons from themater-
ial (overtones or combination bands) [47]. It has been used for detec-
tion and characterisation of polymorphs and solvates [52, 53], but it is
preferentially being used for the determination of sample composition
together with multivariate methods of analysis [54].

e lowest energy part of the infrared spectrum (far , or terahertz)
is characterised by a spectral range from 2 cm−1 to 400 cm−1. In this re-
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gion the interactions probed belong to the so-called “lattice modes” of
the crystal, where the radiation interacts with the intermolecular bonds
rather than intramolecular vibrations: the absorption is therefore de-
pendent on the packing, and spectra of different polymorphs display
easily distinguishable features.

While it is not possible to determine crystallographic data or the ele-
mental compositionwithout comparisonwith a database, terahertz spec-
troscopy has a number of advantages that will be listed in the next sec-
tion.

1.4 peculiarities of terahertz spectroscopy

Instrumentation and methods of operation of terahertz pulsed spectro-
scopy (which is more commonly referred to as terahertz time-domain
spectroscopy – THz-), will be described in more detailed in chapter
2. Here we will just mention some of the important points of this tech-
nique [9, 55]:

• Speed of analysis: absorption spectra can be obtained in less than
a second, making it a technology with potential to be used as a
fast screening tool. It is also possible to measure while continu-
ously varying the conditions [56] andmonitoring interconversion
between polymorphic crystal forms in situ [57];

• Noneed of lengthy preparation of the sample, and non destructive
technology;

• Non ionising radiation: the photon energy in the terahertz region
is low, and there is almost no risk of photochemical reaction or
degradation of the sample;

• Terahertz spectra can be sensitive enough in cases when  alone
would not be sufficient [58].

Despite the usefulness of terahertz analysis of polymorphs, as of now
it is not possible to assign individual absorption features to molecular
vibrationswithout a computation (differently towhat happenswithmid-
), due to the complexity of the vibrational modes in the crystal at these
frequencies.
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Several techniques have been used to approach the problem of in-
terpreting the spectra of molecular crystalline systems (as one finds in
pharmaceutical chemistry): isolated molecule calculations of the nor-
mal modes of vibration [59] (although conceptually incorrect, see Table
3.2, page 30), rigid molecule approximations of lattice dynamics [60],
molecularmechanics/molecular dynamicswith empirical force fields [61],
and solid-state density functional theory [62].

1.5 thesis outline

e main aim of this thesis is the development and application of com-
putational methods to the study of small organic molecules of pharma-
ceutical interest. In chapter 2 we review the theory of terahertz pulsed
spectroscopy, and we describe in detail our experimental setup.

Chapter 3 describes the theory of molecular vibrations, in particular
the calculation of normal modes of vibration in periodic systems and
its implementation in force field based methods and density functional
theory. Chapter 4 deals in particular with the use of our two programs
of choice,  and .

Chapter 5 deals with computational methods we employed to deal
with the effect of local polarisation in the crystal using , at-
tempting to improve the accuracy of the description of intermolecular
interactions.

e molecular systems we select to study are listed in chapter 6, with
mention of their crystal structure, presence of polymorphic and solvate
forms.

e last part of the thesis is devoted to the comparison of the exper-
imental spectra with their computational counterparts and in the ana-
lysis of the results. In particular, in chapter 7 and 10 we report the spec-
tra computed respectively with and without polarisation correction. In
chapter 8 we analyse the effect of the rigid body approximation used in
, and the comparisonof the vibration eigenvectorswith .

Chapter 9 deals with the effect of water inclusion in solvatomorphic
system, and its effect on the calculated eigenvectors. Finally, in chapter
11 we consider the terahertz spectra of structurally similar molecular
systems.



2
TERAHERTZ PULSED SPECTROSCOPY

T  is the branch of spectroscopy dealing
with the interaction of samples with the far-infrared region of
the electromagnetic spectrum, usually defined as the range of

0.1 THz to 4 THz (equivalent to 3 to 133 cm−1 in spectroscopic units)
[63, 64]. is part of the spectrum bridges the infrared region and the
microwave region: its importance lies in the fact that it can probe low
energy vibrational and rotational motions within solids without indu-
cing structural transformation or ionisation, due to the low energy of
the radiation used.

Historically there has been considerable difficulty in using terahertz
radiation compared to infrared and microwave radiation. Due to the
intrinsic limits of the commonly employed techniques of generation of
radiation there was a lack of sources in the region, which was therefore
also referred to as “the terahertz gap” [65]. is occurs because the fre-
quencies in this region are too low to be generated with standard optical
techniques (involving electronic transitions in atoms and molecules),
while being at the same time too high to use electronic sources. Lasers
exist in the terahertz range [66] (for examplemolecular gas sources such
as the CO2 laser [67]), but they are not tunable: semiconductor-based
lasers are partially tunable, but non continuously and they are not broad
enough to be useful for spectroscopicmeasurements [68]. A recent over-
view of electronic terahertz sources can be found in the review article by
Inguscio and Moruzzi [69].

However, not only was the generation of terahertz radiation a chal-
lenge, but also its detection. Standard optical detection techniques suffer
from a range of limitations, because the band gap in photodiodes can-
not be excited by terahertz radiation. On the lower energy side of the
spectrum, the upper frequency limit of microwave sources of radiation
such as cavity magnetrons and klystrons are limited to around 10 cm−1

to 20 cm−1, at the low end of our spectroscopic range of interest [70].

13



14 terahertz pulsed spectroscopy

Using thermal black body source was the most common method to
perform spectroscopic experiments in the far infrared. However, the
detection sensitivity was rather poor due to the fact that cryogenically
cooled bolometers had to be used for detection. Using such a setup the
signal-to-noise that can be achieved is limited by the weak signal that
has to be discerned from the strong thermal background radiation.

2.1 femtosecond laser sources

eavailability of easily generated broadband terahertz radiation changed
during the 1990s [71–74]. edevelopment of femtosecond laser sources,
together with the advances of semiconductor physics, provided a much
easier way to generate and detect a broadband signal.

Nowadays the two most widespread techniques to generate and de-
tect terahertz radiationmake use of photoconductive antennas and non-
linear optical crystals. ey will be described in detail in the next sec-
tions.

2.1.1 Photoconductive antennas

Photoconduction is defined as the change in conductivity in a material
upon irradiation. e radiation process is the result of the acceleration
of photogenerated charge carriers inside a device (antenna) excited by a
subpicosecond laser pulse.

An antenna comprises of a semiconductor substrate with high carrier
mobility (usually GaAs), surmounted by two metallic gates separated by
a gap ranging from a few microns to a few hundreds of microns (Figure
2.1). A DC voltage is applied between the two metallic gates, and in
the absence of a field the substrate acts as an insulator, i.e. there is no
current.

When photons with higher energy than the band gap of the semicon-
ductor hit the antenna, electron-hole pairs are generated, which are sub-
sequently accelerated across the device towards the gates. e carrier
density N(t) and their velocity v(t) depends on the intensity and on the
time shape of the incoming laser pulse (its shape is important for such a
short pulse); the associated current J(t) creates a polarisation field P(t)
inside the semiconductor, which itself affects the motion of the charge
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0.3-1.0 mm laser beam

transmitted 
THz beam

backscattered
THz beam

a) b)

Figure 2.1. Schematic view of a photoconductive antenna used for generation of
the THz pulse. a) Frontal view. b) Sketched pulse generation. Note
that there are two waves, one transmitted, the other backscattered

carriers.

e generation of the terahertz pulse, defined from its electric and
magnetic components (ETHz and HTHz respectively), follows from the
transient current, according to Maxwell’s equations:

∇× ETHz(t) = −μ
∂HTHz(t)

∂t

∇×HTHz(t) = J(t) +
∂

∂t
(ε(t)ETHz(t))

(2.1)

where ε and μ are the dielectric constants of the semiconductor and J
is the induced photocurrent, which is directly related to the number and
the velocity of the charge carriers. e polarisation induced by the ac-
cumulation of the charge carriers affects itself the electromagnetic field.
e acceleration of the charges produces an electric field perpendicular
to the device surface, its frequency depending on the profile of the incid-
ent laser pulse, as well as on the characteristic parameters of the carriers
[75], that need to possess a very fast response (in the femtoseconds re-
gime).

Analytic and numerical solutions of Equations 2.1 exist in the dipole
approximation [76], where the generated electric field is directly propor-
tional to the change of J with time, and is therefore strictly connected to
the characteristics of the incident laser pulse. e spectral bandwidth of
the generated terahertz field can be approximated from the uncertainty
relationship on the field: since ΔtΔω ≥ 1/2, a 100 fs incoming signal
should create a bandwidth of at least 3 THz, with a shorter pulse gener-
ating a wider wavelength range.

In summary, the laser pulse acts as a switch for the generation of the
terahertz field: in between twopulses the high resistance inside the semi-
conductor does not allow for a current to flow.
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e relaxation processes of the polarisation field in the semiconductor
is not on a femtosecond scale: the recovery of the initial configuration,
with the charge carriers recombining in the semiconductor, takes hun-
dreds of picoseconds or longer, which leads to the terahertz pulse being
effectively much longer than the laser pulse.

Due to this difference in time scale a similar structure can be used
for the detection of the terahertz radiation. Using an optical delay the
focused terahertz beam and the laser pulse can be configured to reach
a detection device at the same time; however, for the detection pro-
cess there is no need for a  bias. When the laser pulse hits the an-
tenna the semiconductor surface becomes conductive: the incident tera-
hertz beam (which is an electric field itself) generates a dri of the car-
riers, proportional to the amplitude of the electric field, and the asso-
ciated current can be measured. e antenna is only conductive when
the semiconductor charge carriers are present, and the recombination
within the semiconductor is much faster (due to the absence of the de-
polarisation effects). It is therefore possible to perform a mapping of the
much longer terahertz pulse by controlling the time delay of the laser,
allowing a reconstruction of the terahertz profile [64].

2.2 electro-optical rectification

An alternative, widely used method to generate and measure terahertz
pulses uses the electro-optical effect. is phenomenon, observed in
some crystals, is based on the non-linear response to an electric field of
the polarisation in a medium [77].

e scalar polarisation response P(t) to an electric field E(t) inside a
material can be expressed as a power expansion:

P(t) = χ1E(t) + χ2E
2(t) + χ3E

3(t) + . . . (2.2)

with the nonlinear terms χ2, χ3, . . . usually much smaller than χ1.

If the second term of the expansion χ2 is not negligible it is possible
to observe second-order effects in this material: for example, by trigo-
nometric relationships, for a field of the form E(t) = E0 cos ωt there is a
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 polarisation and second harmonic generation, P2:

P2(t) = χ2E
2(t) =

1
2
χ2E

2
0 (1 + cos 2ωt) (2.3)

Similarly, when two electric fields are present, E1(t) = E0 cos ω1t and
E2(t) = E0 cos ω2t:

P2(t) = χ2E1E2 =
1
2
χ2E

2
0 (cos (ω1 − ω2) t+ cos (ω1 + ω2) t) (2.4)

e generation of terahertz radiation is due to the profile of the femto-
second laser impulse: the field E(t) of a Gaussian pulse governed by a
temporal width Γ and centred at ω0 is

E(t) = E0eiω0t−Γt2 (2.5)

and its frequency distribution is its Fourier transform:

E(ω) = exp
(
−(ω − ω0)

2

4Γ

)
, (2.6)

meaning that a pulse in the femtosecond range has significant frequency
contributions that span over a few terahertz: the differencemixing of the
frequencies generates a pulse in the terahertz range.

e advantage of this method in the generation of terahertz radiation
is that it depends only on the length of the pulse, and is not limited by
upper limits in the mobility of carriers as in the case of antennas: very
short terahertz pulses (displaying bandwidths up to 100 THz) have been
generated in this way.

e detection of the signal can be performed with a non-linear me-
dium, using the Pockels effect [78], which is closely related to the electro-
optical generation: it is possible to induce birefringence in an optically
active medium by a constant or varying electric field, and the birefrin-
gence is proportional to the electric field.

e detection method is based on a non-linear optical crystal (oen
ZnTe), followed by a quarter-wave plate, a Wollaston prism and a pair of
balanced photodiodes. e working principle is outlined in Figure 2.2.

A linearly polarised probe beam (our femtosecond pulse) propagates
through the crystal unchanged in the absence of a field. Aer trans-
mitting the non linear crystal its polarisation is changed from linear to
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ZnTe
crystal

Aer ZnTe Aer λ/4 ΔI = I1 - I2

0ETHz = 0

Input

I1

I2

λ/4
plate

Wollaston
prismETHz EOpt

ETHz ≠ 0 ≠ 0

Figure 2.2. Detection based on electro-optical rectification. Top graph: tera-
hertz wave (ETHz), the optical pulse (EOpt, in red), and the optical
devices. Top table: variation steps of the terahertz wave polarisa-
tion. Bottom table: variation steps of the terahertz wave polarisation
influenced by the optical pulse in the ZnTe crystal

circular using the quarter-wave plate. e Wollaston prism is used to
split the signal into two orthogonal components, measured by two pho-
todiodes. In the case of circular polarisation there is no difference in
intensity between the two components.

If the pulse reaches the crystal at the same time as the terahertz pulse,
the induced birefringence changes the polarisation from linear to ellipt-
ical: the quarter-wave plate keeps the elliptical polarisation and the two
components separated by the Wollaston prism are now different: the
measured of intensity ΔI is a directly proportional to the terahertz field.

As in the case of detecting antennas, the shortness of the femtosecond
pulse compared to the terahertz pulse allows sampling of the terahertz
signal by time delayed measurement.

2.3 experimental setup

Aphotograph of the spectroscopic equipment we use for all of ourmeas-
urements is reported in Figure 2.3. e terahertz pulses are generated by
a photoconductive GaAs bowtie antenna, with a 0.5 eV band gap. e
femtosecond source is a Ti:Sapphire laser (Femtolasers), producing 12 fs
laser pulses centred at 800 nm wavelength. Detection is performed with
electro-optical sampling using a ZnTe crystal.

In Figure 2.4a we highlight the path of the terahertz beam, split in



2.3 experimental setup 19

Figure 2.3. Experimental setup used for all the experiments in this work

two parts: one used for the generation of the terahertz pulse, the other
(drawn in purple) for the detectionmechanism. e isolated box (Figure
2.4b) contains the antenna, the sample holder where the terahertz is fo-
cussed by parabolic lenses. e detecting mechanism, with the quarter-
wave plate, the Wollaston prism and the diodes is shown in Figure 2.4c.

During the acquisition of the terahertz spectra the sample compart-
ment is either purged with dry nitrogen gas or evacuated to remove any
atmospheric water vapour, as water molecules exhibit very intense ro-
tational absorption features in the measurement frequency window (see
Figure 2.5).

2.3.1 Preparation of the samples

In order to measure the transmission spectrum of a sample material a
pellet of sufficient concentration and mechanical strength has to be pre-
pared. For a standard size sample pellet (13mm in diameter) between
10 and 20mg of sample material are thoroughly mixed with 360mg of
polyethylene powder (, which is almost transparent at terahertz fre-
quencies). Mixing is performed using an agate mortar and the method
of geometric mixing. e mixture is then compressed into a pellet using
a hydraulic press at 2 ton load for about 2 minutes. e resulting pellets
are between 2 and 3mm thickness. For each sample three pellets were
prepared to ensure reproducibility of the measurement.
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(a) Laser path and optical delays prior to the generation of the
terahertz beam

(b) Inside the isolated box: generation of the terahertz beam
(path highlighted), with the sample handler and the non-
linear optical crystal

(c) Detection mechanism, with the quarter-wave plate, the Wol-
laston prism and the balanced photodiodes

Figure 2.4. Photographs of the spectrometer we used for our measurements.
Courtesy of Axel Zeitler
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Figure 2.5. Power spectrum of an unpurged empty cell at 295K, showing the
absorption features of water vapour. Absorption is expressed in ar-
bitrary units (a.u.) as throughout the rest of this thesis

2.3.2 Measurement of the absorption spectra

e output of the photobalanced diodes is the difference in intensity
between the two components of the polarisation of the laser pulse, which
is proportional to the electric field amplitude of the terahertz pulse. e
pulse is sampled by the use of the optical delays to obtain its profile aer
the absorption by the pellet (Figure 2.6). epulse shape is then Fourier-
transformed to reconstruct its frequency components, to recover the
power spectrum (Figure 2.7, black trace).

e power spectrum of a pellet containing the same amount of poly-
ethylene powder as the measured sample (360mg powder, compressed
at 2 ton load for about 2 minutes) is collected in the same way and at the
same temperature, and it is used to remove the baseline from the power
spectrum of the drug, to finally obtain the absorption spectrum (Figure
2.8).

In order to improve the signal-to-noise we co-averaged over 200 time-
domain waveforms prior to Fourier transformation. e dynamic range
of the instrument is not constant with frequency (see Figure 2.7, logar-
ithmic scale): there is much more power available in the spectral region
5 cm−1 to 80 cm−1. e analysis is therefore much more reliable in this
region, while over 110 cm−1 is almost completely noise.
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Figure 2.6. Time-domain shape of the terahertz pulse aer absorption from a
pellet with 360mg  and 15mg paracetamol at 10K
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Figure 2.7. Power spectrum of the terahertz time-domain waveform aer ab-
sorption from a paracetamol/ pellet (containing 15mg/360mg –
black trace) and a tablet containing 360mg  only (red trace)
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Figure 2.8. Absorption spectrum of the paracetamol pellet aer removal of
the  baseline
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2.4 temperature effects on the spectra

echaracteristic absorption peaks of room temperature terahertz spec-
tra of different crystal forms usually exhibit sufficiently characteristic ab-
sorption peaks to easily distinguish one from the other. However, since
our goal is the comparison of the absorption spectra with computed
data, we need a clear spectrum as possible, and this is better achieved
with measurement at low temperature, for thermodynamic reasons.

Within a quantummechanical description, the absorption of a photon
of frequency ν by a vibrationalmode induces a transition from an energy
level n to the higher n + 1 level. e intensity of absorption I is pro-
portional to the relative population of the vibrational states, according
to the Boltzmann distribution:

I ∝ exp
(
− En

kBT

)
− exp

(
−En+1

kBT

)
, (2.7)

where En is the energy of the nth energy level, T the temperature and kB
the Boltzmann constant. For a harmonic oscillator (first approximation
of a vibrational mode) the energy is En = hν(n+ 1/2):

I ∝
[
1 − exp

(
− hν
kBT

)]
exp
(
−hν (n+ 1/2)

kBT

)
(2.8)

e population of energy levels higher than the ground state is not
negligible at room temperature, since the factor hν/kBT is close to unity

re
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Figure 2.9. Population of the first 10 levels of a harmonic oscillator with fre-
quency ν = 1 THz, at different temperatures. From [79]
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Figure 2.10. A series of measurements of a tablet containing 360mg  and 15
mg N-(4-Bromo-phenyl) acetamide. Each spectrum is offset by 2
a.u. for clarity

within the measurement range (it is 1 for ν ≈ 6.15 THz at 298K). As a
consequence, absorptions are much stronger at low temperature, where
the population of the fundamental state is enhanced (see for example
Figure 2.9).

e presence of “hot states” (n > 0) has another effect: due to an-
harmonicity the energy levels are not equally spaced, and absorption
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Figure 2.11. Two views of the cryostat we used for the low temperature meas-
urements

lines can be red-shied. e same effect is also caused by the thermal
expansion of the crystallographic unit cell of the measured sample. Lat-
tice dynamics methods of simulation (see next chapter) assume that the
temperature is 0 K: therefore the comparison of experimental with com-
puted spectra is more meaningful for low temperature measurements.
An example of how temperature affects the measured spectra is repor-
ted in Figure 2.10.

2.4.1 Low temperature setup

Low temperature experiments were performed using a continuous flow
cryostat (modified --, Janis, Wilmington, MA USA, see Fig-
ure 2.11). e cryogen was either liquid nitrogen or liquid helium. e
sample chamber was evacuated to a pressure of < 50mbar, when using
liquid nitrogen and < 1.0 × 10−6 mbar when operating with liquid he-
lium. Temperature control was achieved by adjusting the flow of cryo-
gen using a needle valve in the transfer tube and by a heater in the cold
finger which was adjusted using a temperature controller (S, Lake
Shore, Westerville, OH USA). e temperature stability was better than
0.1 K and measurements were acquired aer an equilibration time of 1
minute at each temperature. A motorised line stage (Figure 2.11, right)
was fitted to the cold finger to switch between the sample and reference
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pellet at each temperature, thus avoiding any potential instrument dri
between the two measurements. each temperature.

For paracetamol form I and nitrofurantoin form β (see chapter 6) we
measured spectra ranging from10K to 75Kusing liquid helium as cryo-
gen. e use of nitrogen as a cooling gas, however, is both cheaper and
simpler from the experimental point of view; we therefore decided to
use nitrogen for all the other measurements, since we judged the quality
of the spectra to be good enough at 80K. For all the other systems we
also measured the spectra from 80K to room temperature, with an in-
terval of about 40K. All of the variable temperature measurements are
reported in appendix A.
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VIBRATIONS IN A PERIODIC SYSTEM

I   spectroscopy it is oen possible to directly
connect an observed absorption to the distortion (e.g. stretch or
bend) of a bond in a molecule, usually without the need of cal-

culation. is is because the vibrational normal modes are oen fairly
localised and because their associated vibrational frequencies are only
slightly shied by their chemical environment. erefore, certain vibra-
tional frequency ranges are characteristic of known distortions of cova-
lent bonds [48].

However, the vibrational normalmodes become increasingly complex
at lower frequencies; in the terahertz region, it is not generally possible to
associate an absorption feature to a simple feature such as the stretching
of a bond. Instead, absorption features generally result from collective
motions of all the atoms in the material. To correctly assign the nature
of the molecular motions associated with a particular absorption, it is
therefore necessary to rely on simulations.

3.1 single molecule calculations

If a simulation is theoretically well-founded and can reproduce the pos-
itions and intensities of features in an observed spectrum, it can also be
trusted to provide a faithful description of the vibrational motions that
give rise to these features.

A tempting approach to calculating the absorption spectrum of a mo-
lecular crystal is to calculate the normalmodes of vibration of an isolated
molecule, as single-molecule calculations are generally much cheaper
(in computing time and required computing resources) than calcula-
tions that include the entire periodic crystal structure. However, the
vibrational features observed in the gas phase and in a solid can be rad-
ically different: in the gas phase, the interactions between molecules can

27
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usually be neglected, while in solids this is not true, especially when con-
sidering low frequency vibrations. Furthermore, pure rotational modes
of molecules are allowed in the gas phase [80, 81] (as can be seen in the
absorption spectrum of water vapour in Figure 2.5), while molecular ro-
tations are hindered in the solid phase by molecular close-packing and
by the interactions between molecules.

Consider the case of naphthalene (Figure 3.1), whose lowest frequency
infrared active vibrational frequencies are listed in Table 3.1.

e terahertz spectrum of the gas phase and the calculation of the
isolated molecular vibrational frequencies [82] agree in finding no ab-
sorption below 175 cm−1, while the experimental spectrum of crystal-
line naphthalene [83] shows several features below 100 cm−1. ese ad-

Figure 3.1. ditional features only appear for the crystalline sample, so they must
be related to the intermolecular interactions within the crystal. Indeed,
simulations that include the periodic structure of the crystal structure
[84, 85] reproduce the observed frequencies and indicate that the cor-
responding vibrations relate to whole-molecule motions about the equi-
librium crystallographic positions.

Another example is the terahertz spectrumof 2,2′-bithiophene (Figure
3.2), shown in Figure 3.3. Again, there are clear differences between the
vibrational modes of the isolated molecule and that of the crystal: in
this case, the isolated molecule does have low energy vibrational modes
near and below100 cm−1. However, this region of the spectrumbecomes

S

S

Figure 3.2. much more detailed in the crystal and the number and position of these
features can only be reproduced in a calculation that includes the entire
crystal structure [86, 87].

A trickier example is represented by the calculations of the drug mo-
lecule 3,4-methylenedioxymethamphetamine ( or ecstasy, Figure

Gas phase Crystal
Experimental Calculated Experimental Calculated
[82] [82] [82] [84] [85]

166 179 53 45 54
359 376 66 62 74
473 492 98 91 97

Table 3.1. Comparison of the three lowest energy infrared/terahertz active ab-
sorption frequencies (cm−1) for naphthalene, in crystal and gas phase
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Figure 3.3. Terahertz spectrum of a 2,2′-bithiophene (Subfigure A, upper spec-
trum) compared with a solid state calculation (A, lower spectrum)
and an isolatedmolecule calculation (B).e strongest experimental
features are indicated with letters. From [86]

3.4). In this case, calculations on the isolated molecule [88] seem to
provide excellent agreementwith the experimental spectrum (Table 3.2),
so that features of the terahertz spectrum were assigned to intramolecu-
lar vibrations. However, a series of calculations [89, 90] based on the dy-
namics of the known crystal structure, showed that the intramolecular
vibrations are shied out of the terahertz region by coupling to the crys-
tal environment (see section 3.2.3). Moreover, the calculations produce
a series of intermolecular vibrational modes at the frequencies seen in
the experimental spectrum. Here, it seems that the agreement of the
frequencies found in the isolated molecule calculation with the experi-
mental spectrum was a result of fortuitous coincidence.

NH

OO

Figure 3.4.In conclusion, to correctly calculate the terahertz spectrum and the
corresponding vibrationalmodes (phonons) of a crystallinematerial it is
necessary to employ methods that consider the molecular arrangement
in the periodic structure and the associated intermolecular interactions
present in a crystal.

In the next sections we briefly describe the classical theory of lattice
vibrations in a periodic systems (see for example [91]): assuming small
displacements allows us to simplify the theoretical treatment to only
consider harmonic oscillations.
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Experimental Isolated molecule Crystal
Freq. Assignment Freq. Assignment

37.0 36.6 Internal C−C
bond torsion

38.0 Rigid molecule
rotations

59.3 58.8 Internal C−C
bond bending

61.0 Rigid molecule
translations

86.6 85.8 Internal CH2
group rocking

94.4 Internal C−C
bond bending +
rigid translations

Table 3.2. Experimental [88] and calculated [88, 89] frequencies of the terahertz
absorption of  (cm−1), from isolated molecule and from lattice
dynamics of the crystal, and relative assignment to vibrational fea-
tures

3.2 phonons in a crystal

e vibrational properties of a periodic system in equilibrium are eval-
uated by taking into account the motion of the atoms around their equi-
librium positions within the crystal. e potential energy of the crystal,
φ, is a function of the atomic coordinates; small displacements of an
atom are counteracted by a restoring force, pulling the system back to
its equilibrium position.

e potential energy φ can be expressed in a Taylor series up to second
order in the displacement unlα , the subscript α representing one of the
Cartesian coordinates (x, y, z) of atom n within the unit cell l:

φ = φ0 +
1
2

∑
αnl

∑
α′n′l′

∂2φ
∂unlα ∂un

′l′
α′

∣∣∣∣
0

unlα u
n′l′
α′ . (3.1)

In the equilibrium configuration there are no net forces acting on the
atoms, hence there is no linear term; φ0 is the equilibrium potential en-
ergy.

From here, we can write the equations of motion:

mn
d2unlα
dt2

=−
∑
α′n′l′

∂2φ
∂unlα ∂un

′l′
α′

∣∣∣∣
0

un
′l′

α′

=−
∑
α′n′l′

φnn′(l−l′)
αα′ un

′l′
α′

(3.2)

Due to the translational invariance within a crystal, the force φnn′(l−l′)
αα′
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depends only on the distance between the unit cells l and l′, so we can
drop the l dependence and consider l′ as the distance to a reference cell.

Because of the periodicity of the system, we look for a solution in the
form of plane waves of the form

unl
′

α =
An

α(k)√
mn

exp
(
ik · rl′ − iω(k)t

)
, (3.3)

where the frequency depends on k, which is now a vector (called the
wavevector). Substitution into Equation 3.2 gives

−ω2(k)An
α(k) =

∑
α′n′l′

φnn′l′
αα′√

mnmn′
An′

α′(k)e
−ik·rl′

=
∑
α′n′l′

Dnn′l′
αα′ (k)A

n′
α′(k)

(3.4)

that are now a set of algebraic equations. D(k) is called the dynamical
matrix, which is the mass weighted Fourier transform of the force mat-
rix.

e wavevector k is an important parameter in a crystal and is asso-
ciated with a crystal momentum (or quasi-momentum) h̄k. Quantum
transitions within the crystal require the quasi-momentum to be con-
served: this conservation law, together with the energy conservation in
the absorption process, dictates that the interaction of a phonon with
light is possible only if k ≈ 0, due to the low momentum of the photon.

We can therefore drop the exponential dependence in 3.4, leading to
the simplified equation

ω2(0)An
α(0) =

∑
α′n′l′

Dnn′l′
αα′ (0)A

n′
α′(0) (3.5)

is is an eigenvalue problem, composed of 3nb equations, where nb
is the number of atoms in the unit cell. It is possible to obtain both the
eigenvectors An

α(k) and their associated frequencies ω(k) by standard
linear algebra techniques. ree (acoustic) phonons have a frequency
ω = 0 at k = 0: these correspond to bulk translation of all the atoms in
the unit cell. e remaining 3nb − 3 modes are called optical phonons:
they have non-zero frequencies and they can interact with an electric
field.

From the resulting eigenvectors An
α(0) it is possible to return to the
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atomic displacements unlα using the relation 3.3.

Terahertz intensities IN are directly correlated with the change in elec-
tric dipole moment μ of the system with respect to all of the atomic mo-
tions under excitation of a phonon mode QN [48]:

IN ∝
∣∣∣∣ ∂μ∂QN

∣∣∣∣2 (3.6)

e calculation of the cell dipole varies between differentmethods. If the
electronic part of the system is not treated quantum mechanically, as it
happens in force field calculations (see chapter 3.4), the dipole variation
can be simply related to the rigid displacement of the atomic charges.

In quantum mechanical methods (chapter 3.5) the dipole has to be
related to the perturbation of the electronic distribution by the normal
mode displacement; to do so, the contribution of each of the n atoms
to the cell dipole variation is expressed using the Born effective charge
tensor Zn, which is defined as the first derivative of the polarisation P
per unit cell with respect to the atomic displacements unl:

Zn,αβ ∝
dPα

dunlβ
(3.7)

where the α and β are used to indicate the Cartesian coordinates.

For comparison with measured terahertz spectra, the results of lattice
dynamics calculations are commonly graphically presented as a sum of
Lorentzian functions

f(x) =
∑
N

IN
π

(
γ

(x− xN)2 + γ2

)
, (3.8)

centred at the absorption frequencies x0, where the relative intensity IN
calculated from Equation 3.8 equals the area under the curve for each
vibrational mode. e parameter γ simulates the signal broadening of
the experimental spectrum. In the proceeding chapters we will com-
monly use this approach for visual comparison of our calculations with
the experimental results.
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3.2.1 Quantisation of the vibrational model

e transformation from the classical to quantummechanical treatment
of the vibrations is straightforward: we can substitute the momentum
pi and the displacement xi for each atom with the equivalent quantum
operators p̂i and x̂i [92]. e coordinate transformation of Equations
3.3–3.5 keep the canonical commutation rules for the normal modes of
vibration: as a result we can construct the Hamiltonian of the system,
which is a system of independent harmonic oscillators, each character-
ised by a frequency ωi.

e energy spectrum for each harmonic oscillator is formed by equally
spaced levels, separated by an energy h̄ωi. For each quantum level ν:

Eν = h̄ωi

(
ν +

1
2

)
(3.9)

e selection rules for the absorptions dictates that one-photon induced
transition in the dipole approximation are only possible if Δν = ±1.

Without the harmonic approximation we lose the simplicity of the
solution: the energy levels are no longer equally spaced, and multi-
photon transitions are possible.

3.2.2 Temperature effects

e calculation of the normal modes of vibration in the crystal assumes
the equilibrium position as a starting point: this corresponds to the hy-
pothetical and motionless state at 0 K. Temperature effects, dependent
on the atommotions, are therefore not taken into account by the normal
modes calculation.

e modelling of the forces (section 3.3) necessary for the evaluation
of the vibrational modes, can contain temperature effects: this is true
whenever parameterisation of the forces relies on experimental data (as
in the case of empirical force fields).

One simple way to deal with the temperature dependence is by the use
of the quasi-harmonic approximation [93, 94], by assuming that the de-
pendence of the frequencies with temperature is contained within the
thermal expansion of the crystal. We therefore fix the crystal lattice
parameters to the experimental values at the desired temperature, and
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m m

kk1 k1

m m

k

x1 x2

Figure 3.5. Simple system of a diatomic molecule. In the first picture, two equal
masses connected with a spring of elastic constant k. In the se-
cond the same molecule interacts with fixed walls through springs
of elastic constant k1. e displacements x1 and x2 are indicated

calculate the vibrational properties for this system from the resulting
harmonic frequencies.

3.2.3 Normal modes in vacuum and in condensed state

When it comes to molecular solids, it is useful to consider the coup-
ling between the strong bonding within a molecule and the relatively
weak intermolecular interactions. As an illustration, consider a model
of a homonuclear diatomic molecule: two atoms of mass m connected
by a spring of elastic constant k (Figure 3.5). In a simple model of this
molecule in the condensed phase, the atoms also interact with their sur-
roundings (here, a pair of fixed walls) via additional bonds of spring
constant k1. is second system is equivalent to the isolated molecule
when k1 = 0.

e normal modes can be calculated by considering the system of
equations

m
d2x1
dt2

= k1x1 + k (x2 − x1)

m
d2x2
dt2

= k1x2 + k (x1 − x2)
(3.10)

and looking for an oscillatory solution for the displacements:

x1 = A1eiωt

x2 = A2eiωt
(3.11)
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Substitution into Equation 3.10, in matrix representation:(
k+ k1 − ω2m k

k k+ k1 − ω2m

)(
A1

A2

)
= 0, (3.12)

which has non-trivial solution only if the matrix is singular. e solu-
tions are:

ω2
1 = k1/m

ω2
2 = (2k+ k1)/m

(3.13)

In the case of a molecule in vacuum (k1 = 0) there is only one mode
of vibration: stretching of the bond with frequency ω2

2 = 2k/m. For the
constrained molecule interacting with the two walls, there is the same
stretching mode, but at increased frequency ω2

2 = (2k + k1)/m, and a
second vibration at frequency ω2

1 = k1/m corresponding to translation
of the whole molecule.

e absorption frequencies of intramolecular vibrations are always
shied to higher frequencies, depending on the strength of the inter-
molecular interactions,. e new vibrational modes that are introduced
as a consequence of interactions of amolecule with its surroundings cor-
respond to whole-molecule motions. In two- or three-dimensional sys-
tems, these can involvemolecular rotation as well as the translation seen
in this simple one-dimensional example.

3.3 simple parameterisation for ionic systems

It should be clear from the previous sections that, in order to perform
a phonon calculation, we need a model for the forces acting between
atoms within the system of interest. Various computational methods,
with different degrees of approximation, have been applied to evaluate
the required forces to model the vibrations in crystals.

One of the earliest calculations of the phonon spectrum of an ionic
crystal was attempted by Kellermann [95] in 1940 for the simple cubic
salt structure NaCl. is is a simple cubic crystal: each atom is located
at the corner of a cube, and each Na+ ion is surrounded by 6 Cl– neigh-
bours (and vice versa). e system was treated as a field of interacting
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classical point charges held apart by a repulsive potential, v0, between
nearest neighbour atoms, which is necessary to keep the atoms at their
equilibrium positions. It is not necessary to know the exact form of this
potential, but only its behaviour near to the equilibrium position: the
first derivative was calculated from the equilibration of forces within the
crystal, knowing that the forces on all atoms in the crystal must vanish
at the equilibrium structure. e second derivative of the interatomic
potential was determined from experimental data on compressibility of
the crystal.

From this model for the interatomic forces, a 6 dimensional (3 dimen-
sions for each atom in the unit cell) dynamical matrix was then con-
structed and diagonalised. One of the two measurable frequencies of
NaCl (two coinciding longitudinal optical phonons, ) is in remark-
able agreement with experimental data (3.3), especially considering the
simplicity of the model potential; the other (the transverse optical pho-
non, ) is more dependent on the effects of charge displacements (po-
larisation), which were not included in this first model.

is method is simple enough to be performed on a simple system
without the need for a computer (Kellermann produced a phonon spec-
trum for k ̸= 0 as well!), and has been repeated for a number of struc-
turally equivalent alkali halides and oxides [96, 97].

Unfortunately the model for the interactions between atoms here is
too simplified to be generalisable tomore complex solids. More sophist-
icated models have been addressed in a number of publications, consid-
ering models to account for polarisation of atomic charges [99, 100] and
extended interactions beyond nearest neighbours [101]. Many more
adjustable parameters must be introduced to the model of interatomic
forces to account for these interactions, and the simplicity of themodel is
lost. Interesting systems usually consist of more than 2 atoms in the unit
cell, so that many different atom-atom interactions must be considered.

Phonon type Kellermann Lattice
dynamics

Experimental

 4.55 4.92 5.17 ± 0.03
 9.58 7.84 7.92 ± 0.07

Table 3.3. Phonon frequencies (THz) of the optical phonons of NaCl for k = 0
by Kellermann compared with experimental values [98] and a calcu-
lation that includes charge displacement and polarisation [99]
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Furthermore, for crystals of electrically neutral molecules, the interac-
tions between atomic charges are usually not the dominant attractive
intermolecular interactions. Instead, a more realistic model of the van
der Waals forces is necessary. Overall, it is generally necessary to cal-
culate the phonon spectrum with the aid of a computer, by numerically
evaluating the matrix of second derivatives from a detailed description
of the forces acting within a crystal.

e quality of a molecular simulation depends of how well the inter-
actions between atoms in the system are represented. Two types of ap-
proach have been applied to calculate the necessary forces:

-  are a generalisation of the approach used in the
NaCl example given above. A functional form is assumed for the
important interatomic interactions and these functions are para-
meterised to provide a description of the energy and forces within
the crystal. e combination of functional form and parameters
is oen referred to as a force field. Electrostatic interactions in
the atom-atom method are treated classically, usually by atomic
partial charges, and sometimes with higher order atomic or mo-
lecular multipole expansions.

   consider all of the forces as ulti-
mately arising from the electrostatic interactions between the
electrons and nuclei. e electronic problem can be solved by
separating the nuclear and electronic wavefunctions (the Born-
Oppenheimer approximation) so that the energy and forces act-
ing within a crystal can be calculated for any configuration of its
constituent atoms. e most commonly applied electronic struc-
ture method in recent years is density functional theory () for
which several commercial packages (see for example [102, 103])
are available to perform this type of calculation.

Electronic structure calculations on periodic systems are orders of
magnitude more computationally expensive than those based on the
atom-atom force field approach. e techniques necessary for  based
phonon calculations (density functional perturbation theory [104]),
along with the necessary computational power, have only been available
since the 1990s. While large-scale computing is nowadays common in
research facilities, the cost of such calculations still limits their applic-
ation to the crystals of fairly small molecules. For large systems, such
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as the crystal structures of pharmaceutical molecules with hundreds of
atoms within the unit cell, the the atom-atom approach is still oen the
only practical solution. In the next two sections we describe these two
methodologies in more detail.

3.4 force field methods

e atom-atom potential method has been very successfully applied to
modelling a wide range of materials, and some of the early development
and applications are described by Pertsin and Kitaĭgorodskiĭ [94].

e main approximation behind a force field method is that the elec-
trons are not treated explicitly, leaving only a classical description of the
degrees of freedomandof the interactions. Given thewide range of types
of interactions present in a crystal, some other approximations are ne-
cessary.

e energy of a system can be expressed as a sum of all the possible
interactions over all the atoms:

U =
1
2!

N∑
i,j=1

Uij +
1
3!

N∑
i,j,k=1

Uijk +
1
4!

N∑
i,j,k,l=1

Uijkl + . . . (3.14)

where the terms represents, respectively, two-body interactions, three-
body interactions, and so on. Interactions betweenmore than two atoms
are too expensive to consider and are usually le out, except for internal
degrees of freedom between first neighbours inside molecules.

  are used tomodel covalent bonding in-
teractions, and are necessary to correctly describe the conforma-
tion of a molecule. At its most basic, an intramolecular force field
consists (see Figure 3.6) of a two-body bond stretching functions
depending on the distanceR and the equilibriumdistanceR0, usu-
ally modelled either as harmonic in the bond length or using a
more realistic Morse potential form:

UHarmonic
ij =Cij

2 (R− R0)
2

UMorse
ij =Dij

2

((
1 − e−Aij(R−R0)

)2 − 1
) (3.15)

e 3-atom angle terms penalise distortions from the preferred
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bond angle Φ0 (for example 120° in an aromatic ring):

Uijk = Cijk
3 (Φ − Φ0)

2 (3.16)

Four bond interactions put an energy cost on changing the pre-
ferred torsion angle θ0: it is the angle between the plane contain-
ing the atoms i, j, k and the atoms j, k, m (see Figure 3.6). e
number of minima in the torsional potential is governed by the
parameter N in the following equation:

Uijkm = Cijkm
4 (1 + cos (Nθ − θ0)) (3.17)

Higher many-body interactions are usually not needed, but their
effect might be important in particular cases: Gale notices [105]
for example that 6-body interactions may be used to impose
planarity conditions on groups of resonant atoms.

Two-body non-bonded interactions can be generally categorised ac-
cording to the physical interaction they represent, and have different de-
pendence on the distance R between the two atoms. e most common
type of interactions are listed below.

-  are a sum of two distinct phe-
nomena. Classically, they arise from an unfavourable overlap
of electron densities as the internuclear separation between non-
bonded atoms is decreased. From the quantum mechanical point
of view there is also an attractive contribution related to the sym-

i

j
k

m

θ

Figure 3.6. Schematic representation of intramolecular parameters between 4
atom i, j, k, m: the interatomic distance Rij, the bond angle φijk and
the torsion angle θijkm
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metry exchange between equivalent electrons, and a repulsion ef-
fect when two electrons try to occupy the same region of space.
e two commonly used forms of the repulsion term are an AR−n

term where n is usually in the range from 9 to 14, or a theoretic-
ally better founded (but less efficient computationally) exponen-
tial, Ae−BR.

  arise from correlated fluctuations in the
electron charge distribution around the atoms, the leading term of
which corresponds to fluctuating dipole-dipole interactions and
has an R−6 dependence. R−8 and higher terms arise from higher
order correlated electron density fluctuations, but are less import-
ant and usually omitted.

  arise because electronic charge is not
uniformly spread within a molecule: its distribution can most
simply be modelled by assigning fractional point charges to each
atom in the molecule. e electrostatic interaction between point
charges has a long range R−1 dependence on interatomic separa-
tion and does not depend on the mutual orientation of the inter-
acting atoms. However, some features of the electrostatic poten-
tial around molecules cannot be adequately modelled using such
a simple spherical atom model. For example, localised lone pairs
and aromatic π–electron density introduce important anisotropy
in the electron charge distribution around atoms. erefore, some
atom-atommodels include higher ordermultipoles (dipole, quad-
rupole, etc.) on each atom. See chapter 3.4.1 for the distributed
multipole analysis treatment used in this work.

  are corrections to the electrostatic distribu-
tion of a molecule due to the proximity with other molecules and
the resulting induced redistribution of electron density within the
molecule, and it depends on the molecular polarisabilities. It is
usually ignored in simple treatments, because its non-additivity
makes it difficult to handle correctly [105]; it can be calculated
iteratively.

In most atom-atom calculations, there are three terms in the force
field used to describe the interactions between atoms [94]: repulsion-
dispersion, electrostatics, and intramolecular terms.
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Two common forms of atom-atom repulsion-dispersion terms are:

ULennard-Jones
ik = AικR−12

ik − CικR−6
ik

UBuckingham
ik = Aικ exp (−BικRik)− CικR−6

ik

(3.18)

where Rik is the separation between atoms i and k. ese interactions are
determined by the parameters A, B and C, whose values depend on the
types (ι and κ) of atoms involved.

Force fields differ in which of the above terms are included, their ex-
act functional form, and how the parameters in each term are determ-
ined. ese parameters depend on the types of atoms that are inter-
acting and are oen developed to be transferable between systems with
similar chemical functionality: for example, the parameters describing
repulsion-dispersion interactions between carbon atoms might be fitted
to model any carbon atoms in organic molecules. More elaborate para-
meter sets might include separate sets of parameters for carbon atoms in
different chemical environments, such as different parameters for aro-
matic and aliphatic carbon atoms. e advantage of such transferable
parameter sets is that there is no need to develop a new force field for
each new system that is to be studied.

Examples of this approach are the repulsion-dispersion parameters
developed by Williams for hydrocarbons [106], oxygen [107], nitrogen
[108] and fluorine containing [109] hydrocarbons. e parameters in
such transferable force fields were fitted to reproduce structural para-
meters and heats of sublimation of a large set of molecular organic crys-
tal structures and can therefore be used to describe a wide class of or-
ganic molecules.

An alternative approach to these transferable parameters is to develop
and optimise specific force fields for a single molecule or small family
of molecules [85, 110, 111], sometimes without the need to fit to exper-
imental data. While such molecule-specific models involve much more
work, the advantage is that the functional form and parameters can be
fine tuned to very accurately describe a particular molecule.

3.4.1 Rigid molecule approach

e range of frequencies from the calculation of the vibrational frequen-
cies of a molecular crystal varies from the terahertz range accessible by
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our experimental system (4 to 110 cm−1) to the infrared range (400 to
4000 cm−1). is variability suggests that there are differences between
the type of vibrations.

A different absorption frequency means a different energy and force
probed by the vibration. In molecular solids the highest absorption fre-
quencies perturb the high energy intramolecular bonds, while at lower
frequency the spectrum comprises the so-called “lattice modes”, domin-
ated by translational and rotational movements of full molecules around
the molecular centre of mass.

e rigid molecule approximation assumes that inter- and in-
tramolecular interactions are completely uncoupled, so that all of the
intramolecular force field terms can be ignored when calculating the
lattice mode region of the vibrational spectrum. erefore only the mo-
lecular degrees of freedom, six for each molecule, need to be taken into
account in the minimisation of the energy and in the calculation of the
vibrational eigenfrequencies.

e approach described in chapter 3.2 needs to bemodified to include
centre of mass translation and rotation, and the mass normalisation in
Equation 3.3 has to be replaced by molecular mass and moments of in-
ertia. e procedure is described by Walmsley [112] and Califano [85].

is simplification can dramatically reduce the dimensionality of the
dynamical matrix and the number of needed parameters of the force
field, and it lowers the computational cost of the calculation; for a crys-
tal structure with Z molecules in the unit cell, rigid-molecule lattice dy-
namics leads to 6Z− 3 optical vibrational modes at k = 0 instead of the
3N− 3 modes for a system with N atoms.

Another advantage of this method is that the electronic distribution,
a very important parameter in the description of a molecular system,
does not change due to the fixed molecular conformation: it is therefore
possible to use a multipole expansion of the electronic density with high
level ab initio methods and use it throughout the calculation.

e main drawback of the rigid molecule approach is due to the im-
perfect separation between lattice mode and internal modes. is ap-
proximation is valid for a number of molecular systems, like benzene
[84] (where the lowest internal vibration is separated from the highest
lattice mode by almost 300 cm−1), but not strictly true even for relatively
small systems like paracetamol. is will be discussed in later chapters.
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The distributed multipole analysis

e distributed multipole analysis () is a method to describe the
molecular electron density as a distribution of multipole sites, typically
coincident with the atomic positions [113]. It was developed to provide
an effective way of describing the electrostatic interaction between two
or more molecules.

e electronic distributions of isolated molecules are derived from ab
initio (or ) calculations using Gaussian basis sets in the majority of
molecular chemistry packages (such as the one we used,  
[114]). e molecular orbitals are expressed as a linear combination of
atomic orbitals, and the electronic density can be ultimately written as a
product of atomic orbitals.

e product of two Gaussian functions centred at different origins
can be expressed as another Gaussian centred on an intermediate point
(which is effectively the best choice for a multipole expansion). e mo-
lecular orbitals contain an angular part as well, in the form of spherical
harmonics: the product of spherical harmonic functions, of angularmo-
ment k and k′ respectively, can be expressed as a Clebsch-Gordan series
of spherical harmonics spanning angular coefficients l so that

|k− k′| ≤ l ≤ k+ k′ (3.19)

e maximum exponent in the corresponding multipole expansion
is limited by the maximum angular factor: for example two spherical s
orbitals (k = k′ = 0) can be described by a charge, an s and a p (k = 1)
by a charge and a dipole, and so on.

e  procedure provides a way to move the origin from this point
to the nearest distributed multipole site by recalculating the multipole
expansion coefficients. While the new expansion would not be finite (as
the original one) it is found to be quickly convergent; the computational
time required is negligible compared to the calculation of the electronic
density. e  expansion is inherently dependent on the molecular
geometry, and therefore it is difficult to apply in simulations where the
molecular configuration changes, but it is an excellent choice for rigid
molecules calculations, providing a significantly better description than
methods relying only to partial charges in the description of the elec-
tronic density [115].
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3.5 solid state electronic structure calculations

e basic requirement to be able to perform a calculation of the elec-
tronic structure is the separation of the nuclear coordinates from the
electronic coordinates, using the Born-Oppenheimer approximation.
Under this assumption, that holds if the sets of solutions of the elec-
tronic Schrödinger equation are well separated, the calculation of the
electronic wavefunction of a crystal can be viewed as a system of inter-
acting electrons in a field of nuclei. e equilibrium geometry of the
crystal is the configuration where there is no net force acting on each
nucleus, and can be found by performing a minimisation of the energy
of the crystal with respect to its geometrical parameters (unit cell and
atomic positions).

e forces necessary to build the dynamical matrix can be obtained by
distortion of the nuclear equilibrium structure: moving an atom away
from the equilibrium position generates a restoring force, that does not
depend only on the equilibrium electronic distribution, but on its vari-
ation as well [116], due to the parametric dependence of the electron
wavefunction on the nuclear perturbation. e generation of the dy-
namical matrix therefore requires the calculation of the electronic dens-
ity (a computationally expensive task) for a high number of nuclear con-
figurations, and this contributes to the overall significant computational
cost of such a calculation.

e calculation of the electronic charge distribution is usually per-
formed using density functional theory (). Hohenberg and Kohn
[117] proved that only the electron density (rather than the wavefunc-
tion) is necessary to describe the ground state of a system. Furthermore,
for a system of interacting electrons in an external potential V (such as
the potential generated by the atomic nuclei in the crystal) there exists
a universal functional F of the electron density n, independent of the
external potential, such that the energy E is defined as

E[n] = F[n] +
∫

Ve[r]n[r]dr (3.20)

eproblembehind this formulation is that the functional F, although
guaranteed to exist, is not known exactly.

A practical approach to overcome this difficulty was suggested by
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Kohn and Sham [118]: we can consider a system of non-interacting
electrons with an external potential veff capable of generating the same
charge distribution of our starting system. In this way we can express
the functional as a sum of physically recognisable contributions: an ex-
act kinetic energy T, a Coulomb interaction potential between the elec-
trons J, the external potential Ve (the nuclear charges), and a quant-
ity called the exchange-correlation potential Vxc, containing all the un-
known terms:

E[n] = T[n] + J[n] + Ve[n] + Vxc[n] (3.21)

Since we are looking at a minimum for E we can use a variational ap-
proach to obtain a set of equations we can work with.

To do so, we can express the total charge distribution as a sum of the
individual non-interactingwavefunctions ϕi for each electron, andwork
out an effective one electron Hamiltonian the orbitals have to obey:(

−1
2
∇2 + veff

)
ϕi = εiϕi (3.22a)

veff(r) =
δ
δn

Ve[n] +
δ
δn

J[n] +
δ
δn

Vxc[n]

= v(r) +
∫

n(r′)
r− r′

dr′ + vxc(r)
(3.22b)

where the terms in 3.22b come from the variational minimisation pro-
cedure [119], so that the effective potential arises as the functional de-
rivative of E with respect to the electron density. To avoid confusion
we will indicate the functional and the potential respectively with upper
and lower case.

e form of Equations 3.22 is similar to what one obtains in the case
of a Hartree approach (the best product of orbitals) and Hartree-Fock
(best antisymmetrised product of orbitals), with the difference that the
exchange-correlation term vxc includes the correlation between elec-
trons.

e biggest challenge in the research community has been to come up
with a good way to approximate and express the exchange-correlation
potential. Again, this term can be split into two contributions: the non-
classical exchange interaction coming from the Pauli exclusion principle
and the correlation between electrons.

e simplest (and historically the first) approach used is to treat the
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electron system like a uniform electron gas of fixed density n. e ex-
change contribution, derived by Dirac in 1928 [120] is

Vx =
3

√
3
π
n4/3 (r) . (3.23)

ere is no known analytic expression of the correlation contribution,
except for the limit of very low [121] and very high density [122, 123],
but there are several tabulated values for intermediate densities of in-
terest calculated by quantum Monte Carlo simulations [124]. Differ-
ent interpolation techniques can be used to obtain different functional
forms. For example Perdew and Zunger suggested the form (known as
 [125])

VPZ
c (rs) =



− 0.1423
1 + 1.9529

√
rs + 0.3334rs

rs ≥ 1

−0.048 + 0.0311 log rs+

−0.0116rs + 0.020rs log rs
rs < 1

(3.24)

having defined the Wigner–Seitz parameter rs as the radius of a sphere
whose volume is the effective volume of an electron:

4
3
πr3s = n−1 (3.25)

while Vosko, Wilk and Nusair () proposed what is generally con-
sidered to be the most accurate uniform-gas correlation available [126]

VVWN
c =

A
2

(
log

rs
Z
(√

rs
) + 2b

Q
arctan

Q
2
√
rs + b

+

− bx
Z(x)

log
rs + x2 − 2x

√
rs

Z
(√

rs
) +

+ 2
bx(b+ 2x)
QZ(x)

arctan
Q

2
√
rs + b

) (3.26)

where the function Z and the parameters A, b, c, Q, x are

Z(z) = z2 + bz+ c, A = 0.062 181 4, x = −0.409 286,

Q =
√

4c− b2, b = 13.072, c = 42.7198

e method described above – Local Density Approximation (),
as it is known– is based on the assumption that the exchange-correlation



3.5 solid state electronic structure calculations 47

functional depends solely upon the value of the electron density at each
point of space: this is exact in the limit of a slowly varying electron dens-
ity. It provides a good description of several systems despite its simpli-
city, also because of cancellation of errors: the exchange energy is un-
derestimated by 10% and correlation energy (much smaller in absolute
value) is overestimated by a factor 2 or more [119]. Nonetheless, the
 approach is unsatisfactory for molecular systems, where the vari-
ation in charge is not smooth, particularly where hydrogen bonds are
present [127].

More elaborate functional forms have been developed to improve on
the  approach. One way to do so is to develop a functional that de-
pends not only on the local density n, but on its variation as well: this is
called the generalised gradient approximation (), and it corrects the
exchange functional in Equation 3.23 by a function F:

VGG
x = −3

4
3

√
3
π

∫
n4/3F (s) dr, s =

|∇n(r)|
n4/3

(3.27)

e choice of the function F defines the structure of the functional.
One of the first, the 1-parameter Becke potential () [128],

FB88(s) = 1 − β
s2

1 + 6βs sinh−1 s
, (3.28)

with β = 0.0042, was fitted to reproduce rare gas data. Becke shows that
it provides an improvement of two orders of magnitude when compared
with the  exchange energies.

Other formulations take into account more parameters or higher
density derivatives (meta- approaches [129]). It is worth mention-
ing that there are approaches, like the  potential from Perdew, Burke
and Ernzerhof [130],

FPBE(s) = 1 + a− a
1 + bs2

(3.29)

where the parameters are only fit to known limiting cases, and not to
experimental properties, giving more of an ab initio property than other
potentials.

ere are different types of correction for the correlation potential as
well, with the functional by Lee, Yang and Parr () being a popular
choice. An exchange correlation potential is therefore a combination of
an exchange and a correlation functional (for example  is a combin-
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ation of the  exchange and of the  correlation).
Another approach is to consider a weighted blend of functionals (not

necessarily from  context, i.e. taking exchange from the Hartree-
Fock formulation) to construct a different one. One of the most used
exchange-correlation potentials,  [131, 132], is an example of such
approach:

VB3LYP
xc = a0

(
VHF

x − VLDA
x

)
+ ax

(
VGGA

x − VLDA
x

)
+

+ ac
(
VGGA

c − VLDA
c

)
+ VLDA

xc

(3.30)

where the 3 (hence the name) empirical parameters a0, ax and ac are de-
termined by fitting the predicted values to a set of atomisation energies,
ionisation potentials, proton affinities, and total atomic energies.

3.5.1 Dispersion interactions using dft

e main limitation of current functionals is their unsatisfactory de-
scription of the dispersion attraction between molecules, which is oen
the dominant contribution to the stability of organic molecular solids.

Rare gas systems, for example, are experimentally (and computation-
ally, by post Hartree-Fock methods) characterised by slight attraction
between the atoms, but  functionals predict repulsion [133]. e
long-term interaction, characterised by a R−6 long range limit, is not
accounted for. For this reason structural optimisation of molecular or-
ganic crystals routinely leads to non-physical unit cell dimensions due
to themissing attraction forces; while calculatedmolecular bonds repro-
duce the experimental values, intermolecular interactions are typically
strongly underestimated.

As an example, the unit cell volume of the explosive material ,
modelled with the  functional [134, 135] gives an energy-converged
unit cell with a 20% larger volume than the experimentally determined
unit cell. As this structural distortion relates to large changes in inter-
molecular contact distances, calculated frequencies of vibrationalmodes
in the terahertz region cannot be accuratelymodelled in such an energy-
minimised structure.

A common workaround when applying  to organic solids where
the dispersion attraction is dominant is to avoid the optimisation of the
unit cell, constraining the lattice vectors to their experimentally determ-
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ined values and thus fixing the unit cell volume.

A treatment using post Hartree-Fock perturbation techniques like the
Møller-Plesset perturbation theory or coupled clustermethodswould be
unfeasible, due to the high computational cost. A more affordable solu-
tion to the dispersion problem in  is to supplement the functional by
a set of parameterised atom-atom R−6 terms of the same form as those
included in force fields, leading to methods known as - [136]. A
functional can be written as

EDFT-D = EDFT − s6
Nat∑
i̸=j

Cij
6

R6
ij
fdmp

(
Rij
)

(3.31)

where the summation is over every possible pair of atoms of the Nat

present in the system. e scaling constant s6 depends on the functional
used, while the dumping function fdmp avoids singularities for small R
and overcorrections near the nuclei:

fdmp =
1

1 + e−(Rij/RVdW−1)
(3.32)

with the parameters RVdW as Van der Waals radii.

It is clear that the parameterisation is not unique: different choices of
the correction are possible, by using different parameters C.

e main advantage of the - approach is that while it provides
a correct dispersion force it does not significantly increase the compu-
tational cost over pure  [134]. e effectiveness of the method is
strictly related to a correct choice of the parameters Cij. We further dis-
cuss this issue in section 4.2.1.

3.5.2 Basis set and implementation

Consider the standard general Schrödinger equation of a system of elec-
trons in a periodic field(

T̂+ V̂(r)
)
ϕ(r) = Eϕ(r) (3.33)

with the total kinetic energy operator T̂ and a potential V̂ with lattice
periodicity.

e general properties of a system subject to a periodic potential is
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simplified by the Bloch theorem [91]: the electronic wavefunction can
be written as a product of a plane waves of wave vector k within the first
Brillouin zone, multiplied by an appropriate periodic function u:

ϕ(k, r) = eik·ru(k, r) (3.34)

e initial problem is now simplified to a calculation of the function u
just over the Brillouin zone.

In practice, the electronic density in a  calculation is expanded as
a linear combination of basis functions, with the expansion coefficients
to be determined as a part of the calculation. While an infinite num-
ber of functions might be necessary for mathematical completeness, the
number of basis functions that can be practically included is obviously
finite. In order to control the resulting unavoidable errors due to the in-
completeness of the basis set, it is therefore crucial to choose the right
set and the right number of functions.

Plane waves are the obvious choice for a basis set of a periodic sys-
tem and they are used by a variety of computational packages. ey
have a simple mathematical form and they do not need complicated ex-
pressions to ensure orthonormality of the basis set. Furthermore, the
relation between k and the kinetic energy provides a straightforward ap-
proach to systematically improving the basis set completeness, by adding
higher kinetic energy plane waves until the calculated properties of in-
terest converge to the required level.

From the computational point of view, the integrals containing the
products between eik·r terms and function V are just the Fourier trans-
form of V, for which efficient subroutines like Fast Fourier Transform
() have been developed.

Among the disadvantages of plane waves are their poor description
of localised states (it is necessary to introduce pseudopotentials for the
description of tightly bound core electrons – see next section) and the
dependence of the basis functions on the dimensions of the unit cell. e
latter means that large changes in the unit cell volume on energy min-
imisation will change the kinetic energy cutoff and therefore the con-
sistency of the calculation.

e calculation of lattice properties needs the calculation of integrals
over all the points of the reciprocal space of the crystal. is is usually
performed numerically by choosing a number of sample k-points in a
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regular grid, called a Monkhorst-Pack grid. e amount of k-points is a
trade off between speed and accuracy: higher number of points means
a better sampling, at a price of a slower calculation.

Pseudopotentials

e use of plane waves, although providing many advantages, is flawed
by the so called “variational collapse” problem [137]: the description of
strongly localised atomic states, of radius r, requires wave vectors in re-
ciprocal space of the order of 2π/r. For a system like crystal silicon the
number of required basis set functions to achieve an accurate descrip-
tion of the system would be in the order of 106 to describe its 1s orbital
[91], involving dealing with matrix of order 106 × 106, an impossibly
high value for computational purposes.

From the chemical point of view we are usually interested in the
valence electron density, responsible for the chemical properties of
bonding. Inner core electrons, tightly bound to the nuclei, are not
strongly affected by the differences in the chemical environment. For
this reason, these electron are not usually considered explicitly in the
calculation, but they are considered as “part” of the nucleus core.

A practical approach is to define an effective potential Vpseudo to de-
scribe the valence electrons in the field of nuclei and inner core electrons,
without caring to describe the true electron density in the atom core re-
gion.

As a first step, each of the atom types is treated individually to find a
numerical solution of the all-electron atomic problem with potential V.
As a second step we need to look for the functional form of the pseudo-
potential, fitting the parameters λi (as few as possible) that reproduce
the energy levels and wavefunction behaviour out to a cutoff radius rc:

Vpseudo(r) =

V1(r, λi) r ≤ rc

V(r) r > rc
(3.35)

Following on from the first very simple forms (constant for r < rc)
as suggested by Ashcro [138] for the sodium atom, there has been a
lot of research and improvements. One great advance in the quality
of simulations has been the use of norm-conserving pseudopotentials
[139, 140]: these enforce the condition that the normalised wavefunc-
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tion and pseudowavefunction have to be the same for r > rc, meaning
the electron charge inside the core radius have to be the same. is ap-
proach involves dealing with wavefunctions rather than potentials, with
the effect that they are usually dependent on the angular momentum l
as well.

Using different pseudopotentials means also having to use a differ-
ent number of plane waves to achieve a correct representation of a sys-
tem; so and Vanderbilt’s ultraso pseudopotentials release the norm-
conserving criteria in order to have a smoother function [141]. Al-
though computationally slightly more expensive because of the inclu-
sion of other terms [142], its use is justified by the need of a smal-
ler wavevector cutoff for big systems, which overcomes its complexity.
However, there is usually a trade-off between needing less wavefunc-
tions and being able to use them in different chemical environment (re-
duced “transferability” of the pseudopotential) [143].



4
ANALYSIS METHODS

F   of the absorption spectra we need a prac-
tical implementation of the ideas we discussed in the previous
chapter. We describe in more detail the programs we choose

for these calculation: a package that uses the empirical forcefield ideas
(), and one based on the plane waves, periodic  approach
(). We report the information needed for the simulations, and
the tools we used and develop to analyse the vibrational eigenvectors
and to compare the results with experimental data.

4.1 the atom-atom calculations

e programs we used for our lattice dynamics calculations are 
and its evolution 1. ese programs [144, 145] model crystals
of rigid molecules, allowing lattice energy minimisation and the calcu-
lation of vibrational properties. ey are designed to use anisotropic
atom-atom model intermolecular potentials and the  electrostatic
model.

e information on the unit cell and crystallographic atomic coordin-
ates is obtained from the , and it is stored in the form of a  file.
is contains information on the unit cell, the symmetries and the in-
equivalent atoms [146]. ere is no information on the bonds between
the atoms, which is directly calculated by  (a program that
helps the generation of the input file for ) according to a cus-
tom cutoff distance between atoms.

e rigid molecule approximation is effectively taken into account by
the use of local coordinates: each of the atomic coordinates and atomic
multipoles of amolecule is written according to a set of local axis system,

1 e main difference between the two programs lies in the ability to consider crystals
with bigger unit cells.

53
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and does not vary throughout the minimisation: the only change is in
the position and the orientation of the local axis system with respect to
the crystallographic axes (or global axis system).

e multipole expansion is obtained from the molecular charge dens-
ity matrix calculated with the quantum chemical program  ,
for which we used  calculation with the  functional and 6-
31G** basis set2 [150–153]. e orbitals are stored (alongside with other
information) in an ascii .chk checkpoint file, and converted to multi-
poles using the program  [154].

e interatomic potential used is an empirical Buckingham atom-
atom repulsion-dispersion potential. e older calculations were per-
formed with the  potential, an evolution of the Williams paramet-
erisation alreadymentioned at page 41, with the parameters for polar hy-
drogen parameterised by Price and co-workers [155, 156]. In our most
recent calculations we used the newer  potential [157–159].

Among the advantages of the  potential is a wider range of atom
types, effectively describing the chemical difference between differently
bonded species (i.e., different parameters for carbon atomswith different
coordination). e centres of interaction for the hydrogen atoms are
shied 0.1 Å from the atom along the bond to better model the effective
position of the electron density; this is automatically taken into account
by  in the setting up of the calculation. e parameters are
reported in Table 4.1.

e standard minimisation process simultaneously relaxes both the
unit cell parameters and the molecular positions and orientations, look-
ing for a minimum of crystal enthalpy (constant pressure). e sym-
metry of the unit cell is taken into account to reduce the dimensionality
of the minimisation problem: constraints are eventually applied to pre-
serve the space group of the initial structure.

e electrostatic contributions are summed up to infinity using the
Ewald summation method [160] for charge-charge, charge-dipole and
dipole-dipole interaction, while for the higher order terms a direct space
cutoff of 15Å is used. e same cutoff is applied to the non-electrostatic
terms as well.

2 e 6-31G** is limited up to Krypton in : for molecules containing Iodine
we used the - basis set [147–149]
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4.1.1 Implementation details

Usually the determination of hydrogen atom positions via X-ray diffrac-
tion is not reliable, because of their low scattering power and because the
corresponding electron density is smeared out and asymmetrical [161].
Furthermore, hydrogen atoms frequently have larger librational amp-
litudes than other atoms.

e experimental hydrogen atom positions were therefore recalcu-
lated with a  calculation on the isolated molecule, keeping all the
heavier atom positions fixed, and the resulting coordinates put back in
the  file and used for the  calculation.

e lattice energy minimisation process uses the Newton-Raphson
method [143] in order to obtain a relaxed structure. It is crucial that
the process of minimisation does not drastically change the unit cell,
as large differences would indicate that the method was unsuitable (i.e.
underestimation of specific interactions due to bad parameters in the
potential, or inaccurate electrostatics). A useful parameter to assess the
similarity between the initial and final crystal structure is the Gavezzo-
tti’s discrepancy factor F [162]:

F =

(
1
2
Δθ
)2

+ (10Δx)2 +
(
100

Δa
a

)2

+

(
100

Δb
b

)2

+

+

(
100

Δc
c

)2

+ (Δα)2 + (Δβ)2 + (Δγ)2 ,
(4.1)

where Δθ is the total rigid body rotational displacement of themolecules
(in degrees), Δx is their total rigid body translational displacement ( in
angstroms), and the remaining terms correspond to the variation of the
unit cell length a, b, c (in angstroms) and angles α, β, γ (in degrees). e
weighting factors are necessary to keep the relative contributions on the
same scale.

A value F = 0 means that the initial and final structures are identical;
if F < 50 we considered the minimisation to be well behaved. As an
example a value F = 50, split to each term, averages to ≈ 6 per degree
of freedom: this corresponds to 2.2° for a unit cell angle, 2.2% for a unit
cell axis, 0.22Å for Δx or 4.4° for Δθ. Larger values were obtained in
the minimisation of hydrates, due to bigger reorientation factors of the
small water molecules.
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e standard output of phonons eigenvectors from  is rather
unfriendly: a 3-column list of numbers of all the x, y, zmolecular trans-
lations and Rx, Ry, Rz rotations, the latter in the reference set of the prin-
ciple axes of inertia, themselves expressed in local coordinates. Further-
more, while the vibrational frequencies and eigenvectors are determined
by , the calculation does not provide an estimate of the infrared
intensities.

For analysis purposes we used and expanded a pre-existing utility for
the analysis of  output,  (Rigid Units Display Of Lat-
tice Phonons [163]), capable of extracting the relevant information from
the  output, expressing the overall data in global Cartesian co-
ordinates and writing it into a .xyz format, readable by the program
 [164], a powerful Java based visualiser. Furthermore, 
uses the fixed electrostatic distribution and the phonon eigenvectors to
calculate the unit cell electric dipole derivative (proportional to the in-
frared absorption) with respect to each eigenvector.

4.2 the solid state dft calculations

e package we use for our solid state quantum mechanical calculations
is  [165]. It uses plane waves as a basis set for valence electron
densities, and a wide number of possible pseudopotentials to describe
core electrons.

e relevant processing parameters for a  job is contained in
two files, .cell and .param, separating the information about the struc-
ture from the directives to the program.

e .cell file contains all the information about the atomic positions
and the unit cell, symmetry (which the program will try to guess if co-
ordinates are given with sufficient accuracy), the location of the pseudo-
potentials to be used and the number of k-points to use for the integra-
tion. e .param file has the information on the task to be performed
(geometry optimisation or phonon calculation), the functional to be
used, the energy cutoff for the number of wave planes, and the tolerances
used for convergence of the lattice energies, atomic forces and atomic
positions.

It is important to check for the convergence of lattice energy with re-
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Figure 4.2. Variation of the lattice energy aer everyminimisation step for para-
cetamol form I,  .,  functional, 1050 eV basis set cutoff

spect to several parameters, running a series of fast jobs to determine
the best choice: as we mentioned before, a small number of k-points (or
a low plane wave energy cutoff) makes the calculation faster, but can
lower the precision of the calculation, and vice versa.

For example, figure 4.1 shows the lattice energy of paracetamol form
I as a function of the cutoff energy. It can be noted that a basis set cutoff
energy of 1000 eV provides a reasonably converged lattice energy, which
is considerably higher than the 300 eV that it is needed for simpler sys-
tems, like SiO2. As a comparison, the total energy variation duringmin-
imisation for paracetamol form I (see figure 4.2) is about 0.5 eV.
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For consistency and ease of comparison between our data and other
published papers we have used a cutoff energy of 1200 eV, unless stated
otherwise; this cut-off energy resulted in well converged lattice energies
in all our systems. e Monkhorst-pack grid of k-points was fixed to be
at least 0.05Å−1.

As for , it is necessary to run a minimisation job before the
calculation of the phonon structure: in this case, since there are no ri-
gid molecule constraints, the number of modes will be higher, and the
calculation much longer.

e output file for a phonon calculation is a .phonon file containing
geometry information, the phonon eigenvector and eigenvalues, and the
corresponding infrared absorption.

e program is complemented with a pack of  utilities to con-
vert the output files in other formats. In particular we used the
 to convert the  geometry to a crystallographic
output, and the  to have a file useful for visualisation.

4.2.1 Dispersion corrections

In some of our earliest calculations, using the available versions of
 (4.1–5.0), there was no possibility to introduce a dispersion cor-
rection to the  calculation: all the spectra were obtained by con-
straining the unit cell dimensions.

Starting from version 5.5 (released in 2010) it is possible to apply a
dispersion correction in the calculation, in four different flavours for
the choice of the c6 coefficients [166–169]: we opted for the predefined
option developed by Grimme [167].

e c6 values in this approach are derived from the London formula for
dispersion [170], starting and improving a previous parameterisation by
WuandYang [171]. By using calculations of atomic ionisation potentials
Ip and static dipole polarisabilities α, the c6 coefficient for an atom a is
given by

ca6 = 0.05NIapα
a (4.2)

where N has values 2, 10, 18, 36, and 54 for atoms from rows 1–5 of the
periodic table. e constant in the equation was chosen to fit binding
values of rare gas dimers and a training set of molecules. Values for pair
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of elements a and b are obtained by use of the geometric mean

cab6 =
√

ca6cb6 (4.3)

4.3 comparison with the experimental data

e eigenvalues of our phonon calculation, together with the corres-
ponding infrared absorption, can be plotted as a Lorentzian function
(as shown in Equation 3.8, page 32) for an easier comparison with the
experimental data. e main choice we have to make is to decide the
width parameter γ, as a different choice has a great impact on the res-
ulting simulated spectra.

We report in figure 4.3 the  calculated spectrum of theophyl-
line form I ( reference code ). Some of the spectral features
are already too weak or too close to each other to be separated from
the signal at γ = 1 cm−1; at γ = 4 cm−1 some of the features become
shoulders, while at γ = 16 cm−1 we can count only three peaks with
broad shoulders.

Since we are not interested in how the area under the curve changes
with γ, we have normalised all calculated spectra so that themost prom-
inent absorption has 1 as fixed height.

In the experimental peaks at low temperature γ are usually in the range
of 2 cm−1 to 3 cm−1, while for room temperature comparisons we have
used 6 cm−1 as a maximum value.

4.4 rigid-molecule analysis

e main challenge we have to face while comparing the output of a
phonon calculation from simulations using two different methods is
the comparison of the data: first of all, lattice energy minimisation
with  and  results in different unit cell dimensions and
atom positions from each simulation, since we are using two very dif-
ferent methods; furthermore, we have two different sets of phonon ei-
genvectors (atomic vs molecular) to compare with each other.

We are interested in answering a set of questions:
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Figure 4.3. Calculated non-zero absorption frequencies of theophylline form I
with ,  forcefield. From the bottom: the position of the
absorption features and Lorentzian envelopes with γ = 1, 4, 8, 16
cm−1

1. How similar are the two calculated sets of eigenvectors?

2. Is the rigid molecule approximation valid in the terahertz range
for our systems? If not, when does it fail?

3. What is the range for the validity of the rigid molecule approxim-
ation?

To answer the first question we developed a method to quantify the
similarity between the eigenvectors, by converting the  rigid-
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molecule eigenvectors to atomic displacement eigenvectors. We use the
fact thatminimisationwith bothmethods results only on slight variation
of atomic and molecular positions within the unit cell.

e two programs use different conventions for the expression of the
unit cell in the orthogonal coordinate system; while  puts the
c ∥ z, the x axis parallel to the reciprocal a axis and the y axis forming a
right-handed set with x and z,  has a ∥ x, b in the xy plane and
z forming a right-handed axis system; furthermore, upon minimisation
the unit cell is not constrained to these initial orientations.

For this reason we performed a preliminary rotation to express all cal-
culated eigenvectors in the  notation, so that the orthogonal co-
ordinates and displacements of the atoms are comparable.

In  a phonon eigenvector for a crystal with Z molecules
within each unit cell is composed of a set of 6Z vectors, each with 6Z
components (3 translations and 3 rotations for each molecule). is set
of vectors is by construction a basis for rigid displacements of molecules
in the crystal for k = 0, orthonormal for the properties of the eigenvalue
system in Equation 3.5.

e actual translations and rotation are derived by scaling the eigen-
vectors respectively by molecular mass and moment of inertia, there-
fore losing their orthonormality. Atomic displacements can be obtained
straightforwardly from the molecular centre of mass translation (the
same for every atom in a molecule) and the rotation (in the reference
frame of the axes of inertia, from the centre of mass of each molecule).
Finally, each atomic displacement has to be weighted by atomic mass
and the whole vector renormalised.

e resulting mass-weighted vectors are still a complete set over the
possible rigidmovements of themolecules in the unit cell. By projecting
 eigenvectors over the  space we can quantify each vec-
tor contribution, and the overall percentage of each  eigenvector
that can be described by rigid-molecule motions.

By the process exposed before we have no guarantee that the resulting
mass-weighted  vector expressed as atomic displacements are
still orthogonal to each other; therefore the formulas for expansion will
be slightlymore cumbersome. By defining the  vectors |di⟩ and
 vectors |ci⟩, we can write the expansion as
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|ci⟩ =
∑
j

aj|dj⟩+ b|non-rigid⟩ (4.4)

where the non-rigid contribution comprises of the sumof all the internal
vibrations over all the molecules.

By standard projection on each  vector ⟨dk|we obtain the set
of equations

⟨dk|ci⟩ =
∑
j

aj⟨dk|dj⟩+ b⟨dk|non-rigid⟩

=
∑
j

ajQkj + 0
(4.5)

where we have used the fact that the  rigid-molecule vectors
must be orthogonal to any non-rigid component. e set of coefficients
a can be obtained by resolving the set of Equations 4.5, inverting the
matrix Q, to obtain:

ak =
∑
j

Q−1
kj ⟨dj|ci⟩ (4.6)

where ak is a direct measure of the similarity between vector ci and dk.
e actual amount of rigid body contribution is better expressed by

the the square of the norm of the resulting vector:

⟨ci|ci⟩ = ⟨rigid|rigid⟩+ ⟨non-rigid|non-rigid⟩

1 =
∑
jk

ajak⟨dj|dk⟩+ b2⟨non rigid|non rigid⟩

1 =
∑
jk

ajakQjk + b2⟨non rigid|non rigid⟩

(4.7)

In all of our calculations, the transformation of the vectors le the
orthonormality untouched. While we have not proven it3, this allows us
to use the simplified relations arising from Qij = δij.

ewhole process of conversion of the coordinates is again performed
using  (see above), expanded with a subroutine section for this
purpose. e actual comparison is performed with the aid of a spread-
sheet, constructing a table with the values a for all the vectors as the

3 e demonstration is straightforward for the translation part, but dependence of the
rotational part on the principle axes of inertia makes it complicated to handle
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Figure 4.4. Graphic representation of the amount of rigid body contribution
in the phonon normal modes calculated using  ., disper-
sion corrected , for paracetamol form I. Top, stack graph with
the most representative  phonon. Bottom, plot against the
frequency of the phonon (non  active vibrations as well)

equation above shows. e resulting matrix has a block structure, since
there is no possible mixing of phonons with different symmetries.

For visual inspection of the amount of the rigid body contribution in
the  eigenvectors we used two types of graph: one is a scatter plot
of the amount of rigid body contribution against the phonon frequency,
which is useful to check the rigidity of the eigenvector motions across
the spectrum; the other is a bar chart, highlighting similarity between
 and  eigenvectors. Figure 4.4 shows examples of these
two types of plot, which will be used in later chapters.



5
MODELLING POLARISATION BY THE CRYSTAL

ENVIRONMENT

A   , our rigidmolecule force field based pack-
age, the electron density distribution of each molecule in the
unit cell is considered to be the same as an isolated molecule;

this is an approximation due to the difficulty of calculating the induction
effect due to the crystal environment, as mentioned in chapter 3.4.

In this work we are interested in calculating the effect of the change
in molecular electron distribution due to induction, the resulting influ-
ence on the intermolecular forces in the crystal, and ultimately the pho-
non eigenvectors and eigenvalues. e polarisation effect is known to be
non-negligible for the electronic distribution of organic molecules (see
[172]), but we expect it to be particularly important for hydrate crystal
structures, because water has a significantly enhanced electric dipole in
the condensed state [173, 174].

5.1 methods

Of course, to fully consider the effective electronic distribution and the
distributed multipoles from an ab initio point of view we would have to
use a periodic electronic structure calculation, which rather defeats the
purpose of using an atom-atom method. e computational cost of a
calculation considering the induction effect on a “probe” molecule with
a surrounding shell of atoms around it quickly gets too high, due to the
more-than-linear dependence of computational cost with the number n
of electrons of  and even higher cost for other correlated electronic
structure methods.

e problem is circumventable by treating the molecules around the
probe as a classical distribution of charges, rather than treating the en-

65
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tire system (central molecule and surroundings) quantummechanically.
e  option in   [175, 176] allows the calculation
of the electronic properties of a molecule in a field of electric charges,
without dramatically increasing the computational cost of the calcula-
tion.

Using this feature it is possible to use the atomic charges resulting
from an isolated molecule calculation, calculate the position of a cloud
of atoms surrounding thismolecule in the crystal, and put the calculated
charges in the corresponding atomic positions; a new calculation would
then provide a new set of charges, and this is repeated until we obtain a
set of self consistent charges, as shown in diagram of Figure 5.1. Finally,
a distributed multipole analysis is performed on the final charge dens-
ity matrix, and the resulting atomic multipoles are used in the 
calculation1.

It is only necessary to iterate the charges on eachmolecule in the asym-
metric unit cell, because the symmetry in the crystal guarantees that the
charge distribution on all other molecules is identical to one of the mo-
lecules in the asymmetric unit. We have to be careful in achieving self
consistency in case there is more than one molecule in the asymmetric
unit cell; in each iterative cycle we use the charges of the molecules from
the previous one, and update all of them at the end of it, so that all the
molecules are calculated consistently with each other.

Initially we set up a   program to calculate the 
input for the cloud of atomic charges (which we will refer simply as the
cloud) from the  output and from the knowledge of the atomic
charges; since all the remaining operations (extract the charges to be
put back, checking the convergence for each molecule) were performed
manually, the whole process was quite cumbersome. Recently we have
expanded the  script  – see next section– to automatically
execute all the steps.

e type of charge to use should describe as closely as possible the
field produced by the electronic distribution of the molecule; for this
reason  charges are not ideal, because they are accurate only if we
include higher terms of the expansion, which are not implementable in
the  cloud, while Mulliken charges [177] are not meant to de-
scribe the electrostatic potential outside the molecule [178].

1 emolecular orientation is kept fixed throughout the calculation using the same local
axis set used in , since the multipoles are orientation-dependent
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Figure 5.1. Iterative calculation of the electron distribution for each of the mo-
lecules in the system

We decided to use the method due to Breneman, also called 
(CHarges from Electrostatic Potentials using a Grid based method)
[179], where atomic charges are fitted to reproduce the molecular elec-
trostatic potential at a number of points on a grid around the molecule.
Its main setback is in the treatment of big systems because the evalu-
ation of the potential is not affected significantly by the innermost atoms,
whose fitting is therefore not meaningful: however this is not relevant
for our molecules, relatively small and without buried atoms.

It can be noticed that the converged charges have a sharp variation
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only up to 10–15Å, finally converging below 2% at 25Å. e molecu-
lar dipole, instead, is subject to larger changes; for this reason, we have
decided to choose 30Å as the cloud radius for all of our calculations.

e tolerance parameter depends onwhat degree of approximationwe
are interested in during the calculation: themaximumpossible variation
of the electronic charges detected (or at least available to the user) in
 is 1 × 10−6 e, but our calculations do not show a detectable
variation in predicted  intensity for a tightness smaller than 1 × 10−4 e,
(see Table 5.2) which is the one we selected.

ere are some factors to keep into account in this calculation: since
we want to keep the charge neutrality we have to include full molecules2;
furthermore, we should carefully check that the atomic charges do not
depend too much on the shape of the cloud, as might be the case with
highly polar systems.

e parameters that need to be set for these calculations are:

• radius of the cloud;

• tolerance for the achievement of convergence;

• type of atomic charges to use

To decide the radius of the cloud we performed a series of test calcula-
tions to check at which point the molecular dipoles and charges are un-
affected by further increasing the radius. For all of our systems we have
seen the behaviour visible in Table 5.1 for paracetamol form I, with one
molecule per asymmetric unit. e calculated atomic charges shown are
converged within 5.0 × 10−5 e, which required 5 iterations for all charge
cloud radii tested.

A molecule is considered part of the surrounding cloud if the relative
distance between their centre of mass is smaller than the radius rc of the
cloud. We did not include the case rc = 5Å in the table, as only one
molecule would have been part of the cloud.

e number of surrounding molecules to be considered increases
dramatically with the radius of the cloud (more than 10 000 atoms for
rc = 30Å), and this allows the shape to be a better approximation of a
surrounding sphere.

2 We did not handle ionic systems, for which it might be needed to use full unit cells
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Cutoff radius for the cloud / Å
10 15 20 25 30

Number of surrounding molecules
19 72 173 334 581

Initial charges Charge variation with the increased radius
e percent variation

C 0.305 02 1.57 0.50 0.08 0.20 −0.11
C −0.195 28 19.00 −3.25 0.72 −0.71 0.40
C −0.205 80 11.12 −1.95 1.65 −0.22 0.04
C 0.357 00 12.21 −1.33 0.27 −0.27 0.11
C −0.287 18 −6.70 3.12 −0.33 0.55 −0.25
C −0.206 26 7.81 2.34 −1.44 0.27 −0.03
C 0.721 15 7.36 −0.41 0.26 0.04 −0.03
C −0.435 67 10.51 1.64 −0.15 0.34 −0.10
N −0.630 35 2.15 0.36 −0.09 0.06 −0.05
O −0.585 14 21.50 −2.30 1.03 −0.32 0.07
O −0.562 94 25.60 −2.88 0.85 −0.41 0.22
H 0.169 48 28.19 −1.26 −0.03 −0.31 0.20
H 0.150 80 −0.24 2.99 −1.18 0.41 −0.13
H 0.151 20 −1.51 −1.90 1.60 −0.58 0.31
H 0.140 82 13.17 −3.01 2.08 −0.29 0.02
H 0.418 74 25.86 −2.77 0.70 −0.51 0.21
H 0.331 84 17.38 −1.48 0.60 −0.36 0.10
H 0.130 32 −5.35 4.23 −1.98 1.49 −0.60
H 0.107 02 13.47 −0.54 2.78 0.90 −0.47
H 0.125 24 38.01 4.59 −1.11 −0.30 0.45

Molecular dipole Dipole variation with the increased radius
Debye % variation

4.8314 48.3 28.4 −3.5 1.9 −0.6

Table 5.1. Test calculation of the Breneman charges and molecular dipole, cor-
rected for induction induced by charge cloud of different radius. Each
percentile variation is referred to the previous radius of the cloud. e
system is paracetamol form I

5.2 induction effect on phonon absorption

intensities: the santha script

e calculation of the intensities in a phonon calculation, implemented
in  and used in previous studies [60, 163, 180], is very basic:
the program uses the knowledge of the phonon eigenvectors to rotate
the molecules in the unit cell and calculates the variation of the unit cell
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Convergence parameter / e
10−1 10−2 10−3 10−4

Number of  calculations
74 146 151 243

Frequency Initial Calculated absorption
cm−1 absorption a.u.

54.46 0.028 0.103 0.105 0.105 0.105
73.27 0.088 0.219 0.220 0.220 0.220
83.92 1.000 0.976 0.983 0.981 0.979
91.11 0.854 1.000 1.000 1.000 1.000
95.47 0.778 0.917 0.912 0.912 0.912
99.16 0.353 0.337 0.341 0.341 0.340

103.93 0.471 0.557 0.560 0.560 0.560
130.58 0.065 0.285 0.286 0.283 0.284
144.22 0.285 0.075 0.077 0.077 0.076

Table 5.2. Effect of the variation of the convergence parameter of the charges
in the cloud on the calculated absorption intensities of the terahertz
active phonons. e intensities are normalised to the largest intensity
in each calculation. e system is paracetamol form I

dipole as a sum of all the fixed molecular dipoles, obtained from the
 output. ere is certainly a contribution to the molecular di-
poles due to the variation of the electronic distribution along the eigen-
vector of the vibration, but this is inaccessible without a recalculation of
the electronic charges.

e script  (Scripting Accurate Numbers in TeraHertz Ab-
sorption) was written to simulate the effect of the molecular motion
along the phonon eigenvectors on the electronic clouds. e principle
is similar to what was exposed in the previous section, but on a larger
scale: the molecules are displaced along the direction of the phonon ei-
genvectors; for each molecule, a cloud of point charges is constructed,
so that the effects of induction are considered. e script constructs a
 input file according to the information gathered and standard
parameters, launches the program and retrieves the relevant informa-
tion from the output files. e converged dipoles are used to calculate
the total unit cell dipole, and the total variation versus the displacement
is used to evaluate the absorption intensity.

One of the advantages is the possibility to calculate the absorption in-
tensity formolecules without a permanent electric dipole; with the static
dipole method implemented in  the calculated intensity of all
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(a) Calculated spectrum using ,  forcefield and the  script

(b) Experimental terahertz spectra. From [181]

Figure 5.3. Calculated and measured (78K and 293K) terahertz spectra of ox-
alic acid

phonon modes for such molecules would be zero, while  has
access to the induced dipoles. We have verified this by calculating the
phonon spectrum of oxalic acid ( code , see Figure 5.2), a OHO

O OH

Figure 5.2.centrosymmetric molecule. e results for the calculation are reported
in Figure 5.3a, while the experimental spectrum is in Figure 5.3b.

To use the script we have to consider a number of parameters:

• size of the displacement along the eigenvector;

• number of points for the evaluation of the dipole derivative;



72 modelling polarisation by the crystal environment

• tolerance for the achievement of convergence;

e size of the displacement is a trade-off between two factors: we
need to use molecular displacement small enough so that the numerical
derivative is accurate, but at the same time the displacement should be
large enough for the change in dipole to be accurate, and we need a few
points (3 at least, or 5, with positive and negative displacement) to have
a good estimate.

We need to be careful with the choice of the tolerances for the point
charge cloud, which must be smaller than the typical changes in atomic
charge with phonon displacement if we want to havemeaningful results.

e effect of the polarisation model introduced in this chapter will be
discussed further in the results section.

5.2.1 Eigenvector symmetry analysis

e calculation of absorption intensities with this method is very com-
putationally demanding compared to a normal  run, since
hundreds (or even thousands) of  calculations are needed to
obtain this data. We therefore considered a number of symmetry fea-
tures to reduce the number of operations. As we mentioned before, for
the calculation of the cloud charges we only need to calculate the elec-
tronic distribution of the symmetry independent molecules. While this
is correct for the molecules sitting in the unperturbed equilibrium pos-
itions, the total symmetry is broken by the phonon displacements.

Phonon eigenvectors themselves transform as irreducible representa-
tions under the symmetry group of the crystal, and this information can
be used to reduce the number of calculations.

From a group analysis we could check whether or not a phonon mode
belongs to the same irreducible representation of the electric dipole (lin-
ear functions). However, the current implementation does not utilise a
group analysis of the crystal: rather, we used more intuitive arguments
that are more easily implemented in the code. For example, we retrieved
all the matrix transformations necessary to transform equivalent mo-
lecules into each other; if the translation and rotation components of
the eigenvectors3 of two molecules are equivalent under this transform-

3 Keeping into account that the rotation is a pseudovector, and it transforms in a different
way than a vector under inversion
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ation, it means that the environment around the molecules is forced to
remain the same during a phonon mode displacement, and the electro-
static distribution in these molecules will not vary, halving the number
of  calculations. With the same idea we check whether the
variation of the unit cell dipole is forced to be zero by symmetry, or it is
an even function with respect to the displacement, guaranteeing that its
derivative at equilibrium is zero and avoiding any calculation at all. is
is a practical implementation of symmetry selection rules for infrared
absorption.

Furthermore, it is usually the case that the dipole variation is an odd
function of the molecular displacements, again halving the number of
calculations needed.

ese three symmetry implementations easily save at least one order
ofmagnitude in the number of  calculations, and consequently
shorten the analysis time. e symmetry subroutines, consistingmainly
of small matrix transformations to be performed only once, have a neg-
ligible computational cost.

e current implementation is unable to deal with degenerate irre-
ducible representations, excluding some of the higher symmetry space
groups. We plan to eventually extend the program to be able to deal with
these situations; one simple way would be to directly read the symmetry
information that is produced by .

5.2.2 Subroutine implementation

e  script relies on the output from . e information
needed consists of themolecular orthogonal coordinates, the lattice vec-
tors (for the generation of the point charge cloud), and the phonon ei-
genvectors and eigenvalues, already expressed in the global orthogonal
reference system.

Furthermore, the subroutine asks for several parameters: the cloud
size, the molecular displacement size and number, number of equival-
ent molecules in the system and the level of theory for the 
molecular electron density calculation.

According to the numbering in the diagram of Figure 5.4 we can dis-
tinguish the following phases of the calculation:

1. In the symmetry setup section, the transformation matrices are
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Figure 5.4. Iterative calculation of the terahertz absorption intensities using the
 script
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constructed by comparing the molecular coordinates; an array of
equivalent molecules under each eigenvector perturbation is cre-
ated;

2. e induction-affected charges are calculated according to the
subroutine in the diagram of Figure 5.1;

3. e position of the atoms in the unit cell and in the surround-
ing cloud are perturbed according to the eigenvectors; for con-
sistency, the molecules that are included in the cloud are kept the
same during all the perturbations, regardless of the fact that new
molecules might be shied in or out of the cutoff radius;

4. e induction-affected charges are again calculated according to
the subroutine in the diagram of Figure 5.1, but taking into ac-
count the reduced symmetry;

5. Absorption intensities are calculated as a numerical derivative of
the unit cell dipole, and normalised to set the largest intensity to
unity;

6. Output files are produced, containing frequency, intensity and
preferential direction for the dipole change.

5.2.3 Raman intensity calculations

e  subroutine (although not tested specifically for this) is also
capable of calculating approximate Raman intensities, oen a comple-
mentary tool to understand the vibrational properties of a material.

e Raman effect occurs when light interacts with the electron cloud
and the bonds of a molecule in a crystal. A photon excites the molecule
from the ground state to a virtual energy state, and when it relaxes it
emits a photon, returning to a different vibrational state. e difference
in energy between the original state and this excited state leads to a shi
in the emitted photon’s frequency.

Since this is a different phenomenon than infrared absorption, there
are also different selection rules for a phonon mode to be active; the dis-
criminating parameter is the total polarisability of the unit cell, which
has to vary for a phonon mode to be active. e polarisability trans-
forms as irreducible crystal group representation spanned by the quad-
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ratic function (not linear as the dipole moments, see previous section).
Consequently, for centrosymmetric crystal there is an exclusion rule:
no phonon mode can be both  and Raman active. We expanded our
symmetry script to check for Raman active modes as well, taking into
account the full polarisability tensor for all the symmetry transforma-
tion.

e calculation of molecular polarisabilities is also a standard feature
in  calculations, although considerably slower than a normal
energy calculation. Its variation, necessary for the Raman intensity cal-
culation, is calculated using the same subroutine we used for the unit
cell dipole derivative.



6
SYSTEMS STUDIED

F   we selected a few molecules whose crystal struc-
tures are available in the . We selected our systems accord-
ing to the requirements imposed by our programs of choice and

from the objectives of our study. In particular we were looking for mo-
lecules of pharmaceutical interest, with the additional requirements:

 , up to 25-30 atoms, and a total number of atoms in
the unit cell smaller than 200. ey should contain only hydrogen,
carbon, nitrogen, oxygen or halogen atoms, because of the limita-
tion on the parameterised potential we use in ; the limit
on the number of atoms is an important parameter in , to
keep the computation time reasonable;

 , for a correct behaviour of . We tried to se-
lect systems with increasing degree of intramolecular flexibility to
test the limits of our rigid-molecule lattice dynamics in .
is is not an issue for the  description.

One of themain interests in the research has been how polymorphism
affect the terahertz spectra, and how we can appreciate the differences
from the experimental and computational point of view. We therefore
looked for molecules that crystallise in more than one form.

From the point of view of our research, we selected molecular sys-
tems according to the following goals, expanded in the relative results
chapters:

  deals with the effect on the spectra due to the flexibility of
the molecules in the crystal, and tries to test how much we can
stretch the  program to deal correctly with it. For this
study we needed a set of molecules with different degrees of ri-
gidity;

77
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  deals with the effect water molecules have on the meas-
ured and calculated spectra, looking for significant features that
can help to identify hydrate crystal structures. For this study we
needed molecular systems that crystallise with and without water
within the unit cell, and where the crystal structures of both the
neat and hydrate crystals are known;

  deals with the effect that small changes in the molecular
structure have on themeasured and calculated spectrum. For this
study we needed a series of similar molecules, which are able to
crystallise in similar unit cells.

ere are of course several possible choices: a 2006 study of the
 [182] found about 2000 polymorphic compounds, while a different
study by the same author [183] found more than 8000 molecules where
both an unsolvated and a solvate crystal structure are known, with half
of the solvates being hydrates. e molecular systems we have chosen
are described in more detail in the following sections.

6.1 paracetamol

Paracetamol –  -(4-hydroxyphenyl) acetamide, see Figure 6.1 –
is a very common analgesic and antipyretic drug. ere are six different
crystal forms listed in the , with different stabilities.

ere are many (32!) different determinations of the anhydrous
forms, unified under the code , under different pressures and
temperature conditions. ere are three known polymorphs: the
stable monoclinic form I () and the orthorhombic form II

OH

HN

O

Figure 6.1. () have been known for a long time, while the crystal struc-
ture of the metastable orthorhombic form III () has only re-
cently been determined [184].

ere are three knownhydrate crystal structures: amonohydrate form
(), a high pressure dihydrate form () and a trihydrate
form (). None of these hydrates is stable at standard conditions:
the monohydrate is reported to lose water aer 5 minutes exposure to
air [185], while the trihydrate is even more elusive [186].

We did not calculate the spectrum for the dihydrate, a high pressure
only form, and we will not refer to it in the following chapters.
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6.1.1 Anhydrous forms

e polymorphism of paracetamol is interesting from the pharmaceut-
ical point of view because form II has better tabletting properties com-
pared to form I [187], without affecting the solubility rate [17]. e dif-
ferent tabletting properties are due to the different type of packing, with
form I lacking the flat, hydrogen bonded sheets that characterise form
II (see Figure 6.2).

From the topological point of view the hydrogen bonding networks in
the two forms of paracetamol are very similar, with the formation of in-
terconnected 4-molecule rings (Figure 6.3) across the molecular sheets,
involving all the oxygen and the nitrogen atoms in themolecule. A com-
monway of characterising the ring is to consider the behaviour of neigh-
bouringmolecules in the ring, whether it is an hydrogen bond donor (d)
or acceptor (a).e ring can be classified ddaa for form I, ddda for form
II.

Form III has striking similarity with form II, with the same layered
structure and almost superimposable unit cell parameters. e main
difference is in the arrangement of the molecular sheets: in form II two
subsequent layers are superimposable by symmetry [184], while this is
not true for form III, in which Z′ = 2 (Figure 6.4).

6.1.2 Hydrate forms

e two hydrate forms show very different structures, each character-
ised by its own hydrogen bond network between water and paracetamol
molecules.

Each water molecule in the monohydrate acts as a bridge connecting

Figure 6.2. Comparison of the crystal packing of paracetamol form I (le) and
form II (right) as viewed down the b axis. Molecules closer to the
observer are coloured in red
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Figure 6.3. Hydrogen bond network in paracetamol form I (le) and form II
(right). Molecules with the same symmetry type are in the same col-
our. Hydrogen bonds between molecules are dotted lines, coloured
in azure if both molecules are shown. e donated hydrogen atoms
are highlighted as spheres

Figure 6.4. Comparison of the crystal packing of paracetamol form II (le) and
form III (right). e molecules closer to the observer are coloured
in red

three paracetamol molecules, and it is embedded as in a pocket. In the
trihydrate, instead, each water molecule interacts with at least another
water molecule, forming infinite interconnected channels: in this case
paracetamol could be described as residing in a pocket created by the
water molecules. is connectivity is depicted in Figure 6.5, showing in
different colours symmetry inequivalent water molecules: the hydrogen
bonding network between water molecules is dashed in red.

Structurally, the paracetamol molecules in the trihydrate are organ-
ised in parallel sheets, while they keep a zigzag arrangement in the
monohydrate (similar to form I). More on the structures of paracetamol
hydrates is discussed in the results section, chapter 9.2.2 and 9.2.3.
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Figure 6.5. First neighbours of a water molecule paracetamol monohydrate
monohydrate (, le) and first neighbours of a paracetamol
molecule in the trihydrate (, right)

6.2 theophylline

eophylline –  1,3-dimethyl-7H-purine-2,6-dione, see Figure 6.6
– is a drug of the xanthine family, structurally similar to the caffeine
molecule; it is highly effective as a bronchodilator, and it is used in the

O

N

N

N

NH

O

Figure 6.6.treatment of acute respiratory diseases such as asthma; its use is not
widespread [188] because it has a narrow therapeutic range (10mg l−1

to 20mg l−1) and side effects may appear with a blood concentration
higher than 15mg l−1. e polymorphism of theophylline, which affects
its bioavailability [189], hinders its use as an oral medication [190].

Five neat forms of theophylline have been reported in the literature1

and characterised in the literature [192, 193], but the crystal structures
have been determined only for one of these (form II); a stable mono-
hydrate form, is known as well, which interconverts easily with form II
if heated over 340K [192].

ere are two entries in the : an anhydrous form () and
a monohydrate form ().

e anhydrous form is characterised by a chain of hydrogen bonds
between the molecules [194], while the hydrate structure shows dimer
formation between theophylline molecules, together with an infinite
chain of water molecules in the a-axis direction [195].

On the le, Figure 6.7 shows the linear chain in the anhydrous form,
together with the unit cell; on the right, the different hydrogen bonded
dimers of theophylline, coloured the same. e water chains run per-

1 A sixth form has been recently discovered as well [191]
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Figure 6.7. Crystal packing of anhydrous theophylline (, le) and
monohydrate (, right). In the monohydrate hydrogen
bonded pairs are drawn with the same colour

pendicularly to the plane of the figure, each water molecule connected
via hydrogen bond to each other.

In the theophylline hydrate structure reported in the  there is dis-
order for both a water hydrogen (50% occupancy, hydrogen bonding to
different theophylline molecules in the unit cell) and the methyl group
(rotation of 60° with 64/36% occupancy). Indeed, the disorder of water
is fundamental to correctly interpret the hydrogen bond and interac-
tion between water molecules. is will be discussed in more detail in
chapter 7.3.

6.3 nitrofurantoin

Nitrofurantoin –  1-[(5-nitro-2-furyl) methylideneamino] imida-
zolidine-2,4-dione, see Figure 6.8 – is an antibiotic, sometimes used to
cure infection in the urinary tract; bioavailability problems related to
the existence of polymorphism were reported [196]: tablets of the stable
form β can partially convert (in humid atmosphere, over a period of 4-8
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Figure 6.8. weeks) to either the forms α and hydrate I, both of which are character-
ised by a lower solubility rate.

e  lists 4 forms: the stable anhydrous  (form β) and -
 (form α), and the hydrate forms  (form I) and 
(form II).
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Figure 6.9. Connectivity of nitrofurantoin molecules in forms α (right) and β
(le)

6.3.1 Anhydrous forms

Both anhydrous forms are characterised by molecular stacking layers,
which in form β are parallel to the 204̄ plane, while in form α they are
orthogonal to the b axis. ere is a similar separation between the stack-
ing in both structures.

e arrangement of molecules within a sheet is different: in form α
 the hydrogen bonds form an 8-membered ring, a dimer struc-
ture with a double strong NH · · · O hydrogen bond. In form β the same
NH · · · Obond is present, but with an infinite chain ofmolecules within
a molecular plane (Figure 6.9).

Figure 6.10. Views of nitrofurantoin hydrate form I () to show the
planar arrangement along the b axis (le) and the molecular con-
nectivity in each sheet (right). Different colours are used for sym-
metry inequivalent molecules in each sheet
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Figure 6.11. Views of nitrofurantoin hydrate form II () along the b axis
(le, red molecules closer to the viewer) and molecular diagram
to show the connectivity (right, different colours are used for sym-
metry inequivalent molecules). Water atoms are drawn as spheres

6.3.2 Hydrate forms

e two hydrate forms are characterised by a completely different struc-
ture: in polymorph I there is still organisation in parallel sheets, with an
internal network of hydrogen bonds between nitrofurantoin and water
molecules (see Figure 6.10). In polymorph II the contact between ni-
trofurantoin molecules is mediated by a molecule of water, but this time
the effect of the interaction is that each of them is tilted by an angle near
to 90° with respect to one another.

e structure of the hydrate and its implications for the phonon ei-
genvectors is discussed more in depth for the two forms in chapter 9.

6.4 carbamazepine

Carbamazepine –  5H-dibenzo[b,f]azepine-5-carboxamide, see
Figure 6.12 – is an anticonvulsant and mood-stabilizing drug, and it is
one of the most used drugs for the treatment of epilepsy and bipolar dis-
order [197–199]. It was discovered in 1953 and it has beenmarketed and
used in several countries since the early seventies for its anti-epileptic
properties.

From the structural point of view, carbamazepine exhibits wide poly-
morphism, with as many as five different anhydrous forms and a di-

N

O

NH2

Figure 6.12. hydrate form; for this reason it is commonly used as a prototypical sys-



6.5 benzoic acid 85

tem for polymorphism studies.

Anhydrous carbamazepine is identified in the database with the code
, with 11 different entries. Each form is identified with a Roman
numeral (despite different and sometimes contradictory nomenclature
sometimes used in the literature, see for example [200]).

Forms I–IV exhibit the same type of dimer structure, with a strong
N−H · · · O double bridge of hydrogen bonds between molecules: the
difference is thus mainly due to the different arrangement of this dimer
in the structure, together with the length d of the bridge and the angle α
(see Figure 6.13)which are not found to vary toomuch between different
forms (see Table 6.1). Form V [201] was cleverly synthesised in 2010 by
templating the growth of carbamazepine from the vapour phase onto
the surface of a crystal of a similar molecule (dihydrocarbamazepine) in
order to obtain a predicted, but not previously observed, hydrogen bond
chains (Figure 6.14)

e P-monoclinic form III () is the only suitable form
for drug formulation, because it is thermodynamically stable at am-
bient temperature and has the highest bioavailability [197]; form I
() is the stable form at high temperature, form II ()
is trigonal and characterised by partial solvent inclusion [202], and the
unstable form IV () is C-monoclinic.

e dihydrate has 4 different crystal structure determinations, under
the  code name. Two different crystal polymorphs are reported,
allegedly depending on the starting anhydrous form used in the prepar-
ation: however a more accurate determination of the crystal structures
[200] demonstrated the two structures to be equivalent. e structure of
the hydrate and its implications for the phonon eigenvectors is discussed
more in depth in section 9.2.6.

6.5 benzoic acid

Benzoic acid – see Figure 6.15 – is the simplest aromatic carboxylic acid,
used in medicine for its antifungal properties. It is also used as a food
preservative, with the code number E210, and as a salt with further de-
nominations E211 – E214.

OHO

Figure 6.15.e  code for benzoic acid is , with 8 different determina-
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Figure 6.13. Distance d between nitrogen and oxygen in the hydrogen bond and
angle α between the phenyl rings

Figure 6.14. Hydrogen bond chain in carbamazepine form V, hydrogen bonds
are dotted lines. Unit cell axes are shown

Form  refcode Z′ d (Å) α (°)

Form I  

2.831 116.3
2.884 116.3
2.894 116.3
2.892 116.4

Form II  1 2.890 116.1
Form III  1 2.928 117.2
Form IV  1 2.874 117.5
Dihydrate  1 2.867 116.7

Table 6.1. Variability between the different forms of carbamazepine for the hy-
drogen bond distance d and the angle α between phenyl rings, as
defined in Figure 6.13



6.6 substituted acetanilides 87

Figure 6.16. Crystal structure of benzoic acid. Molecules of the same symmetry
equivalence are shown with the same colours. e alternate posi-
tion for the acid hydrogen is drawn as a white sphere; the symmetry
inversion elements for two of the dimers (on the corners of the unit
cell) are coloured in magenta

tions, and no reported polymorphism or hydrate structures. e carbo-
xylic group mediates a strong hydrogen bond interaction OH · · · O, so
that the structure comprises of dimers of benzoic acid molecules.

e position of the acidic hydrogen on an isolated molecule does not
affect its energy, due to its symmetry; in the condensed state, however,
each dimer sits n one of the crystal centres of inversion (Figure 6.16 ) o
there are two possible configurations, one slig tlyenergetically favoured
over the other. As a consequence the crystal struc tu re is disordered.

A 1996 article [203] analysed the structural changes with the temper-
ature varying from20K to 175K, and the resulting temperature depend-
ent crystal structures are recorded in the database with numeric codes
from  to . e ratio between the hydrogen posi-
tions for the two possible sites changes from 0.87:0.14 (20K) to 0.62:0.38
(175K).

Such a subtle difference in the structure as the slight change in the
position of a hydrogenwas found to have a big effect in themeasurement
and modelling of the terahertz spectrum [180].

6.6 substituted acetanilides

We selected a family of molecules where only one functional group is
changed: the  name of this compounds would generally be N-
(4-X-phenyl) acetamide, – see Figure 6.17 – where X is the substituted
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group.
ese molecules, as well as exhibiting small molecular changes, crys-

tallise with a very similar packing. erefore they represent a very good
system to investigate the effect of small molecular changes on their tera-
hertz spectra.

O

HN

X

Figure 6.17. e molecules reported here were chosen from a larger set of sub-
stituted acetamide derivatives, and the experimental samples were
provided by Suzanne Huth and Micheal Hursthouse (University of
Southampton).

It can be noted from Table 6.3 that we can cluster three of the struc-
tures together for similarity,  and  (almost superimpos-
able) and .

As substitution X group we selected halogen atoms, the hydroxyl
group (OH) and methyl group (CH3).

We already extensively described the hydroxyl-derivative, paraceta-
mol (section 6.1, Figure 6.1). e other systems are obviously going to
have different reference codes in the database, as they are different mo-
lecules. e nomenclature is reported in Table 6.2. Note that there is
no crystal for the iodo-derivative in the , as the crystal structure de-
termination we used comes from a private communication: we will call
it  for brevity throughout the work.

6.6.1 Isostructural crystals

e crystal packing of these molecules is very similar – with the notable
exception of paracetamol – and it represents a very good model system
to analyse the effect of slight changes of structure on the terahertz spec-
trum. e crystal packings are equivalent to the one reported in Figure

Functional group  refcode Polymorphic?

Hydroxy-  3

Methyl-  3

Fluoro-  7

Chloro-  7

Bromo-  7

Iodo- () 7

Table 6.2. Crystal structure code of the acetanilides derivatives used in our
work. e iodo-derivative is not present in the database
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–X  refcode Space
group Unit cell parameters δ (°)

a (Å) b (Å) c (Å) β (°)

CH3
 P21/c 11.67 9.58 7.55 106.1 —
 Pna21 9.89 12.95 6.54 90 116.51

F  Cc 4.73 17.06 9.63 92.87 99.22
Cl  Pna21 9.71 12.75 6.53 90 115.19
Br  Pna21 9.70 13.02 6.67 90 114.34
I () P21/c 9.58 10.30 9.43 109.28 98.29

Table 6.3. Structural information on the acetanilide derivatives, substituted
group X indicated. e unit cell angles α = γ = 90° for all the struc-
tures.  is not isostructural with the other forms

Figure 6.18. Molecular packing of the form  through the b (le, with
red molecules closer to the observer) and a (right) axes. On the
right, the hydrogen bonds are shown

Figure 6.19. Comparison of the in-plane connectivity of N-(4-methyl-phenyl)
acetamide (le) and paracetamol form II (right)
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6.18 for  as an example. e main variability is represented
by the unit cell parameters and the apparent “angle” δ between two mo-
lecules (visible on the le); more precisely – since themolecules are shif-
ted with respect to one another – it is the tilting angle between the plane
containing the phenyl rings of two neighbouring molecules.

e hydrogen bond network is different from the one in paraceta-
mol, since one of the groups involved (OH) is missing: the molecules
are linked by an infinite C−−O · · · H−N−C chain .

e structures  and  have a similar angle δ, but the dif-
ferences in the unit cell parameters and space group make their super-
imposition difficult, except for the similar molecular stacking along the
c axis.

e polymorphic form of themethyl derivative  has instead
a planar structuremore similar to that of paracetamol form II, but with a
different hydrogen bond network, due to the absence of the -OH group:
themolecules are therefore arranged in hydrogen bonded chains instead
of an interconnected plane.



7
EXPERIMENTAL AND CALCULATED TERAHERTZ

SPECTRA

I   we present the comparison between the experi-
mental spectra to the calculated  and  spectra. We
discuss the influence of the forcefield used in  and the ef-

fect of the dispersion correction in  whenever it is possible to
have a comparison (paracetamol form I and nitrofurantoin β).

e effect and the importance of considering the disorder in the crys-
tal structure is analysed in the case of benzoic acid and theophylline hy-
drate.

We report the experimental uncertainties for all themeasurements we
performed; for clarity we only indicate them once. Some of the reported
spectra (theophylline monohydrate and carbamazepine form I and III)
are older determinations acquired by Axel Zeitler.

e spectra are typically plotted in the range that is experimentally
accessible (generally 4 cm−1 to 115 cm−1), unless we want to highlight
relevant calculated peaks at higher frequency.

For all the experimental spectra we selected the clearest determina-
tion, which is the lowest temperature one except for the helium-cooled
systems. e temperature dependent spectra are reported in appendix
A.

7.1 benzoic acid

Part of the calculations1 and all of the experimental measurements of
benzoic acid in this section were performed by Ruoy Li and they are
published [180].

e  experimental structure we used as a starting point for our cal-

1 Non-dispersion corrected ,  functional

91
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Figure 7.1. Experimental spectrum of benzoic acid collected at 110K, compared
with  calculations with the  and  forcefields

culations is , determined by neutron diffraction at 100K. e
structure is disordered over one hydrogen atom, with a 0.67:0.33 ratio;
we retained only the lower energy dimer configuration in the calcula-
tions reported in sections 7.1.1 and 7.1.2 and we refer to it as config-
uration A (visually it is the hydrogen atom coloured in blue in Figure
6.16).

e low temperature spectrum (Figure 7.1) shows two weak absorp-
tion peaks at 35 cm−1 and 40 cm−1, and the two main signals at 69 cm−1

and 91 cm−1. e error bars at higher frequency make it impossible to
unambiguously identify any of the other absorptions. A measurement
by Takahashi at 4 K [204] shows that there is a peak at 78 cm−1 and four
absorptions in the range 95 cm−1 to 130 cm−1.

7.1.1 dmacrys calculations

e geometry optimisation did not have a significant effect on the unit
cell parameters (see Table 7.1): the a vector shrank slightly while the
other two dimensions expanded to some extent.

e two calculations (Figure 7.1) show seven active phonon absorp-
tions, with the lower two matching very well with the experimental val-
ues. e higher calculated absorption frequencies at 80 cm−1 to 85 cm−1

can be related to the experimental 70 cm−1 to 78 cm−1 doublet; the higher
 absorption peaks have a similar shape with respect to the 90 cm−1

to 110 cm−1 experimental structure compared to the  features, but
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Crystal parameters variation

Exp. (110K)  Change/%  Change/%

a /Å 5.43 5.33 −1.86 5.37 −1.13
b /Å 5.04 5.13 1.74 5.19 2.90
c /Å 21.75 21.86 0.50 22.09 1.55
β / ° 98.04 100.56 2.57 100.37 2.37
Vol. / Å3 589.4 587.3 −0.4 604.9 2.6

F value 26.85 28.17

Table 7.1. Variation of the lattice parameters for the  geometry op-
timisation of benzoic acid. Symmetry constraints: unit cell angles
α = γ = 90°
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Figure 7.2. Experimental spectrum of benzoic acid collected at 110K, com-
pared with  calculations with  and dispersion corrected
 functional

there is not a good agreement in frequency.
All of the calculated peaks are found at higher frequencies than the

assigned experimental determinations.

7.1.2 castep calculations

Relaxation of the unit cell was allowed only in the dispersion-corrected
 calculation, with a decrease of 6.98% in volume from the experi-
mental value; there is a contraction of all the unit cell parameters (Table
7.2), while for the  calculations such contraction was only ob-
served for the a vector.

e calculated absorption frequencies are in good agreement with the
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Crystal parameters variation

Experimental (110K) - Change /%

a /Å 5.43 5.24 −3.50
b /Å 5.04 4.94 −1.98
c /Å 21.75 21.25 −2.29
β / ° 98.04 99.37 1.35
Volume / Å3 589.4 542.19 −6.98

Table 7.2. Change in the lattice parameters for the  geometry optimisa-
tion of benzoic acid, dispersion corrected . Symmetry constraints:
unit cell angles α = γ = 90°

experimental values, especially at the higher frequencies, but the peak at
78 cm−1 is missing from both simulations.

e two calculations do not agree well with the low frequency experi-
mental doublet: this feature is present in the  calculation at 50.7 cm−1

and 66.9 cm−1, but the intensity is too low to be seen in Figure 7.2. In
the - calculation the doublet is compressed to two almost superim-
posable absorptions (42.2 cm−1 and 42.6 cm−1).

7.1.3 Effect of the disorder

As we mentioned, about 30% of the acid hydrogen atom positions are
disordered at 100K. We performed  and  calculations
with all the dimers swapped to the higher energy conformation (config-
uration B), and we have seen significant changes in the final spectrum.

e effect of the disorder is reported by Li et al. [180] by considering
a series of supercells containing 12 dimers2. For every supercell, four
randomly chosen dimers were chosen to be in the B configuration, thus
keeping the ratio fixed at 2 : 1 for configuration A : B, and we analysed
the resulting spectra. e results show an improved agreement with the
experimental data, and demonstrate that even such a subtle variation
within the unit cell has a measurable effect (Figure 7.4).

e  spectra resulting from these calculations are reported in
Figure 7.3; we can see how every disordered spectrum is different from
each other, and the detailed structure of the peaks (for instance, the sep-
aration of the two peaks at 2.5 THz) is different from the weighted aver-

2 In this way “real” disorder is not considered: there is a bigger unit cell with a reduced
symmetry, but it is still a periodic calculation
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Figure 7.3. Simulated terahertz absorption spectra from the ordered models of
the benzoic acid crystal structure and from the four models with a
2 : 1 ratio of dimers in configurationsA and B. eweighted average
spectrum (third from the top) is a simple 2 : 1 average of the spectra
calculated from the two ordered crystal structure models. e aver-
age disordered spectrum (fourth from the top) is an average over the
spectra calculated from the four disordered models. e peak shape
for each calculated vibrational mode is assumed to be Lorentzian,
with a full width at half maximum of 0.1 THz. From [180]
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Figure 7.4. Experimental spectrum of benzoic acid collected at 50K, compared
with  calculations with dispersion corrected  functional,
configuration A and B

age of the spectra of the two ordered configurations.

A calculation with a 2a× 3b× c supercell (720 atoms) such as the one
reported abovewould be infeasible with  because of the sheer size
of the system. We complement here analysis with the dispersion correc-
ted calculation for both of the unit cell configurations A and B. e cal-
culations confirm that the energy of configuration A is slightly smaller
than configuration B: the energy difference between the two configur-
ations is 1.39 kJmol−1, slightly smaller than the value for the 
calculations, 1.7 kJmol−1.

e spectra from these  calculations is reported in Figure 7.4.
Although it would be incorrect to consider the total spectrum of the
disordered systemas aweighted sumof the twoordered structures (since
the phonons depend on the local and global environment of the dimers,
and the  calculations seem to suggest that the disorder is not
organised in macroregions) we cannot fail to notice that the two spectra
seem to be complementary to each other, with all of the experimental
peaks having a calculated counterpart at the same frequency (except for
the two low frequency features at 35 cm−1 and 40 cm−1).
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7.2 anhydrous theophylline

e experimental spectrum of theophylline was recorded with a range
of temperatures from 80K to 240K. e experimental sample was ob-
tained by Sigma-Aldrich (code -, purity > 99%).

e experimental measurement, together with the  simu-
lated spectra, is reported in Figure 7.5. e experimental peaks are re-
liable only up to about 110 cm−1 due to experimental uncertainties. We
can clearly identify three regions, each with several peaks: a low fre-
quency feature centred around 35 cm−1, a broad peak at 61 cm−1 with
three minor shoulders, and the higher frequency region from 90 cm−1

to 120 cm−1, comprising of 3-4 peaks.
Another low temperature spectrum is reported in the literature [57],

which suggest that the shoulder at 51 cm−1 in our measured spectrum is
a peak.

7.2.1 dmacrys calculations

ere is very little variation between the experimental crystal structure
and the one calculated in  (optimised from , room
temperature determination), in particular using the  forcefield.

e absorption frequencies calculated with  and are very close
to each other up to 90 cm−1, and close in intensity (with the exception of
the peak at 62 cm−1, which is very weak with the  forcefield, but quite
strong in the  calculation).

e lowest experimental absorption feature can be assigned to the

Crystal parameters variation

Exp. (295K)  Change/%  Change/%

a /Å 24.61 24.49 −0.47 24.67 0.23
b /Å 3.83 3.92 2.27 3.92 2.35
c /Å 8.50 8.35 −1.79 8.51 0.17
Vol. / Å3 801.4 801.08 −0.04 823.5 2.76

F value 14.09 8.45

Table 7.3. Variation of the lattice parameters for the  geometry optim-
isation of anhydrous theophylline, with  and  forcefield. Sym-
metry constraints: unit cell angles α = β = γ = 90°. e initial
structure parameters are taken from 
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Figure 7.5. Experimental spectrum of anhydrous theophylline collected at 100
K, compared with  calculations,  and  forcefield

Crystal parameters variation

Experimental (295K) - Change /%

a /Å 24.61 24.142 −1.90
b /Å 3.83 3.62 −5.48
c /Å 8.50 8.47 −0.35
Volume / Å3 801.4 741.06 −7.52

Table 7.4. Change in the lattice parameters for the  geometry optimisa-
tion of anhydrous theophylline, dispersion corrected . Symmetry
constraints: unit cell angles α = β = γ = 90°. e initial structure
parameters are taken from 

lowest two calculated frequencies, that are located ≈ 10 cm−1 lower in
frequency – leaving one of the experimental features unassigned. ere
is a good agreement between the experimental and calculated frequen-
cies in the central group of features, but their relative absorption intens-
ities are poorly reproduced.

In both of the calculated spectra there is one peak just below 50 cm−1

with intensity much higher than the others, while in the experimental
spectrum the three absorption groups display similar magnitude for the
absorbance.

7.2.2 castep calculation

eminimisation with  shows a 7.5% contraction in the unit cell
volume, mainly due to the decrease of the b axis (Table 7.5).
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Figure 7.6. Experimental spectrum of anhydrous theophylline collected at 100
K, compared with a  calculation, dispersion corrected 
functional

As found in the  calculations, there is one clearly predom-
inant absorption phonon in the experimental window. However, this
mode is atmuchhigher frequency (71 cm−1) compared to the two-
 calculations.

e lowest absorption frequency (16 cm−1) is about 12 cm−1 lower
than the lowest experimental value; this peak, along with the two at
32 cm−1 and 41 cm−1, can be assigned to the lowest frequency experi-
mental group.

e following three calculated peaks have a frequency similar to that
of the central experimental group of features, although the assignment
cannot be made, because of the poor agreement between calculated and
measured intensities.

e high frequency region shows a decent match both with position
and relative intensity, with the highest frequency peak (at 117 cm−1) dis-
playing double the intensity of the previous four.

7.3 theophylline monohydrate

e experimental spectra of theophylline monohydrate was recorded at
low temperature by Axel Zeitler, and is reported in literature [57].

e spectrum (Figure 7.7) comprises of a weak low frequency absorp-
tion frequency at 30 cm−1, a doublet feature centred around 60 cm−1, a
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Figure 7.7. Comparison of the experimental spectra of anhydrous and theophyl-
line monohydrate, respectively at 100K and 80K

broad absorption frequency at 80 cm−1 and a series of absorption fea-
tures from 90 cm−1 to 120 cm−1. emain differences with the spectrum
of the neat theophylline crystal are in the region below 50 cm−1.

7.3.1 dmacrys calculations – symmetry constrained

e structure of theophylline hydrate recorded in the database,
, reports disorder of the hydrogen atoms in water and in one
of the methyl groups, with a 50% occupancy for two sites, as reported
in chapter 6.2.

Water molecules in the structure are symmetry related by a centre of
inversion. With this constraint, the hypothetical positions of the hy-
drogen atoms in water are not optimal: the water-water close contacts
are either H · · · H or O · · · O, instead of forming the favoured hydro-
gen bond H−O · · · H. e geometry optimisation with  can-
not reach this molecular configuration due to the symmetry constraints
imposed by the unit cell crystal group: the rotation (see the arrows in
Figure 7.8) can only change the close contact from H · · · H to O · · · O.

e geometry optimisation with , therefore is constrained
by symmetry in a configuration that cannot achieve optimal hydrogen
bonds: the structure is trapped in a higher energy state. e results of
the optimisation is summarised in Table 7.5. e F values are very high,
mainly due to the complete repositioning of the watermolecules and the
structural changes necessary to relocate them within the structure, as
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Figure 7.8. Hydrogen bond network of the water molecules within the
 crystal structure. Molecules with the same symmetry
equivalence are in the same colours, the hydrogen bonds are col-
oured in blue. Alternative positions in two of the molecules for the
disordered hydrogen are coloured in red

Figure 7.9. Molecular packing of theophylline monohydrate aer the minimisa-
tion with ,  forcefield. Molecules with the same sym-
metry equivalence are in the same colours, the hydrogen bonds are
coloured in blue

shown in Figure 7.9. e water molecules reorganise from one column
to two parallel columns. e required change in the shape of the unit cell
of the crystal results in a compression along the a axis and on expansion
along the b axis, with a slight increase in volume.

e minimisation converged for both the forcefields, and the min-
imised structure has an energy decrease upon lattice minimisation of
almost 60 kJmol−1; the calculated spectrum is reported in Figure 7.10.
e calculated  structure, reached a stationary point, but not a real
minimum: as a result the phonon spectrum had imaginary frequen-
cies. Oddly (since the  optimised structure is very different from
the experimental determination), the calculated spectrum reproduces
the experimental spectrum remarkably well, apart from the low energy
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Figure 7.10. Experimental spectrum of theophylline monohydrate collected at
80K, compared with  calculation with full symmetry im-
posed on the structure, using the  forcefield

Crystal parameters variation

Exp. 295K  Change/%  Change/%

a /Å 4.47 4.01 −10.25 4.11 −7.92
b /Å 15.35 16.09 4.76 15.24 −0.74
c /Å 13.12 14.26 8.70 14.70 12.04
β / ° 97.79 96.92 −0.88 96.87 −0.93
Vol. / Å3 891.86 913.32 2.40 915.11 2.60

F value 571.58 607.71

Table 7.5. Variation of the lattice parameters for the  geometry optim-
isation of theophylline monohydrate with full symmetry imposed on
the structure, using  and  forcefield. Symmetry constraints:
unit cell angles α = γ = 90°. e initial structure parameters are
taken from . Note that the  final structure does not rep-
resent a real minimum for the energy

calculated absorption at 16 cm−1 and the intensity of the 80 cm−1 feature.

7.3.2 dmacrys calculations – symmetry relaxed structure

If we look back at the structure of the monohydrate in Figure 7.8, we
see that the water molecules can form a reasonable hydrogen bond net-
work if the hydrogen positions of each of the “green” water molecules
occupy the alternative disordered site. e disorder in the crystal struc-
ture, therefore, is not random: each water is equally likely to be in either
of the two orientations, but all the molecules within a channel will be
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# Structure Initial energy / kJmol−1 Final energy / kJmol−1

0 –  −103.09 −147.04
0 –  −100.37 −157.40

1 –  −149.38 −160.70
2 –  −146.95 −159.37
3 –  −147.18 −158.81
4 –  −149.64 −160.12
1 –  −157.54 −166.04
2 –  −154.73 −164.62
3 –  −157.56 −165.71
4 –  −157.54 −166.04

Table 7.6. Initial and final lattice energy for the optimisation of the crystal struc-
ture of theophylline hydrate in the symmetry constrained (0) and in
the four possibilities for the methyl disorder (1–4), calculated with
,  and  forcefield

able to form the energetically favoured hydrogen bond.

e arrangement of molecules described above breaks the centre of
inversion symmetry; therefore we had to construct a unit cell with re-
duced symmetry for the minimisation with .

Since each of the molecules within the unit cell has one disordered
group, we have 16 possible combinations for the choice of unit cell.
However, the choices for the water are not independent, since we want
to force the formation of a hydrogen bond chain, and half of the remain-
ing eight choices are equivalent under inversion symmetry. We there-
fore performed four calculations (one for each possible configuration of
the methyl groups within the reduced symmetry unit cell). e disorder
sites for the hydrogen atoms in the structure are shown in Figure 7.11,
with their van der Waals radii.

e final energies of the four structures, reported in Table 7.6, are
within a 2 kJmol−1 window: the disorder of themethyl group, therefore,
does not have such a big effect on the calculations, but the elimination of
the symmetry inversion from the unit cell lowered the energy by more
than 10 kJmol−1 in comparison with the symmetry constrained calcu-
lation.

e summary of the structural changes for all the possible disordered
structures is reported in Table 7.7. In general, the Gavezzotti factor F
is quite high, but much lower in comparison with the symmetry con-
strained calculations. ere is a big variation along the c axis, which in
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Figure 7.11. Disordered sites for the hydrogen in water (shades of red) and in
the theophylline molecule (shades of green)
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Figure 7.12. Experimental spectrum of theophylline monohydrate collected at
80K, compared with the four disorder methyl configurations, with
 and the  forcefield
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Figure 7.13. Experimental spectrum of theophylline monohydrate collected at
80K, compared with the four disorder methyl configurations, with
 and the  forcefield
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Crystal parameters variation

Exp.  Change/%  Change/%

Structure 1

a /Å 4.47 4.25 −4.86 4.31 −3.51
b /Å 15.35 14.97 −2.50 15.21 −0.89
c /Å 13.12 14.39 9.69 14.20 8.24
β / ° 97.79 97.70 −0.08 97.11 −0.69
Volume / Å3 891.86 907.60 1.76 924.63 3.67

F value 218.51 151.66
Structure 2

a /Å 4.47 4.30 −3.57 4.36 −2.41
b /Å 15.35 14.98 −2.42 15.22 −0.85
c /Å 13.12 14.19 8.15 14.05 7.10
β / ° 97.79 97.43 −0.36 97.01 −0.80
Volume / Å3 891.86 908.35 1.84 925.91 3.81

F value 161.02 115.36
Structure 3

a /Å 4.47 4.27 −4.28 4.34 −2.69
b /Å 15.35 14.97 −2.47 15.24 −0.75
c /Å 13.12 14.25 8.64 14.04 6.97
β / ° 97.79 97.47 −0.32 96.98 −0.83
Volume / Å3 891.86 905.17 1.49 923.06 3.50

F value 176.64 110.61
Structure 4

a /Å 4.47 4.21 −5.77 4.29 −3.78
b /Å 15.35 14.95 −2.62 15.21 −0.89
c /Å 13.12 14.49 10.39 14.19 8.15
β / ° 97.79 97.76 −0.03 97.09 −0.72
Volume / Å3 891.86 903.45 2.40 921.31 3.30

F value 248.93 149.11

Table 7.7. Variation of the lattice parameters for the  geometry optim-
isation of theophylline hydrate, with  and  forcefield. Sym-
metry constraints: unit cell angles α = γ = 90°. e initial structure
parameters are taken from , and each of the structure has
one of the possible methyl configurations

the  calculations is balanced with a variation along the other two
axes to leave the volume almost unchanged.

e variation in the structure during the energyminimisation ismuch
less pronounced in the case of the  forcefield calculations; anyway, the
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agreement of the terahertz absorption is better with the  forcefield.
In Figure 7.12we cannotice that the higher frequency peaks agree very

well with the experimental features, and it is very similar in shape among
the four calculations; the greatest variability is in the description of the
experimental doublet at 60 cm−1, with one of the structures (number 4,
the second lowest energy crystal structure) resembling the experimental
shape much better.

In contrast, the  calculated spectra do not display a very good
agreement: there is only one major calculated peak around 60 cm−1 in-
stead of the two measured ones, while the experimental peak at 90 cm−1

is calculated shied to lower frequencies by a value between 10 cm−1 and
15 cm−1.

7.4 paracetamol form i

e experimental spectra of paracetamol form I was measured for a
range of temperatures from 10K to 200K in a helium cooled chamber,
with the determination at 29K being the clearest.

All the measurements are characterised by a very strong background.
e strongest absorption peaks (Figure 7.14) are at 51 cm−1, 62 cm−1, 75
cm−1, 93 cm−1 and 107 cm−1, increasing monotonically in absorbance.
ere are at least two other strong absorptions at 124 cm−1 and 136 cm−1,
while other peaks are unclear due to experimental uncertainties.

7.4.1 dmacrys calculations

Weused the  structure , determined by neutron scattering
at 100K as a starting point for our geometry minimisations. is crystal
structure determination shows a big librational motion of the methyl
group and suggests the possibility of disorder within the structure [205].

e F value for the geometry optimisations of the crystal structure is
very low, with the  minimised structure exhibiting a larger deviation
of the axis lengths from the experimental values than the  calculated
values (although the final volumes are almost the same).

e calculated spectra for these calculations are reported in Figure
7.14. We can see that there is a good agreement among the calculated
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peaks and intensities, except for the two highest features in the experi-
mental range.

ere is partial agreement between the experimental data and the
 calculations. In the region from 40 cm−1 to 80 cm−1 one of the
absorptions is missing; if we assume that the 94 cm−1 experimental peak
corresponds to the 86 cm−1 calculated peak, the whole upper frequency
absorption region is shied to higher frequency by 12 cm−1.

7.4.2 castep calculations

Relaxation of the unit cell was allowed only in the dispersion-corrected
 calculation, with a volume decrease of 8.47%. e biggest con-
traction is along the b direction, although all of the optimised axes are
decreased in value.

e dispersion corrected calculation is the one showing worst agree-
ment with the experimental data. e are only two, very weak absorp-
tions at 58 cm−1 and 80 cm−1 instead of the three experimental values.
ehigher group of vibrationalmodes in the range 105 cm−1 to 130 cm−1

is found at a frequency 20 cm−1 higher than the group of absorption seen
in the experimental spectrum.

We reported two non-dispersion corrected calculations in Figure 7.15,
with different energy cutoff for the basis set (1050 eV vs 1200 eV). We
can see how the intensities significantly differ between the two spec-
tra, with the 1200 eV showing a better agreement with the experimental
data.

7.5 n-phenyl-acetamide derivatives

e spectra of the N-phenyl-acetamide derivatives are reported in
chapter 11.

7.6 nitrofurantoin form β

e sample of the stable β form of nitrofurantoin was obtained from
Sigma-Aldrich (code -, purity > 99%) and used without fur-
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Figure 7.14. Experimental spectrum of paracetamol form I (29K), compared
with  calculations with the  and  forcefields
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Figure 7.15. Experimental spectrum of paracetamol form I collected at 29K,
compared with  and dispersion corrected  calculations

Crystal parameters variation

Exp. (100K)  Change/%  Change/%

a /Å 12.76 12.71 −0.36 12.57 −1.49
b /Å 9.25 9.38 1.43 9.36 1.15
c /Å 7.08 7.20 1.65 7.28 2.77
β / ° 115.52 115.00 −0.45 114.57 −0.81
Vol. / Å3 754.51 778.51 3.18 778.66 3.20

F value 10.97 19.24

Table 7.8. Variation of the lattice parameters for the  geometry optim-
isation of paracetamol form I, with  and forcefield. Symmetry
constraints: unit cell angles α = γ = 90°
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Crystal parameters variation

Experimental (100K) - Change /%

a /Å 12.76 12.48 −2.19
b /Å 9.25 8.74 −5.51
c /Å 7.09 6.95 −1.97
β / ° 115.52 114.48 −0.90
Volume / Å3 754.51 690.53 −8.47

Table 7.9. Change in the lattice parameters for the  geometry optimisa-
tion of paracetamol form I, dispersion corrected . Symmetry con-
straints: unit cell angles α = γ = 90°. e initial structure paramet-
ers are taken from 

ther treatment.

e measurements were performed with helium cooled equipment,
and we recorded a series of spectra in the temperature range from 10K
to 75K. Once again the clearest measurement was not the one at lowest
temperature, but the measurement at 29K, reported in Figure 7.16.

e measurement displays very low experimental uncertainties up
to high frequencies. e most prominent experimental features are at
68 cm−1, 92 cm−1, 104 cm−1 and 108 cm−1; there are also other weaker
absorptions and shoulders.

7.6.1 The dmacrys calculations

e minimisation of the structure with  led to an expansion of
the experimental unit cell by a similar amount as comparedwith the
and the  forcefield: the sum of the terms due to the unit cell variation
is by far the most important contribution to the F factor, with 31.08 and
21.11 respectively. e two final structures are almost superimposable,
with an equal length of the hydrogen bond (see Figure 6.9) increased
from the experimental value of 1.916Å to 1.938Å.

e calculated terahertz spectrum with the two forcefields are al-
most identical to each other, as well (Figure 7.17): there are two major
peaks agreeing with the experimental spectrum; the calculated peaks
at 37 cm−1 do not have an experimental counterpart, and the calcula-
tions do not find any relevant absorption with frequency higher than
100 cm−1. We can assume that these higher frequency observed features
correspond to intramolecular absorptions, which are not accounted for
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Crystal parameters variation

Exp. (293K)  Change/%  Change/%

a /Å 7.84 8.17 4.19 8.11 3.43
b /Å 6.46 6.56 1.61 6.57 1.70
c /Å 18.92 18.29 −3.29 18.44 −2.53
β / ° 93.18 92.03 −1.23 91.75 −1.53
Vol. / Å3 957.66 981.41 2.48 982.92 2.63

F value 47.07 33.65

Table 7.10. Variation of the lattice parameters for the  geometry optim-
isation of nitrofurantoin form β, with  and  forcefield. Sym-
metry constraints: unit cell angles α = γ = 90°. e initial structure
parameters are taken from 

in  calculations.

7.6.2 The castep calculations

We performed two  calculations, with and without dispersion
correction. e crystal structure of the non-dispersion corrected cal-
culation is almost superimposable with the experimental one.

e relaxation of the unit cell was performed only with the /-
 scheme, and the results are reported in Table 7.11. e variation of
the unit cell parameters is smaller than the corresponding dispersion
corrected calculation for the other systems mentioned in the previous
sections (variable from 6% to 10%), but still larger than the variation
with .

epositions of the calculated peaks in the terahertz spectrum (Figure

Crystal parameters variation

Experimental (293K) - Change /%

a /Å 7.84 7.59 −3.19
b /Å 6.46 6.47 0.15
c /Å 18.92 18.64 −1.47
β / ° 93.18 90.82 −2.53
Volume / Å3 957.66 915.16 −4.43

Table 7.11. Change in the lattice parameters for the  geometry optimisa-
tion of nitrofurantoin β, dispersion corrected . Symmetry con-
straints: unit cell angles α = γ = 90°. e initial structure paramet-
ers are taken from 
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Figure 7.16. Spectrum of nitrofurantoin β collected at 29K
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Figure 7.17. Comparison of the experimental spectrum of nitrofurantoin β with
the  calculated spectra
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Figure 7.18. Comparison of the experimental spectrum of nitrofurantoin β with
the  calculated spectra
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7.18) for the  calculation are very close to experimental features; the
intensity is not always matching, such as at 83 cm−1 (an experimental
shoulder).

e /- are very similar in shape with the , but shied at
higher frequency by 8 cm−1 to 10 cm−1. e calculation seems to under-
estimate the frequencies in the high end of the terahertz spectrum, while
underestimating frequencies of the lower energy modes. Furthermore,
the comparison of the eigenvectors (Figure 8.14f, page 157) wouldmake
us discard the idea of a pure energy shi.

7.7 nitrofurantoin hydrate, form ii

e orthorhombic polymorph (form II) is the stable nitrofurantoin hy-
drate form at room temperature, and it was obtained by Shyam Karki by
following the experimental procedure outlined by Pienaar et al. [206].
e spectra were collected over a range of temperatures from 80K to
295K. e clearest determination is the lowest temperature one, in Fig-
ure 7.16.

e phonon calculation with , /-, (the biggest we at-
tempted, with 16 molecules, 208 atoms and an initial unit cell volume of
2166Å3) found seven imaginary frequencies; the spectrum is therefore
not reported in this section. In the time available we were not able to
continue the calculations to try to find a true energy minimum.

7.7.1 The dmacrys calculations

egeometry optimisationwith the forcefield le the unit cell para-
meters nearly unchanged (see Table 7.12), and a unit cell volume change
of only 2%.

By far, the biggest contribution to the F value (104.6) is the rotation
of the 8 molecules of water by 29° each. is rotation of the water mo-
lecules leads to changes in the hydrogen bond distances relative to the
experimentally determined structure: this might be a signal of some in-
adequacy of the electrostatic part of the intermolecular potential, or in
the evaluation of the strength of the four hydrogen bonds (there is a
complex interaction of water with the surrounding molecules, see Fig-
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Figure 7.19. Experimental spectrum of nitrofurantoin hydrate form II at 80K

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.61 1.21 1.82 2.42 3.03

 Experimental
 fit
 w99

 Frequency (THz)

Ab
so

rb
an

ce
 (

a.
u.

)

Frequency (cm-1)

Figure 7.20. Comparison of the spectra of nitrofurantoin hydrate form II gener-
ated with ,  and  forcefield with the experimental
spectrum. e initial structure is taken from 

Crystal parameters variation

Exp. (293K)  Change/%  Change/%

a /Å 12.64 12.74 0.82 12.70 0.46
b /Å 9.85 9.81 −0.39 9.34 −5.28
c /Å 17.38 17.68 1.72 18.40 5.88
Vol. / Å3 2166.13 2212.88 2.15 2182.43 0.75

F value 118.24 286.24

Table 7.12. Variation of the lattice parameters and volume for the  geo-
metry optimisation of nitrofurantoin hydrate form II, with  and
 forcefield. Symmetry constraints: unit cell angles α = γ = 90°.
e initial structure parameters are taken from the room temperat-
ure determination 
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ure 6.11, page 84); itmight also be due to a poor determination of the hy-
drogen positions in the experimental structure – since hydrogen atoms
can be difficult to locate within the structure.

With the  calculation there is a similar rotation of the water mo-
lecules (by almost 38°), associated with a big reorganisation of the axes
relative magnitude: although the volume is almost unchanged, the vari-
ation of the b and c axes are on the order of 5%.

Despite the reorientation of water in the calculated structure, the
agreement of the calculated phonon spectrumwith the experimental de-
terminations is very good: all of the peaks in the region from 20 cm−1 to
110 cm−1 have an excellent agreement in position and intensity.

7.8 carbamazepine form i

Carbamazepine form I is not the most stable form at room temperat-
ure, but it can be easily obtained by heating form III to 443K or higher
[207]. e measurement of the spectrum was performed at a cryogenic
temperature of 7 K by Axel Zeitler [60]. ere are several, very clear ab-
sorption peaks (Figure 7.21, top): the strongest are at 33 cm−1, 56 cm−1,
74 cm−1, 86 cm−1 and 100 cm−1.

Since this is the system with the biggest unit cell among the one we
studied (Table 7.13), with four molecules in the asymmetric unit cell,
we did not attempt a calculation of the phonon spectrum with .
In the next section we report the analysis with .

7.8.1 The dmacrys calculations

e structural changes upon lattice energy minimisation with 
were minimal, with the F value resulting from the  and  force-
field being smaller than 5. e number of absorption frequencies is re-
lated to the number of molecules in the unit cell, and for carbamaze-
pine form I this is higher than for other systems: there are 21 -active
modes, and we can count no less than 16 absorption frequencies with
a non-negligible absorption intensity in the spectra (Figure 7.21). e
frequencies are not strongly dependent to the forcefield employed, with
the  values shied to higher values only very slightly.
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Figure 7.21. Experimental spectrum of carbamazepine form I at 7 K (top) and
comparison with ,  and  forcefield (bottom). e
initial structure is taken from 

Crystal parameters variation

Exp. (158K)  Change/%  Change/%

a /Å 5.17 5.22 1.04 5.21 0.84
b /Å 20.57 20.74 0.82 20.67 0.49
c /Å 22.24 22.29 0.23 22.41 0.74
α /° 84.12 84.43 0.36 84.55 0.51
β /° 88.00 87.84 −0.18 87.57 −0.49
γ /° 85.19 84.91 −0.32 85.08 −0.12
Volume / Å3 2344.82 2394.50 2.11 2394.88 2.13

F value 4.57 4.33

Table 7.13. Variation of the lattice parameters and volume for the 
geometry optimisation of carbamazepine form I, with  and 
forcefield. e initial structure parameters are taken from -

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Crystal parameters variation

Exp. (158K)  Change/%  Change/%

a /Å 7.53 7.62 1.188 7.64 1.38
b /Å 11.15 11.09 −0.53 11.05 −0.89
c /Å 13.91 13.84 −0.51 13.73 −1.26
β /° 92.86 92.85 −0.06 93.30 0.47
Vol. / Å3 1168.30 1169.81 0.12 1158 −0.38

F value 3.60 9.18

Table 7.14. Variation of the lattice parameters and volume for the  geo-
metry optimisation of carbamazepine form III, with  and 
forcefield. Symmetry constraints: unit cell angles α = γ = 90°. e
initial structure parameters are taken from 

e agreement of the calculated absorption intensities with the ex-
perimental values in the range 20 cm−1 to 40 cm−1 is better for the 
forcefield; for both  and  the strongest calculated absorption is at
about 42 cm−1, where there is no strong experimental absorption. Other
assignments are very difficult, because of the high density of modes and
the possible uncertainties in frequency.

7.9 carbamazepine form iii

Carbamazepine form III is the stable polymorph and it is used in the
drug formulations in tablets [208]. e spectrummeasurement was per-
formed by Axel Zeitler at 7 K [60]. e spectrum has different absorp-
tion features than form I, allowing for an easy recognition of the crystal
form.

ere are several characterising absorption peaks (Figure 7.22): the
lowest frequency, weak signal at 32 cm−1 and stronger features at 45
cm−1, 68 cm−1, 76 cm−1 and 86 cm−1. ere is a group of peaks around
100 cm−1, while the peak at 115 cm−1 would be in the region of high ex-
perimental uncertainties.

7.9.1 dmacrys calculations

e energy minimisation with , as in the case of form I, does
not affect very much the unit cell parameters and volume (Table 7.14):
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Figure 7.22. Experimental spectrum of carbamazepine form III at 7 K
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Figure 7.23. Comparison of the experimental spectrum of carbamazepine form
III with ,  and  forcefield (top) and ,
/- (bottom. Initial structure is from )
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with both  and the F value is low, less than 15. e  calculation
has a smaller volume change, but a bigger variation for the individual
lattice dimensions.

e absorption at 31 cm−1 has a calculated counterpart, almost in-
visible (intensity 1/1000 of the strongest calculated) at approximately
38 cm−1 with the two forcefields.

e strongest absorption peaks in the spectra for both the calculations
can be assigned to the experimental feature at 45 cm−1, which is not the
strongest experimentally. e lowest experimental absorption is found
in the calculations but it is too weak to be seen in Figure 7.23.

e  doublet around 80 cm−1 could be assigned to the experi-
mental features at 68 cm−1 and 76 cm−1, while other assignments would
be impossible to judge correctly, due to the scarcity of calculated mode
compared to the experimental spectrum.

We can conclude that there is no particular agreement between exper-
iment and calculations for form III for frequency higher than 60 cm−1.

7.9.2 castep calculation

We performed a dispersion corrected  calculation of the phonon
spectrum. e structure undergoes a contraction during the minimisa-
tion, with the b and c axis shrinking by about 4.5%, and the total volume
contraction of 10.55% is comparable to what we see in other systems
with /-. In Figure 7.24, as seen along the a axis direction, the
different size of the two structures is shown. e hydrogen bond in the
carbamazepine dimer (along the c axis) is shortened in the calculation
(2.84Å vs 2.93Å) ; the distance between the phenyl rings in adjacent
molecules (parallel to the ac plane) is also shortened of almost 0.2 Å,
from 3.82Å vs 3.64Å.

e spectrum is accurate in shape, with clear potential assignments
of all the computational peaks to experimental features. In the region
50 cm−1 to 115 cm−1 the calculated absorption peaks are shied about
15 cm−1 to higher frequency: this is probably the effect of the contraction
of the unit cell volume.
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Figure 7.24. Superimposition of the experimental unit cell of carbamazepine
form III (in green) with the  optimised geometry (in red),
as seen through the crystallographic a axis. e unit cell axes are in
the same colour of the structure

7.10 selected computed spectra

Due to the difficulty in the synthesis of some of the polymorphs (parace-
tamol hydrates, for example, are only stable for minutes in air) we were
not able to obtain an experimental spectrum for all the systems listed
in chapter 6. In this section we will briefly comment on the calculations
and what we predict (within the limits of themethod, highlighted by the
comparisons with the experimental spectra in the previous sections) to
be the results of such measurements.

Crystal parameters variation

Exp. (293K) - Change /%

a /Å 7.53 7.38 −1.99
b /Å 11.15 10.65 −4.48
c /Å 13.91 13.26 −4.67
β / ° 92.86 92.21 −0.69
Vol. / Å3 1165.34 1042.23 −10.55

Table 7.15. Change in the lattice parameters for the  geometry optimisa-
tion of carbamazepine form III, dispersion corrected . Symmetry
constraints: unit cell angles α = γ = 90°. e initial structure para-
meters are taken from 
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7.10.1 dmacrys calculations for paracetamol form II

e  calculations and  calculations were performed us-
ing the  crystal structure at 123K. e minimisation le the
unit cell parameters and volume almost unchanged (F is less than 18 for
both forcefields, see Table 7.16).

e simulated absorption spectra are dominated by a high frequency
absorption, around 140 cm−1. e overall spectrum is therefore very flat
in the experimental range from 0 cm−1 to 110 cm−1; therefore, according
to these calculations, a higher ratio /polyethylenemight be necessary
to appreciate any absorption peak (reported in logarithmic scale in Fig-
ure 7.26).

7.10.2 castep calculation for paracetamol form II

We performed a dispersion corrected  calculation, starting from
the  crystal structure. e larger contractions are in the dir-
ections of the hydrogen bonds (crystallographic plane bc), which are de-
creased from respectively 2.94Å (NH · · · O) and 2.71Å (OH · · · O) to
2.81Å and 2.61Å.

e calculated spectrum is very similar in shape to the  spec-
tra, with a strong absorption feature at 117 cm−1 (Figure 7.25), but there
is a shi of almost 20 cm−1 compared with the  computed spec-
tra, which could be due to the unit cell volume.

7.10.3 dmacrys calculations for paracetamol form III

We did not calculate a  phonon spectrum of this system. e
minimisation of the unit cell with  changes slightly the unit
cell axes, but leaves the total volume almost unchanged.

As we discussed in chapter 6.1, form III is structurally very similar to
form II; not surprisingly, the calculated spectrum (Figure 7.25) is very
similar to the calculated form II spectrum (Figure 7.27) with an absorp-
tion around 135 cm−1 much stronger than the others. It is still possible
to tell the differences with the calculated spectra of form II, particularly
with the intensity of the peaks at 120 cm−1.
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Figure 7.25. Calculated spectrum of paracetamol form II with , 
and  forcefields, and , /- in the region 0 cm−1 to
150 cm−1
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Figure 7.26. Calculated spectrum of paracetamol form II with , 
and  forcefields, and , /- in the region 0 cm−1 to
110 cm−1. e absorbance is in logarithmic scale

Crystal parameters variation

Exp. (123K)  Change/%  Change/%

a /Å 17.16 17.37 0.23 17.28 0.71
b /Å 11.77 11.98 1.73 11.93 1.37
c /Å 7.21 7.42 2.90 7.41 2.87
Vol. / Å3 1458.01 1545.37 5.99 1531.31 5.02

F value 17.46 13.39

Table 7.16. Variation of the lattice parameters and volume for the  geo-
metry optimisation of paracetamol form II. Symmetry constraints:
unit cell angles α = β = γ = 90°
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Crystal parameters variation

Experimental (123K) - Change /%

a /Å 17.16 17.06 −0.58
b /Å 11.77 11.45 −2.71
c /Å 7.21 6.85 −4.99
Volume / Å3 1458.01 1338.73 −8.23

Table 7.17. Change in the lattice parameters for the  geometry optim-
isation of paracetamol form II, dispersion corrected . Symmetry
constraints: unit cell angles α = β = γ = 90°. e initial structure
parameters are taken from 
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Figure 7.27. Calculated spectrum of paracetamol form III with , 
and  forcefields in the region 0 cm−1 to 150 cm−1

Crystal parameters variation

Exp. (293K)  Change/%  Change/%

a /Å 11.83 12.17 2.83 12.20 3.14
b /Å 8.56 8.64 0.97 8.59 0.36
c /Å 14.82 14.42 −2.64 14.37 −3.01
Vol. / Å3 1501.41 1517.82 1.09 1507.38 0.39

F value 38.52 42.04

Table 7.18. Variation of the lattice parameters and volume for the  geo-
metry optimisation of paracetamol form III. Symmetry constraints:
unit cell angles α = β = γ = 90°



7.10 selected computed spectra 123

Crystal parameters variation

Exp. (150K)  Change/%  Change/%

a /Å 4.50 4.55 1.13 4.46 −0.03
b /Å 10.53 10.78 2.36 11.02 4.57
c /Å 17.05 17.37 1.91 17.26 1.26
β /Å 96.34 94.726 2.90 94.14 −2.33
Vol. / Å3 804.17 850.93 5.81 847.60 5.40

F value 26.82 47.64

Table 7.19. Variation of the lattice parameters and volume for the  geo-
metry optimisation of paracetamol monohydrate. Symmetry con-
straints: unit cell angles α = γ = 90°

0 20 40 60 80 100 120 140
0.0

0.1

0.2

0.3

0.4

0.5

0.6
0.00 0.61 1.21 1.82 2.42 3.03 3.64 4.24

 Frequency (THz)

Ab
so

rb
an

ce
 (

a.
u.

)

Frequency (cm-1)

 fit
 w99
 castep

Figure 7.28. Calculated spectrum of paracetamol monohydrate with ,
 and  forcefields, and ,  potential

7.10.4 Phonon calculations for paracetamol monohydrate

We performed both a   . calculation and  calcu-
lations ( and ) on the system, taking as a starting point of the
minimisation the only crystal structure in the , .

In contrast to nitrofurantoin hydrate and theophylline hydrate, the
most visible change in the crystal structure (half of the F factors in Table
7.19) is in the unit cell axes, with the positions and rotations of the water
molecules being relatively unaffected.

ere are a lot of similarities between the  and the  spec-
trum, both in the distribution and intensities of the absorption peaks;
the  determination are quite different from the other two, especially
for the intensity of the peaks.
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Crystal parameters variation

Exp. (150K)  Change/%  Change/%

a /Å 7.33 7.35 0.28 7.33 0.06
b /Å 12.59 12.68 0.78 12.65 0.50
c /Å 22.63 22.74 0.48 22.59 −0.19
Vol. / Å3 2089.6 2122.3 1.6 2097.5 0.4

F value 15.97 6.04

Table 7.20. Variation of the lattice parameters and volume for the 
geometry optimisation of paracetamol trihydrate. Symmetry con-
straints: unit cell angles α = β = γ = 90°
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Figure 7.29. Comparison between the monohydrate and trihydrate of paraceta-
mol with , 

7.10.5 Phonon calculations for paracetamol trihydrate

eminimisation of the crystal structure of paracetamol trihydrate have
a surprisingly low F value (as low as 6 in the  calculation, Table 7.20),
considering the size and complexity of the system, and the difficult de-
termination of the hydrogen position of the waters. is might be due
to the low temperature determination (150K). By far the biggest con-
tribution to F is due to the rotation of one of the three water molecules
(9° and 4° respectively for  and ).

We report only the comparisonwith themonohydrate spectrumof the
 calculation, to show how the spectra for the two systems are very
different from each other, most certainly allowing for an easy determin-
ation with an experimental measurement.
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7.10.6 Phonon calculations for nitrofurantoin form α

Due to a problem with the terahertz spectrometer we were not able to
measure the spectrum of nitrofurantoin form α, despite having the ex-
perimental sample, obtained by Bhavnita Patel. A room temperature
measurement is available in literature (Figure 7.31, adapted from [209]).
We can see three clear peaks at 40 cm−1, 81 cm−1 and 99 cm−1.

Nitrofurantoin α is the smallest system we analysed, both in term of
unit cell volume and molecules per unit cell (two). Of the 12 result-
ing lattice modes of the  calculations, only three are -active,
which is consistent with the number of peaks in the experimental spec-
trum; however, the intensities do not agree well with the experimental
determinations (see Figure 7.30). In particular, the peak at 105 cm−1 is
very weak, and it is almost invisible in the  spectrum.

Weperformed two calculationswith , with andwithout disper-
sion correction. e resulting spectrum is reported in Figure 7.32. We
can notice how there is a general agreement in shape, but the absorp-
tion features are shied to higher frequencies: in the dispersion correc-
ted calculation the lowest feature is 20 cm−1 higher than its experimental
counterpart, while the doublet at 80 cm−1 is shied 10 cm−1. Even more
problematic is the shi in the non dispersion corrected calculation, with
all the features shied by 40 cm−1 (without taking into account the spuri-
ous peak at 60 cm−1).

e two calculations have of course the samenumber of peaks,
but their distribution is different: the lowest two active modes have al-
most the same frequency, while the next four are shied in frequency by
almost 20 cm−1.

7.10.7 Phonon calculations for carbamazepine anhydrous forms

e minimisation process of the anhydrous forms of carbamazepine
with 3 does not considerably affect the crystal structure, as
already noted by Day [60], with the F values ranging from a minimum
of 1.58 (form II,  determination) to 12.4 (form IV,  determin-
ation). We therefore do not summarise the structural changes in the
energy minimisation of each structure in a table.

3 Excluding formV,whichwe did not analyse, due to its crystal structure being published
only in August 2011 in the 
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Figure 7.30. Calculated spectrum of nitrofurantoin α with ,  and
 forcefield

Crystal parameters variation

Exp. (293K)  Change/%  Change/%

a /Å 6.77 6.94 2.46 6.92 2.27
b /Å 7.79 8.07 3.60 8.07 3.58
c /Å 9.80 9.74 −0.63 9.67 −1.29
α /Å 106.68 108.14 1.37 108.36 1.57
β /Å 104.09 106.27 2.10 105.26 1.13
γ /Å 92.29 92.748 0.49 91.61 −0.67
Vol. / Å3 477.56 492.57 3.14 491.95 3.01

F value 33.55 30.13

Table 7.21. Variation of the lattice parameters and volume for the  geo-
metry optimisation of nitrofurantoin form α

Crystal parameters variation

Experimental (123K) - Change %

a /Å 6.77 6.77 0.02
b /Å 7.79 7.41 −4.87
c /Å 9.80 9.71 −0.91
α /Å 106.68 107.61 0.87
β /Å 104.09 102.95 −1.85
γ /Å 92.29 90.72 −1.70
Volume / Å3 477.56 451.51 −5.45

Table 7.22. Change in the lattice parameters for the  geometry optimisa-
tion of nitrofurantoin form α, dispersion corrected 
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Figure 7.31. Experimental spectrum at room temperature of nitrofurantoin α
(middle in the graph) and its comparison with the spectra of nitro-
furantoin β (top) and hydrate II (bottom. Adapted from [209]
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Figure 7.32. Calculated spectrum of nitrofurantoin α with ,  and dis-
persion corrected 
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Figure 7.33. Calculated spectra of form I-IV of carbamazepine calculated with
,  forcefied

We report the calculated spectra using  in Figure 7.33 to show the
difference in the spectrum between the carbamazepine polymorphs. We
can notice how each crystal form can be easily distinguished from the
others by one or more characteristic absorptions in the spectrum:
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7.11 analysis of the dmacrys eigenvectors

e calculated spectra presented in this section are plotted as sum of
Lorentzian functions centred in the absorption frequency, with their
height proportional to the square of the variation of the unit cell dipole
due to themolecular displacements. e differences in the spectra using
different forcefields ( or) are due to the change in absorption fre-
quencies and the change of the eigenvectors (different dipole variation),
since the electrostatic model used to describe the molecule is the same.

In Figure 7.34 we report the values of the scalar product of each vi-
brational eigenvector for the anhydrous crystal systems we have stud-
ied. With the exception of the highest frequency absorption modes of
benzoic acid (frequency higher than 115 cm−1 in modes 16–24, see Fig-
ure 7.34a) there is no substantial variation of the vibrational modes: the
changes in the shape of the spectra between  and  are therefore
to be attributed solely to the change in absorption frequencies.

e major visual difference in anhydrous theophylline, with a miss-
ing feature in the  calculation, is due the fact that the two strongest
absorptions are almost superimposable (53.67 cm−1 and 54.3 cm−1) and
not distinguishable in our spectrum (see Table 7.5). As a consequence,
not only there seem to be a missing peak, but all the other absorptions
appear to be weaker (the highest point in the absorption spectra is nor-
malised to 1).

e eigenvector comparison of the hydrate systems is discussed in
chapter 9 (see page 180). ere is less agreement between the two force-
fields, especially for theophylline and nitrofurantoin (Figures 9.7a and
9.7d), and for these systems we can indeed notice differences in the ab-
sorption intensities of the calculated spectra.

7.12 conclusions

In this chapter we reported the comparison between the experimental
and calculated spectra, and the predictions for the spectra of some the
forms we could not measure.

An unavoidable step in the calculation of the phonon spectrum with
lattice dynamics is to reach an equilibrium position for the atomic posi-
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(a) Benzoic acid
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(b) Anhydrous theophylline
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(c) Paracetamol form I
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(d) Paracetamol form II
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(e) Nitrofurantoin form α
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(f) Nitrofurantoin form β

8 16 24 32 40 48

8

16

24

32

40

48

  f
it

ph
on

on
 n

um
be

r

 w99
phonon number

0,0

0,2

0,4

0,6

0,8

1,0

(g) Carbamazepine form I
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(h) Carbamazepine form III

Figure 7.34. Comparison of the  eigenvectors using  and  force-
field: the colour represents the square of the magnitude of the pro-
jections of each vector upon each other
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 forcefield  forcefield

Freq. (cm−1) Abs. (a.u) Freq. (cm−1) Abs. (a.u)

24.81 0.06 23.09 0.07
26.47 0.00 25.23 0.00
29.03 0.04 27.52 0.03
54.13 1.00 53.68 1.00
62.68 0.51 54.31 0.49
62.83 0.00 57.03 0.00
66.95 0.01 61.73 0.02
72.48 0.00 68.69 0.03
74.14 0.29 73.50 0.32
83.56 0.18 75.46 0.12
90.51 0.09 81.31 0.08

110.55 0.05 97.78 0.10
112.04 0.11 98.94 0.01
124.09 0.11 106.01 0.10
175.44 0.00 175.72 0.00

Table 7.23. Absorption frequencies and intensities calculated of the -active
 phonons,  and  forcefield

tions, accomplished with an energy minimisation. In general, the relax-
ation of the unit cell axes was avoided for non dispersion-corrected 
calculations, as it leads to unphysical expansion of the unit cell volume:
Neumann and Perrin found an average 20% expansion for a set of 25
molecular crystals  [210].

However, the  implementation of the dispersion correction we
used is affected by the opposite problem, as it implements an apparent
overcorrection: in our calculations we have an average contraction of
7.4%. We can expect a contraction due to thermal expansion in the
crystal, since the calculations are theoretically at 0 K and the experi-
mental determinations are in the range 100K to 295K. Anyway the
contractions are much larger than those predicted by the thermal ex-
pansion coefficients: from analysis of volume dependence of the crystal
unit cell, it is less than 2% per 100K for benzoic acid and paracetamol.
Furthermore, other parameterisations (as reported by van de Streek and
Neumann for the  code  [211]) achieve volumes closer to the
experimental values.

e volume expansion therefore suggests that the dispersion correc-
tion implemented in  does not take into account correctly the in-
termolecular forces in the crystals, and the frequency calculation might
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be affected as well. e results of the calculations seem to agree with
this observation: for the systems where we have experimental compar-
ison available with both  and /- (benzoic acid, paracetamol
form I, nitrofurantoin β) the dispersion correction does not improve the
agreement. In the case of paracetamol form I, paradoxically, the excel-
lent agreement we found without taking into account the dispersion for
the peaks in the region 40 cm−1 to 80 cm−1 is completely lost by adding
the dispersion correction.

e structural changes using  were typically very small, es-
pecially for the non-hydrate crystals, signifying a well behaved energy
minimisation. e agreement with the experimental structure was usu-
ally good, especially at lower frequencies: for some of the structures
(for example anhydrous theophylline) the level of agreement was bet-
ter than its  counterpart. A major limitation of the methods is its
intrinsic inability to describe intramolecular interactions, which trans-
late to the inability to correctly identify experimental features with fre-
quency higher than 90 cm−1, absent or misplaced in most of the spectra.

As a general observation, the  forcefield performs significantly
worse in the agreement with experimental position and absorption in-
tensity with experimental peaks, as it is visible in almost all of the spectra
comparisons.

e position and number of absorption frequencies in the calculations
as well as in the measurement confirms the ability of terahertz spectro-
scopy to detect small changes in the crystal structure: this fact, an ad-
vantage in the actual analysis of the materials, can actually backfire in
the computation of the spectrum, as an extreme accuracy must be em-
ployed in the choice of the starting geometry (especially with ,
where the molecular conformation, as well as the bond length and tor-
sion angles are fixed) to ensure a correct calculation.

None of the methods we described here –  and  – can
provide a reliable calculation of the terahertz spectrum for all of our sys-
tems, and the methods cannot, as of now, be fully trusted. It is necessary
to improve the methods to achieve a more accurate description of the
forces in the systems. ere are several possible ways to achieve this:

• Improvement of the dispersion correction in , since the val-
ues provided by  are not accurate for our molecular sys-
tems. A promising method has been used by King [212], with a
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Figure 7.35. Experimental (78K) and calculated terahertz spectrumof naproxen
(Figure 7.36) with /- with optimised c6 parameters. Adap-
ted from [212]

fitting of the c6 dispersion parameters in order to achieve a bet-
ter agreement of the calculated crystal lattice parameters with the
experimental determinations. Such an approach (possible using
the solid state  package  [213, 214], but not with

O

OH

O

Figure 7.36.

) achieved a variation of the unit cell of only 2.23% when
applied to the study of naproxen (Figure 7.36) and a very good
agreement between the position of calculated and measured ab-
sorption peaks in the terahertz spectra of  (see Figure 7.35);

• Calculations using  are unreliable for frequency higher
than about 90 cm−1, limiting its practical applicability. One way
to extend the efficacy of the method would be to introduce par-
tial support to intramolecular motions, to achieve a more realistic
description of the vibrations in the crystal (see chapter 8);

• e electronic charge density of the molecules in  is
taken from a  calculation of the isolatedmolecule, there-
fore ignoring the important effect of the polarisation induced by
the crystal environment. e implementation of the polarisation
is discussed in chapter 10.





8
EFFECT OF THE RIGIDITY OF THE SYSTEM ON THE

SPECTRUM

I   we analyse how the the rigidity of a molecule af-
fects its terahertz spectrum. For this purpose we need to consider
a working definition of what we mean by “rigid”, to establish a

scale on which to compare our systems; the analysis of the amount of
rigid body vibration will be performed using the program , im-
plementing the tools highlighted in chapter 4.4.

We briefly consider the properties of the calculated  eigen-
vectors along the whole spectrum of frequency 0 to 4000 cm−1, to re-
cognise what distinguishes the lowest energy vibrations from the others,
and we apply our analysis tools in the region 0 to 450 cm−1.

8.1 flexibility

eflexibility of a system is a measure of how easy it is to perturb the in-
ternal conformation of a molecule: it can be investigated by modifying
one of the molecular parameters (e.g. rotate a bond or modify a torsion
angle) and to assess the difference in energy between the two conform-
ations: a high energy difference means it is more difficult to change the
conformation of a molecule, which is therefore more rigid.

Another way to define flexibility, more relevant to our interests, is to
consider the normal modes of vibration of an isolated molecule: the ei-
genvalues of the mass-weighted Hessian correspond to the squared fre-
quency (and consequently to the energy) of a particular normal mode;
since all the possible vibrations of a molecule can be obtained by lin-
ear combination of its normal modes, there are no possible vibrations of
smaller energy than the one of its lowest frequency normal mode.

A ranking of the flexibility of a molecule can therefore be assigned

135
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by considering the lowest molecular frequencies. We should stress that
such a calculation would not provide a reasonable guess of where to find
vibrational frequencies in the solid state, because – as we mentioned in
chapter 3.2.3 – the presence of intermolecular interactions can shi con-
siderably the position of an absorption feature in the condensed state.

e normal modes of the molecules studied here are calculated using
the   program, with the /-G** level of theory.

8.2 systems considered and their rigidity ranking

To analyse the effect of rigidity on the vibrational spectrum we worked
with the following systems (see chapter 6 for more information): ben-
zoic acid, theophylline, paracetamol, N-phenyl acetamide derivatives
and nitrofurantoin.

e lowest vibrational eigenvectors typically involve rigid displace-
ments of substructures of the molecules, and they are usually easily un-
derstandable from energy considerations. is is clearly visible in ben-
zoic acid, our most rigid system: the lowest frequency normal modes –
71.0, 160.2 and 216.3 cm−1 – relate to the movement of the carboxylic
and the phenyl group with respect to each other (Figure 8.1a).

e second most rigid molecule, theophylline, consists of two fused
rings, with the aromatic five-membered ring undistorted by vibrations
up to the 15th normal mode, at 529.2 cm−1. e two lowest normal
modes at 66.1 and 92.7 cm−1 corresponds to methyl group rotations,
while the third lowest vibration is a general “flapping ” motion of all the
functional groups bonded to the six-membered hexagonal ring (Figure
8.1b).

In the paracetamolmolecule we can still distinguish between two sub-
groups: the acetamide group (H3CCOHN−) and the hydroxyphenyl:
three of the lowest energy vibrations – 50.1, 79.2 and 157.9 cm−1 – in-
volve the relativemovement of these groups (Figure 8.1c), while the low-
est (at 42.8 cm−1) involves the rotation of the methyl group.

In our least rigid molecule, nitrofurantoin, a -CHN- bridge connects
two five-membered rings, only one of them with double bonds; unsur-
prisingly, the lowest energy features (24.4, 46.6, 50.6 and 126.9 cm−1)
involve a distortion of this bridge (Figure 8.1f).
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(a) Benzoic acid, ω = 71.0 cm−1 (b) eophylline, ω = 96.8 cm−1

(c) Paracetamol, ω = 50.1 cm−1 (d) Carbamazepine, ω = 55.9 cm−1

(e) Carbamazepine, ω = 65.9 cm−1

(f) Nitrofurantoin, ω = 46.6 cm−1

Figure 8.1. Representative low-energy normal modes of vibration of the mo-
lecules studied in this chapter. e molecular fragments move ac-
cording to the direction of the arrow of the same colour
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Figure 8.2. Internal vibration of the nitrofurantoin molecule calculated using
/-G** . Le, the vibrational mode at 144.6 cm−1;
right, the vibrational mode at 596.0 cm−1

Carbamazepine, the biggest molecule we studied with 30 atoms, but
lighter than nitrofurantoin (236 u vs 238 u), has four different normal
modes in the range from 0 to 100 cm−1, but they are not as low energy
as those of nitrofurantoin. e lowest vibration – the rigid rotation of
the carboxamide tail, O−−CNH2, see Figure 8.1d – has a frequency of
56 cm−1. e second lowest vibration is the “flapping” motion of the
two phenyl rings at 66 cm−1 (Figure 8.1f), while the other two vibrations
are again an asymmetric flapping of the phenyl rings (88 cm−1) and a
rotation of the carboxamide group (83 cm−1).

e presence of rings is not a guarantee of rigidity unless steric effects
or multiple bonds constrain the vibrations: this is shown for example
in nitrofurantoin: one of the rings – with double bonds reinforcing the
structure – is unaffected by vibrations up to 596.0 cm−1, while the other
shows distortion as low as 144.6 cm−1 (see Figure 8.2).

Based on the calculated frequencies of the normal modes, we would
expect some of the internal modes to mix with the lattice modes at tera-
hertz frequencies for all of our systems. is would not be the case for
more rigid systems: for example, aswementioned in chapter 3 the lowest
energy vibration of benzene is the distortion of the very stable aromatic
ring, occurring at 466.7 cm−1.

At the other end of the flexibility spectrum, taking into account in-
tramolecular distortions can be fundamental to correctly assign vibra-
tions in the solid state: inmacromolecular systems such as the ricin pro-
tein [215] the lowest vibrational frequency is as low as 3.8 cm−1, and the
first 20 modes are below 10 cm−1.

e internal vibrations can contribute to more than one lattice mode,
due to their inevitable mixing happening in the crystal. However, we
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can expect the mixing between two modes to be not significant if they
are well separated in energy.

ere is more than one phonon for each of the internal vibrations,
depending on the symmetry group of the crystal. For example, since
most of the crystal structures analysed here have four molecules in the
unit cell, we can expect four k = 0 phonons for each of the internal vi-
brations, one per molecule. e corresponding vibrations in the crystal
will correspond to symmetry-adapted combinations of the individual
molecular internal vibrations.

8.3 castep simulations

To understand more easily the distribution of rigid-molecule vibrations
in the spectrum we have to consider all of the calculated  ei-
genvectors. All of the non-solvated systems studied in this chapter ex-
hibit the same characteristic behaviour as that illustrated for paraceta-
mol form I in Figure 8.3, where the rigid body component of each ei-
genvector has been analysed using the method described in section 4.4.

ere is a sharp drop in the rigid body contribution as the frequency
increases. All of the vibrations with wavenumbers higher than 350 cm−1

are almost fully internal, so much that we can appreciate the differences
between modes only on a logarithmic scale (see Figure 8.4).

We can notice a few regions of interest: one in the range from 0 to
150 cm−1, where the rigid body motion is predominant; a transition re-
gion between 150 cm−1 and 350 cm−1 (see the inset to Figure 8.3), where
internal and external contributions mix and a higher energy region of
the spectrum, with no external contribution to the vibrational modes at
all.

ere aremany vibrational eigenvectors: their exact number is 3N−3,
N being the number of atoms in the unit cell, and therefore we have
hundreds of points (80 atoms and 237 modes for paracetamol form I)
in Figure 8.3 and 8.4. ere are 3NH modes (NH is the number of hy-
drogen in the unit cells) well separated from the others, with frequen-
cies higher than 2500 cm−1; these are all symmetry adapted stretching
or bending of bonds to hydrogen atoms. e modes in the range from
≈500 to 2000 cm−1 are internal molecular vibrations, that do not in-
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Figure 8.3. Rigid body contribution to the latticemodes calculated with ,
using the dispersion corrected , for paracetamol form I.e rigid
body contribution on a linear scale. e small inset graph highlights
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0 500 1000 1500 2000 2500 3000 3500

1E-4

1E-3

0.01

0.1

1

 

Ri
gi

d 
bo

dy
 fr

ac
tio

n

Frequency (cm-1)

paracetamol form I

0 50 100 150 200 250 300 350 400

0.1

1

Figure 8.4. Rigid body contribution to the latticemodes calculated with ,
using the dispersion corrected , for paracetamol form I.e rigid
body contribution on a logarithmic scale. e small inset graph, the
region from 0 to 400 cm−1



8.3 castep simulations 141

0 50 100 150 200 250 300 350 400

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

 x
0
 = 100 cm-1

 x
0
 = 140 cm-1

 x
0
 = 180 cm-1

Ri
gi

d 
bo

dy
 fr

ac
tio

n

Frequency (cm-1)

 logistic fit
p = 4

 p = 2
 p = 4
 p = 12

 

logistic fit

x
0
 = 150 cm-1

Figure 8.5. Effect of the variation of the parameters p (top) and x0 (bottom) on
the logistic function in Equation 8.1

volve displacement of the centre of mass of the molecule or rigid rota-
tion. ese internal vibrations are not relevant to our discussion, and
they will not be included in the subsequent discussion and graphs.

We introduce three characteristic frequencies that can be used to char-
acterise our systems:

1. ωin, the frequency of the lowest energy mode with less than 75%
rigidmolecule contribution, whichwedefine as the first frequency
where internal contributions become significant;

2. ωnrig, the frequency of the highest energy vibration with greater
than 50% rigid molecule contribution. We interpret this as the
end of the rigid body section and the start of the intermediate re-
gion of the spectrum (as defined above);

3. ωhigh, the frequency of the highest energy vibration that has a
rigid-molecule contribution of more than 10%. We define this
as the frequency that separates modes where external vibration is
absent (only intramolecular motions) from the others.

Furthermore, we find that the rigid body contribution as a function of
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frequency can be approximated by a sigmoidal function, with the rigid-
body region separated from an internal high frequency region by an in-
termediate region with descending importance of rigid-body motions.
We tried to fit our data using a 2-parameter logistic curve of the form

fL(x) =
1

1 + (x/x0)
p (8.1)

e two parameters are related to the steepness of the function p and the
position of the halfway point x0 : fL(x0) = 0.5.

We can see the effects of the parameters in Figure 8.5. e increase of
the p parameter (top graph) reduces the width of the intermediate area,
while keeping position of the halfway point constant1; the variation of
x0 with p constant widens the low frequency, high rigidity region as well
as the intermediate region.

e extent of the intermediate zone is related to both the parameters:
the interval where the function has a value between 0.1 (x10) and 0.9 (x90)
is

x10 − x90 = x0

(
91/p − 1

91/p

)
(8.2)

We also evaluate the goodness of the fit, by the Pearson reduced χ2 test
and the residual sum of squares ς (sum of the deviations from the fitted
values).

In the next sections we analyse in detail our molecular systems.

8.3.1 Benzoic acid

We ran two  calculations on benzoic acid, using the  func-
tional, with and without dispersion correction. With both simulations
the system appears to be remarkably rigid, with only four of the first 28
eigenvectors displaying partial non-rigid behaviour (Figure 8.6).

Sixteen modes show a rigidity higher than 90%, a high value con-
sidering that ideally at most 21 modes (6Z − 3 degrees of freedom, for
Z = 4molecules in the unit cell) can be perfectly rigid. Most of the non-
rigidity of these vibrations appears to be connected with the hydrogen
bond bridge, which retain its linearity as much as possible when the di-
mers are distorted (Figure 8.6). In some lattice modes, this requires a
twisting of the C−C connecting the acid group to the phenyl ring.

1 e limit for p → +∞ is a Heaviside-type step function centred at x0
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Figure 8.6. Schematic representation of the vibration of a benzoic acid dimer
in mode 17, 120.89 cm−1, calculated with dispersion corrected .
e molecular fragment moves according to the colour of the arrow.
e grey hydrogen bonding bridge keeps its linearity

e lowest frequency internal vibrations are very close in frequency
for the two  calculations: four sets of doublets can be found
at 120 cm−1 (110 cm−1 for the non-dispersion corrected calculation),
150 cm−1, 190 cm−1 and 210 cm−1. ey are symmetry adapted vibra-
tions related to the lowest frequency vibration in the isolated molecule
(71.0 cm−1), which is therefore shied by almost 40 cm−1 for the lowest
energy lattice mode, to the upper limit of the bandwidth that we can
access experimentally with our terahertz spectrometer.

e frequencies ωin, ωnrig and ωhigh (defined in the previous section)
are summarised in Table 8.1 and the parameters of the curve fit are re-
ported in Table 8.2. We can notice how the characteristic frequencies of
the dispersion corrected calculation are approximately 10 cm−1 higher
than the non-dispersion corrected calculation. is is a sum of two ef-
fects: a shi to higher frequencies of some of the modes (most notably,
the first two internal vibrations) and a larger rigid body fraction of most
of the vibrations in the range from 110 to 200 cm−1.

8.3.2 Theophylline

eophylline turned out to be a particularly difficult system to simulate
with  without dispersion correction, as we ended up with ima-
ginary eigenfrequencies in four independent calculations using differ-
ent basis set cutoffs (800 eV and 1200 eV) and with different constraints
on the space group symmetry; the imaginary frequencies tells us that
the final structure is not a real energy minimum; we also conclude that
the energy surface is very flat, since the geometry optimisations obeyed
very tight convergence requirements.
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Figure 8.7. Rigid body contribution to the phonon modes of benzoic acid in the
region from 0 to 450 cm−1 as calculated with ,  (in blue)
and dispersion corrected  (in red). e lines (in the same colour
as the data) represent the best fit of the logistic function (Equation
8.1)

Type Method # mode Rigid body fraction ω (cm−1)

ωin
 14 of 177 0.24 109.9
/- 12 of 177 0.52 115.1

ωnrig
 25 of 177 0.95 149.7
/- 24 of 177 0.91 165.4

ωhigh
 31 of 177 0.13 283.8
/- 31 of 177 0.11 294.5

Table 8.1. Characteristic frequencies of the optical phonons of benzoic acid
from a  calculation,  and dispersion corrected 

Method x0 (cm−1) p χ2 ς

 150.61 4.57 0.039 1.655
/- 159.53 4.86 0.042 1.493

Table 8.2. Characteristic parameters of the logistic fit of the rigid body fraction
in the phonon eigenvectors of benzoic acid from a  calcula-
tion, dispersion corrected 
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e harmonic vibration ω relates to a periodic displacement of all the
atoms in time proportional to cos(ωt); when ω is imaginary, by the re-
lation

cos iωt =
1
2
(
eωt + e−ωt) (8.3)

we do not get a periodic displacement anymore, but an acceleration in
one direction, highlighting that the structure is not stable to displace-
ment along the corresponding eigenvector.

e inclusion of the dispersion correction to the  functional
provided us with a complete set of positive eigenvalues.

is system proved to be remarkably rigid: as depicted in Figure 8.8,
the first 18 eigenvectors, completely spanning the 0 to 100 cm−1 interval,
have a rigid fraction greater than 90%. e first partially internal vibra-
tion mode is therefore outside the terahertz region (ωnrig = 159.5 cm−1,
Table 8.3), and marks the start of the transition region.

e functional fit to the data has an x0 value of 127.05, much smaller
than the corresponding value for benzoic acid, as expected from the re-
lative rigidity of the two molecules. However, the p parameter is higher:
this is related to the fact that the internal modes are on the edge of the ri-
gidity region, instead of internalmodes having frequencies in themiddle
of the rigid region.

Similar to the benzoic acid calculation, the frequency of the lower
mode of vibration in the crystal is shied to higher frequency than in
the isolated molecule by approximately 40 cm−1.

8.3.3 Paracetamol

For paracetamol we have data available from several  calcula-
tions, two for each of the two polymorphs. Figure 8.9 reports the calcu-
lated rigidity of the phonon displacements in the two polymorphs using
dispersion corrected .

e density of points is higher for form II as the number of phonons is
larger due to the greater number of molecules in the unit cell (8, instead
of the 4 of form I).

e lowest internal vibration does not correspond to themethyl group
rotation (which has a low contribution is most of the non-completely
rigid modes), but to the torsion about the hydroxyl group and of the
acetamide relative to the phenyl group (Figure 8.1c).
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Figure 8.8. Rigid body contribution to the phonon modes of theophylline in the
region from 0 to 450 cm−1 as calculated with , dispersion cor-
rected . e line represents the best fit of the logistic function
(Equation 8.1)

Type # mode (of 249) Rigid body fraction ω (cm−1)

ωin 19 0.78 105.7
ωnrig 31 0.58 159.5
ωhigh 39 0.15 191.6

Table 8.3. Characteristic frequencies of the optical phonons of theophylline
from a  calculation, dispersion corrected 

Method x0 (cm−1) p χ2 ς

/- 127.05 8.13 0.014 0.67

Table 8.4. Characteristic parameters of the logistic fit of the rigid body fraction
in the phonon eigenvectors of theophylline from a  calcula-
tion, dispersion corrected 
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Dispersion corrected calculations

Wenotice a substantial similarity in the lowest frequency of the internal-
only eigenvectors at approximately 375 cm−1 for the dispersion correc-
ted calculation of the two paracetamol polymorphs (Figure 8.9). In the
rigid-body region two eigenvectors of form I (the points indicated by ar-
rows in Figure 8.9) clearly do not fit with the general trend of the others;
they are not as rigid as expected.

e logistic curves do not differ much up to 120 cm−1, but start to
spread more visibly at higher frequency, highlighting the visibly higher
number of rigid body phonon modes in form II; in form I the inter-
mediate region is less extended, as suggested by the higher value of the
exponent p. e fit of form II data is characterised by a high residual
sum of squares ς, since there is a wide number of points that are signi-
ficantly far from the curve; form I has a lower ς, as less points are distant
from the fit.

One of the main things to observe is the persistence of rigid body mo-
tion at high frequencies (150 to 200 cm−1) in the form II eigenvectors.

Non-dispersion corrected calculations

e results of the calculations without dispersion correction, graphically
expressed in Figure 8.10, confirm the general trend observed in the dis-
persion corrected case. One noticeable difference is the absence of the
low frequency internal vibrations for form I. Instead, the general trend
for these calculations is that the internal vibrations for the two forms
can be found almost at comparable frequencies, less dependent on the
crystal form than in the - calculations. is highlights the import-
ance of the dispersion correction in modelling the differences in crystal
packing between polymorphs in molecular systems

e logistic fits show two very different curves: the values of x0 for
form I ismuch lower than in the dispersion corrected calculation (109.62
cm−1 instead of 137.49 cm−1), and p is almost halved. e change in form
II are not so dramatic (6 cm−1 for x0, 0.25 for p).

As in the dispersion corrected calculation, the distribution is charac-
terised by a high residual sum of squares ς.
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Figure 8.9. Rigid body contribution to the phonon modes of paracetamol form
I (red) and paracetamol form II (blue) in the region from 0 to
450 cm−1 as calculated with , dispersion corrected . e
arrows indicate the low-frequency internal modes noted on page
147. e logistic curves are of the same colour of the data

Type Form # mode Rigid body fraction ω (cm−1)

ωin
I 6 of 237 0.68 58.68
II 13 of 477 0.71 95.01

ωnrig
I 27 of 237 0.54 142.47
II 61 of 477 0.65 180.66

ωhigh
I 44 of 237 0.27 254.80
II 84 of 477 0.11 256.25

Table 8.5. Characteristic frequencies of the optical phonons of paracetamol
form I and II from  calculations, dispersion corrected 

Form Method x0 (cm−1) p χ2 ς

Form I /- 137.49 4.23 0.020 0.927
Form II /- 148.97 3.27 0.023 3.34

Table 8.6. Characteristic parameters of the logistic fit of the rigid body fraction
in the phonon eigenvectors of paracetamol form I and II calculated
with , dispersion corrected 
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Figure 8.10. Rigid body contribution to the phononmodes of paracetamol form
I (red) and paracetamol form II (blue) in the region from 0 to 450
cm−1 as calculated with ,  functional. e colours of the
curves correspond to the data points

Type Form # mode Rigid body fraction ω (cm−1)

ωin
I 12 of 237 0.68 79.21
II 13 of 477 0.71 82.58

ωnrig
I 33 of 237 0.56 181.92
II 61 of 477 0.65 194.70

ωhigh
I 41 of 237 0.25 232.35
II 83 of 477 0.16 252.50

Table 8.7. Characteristic frequencies of the optical phonons of paracetamol
form I and II from  calculations,  functional

Form Method x0 (cm−1) p χ2 ς

Form I  109.62 2.91 0.018 1.010
Form II  154.27 3.09 0.024 3.372

Table 8.8. Characteristic parameters of the logistic fit of the rigid body frac-
tion in the phonon eigenvectors of paracetamol form I and II, from
 calculations,  functional
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Form II high frequency rigid-body fraction

e two calculations of form II show the same trend of rigidity up to al-
most 200 cm−1; this can probably be attributed to the ordering in parallel
sheets in this polymorph, where some of the vibrations that take place in
the plane of the sheets are less sterically hindered than similar modes in
form I. is might reduce the coupling between inter- and intramolecu-
lar motions.

8.3.4 Nitrofurantoin

e non-dispersion corrected  calculations of nitrofurantoin
were among the first performed, and for these calculations we had
chosen a lower energy cutoff. We simulated the stable form of anhyd-
rous nitrofurantoin – form β – with an energy cutoff of 950 eV using
 ., and with dispersion corrected ,  . at a cutoff of
1200 eV. e metastable form α was simulated without dispersion cor-
rection, with an energy cutoff of 800 eV using  ., as well as with
dispersion correction using  . with an energy cutoff of 1200 eV.

e results are summarised in Figure 8.11 and Table 8.9 for the non
dispersion corrected calculations. Once again, the difference in the
density of the phonons between the two forms is due to the different
number of molecules in the unit cell (2 in form α, 4 in form β). ere
are several intramolecular vibrational modes around 75 cm−1 for both
of the polymorphs.

From the characteristic frequencies, the molecules in nitrofurantoin
α behave as the least rigid molecules among all the crystal structures we
have studied. ere are only three eigenvectors that exhibit a rigidity
> 80%. e other lattice modes have a considerable degree of internal
contribution.

e range of rigidity is again limited up to 110 cm−1, while for the
intermediate region we have a big difference for the two forms: a low
value of ωnrig (120 cm−1) for the β form, but almost 150 cm−1 for the α
form.

e logistic fits show that the α form has a better fit than the β form,
with half the residual sum of squares ς with respect to form β. is is
due to the almost equal amount of low-rigidity and high-rigidity modes
between 75 and 150 cm−1 that have to be interpolated by the fit in form
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Figure 8.11. Rigid body contribution to the phonon modes of nitrofurantoin α
(blue) and β (red) in the region from 0 to 450 cm−1, as calculated
with ,  functional. e logistic curves are of the same
colour of the data

Type Form # Mode Rigid body fraction Frequency (cm−1)

ωin
α 3 of 135 0.68 75.06
β 6 of 276 0.73 56.60

ωnrig
α 15 of 135 0.66 147.86
β 29 of 276 0.58 119.63

ωhigh
α 19 of 135 0.22 185.41
β 42 of 276 0.12 166.88

Table 8.9. Characteristic frequencies of the optical phonons of nitrofurantoin
form α and β from a  calculation,  functional

Form Method x0 (cm−1) p χ2 ς

Form α  103.56 2.82 0.003 1.07
Form β  106.68 3.91 0.003 2.40

Table 8.10. Characteristic parameters of the logistic fit of the rigid body fraction
in the phonon eigenvectors of nitrofurantoin form α and β from a
 calculation,  functional
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Figure 8.12. Rigid body contribution to the phonon modes of nitrofurantoin α
(blue) and β (red) in the region from 0 to 450 cm−1, as calculated
with , dispersion corrected . e colours of the curves
correspond to the data points

Type Form # mode Rigid body fraction Frequency (cm−1)

ωin
α 4 of 138 0.52 56.91
β 13 of 276 0.34 86.62

ωnrig
α 17 of 138 0.76 130.53
β 33 of 276 0.59 132.13

ωhigh
α 24 of 138 0.15 202.83
β 40 of 276 0.15 155.23

Table 8.11. Characteristic frequencies of the optical phonons of nitrofurantoin
form α and β from  calculations, dispersion corrected 

Form Method x0 (cm−1) p χ2 ς

Form α  97.68 2.63 0.02 0.86
Form β  110.79 5.04 0.01 1.09

Table 8.12. Characteristic parameters of the logistic fit of the rigid body frac-
tion in the phonon eigenvectors of nitrafurantoin form α and β from
 calculations, dispersion corrected 
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β.

e analysis of nitrofurantoin with dispersion correction gives a sim-
ilar trend in both polymorphs for frequencies higher than 150 cm−1, but
quite different in the lower energy region (0 to 100 cm−1). Form α dis-
plays a more pronounced rigid-body behaviour, with only one of the
modes being internal, at 70 cm−1 (Figure 8.12). Conversely, form β dis-
plays four low energy rigid-body modes between 55 cm−1 and 85 cm−1,
whereas the non-dispersion corrected had only one.

e parameters of the dispersion-corrected  calculation are shown
in Table 8.12: the result is that the residual sum of squares ς is much
reduced (1.09 instead of 2.40). e dispersion corrected calculation of
form α is the only one among the systems studied to have an x0 value
under 100 cm−1; at the same time, the exponent p is low, and the inter-
mediate region is very wide.

8.3.5 Carbamazepine

We only performed the dispersion corrected  calculation on the
smallest carbamazepine polymorph, form III (the most stable form).
e system appears to be fairly rigid (see Figure 8.13), with all of the
modes in the range from 0 to 85 cm−1 except for one displaying a rigid
body fraction greater than 0.8; the logistic fit is very good, with the low-
est deviation from the calculated values of all the  simulations
(ς = 0.05), due to the very smooth transition from the rigid body to the
internal vibration region.

e parameters of the logistic fit, x0 and p, (Table 8.14) have very sim-
ilar values to those for nitrofurantoin β, dispersion corrected calcula-
tion, with the high value of p suggesting a fast transition from the rigid
body region to the internal vibration region. e similarity in behaviour
with nitrofurantoin β is confirmed by the values of ωnrig and ωhigh.

8.3.6 Flexibility assessment – conclusions

Wehave analysed a series ofmolecular systemswith increasing degree of
flexibility, and tried to correlatemolecular properties with the calculated
rigid-molecule contribution to the eigenvectors in the terahertz region.

e frequency ωhigh provides information about the position of purely
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Figure 8.13. Rigid body contribution to the phonon modes of carbamazepine
form III in the region from 0 to 450 cm−1, as calculated with
, dispersion corrected 

Type # mode (of 357) Rigid body fraction ω (cm−1)

ωin 15 0.61 87.49
ωnrig 29 0.58 131.45
ωhigh 40 0.19 167.39

Table 8.13. Characteristic frequencies of the optical phonons of carbamazepine
form III from a  calculation, dispersion corrected 

Form Method x0 (cm−1) p χ2 ς

III /- 113.52 4.83 0.006 0.48

Table 8.14. Characteristic parameters of the logistic fit of the rigid body frac-
tion in the phonon eigenvectors of carbamazepine form III from a
 calculation, dispersion corrected 
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System First internal ωin (cm−1) x0 (cm−1)vibration (cm−1)

Benzoic acid 71.0 115.1 159.5
eophylline 66.1 105.7 127.1
Paracetamol I 50.1 58.6 139.5
Paracetamol II 50.1 95.1 149.0
Nitrofurantoin α 24.4 56.9 103.6
Nitrofurantoin β 24.4 86.6 106.7
Carbamazepine III 55.9 87.5 113.5

Table 8.15. Characteristic frequencies of the optical phonons of the systems
studied with , dispersion corrected 

intramolecular vibrational modes. is frequency varies from almost
300 cm−1 for benzoic acid, to 155 cm−1 of nitrofurantoin. e frequen-
cies of the lattice modes with a high fraction of rigid body rotation
and translation are more sensitive to differences between polymorphs
and are distributed over an even smaller range of frequencies. e up-
per bound of the rigid-molecule vibrations (ωnrig) varies from 120 cm−1

(benzoic acid) to 190 cm−1 (nitrofurantoin form α).
We introduced the frequency of the lowest normal mode of the isol-

ated molecule to rank the flexibility of our molecular systems: as repor-
ted in Table 8.15, we found that the frequency of the first internal mode
in the crystal, ωin, is always higher than the corresponding mode of the
isolated molecule. e increment is of about 30 cm−1 for most systems,
excluding the dispersion corrected paracetamol form I (8.6 cm−1, but
35 cm−1 in the non-dispersion corrected calculation).

e logistic fits of the rigid-body fraction of the phonon modes
presented in this chapter roughly follow the trend of the characteristic
frequencies we just discussed. e frequency x0, which characterises the
midpoint of the transition region from rigid-moleculemodes to internal
vibrations, varies from 97 to 159 cm−1. eophylline has one of the low-
est values, as well as a high exponent p, making it the system with the
highest separation between internal and external modes.

Based on this limited set of data, we can assume that the lowest vi-
brational frequency in the isolated molecule can be used as a “rule of
thumb” parameter to estimate whether or not one should expect to
find internal vibrations within the region accessible by our experimental
technique: and – as a consequence – whether or not using a rigid-body
method, such a as , is justified to simulate vibrations in this
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region.

Effect of the dispersion correction

We can analyse the effect of the dispersion interactions for the calcu-
lations where we have performed both  and /-  cal-
culations: we have this data for benzoic acid, paracetamol and nitro-
furantoin. We analyse how different the two descriptions are with the
two potentials by projecting the eigenvectors from the  calculations
onto those from the /- calculation, in a similar way to how we
compared the / and  eigenvectors (as described starting
from chapter 4.4 to the following sections). e graphical comparison is
reported in Figure 8.14: for all the systems the main deviation from the
diagonal is observed both in the low energy region of the spectrum, and
for the highest energy vibrations. e latter differences in the highest
energy vibrations are of no particular interest to us, as they only rep-
resent different mixing of the hydrogen atoms vibrations, far from the
frequencies of interest of our spectroscopic measurements.

Dispersion does not seem to have a significant effect on the vibrational
eigenvectors of benzoic acid (Figures 8.14a and 8.14b ): the most visible
effect is the higher number of rigid-body phonons at higher frequency
(in the region from 120 to 170 cm−1, see the deviation from the fitted
curves in Figure 8.7). ere is significant overlap of each - eigen-
vector with only one or two eigenvectors from the non-dispersion cor-
rected calculation (Figure 8.14b). is shows that there is little mixing
of modes between the two calculations.

As mentioned before, paracetamol form I exhibits a dramatic vari-
ation between  and - in the distribution of the points in the
graphs (Figures 8.14c and 8.14d), with important changes in the de-
gree ofmixing between internal and externalmodes across the spectrum
(Figures 8.10 and 8.9): this fact greatly affects both the fit parameters x0
and p. However, the eigenvectors are essentially the same in the two
calculations, apart form a reordering of their energies (Figure 8.14c).

In the calculation of paracetamol form II we noticed again that the
main effect is that some of the high frequency, high rigidity vibrational
modes are shied to higher frequencies. However, in this case the eigen-
vectors from the two calculations are not the same: the eigenvectors ex-
hibit strongmixing and large deviation from the diagonal (Figure 8.14d).
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(a) Benzoic acid – full spectrum
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(b) Benzoic acid
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(c) Paracetamol form I
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(d) Paracetamol form II
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(e) Nitrofurantoin form α
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(f) Nitrofurantoin form β

Figure 8.14. Comparison of the  eigenvectors,  functional with and
without dispersion correction: the colour represents the square of
themagnitude of the projections of each vector upon each other for
the two calculations

For paracetamol form II a detailed comparison of the eigenvectors is
necessary to understand the impact of the dispersion correction, which
was not evident from the frequency distribution of the rigid-molecule
contributions

In nitrofurantoin form α there is a big change in the rigid body frac-
tion for some of the lowest energy eigenvectors. ere are only approx-
imately 20 phonon vectors with a rigid body contribution greater than
0.1 (ωhigh), Tables 8.9 and 8.11 ). It is these modes that have a rigid-
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molecule component that is most strongly influenced by the inclusion
of dispersion correction in the  calculation (Figure 8.14e).

e eigenvectors of the dispersion corrected calculation of nitrofur-
antoin form β display more rigidity at lower frequency, as shown by the
values of x0 and p; the position of the lowest internal vibrations (ωin)
is found at higher frequency (56.6 cm−1 vs 86.6 cm−1), and it displays a
better agreement with the logistic fit, which demonstrates a smoother
transition between rigid-molecule and internal modes.

8.4 eigenvector agreement between castep and

dmacrys

In this section we analyse the agreement between the lowest energy ei-
genvectors calculated with  and .

As described in section 4.4 (Equation 4.4), we developed a method
to compare the agreement between the two computational methods by
expressing the rigid molecule contribution to the  eigenvectors
|crigidi ⟩ as a linear combination of  eigenvectors |dj⟩:

|crigidi ⟩ =
∑
j

aj|dj⟩ (8.4)

We can understand the mechanism of mixing by considering a model
two level system, with two non-degenerate vibrational eigenvectors |v1⟩
and |v2⟩ and eigenvalues ε1 and ε2. In the eigenvector basis set the vi-
brational Hamiltonian Ĥ0 is the matrix

Ĥ0 =

(
ε1 0
0 ε2

)
(8.5)

which is diagonal due to the orthonormality of the eigenvectors. We
can now introduce a perturbation to account for the differences in the
treatment of forces between the two methods, in the form of a matrix
Ŵ,

Ŵ =

(
W11 W12

W12 W22

)
. (8.6)

e diagonal elements of Ŵ act as a shi of the eigenvalues of |v1⟩ and
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|v2⟩, but they cannot modify the eigenvectors: we will now consider a
simpler matrix by considering W11 = W22 = 0 in the preceding formu-
las. e eigenvalues ε± of the Hamiltonian Ĥ1 = Ĥ0 + Ŵ can be found
by diagonalisation of the matrix Ĥ1,

Ĥ1 =

(
ε1 W12

W12 ε2

)
, (8.7)

and they take the form

ε± =
ε1 + ε2

2
±

√(
ε1 − ε2

2

)2

+W2
12 (8.8)

e eigenvectors |v+⟩ and |v−⟩ are

|v−⟩ = cos
θ
2
|v1⟩+ sin

θ
2
|v2⟩

|v+⟩ = − sin
θ
2
|v1⟩+ cos

θ
2
|v2⟩

(8.9)

where
tan θ =

2W12

ε1 − ε2
(8.10)

In this case, depending on the strength of the parameter θ, we have
coupling and intermixing of the two eigenvectors. If the interaction is
small we can expect the eigenvectors to be unchanged.

e effect of the off-diagonal matrix elements is also an increased sep-
aration between the energy levels: this is true also if the two eigenvectors
are degenerate in energy.

We can see this kind of effect in the calculations of benzoic acid in Fig-
ure 8.15: there is a strong 1:1 match between the first 12 eigenvectors for
 and the non-dispersion corrected  calculation, except
for eigenvectors 5 and 6 of the  result, which are nearly perfectly
rigid but do not correspond to a single  vector.

If we look at the details of the  contribution, we see that for
these two calculated  phonons (frequency 44 and 48 cm−1) the
only significant contribution comes from two eigenvectors, re-
spectively at 25 and 48 cm−1. We can therefore hypothesise that there is
an interaction that is not properly taken into consideration by one of
the two methods: this is confirmed by the split in energy between the
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Figure 8.15. Rigid body contribution to the first 32 benzoic acid phonon eigen-
vectors calculated by  using the  functional (excluding
the 3 acoustic phonons). e solid portion of each bar shows the
contribution from the most representative  eigenvector
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Figure 8.16. Rigid body contribution to the first 32 benzoic acid phonon eigen-
vectors calculated by  using the dispersion corrected 
functional (excluding the 3 acoustic phonons). e solid portion
of each bar shows the contribution from the most representative
 eigenvector
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Figure 8.17. Rigid body contribution to the first 37 theophylline phonon eigen-
vectors calculated by  using the dispersion corrected 
functional (excluding the 3 acoustic phonons). e solid portion
of each bar shows the contribution from the most representative
 eigenvector

phonons in , while they are almost degenerate in .

is discrepancy between the two methods is much less evident when
dispersion correction is included in the calculation, which shows a
greater consistency between the two methods for all the modes repor-
ted (Figure 8.16). ese results suggest that the differences in the two
modes described above were due to the lack of dispersion interactions
in the pure   calculation.

Another effect must be surely the intermixing between rigid-molecule
phonons and internal vibrations, which becomes important if the in-
termolecular forces in the solid have comparable strength to the in-
tramolecular interactions.

It is more difficult to find the same level of agreement as seen for ben-
zoic acid in the other systems studied. e comparison between the
-  calculation of theophylline with its  counterpart
(see Figure 8.17) is not particularly good; while the - eigenvectors
have a large rigid-molecule component up to the 22nd eigenvector, few
of these correspond in a 1:1 manner to a calculated  eigen-
vector. A problem with this  calculation is the imperfect sep-
aration between acoustic and optical phonons, which is an indicator of
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problems in the convergence of the - calculation. As an example,
the first optical phonon, with a frequency of 16.33 cm−1, has a staggering
30% contribution from one of the  acoustic phonons, which
makes it the most representative rigid-body contribution!

is suggests that there is a mixing of the acoustic modes with the op-
tical modes in the  calculation, which may be due to inadequate
k-points sampling or too small a basis set, resulting in imperfect trans-
lational invariance of the crystal energy. However, a second calculation
with increased k-point sampling (0.02Å−1 instead of 0.05Å−1 density
sampling, with an increase from 12 to 60 k-points) gives the same res-
ults, with a maximum variation of 0.2 cm−1 in the phonon frequencies,
and almost identical -vectors decomposition.

Another important factor is that the intermixing outlined in Equa-
tion 8.4 is possible only between eigenvectors belonging to the same
symmetry group. e case of paracetamol form II (Figure 8.19) shows
how symmetry affects the intermixing of modes; the phonons belong
to one of the 8 irreducible representations of the crystal’s space group
symmetry (Pbca). e phonons belonging to each representation are
not equally spaced in energy: for example, the two lowest energy -
 phonons belonging to the groupAu have frequencies 21.39 cm−1 and
71.14 cm−1 respectively, while the lowest B2g frequencies are 53.74 cm−1

and 57.41 cm−1.
e mixing is greatest between eigenvectors of similar energy (Equa-

tion 8.10), since our two computational methods are not likely to dis-
agree significantly on the evaluation of forces. So while there is more
than 97% agreement in the well separated Au  modes (number
8 and 14 in Figure 8.19), modes B2g are intermixing with one another
(number 11 and 18 in Figure 8.19). e same kind of behaviour is also
present at higher frequencies.

At the same time, a good agreement between the computationalmeth-
ods, along with separation in energy, is seen in the overall mixing
between the modes, with low energy  vectors mixing only with
low energy  vectors and vice versa. is is reported again for
paracetamol form II, Ag representation, in Table 8.16.

It can be noted that the values reported are not only expansion coef-
ficients of  vectors in terms of  vectors, but also vice
versa; so, while the well-separated  phonon 27 is a major com-
ponent of  vector 32, vector 27 itself (Table 8.16) is a sum of sev-
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Figure 8.18. Rigid body contribution to the first 36 paracetamol form I phonon
eigenvectors calculated by  using the dispersion corrected
 functional (excluding the 3 acoustic phonons). e solid por-
tion of each bar shows the contribution from the most representat-
ive  eigenvector
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Figure 8.19. Rigid body contribution to the first 70 paracetamol form II phonon
eigenvectors calculated by  using the dispersion corrected
 functional (excluding the 3 acoustic phonons). e solid por-
tion of each bar shows the contribution from the most representat-
ive  eigenvector
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 phonon mode
7 9 13 27 41 42





ph

on
on

m
od

e 4 0.56 0.00 0.19 0.06 0.01 0.02
9 0.18 0.41 0.37 0.00 0.00 0.01
12 0.08 0.56 0.32 0.01 0.00 0.00
24 0.08 0.01 0.00 0.38 0.00 0.05
32 0.05 0.00 0.09 0.20 0.03 0.27
43 0.04 0.00 0.01 0.11 0.24 0.01
56 0.00 0.00 0.01 0.08 0.22 0.36
60 0.01 0.00 0.00 0.11 0.23 0.06
73 0.00 0.00 0.01 0.05 0.07 0.20

Table 8.16. Squared coefficient of expansion of  vector in term of -
 vectors, Ag representation phonon modes for paracetamol form
II

eral  vectors of similar energies.

In paracetamol form I (Figure 8.18) the situation is more complex.
ere are a few modes with a contribution greater than 80%, and for
many of the eigenvectors there is a clearly predominant contribution, but
other  eigenvectors are important as well. e same behaviour
is present in the non-dispersion corrected calculation.

Due to its flexibility, nitrofurantoin is the system expected to show the
smallest agreement between  and among those studied.
However, this appears to be true only for the α form. Once again, the
apparent scarceness of phonons in the α form is due to its different space
group symmetry (P-1, with just twomolecules in the unit cell, compared
with four in form β, symmetry P21/n).

e most evident feature in the results of the dispersion corrected cal-
culation on nitrofurantoin α (Figure 8.22) is the lack of completely rigid
eigenvectors in form α; only one mode shows greater than 80% con-
tribution for rigid-molecule degrees of freedom. In contrast, in form
β (Figure 8.23) many of the low frequency modes show a fairly rigid-
molecule behaviour, despite a very similar arrangement of molecules,
in almost equally spaced molecular sheets.

It is difficult to understandwhy there should be such a big difference in
the behaviour of the two similar polymorphs: one major difference is in
the arrangement of the hydrogen bonding networkwithin themolecular
layers, and in the slightly different stacking of the molecules (see Figure
8.20).
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Figure 8.20. Molecular stacking of two nitrofurantoin molecules in form α
(right) and β (le)

emain problemwith a rationalisation of themolecular vibrations is
the marked difference between the eigenvectors resulting from the 
and -  calculations, which is much more pronounced than
for other molecules studied. is difference is due to the different evalu-
ation of the dispersion interactions in the crystal, and the layered struc-
ture of the system.

e results of the - calculation show that the structures prefer to
keep the molecular stacking as it is during the lowest vibrations, sacrifi-
cing instead the internal rigidity. However, in the non-dispersion cor-
rected calculation the lowest vibrations consist of an almost rigid sliding
of the molecular layers upon each other. We can see how in the low-
est energy phonon in the non-dispersion corrected calculation (Figure
8.21a) the molecules rigidly slide upon each other, and all the molecules
within a plane moves in the same direction. In the dispersion corrected
calculation (Figure 8.21b) the two five-membered rings in each nitro-
furantoin rotate in opposite directions: stacked rings rotate in the same
direction to maintain their parallel orientation.

For carbamazepine (Figure 8.24) the agreement between 
and  is very good, despite the size of the molecule: most of the
lowest frequency phonon vectors have a predominant  mode
(more than 75% of contribution).
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(a)  calculation, 43.3 cm−1 (b) /- calculation, 56.9 cm−1

Figure 8.21. Unit cell view of the lowest optical mode of nitrofurantoin α cal-
culated with . On the le, a rigid-molecule sliding of two
molecular planes each other; on the right (dispersion corrected cal-
culation), the internal vibrations of the two molecules. e point
of view is slightly different for clarity

8.4.1 Eigenvectors agreement – conclusions

We can take into account the general agreement between a 
and a  phonon calculation by summing up all themost important
rigid contributions for each mode. We can get a comparable parameter
among our calculations if we normalise this sum by all of the rigid body
contributions, which depends on the number of molecules Z in the unit
cell as 6Z− 3.

is number cannot give us a precise picture, as it does not take into
account the coupling between single vibrational modes. However, we
can use this as a rough estimate of the / agreement
across the set of molecules; the results are presented in Table 8.17.

We can see how in benzoic acid we observe the highest agreement
between the two computational methods. For paracetamol there is a
very good agreement as well (slightly less for the dispersion corrected
calculation of form I); a similar level is also found for the substituted
acetanilides (see chapter 11), which are molecularly very similar to pa-
racetamol. e value drops significantly for the non-dispersion correc-
ted calculations of nitrofurantoin, as discussed before. e agreement
between the methods seems to be dependent on the rigidity of the mo-
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Figure 8.22. Rigid body contribution to the first 24 nitrofurantoin α phonon ei-
genvectors calculated by  using the dispersion corrected 
functional (excluding the 3 acoustic phonons). e solid portion
of each bar shows the contribution from the most representative
 eigenvector
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Figure 8.23. Rigid body contribution to the first 45 nitrofurantoin β phonon ei-
genvectors calculated by  using the dispersion corrected 
functional (excluding the 3 acoustic phonons). e solid portion
of each bar shows the contribution from the most representative
 eigenvector
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Figure 8.24. Rigid body contribution to the first 49 carbamazepine form III pho-
non eigenvectors calculated by  using the dispersion correc-
ted  functional (excluding the 3 acoustic phonons). e solid
portion of each bar shows the contribution from the most repres-
entative  eigenvector

lecule, rather than its size, as exemplified by the good agreement in the
case of the carbamazepine form III, the crystal with the larger molecule
among our systems.

8.5 conclusions

We have analysed the results from the  phonon calculations to
assess the importance of molecular rigid-body vibrations in the eigen-
vectors across the whole spectrum, and to determine whether it is cor-
rect to use a rigid-molecule approach for the calculations of the terahertz
spectrum.

For every system we tested we obtained an approximately sigmoidal
behaviour of the rigid body contribution to the total vibrational eigen-
vectors: the vibrations are only intramolecular if the frequency is higher
than a clearly identifiable threshold, that varies between molecular crys-
tals (we used a 10% maximum rigid-molecule contribution to define
ωhigh for each system), that varies from system to system and spans from
150 cm−1 for nitrofurantoin to almost 300 cm−1 for benzoic acid, de-
creasing with the size of the system and depending slightly on its crystal
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Crystal system
#  - vectors sum  vectors sum
opt. modes total % total %

Benzoic acid 21 16.85 80.25 17.19 81.90
eophylline 21 a a 13.39 63.78 b

Paracetamol I 21 15.06 71.72 14.51 69.10
Paracetamol II 45 32.78 72.84 32.85 73.01
Nitrofurantoin α 9 5.91 65.76 6.45 71.74
Nitrofurantoin β 21 13.95 66.45 14.33 68.26
Carbamazepine III 21 c c 15.51 73.88
a Imaginary frequencies in the calculation
b Acoustic phonons are not fully translational
c Calculation was not performed without dispersion correction

Table 8.17. Sum of the most representative  to each  calculated ei-
genvector for sevenmolecular crystals (number of rigid-molecule optical
modes for each system reported). e total sum and the average percent-
ile contribution per mode is reported

form.

e main limitation of a rigid molecule approach is that we neglect
internal vibrations due to molecular flexibility. We have considered the
position of the lowest normal modes of vibration of the isolated mo-
lecules we studied, and the lowest frequency internal modes within the
periodic  approach. e internal vibrations in the solid state are shif-
ted to higher frequencies (Table 8.15), so that in our most rigid systems
(benzoic acid, theophylline) the absorptions within the terahertz range
are all lattice modes; for the other systems only 1-2 of the lowest fre-
quency intramolecular normal modes are seen in the terahertz range.

In the second part of the chapter we analysed the similarities between
the  and  eigenvectors. As before, we found a good
agreement for our smallest systems, and an increase in the mixing for
our more flexible systems, in particular nitrofurantoin form α. In the
case of nitrofurantoin, and for more flexible molecules the  ap-
proach might not be method of choice, since these calculations ignore
the influence that internal vibrations will have on the vibrational spec-
trum in the frequency range on interest for terahertz spectroscopy.

A possible solution for our calculations would be to model the mixing
between these internal vibrations and the latticemodes: this will eventu-
ally be implemented in , by including the evaluation of the se-
cond derivative of the crystal energy with respect to the conformational



170 effect of the rigidity of the system on the spectrum

change in the molecule, and the inclusion in the dynamical matrix of
intramolecular degrees of freedom (Equation 3.4). is would allow us
to selectively include only the flexibility relevant to the terahertz region,
without formally including all the intermolecular degrees of freedom
force constant, with small changes to the  code.



9
THE ROLE OF WATER IN THE LATTICE DYNAMICS OF

CRYSTALLINE HYDRATES

I   we discuss the effect of water inside the crystalline
structure on the lattice modes of molecular crystals. e study and
the monitoring of the formation of the hydrates in molecular crys-

tals is important for pharmaceutical purposes: as a result of water inclu-
sion, the crystal unit cell is not the same and, as with polymorphs, the
physical properties of the material are affected. More precisely, the sol-
ubility of the hydrate form is reduced, as can be its dissolution rate. All
such changes ultimately affect the bioavailability of the drug molecule.
For these reasons, pharmaceuticals drugmolecules are usuallymarketed
as neat crystals [216, 217]. e variation of the mechanical properties of
thematerial that could be caused by hydrate formation can be a problem
for the process of manufacturing: these changes might seriously affect
the tablettability [218] and the processability of the drug [219].

Spectroscopy is not only useful as a form of fast characterisation of a
material [220], but also to analyse the kinetics and mechanisms of the
interconversion between forms, to better monitor their formation and
disaggregation [57, 221].

For these reasons, it is sensible to study and understand the vibrational
properties of water in the solid state, and its effect on the vibrational
modes of the active ingredient in the crystal ().

In the following sections we analyse the lattice mode eigenvectors of
the hydrate crystal forms described in chapter 6: theophylline mono-
hydrate; paracetamol monohydrate and trihydrate (the stable forms at
standard conditions); nitrofurantoin form I and II; carbamazepine di-
hydrate. We examine these eigenvectors to look for similar features in
the absorptions of all the hydrate structures studied and a systematic
description of the hydrate spectra.

171
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9.0.1 Peculiarity of the water molecule

e water molecule is in many ways different from the  molecules
we have studied up to now. It is evidently a more “compact” and lighter
molecule: it has a molar mass of 18Da, much lower than our smal-
lest system, benzoic acid (122Da). We also expect water to behave
as a more rigid molecule than the larger organic molecules: the low-
est internal vibrational frequency calculated with , /-
** is 1711 cm−1.

e rigidity of water suggests that we should not see any of its internal
mode of vibrations in the lattice mode region, and all the water vibra-
tions in the region 0 to 1000 cm−1 will therefore be rigid translational and
rotational motions. We investigate the amount of rigid-body contribu-
tion in the eigenvectors resulting from the  calculations follow-
ing the procedure outlined in chapter 4.4, and we look for characteristic
vibrations in the spectrum.

e mass of a molecule is a very important parameter in the determ-
ination of the absorption frequencies in the terahertz spectrum: as it is
shown in Equation 3.4, page 31, the vibrational frequencies are inversely
proportional to the square root of the molecular masses. e ratio of
the masses between the  and water (Table 9.1) varies between 8.4 and
13.2.

edifference betweenwater and the molecules is evenmore evid-
ent in the analysis of the moment of inertia of the molecule around the
axis of rotation, that takes the role of the mass in Equation 3.4 whenever
rotations – instead of translations – are involved. ese moments are
calculated using the moment of inertia tensor I , whose components are
defined as

Iij =
atoms∑

k

mk(r2xk + r2yk + r2zkδij − rikrjk), (9.1)

where we used the atomic massmk, the ith Cartesian components of the
position of the kth atom rik with respect to the axis of rotation, and the
Kronecker delta δij.

For water these values are very low for geometrical reasons, since the
centre of mass is very close to the only heavy atom, oxygen, as can be
noticed in Table 9.1.

As a consequence (from these considerations only, and without tak-
ing into account the differences in the force constants) we should expect
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a factor of approximately 30 between the absorption frequencies of the
heavier molecules compared to water for the modes composed only of
rotations, and a factor 4 between the absorption frequencies of the heav-
iermolecules compared towater for themodes composed of translations
only. Since the vibrations in the real hydrate crystal are composed of a
concerted movement of the water and the , we can assume that we
will see (at least for some of the phonons) a mixing of features, with wa-
ter movements having a varying degree of relevance to the overall crys-
tal vibrations. is is discussed in the later sections in the context of the
 and  eigenvector analysis.

9.1 castep calculations

 calculations were performed for the hydrate forms of theo-
phylline, paracetamol (monohydrate only) and nitrofurantoin (forms I
and II);  calculations were performed for each of the hydrates
presented in chapter 6, with the  and  forcefields.

Unfortunately the  calculation of theophylline hydrate and
polymorph II of nitrofurantoin hydrate ( reference code ),
while apparently finding a minimum in the geometry optimisation step,
displayed imaginary vibrational frequencies. is highlights the possib-
ility that the final crystal structures for these systems are not real min-
ima, but rather saddle points for the energy of the crystal structure. We
will not discuss these calculations, because of the possible inaccuracies
of the calculated forces and frequencies. Furthermore, one of the 

Molecule Mass (Da) Principal moments of inertia (DaÅ2)

eophylline 180.16 985.49 567.09 425.19
Paracetamol 151.16 1055.71 923.06 137.72
Nitrofurantoin 238.15 3151.56 2780.68 374.11
Carbamazepine 236.26 1603.45 1310.01 740.56

Water 18.02 1.56 1.03 0.53

Table 9.1. Molecular masses and moments of inertia of the molecules in the hy-
drate systems studied using the X-ray determinedmolecular geomet-
ries. For paracetamol this values are taken from the monohydrate
(), for nitrofurantoin from form II (). e water geo-
metry is taken from 
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Figure 9.1. Rigid body contribution to the vibrational modes as calculated with
 ,  functional, for paracetamolmonohydrate in the range
0 to 1250 cm−1

acoustic phonons in nitrofurantoin hydrate form II does have a consid-
erable fraction of internal contribution (22%), indicating some prob-
lems with the calculation.

e  calculation for paracetamol monohydrate was among the
first we completed and we did not use dispersion correction. e rigid
body fraction of the eigenvectors calculated with  ,  func-
tional is reported in Figure 9.1. Similar to the results of the neat pa-
racetamol calculations, a rigid body region is visible in the region 0 to
150 cm−1. However, there are some new rigid body features around
250 cm−1 and, more evidently, a set of lattice modes with large rigid
molecule contributions in the range 600 to 800 cm−1 where none of the
non-hydrate systems have any rigid molecule modes.

e distribution of rigid molecule vibrations in the low frequency re-
gion for the hydrate is more similar to that seen for neat paracetamol
form I than form II: this is probably related to the similarity between the
corresponding crystal structures (see section 6.1). A comparison of the
calculated spectra of paracetamol form I and II with the hydrate form in
the frequency range 0 to 450 cm−1 highlights the presence of three other
highly rigidmodes near 160 cm−1 (circled in green in Figure 9.2); despite
the similarity in frequency to the high rigidity modes in form II, these
are unrelated to one another.

e same kind of behaviour for the rigidity of the phonons can be
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Figure 9.2. Comparison of the rigid body features in the neat and monohydrate
forms of paracetamol in the range 0 to 450 cm−1 calculated with
 ,  functional. Form I data points are blue, form II data
points are red and the monohydrate data points are in black. Anom-
alous high frequency, high rigidity lattice modes in the hydrate (see
text) are circled in green

seen in the case of nitrofurantoin hydrate form I, shown in Figure 9.3:
none of the four  calculations of the nitrofurantoin neat forms
have any rigid body modes (higher than ≈ 60%) at a frequency higher
than 120 cm−1, while in the hydrate there are two modes between 150 to
200 cm−1 (drawn in red), four modes around 300 cm−1 (drawn in green)
and four others (the most rigid of the modes we just mentioned, drawn
in blue) at 550 to 700 cm−1; other modes with varying degrees of rigidity
can be seen in the range from 200 to 700 cm−1.

e position of these high rigidity modes can be understood by con-
sidering the effect of the mass and moment of inertia of water described
in the previous section. We can get a better understanding of the dif-
ferent types of motion in the crystal by removing the amount due to
water movements from the total rigid body fraction. In Figure 9.4, we
see the effective contribution of only the paracetamol molecules in each
vibration, which can be more easily compared to similar values in the
anhydrous crystal.

In the acoustic phonons, water and paracetamol molecules exhibit
equal displacement (hence an equal 50% contribution to the total). e
contribution of rigid paracetamol motions is significant in the region 0
to 100 cm−1, it then steadily declines until 200 cm−1, and from this fre-
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Figure 9.3. Rigid body contribution as calculated with  ., dispersion
corrected , for nitrofurantoin hydrate form I in the range 0 to
1100 cm−1. Anomalously high frequency, high rigidity lattice modes
are coloured according to their frequency (see text)

quency onward becomes negligible, following the same trend as the cal-
culation for the neat crystal structures.

As in the previous chapter, we analysed the resulting rigid body dis-
tribution in energy by fitting it with a logistic function. is time the
maximum of the function was chosen to be 0.5, since the translational
component amount of the acoustic phonons is equally divided between
the water and  molecules (the stoichiometry for both hydrates is 1:1).
e parameters of the logistic fit (Table 9.2) appear to be slightly higher
than for their neat crystal counterparts, probably due to the effect of wa-
ter. e x0 value for paracetamol is almost the same as in nitrofurant-
oin, but the curve is steeper for paracetamol (the p parameter governs
the extent of the intermediate rigidity region). e distribution of nitro-
furantoin rigid body fraction appears to be more erratic, as can be seen
both from the graph and the ς sum of residues.

Within the limit of only two systems analysed (but with good agree-
ment with the other neat system studied) we can conclude that all the
rigid body contributions at higher frequencies, which are absent in the
spectra of the anhydrous crystals, are associated only with the motion
of the water molecules. We analyse these motions further in the results
of  calculations, which have been completed successfully for a
wider range of hydrate crystal structures.



9.1 castep calculations 177

0 100 200 300 400 500 600
0.0

0.2

0.4

0.6

0.8  Rigid body fraction 
         paracetamol molecules

 

Ri
gi

d 
bo

dy
 fr

ac
tio

n

Frequency (cm-1)

paracetamol monohydrate

Figure 9.4. Rigid body contrbution of the paracetamol molecules to the vi-
brational modes (excluding water) as calculated with , dis-
persion corrected , for paracetamol hydrate in the region 0 to
650 cm−1. e best fit for a logistic curve is displayed
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Figure 9.5. Rigid body contribution of the nitrofurantoin molecules to the vi-
brational modes (excluding water) as calculated with , dis-
persion corrected , for nitrofurantoin hydrate form I in the re-
gion 0 to 650 cm−1. e best fit for a logistic curve is displayed

Molecule x0 (cm−1) p χ2 ς

Paracetamol 121.59 6.55 0.004 0.32
Nitrofurantoin 124.33 4.73 0.010 0.95

Table 9.2. Characterising parameters of the logistic fit of the rigid body fraction
associated with the  in the phonon eigenvectors of paracetamol
monohydrate and nitrofurantoin hydrate form I with 
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Figure 9.6. Anitrofurantoinmolecule hydrogen bonded towater in nitrofurant-
oin hydrate form I (). is schematic shows an (exagger-
ated) angle of rotation for the two molecules if the hydrogen bond
distance N · · · H (in blue) is to remain unaffected by the rotation.
Axes of rotation are in black

9.2 dmacrys calculations and analysis

e calculations with  confirmed the results of our 
data. e eigenvectors were analysed to extract the amount of rota-
tional and translational contribution to each vibration, separately for
water and for the . e translational and rotational vectors (scaled
bymass andmoment of inertia to represent the displacements) are given
in the output of  and converted to orthogonal coordinates by
. e use of the rotation vectors as they are in the comparison
of the displacement magnitude can give misleading results in the case of
molecules of very different sizes.

Consider, for example, the arrangement of two molecules in nitro-
furantoin hydrate form I (Figure 9.6). e peripheral atoms of the
molecules generally display a similar displacement of their the pho-
non modes, since this is where the hydrogen bond interactions happen.
However, for a compact molecule like water, a much greater angle of ro-
tation is required than for nitrofurantoin, where a small rotation has a
greater effect far from its centre.

As a consequence, if we keep the molecular rotations in  as
the descriptor we end up with an over-representation of the motion of
water compared to the one we observe in reality. To deal with this prob-
lem we applied a slightly different approach in our description: for each
molecule we considered an average over all the magnitudes of the rota-
tional vectors’ displacements.

For all of our simulated systems we found that the lattice modes fre-
quencies can be classified into different regions:
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 , the region of the low energy eigenvectors, where each vibra-
tional mode is comprised of a weighted mixture of all the mo-
lecules in the unit cell. is is true up to the rigidity region in
, that differs for each molecule;

 , the highest energy region, where vibrational modes are com-
prised solely of water movements. ese vibrational modes can
effectively be seen as as free vibrations of the water molecules in
the field of the frozen heavier molecules. e 3Zw highest energy
vibrations (where Zw is the number of water molecules in the unit
cell) are characterised principally by rotational movement, and
they are well separated in energy from the rest of the phonons;

  is an region intermediate in frequency between the previous
two. In this region, the main interaction probed is the water-
hydrogen bond stretching; the modes in this region can be easily
differentiated from the others, and in most of the systems are well
separated in energy as well.

e frequency ranges of these regions are summarised of all systems
studied here in Table 9.3.

We expect to see a clear frequency separation in the phonon frequen-
cies between modes prevalently composed of water motion and those
that involve heavier organic molecules. We have observed in all of our
systems that whenever motion of the water molecules makes a signific-
ant contribution to the eigenvectors at lower frequencies (region 1), it
does not perturb significantly the hydrogen bond between  and wa-
ter: the water behaves as “rigid connector” between the  molecules,
mediating the vibrationwith a bending of its hydrogen bond, rather than
a stretch (that is, changing the angle in the hydrogen bond rather than
its length). Vibrational modes exemplifying this effect are reported in
the later sections.

e main perturbation of the hydrogen bonds involving water appear
in the intermediate region 2, when the  still makes a partial (although
small) contribution to the total vibrational eigenvector .

No appreciable variation in the composition of the eigenvectors was
found by changing from the  to the  forcefield, as almost all of
the modes show a 1:1 agreement, as can be seen in the projection of
the eigenvectors of the  calculation onto the  eigenvectors (see
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(a) eophylline hydrate
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(b) Paracetamol monohydrate
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(c) Paracetamol trihydrate
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(d) Nitrofurantoin form I
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(e) Nitrofurantoin form II
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(f) Carbamazepine dihydrate

Figure 9.7. Direct product of  eigenvectors using  and  force-
field: the colour represents the square of the magnitude of the pro-
jections of each vector upon each other

Figure 9.7). For some of the modes the effect of the potential was to
swap their relative energy, as happens for nitrofurantoin form II, modes
12–17 (Figure 9.7e).

emost sensitive parts of the results appear to be the frequency of the
water-dominated normal modes in region 3, which are found at consid-
erably higher frequencies in the  than with  calculations (Table
9.3).

ere is also a clear difference in the highest frequency vibration
between the systems where water molecules are contained in pockets
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(a) Translation (b) Rotation (c) Sum

Figure 9.8. Decomposition of a rotation around an arbitrary axis (dotted in the
Figure on the right) as centre of mass rotations and translation

(paracetamol monohydrate and nitrofurantoin hydrates) and the chan-
nel hydrates. e vibration of the watermolecules in the pocket hydrates
can be seen as happening in an enclosed field of frozenmolecules. How-
ever, in structures where the interactions between water molecules are
possible (the channels in the theophylline and carbamazepine crystals,
and the more complex reticular interactions of waters within the para-
cetamol trihydrate crystal) the concerted movement of water molecules
results in higher vibrational frequencies, around 1000 cm−1 with the
forcefield, compared to the frequencies for the pocket hydrates, which
predicts vibrations only up to 800 cm−1 for all systems (see Table 9.3).

e separation into different spectral regions is difficult to spot if we
look only at the breakdown of contributions listed in the tables, be-
cause the decomposition of the eigenvectors does not convey the relative
movement of molecules and the way that hydrogen bonds are distorted.
For example, the high amount of water contribution in the deconstruc-
tion of the phonon vibrations in theophylline hydrate modes 27 and 28
(Figure 9.9), couldmislead the reader into thinking that these are region
2 (or 3) modes; however, we classify these as region 1modes because the
relative motion of water consists of bending, and not stretching, of the
hydrogen bonds. eir classification as form 1 modes is confirmed by
their low frequency (105 cm−1).

Another problem is that the rotations are expressed in the terms of
centre of mass frame, and this can generate unfortunate artifacts due to
the mutual cancellation of rotational and translational contributions to
atomic displacements, as depicted in Figure 9.8. Rotations with respect
to other axes can be obtained (approximately) as a sum of molecular
translations and rotations. Such an effect is clearly visible, for example,
in the lattice modes of nitrofurantoin hydrate form I (Figure 9.17) at
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low frequency. In modes 9–17, since the axis of rotation of the water
passes through its hydrogens, vibration and rotation of water cancel out
for hydrogen: for this reason water is overrepresented, since the oxygen
is the only atom moving.

We will try to disentangle problematic assignments as we discuss each
specific system.

9.2.1 Theophylline hydrate

For the calculation of the phonon spectrum of theophylline hydrate, it
was necessary to relax the symmetry of the unit cell to allow the form-
ation of physically sensible hydrogen bonds in the water channel (see
section 7.3.2). e disorder of the hydrogen atoms in the methyl group,
despite shiing the positions of some of the lattice mode frequencies,
does not significantly affect the eigenvectors. While we will only con-
sider the eigenvectors from one of the symmetry-reduced unit cells in
this section (structure 2 in Table 7.7), the discussion is valid for all the
other structures as well.

eophylline hydrate is characterised by a narrower frequency win-
dow for the rigid body vibrations of the  compared to the anhydrous
form: the highest mode for the  calculations with an  contribu-
tion greater than 10% has a frequency of 104 cm−1 (mode 27 in Figure
9.9), compared to 174 cm−1 of the highest frequency mode in the neat
form.

is difference shows the considerable effect that the molecular envir-
onment can have on the lattice mode frequencies, and the differences in
intermolecular forces in each arrangement. For instance, we can infer
that the energy involved in the distortion of the molecular chains in the
anhydrous form is higher than the energy probed in the distortion of the
dimers in the hydrate (mode 26 in Figure 9.9).

Most of the characteristic features of the vibrations in theophylline hy-
drate are due to the channel distribution of the water molecules inside
the crystal. e interaction between water molecules within the chan-
nel is very strong: in the first 14 eigenvectors (the lower energy modes
within region 1) these hydrogen bonds are not perturbed, and the dis-
placement vectors of neighbouring O · · · H remain parallel. is effect
is noticeable in region 2 as well: the four modes in this region, which are
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Figure 9.9. Breakdown of the contributions to the eigenvectors of the
symmetry-relaxed theophylline hydrate () calculated for the
48 phonon modes with ,  force field. Regions 1, 2, 3
are respectively in blue, green and yellow on the top bar

(a) Mode 30, 147 cm−1 (b) Mode 32, 175 cm−1

Figure 9.10. Vibrational motions of the water in the symmetry-relaxed theo-
phylline hydrate in region 2 calculated with ,  force-
field; on the le, no inter-water hydrogen bond is stretched
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Figure 9.11. Vibrational motions of the water molecules in the symmetry-
relaxed theophylline hydrate, mode 12, calculated with ,
 forcefield. e theophylline molecules are displayed within
their van der Waals surfaces, to highlight the water channel. e
displacement vectors are coloured the same as the atoms

symmetry adapted stretches of the water-theophylline hydrogen bond,
have very different frequencies (147 cm−1 vs 175 cm−1) depending on
whether they do include stretching of inter-water hydrogen bonds (Fig-
ure 9.10).

Another interesting feature of the water molecules inside the channel
is their cooperative behaviour: modes with a large translational water
contribution (especially modes 9, 11, 12, 17) effectively behave as a col-
lective, bigger “macromolecule” moving through the channel and inter-
acting with the  (Figure 9.11). e fact that this vibrational move-
ment is not hindered by the presence of the  might be the reason
behind the low frequency of these water-dominated modes compared
to those in region 3.

9.2.2 Paracetamol monohydrate

e deconstruction of the phonon displacements for paracetamol
monohydrate is reported in Figure 9.14. All but one of the possible hy-
drogen bond sites for water molecules in the structure are filled (see
Figure 6.5), with each water forming bonds with 3 paracetamol mo-
lecules. All of these interactions are of the type OH · · · O. e shortest
O · · · H distance is the one involving the oxygen in water with the hy-
droxyl group (1.755Å), with the two involving the hydrogen atoms be-
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(a) Mode 7, 45.1 cm−1 (b) Mode 32, 59.5 cm−1

Figure 9.12. Vibrational motions of water in paracetamol monohydrate in re-
gion 1 of the spectrum calculated with ,  forcefield;
paracetamol molecules are prevalently rotating, and the water
translating; on the right, paracetamol molecules are translating in
different directions, and water tries to follow

ing slightly longer (1.831Å and 1.922Å) and with almost linear bonds.
ere is also a strongNH · · · O- hydrogen bond, that is stretched
in few eigenmodes in the region 95 to 115 cm−1.

For this system there is no possibility of modes dominated by wa-
ter contributions at low frequency (as happens in theophylline mono-
hydrate), since such a movement would invariably perturb the high en-
ergy hydrogen bonds in the crystal; for this reason in the lower energy
modes water molecules translate along with their hydrogen-bonded pa-
racetamol molecules (mode 7, Figure 9.12a). When such a concerted
translation of water and paracetamol is impossible, the water molecules
move in such a way tominimise the perturbation of the hydrogen bonds
(as in mode 9, Figure 9.12b).

e lower energy modes of the spectrum are dominated by the trans-
lational contribution of the , while the rotational contribution be-
comes more important for the modes at the high frequency end of re-
gion 1. Modes in region 2 and 3 are graphically very recognisable, as
they are dominated by translation and rotation of water, respectively.

We can count 12 modes belonging to region 2, a number increased
in the comparison with theophylline hydrate, because of the number
of hydrogen bonds in the crystal. ere is a clear separation in energy
between the region 2 modes, depending on the number of hydrogen
bonds involving water molecules that are stretched: three (ω =194 to
202 cm−1), two (ω =155 to 165 cm−1) or one (ω =133 to 142 cm−1).
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(a) Mode 7, 38.8 cm−1 (b) Mode 47, 109.9 cm−1

Figure 9.13. Water-dominated modes in paracetamol trihydrate calculated with
,  forcefield. On the le figure, water movement
goes along with paracetamol displacements; on the right, collect-
ive movement of water in its channel

9.2.3 Paracetamol trihydrate

Paracetamol trihydrate is the biggest system we studied, with 32 mo-
lecules in the unit cell (24 watermolecules). ewater:paracetamol pro-
portion in the displacement is 3:1 for the acoustic phonon modes, as ex-
pected from stoichiometric considerations. e mode decomposition,
Figure 9.15, is dominated by the predominance of water: we can see that
the 72 (24× 3) highest frequency modes are pure rotational motions of
the water molecules and other 56 are dominated by water translations.

Despite the structural differences with paracetamol monohydrate, the
deconstruction of the eigenvectors in Figure 9.15 have similar features,
with translation being more important at lower frequencies, and rota-
tions more relevant at the high frequency end of region 1.

In contrast to the monohydrate, there are no close contacts between
paracetamol molecules, and all the interactions are mediated by water
molecules. In particular, one water molecule directly connects three pa-
racetamol molecules (the blue molecules in Figure 6.5, page 81), in an
arrangement similar to that in the monohydrate; the other two water
molecules are arranged to form a channel.

e collective movement of the water molecules within the channels
is visible in most of the modes 44–58, with low paracetamol contribu-
tion (frequency range 81 to 112 cm−1). As in the case of theophylline,
water molecules move together within the channel (Figure 9.13b), and
the number of modes is proportional to the number of symmetry adap-
ted combinations (which is higher than for theophylline hydrate because
of the higher number of symmetry elements in the unit cell). In some
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other low frequency modes with high water contribution (e.g. modes
4 and 6–8, Figure 9.13a) the translation of the water molecules is high-
lighted by the fact that they are at the periphery of the rotation of the
 molecules, similarly to what we reported in Figure 9.6.

ere are several types of mode in region 2, once again according to
the number and type of hydrogen bonds probed by the water move-
ments. e lowest energy modes (in the range from 128 to 153 cm−1)
involve the distortion of the -water- structure, with stretching of
the hydrogen bond ring (Figure 9.16a); higher energy vibrations involve
the other interactions (in magenta, Figure 9.16b) while at the same time
distorting other water-water hydrogen bonds (in blue on the same fig-
ure). emore the water-water interactions are distorted, the higher the
energy of the lattice mode. e highest four vibrations aremerely water-
water stretching modes, and we classified them as region 3 modes.

In the calculation of the frequencies for the trihydrate (particularly
with the  forcefield) the energy gaps between the regions are not
as sharp as in the other systems, once again because the overwhelming
contribution of water makes the transition smoother.

9.2.4 Nitrofurantoin hydrate form I

e breakdown of the eigenvectors of nitrofurantoin hydrate form I is
reported in Figure 9.17. e water molecules are coplanar with the ni-
trofurantoin molecules, and they are located within a pocket formed by
three nitrofurantoin molecules, with which they form three hydrogen
bonds.

ere are eight modes in region 2: the highest frequency four (207 to
216 cm−1) stretch all the three hydrogen bonds of water (Figure 9.18b),
while the other four lower energymodes (158 to 170 cm−1) are amixture
of hydrogen bond stretching and bending.

e distribution of rigid body motion in nitrofurantoin is slightly dif-
ferent thanwhat was found in the paracetamol hydrates: themodes with
reduced  contribution are located in the middle of region 1, rather
than at its end, despite the absence of water channels that we used to
justify similar features in theophylline monohydrate and paracetamol
trihydrate.

ewater-dominated lattice modes in the range 41 to 88 cm−1 (modes
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Figure 9.14. Breakdown of the contributions to the eigenvectors of paracetamol
monohydrate () calculated for the 48 phonon modes with
,  force field. Regions 1, 2, 3 are respectively in blue,
green and yellow on the top bar

16 32 48 64 80 96 112 128 192
0.0

0.2

0.4

0.6

0.8

1.0

53 71 111 128 154 191 234 479 963

 Paracetamol translation    Water translation
 Paracetamol rotation        Water rotation

 

 Frequency (cm-1)

Ei
ge

nv
ec

to
r 

fr
ac

tio
n

Phonon number

paracetamol
trihydrate

Figure 9.15. Breakdown of the contributions to the eigenvectors of paracetamol
trihydrate () calculated with ,  forcefield. For
clarity, only 16 of the highest 72 phonons are shown, since they all
display water contribution > 99.5%. Regions 1, 2, 3 are respectively
in blue, green and yellow on the top bar
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(a) Mode 66, 130.2 cm−1 (b) Mode 94, 186.2 cm−1

Figure 9.16. Paracetamol trihydrate region 2 modes calculated with ,
 forcefield. On the le, the lowest energy vibration; on the right,
an intermediate energy mode

7–19) are an artifact of the decomposition in terms of centre of mass
contributions, as we mentioned previously in the chapter. Figure 9.18
shows this clearly: the movement of the water molecules is prevalently
rotational, its axis near the position of the hydrogen bonds.

In general, region 1 modes are dominated by the layered packing of
the structure: the three lowest frequency involve simple slidings of each
molecular plane upon each other and they are therefore very low in en-
ergy, since they do not affect any hydrogen bond (22.3 to 24.6 cm−1): the
higher energy out-of-planemodes start to appear atmode 15 (frequency
of 63.1 cm−1).

In the highest energy mode in region 1, all of the molecules in a
plane form a “wave”movement, involving rotation of neighbouringmo-
lecules in alternate directions, with almost no translation involved (Fig-
ure 9.18c).

ere are eight region 2 modes: only the highest energy four (207 to
217 cm−1) involve distortion of the hydrogen bond acceptor in water.
Since these modes are well separated from the others in region 2 (which
span the energy range from 158 to 180 cm−1) we can safely assume that
the hydrogen bond acceptor in water is the one forming the strongest
bond out of the three.

9.2.5 Nitrofurantoin hydrate form II

e breakdown of the eigenvectors of nitrofurantoin form II is reported
in Figure 9.19. Since form II has double the number of molecules within
the unit cell than form I, the number of lattice modes is increased.
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Figure 9.17. Breakdown of the contributions to the eigenvectors of nitrofurant-
oin hydrate form I () calculated for all the 48 phonons with
,  force field. Regions 1, 2, 3 are respectively in blue,
green and yellow on the top bar

(a) Mode 13, 48.2 cm−1 (b) Mode 35, 200.9 cm−1

(c) Mode 26, 105.0 cm−1

Figure 9.18. Region 1 (a, c) and region 2 (b) modes in nitrofurantoin hydrate
form I calculated with ,  forcefield
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Figure 9.19. Breakdown of the contributions to the eigenvectors of nitrofurant-
oin hydrate form II () calculated for all the 96 phonons
with ,  force field. Regions 1, 2, 3 are respectively in
blue, green and yellow on the top bar

Figure 9.20. Hydrogen bonds for water in nitrofurantoin hydrate form II. In
magenta, the hydrogen bond between the water oxygen and nitro-
furantoin. In blue, the interaction between the hydrogens in water
and the four acceptors in nitrofurantoin. Only part of the unit cell
is shown for clarity
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(a) Mode 27, 72.8 cm−1 (b) Mode 46, 100.9 cm−1

Figure 9.21. Water-nitrofurantoin interaction in mode 27 and 46 for nitrofur-
antoin hydrate II, calculated with ,  forcefield

ehydrogen bond network in nitrofurantoin hydrate form II is com-
pletely different from form I. Each water molecule acts as a connector
between two nitrofurantoin molecules only: while the acceptor in wa-
ter forms a strong N−H · · · O bond with one of the  molecules, the
donors form a complex four-atom interaction with the other nitrofur-
antoin molecule (see Figure 9.20).

From the analysis of the phonon vibrations the four-atom interaction
appears to be the strongest hydrogen bond out of the two: the displace-
ment vectors of the hydrogen atoms inwater have the samedirection and
magnitude as the acceptor atoms of the  up to mode 17 (51.2 cm−1),
while the oxygen in water has more freedom to move (with an overall
rigid body rotational movement around the “fixed” hydrogen atoms).

Most of the modes between 28 and 52 (68 to 104 cm−1) are character-
ised by a high contribution of water to the vibration, with a resulting
bending of the four-atom interaction. e energy of the interaction is
increased for higher frequency modes, as it can be seen from the differ-
ent interactions in Figure 9.21a and 9.21b).

e eight region 2 modes involve the stretching of all the hydrogen
bonds in water, and they all have roughly the same frequency (165 to
172 cm−1).

9.2.6 Carbamazepine dihydrate

In carbamazepine dihydrate, the water molecules are organised in four
columns along the crystallographic c axis, hydrogen bonded to each
other to form an infinite chain, and connected to the carbamazepine
dimer via the oxygen in the carboxamide group (Figure 9.22).
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(a) Hydrogen bond network,
as seen through the c axis

(b) Water column arrangement, as
seen through the a axis

Figure 9.22. Crystal structure of carbamazepine dihydrate () high-
lighting the hydrogen bond in the dimer (orange colour) and
between the waters (green)

In the lowest energy lattice vibrations, the hydrogen bonds are not af-
fected, and there is displacement of macro-units connected by hydrogen
bonds (see Figure 9.24). As a consequence of the low energy of the in-
teractions, the frequencies of these modes are very low (13 to 34 cm−1).

As in the case of the other channel hydrates, most of the lattice modes
with high water contribution within region 1 can be interpreted in term
of the relative movements of the water and carbamazepine substruc-
tures. In the lowest energy modes, 10–12 and 15 in the frequency
range 38 to 68 cm−1, the water columns move as a whole together, while
in higher frequency modes (18, 20, Figure 9.26) two water molecule
columns move in opposite directions.

While the translational movement of the  is predominant at lower
frequencies, rotation become important for the higher energy modes in
region 1 (see Figure 9.27).

Modes in region 2 are counterintuitive from the point of view of en-
ergy compared to the other systems. Mode 35 (Figure 9.28), although
having a low frequency (118.4 cm−1) is already stretching the hydrogen
bonds of water, while water vibrational modes 41–48 (193 to 227 cm−1)
belong to region 3, since they stretch the hydrogen bonds within the wa-
ter columns.
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Figure 9.23. Breakdown of the contributions to the eigenvectors of carbamaze-
pine dihydrate () calculated for all the 72 phonons with
,  force field. Regions 1, 2, 3 are respectively in blue,
green and yellow on the top bar

Figure 9.24. Vibration in carbamazepine dihydrate, mode 4 (13.4 cm−1) calcu-
lated with ,  force field

Figure 9.25. Vibration in carbamazepine dihydrate, mode 12 (516 cm−1) calcu-
lated with ,  force field
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Figure 9.26. Vibration in carbamazepine dihydrate, mode 20 (82.2 cm−1) calcu-
lated with ,  force field

Figure 9.27. Vibration in carbamazepine dihydrate, mode 24 (86.0 cm−1) calcu-
lated with ,  force field

Figure 9.28. Vibration in carbamazepine dihydrate, mode 35 (118.4 cm−1) cal-
culated with ,  force field
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9.3 eigenvector agreement between dmacrys and

castep

In this section we discuss the agreement between the  calcula-
tions and the  eigenvectors for paracetamol monohydrate and
nitrofurantoin form II, using the same methods employed in chapter
8.4.

As expected, because of the great separation in energy there is almost
no mixing between the  phonons of the three regions in the
description of the  features (Figure 9.29a).

e main difference with the  vectors is the presence of in-
ternal vibrations: we cannot describe some of the highest vibration as
“pure” water molecule vibration in a field of frozen  molecules, be-
cause there are internal vibrations with the same frequency, and inter-
mixing is therefore possible. Nonetheless, some of the vibrations can
still be described as pure water modes in the nitrofurantoin hydrate cal-
culation (see section 9.3.2).

Another, more complete visual analysis is presented in Figure 9.29,
with the projection, for both systems, of all the  eigenvectors
on the first 160  eigenvectors . We can see that the diagonal agree-
ment is not particularly good in region 1, but it improves for region 2 and
region 3 modes (Figure 9.29b). e separation between modes belong-
ing to different regions is most evident for the water-rotational lattice
modes (the highest 36–48  modes for both systems): even if
there is nomode with 100% agreement, each  eigenvector pro-
jects onto a small set of  eigenvectors in a small energy range.

9.3.1 Paracetamol monohydrate

e rigidity of  eigenvectors in the lower part of the spectrum is
high (Figure 9.30): the 20th phonon is the first mode showing a rigidity
lower than 75%, with a frequency of 104.03 cm−1, a value higher than
the equivalent anhydrate forms (where the firstmodewith less than 75%
rigidity occurs at approximately 80 cm−1).

e agreement between the two methods in the lower frequency part
of the spectrum is not very good except for some of themodes, and there
is considerable mixing among some of the eigenvectors.
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(b) Projection of the  eigenvector on the first 160  eigenvectors,
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Figure 9.29. Projection of the  eigenvectors on the  eigenvector
for paracetamol hydrate and nitrofurantoin hydrate form II. e
three regions 1–3 are highlighted in blue, green and yellow, respect-
ively

ere is a good agreement between  and eigenvectors
for each of themodes in the intermediate and high energy region (modes
32–47 in ). ere is a good 1:1 match for the high frequency
modes involving rotation of the water molecules.

e best agreement between the two methods is between 
modes 53–56 and  modes 33–36, in which the highest energy
hydrogen bonds are stretched between water and the .
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9.3.2 Nitrofurantoin hydrate form I

As we mentioned in the introduction, the nitrofurantoin hydrate calcu-
lation is characterised by a incompletely translational acoustic phonons
(about 22% internal vibration), which might affect the reliability of the
rigid body analysis.

e fraction of the rigid molecule displacement in the lower part of
the spectrum (Figure 9.31) is characterised by some low energy internal
vibrations (the first with a frequency of 37.97 cm−1), a lower value than
in the  calculations for either of the neat forms of nitrofurantoin.

Once again, the agreement between the two methods in the lower fre-
quency part of the spectrum is not very good except for some of the
modes, but the agreement improves for modes 54–64 (in the frequency
range 200 cm−1 to 240 cm−1) and there is excellent agreement for the wa-
ter rotational modes at higher frequencies.

As for paracetamol monohydrate, the first modes to have a perfect 1:1
match are modes 73–80 in region 2, which perfectly match (
modes 29–36.

9.4 conclusions

In this chapter, we have analysed the effect of water on the lattice modes
and frequencies of the hydrate systems we have studied.

e main observation we obtain from our analysis is the clear separ-
ation into frequency regions according to the importance of water con-
tributions to the vibrational mode. Region 3 is particularly well defined,
especially regarding the rotational modes in water due to its very low
moment of inertia. Another important parameter is the type of interac-
tion, and the frequency increases with the number of hydrogen bonds
probed by the vibration. e frequency is therefore very low when no
hydrogen bond is involved (as in the low energy lattice modes in car-
bamazepine dihydrate), and increases along with the complexity of the
vibration, where the mutual movement of the molecules affect an in-
creasing number of close intermolecular contacts.

enumber ofmodes in region 2 depends on the number of stretching
water- hydrogen bonds; due to the type of the vibration considered,
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this is related only to the translation of the water molecules. It is easy to
predict the number of modes in this intermediate region just by look-
ing at the structure, and consequently considering all the possible sym-
metry adapted combinations. is observation explains why in some of
the systems (paracetamol monohydrates and both polymorphs of nitro-
furantoin hydrates) all the water translations stretch a water- inter-
action, while in the case of theophylline monohydrate only water trans-
lations in one direction are important.

From the eigenvector comparison between  and  we
see that the agreement is not exceedingly good for the modes at lower
frequency, but the agreement gradually improves for themodes in region
2 and region 3. e agreement at higher frequency seems to suggest that
the description of the vibrations is better at higher frequencies: this is
probably due to the higher energy involved in these vibrations, and in
the lower relative error in the assessment of the intermolecular forces.



10
THE EFFECT OF POLARISATION

I   we repeated the calculations reported in chapter
7, but including effect of polarisation induced by the surrounding
molecules within the crystal. We used two different approaches:

  ( ): evaluation of the electrostatic distri-
bution of eachmolecule surrounded by the charges, and its use for
the  minimisation and the “standard” calculation of the
phonon frequencies and intensities, according to the procedure of
diagram 5.1;

  ( ): minimisation performed using a nor-
mal  calculation of the phonon frequencies and ei-
genvectors. e absorption intensities are not calculated with
 standard tool (estimate of the cell dipole moment de-
rivative using the rotational fraction of each phonon vector), but
with the recalculation of the molecular electrostatic distribution
according to each phonon displacement (diagram 5.4), and estim-
ation of the dipole derivative by interpolation on all the conform-
ations.

None of the abovemethods is completely free of drawbacks. e para-
meters in the Williams forcefield (as in the case of any other forcefield)
are parameterised together with an electrostatic method of choice: each
individual atom-atom energy is modelled as a sum of terms

Ejk = −Ajkr−6
jk + Bjke−Cjkrjk + qjqkr

−1
jk , (10.1)

and the values for the parameters A, B and C depends on the charges
used for their fit. We can therefore consider that the effect of polarisa-
tion is somewhat included in the optimisation of the parameters, and by
adding the polarisation we would be counting these effects twice (using
method 1).

203
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With method 2 we rely on the “self consistent” frequencies and eigen-
vectors and recalculate the intensities by considering the dipoles as they
would be inside the crystal, and their change with the displacement as-
sociated with each eigenvector perturbation from the equilibrium. With
this method, anyway, for each perturbation of the molecular position
the changes in electrostatic were not taken into account to begin with,
and the change in dipole (related to the intensity) might reflect artificial
effects.

10.1 dipole moment variations in the crystal

e changes in molecular dipole moments in the crystal are reported
in Table 10.1. Since the electronic distribution of the molecules is not
affected by the type of forcefield used, all of the reported structures are
from the  determinations, including a 30Å cloud of surrounding
molecules.

e first thing we notice is that we have amolecular electric dipole en-
hancement for every molecule we considered. e dipole changes dis-
play a considerable variation between different structure, from a min-
imum of 0.75% for the  molecules in paracetamol hydrate to 50.4%
in carbamazepine form III.

e dipole enhancement in water is much less variable than in the
 molecules varying from 16% to 28% (around 20% for most of the
structures). e enhancement is somewhat reduced to what is observed
in liquid water [174], ice [173] and water clusters of various sizes [222]:
these calculations find an increase of 40% in the value of the molecu-
lar dipole. e dipole magnitude in the water molecules depends on
their environment within the crystal: if water molecules are arranged
in pocket-like structures (nitrofurantoin hydrates, paracetamol mono-
hydrate) the dipole moment change are smaller compared to systems
where water–water interactions are more significant, as in carbamaze-
pine dihydrate (close to 30% enhancement).

e findings for themolecular dipole enhancement inmolecular crys-
tals do not always agree with measurements of charge density analysed
from X-ray determinations: in two comprehensive studies [172, 223]
Spackman summarises the measured dipole moments in molecular
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crystals, mostly changed by a factor in the range of −50% to 100% com-
pared to isolated molecule calculations. Furthermore, a series of peri-
odic  calculations in the same article showed that dipole enhance-
ments larger than 75% do not seem to be backed up by theoretical cal-
culation, and might be due to errors in the refinement procedure of the
experimental charges.

In another article by the same author [224] it is suggested that the use
of an iterative self consistent method similar to the one we implemented
can give a close estimation of the dipole moment of a molecule in the
crystal. e electronic distribution around a molecule is described as
dipoles, centred on the molecule itself, and summed up to infinity us-
ing the Ewald method [225]; the electronic distribution is calculated in
the obtained electric field, and it is repeated until self consistency. is
method produces an enhancement of the molecular dipole for a set of
molecules (unfortunately, none of them present in our set) varying from
10% to 40%, very similar towhatwas found in periodic  calculations
and to what we calculate for our systems.

e electronic distribution of a molecule is dependent on the crystal
packing: for carbamazepine the dipole enhancement varies from 7%
to 50% depending on the polymorph, and it can of course vary for
symmetry-independent molecules in the same unit cell (see carbama-
zepine form I, with Z′ = 4).

e percentile variation in dipole is evident is the nitrofurantoin poly-
morphs as well, with the enhancement in form α almost double of what
we have for form β.

e most peculiar behaviour is the one related to paracetamol: the
molecular dipole of the isolated molecule is roughly constant (4.9D) for
all the conformations in the neat crystals, but it is reduced by almost 20%
in the molecular conformation in the hydrate, (4.0D) and it remains
almost constant when we include the condensed state.

Our treatment is a first approximation of the electronic properties and
it cannot take into account charge transfers or quantum-mechanical ef-
fects. e most important contribution we are not considering is due to
hydrogen bonds: by its definition [226, 227] it cannot be fully accounted
for by an electrostatic approximation [228].
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10.2 effects of the full minimisation on the phonon

modes

In this section we briefly discuss the differences between the experi-
mental and unpolarised spectra, and we present a comparison between
the eigenvectors in the polarisation corrected and uncorrected calcula-
tions.

For all our calculations we analysed the eigenvectors of the polar-
ised calculation with those from the polarised results, by calculating the
square of the scalar product between the two complete sets of vectors;
once again, this approach is meaningful if the final geometries are com-
parable to each other, which is the case for all of our calculations. e
results are visually presented in the form of a matrix, with eigenvectors
from each calculation ordered by energy on one of the axes. If the two
sets are the same, we see a diagonal trend (as for nitrofurantoin β in Fig-
ure 10.3a); a non-diagonal 1:1 match highlights a different energy order
in the vibrational modes.

10.2.1 Structural changes

e electrostatic part is a very important contribution to the total lattice
energy in , but it does not seem to affect the final geometry of
the crystal. For most of the systems the introduction of the polarisation
correction seems to stabilise the structure to the initial geometry, as the
F values are reduced in almost all the cases (see Table 10.2) and we do
not notice significant variation between minimised structures with the
two methods (if we exclude the hydrates, which were the systems with
the biggest changes among our set).

10.2.2 Benzoic acid

e overall agreement with the experimental spectrum (Figures 10.1
and 10.2 for  and  forcefields respectively) is visibly reduced: the
frequency shi to higher frequencies with the inclusion of polarisation
worsens the agreement with the experimental spectrum compared to
the unpolarised frequency, and the shi is particularly strong for all the
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System  forcefield  forcefield
Unpol. Pol. Unpol. Pol.

Benzoic acid 28.17 18.87 23.21 20.60
Anhydrous theophylline 8.45 24.74 14.09 35.25
Paracetamol form I 19.24 24.02 10.98 12.10
Paracetamol form II 17.47 23.19 13.39 17.63
Paracetamol form III 38.53 16.58 42.05 24.66
Nitrofurantoin α 33.65 27.20 47.07 26.78
Nitrofurantoin β 33.55 16.02 30.14 8.56
Carbamazepine form I 4.57 6.70 4.34 4.14
Carbamazepine form II 1.58 3.41 1.40 0.97
Carbamazepine form III 14.48 14.28 10.75 13.35
Carbamazepine form IV 9.25 5.79 12.57 4.74

Paracetamol monohydrate 26.83 52.89 47.64 71.72
Paracetamol trihydrate 15.97 37.24 6.05 20.06
Nitrofurantoin form I 286.24 241.53 118.24 124.39
Nitrofurantoin form II 85.90 53.96 15.42 11.31
eophylline hydrate 151.66 186.41 218.52 222.69
Carbamazepine dihydrate 22.32 18.27 28.95 25.74

Table 10.2. Variation of the structure upon minimisation with , 
and  forcefields, as described by the F value with (Pol.) and
without (Unpol.) considering the effect of polarisation

frequencies over 100 cm−1. e eigenvectors (Figure 10.3) are almost
unvaried except for two modes with the  forcefield; there still mainly
1:1 correspondence of the eigenvectors, even if some of the energies are
reshuffled as a consequence of polarisation for some of the modes.

e highest frequency lattice modes are shied up to 40 cm−1 for the
highest energy  active modes, and even more (87 cm−1) for the -
forbidden (Raman active) modes (288 cm−1 vs 201 cm−1).

10.2.3 Anhydrous theophylline

e frequency shi in the case of theophylline improves the position
of the strongest absorption features, but the overall agreement over the
entire spectrum is not improved: we can also notice that the polar-
ised spectra from  and  calculations are much more similar to
each other than the corresponding unpolarised spectra (Figures 10.4 and
10.5). e highest energy modes, where there is a stretch of the hydro-
gen bonds, are shied by almost 40 cm−1 (from 150 cm−1 to 190 cm−1).
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Figure 10.1. Experimental (100K) and ,  forcefield spectrum of
benzoic acid. e unpolarised and polarised spectra are reported
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Figure 10.2. Experimental (100K) and ,  forcefield spectrum of
benzoic acid. e unpolarised and polarised spectra are reported
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Figure 10.3. Comparison of the  eigenvectors of benzoic acid, polar-
ised and unpolarised methods. e square of the magnitude of the
projections of each vector upon each other is plotted
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e eigenvectors are almost unaffected by the inclusion of polarisa-
tion, except for modes 13–15 at a frequency of ≈ 70 cm−1, where the
eigenvectors of the polarised calculation are a mixture of those from the
unpolarised eigenvectors (Figure 10.6).

10.2.4 Theophylline monohydrate

We report only one of the polarisation calculations from the four
symmetry-corrected structures discussed in chapter 7. ere is an over-
all improvement in the agreement with the experimental spectrum,
due to a better match of the strong absorption features at 60 cm−1 and
85 cm−1. However, there are still no calculated peaks in the region
45 cm−1 to 70 cm−1, where there are probably absorption features hid-
den under the wide peak in the measured spectrum. We can notice how
the peaks obtained with the calculations with  and  forcefields
are much more similar than the corresponding unpolarised calculation.
For the lattice modes in the experimental range (modes 4–28), up to
120 cm−1 the frequency shi is less than 12 cm−1.

e change in the eigenvectors is particularly evident in the modes
12–28 in  (Figure 10.9), where there is strong non-diagonal compon-
ent in the polarised-unpolarised eigenvectors (Figure 10.9). e eigen-
vectors with the forcefield are almost untouched by the polarisation
correction.

10.2.5 Paracetamol form I

Without taking into account the frequency shi it would appear that the
agreement in the region 90 cm−1 to 120 cm−1 for the  determination
is improved (Figure 10.10). However, the peaks in the region 40 cm−1

to 60 cm−1 are completely unaccounted for, due to the shi to higher
frequency in the polarised calculation. We therefore have to conclude
that the agreement at higher frequency is probably fortuitousmatch (un-
less we take into account the possibility of intramolecular vibrations,
which is ruled out by the  analysis of the eigenvectors, see chapter
8). e  calculation (Figure 10.11) suffers from the same problems,
without showing the same level of agreement, except for one mode at
106 cm−1.
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Figure 10.4. Experimental (80K) and ,  forcefield spectrum of an-
hydrous theophylline
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Figure 10.5. Experimental (80K) and ,  forcefield spectrum of an-
hydrous theophylline
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Figure 10.6. Comparison of the  eigenvectors of anhydrous theophyl-
line, polarised and unpolarised methods. e square of the mag-
nitude of the projections of each vector upon each other is plotted
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Figure 10.7. Experimental (100K) and ,  forcefield spectrum of
theophylline monohydrate
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Figure 10.8. Experimental (100K) and ,  forcefield spectrum of
theophylline monohydrate
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Figure 10.9. Comparison of the  eigenvectors of theophylline hydrate,
polarised and unpolarised methods. e square of the magnitude
of the projections of each vector upon each other is plotted
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e eigenvectors for both the forcefields (Figure 10.12) are almost
completely unchanged by the polarisation, again except for the energy
order of a few modes.

10.2.6 Nitrofurantoin form β

e spectra derived from the use of the polarisation correction with 
and  forcefields are reported in Figures 10.13 and 10.14. ere are
only minor differences between corresponding polarised and unpolar-
ised spectra. e small changes are evenmore evident in the eigenvector
comparison, with hardly any visible change (Figure 10.18).

10.2.7 Nitrofurantoin hydrate, form II

e polarisation corrected spectrum calculated with the  forcefield
(Figure 10.17) is very flat up to 113 cm−1, with all of the features in the re-
gion 40 cm−1 to 100 cm−1 muchweaker than their experimental counter-
part, and a general loss of agreement compared to the non-polarisation
correction calculation.

e spectra from the  calculation (Figure 10.16) has a much bet-
ter agreement with experiment than the  calculation, but it is worse
if compared with the corresponding unpolarised  calculation. In
particular, except for the highest frequency absorption peak (a doublet
at 107 cm−1), which is almost superimposable with an experimental fea-
ture, we notice a loss of agreement in the details between 70 cm−1 and
100 cm−1.

Nitrofurantoin hydrate form II has 16molecules in the unit cell, which
leads to into a higher number of eigenvectors (Figure 10.18). ere is a
strong 1:1 match for most of the modes except between modes 40–60.
Within the structure of this crystal form there is a complicated four-atom
hydrogen bond interaction between the  and the water molecule (see
Figure 6.11, page 84). e eigenvectors perturbing this interaction are
mainly between modes 28–50 (see for example Figure 9.21, page 193);
the reason behind the strong non-diagonality in Figure 10.18 is probably
the small differences between the forces in different modes, which are
affected by small changes in the electrostatic distribution.
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Figure 10.10. Experimental (29K) and,  forcefield spectrumof pa-
racetamol form I
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Figure 10.11. Experimental (29K) and ,  forcefield spectrum of pa-
racetamol form I

4 8 12 16 20 24
4

8

12

16

20

24

 

fi
t,

 U
np

ol
ar

is
ed

ph
on

on
 n

um
be

r

 fit, Polarised
phonon number

0,0

0,2

0,4

0,6

0,8

1,0

(a)  forcefield

4 8 12 16 20 24
4

8

12

16

20

24

 

w
99

, U
np

ol
ar

is
ed

ph
on

on
 n

um
be

r

 w99, Polarised
phonon number

0,0

0,2

0,4

0,6

0,8

1,0

(b)  forcefield

Figure 10.12. Comparison of the  eigenvectors of paracetamol form I,
polarised and unpolarised methods. e square of the magnitude
of the projections of each vector upon each other is plotted
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Figure 10.13. Experimental (29K) and ,  forcefield spectrumof ni-
trofurantoin form β
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Figure 10.14. Experimental (29K) and ,  forcefield spectrum of ni-
trofurantoin form β
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Figure 10.15. Comparison of the  eigenvectors of nitrofurantoin β, po-
larised and unpolarised methods. e square of the magnitude of
the projections of each vector upon each other is plotted
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Figure 10.16. Experimental (80K) and ,  forcefield spectrumof ni-
trofurantoin hydrate form II
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Figure 10.17. Experimental (80K) and ,  forcefield spectrum of ni-
trofurantoin hydrate form II
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Figure 10.18. Comparison of the  eigenvectors of nitrofurantoin II, po-
larised and unpolarised methods. e square of the magnitude of
the projections of each vector upon each other is plotted
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10.2.8 Carbamazepine form I

e calculated spectra with polarisation correction are reported in Fig-
ures 10.19 and 10.20. We can notice how the polarisation in the 
calculation improves the position of some of the peaks, closer to exper-
imental determination than the corresponding unpolarised calculation,
especially for 40 cm−1 to 90 cm−1 (the highest peak is 7 cm−1 higher than
the experimental feature, but with a more accurate shape).

e agreement with the experimental peaks is evenmore evident with
the  forcefield: the agreement with shape and position is excellent
formost of the peaks. e use of a bigger  for the Lorentzian shape
(Figure 10.22) can show that the convolution of some of the calculated
peaks form the bigger experimental feature.

e eigenvectors in the two  calculations (Figure 10.25) do not
differ much , but in the  calculation there are some off diagonal con-
tribution (even if it mainly involves two unpolarised modes for each po-
larised).

10.2.9 Carbamazepine form III

e changes in the spectra for carbamazepine form III are not as evident
as in form I, as we only see small shis of the absorption features to
higher frequencies. Since there was not a particularly good agreement
without polarisation, we cannot judge if there is any improvement by the
use of polarisation.

e non-diagonality in the eigenvector comparison is very limited (
10.25), with almost a perfect 1:1 match between the modes, once again
with some energy swaps between a few modes.

10.2.10 Conclusions

e polarisation effect is clearly visible in all of the spectra: as we men-
tioned in the previous chapter, the lattice mode frequencies are very
sensitive to small variations in the setup of the calculation, and the elec-
trostatic distribution on the molecule is no exception. As a general ob-
servation, the frequencies are always increased in the polarised calcula-
tion, as a result of the increase in the magnitude of the charges, which



10.2 effects of the full minimisation on the phonon modes 221

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.61 1.21 1.82 2.42 3.03

 Experimental
 w99
 w99 - polar

 

Ab
so

rb
an

ce
 (

a.
u.

)

Frequency (cm-1)

Figure 10.19. Experimental (10K) and ,  forcefield spectrum of
carbamazepine form I
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Figure 10.20. Experimental (10K) and ,  forcefield spectrum of car-
bamazepine form I
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Figure 10.21. Comparison of the  eigenvectors of carbamazepine form
I, polarised and unpolarised methods. e square of the mag-
nitude of the projections of each vector upon each other is plotted
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Figure 10.22. Experimental (10K) and ,  forcefield spectrum of
carbamazepine form I, Lorentzian width = 6 cm−1

translates into an increase in themagnitude of the forces. emagnitude
of the frequency shi is not constant among all the structures, and it does
not appear to be solely related to the variation of the molecular dipole
magnitude: for example themaximum frequency shi in benzoic acid is
40 cm−1 (where the molecular dipole increases by 8.64%), but it is only
9 cm−1 in nitrofurantoin form α (where the molecular dipole increases
by 36%).

By far the greatest shis in lattice mode frequencies happen at higher
frequency, in particular to the water-dominated modes outside the ex-
perimental terahertz range in the hydrate structures (not shown here,
frequency higher than 150 cm−1 for the regions 2 and 3, as defined in
chapter 9.2, page 178), where the highest frequency is enhanced from
100 cm−1 to 250 cm−1 depending on the structure. is is probably due
to the water molecule being much more polarisable than typical organic
systems, and more sensitive even to small changes of the forces in the
system, since it is lighter.

e vibrational eigenvectors are much more resilient to change with
respect to the polarisation effect in the anhydrate systems as the frequen-
cies, and the majority of the modes are almost unvaried. In the hydrate
systems the intermediate frequency modes and some of the highest fre-
quency modes display more mixing: again, this might be due to the
greater effect polarisation of water has on the forces acting on light mo-
lecules.

e use of the polarisation seems to have a “levelling” effect on the
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Figure 10.23. Experimental (10K) and ,  forcefield spectrum of
carbamazepine form III
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Figure 10.24. Experimental (10K) and ,  forcefield spectrum of car-
bamazepine form III
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Figure 10.25. Comparison of the  eigenvectors of carbamazepine form
III, polarised and unpolarised methods. e square of the mag-
nitude of the projections of each vector upon each other is plotted



224 the effect of polarisation

calculations: the comparison between  and  spectra shows that
they are much more similar than the corresponding unpolarised calcu-
lations.

We can notice that the frequency shi sometimes improve the agree-
ment of the higher frequency lattice modes (paracetamol form I, nitro-
furantoin hydrate); however the overall effect of the polarisation is to
worsen the agreement with experimental spectra, particularly for the
low frequency modes. A notable exception is the  simulation of car-
bamazepine form I, where the polarisation seems to improve the posi-
tions and intensities of almost all of the modes. is is probably due to
the big differences in the polarisation of the four  molecules in the
crystal, which were not taken into account in any way in the unpolarised
calculation.

10.3 intensities recalculation

In this section we take into account the effect of the polarisation on the
intensities of the modes calculated from a  calculation without
polarisation using the  script. We briefly compare the calculated
with the experimental spectrum for each of our systems: we only ana-
lyse the  calculation, since we are not recalculating the frequencies.
However, we analyse the  calculation for benzoic acid, since this is
the forcefield that reproduces the spectrum best.

10.3.1 Benzoic acid

e calculated spectrum for benzoic acid is reported in Figure 10.26.
We notice that the strongest experimental absorptions (at 69 cm−1 and
91 cm−1) are better reproduced in the  calculation; also, the very
weak unpolarised absorption at 112 cm−1 is now stronger, and can be
more easily assigned to one of the peaks in the range 92 cm−1 to 104
cm−1.
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Figure 10.26. Experimental and ,  forcefield spectrum of benzoic
acid calculated with 
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Figure 10.27. Experimental and ,  forcefield spectrum of anhyd-
rous theophylline calculated with 

10.3.2 Anhydrous theophylline

e calculated spectrum for anhydrous theophylline is reported in Fig-
ure 10.27. e new intensities of the peaks in the range from 50 cm−1

to 80 cm−1 agree better with the broad feature centred at 60 cm−1. e
peaks from80 cm−1 to 110 cm−1 have amuch reduced intensity, this time
in disagreement with the experimental determination.

10.3.3 Theophylline monohydrate
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We report only one of the four  calculation from the symmetry-
corrected structures of theophylline monohydrate. For this calculation
(Figure 10.28) the  intensities are very similar to the unpolarised
calculation. e intensity attenuation for the peak at 106 cm−1 agrees
with the experimental observation, but worsens the agreement for the
peak at 62 cm−1.

10.3.4 Paracetamol form I

e spectrum for paracetamol form I is reported in Figure 10.29. e
polarisation has a small effect on the absorption intensities: there is an
enhancement of the low frequency absorption, and aminor reshaping of
the group in the range 85 cm−1 to 105 cm−1, whose convolution agrees
better with the feature around 105 cm−1.

10.3.5 Nitrofurantoin β

e polarised spectrum of nitrofurantoin β is almost indistinguishable
from the unpolarised spectrum (Figure 7.17, page 111) and it is therefore
not reported.

10.3.6 Nitrofurantoin hydrate form II

e polarised spectrum of nitrofurantoin hydrate form II is reported in
Figure 10.30. e peak reshaping highlights a better description of the
intensities of most of the modes, improving the agreement in the region
from 70 cm−1 to 110 cm−1.

10.3.7 Carbamazepine form I

e polarised spectrum of carbamazepine form I is reported in Figure
10.31. In the  calculation the most intense absorption is for the
peak at 96 cm−1, agreeingwith the experimental determination. enew
peaks are more easily recognisable as convolution of the bigger peaks:
for this reason we can more confidently assign the vibrational modes
as suggested by the arrow in the graph. As in the recalculation case,



10.3 intensities recalculation 227

0 10 20 30 40 50 60 70 80 90 100 110

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.30 0.61 0.91 1.21 1.52 1.82 2.12 2.42 2.73 3.03 3.33

 Experimental
 w99 
 w99 - santha

 Frequency (THz)

Ab
so

rb
an

ce
 (

a.
u.

)

Frequency (cm-1)

Figure 10.28. Experimental and,  forcefield spectrumof theophyl-
line monohydrate calculated with 
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Figure 10.29. Experimental and ,  forcefield spectrum of parace-
tamol form I calculated with 

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.61 1.21 1.82 2.42 3.03

 Experimental
 w99
 w99 santha

 Frequency (THz)

Ab
so

rb
an

ce
 (

a.
u.

)

Frequency (cm-1)

Figure 10.30. Experimental and ,  forcefield spectrum of nitrofur-
antoin hydrate form II calculated with 
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Figure 10.31. Experimental and ,  forcefield spectrum of carbama-
zepine form I calculated with . Possible peak assignments
are suggested by the arrows. In the bottom Figure, the Lorentzian
 = 6 cm−1

the agreement is visually much better than it was, another sign that the
polarisation and the differences between the molecules play a big role.

10.3.8 Carbamazepine form III

As in the case of the unpolarised calculation, we see a gross overestima-
tion of the absorption of the 49 cm−1 peak (Figure 10.32). e intensities
of the peaks in the region 70 cm−1 to 110 cm−1 are reduced by the polar-
isation effect.
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Figure 10.32. Experimental and ,  forcefield spectrum of carbama-
zepine form III calculated with 

10.3.9 Conclusions

e recalculation of the absorption intensities by taking into account
the local effects of the crystal on the electronic distribution in the mo-
lecules improves the agreement with the experimental spectra in most
of the cases analysed. is confirms that the local field is an import-
ant factor for the determination of the dipole moment variation in the
crystal under the vibrations, which determines the absorption intensity.
erefore, despite the theoretical issues (use of an electronic distribu-
tion different than the one used for the calculation of the eigenvectors)
the use of a self-consistent method would be a more accurate method
for the comparison of the calculation with experimental data. Unfor-
tunately, the  calculation is several orders of magnitude slower
than the  methods (hours instead of seconds), but still much
cheaper than a periodic  calculation.

10.4 conclusions

In this chapter we analysed the effect of the use of polarisation in the
analysis of the absorption spectra. With the exception of carbamazepine
form I, the use of a self-consistent electronic distribution seem toworsen
the agreement with experimental determinations.

e use of eigenvectors calculated with the unpolarised method and
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eigenvalues obtained considering a more accurate intensity determin-
ation seems to improve the results, despite the use of an electrostatic
distribution not consistent with the parameterisation of the forcefield.
e success of this analysis is probably helped by the resilience of the ei-
genvector towards the change in the electrostatic distribution: therefore
we are using what would probably be a good approximation of the “real”
eigenvectors, obtainable by a self-consistent combination of a forcefield
with polarised electrostatics, and a correct description of the intensities.
An interesting test of this theory would be the use of a new forcefield
optimised for the use with polarised electrostatics, and a comparison of
both the eigenvectors and the absorption intensities with this method.



11
ISOSTRUCTURAL CRYSTALS

I  we study the terahertz spectra of a set of N-phenyl-
acetamide derivatives in the temperature range from 80K to 240K.
e aim of this study was to consider the effect of small molecular

changes in isostructural or structurally similar systems on the terahertz
spectra. e experimental samples, which are a part of a larger subset,
were provided from Suzanne Huth and Michael Hursthouse (University
of Southampton); the crystal structures of the fluoro- [229] and methyl-
[230] derivatives are available from the eCrystal repository of the Uni-
versity of Southampton [231]. All of the other crystal structures, except
for the iodo-derivative (privately provided by Suzanne Huth) are also
available from the .

All of the experimental samples have been validated by Powder X-Ray
Diffraction () with the help of Bhavnita Patel. Powder patterns of
the bulkmaterials were compared to simulated patterns from the known
crystal structures to to confirm the sample did not undergo any struc-
tural modification.

e samples of all of the halogen derivatives (fluoro-, chloro-, bromo-
and iodo-derivatives) were confirm to be the isostructural forms; the
methyl-derivative was found to be the non-isostructural polymorph
( code , see Table 6.3).

11.1 experimental and calculated spectra

In this section we present the experimental and calculated spectra, as we
did in chapter 7.

For each of the samples we took five measurements of the terahertz
spectrum (see appendix A), at temperatures ranging from 80K (nitro-
gen cooled) to 295K, with the clearest determinations of the absorption
peaks for all the samples determined in the lowest temperature meas-
urement.

231
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Weused the dispersion corrected  functional for all of the reported
 calculations, and we allowed for the relaxation of the unit cell
parameters in all calculations.

11.1.1 The halogens forcefield

For  calculations, the repulsion-dispersion parameters for the
halogen atoms are not available in the  forcefield: all the 
phonon calculations of the halogen-derivatives (all of the samples ex-
cept for the methyl-phenyl acetamide) were consequently performed
with the  potential only, for which parameters have been fitted.

eparameterisation of the exchange-repulsion interaction for a halo-
gen atom X includes an anisotropic term, depending on the relative ori-
entation of the atoms (i.e, dependence on the angle ŶXZ in a system
Y−X · · · Z): for halogen atoms (as demonstrated by Day [232] for the
family of chloro-benzenes) the anisotropy of the interaction is not a neg-
ligible effect.

With this approach there is a change in the usual Buckingham poten-
tial between atoms i and k of type ι and κ (see Equation 3.18), with the
introduction of additional parameters:

UAnis
ik = Aικ exp (−Bικ (Rik − ρικ (Ωik)))− CικR−6

ik (11.1)

e function ρ depends on the relative orientation Ωik of the two
atoms with respect to the intramolecular bond to the halogen. ρ is
defined as

ρικ(Ω ικ) = +ρι2
3
(
ẑi · R̂ik

)2
− 1

2
+ ρκ2

3
(
ẑk · R̂ik

)2
− 1

2
(11.2)

where R̂ik is the interatomic unitary distance vector and ẑk is the direc-
tion vector of the intramolecular bond with the halogen (drawn in blue

O

HN

X< z x

Figure 11.1. in Figure 11.1). e values of the parameterisation of halogens are re-
ported in Table 11.1
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Atom pair Aιι Bιι Cιι ρ2
kJmol−1 Å−1 kJÅ6/mol Å

F · · · F 362 881 3.34 688.91 −0.0352
Cl · · · Cl 569 746 3.34 8366.24 −0.0939
Br · · · Br 1 184 070 3.30 16 254.88 −0.1064
I · · · I 1 261 260 3.14 16 632.14 −0.1215

Table 11.1. Parameters Aιι , Bιι , Cιι and anisotropic parameter ρ2 of the exp-6
 potentials . Only the parameters for homonuclear pairs are re-
ported

11.1.2 The experimental spectrum of the methyl-derivative

e measured spectrum of the methyl derivative at 80K is reported in
Figure 11.2.

ere are four main recognisable peaks: two minor signals at 53 cm−1

and 79 cm−1, and two main signals at 99 cm−1 and 105 cm−1. No feature
at frequency higher than 110 cm−1 can be unambiguously identified due
to the measurement uncertainties.

11.1.3 dmacrys calculations of the methyl-derivative

evariation of the unit cell using both the potentials is very small, espe-
cially for the  calculation. e most visible change between the two
structures (see Table 11.2) is the c axis dimension and (consequently) the
unit cell volume, which is almost unvaried with , and expands with
.

Crystal parameters variation

Exp. (293K)  Change/%  Change/%

a /Å 11.74 11.65 −0.08 11.68 −0.45
b /Å 9.59 9.57 −0.20 9.45 −1.41
c /Å 7.56 7.54 −0.23 7.73 2.36
β /° 106.0 103.51 −2.34 103.62 −2.24
Vol. / Å3 818.18 817.72 −0.05 831.01 1.56

F value 12.13 28.46

Table 11.2. Variation of the lattice parameters for the  geometry op-
timisation of methyl derivative, with  and  forcefield. Sym-
metry constraints: unit cell angles α = γ = 90°. e initial struc-
ture parameters are taken from 
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Figure 11.2. Experimental spectrum of the methyl-derivative collected at 80K,
compared with  calculations with the  and  force-
fields
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Figure 11.3. Experimental spectrum of the methyl-derivative collected at 80K,
compared with  calculation, dispersion corrected 

Crystal parameters variation

Experimental (293K) /- Change /%

a /Å 11.74 11.42 −2.72
b /Å 9.59 9.15 −4.58
c /Å 7.56 7.08 −6.34
β / ° 106.0 106.85 0.80

Volume / Å3 754.51 709.35 −5.98

Table 11.3. Change in the lattice parameters for the  geometry optimisa-
tion of the methyl-derivative, dispersion corrected . Symmetry
constraints: unit cell angles α = γ = 90°



11.1 experimental and calculated spectra 235

e volume difference (which is itself a reflection of the different eval-
uation of the forces) is the reason behind the absorption frequencies shi
to higher frequencies that we observe in the  calculation.

e agreement in the number and position of the calculated peaks
with the experimental features is particularly good using the  po-
tential; we can see in Figure 11.2 that the agreement is excellent for
all the peaks except for the absorption at 87 cm−1, which is calculated
to be 7 cm−1 higher in frequency than the observed absorption peaks.
Also, the intensity of the absorption at≈ 100 cm−1 is predicted to be too
weak.e agreement is slightly less satisfying for the  calculation: if
we look at the spectrum shape, all of the absorption features are present
and easily assignable to their experimental counterparts , but their posi-
tions are shied from 10 cm−1 to 20 cm−1 higher in frequency compared
to the experimental data.

11.1.4 castep calculation of the methyl-derivative

All of the cell axes are decreased in the  minimisation, with a
volume contraction of almost 6%. e agreement with the experimental
spectrum is poor: if we assign the calculated doublet centred around
85 cm−1 to the most prominent experimental peaks at 98 cm−1 and 106
cm−1 based on their shape, (Figure 11.3) the frequencies do not match,
as they are shied by almost 20 cm−1 to lower frequencies; the lowest
experimental peak has a very good frequency match with a very weak
calculated feature at 55 cm−1.

11.1.5 The experimental spectrum of the fluoro-derivative

e experimental spectrum of the fluoro-derivative at 80K is reported
in Figure 11.4. e spectrum is essentially flat up to 55 cm−1 (with the
possible exception of a very weak feature at 26 cm−1, which might be
due an artifact of the baseline removal). e strongest absorptions are
observed at 81 cm−1 and 103 cm−1; the shoulder at 74 cm−1 is probably
a hidden peak, and some of the other strong background noise features
between 85 cm−1 to 110 cm−1 could possibly be absorption peaks as well.
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Figure 11.4. Experimental spectrum of the fluoro-derivative collected at 80K
(top) and its comparison with calculations using  with the
 forcefield and , /- (bottom)

Crystal parameters variation

Exp. (293K)  Change /% - Change /%

a /Å 4.73 4.48 −5.29 4.36 −7.82
b /Å 17.07 17.81 4.38 17.16 0.52
c /Å 9.63 9.68 0.52 9.33 −3.11
β / ° 92.87 96.78 4.21 92.44 −0.46
Vol. / Å3 776.86 767.53 −1.20 699.30 −9.98

F value 103.91 –

Table 11.4. Change in the lattice parameters in the geometry optimisation of
the fluoro-derivative with ,  force field, and ,
/-. Symmetry constraints: unit cell angles α = γ = 90°.
e initial structure parameters are taken from 
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Figure 11.5. Superimposition of the experimental unit cell of the fluoro-
derivative (in red) with the  (in blue) and the  (in
green) optimised geometry, as seen down the c axis. e unit cell
axes are in the same colour of the structure. Hydrogen atoms are
not shown

11.1.6 dmacrys calculation of the fluoro-derivative

Despite large changes in the magnitude of the a and b axes during lattice
minimisation, the volume of the structure optimised with  is
almost equivalent to the experimental value, because the positive and
negative changes cancel out (see Table 11.4). As a result, the F value is
quite big, a sign that either the parameters of the atom-atompotential for
fluorine are not good enough, or that the structure is not well described
by the existing force field.

e calculated spectrum (Figure 11.4, in red) has the same flatness as
the experimental one, but the first strong experimental feature is found
shied of more than 20 cm−1 to higher frequencies in the simulation;
additionally, there is no calculated higher energy feature, except for a
weak one at 130 cm−1 (not shown).

11.1.7 castep calculation of the fluoro-derivative

e biggest variation of the final  geometry is the a axis, with
almost an 8% contraction. ere an increase of the b axis, as it was
observed in the  calculation.

Figure 11.5 shows the superimposition of the unit cell of the calcu-
lated structures (blue for , green from ) with the exper-
imental determination at 295K (in red) as seen through the c axis. e
most noticeable difference between the structures is in the unit cell para-
meters, with the large increase of the b axis in  which, despite
not being the biggest in percentage, affects the longest axis: the 
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structure has therefore a better visual agreement. Furthermore, we can
see that the  molecules overlay better with the experimental de-
termination and the V shape formed by the central molecules is more
similar: the angle is almost unvaried for the  calculation (99.36°
vs 99.22° in the experimentally determined structure) but it widens to
103.88° in .

e similarities of the  geometry with the experimentally de-
termined structure suggests that we should see a good agreement for the
 phonon spectrum, as we observe in Figure 11.3. e calculation
predicts a flat spectrum up to 77.4 cm−1, in agreement with the strongest
measured absorption; another strong absorption is centred at 115 cm−1.

11.1.8 The experimental spectrum of the chloro-derivative

e experimental spectrum of the chloro-derivative at 80K is reported
in Figure 11.6, top graph. ere are several clear absorption peaks: the
strongest recorded features are found at 59 cm−1, 76 cm−1 and 101 cm−1.
ere are other weaker absorptions at 40 cm−1, a very weak feature at
48 cm−1 and a shoulder at 91 cm−1.

11.1.9 dmacrys calculations of the chloro-derivative

e optimisation of the structure with  displays a very good
agreement with the experimental structure, obtained from the most re-
cent of the two room temperature crystal structure determinations in the
 ( [233]). e minimised structure has minimal variation
in both the unit cell parameters (see Table 11.5) and in the molecular
positions (F < 6).

e agreement with the experimental spectrum is excellent for the po-
sition of the peaks up to 90 cm−1, with the strong calculated absorption
at 79.6 cm−1 shied by less than 5 cm−1 to higher frequency. e experi-
mental features at 101 cm−1 and 121 cm−1 are not clearly seen in the cal-
culated spectrum, with the highest active vibrational phonons are found
at 110 cm−1 and 120 cm−1 (very weak, not shown).
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Figure 11.6. Experimental spectrum of the chloro-derivative collected at 80K
compared with the spectrum calculated with ,  force-
field (top) and with , /-

Crystal parameters variation

Exp. (293K)  Change/% - Change/%

a /Å 9.71 9.84 1.34 9.54 −1.75
b /Å 12.75 12.88 1.08 11.72 −8.07
c /Å 6.52 6.57 0.72 6.60 1.22
Vol. / Å3 807.47 833.21 3.18 738.63 −8.55

F value 5.50 –

Table 11.5. Change in the lattice parameters in the geometry optimisation of
the chloro derivative with ,  force field, and ,
/-. Symmetry constraints: unit cell angles α = β = γ =
90°. e initial structure parameters are taken from 
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11.1.10 castep calculation of the chloro-derivative

ecomparison of the optimised  unit cell with the experimental
values shows an anisotropic change in the unit cell dimensions, as in the
case of the fluoro-derivative; the a axis ismuchmore affected by themin-
imisation (−8%) than the others, and the c axis is slightly increased. e
overall volume compression (8.5%) is comparable to what we observed
in the other systems.

ere is a good qualitative agreement between the experimental and
calculated spectra, even if the frequencies of individual absorptions do
not agree perfectly. All of the calculated absorption features are shif-
ted to lower frequencies, but not uniformly: the frequencies of the four
lower experimental peaks cover the range from 40 cm−1 to 78 cm−1,
while their calculated counterparts are compressed in the region from
36 cm−1 to 64 cm−1. e stronger experimental absorption at 101 cm−1

has a calculated homologue at 88 cm−1.

11.1.11 The experimental spectrum of the bromo-derivative

e experimental spectrum of the bromo-derivative at 80K is reported
in Figure 11.7, top graph. ere are many similarities with the spectrum
of the chloro-derivative for the lowest frequency absorptions, at 38 cm−1,
60 cm−1 and 72 cm−1. e strongest absorption feature is at 91 cm−1,
with two shoulders on its side. At higher frequencies, the measurement
uncertainties allow only the clear identification of one peak (101 cm−1).

11.1.12 dmacrys calculations of the bromo-derivative

e b axis is the only unit cell parameter to show any significant vari-
ation during the geometry optimisation of the bromo-derivative. e
F value is not high (38.11), and the biggest deviations from the experi-
mental structure (apart from the aforementioned b axis) is the rotational
reorientation of the molecules (see Figure 11.7b).

e calculated spectrum has two strong peaks at 81 cm−1 and 102
cm−1, with other weak absorptions in the region from 20 cm−1 to 65
cm−1. As in the case of the chloro derivative, the experimental peaks at
higher frequency are not clearly seen in the  calculation. e



11.1 experimental and calculated spectra 241

(a)  unit cell, as seen through the
c axis

(b)  unit cell

Figure 11.7. Superimposition of the experimental unit cell of the bromo-
derivative (in green) with the  (in red, le picture) and the
 (in violet, right picture) optimised geometry. e unit
cell axes are in the same colour as the structure. Hydrogen atoms
are not shown for clarity

two main experimental peaks at 91 cm−1 and 72 cm−1 can be assigned to
calculated features, that are shied 10 cm−1 to higher frequency in the
calculated spectrum; the experimental signal at 60 cm−1 is not accounted
for in the calculated spectrum.

11.1.13 castep calculation of the bromo-derivative

As in the case of the other halogen-derivatives, the structural changes
aer the energy minimisation with  are not isotropic, with the
c axis showing the biggest variation (an 8% contraction); this is very
similar to the change we observed in the value of the c axis in the chloro-
derivative.

e effect is clearly visible in Figure 11.7a: theV shape of themolecule
is not affected, but the separation of the molecules along the c axis is
clearly reduced.

e calculated absorption at 40 cm−1 is stronger than any of the exper-
imental peaks in that region from 55 cm−1 to 85 cm−1, while the peaks
in the region 90 cm−1 to 105 cm−1 are weaker than their experimental
counterparts. e peaks in the region from 55 cm−1 to 85 cm−1, instead,
agree very well with experimental features if we shi them by 10 cm−1 to
higher frequency.
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Figure 11.8. Experimental spectrum of the bromo-derivative collected at 80K
compared with the spectrum calculated with ,  force-
field (top) and with , /- (bottom figure)

Crystal parameters variation

Exp. (293K)  Change/% - Change/%

a /Å 9.70 9.74 0.50 9.58 −1.23
b /Å 13.00 13.01 0.09 11.87 −8.69
c /Å 6.67 6.89 3.34 6.73 0.89
Vol. / Å3 841.08 874.40 3.96 766.31 −8.91

F value 38.11 –

Table 11.6. Change in the lattice parameters in the geometry optimisation of
the bromo-derivative with ,  force field, and ,
/-. Symmetry constraints: unit cell angles α = β = γ =
90°. e initial structure parameters are taken from 
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Figure 11.9. Experimental spectrum of the iodo-derivative collected at 80K,
compared with the spectra calculated with , . In the
top graph, the Lorentzian line width is set to 2 cm−1, in the bottom
graph is set to 4.5 cm−1

Crystal parameters variation

Experimental (293K)  Change/%

a /Å 9.57 9.41 −1.75
b /Å 10.30 10.60 2.85
c /Å 9.42 9.66 2.46
β/° 109.28 6.89 3.34
Volume / Å3 841.08 906.78 3.26

F value 25.79

Table 11.7. Change in the lattice parameters in the geometry optimisation of
the iodo-derivative with ,  force field. Symmetry con-
straints: unit cell angles α = γ = 90°
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11.1.14 The experimental spectrum of the iodo-derivative

For this molecular system we have only the  calculation, be-
cause the  geometry optimisation failed to converge: this is the
only calculation where this happened, and it is probably due to deficien-
cies of the iodine pseudopotential.

e spectrumof the iodo-derivative (see Figure 11.9) has a lot of simil-
arities with the spectrum of the fluoro-derivative: it is flat up to 80 cm−1

and has a wide peak centred at 100 cm−1. Since the experimental un-
certainties are comparable to the peaks heights we cannot say anything
about the other peaks at higher frequency. ere are two very weak
absorptions at 23 cm−1 and 73 cm−1, although the lower frequency one
might be an artifact of the baseline removal.

11.1.15 dmacrys calculations of the iodo-derivative

e unit cell axes, which display a change of less than 3% during lattice
minimisation, are not significantly affected by the minimisation process
(Table 11.7). As in the case of the bromo-derivative, there is almost
no translation of the molecules during lattice minimisation, but there
is some rotational reorientation, although the contribution to the total
F value is anyway small (7.2 out of 25.8).

e calculated phonon spectrum shows a very good agreement in
shape with the experimental determination, with the three peaks from
65 cm−1 to 85 cm−1 assignable to the experimental feature centred at
100 cm−1. e very wide experimental peak is probably a sum of over-
lapping peaks: to highlight this we show in Figure 11.9 (bottom) the
 calculated spectrum with a wider Lorentzian peak shape ( =

4.5 cm−1), which better represents the experimental features.

ere are other weak peaks calculated at 17 cm−1, 42 cm−1 and 49
cm−1, confirming that the experimental low frequency peaks might be
real absorptions.
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11.2 spectra similarities between the systems

In Figure 11.10 we report the measured low temperature terahertz spec-
tra of the four halogen derivatives. e absorption features are quite
distinctive for each of the different crystals. e most similar spectra
belong to the chloro- and bromo derivative, systems that share an al-
most superimposable crystal structure (note that the measured methyl-
derivative is not the isostructural form).

e numbered peaks in Figure 11.10 identify corresponding absorp-
tions in the spectrum of the chloro-and bromo-derivatives. While peaks
1 and 2 are almost in the same position, peak 3 to 6 are at higher fre-
quency for the bromo-derivative. e shi is expected, as bromine has
a greater mass than chlorine, and this difference directly affects the fre-
quencies (see Equation 3.5).

According to , the most relevant absorption modes of the
chloro-derivative are a doublet around 80 cm−1 , and an overlapping
doublet at 114.63 cm−1 – 114.67 cm−1. Similarly, the bromo-derivative
has almost superimposing features at 80.2 cm−1 and 81.5 cm−1 and a
slightly separated doublet at 98.8 cm−1 and 101.8 cm−1.

From the analysis of the eigenvectors of the two calculations, the
vibrational modes in the high energy part of the spectra (frequency
higher than 70 cm−1) are rotational in nature, with themolecularmotion
around different axis: the types of motion are shown in Figure 11.11.

e strongest absorption in both systems is of the type in Figure
11.11a, which has the largest dipole change (it reorients the dipole of
the N−C−O group) is at 78.7 cm−1 for the chloro derivative, but at
101.8 cm−1 for the bromo derivative. Modes at 114 cm−1 in the chloro-
derivative (Figure 11.11b) corresponds to the peak at 98 cm−1 in the
bromo derivative. Although the result based on the calculation seems
to suggest that the assignment based on frequency alone is not entirely
correct, it must be stressed that the method does not have the accuracy
needed to be conclusive.

e  spectra are quite different from each other, and we did
not attempt a 1:1 assignment based on frequency alone. e eigenvector
decomposition is reported and discussed later, in section 11.4.1.
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Figure 11.10. Low temperature determinations of the measured phenyl-
acetamide-derivatives. Numbers on the chloro- and bromo-
derivatives identify corresponding features in the spectra

11.3 polarisation effect

We already discussed the effect of polarisation on the spectra with
 in a dedicated chapter for most of the systems, both with com-
plete recalculation of the eigenvectors and the  method for the
intensities only (chapter 10).

e results for the substituted phenyl acetamideswith the complete re-
calculation of the eigenvalues confirmour previous findings: the F-value
upon lattice minimisation are of the same magnitude as the unpolar-
ised calculations, with the exception of the iodo-derivative (Table 11.8),
highlighting small changes in the structures despite the different elec-
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(a) Mode 17 81 cm−1 (b) Mode 22 in the bromo-derivative, 102
cm−1

Figure 11.11. Vibrational eigenvectors of the bromo-derivative calculated with
,  forcefield

System  forcefield  forcefield
Unpol. Pol. Unpol. Pol.

Methyl Phenyl-acetamide I 15.09 4.31 23.77 7.55
Methyl Phenyl-acetamide II 9.67 9.90 18.29 14.36
Fluoro Phenyl-acetamide – – 103.91 61.39
Chloro Phenyl-acetamide – – 5.50 4.42
Bromo Phenyl-acetamide – – 38.11 24.71
Iodo Phenyl-acetamide – – 25.80 55.72

Table 11.8. Variation of the structure upon minimisation with , 
and forcefields of the acetamide-derivatives, as described by the
F value with andwithout the effect of polarisation. e  forcefield
does not include parameters for the halogen atoms, and the calcula-
tions were not performed

trostatics. We do not report the spectra obtained with the full minim-
isation with polarisation for the acetamide-derivatives, since for all the
systems we found a reduced agreement with the experimentally determ-
ined spectra (as an example, see the spectrum of N-(4-methyl-phenyl)
acetamide in Figure 11.12), similarly to what we found in chapter 10.

e changes in intensities using the  program were only very
minor in the case of the halogen derivatives, mainly affecting only the
weakest absorptions (see for example Figure 11.13 for the recalculation
of the spectrum of the fluoro-derivative).

e spectrum calculated with  for the methyl derivative is
reported in Figure 11.14. ere are not big changes, but the attenu-
ation of the absorption intensity at 60 cm−1 and the strengthening of the
101 cm−1 peaks agrees very well with the experimental determinations:
the use of the polarisation effect in this system does improve the agree-
ment with the experimentally determined spectrum.
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Figure 11.12. Experimental and ,  forcefield spectrum of N-(4-
methyl-phenyl) acetamide with full recalculation using polarisa-
tion
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Figure 11.13. Experimental and ,  forcefield spectrum of N-(4-
fluoro-phenyl) acetamide calculated with 
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Figure 11.14. Experimental and ,  forcefield spectrum of N-(4-
methyl-phenyl) acetamide calculated with 
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11.4 rigidity analysis

In this section we complement the analysis of the molecular rigidity re-
ported in chapter 8. We consider the calculation relative to the most
similar crystals, with the same space group and almost equivalent unit
cell parameters: the chloro-, bromo- and methyl derivatives.

We expected these three systems to have similar frequency for the low-
est normal mode of vibration of the isolated molecule, due to an al-
most identical molecular skeleton. e calculated torsions of the ace-
tamide group at the /-** level of theory have values that are
indeed very close to the paracetamol case (54.11 cm−1, 54.4 cm−1 and
53.7 cm−1 for the methyl-, fluoro-, chloro-derivatives respectively, com-
pared to the 50.1 cm−1 of paracetamol). However, for the rotation of the
methyl groupwe calculated a frequency as low as 21.26 cm−1, 23.92 cm−1

and 35.4 cm−1 in themethyl-, chloro- and bromo-derivative respectively,
compared to the higher 42.8 cm−1 value of paracetamol.

e eigenvectors for the chloro-, bromo- and methyl-derivatives cal-
culated lattice modes with  were also expected to be very similar,
taking into account that the three molecules share almost superimpos-
able crystal structures and due to the molecule similarity.

e rigid body fractions from the calculations of the three systems are
reported in Figure 11.15. ere is a sharp separation between the differ-
ent regions of the spectra, as in the case of theophylline (page 146). e
rigid-body region is very well defined up to 100 cm−1, with the first in-
ternal vibration falling between 81 cm−1 (for the bromo-derivative) and
89 cm−1 (methyl-derivative).

e strongest intermolecular interaction for all of the structures is
the O · · · HN hydrogen bond, and in all of the lowest energy modes
of vibration it is not stretched. e internal rotation of the substituted
phenyl ring relative to the acetamide group is the most important in-
ternal contribution in all the partially internalmodes in the range 0 cm−1

to 100 cm−1 for the three systems.

e results of the logistic fits highlight the high similarity between the
three structures. e frequency range over which rigid molecule modes
are seen in Figure 11.15a depends on the molecular mass of the group:
bromine (79 u), chlorine (35 u) and methyl (15 u).

e energy-minimised structures of the bromo- and chloro- derivat-
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Figure 11.15. Rigid body contribution to the phonon modes of N-(4-chloro-
phenyl) acetamide (blue), N-(4-bromo-phenyl) acetamide (red)
and N-(4-methyl-phenyl) acetamide (black) in the region from
0 cm−1 to 450 cm−1, as calculated with , dispersion correc-
ted . e logistic curves are of the same colour as the data
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Figure 11.16. Comparison of the  eigenvectors, /- functional,
chloro-, bromo and methyl-N-phenyl-acetamides. e colour
represents the square of the magnitude of the projections of each
vector

Type Form # mode Rigid body Frequency
fraction (cm−1)

ωin

Chloro- 12 of 225 0.67 87.93
Bromo- 13 of 225 0.60 81.66
Methyl- 10 of 261 0.69 88.77

ωnrig

Chloro- 29 of 225 0.53 157.90
Bromo- 32 of 225 0.56 166.19
Methyl- 28 of 261 0.61 173.44

ωhigh

Chloro- 40 of 225 0.16 216.06
Bromo- 41 of 225 0.25 202.31
Methyl- 43 of 261 0.26 226.44

Table 11.9. Characterising frequencies of the optical phonons of N-(4-chloro-
phenyl) acetamide, N-(4-bromo-phenyl) acetamide and N-(4-
methyl-phenyl) acetamide from the  calculation, dispersion
corrected 

Form x0 (cm−1) p χ2 ς

Chloro- 120.71 4.75 0.012 0.640
Bromo- 109.91 4.19 0.012 0.609
Methyl- 132.38 4.12 0.015 0.774

Table 11.10. Characterising parameters of the logistic fit of the rigid body frac-
tion in the phonon eigenvectors of N-(4-chloro-phenyl) acetamide,
N-(4-bromo-phenyl) acetamide and N-(4-methyl-phenyl) aceta-
mide from a  calculation,  functional
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ive are very similar, and they share the same number and type of atoms
(except for the halogen type). In Figure 11.16a we compare the eigen-
vectors from the two calculations by projecting the eigenvectors upon
each other (similarly to the comparison between eigenvectors of  vs
/-, page 157), and taking the scalar product between them. We
can see a fair diagonal trend in the graph, which confirm the similarity
not only in the structures, but in the eigenvectors as well.

e same very good agreement between the different sets of eigen-
vectors is seen in the case of the chloro- and methyl-derivative (Figure
11.16b). e agreement is more pronounced than it appears from the
graph: the scalar product is calculated excluding the hydrogen atoms in
the methyl group in order to have the same number of atoms in the two
structures. As a consequence, the highest possible superimposition is al-
ways less than 1 (depending on the contribution of the hydrogen atoms
in the methyl group, which is different for each phonon).

11.4.1 Eigenvector agreement between castep and dmacrys

In this section we analyse the eigenvector agreement between 
and , as described in section 8.4, page 158.

e bromo-derivative is the system displaying the highest level of
agreement, even though the results are quite close for all three systems,
around 75% (see Table 11.11) for the sum of the most important -
 vectors in the deconstruction of each of the  eigenvectors.
e most representative  eigenvector contributions for the first
35 optical phonons of the three systems is shown in Figure 11.17.

e  eigenvectors of the bromo-derivative calculation exhibit
a good 1:1 agreement with single  eigenvector, except for two
pairs of coupled modes (8, 10 and 12, 15).

For the chloro-derivative, the agreement between the  and
 eigenvectors is not very good, but is better than what we observe
in the various paracetamol calculations. In this case some of the 
modes have a very good agreement with single  modes (4, 5,
6, 8 in particular), while the majority of the others are a mixture of two
 modes (modes 7 and 11, 9 and 13, 10 and 12, 16 and 21 are
the lowest frequency ones).

In the methyl-derivative, none of the  eigenvectors exhibit are
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Figure 11.17. Sum of the most representative  vector for the measured
substituted acetamides

a mixture of two  modes, even though the individual contribu-
tion of the  vectors are not as good as for the other systems.
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Crystal system Overall  vectors sum / %

N-(4-methyl-phenyl) – 73.93
N-(4-chloro-phenyl) – 76.57
N-(4-bromo-phenyl) – 77.40

Table 11.11. Sum of the most representative  vector in the dispersion
corrected  eigenvectors

11.5 conclusions

From the analysis of the N-phenyl-acetamide derivatives we have an-
other example of the high effectiveness of terahertz spectroscopy in the
discrimination between similar crystals. We found that, despite close
similarity in the structure, only two out of the five molecular crystals
resulted in very similar terahertz spectra: the bromo- and chloro de-
rivative, the only two sharing an almost superimposable structure and
belonging to the same space group. Even these two systems have differ-
entiating features, especially in the higher frequency part of the terahertz
spectrum.

e simulation of the terahertz spectra with  once again
highlighted that themethod has to be improved: for most of the features
in the simulations it is hard to make precise assignments with the exper-
imental spectrum. e assignments of absorption peaks with 
were easier, but the frequencies do not agree with the experimental val-
ues, probably because of the contraction of the unit cell.

e analysis of the eigenvectors shows a rigidmolecule behaviour sim-
ilar to what we observe for paracetamol, with a clear separation between
rigid molecule and internal vibrational modes. e eigenvectors of the
isostructural crystals (chloro-, bromo- and methyl-) were found to be
similar, which is another confirmation of the resilience of the vibrational
modes to small changes in molecular structure. e position of the ab-
sorption frequencies were found to be the most sensitive parameter to
changes, and therefore the most characterising feature of an absorption
peak.



12
CONCLUSIONS AND OUTLOOK

I   we discussed the use and development of methods
aimed at the interpretation of terahertz spectroscopy, applied to
the study of small organic molecules of pharmaceutical interest.

Our approach was based on the calculation of the normal modes of vi-
bration of the molecular crystals in the harmonic approximation. We
used two different methods: , a rigid body, atom-atommethod
and , a -based simulation method. We selected a few poly-
morphic systems to study, and we analysed the similarity of calculated
spectra with experimentally determined absorptions.

e experimental acquisition of the spectra was performed with a
state-of-the-art spectrometer at low temperature, because the absorp-
tion features are enhanced when the temperature is decreased.

As discussed in chapters 7 and 11, the  calculations displayed
varying agreementwith the experimental determinations, depending on
the systems studied. Formost of themolecular crystals we attempted as-
signments of the calculated peaks to the experimental features, based on
the agreement of the peak position and the calculated intensity of each
absorption. While in a few cases the match is good or satisfactory, the
agreement between experiment and calculation can be better defined
as qualitative is most cases, because the frequencies of the calculated
peaks are oen far off their experimental counterparts, and sometimes
are even missing (as observed for the peak at 65 cm−1 in paracetamol
form I in figure 7.14, page 108 ). Furthermore, different crystal forms of
amolecule display a different level of agreement: for example, in the cal-
culated spectra of nitrofurantoin form β several experimental peaks are
missing, while for nitrofurantoin hydrate form II there is a nice match
between calculated and experimental peaks up to 100 cm−1.

e  calculations, although providing in principle a more ac-
curate description of the crystal, failed to deliver a quantitative descrip-
tion of the experimental features as well. e only simulation displaying

255
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a very good agreement with its experimental counterpart for both posi-
tions of the peaks and their absorption intensities is the non-dispersion
corrected calculation of paracetamol form I. e spectrum of some of
the other dispersion-corrected calculations (carbamazepine form III, 4-
chloro-phenyl-acetamide) are in good agreement with the shape of the
experimental spectra, but the position of the absorption peaks is far off.

e use of the dispersion correction in the  calculations failed to
improve the match with the experimental determinations. A possible
reason for this result is in the inadequate parametrisation of theGrimme
c6 parameters for organicmolecular systems, as suggests by a study [212]
that we reported at page 133.

In chapter 8 we analysed the eigenvectors of the  calculations
for our molecular systems and we compared them to the rigid-molecule
 calculations. e comparison aimed to check for which sys-
tems and up to which frequency our rigid molecule atom-atom model
was justified in the simulations of terahertz spectra. For each of the sys-
tems we studied, the rigidity of the eigenvectors was well represented by
a logistic curve, highlighting the presence of three separated frequency
regions: one region (at low frequencies) characterised by rigid-molecule
vibrations; the highest frequency region, where modes are comprised
of only intramolecular vibration; and an intermediate region, where
there is mixing of intermolecular and intramolecular vibrations. e
frequency range of our spectrometer (4 cm−1 to 110 cm−1) allows for the
probing ofmainly rigid-bodymotions: according to the results of the ei-
genvector analysis, the intramolecular contribution to these vibrational
modes for all of our systems can be understood in terms of 2–3 of the
lowest energy normal modes of vibration of the isolated molecule.

e rigidity of some of the vibrational modes of the hydrate crystal
forms we studied (chapter 9) were found to have quite a different beha-
viour than their neat counterpart. e marked characteristics of the wa-
termolecule compared to the organicmolecules (its small mass and very
small moment of inertia) allowed for an easy identification of the rigid-
body dominated eigenvectors where water movement are predominant,
which were found at high frequency (> 350 cm−1). Rigid-body vibra-
tional modes where the vibrational modes involve the stretching of the
hydrogen bonds between water and the  (of frequencies between ≈
150 cm−1 to 250 cm−1) were also easy to identify in the calculated spec-
tra, although they are found outside the range of our spectrometer. We
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hope that future improvements of the experimental apparatus, or the
use of a different technique (e.g.  or ) will allow us to ex-
plore this region of the spectrum to verify the presence of these modes
in the experimental spectrum as well.

In chapter 10 we explored a modification of the  approach,
with the use of two  scripts ( and ) that we de-
veloped to calculate the effects of the crystal environment on the elec-
trostatics of the molecules. e vibrational eigenvectors and eigenfre-
quencies we obtained with this method worsened the agreement with
the experimental determinations: this is due to the fact that polarisation
effects are already averaged into the empirically determined repulsion-
dispersion parameters of the  forcefield, obtained with the use of
electrostatics from unpolarised, isolated molecule calculations. How-
ever, the use of  to evaluate the absorption intensities improved
the agreement of the calculations with the experimental determinations;
the improved molecular electrostatic gave a better description of the di-
pole variations with the vibrational movement, taking advantage of the
fact that the eigenvectors and eigenvalues are calculated with a good
starting model.

In chapter 11 we analysed a series of structurally similar molecular
crystals. e experimental spectra were found to be comparable only
for crystals with the same space groups, and sharing an almost super-
imposable crystal structure (the chloro- and bromo-acetanilides): once
again this shows the strength of terahertz spectroscopy in differentiating
between very similar systems.

future work

e use of computational methods to identify the molecular vibrations
behind the experimental absorption peaks in molecular crystals needs
a better modelling of the systems to be effective. For  methods, an
unavoidable improvement will be in the development and use of new c6
dispersion parameters.

e analysis of  results points towards a fewdirections for the
improvement of our computational method. We believe that the use of
a forcefield optimised for the use of polarised charges will improve the
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agreement of the calculated vibrational frequencies with their experi-
mental counterparts: therefore, we are planning a reparameterisation of
, to have a forcefield consistent with the use of polarised electrostat-
ics.

Other improvements will be based on the modification of the -
 code. In chapter 8 we have verified that only a few isolated molecule
intramolecular modes of vibration are important to describe correctly
the lattice modes in the range from 4 cm−1 to 120 cm−1 for the systems
we studied.

e introduction of flexibility inside the dynamical matrix (see Equa-
tion 3.4) requires the evaluation of the numerical derivatives:

Hij =
∂2φ

∂ui∂uj
(12.1)

where the displacements u can either bemolecular or intramolecular. At
the same time the energy φ depends both on the lattice energy and on
the conformational changes.

For the calculation of these derivatives we need to calculate the en-
ergy of several molecular geometries of each molecule in the unit cell
with a sufficiently accurate electronic structure method, according to
the intramolecular displacement of the normal modes we wish to con-
sider; furthermore, we need to calculate the lattice energy for each of the
resulting conformations of the molecules. is procedure will require a
significantmodification of the  subroutine dedicated to the cal-
culation of the vibrational properties of the crystal, but it will allow us
to use the good multipole model for the description of the electrostatics,
and introduce flexibility without the need to define parameters for the
description of the intramolecular degrees of freedom.

e temperature dependence of the positions and absorption intensit-
ies of the absorption peaks is interesting to study, as it gives information
on the anharmonicity of the vibrational modes, and of the population
of the excited vibrational states at finite temperature. ese effects are
automatically taken into account bymolecular dynamicsmethods [234],
which have the drawback of being slow compared to our  cal-
culations (if the forces are modelled by forcefield, while ab initio mo-
lecular dynamics methods [235] are prohibitively expensive except for
very small crystals, like ammonia [236]).

We plan to take into account these effects by sampling the potential
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Figure 12.1. Simulated  spectra of paracetamol form I, at different tem-
peratures. e absorption frequencies with the formula in Equa-
tion 12.4, with χe = 0.01. Five energy levels for each absorption
mode are plotted. e absorption intensities are normalised to the
strongest peak at 10K

energy surface of the crystal, by considering the energy variation in the
lattice energy associated with displacements along each of the eigen-
vectors. Once we obtain the shape of the potential energy landscape,
we can approximate it to an anharmonic potential energy function with
known vibrational states and energies. For example, the energy levels En

of the Morse potential

V(R) = De(1 − e−a(R−R0))2 (12.2)

for the displacement of a molecule from its equilibrium position R0 can
be expressed as

En = hν0(n+ 1/2)− (hν0 (n+ 1/2))2

4De
, (12.3)

with ν0 depending on the parameters De and a. Absorption intensities
can therefore be modelled by considering the Boltzmann population of
the vibrational levels and the frequency difference between two energy
levels En+1 and En.

To exemplify this approach, we have simulated the absorption spec-
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tra at varying temperatures for paracetamol form I, by considering the
lowest energy levels with a model system

En = ωe(n+ 1/2)− ωeχe(n+ 1/2)2, (12.4)

where ωe are the calculated harmonic frequencies and χe is an anhar-
monicity parameter. As shown in Figure 12.1, there is significant change
in the spectrum as temperature is increased, with the hot bands of each
absorption becoming more important at higher temperatures.

In this example we used an arbitrary value for the anharmonicity, χe =
0.01; with the sampling of the potential energy surface it will be possible
to get the anharmonicity constants (which are in principle different for
each of the absorption modes) directly from our calculations, and to
compare the data with the temperature dependent spectra to validate
our model.



A
VARIABLE TEMPERATURE SPECTRA

In this appendix we report all the measured variable temperature spec-
tra, not normalised. For each measurement we used a tablet containing
360mgpolyethylene and 15mg. All themeasurements in each graph
are relative to one tablet at different temperatures.
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Figure A.1. Spectra of anhydrous theophylline in the range 80K to 293K
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Figure A.6. Spectra of 4-fluoro-phenyl acetamide in the range 80K to 293K

20 40 60 80 100

0

2

4

6

8

10

12

14

4-chloro-phenyl acetamide

Ab
so

rb
an

ce
 (

a.
u.

)

Frequency (cm-1)

 293 K  240 K  200 K
 160 K  120 K  80 K

Figure A.7. Spectra of 4-chloro-phenyl acetamide in the range 80K to 293K



variable temperature spectra 265

20 40 60 80 100

0

2

4

6

8

10

12

4-bromo-phenyl acetamide

 293 K  240 K  200 K
 160 K  120 K  80 K

Ab
so

rb
an

ce
 (

a.
u.

)

Frequency (cm-1)

Figure A.8. Spectra of 4-bromo-phenyl acetamide in the range 80K to 293K
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