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Extremal and Probabilistic Bootstrap Percolation

Michał J. Przykucki

Abstract

In this dissertation we consider several extremal and probabilistic problems in
bootstrap percolation on various families of graphs, including grids, hypercubes
and trees. Bootstrap percolation is one of the simplest cellular automata. The
most widely studied model is the so-called r-neighbour bootstrap percolation,
in which we consider the spread of infection on a graph G according to the
following deterministic rule: infected vertices of G remain infected forever and
in successive rounds healthy vertices with at least r already infected neighbours
become infected. Percolation is said to occur if eventually every vertex is
infected.

In Chapter 1 we consider a particular extremal problem in 2-neighbour
bootstrap percolation on the n × n square grid. We show that the maximum
time an infection process started from an initially infected set of size n can take
to infect the entire vertex set is equal to the integer nearest to (5n2 − 2n)/8.
In Chapter 2 we relax the condition on the size of the initially infected sets
and show that the maximum time for sets of arbitrary size is 13n2/18 +O(n).

In Chapter 3 we consider a similar problem, namely the maximum perco-
lation time for 2-neighbour bootstrap percolation on the hypercube. We give
an exact answer to this question showing that this time is bn2/3c.

In Chapter 4 we consider the following probabilistic problem in bootstrap
percolation: let T be an infinite tree with branching number br(T ) = b. Ini-
tially, infect every vertex of T independently with probability p > 0. Given
r, define the critical probability, pc(T, r), to be the value of p at which perco-
lation becomes likely to occur. Answering a problem posed by Balogh, Peres
and Pete, we show that if b ≥ r then the value of b itself does not yield any
non-trivial lower bound on pc(T, r). In other words, for any ε > 0 there exists a
tree T with branching number br(T ) = b and critical probability pc(T, r) < ε.

However, in Chapter 5 we prove that this is false if we limit ourselves to
the well-studied family of Galton–Watson trees. We show that for every r ≥ 2
there exists a constant cr > 0 such that if T is a Galton–Watson tree with
branching number br(T ) = b ≥ r then

pc(T, r) >
cr
b
e−

b
r−1 .

We also show that this bound is sharp up to a factor of O(b) by describing an
explicit family of Galton–Watson trees with critical probability bounded from
above by Cre−

b
r−1 for some constant Cr > 0.
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2 INTRODUCTION

In this dissertation, we consider the following process known as r-neighbour

bootstrap percolation on a graph G. Initially a subset A of the set of vertices

(often called sites when we consider bootstrap percolation) of G = (V,E) is

infected and the remaining vertices are healthy. Infected vertices of G remain

infected forever and in consecutive rounds healthy vertices with at least r

already infected neighbours become infected. More precisely, we set A0 = A

and for t = 1, 2, 3, . . . , we let

At = At−1 ∪ {v ∈ V (G) : |N(v) ∩ At−1| ≥ r}.

In this process we think of t as time and of At as the set of sites whose state at

time t is ‘infected’, so that At−1 ∩N(v) is the set of neighbours of v which are

infected at time t − 1. By 〈A〉 =
⋃∞
t=0At we denote the set of all eventually

infected vertices which we call the closure of A. We say that A percolates if

〈A〉 = V (G).

Bootstrap percolation, suggested in 1979 by Chalupa, Leath, and Re-

ich [27], is a particularly simple cellular automaton. As is well known, cellular

automata were introduced by von Neumann in the 1940s and 1950s after a

suggestion of Ulam (see [45] and [52]). Bootstrap percolation has been used

to model various phenomena: the behaviour of ferromagnetic materials [44],

water flowing through cracks in rocks [3], the impact of failures of individual

nodes in computer networks on the connectivity of the entire system [39], the

spread of opinion and voting preferences [32, 54], information processing in

neural networks [40] and thermal annealing of damaged regions in diamonds

[49]. Originally the behaviour of the process under the assumption that the

set A of initially infected sites is random–like attracted most attention, since

the infected vertices in our model can reflect particles of some ferromagnetic

material with a particular value of their magnetic spin. (For more on the var-

ious physical motivations and applications of bootstrap percolation, we refer

the reader to the survey articles of Adler, Stauffer and Aharony [1], Adler [2]

and Adler and Lev [4].) Consequently, the most natural setup to consider was
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to assume that each site is initially infected (i.e., belongs to A) independently

with some probability p. The natural setup was then to consider, given a par-

ticular graph G and a value r of the infection threshold, for what values of p

percolation is likely to occur. It is clear that the probability of percolation is

nondecreasing in p and therefore one of the fundamental first problems was to

determine the critical probability, pc(G, r), defined as follows:

pc(G, r) = inf{p : Pp(A percolates in r-neighbour

bootstrap process on G) ≥ 1/2}.
(0.1)

Let Z2 denote the two-dimensional integer lattice, in which two sites (i1, i2)

and (j1, j2) are neighbours if and only if |i1−j1|+ |i2−j2| = 1. The first precise

result in the field was the following theorem proved by van Enter [53].

Theorem 0.1. The critical probability for 2-neighbour bootstrap percolation

on the two-dimensional integer lattice is pc(Z2, 2) = 0.

�

The proof of this result actually shows that whatever value p > 0 we use to

initially infect the sites in Z2, almost surely every site of the lattice will become

infected at some point in time. Note that r = 2 is the only interesting value

of the infection threshold in this problem. For r = 1 even a single initially

infected site would cause percolation, while for r ≥ 3 any initially healthy

2 × 2 square would remain healthy forever. Schonmann [50] generalized van

Enter’s result to all dimensions and values of the infection threshold: using

much more sophisticated methods he proved the following result.

Theorem 0.2. For all d, r ≥ 2 we have

pc(Zd, r) =

0, if r ≤ d,

1, if r > d.

�
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It is worth noticing that results of this type are much easier for r = 2 and

r = d, than for the interval 3 ≤ r ≤ d− 1.

The next step to understand bootstrap percolation models was to consider

finite graphs instead of infinite ones. Most work in bootstrap percolation has

been focused on a particular case where, for some natural numbers n and d,

the underlying graph G is the d-dimensional grid [n]d defined as follows: the

set of sites of G is

V (G) = {(i1, i2, . . . , id) : 1 ≤ ij ≤ n for all 1 ≤ j ≤ d}

and two sites v, w ∈ V (G) are neighbours if ‖v − w‖1 = 1, that is, v and w

differ in exactly one coordinate and by one unit. The first important result for

such graphs is found in the work of Aizenman and Lebowitz [5].

Theorem 0.3. For any d ≥ 2, the critical probability in 2-neighbour boot-

strap percolation on the d-dimensional cube [n]d is

pc([n]d, 2) = Θ

((
1

log n

)d−1
)
.

�

Surprisingly, even though the framework developed in [5] turned out to

be useful in many other problems, it took ten more years before similar re-

sults were proved for higher infection thresholds. The groundbreaking work

of Cerf and Cirillo [25] in the case d = r = 3 and the proof by Cerf and

Manzo [26] which followed it, proved the following natural generalization to

higher thresholds.

Theorem 0.4. For any d ≥ r ≥ 2, the critical probability for r-neighbour

bootstrap percolation on the d-dimensional cube [n]d is

pc([n]d, r) = Θ

( 1

log(r−1) n

)d−r+1
 ,

where log(1) n = log n and, for all k ≥ 2, log(k) n = log(log(k−1) n).
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�

Again, considering r > d is not interesting as any initially healthy subcube

[2]d would then remain healthy forever.

Theorem 0.4 says that there exist constants c2 ≥ c1 > 0 such that(
c1

log(r−1) n

)d−r+1

≤ pc([n]d, r) ≤

(
c2

log(r−1) n

)d−r+1

.

However, it was conjectured very early (and strongly supported by simulation

results) that at least in the case d = r = 2 a much sharper formula holds, i.e.,

that

pc([n]2, 2) =
c

log n
+ o

(
1

log n

)
for some c > 0. This conjecture was finally confirmed by the following theorem

of Holroyd [36] who also determined the value of the constant c.

Theorem 0.5. The critical probability for 2-neighbour bootstrap percolation

on the square grid [n]2 is

pc([n]2, 2) =
π2

18 log n
+ o

(
1

log n

)
.

�

The upper bound in Theorem 0.5 was “easy” since it can be obtained by

analyzing one particular way of percolating [n]2 and hoping that its probability

“dominates” all other ways of infecting the grid. Holroyd showed that for

p = π2+ε
18 logn

such a way can be found with high probability. Namely, he proved

that somewhere in [n]2 we will find a square of side length blog3 nc (referred

to as a “critical droplet” in the literature), such that the infection process

limited to this square will fully infect it. Together with the fact that with high

probability every stripe of sites of length blog3 nc in [n]2 will contain at least

one infected site, this gave the result.

However, things were far from being that simple in the case of the lower

bound on pc([n]2, 2). This is because we now have to bound the probability

of all possible ways of infecting [n]2. Holroyd found a way of doing this by
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introducing a notion of a hierarchy. This tree–like structure describes the

growth of the infected area and can be parameterized by an arbitrary level

of “precision” of the description. Holroyd defined a family of good hierarchies

by characterizing them as satisfying an explicitly given precision and showed

that if percolation occurs in [n]2 then at least one of those hierarchies must

be a valid description of the infection process. By showing that there are only

“few” good hierarchies and that for p = π2−ε
18 logn

each one of them is not satisfied

with high probability, he finally obtained the lower bound on pc([n]2, 2). It

is worth noticing here that Holroyd’s result was surprising for at least two

reasons. First, many researchers did not expect that such a precise result can

in fact be obtained with analytic methods. Second, the value of the constant

in Theorem 0.5 was highly unexpected, being more than twice as large as

numerical simulations predicted.

Again, the results for higher infection thresholds did not follow easily af-

ter the result for r = 2 was announced. For a long time obtaining precise

thresholds for r ≥ 3 seemed like a hopeless task but again the case d = r = 3,

solved by Balogh, Bollobás and Morris [10], turned out to be crucial. Finally,

Balogh, Bollobás, Duminil-Copin and Morris [9] in the following theorem gave

the asymptotic values of critical probabilities for all d ≥ r ≥ 2.

Theorem 0.6. The critical probability for r-neighbour bootstrap percolation

on the d-dimensional cube [n]d is

pc([n]d, r) =

(
λ(d, r) + o(1)

log(r−1) n

)d−r+1

,

where λ(d, r) are equal to the values of specific definite integrals.

�

The current research in this direction, motivated by the fact that the con-

stants in the above theorems “contradict” the simulation results even for large

values of n, focuses on finding the second terms in the formulae for pc([n]d, r).

For example, for d = r = 2 Gravner and Holroyd [34] and Gravner, Holroyd
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and Morris [35] obtained results explaining the slow convergence of the critical

probability and estimating the second order term in the asymptotic formula

for pc([n]2, 2).

However, the value of the critical probability is not the only interesting

probabilistic parameter of a bootstrap percolation model. Once we know for

what values of p percolation is likely to occur, it is interesting to ask about

the typical time that the infection process takes before it occupies the entire

vertex set. These questions have recently been considered in [n]d by Bollobás,

Holmgren, Smith and Uzzell [21] for r = d and by Bollobás, Smith and Uzzell

[24] for r < d.

The progress achieved for grid-like graphs (with a fixed dimension and side

length tending to infinity) encouraged research on bootstrap percolation on

other underlying graphs. Interesting results, some of them very sharp, were

then obtained, e.g., by Balogh and Bollobás [8] and by Balogh, Bollobás and

Morris [11, 12] for the hypercube graph, by Janson, Łuczak, Turova and

Vallier [38] for the random graph Gn,p and by Balogh and Pittel [15], and

Janson [37], for the random regular graph. Bootstrap percolation on infinite

trees and Cayley graphs was studied by Balogh, Peres and Pete [13] while

Fontes and Schonmann [30] and Biskup and Schonmann [18] worked with

infinite regular trees. It is worth mentioning that this particular model was

introduced already in the early work of Chalupa, Leath and Reich [27]. This

can be partially explained by the fact that bootstrap percolation is easier to

analyze on trees than on other graphs.

Various modifications and generalizations of the r-neighbour bootstrap per-

colation models have also been considered. Let us mention here the work of

Gravner and Griffeath [33] on more general update rules called threshold dy-

namics, the results of Bollobás, Smith and Uzzell [23] which generalize the

bootstrap processes even further, and the work of Coker and Gunderson [28]

who studied the bootstrap process on the square grid in which infected vertices

with less than two infected neighbours recover from the infection.
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Turning to extremal problems, the size of the smallest percolating sets in

[n]d was studied by Pete who proved a general lower bound on this size for a

fixed value of d and gave an exact or asymptotic value in a few simple cases.

A summary of his results can be found in [46] and [14]. However, the case

d = r = 2, which is now a famous coffee-time problem and a folklore puzzle

for high-school students, was answered very early. In this case the answer is

n, with a diagonal of the n × n square being an obvious example of such a

percolating set. We present a full proof of this fact in Proposition 1.3 and

Corollary 1.4. (The interested reader is encouraged to stop at this point and

try to prove that a percolating set cannot have less than n elements.) The

structure of the smallest percolating sets for G = [n]2 and r = 2 has also

been considered by Shapiro and Stephens [51]. A famous and still wide open

problem in this area is the determination of the size of the smallest percolating

sets for G being the n-dimensional hypercube ([2]n) and r = 3. Balogh and

Bollobás conjectured this size to be n2/6 +O(n) (percolating sets of that size

can be constructed using Steiner triple systems) but the best lower bound on

it so far is n+ 1.

Recently, however, a first major extremal result in bootstrap percolation,

as a partial answer to a question of Bollobás, was obtained by Morris [43].

Defining E(n) to be the cardinality of the largest minimal percolating sets in

[n]2 under 2-neighbour bootstrap percolation (i.e, the largest percolating sets A

such that for any v ∈ A the sets A\{v} do not percolate, i.e., 〈A \ {v}〉 6= [n]2)

he proved the following theorem.

Theorem 0.7. For every n ∈ N, we have

4n2

33
+ o(n2) ≤ E(n) ≤ (n+ 2)2

6
.

�

Following the steps of Morris, Riedl [48] proved that in 2-neighbour boot-

strap percolation on the n-dimensional hypercube graph, the size EH(n) of the

largest minimal percolating sets satisfies the following formula.
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Theorem 0.8. Let 1 ≤ r ≤ 4 be such that n = r (mod 4). Then

EH(n) =


n+ 1, 0 ≤ n ≤ 1

n, 2 ≤ n ≤ 10

(1 + 2r−4)2b
n+3
4
c, n ≥ 11.

�

In Chapters 1, 2 and 3 of this dissertation we contribute to this developing

family of extremal results. Answering questions posed by Bollobás [19], we

consider percolating sets of vertices for which the infection process under 2-

neighbour bootstrap percolation is as slow as possible. In Chapter 1 we look

at this problem for G = [n]2 and show that for percolating sets of minimal size

n percolation occurs after at most
⌊

5n2−2n
8

⌉
time steps, where bxe denotes the

integer nearest to x. In Chapter 2 we analyze all percolating sets in [n]2 and

prove that the maximum percolation time for arbitrary sets equals 13
18
n2+O(n).

Chapter 3 contains a solution to an analogous problem on the n-dimensional

hypercube. We show that in this case the maximum percolation time is bn2

3
c.

We should mention that despite strong similarities, the result in Chapter 2 is

significantly harder than the ones in Chapters 1 and 3.

Chapters 4 and 5 contain probabilistic results in bootstrap percolation on

infinite trees. This direction of research has already been initiated in the

original work of Chalupa, Leath and Reich. Given an infinite tree T , let

br(T ) denote the branching number of T (the branching number is a measure

of the “average” number of children of a vertex of T ; we define it precisely

is Section 4.2). Motivated by the work of Lyons [41], who showed that in

the context of percolation (for background on percolation see Bollobás and

Riordan, [22]), on any tree T we have pc(T ) = 1/ br(T ), Balogh, Peres and

Pete [13] investigated the relation between the branching number of a tree T

and the critical probability in bootstrap percolation on that tree. In [13] they

proved the following theorem.
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Theorem 0.9. For all r ≥ 2, given an infinite tree T , if br(T ) < r then

pc(T, r) = 1.

�

The authors asked a question about the possible values of the critical prob-

ability of trees T with br(T ) ≥ r. In Chapter 4 we answer that question, show-

ing that for any b ≥ r and ε > 0 there exists a tree T with branching number

br(T ) = b and critical probability pc(T, r) < ε. This shows that for b ≥ r

no bounds on the critical probability follow from the value of the branching

number.

In [13] the authors show that regular trees do not in general minimize

the critical probability among all trees with a given branching number. In

particular, they analyze the Galton–Watson tree Tξ with offspring distribution

ξ, such that P(ξ = 2) = P(ξ = 4) = 1/2 (which as shown in [41] almost surely

has branching number equal to br(Tξ) = E(ξ) = 3). They show that Tξ has

critical probability in 2-neighbour bootstrap percolation almost surely equal

to pc(Tξ, 2) = 0.10504 . . . < 1/9 = pc(T3, 2), where T3 is the infinite 4-regular

tree. In Chapter 5 we focus our attention on bootstrap percolation on Galton–

Watson trees and show that for this family of trees non-trivial bounds based

only on the branching number can be found. Namely, we prove that for every

r ≥ 2 a constant cr > 0 exists, such that for any Galton–Watson tree Tξ with

branching number br(Tξ) = E(ξ) = b ≥ r we have

pc(Tξ, r) >
cr
b
e−

b
r−1 .

We then construct a family of Galton–Watson trees with critical probability

bounded from above by Cre−
b
r−1 for some constant Cr > 0, which shows that

our bound on pc(Tξ, r) is sharp up to a O(b) factor. We also give some addi-

tional upper and lower bounds on pc(Tξ, r) based on higher moments of the

offspring distribution ξ.



CHAPTER 1

Slowly percolating sets of minimal size in bootstrap

percolation
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1.1. Introduction

Let us recall the definition of r-neighbour bootstrap percolation on a graph

G. In the context of percolation, the vertices of G are usually called sites and

the edges of G bonds. For each v ∈ V (G), we denote by N(v) the set of

neighbours of v. Each site v ∈ V (G) is in one of the two states, say healthy or

infected ; we write A for the set of sites whose initial state is ‘infected’ and call

A the set of initially infected sites.

Let N = {1, 2, 3, . . .} and let [n] = {1, 2, . . . , n}. Set A0 = A and, thinking

of At as the set of sites infected at time t, for t ∈ N set

At = At−1 ∪ {v ∈ V (G) : |N(v) ∩ At−1| ≥ r}. (1.1)

This means that sites of G become infected if they have at least r infected

neighbours. Note that in bootstrap percolation once a site is infected it never

becomes healthy.

The closure of A ⊂ V (G) is the set 〈A〉 =
⋃∞
t=0At of all sites that are

eventually infected. We say that a set A percolates if all sites are eventually

infected, that is, if 〈A〉 = V (G). We say that a set A is closed under percolation

if 〈A〉 = A. Furthermore, we say that A takes time T to percolate if 〈A〉 =

V (G) and T is the smallest natural number such that AT = V (G).

In this chapter we are interested in a particular case where, for some natural

number n, the graph G above is the grid [n]2 defined as follows: the set of sites

of G is V (G) = {(i, j) : 1 ≤ i, j ≤ n}, which we represent by an n by n square-

grid where each site is a unit square whose centre has coordinates (i− 1/2, j−

1/2) in the Cartesian plane. Two sites are adjacent if the corresponding squares

share an edge. This particular model was introduced in 1979 by Chalupa, Leath

and Reich [27], together with bootstrap percolation on regular trees.

In this chapter we answer an extremal question posed by Bollobás, that of

bounding the time that a percolating subset A of the set of vertices of G = [n]2,

such that |A| = n, can take to percolate under 2-neighbour bootstrap percola-

tion. For small values of n it is easy to answer our question computationally
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by an exhaustive search. But as a main result of this chapter we prove the

following theorem. Let T (A) denote the time that A takes to percolate in [n]2.

Moreover, let

M0(n) = max{T (A) : 〈A〉 = [n]2 and |A| = n}.

Theorem 1.1. For every n ≥ 4,

M0(n) =

⌊
5n2 − 2n

8

⌉
, (1.2)

where bxe denotes the integer nearest to x.

It is clear thatM(1) = 0, M(2) = 1, and it is easy to check thatM(3) = 4.

This chapter is joint work with Fabricio S. Benevides. The chapter ap-

peared in our paper, [17].

1.2. Preliminaries

Given natural numbers k and `, a k by ` rectangle is a subset of Z2 of the

form {a, a + 1, . . . , a + k − 1} × {b, b + 1, . . . , b + ` − 1} for some choice of a

and b. Let Rec(k, `) denote the set of all k by ` rectangles in [n]2. We say

that a rectangle R is internally spanned by a given set of infected sites A if

〈A ∩R〉 = R.

Given a finite set A ⊂ Z2, we represent a site (i, j) ∈ A as a shaded unit

square on the grid so that its centre has coordinates (i − 1/2, j − 1/2) in R2.

We define the boundary of A as the set of bonds of Z2 having exactly one

endpoint in A; in our pictures this corresponds to a side shared by a shaded

and a non-shaded unit square. The perimeter of A is the number of bonds in

its boundary. Its semi-perimeter is half of the perimeter; we denote it by Φ(A).

In particular, if R ∈ Rec(k, `) is a k by ` rectangle then its semi-perimeter is

Φ(R) = k + `.

In our proofs we shall talk about distances between sites and rectangles.

The distance we use is given by the usual l1 norm, i.e., the distance between a

pair of sites, say (i1, j1) and (i2, j2), is |i1− i2|+ |j1−j2|. The distance between



14 1. SLOWLY PERCOLATING SETS OF MINIMAL SIZE

two sets A and B is the minimum distance between a site in A and a site in

B; it is denoted by dist(A,B).

We remark that this definition of distance coincides with the length of the

shortest path from A to B′ when viewing Z2 as a graph. Note that two sets

are at distance 0 from each other if and only if they intersect; and at distance

1 if and only if they are disjoint but their boundaries share at least one edge.

Fact 1.2. For any two finite sets A,B ⊂ Z2 we have Φ(A) + Φ(B) ≥

Φ(A ∪ B). Equality occurs if and only if dist(A,B) ≥ 2, that is, if A and B

do not intersect and have disjoint boundaries.

Proof. Clearly, every bond in the boundary of A ∪B is in the boundary

of at least one of the sets A and B. If dist(A,B) ≥ 2 then every such bond is in

the boundary of exactly one of A and B, and so Φ(A)+Φ(B) = Φ(A∪B) holds.

If dist(A,B) ≤ 1 then there exists a bond in the product of the boundaries of

A and B and the inequality is strict. �

From now on let us consider 2-neighbour bootstrap percolation on [n]2 only.

Let us start with the following simple proposition which follows from the fact

that the perimeter of the infected set cannot grow when a new site becomes

infected.

Proposition 1.3. Let A be a set of infected sites and let 〈A〉 be its closure.

Then Φ(〈A〉) ≤ Φ(A).

Proof. Let A0 = A and let At be the set of infected sites at time t. A

healthy site becomes infected at time t+1 if at least two of its neighbours are in

At. Additionally, every edge can transmit infection only once from a uniquely

determined infected site to a uniqely determined healthy site. As a result, at

least 2|At+1 \At| bonds in the boundary of At are not in the boundary of At+1.

Furthermore, each v ∈ At+1 \At, after using two bonds to become infected,

contributes at most two new bonds to the boudary of the infected area. Thus

there are at most 2|At+1 \ At| bonds in the boundary of At+1 which were not
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in the boundary of At.. Thus the perimeter cannot grow during the infection

process. �

Corollary 1.4. Given k, ` ∈ N and a rectangle R ∈ Rec(k, `), if A ⊂ R

is a set that internally spans R then |A| ≥ dΦ(R)/2e =
⌈
k+`

2

⌉
. In particular,

if n ∈ N and A ⊂ [n]2 percolates, then |A| ≥ n.

�

It is easy to show that the lower bounds in Corollary 1.4 are sharp. For

example, a diagonal is a percolating set of size n in [n]2.

As we mentioned before, we are interested in finding sets of size n in [n]2

that do percolate but do so in the maximum possible time M0(n). To do this

we build a family of sets that percolate in a particular way. In order to do so

we shall need to use induction on the size of the underlying graph. Hence it is

natural to extend the definition of M0(n) to percolation on rectangles.

Given natural numbers k and ` such that k + ` is even (the reason why

we only look at even values of k + ` will become clear in our proof), let T (A)

again denote the time that A takes to percolate. We define M0(k, `) by

M0(k, `) = max{T (A) : 〈A〉 = [k]× [`] and |A| = (k + `)/2}.

For a rectangle R ∈ Rec(k, `) define M0(R) to be the maximum time in which

some set of order Φ(R)/2 internally spans R. Of course, M0(R) is just another

notation for M0(k, `).

Before trying to compute bounds on M0(n) we should also understand

how the infection spreads on a broader scale. The first simple but important

observation is the following.

Fact 1.5. Given any set A of infected sites, 〈A〉 is a union of rectangles

such that any distinct two of them are at distance at least 3.

Proof. The set A can be viewed as a union of 1 by 1 rectangles. Also,

any two fully infected rectangles within distance at most 2 span the minimal

rectangle containing them both. Thus, in this “rectangle process” in which
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we replace a union of two infected rectangles at distance at most 2 by the

minimal rectangle containing them both, at each step we decrease the number

of rectangles. Therefore, trying to write 〈A〉 as a union of rectangles with

the minimal number of rectangles, in finitely many steps we obtain a union of

rectangles such that any distinct two of them are at distance at least 3. �

The next proposition (see Proposition 30 in [36]) is a much more precise

result in this direction.

Proposition 1.6. Let R be a rectangle with area at least 2. Suppose that

R is internally spanned by a set of sites A. Then there exist disjoint subsets

of A, say A′ and A′′, and rectangles R′ and R′′ such that:

(1) R′ ( R and R′′ ( R,

(2) R′ is internally spanned by A′ and R′′ is internally spanned by A′′,

(3) 〈R′ ∪R′′〉 = R; in particular, dist(R′, R′′) ≤ 2.

Proof. The proposition follows from a similar argument as Fact 1.5. If A

percolates then in the rectangle process we finally obtain one infected rectangle

R. If we stop at the penultimate step of the process then we obtain two

rectangles R′ and R′′ which together span R, being themselves spanned by two

disjoint sets A′ and A′′. �

Note that in Proposition 1.6 we cannot require the rectangles R′ and R′′

to be disjoint (see Figure 1.1).

Although Proposition 1.6 is sharp, it does not describe the percolation

process in a step by step fashion (i.e., as the time t increases by one). In fact,

it may happen that some sites in R \ (R′ ∪R′′) become infected while some of

R′ ∪ R′′ are still healthy. Even though the problem we study is intrinsically

time related, we shall be able to make heavy use of Proposition 1.6.

1.3. Slowly percolating sets with the minimal number of sites

In this section our aim is to compute the exact value of M0(n) for every

n ∈ N. Let us start by giving some intuitions about the solution to this
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R′

R′′

Figure 1.1. An example where the rectangles R′ and R′′ are
uniquely determined by the initially infected sites and do over-
lap.

problem. First, we clearly have M0(n) ≤ n2 − n, since at each time step we

need to infect at least one of the initially healthy sites to continue the process.

Also, without too much effort one can show that M0(n) ≥ n2

2
+ O(n). For

example, consider the set of initially infected sites of the grid [7]2 in Figure 1.2,

which generalizes in a self-explanatory way to the grid [n]2. It is clear that

with this particular starting set at each time step, except the first one, at most

two new sites become infected.

1 1 1

Figure 1.2. An initial set showing that M0(n) ≥ n2

2
+O(n).

This shows that M0(n) = Θ(n2). As a main result of this chapter we

prove that the structure of sets maximizing percolation time is actually more

complicated. To be more precise, we show that to infect a k× ` rectangle R in

the maximum time we should use an initially infected set A = A′ ∪ {v} such

that the set A′ first internally spans either a (k − 1) × (` − 1), (k − 2) × ` or

k×(`−2) rectangle in the maximum possible time, and then using “help” from

the site v finishes the infection of R. It will turn out that, when k = ` = n, the
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structure of a set A(n) with |A(n)| = n maximizing percolation time can be

described as follows. We have A(n) = B(n)∪C(n)∪D(n), where |B(n)| ≈ n/4,

|C(n)| ≈ n/2 and |D(n)| ≈ n/4, and such that

(1) The set B(n) internally spans a rectangle of size roughly n
2
×2 in time

3n
4

+O(1),

(2) The set C(n) extends the infected area to a rectangle of size roughly

n× n
2
in time 3n2

8
+O(n),

(3) The set D(n) finishes the infection of the n×n grid in time n2

4
+O(n).

(See Figure 1.6.) Thus the set A(n) percolates in time 5n2/8 + O(n), signifi-

cantly beating the simple construction presented in Figure 1.2. In fact, with

a more precise analysis we shall show that the maximum percolation time in

this case is equal to the integer nearest to (5n2 − 2n)/8. We would like to

emphasize that this value does not follow immediately from the recursive for-

mula for maximum percolation time which we obtain first, but requires some

additional work. What is more, in Chapter 2, where we work with percolating

sets of arbitrary size, we also first obtain a recursive formula for percolation

time. Even though it does not look that much more complicated, we are able

to later find only an asymptotic formula for this value.

Now, let us return to Proposition 1.6. Given A ⊂ [n]2, consider the sets

A′, A′′, R′ and R′′, given by Proposition 1.6, and assume that A′ takes at least

as many time steps to internally span R′ as A′′ takes to internally span R′′.

Then clearly we can bound from above the time that A takes to percolate R

by the time A′ takes to infect R′ plus the time to grow from R′ ∪ R′′ to R,

that is, to infect all sites in R \ (R′ ∪ R′′) given that all sites in R′ and R′′

are infected. Intuitively, the time to grow from R′ ∪ R′′ to R does not change

much if we only slightly change the sizes of R′ and R′′ while the infection time

of R′ might grow a lot if we increase the side lengths of R′ even by some small

quantities (this follows from our intuitions about the quadratic growth ofM0).

It is then intuitive that, to maximize the time that A takes to percolate, R′′
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should probably be as small as possible, maybe even a single site. Let us now

make our arguments formal.

First, we consider a family of sets of initially infected sites that internally

span a rectangle in a particular way. The following definition is the most

important concept of this chapter.

Definition 1.7. Let k and `, with k + ` even, be given natural numbers.

We say that a set A of initially infected sites is (k, `)-good if it has cardinality

(k+`)/2 and the 2-neighbour bootstrap percolation process starting from A can

be described as follows. There exists a nested sequence of rectangles P0 ⊂ P1 ⊂

. . . ⊂ Pr ∈ Rec(k, `), such that Pi ∈ Rec(si, ti) where si, ti satisfy the following

properties:

(1) either s0 ≤ 2 or t0 ≤ 2 or s0 = t0 = 3; and s1, t1 ≥ 3 and (s1, t1) 6=

(3, 3),

(2) for every 1 ≤ i ≤ r, the rectangle Pi is in

Rec(si−1 + 1, ti−1 + 1) ∪ Rec(si−1 + 2, ti−1) ∪ Rec(si−1, ti−1 + 2),

(3) for all 0 ≤ i ≤ r, the rectangles Pi are internally spanned by A ∩ Pi
in the maximum possible time, that is, in time M0(Pi),

(4) for every 0 ≤ i ≤ r, if the rectangle Pi has no side of length 1 then

among the sites which become infected last in Pi there is at least one

of its corner sites,

(5) for every 0 ≤ i < r, there exists a site vi ∈ A such that Pi ∪ {vi}

internally spans Pi+1 and vi is at distance exactly 2 from one of the

last sites to become infected in Pi and at distance at least 3 from any

other site in Pi (see Figure 1.3).

Definition 1.8. If A is (k, `)-good we say that P0 ⊂ P1 ⊂ . . . ⊂ Pr ∈

Rec(k, `) is a good sequence of rectangles associated with A if it satisfies con-

ditions (1)-(5) above.
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From condition (2) it follows that for every 0 ≤ i ≤ r−1 we have Φ(Ri+1) =

Φ(Ri) + 2. From condition (3), taking i = r, it follows that any (k, `)-good set

infects a k × ` rectangle in the maximum possible time. We shall show that

for every n ≥ 4 there exists an (n, n)-good set A.

For a (k, `)-good set A ⊂ [k] × [`] and a good sequence P0 ⊂ P1 ⊂ . . . ⊂

Pr = [k] × [`] associated with it, we say that we use Move 1 at moment i (to

construct Pi from Pi−1) if Pi ∈ Rec(si−1 + 1, ti−1 + 1), that we use Move 2 at

moment i if Pi ∈ Rec(si−1 + 2, ti−1) and that we use Move 3 at moment i if

Pi ∈ Rec(si−1, ti−1 + 2).

ti−1

si−1

Move 1 at moment i

ti−1

si−1

1
2

Move 2 at moment i

ti−1

si−1

12

Move 3 at moment i

Figure 1.3. Moves 1, 2 and 3.

Figure 1.3 shows all possible alignments of subrectangles spanned by (k, `)-

good sets, which follows from condition (5) of the definition of (k, `)-good sets.

We shall prove a recursive formula for M0(k, `) that works for all values of

k and ` such that k+` is even. The reader should keep in mind the description

of (k, `)-good initial sets as we are going to build such a set in our proof. In

the next two lemmas we deal with some small cases which we will later use

as base cases for the recursion. Since M0(k, `) = M0(`, k), we shall omit some

cases where k < `. Recall also that we only define M0(k, `) for k + ` even.
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Lemma 1.9. We have M0(1, 1) = 0; M0(k, 1) = 1 for all odd k ≥ 3; and

M0(3, 3) = 4. Furthermore, in all these cases there exist (k, `)-good sets.

Proof. The proof of this lemma is easy and we leave it as an exercise to

the reader. In all these cases, in the definition of (k, `)-good sets and good

sequences of rectangles we have r = 0. �

Lemma 1.10. For any even k we have M0(k, 2) = (3k−4)/2. Furthermore,

there is a (k, 2)-good set, A0(k, 2), which percolates [k]× [2] in time M0(k, 2).

Proof. We define A0(k, 2) to be the set of shaded sites in Figure 1.4.

Clearly |A0(k, 2)| = (k+2)/2 and A0(k, 2) percolates [k]×[2] in time (3k−4)/2.

Thus we have M0(k, 2) ≥ (3k − 4)/2 for any k even. Note that, setting P0 =

[k]× [2], to prove that A0(k, 2) is a (k, 2)-good set we only need to show that

in fact M0(k, 2) = (3k − 4)/2.

1
1

. . .
. . . . . .

k

Figure 1.4. A set of initially infected sites which gives the max-
imum percolation time on [k]× [2] when k is even.

Now we prove by induction on k that for any k even we have M0(k, 2) ≤

(3k − 4)/2. Clearly, M0(2, 2) = 1. Assume that we are given some even k ≥ 4

and that M0(k − 2, 2) = (3k − 10)/2. Let A, with |A| = (k + 2)/2, be any set

that percolates [k]× [2].

Since A percolates, any two consecutive columns of [k] × [2] contain at

least one site of A. In particular, each of the 2 by 2 squares of the form

{2i− 1, 2i} × {1, 2}, 1 ≤ i ≤ k/2, must contain at least one site of A. So only

one such square can contain two sites of A. Therefore, either {1, 2} × {1, 2}

or {k − 1, k} × {1, 2} contains exactly one site of A. Assume without loss of

generality that the latter holds. Since A percolates, either (k, 1) or (k, 2) must

be an initially infected site. Again without loss of generality we may assume
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that the latter holds. In this setting it is trivial to check that A∩ ([k−2]× [2])

must internally span [k − 2] × [2]. Therefore A takes time at most M0(k −

2, 2) + 3 = (3k − 4)/2 to percolate. This completes the proof. �

Now, we state a lemma giving a recursive formula forM0(k, `). Let us note

that in the formula we are about to prove the sum of the parameters that the

function M0(·, ·) depends on at each recursive step decreases by two. This is

why, being interested in the value of M0(n, n), we only need to look at values

of k and ` with even k + `.

Theorem 1.11. For k, ` ≥ 3 such that (k, `) 6= (3, 3) and k+ ` is even, we

have

M0(k, `) = max


M0(k − 1, `− 1) + max{k, `} − 1,

M0(k − 2, `) + `+ 1,

M0(k, `− 2) + k + 1.

(1.3)

Furthermore, for all such k and ` there exists a (k, `)-good set.

Proof. We use Lemmas 1.9 and 1.10 as base cases for induction. We

prove Theorem 1.11 by induction on k + `. Assume that we are given k, ` ≥ 3

such that (k, `) 6= (3, 3) and k + ` is even. Our induction hypothesis is that

for any k′, `′ such that k′ + `′ is even and k′ + `′ < k + ` there exists a (k′, `′)-

good set A0(k′, `′) which percolates in time M0(k′, `′), as in the statement of

Theorem 1.11.

The fact that k, ` ≥ 3 guarantees that we have k − 1, `− 1 ≥ 2. This will

be important for us as in the constructions below we shall use property (4) of

Definition 1.7 of (k, `)-good sets a lot. We shall first prove that the following

inequality holds for k and ` as above.

M0(k, `) ≥ max


M0(k − 1, `− 1) + max{k, `} − 1,

M0(k − 2, `) + `+ 1,

M0(k, `− 2) + k + 1.

(1.4)
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Consider the following three particular ways of infecting [k]× [`] (see Fig-

ure 1.3).

(a) By the induction hypothesis there exists a (k − 1, ` − 1)-good set

A0(k−1, `−1) which internally spans the rectangle [k−1]× [`−1] in

timeM0(k−1, `−1). Without loss of generality, since k−1, `−1 ≥ 2,

we may assume that the site (k − 1, ` − 1) becomes infected at time

M0(k − 1, ` − 1). Let A1(k, `) = A0(k − 1, ` − 1) ∪ {(k, `)}. Then

the infection of sites in ([k]× [`]) \ ([k − 1]× [`− 1]) starts only after

(k − 1, ` − 1) is infected and so A1(k, `) takes time M0(k − 1, ` −

1) + max{k, `} − 1 to internally span [k]× [`]. In addition, note that

at least one of the corner sites (k, 1), (1, `) becomes infected at time

M0(k − 1, `− 1) + max{k, `} − 1.

(b) When k ≥ 4, by the induction hypothesis there exists a (k−2, `)-good

set A0(k− 2, `), internally spanning the rectangle [k− 2]× [`] in time

M0(k− 2, `), which infects the site (k− 2, `) at time M0(k− 2, `) (this

follows from the fact that k − 2, ` ≥ 2). Let A2(k, `) = A0(k − 2, `) ∪

{(k, `)}. Then the infection of sites in ([k]×[`])\([k−2]×[`]) starts only

after (k−2, `) is infected and so A2(k, `) takes timeM0(k−2, `)+`+1

to internally span [k]× [`]. In addition, note that the corner site (k, 1)

becomes infected at time M0(k − 2, `) + `+ 1.

(c) When ` ≥ 4, analogously to case b), by the induction hypothesis

there exists a (k, `− 2)-good set A0(k, `− 2), internally spanning the

rectangle [k]×[`−2] in timeM0(k, `−2), which infects the site (k, `−2)

at time M0(k, ` − 2). Then the set A3(k, `) = A0(k, ` − 2) ∪ {(k, `)}

internally spans [k]× [`] in time M0(k, `− 2) + k + 1, with the corner

site (1, `) becoming infected at the last time step.

The above constructions show that inequality (1.4) holds when k, ` ≥ 4.

It remains to check that it also holds for k = 3 and ` ≥ 5, and for ` = 3 and

k ≥ 5 (recall that k + ` is even so, e.g., when k = 3 we have ` 6= 4). These

cases are clearly symmetric so let us just show thatM0(k, 3) ≥M0(k, 1)+k+1
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for k ≥ 5. This is immediate as M0(k, 1) + k+ 1 = k+ 2 and we already know

by construction (a) that

M0(k, 3) ≥M0(k − 1, 2) + k − 1 ≥M0(4, 2) + k − 1 ≥ k + 3.

Thus the lower bound on M0(k, `) is proved.

Let us now show that the set A1(k, `) defined above satisfies all but possibly

condition (3) of a (k, `)-good set. Showing that the same holds for the sets

A2(k, `) and A3(k, `) is analogous.

Thus, assume that A0(k− 1, `− 1) is a (k− 1, `− 1)-good set with a good

sequence of rectangles P0 ⊂ P1 ⊂ . . . ⊂ Pr = [k−1]× [`−1] associated with it.

First, clearly |A1(k, `)| = |A0(k−1, `−1)|+1 = (k+`−2)/2+1 = (k+`)/2. Now

consider the sequence P0 ⊂ P1 ⊂ . . . ⊂ Pr = [k− 1]× [`− 1] ⊂ Pr+1 = [k]× [`]

which describes the infection of [k] × [`] with A1(k, `) as the set of initially

infected sites. This sequence clearly satisfies properties (1) and (2) of (k, `)-

good sets since it is obtained from a (k−1, `−1)-good set. It satisfies property

(4) for i = r + 1 since, as we noticed, in the infection started from A1(k, `)

at least one of the corner sites (k, 1), (1, `) becomes infected at the last time

step. It satisfies property (5) for i = r + 1 since (k, `) is at distance 2 from

(k− 1, `− 1) (which is infected last) and at distance at least 3 from any other

site in Pr = [k − 1]× [`− 1]. Properties (4) and (5) for i ≤ r are satisfied for

this sequence since it is obtained from one associated with a (k−1, `−1)-good

set.

We shall show that at least one of the sets A1(k, `), A2(k, `) and A3(k, `)

is (k, `)-good by proving an upper bound on M0(k, `) analogous to inequal-

ity (1.4), that is,

M0(k, `) ≤ max


M0(k − 1, `− 1) + max{k, `} − 1,

M0(k − 2, `) + `+ 1,

M0(k, `− 2) + k + 1.

(1.5)
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This will mean that at least one of these sets satisfies the missing property

(3) of a (k, `)-good set. Note that, as we have already shown, when k = 3

then M0(k − 2, `) + `+ 1 is not larger than M0(k − 1, `− 1) + max{k, `} − 1,

and analogously for ` = 3. Thus the maximal time is obtained by some set

satisfying all properties of a (k, `)-good set.

Consider any set A which internally spans the rectangle R = [k] × [`] in

time M0(k, `) and is such that |A| = (k+ `)/2. By Proposition 1.6, there exist

disjoint subsets of A, say A′ and A′′, and two rectangles R′ and R′′ satisfying

conditions (1)–(3) of Proposition 1.6. By Proposition 1.3 and condition (3) of

Proposition 1.6, we have that

Φ(R′ ∪R′′) ≥ Φ(〈R′ ∪R′′〉) = Φ(R) = k + `.

By Fact 1.2, condition (2) of Proposition 1.6 and Corollary 1.4,

Φ(R′ ∪R′′) ≤ Φ(R′) + Φ(R′′) ≤ 2|A′|+ 2|A′′| ≤ 2|A| = k + `.

Therefore, each of the above inequalities must be an equality. In particular,

we have Φ(R′ ∪R′′) = Φ(R′) + Φ(R′′). Fact 1.2 implies that dist(R′, R′′) ≥ 2,

which together with condition (3) of Proposition 1.6 gives that R′ and R′′ must

be at distance exactly 2. Also, we must have Φ(R′) = 2|A′| and Φ(R′′) = 2|A′′|,

therefore, both Φ(R′) and Φ(R′′) are even.

Let s1, t1, s2, t2 ≥ 1 be such that R′ ∈ Rec(s1, t1) and R′′ ∈ Rec(s2, t2). We

have Φ(R′) + Φ(R′′) = Φ(R), so s1 + s2 + t1 + t2 = k + `. Since R′ and R′′

must be at distance exactly 2, the values of s1, t1, s2, t2 and the positions of

R′ and R′′ inside R, must satisfy exactly one of the following conditions (to

avoid redundancy we do not list cases analogous to Conditions (a), (b) and (c)

when the alignment of R′ and R′′ in R is a rotation by 90 degrees of the one

we consider here).

Condition (a): rectangles R′ and R′′ align as in Figure 1.5 (a) with s1 + s2 =

k − 1 and t1 + t2 = `+ 1.
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Condition (b): rectangles R′ and R′′ align as in Figure 1.5 (b) with s1 +s2 = k,

t1 + t2 = `.

Condition (c): there is an 0 ≤ m ≤ t1 − t2 so that the rectangles R′ and R′′

align as in Figure 1.5 (c) with s1 +s2 = k−1, t1 = ` and t2 = 1.

t1

t2

s1

s2

(a)

R′

R′′

t1

t2

s1

s2

(b)

R′

R′′

t1

t2 = 1

m

s1

s2

(c)

R′

R′′

Figure 1.5. Three possible alignments of rectangles R′ and R′′.

Additionally, the rectanglesR′ andR′′ are nonempty and internally spanned

by s1+t1
2

and s2+t2
2

sites respectively.

Note now that no matter which of the Conditions (a), (b) or (c) holds, if at

least one of s1, t1, s2, t2 equals 1 (which for Condition (c) is true by definition

with t2 = 1) then, just by possibly moving sites from A′ to A′′ or the other way,

we can find a partition of A, say into sets Ã′ and Ã′′, such that
〈
Ã′
〉

= R̃′ is

a rectangle,
〈
Ã′′
〉

= R̃′′ is a single site and
〈
R̃′ ∪ R̃′′

〉
= R. This follows from

the fact that, given s ≥ 1 odd, any set of (s + 1)/2 infected sites internally

spanning an s× 1 rectangle S must occupy every other site in S.

Now, returning to the intuitions we gave at the beginning of this section,

we can bound from above the time that A takes to percolate [k] × [`] by the
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larger of the maximum times needed to internally span R′ or R′′, plus the time

to grow from R′∪R′′ to R, that is, to infect all sites in R\ (R′∪R′′) given that

all sites in R′ and R′′ are infected. So if such R̃′′ consisting of a single site can

be found then the percolation time clearly cannot be greater than the lower

bound given by inequality (1.4), in which case we are done. Assume therefore

this is not the case which allows us to ignore Condition (c). Thus we only need

to consider Conditions (a) and (b) with s1, t1, s2, t2 ≥ 2. For these conditions

we are also free to assume that M0(R′) ≥M0(R′′).

Therefore, the time A takes to percolate is at mostM0(s1, t1) + max{s1 + t2, s2 + t1}, if Condition (a) holds,

M0(s1, t1) + max{s1 + t2, s2 + t1} − 1, if Condition (b) holds.
(1.6)

From (1.4) and small case analysis when s or t equals 2, we have that the

bound M0(s, t) ≥ M0(s − 1, t − 1) + max{s, t} − 1 holds for all 2 ≤ s ≤ k,

2 ≤ t ≤ `, s+t even. By the same argument, inequalitiesM0(s+2, t) ≥M0(s, t)

and M0(s, t+ 2) ≥M0(s, t) hold for all 1 ≤ s ≤ k, 1 ≤ t ≤ `, s+ t even.

If Condition (a) holds then since s1, t1, s2, t2 ≥ 2 we also have s1, s2 ≤ k−3

and t1, t2 ≤ `− 1. Then

M0(s1, t1) + max{s1 + t2, s2 + t1} ≤M0(k − 3, `− 1) + k + `− 4

≤M0(k − 2, `) + k + `− 4

− (max{k − 2, `} − 1)

≤M0(k − 2, `) + min{`− 1, k − 3}

< M0(k − 2, `) + `+ 1,

where the second inequality follows from the fact that M0(s, t) ≥M0(s−1, t−

1) + max{s, t} − 1. In the case when the rectangles R′ and R′′ satisfy an

analogous condition obtained by rotating Condition (a) by 90 degrees, we get

an analogous bound M0(k, `− 2) + k + 1 for the percolation time of A.
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If Condition (b) holds then since s1, t1, s2, t2 ≥ 2 we also have s1, s2 ≤ k−2

and t1, t2 ≤ `− 2. Then

M0(s1, t1) + max{s1 + t2, s2 + t1} − 1 ≤M0(k − 2, `− 2) + k + `− 5

≤M0(k − 1, `− 1) + k + `− 5

− (max{k, `} − 2)

≤M0(k − 1, `− 1) + min{`, k} − 3

< M0(k − 1, `− 1) + max{k, `} − 1,

where again the second inequality follows from the fact thatM0(s, t) ≥M0(s−

1, t− 1) + max{s, t} − 1.

Thus we conclude that the weakest upper bound on percolation time of A,

equal to

max{M0(k−1, `−1)+max{k, `}−1, M0(k−2, `)+`+1, M0(k, `−2)+k+1},

is obtained when one of R′ or R′′ is a single site. Since A was arbitrary with

|A| = (k + `)/2 and T (A) = M0(k, `), this is an upper bound on M0(k, `) and

so (1.5) is proved. Since this upper bound matches the percolation time of at

least one of the sets A1(k, `), A2(k, `), A3(k, `) constructed in the proof of the

lower bound on M0(k, `), we see that at least one of them percolates in time

M0(k, `). Additionally, if k = 3 or ` = 3 then we know that this maximum is

obtained by A1(k, `). This was the last step needed to show that one of them

is a (k, `)-good set. This completes the proof of Theorem 1.11. �

By Theorem 1.11 for every n ≥ 4 there exists an (n, n)-good set which

percolates [n]2 in the maximum time M0(n). So, it is enough to determine

s0, t0 and the sequence of Move 1s, 2s and 3s which takes the longest time

to percolate. In the next lemma we treat a number of small cases to exclude

some, a priori possible, values for the numbers s0 and t0. We shall ask for

min{s0, t0} = 2 so that, in the infection process started from our (k, `)-good

set, for each i ≥ 1 the infection of the sites in Pi \ Pi−1 starts only after all
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sites in Pi−1 are infected. Making sure that (s0, t0) 6= (3, 3) will also allow us

to later simplify the description of good sets and, consequently, give an exact

answer to the question about the value of M0(n, n).

Lemma 1.12. Let k and ` be such that k ≥ 4, ` ≥ 2 and k + ` is even.

Then there exists a (k, `)-good set A0(k, `) with the sequence P0 ⊂ P1 ⊂ . . . ⊂

Pr = [k] × [`] of rectangles associated with it, with P0 ∈ Rec(s, 2) ∪ Rec(2, s)

for some even s ≥ 4.

Proof. Given k, `, with k ≥ 4, ` ≥ 2 and k + ` even, consider any (k, `)-

good set, A0(k, `), and its associated good sequence of rectangles P0 ⊂ P1 ⊂

. . . ⊂ Pr = [k] × [`]. If ` = 2 then we have r = 0 and the lemma is trivial.

Thus assume that ` ≥ 3. Then since k ≥ 4 we also have r ≥ 1.

Suppose for a contradiction that P0 ∈ Rec(s, 1), for some odd s. By the

definition of a (k, `)-good set we have P1 ∈ Rec(s1, t1) with s1, t1 ≥ 3 and

max{s1, t1} ≥ 4. The only move we can apply to P0 to satisfy this is Move 3,

so we must have P1 ∈ Rec(s, 3) with s ≥ 5 (recall that s1 + t1 is even). This

implies s − 1 ≥ 4 and so M0(s − 1, 2) ≥ 4. By inequality (1.4) we obtain

M0(P1) = M0(s, 3) ≥ M0(s − 1, 2) + s − 1 ≥ s + 3. However, if we apply

Move 3 to P0 ∈ Rec(s, 1) we will percolate P1 ∈ Rec(s, 3) in time at most

M0(P0) + s + 1 = s + 2. This contradicts the fact that A0(k, `) is (k, `)-good

(more precisely, property (3) of Definition 1.7 will not hold for P1). We deal

with the case P0 ∈ Rec(1, s) analogously.

Suppose now that P0 ∈ Rec(3, 3). We can assume that either P1 ∈ Rec(4, 4)

(if we use Move 1 at moment 1) or P1 ∈ Rec(5, 3) (if we use Move 2), as

the case P1 ∈ Rec(3, 5) (where we use Move 3) is analogous. In the first

case, M0(P0) = M0(3) = 4 and it takes 3 time steps to finish the infection

of P1 after P0 has been fully infected. Thus P1 becomes fully infected after

at most 4 + 3 = 7 time steps. However, by inequality (1.4) we know that

M0(P1) = M0(4) ≥M0(4, 2) + 4 + 1 = 9. So, as in the previous paragraph, we

have a contradiction to A0(k, `) being (k, `)-good. In the second case, where

P1 ∈ Rec(5, 3), it takes 4 time steps to apply Move 2 to P0 and finish the
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infection of P1 after P0 is fully infected. Thus P1 is fully infected at time

M0(P0) + 4 = 8. However, starting from P ′0 ∈ Rec(4, 2) and using Move 1

at moment 1 we infect a rectangle P1 ∈ Rec(5, 3) and again obtain infection

time of P1 equal to 8, as M0(4, 2) + 4 = 8. This does not contradict the (k, `)-

goodness of A0(k, `) but shows that there exists a (k, `)-good set A′(k, `) with

the sequence P ′0 ⊂ P1 ⊂ . . . ⊂ Pr = [k] × [`] of rectangles associated with it,

where P ′0 ∈ Rec(4, 2). This completes the proof of Lemma 1.12. �

Let k and ` be such that k ≥ 4, ` ≥ 2 and k + ` is even. By Lemma

1.12 we know that there exists a (k, `)-good set A0(k, `) with the sequence

P0 ⊂ P1 ⊂ . . . ⊂ Pr = [k] × [`] of rectangles associated with it, with P0 ∈

Rec(s, 2) ∪ Rec(2, s) for some even s ≥ 4. Recall that, with such P0, for each

i ≥ 1 the infection of the sites in Pi \Pi−1 starts only after all sites in Pi−1 are

infected, which by the definition of (k, `)-good sets happens at time M0(Pi−1).

The following two observations are crucial to determine the precise value of

M0(n). In fact, with those observations and equation (1.3) we shall be able to

find an (n, n)-good percolating set, i.e., a set which takes time exactly M0(n)

to percolate.

Observation 1.13. For any i ≥ 1, no matter which of Move 1s, 2s or 3s

is used at moment i to extend the rectangle Pi−1 to Pi, at most two new sites

become infected at each time step between M0(Pi−1) + 1 and M0(Pi).

By Observation 1.13, having fixed P0 and remembering that in our problem

the number of initially infected sites is fixed, a sequence of Move 1s, 2s and

3s that maximizes the time to infect a rectangle R must also maximize the

number of time steps afterM0(P0) at which only one new site of R\A becomes

infected. This observation also allows us to change the way we think about

maximizing percolation time. Instead of thinking of the exact time it takes

to apply a particular Move j at step i we shall think of a score of such move

which is equal to the number of time steps at which exactly one new site
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becomes infected when we use Move j. Then our task becomes to maximize

the cumulative score of our sequence of moves.

Observation 1.14. For any i ≥ 1 the following statements hold.

(1) If Move 1 is used at moment i in order to extend the rectangle Pi−1 ∈

Rec(si−1, ti−1) to Pi ∈ Rec(si−1 + 1, ti−1 + 1) then only one new site

becomes infected at exactly |si−1−ti−1| time steps betweenM0(Pi−1)+1

and M0(Pi), i.e., at M0(Pi)−|si−1−ti−1|+1, M0(Pi)−|si−1−ti−1|+2,

..., M0(Pi)− 1 and M0(Pi).

(2) If Move 2 or Move 3 is used at moment i to extend the rectangle Pi−1

to Pi then only one new site becomes infected at exactly 3 time steps

between M0(Pi−1) + 1 and M0(Pi), i.e., at M0(Pi−1) + 1, M0(Pi−1) + 2

and M0(Pi).

Using these observations we get the next important claim. To talk about

sequences of moves we shall use the following notation similar to that of regular

expressions. We say that a finite (possibly empty) sequence is of the form

[a1|a2| . . . |ar]∗ if all its terms belong to {a1, . . . , ar} ⊂ {1, 2, 3}. We concatenate

these expressions to create more general ones which describe the corresponding

sets of concatenated sequences. For example, each of the sequences 22133232,

112333, 121233 is of the form [1]∗[2]∗[1]∗[2|3]∗, but 122331 is not.

Claim 1.15. For k ≥ 4, ` ≥ 2, there exists a (k, `)-good set A internally

spanning the rectangle R ∈ Rec(k, `), with a good sequence P0 ⊂ P1 ⊂ . . . ⊂

Pr = R associated with it, with P0 ∈ Rec(s, 2)∪Rec(2, s) for some s ≥ 4, such

that the sequence of moves (m1,m2, . . . ,mr) used to fully infect Pr from P0 is

of the form [2]∗[1]∗[3]∗ or of the form [3]∗[1]∗[2]∗.

Proof. Let us fix an even s ≥ 4 and assume that P0 ∈ Rec(s, 2)∪Rec(2, s).

Note that this uniquely defines r = (k+`)/2−s/2−1, which is also the number

of initially infected sites outside P0. By Observation 1.14 we immediately see

that in such a sequence we should apply Move 1s to rectangles Pi ∈ Rec(si, ti)

with as large as possible difference |si−ti| between the length of the longer side
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and the length of the shorter side of Pi. We also note that whenever Move 1

is applied, say to obtain Pi+1 ∈ Rec(si+1, ti+1) from Pi ∈ Rec(si, ti), then this

difference does not change, i.e., |si+1 − ti+1| = |si + 1− (ti + 1)| = |si − ti|.

If Move 1 does not occur in (m1,m2, . . . ,mr) then every move in the se-

quence has a constant score 3 depending neither on the step at which it is

applied nor on the dimensions of the rectangle it is applied to. Thus every

permutation of (m1,m2, . . . ,mr) has the same score and we can clearly rear-

range the sequence of moves to make it be of the form [2]∗[1]∗[3]∗ (or in fact

[2]∗[3]∗) without changing percolation time.

Assume that Move 1 occurs only once in (m1,m2, . . . ,mr), say that mk = 1

and mj ∈ {2, 3} for j ∈ [r] \ {k}. Assume first that Pk−1 ∈ Rec(sk−1, tk−1)

with sk−1 > tk−1, so that the score of Move 1 at step k equals sk−1− tk−1. For

a contradiction, let mj = 3 for some 1 ≤ j < k ≤ r. Consider a new sequence

of moves (m′1,m
′
2, . . . ,m

′
r), obtained from (mi)

r
i=1 by moving mj to position k

and shifting mj+1, . . . ,mk to positions j, . . . , k− 1 respectively: more formally

let m′i = mi if i < j or i > k, m′i = mi+1 for j ≤ i ≤ k − 1 and m′k = mj = 3.

Let P ′0 ⊂ P ′1 ⊂ . . . ⊂ P ′r = R be a sequence of rectangles obtained us-

ing the sequence of moves (m′i)
r
i=1 (since for all i ≥ k the dimensions of

rectangles P ′i equal the dimensions of rectangles Pi we indeed have P ′r =

R). Then the only Move 1 in this new sequence is applied to the rectan-

gle P ′k−2 ∈ Rec(sk−1, tk−1 − 2) (this is because there is one less Move 3 among

(m′1,m
′
2, . . . ,m

′
k−2) as compared to (m1,m2, . . . ,mk−1)) and so this Move 1 has

score sk−1 − tk−1 + 2. Note that the scores of other moves do not change, as

they are still equal to 3. Thus the cumulative score of the sequence (m′i)
r
i=1

is greater than the one of the sequence (mi)
r
i=1 and consequently percolation

time of A is not maximum, contradicting the fact that A is (k, `)-good. Thus

for all 1 ≤ i ≤ k − 1 we must have mi = 2. In an analogous way we prove

that mi = 3 for all k + 1 ≤ i ≤ r. So in this case (mi)
r
i=1 must be of the form

[2]∗[1]∗[3]∗.
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If Move 1 occurs only once in (m1,m2, . . . ,mr), say that again mk = 1 and

mj ∈ {2, 3} for j ∈ [r] \ {k}, and additionally we have Pk−1 ∈ Rec(sk−1, tk−1)

with sk−1 < tk−1, then in an analogous way we show that, this time, (mi)
r
i=1

must be of the form [3]∗[1]∗[2]∗.

In the remaining case where Pk−1 is a square, i.e., sk−1 = tk−1, also in a

completely analogous way, we can show that we must have r = 1 and m1 = 1.

If that was not the case, i.e., if we had r ≥ 2 and there was some mj ∈ {2, 3}

then movingmj to the opposite side of the only occurrence of Move 1 in (mi)
r
i=1

would increase the cumulative score (as Move 1 would no longer have score 0)

contradicting the (k, `)-goodness of A. Thus in this case (mi)
r
i=1 = (1), which

is at the same time of the form [2]∗[1]∗[3]∗ and of the form [3]∗[1]∗[2]∗.

Thus assume that Move 1 occurs more than once in (m1,m2, . . . ,mr). If

all occurrences of it constitute a subsequence of consecutive mi’s then we deal

with this case exactly as we did with the one where Move 1 occurred only once.

This is straightforward because, as we already noticed, using Move 1 does not

change the difference between the length of the longer side and the length of

the shorter side of the rectangle it is applied to.

Thus assume that there is some 1 ≤ j < t < k ≤ r such that mj = mk = 1

and mt ∈ {2, 3}. For Pj ∈ Rec(sj, tj) and Pk ∈ Rec(sk, tk) assume that |sj −

tj| ≥ |sk − tk|. Consider a new sequence of moves (m′1,m
′
2, . . . ,m

′
r) obtained

from (mi)
r
i=1 by moving mk to position j + 1, and shifting mj+1, . . . ,mk−1 to

positions j + 2, . . . , k respectively, that is, let m′i = mi if i ≤ j or i > k,

m′j+1 = mk = 1 and for j + 2 ≤ i ≤ k let m′i = mi−1.

Let P ′0 ⊂ P ′1 ⊂ . . . ⊂ P ′r = R be a sequence of rectangles obtained using

the sequence (m′i)
r
i=1 (note that as previously P ′r = Pr = R). Then using Move

m′j+1 = 1 at step j + 1 we finish the infection of P ′j+1 ∈ Rec(sj + 1, tj + 1)

and so this move has score |sj − tj| which is at least as big as the score of the

move mk at time k. Note that if i ≤ j or i > k then the score of the move m′i
at time i equals the score of the move mi at time i. Finally if j + 2 ≤ i ≤ k

then the score of the move m′i at time i equals the score of the move mi−1 at
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time i− 1. Thus the cumulative score of the sequence (m′i)
r
i=1 is at least as big

as that of the sequence (mi)
r
i=1. Thus applying this modification (which does

not decrease the score) of the sequence (mi)
r
i=1 repetitively we could obtain

a sequence describing another (k, `)-good set in which all Move 1s occur in

consecutive positions of the sequence. However, we already know that such

sequence must be of the form [2]∗[1]∗[3]∗ or of the form [3]∗[1]∗[2]∗. When

|sj − tj| < |sk − tk| we proceed analogously, moving mj = 1 to position k − 1.

This completes the proof of the claim. �

By Lemma 1.12 there exists (k, `)-good set A for which P0 ∈ Rec(s, 2) ∪

Rec(2, s), with s ≥ 4. The construction we give in Lemma 1.10 shows that

in this case P0 can be obtained from some P ′ ∈ Rec(2, 2) either by, if P0 ∈

Rec(s, 2), applying (s − 2)/2 times Move 2, or by applying Move 3 if P0 ∈

Rec(2, s). Note that indeed for all these occurrences of move 2 or 3 we infect

one new site at exactly three time steps.

Observation 1.16. The proof of Claim 1.15 actually tells us that, for a

brief moment slightly abusing the notation (relaxing condition (1) in Definition

1.7) and for i ≥ 1 allowing P ′i ∈ Rec(s′i, 2) ∪ Rec(2, s′i) for s′i ≥ 4 and even,

there exists a (k, `)-good set A and a good sequence of rectangles P ′0 ⊂ P ′1 ⊂

. . . ⊂ P ′r ∈ Rec(k, `) associated with it, with P ′0 ∈ Rec(2, 2), such that the

sequence of moves (m′1,m
′
2, . . . ,m

′
r) used to fully infect P ′r from P ′0 is of the

form [2]∗[1]∗[3]∗ or of the form [3]∗[1]∗[2]∗. Since in Claim 1.15 we have P0 ∈

Rec(s, 2)∪Rec(2, s), with s ≥ 4, we see that if (m′i)
r
i=1 is of the form [2]∗[1]∗[3]∗

then the subsequence of Move 2s is nonempty. Analogously, if (m′i)
r
i=1 is of

the form [3]∗[1]∗[2]∗ then the subsequence of Move 3s is nonempty. Applying

a nonempty sequence of Move 2s to P ′0 ∈ Rec(2, 2) fully infects a rectangle

P ′′0 ∈ Rec(s′′, 2), with s′′ ≥ 4 and even. Analogously, applying a nonempty

sequence of Move 3s to P ′0 ∈ Rec(2, 2) fully infects a rectangle P ′′0 ∈ Rec(2, s′′),

with s′′ ≥ 4 and even.
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Thus by Observation 1.16 we obtain the following lemma which, for any

k and ` such that k ≥ 4, ` ≥ 2 and k + ` is even, fully characterizes a good

sequence of rectangles associated with at least one (k, `)-good set of initially

infected sites.

Lemma 1.17. Let k and ` be such that k ≥ 4, ` ≥ 2 and k + ` is even.

Then there exists a (k, `)-good set A and a good sequence of rectangles P0 ⊂

P1 ⊂ . . . ⊂ Pr ∈ Rec(k, `) associated with it, with P0 ∈ Rec(s, 2) ∪ Rec(2, s)

for some s ≥ 4, such that the sequence of moves (m1,m2, . . . ,mr) used to fully

infect Pr from P0 is either of the form [1]∗[3]∗ if P0 ∈ Rec(s, 2), or of the form

[1]∗[2]∗ if P0 ∈ Rec(2, s).

�

Corollary 1.18. For n ≥ 4, there is a (n, n)-good set A, whose good

sequence of rectangles P0 ⊂ P1 ⊂ . . . ⊂ Pr ∈ Rec(n, n) is such that P0 ∈

Rec(s, 2) and that the sequence of moves used to build it is of the form [1]∗[3]∗.

Furthermore, if the number of times we use Move 1 equals m then m = n− s

and we must use Move 3 exactly n−2−m
2

times.

Proof. Apply Lemma 1.17 with k = ` = n. By symmetry, we can assume

that P0 ∈ Rec(s, 2) and the sequence of moves obtained is of type [1]∗[3]∗.

It is trivial to check that, in order to obtain Pr ∈ Rec(n, n), we must have

m = n− s and we must use Move 3 exactly n−2−m
2

times. �

We are now ready to prove the exact formula for M0(n) for n ≥ 4.

Proof of Theorem 1.1. Given m ≥ 0, let Anm be (if it exists) the (n, n)-good

set described in Corollary 1.18 for which during the infection process Move 1

is used exactly m times (note that when n and m have different parities then

Anm definitely does not exist). For example, Figure 1.6 shows the set A12
4 .

Now, we notice that for every n ≥ 4 and 0 ≤ m ≤ n − 4 (with n and m

having the same parity) the percolation time of Anm (if it exists) can be given

explicitly as follows:
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m = 4

n−m = 8

Figure 1.6. Set A12
4 .

(1) Infection of the rectangle P0 ∈ Rec(n−m, 2) takes time

M0(n−m, 2) =
3(n−m)− 4

2
=

3(n−m)

2
− 2;

(2) Applying m times Move 1 takes time

m−1∑
i=0

(n−m+ i) = mn−m2 +
m(m− 1)

2
= mn− m(m+ 1)

2
;

(3) Finishing the infection with n−m−2
2

applications of Move 3 takes time

n−m− 2

2
(n+ 1) =

n2 − n−mn−m− 2

2
.

Letting f(n,m) denote the percolation time of Anm, by the above calculations

we have

f(n,m) =
n2 + n(m+ 2)− (m2 + 5m+ 6)

2
.

For a given n, the function fn(m) = f(n,m) is a quadratic function of m with

maximum value at m = n−5
2
. As our (n, n)-good set maximizes fn(m) subject

to m ∈ N and m having the same parity as n, maximum percolation time is

obtained for

m = m0 =

⌊
n

2
− 5

2

⌋
+ 1{4|n−1} + 1{4|n},
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where in the above statement we use 1{φ} to denote the indicator function,

1{φ} =

1, if the sentence φ is true,

0, otherwise.

Now, by considering the possible values of n (mod 4) we see that for all n ≥ 4

we have f(n,m0) = b5n2−2n
8
e. This completes our proof. �

Using Lemma 1.17, given α ∈ (0, 1) and n large, assuming (1 + α)n is an

even natural number we can determine the asymptotic value ofM0(n, αn). All

we need to do is, for both P0 ∈ Rec(s, 2) and P0 ∈ Rec(2, s), to optimize s

to maximize the cumulative score of our sequence of moves knowing that the

number of times we use Move 1 is fully determined by s and the horizontal or

vertical alignment of P0 in [n]× [αn], and that the score of all occurrences of

Move 1 equals s− 2.

Corollary 1.19. We have:

(1) If 1
2
≤ α < 1 then

M0(n, αn) =

(
α

2
+

1

8

)
n2 +O(n).

To maximize percolation time we should first infect a roughly n
2
× 2

rectangle in time O(n), then using Move 1
(
n
2

+O(1)
)
times extend

it to a roughly n × n
2
one in time 3n2

8
+ O(n), and then finish the

infection in additional
(
α
2
− 1

4

)
n2 + O(n) time steps using Move 3((

α
2
− 1

4

)
n+O(1)

)
times.

(2) If 0 < α < 1
2
then

M0(n, αn) =

(
α− α2

2

)
n2 +O(n).

To maximize percolation time we should first infect a roughly (1−α)n×

2 rectangle in time O(n), and then finish the infection in additional(
α− α2

2

)
n2 +O(n) time steps using Move 1 (αn+O(1)) times.

�





CHAPTER 2

Maximum percolation time in two-dimensional bootstrap

percolation
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2.1. Introduction

In this chapter we consider a problem strongly related to the one we studied

in Chapter 1. Answering another extremal problem posed by Bollobás we give

the asymptotic value of the maximum time that any percolating subset of the

set of vertices of G = [n]2 can take to percolate under 2-neighbour bootstrap

percolation. The notation and preliminary observations we use here are similar

or even identical to the ones we defined in Section 1.2. We shall not repeat

these redundant definitions here, referring to the concepts in Chapter 1 instead.

Recall that T (A) denotes the time that A takes to percolate in [n]2. More-

over, let

M(n) = max{T (A) : 〈A〉 = [n]2}.

In this chapter we determine an asymptotic formula for M(n) up to an O(n)

additive error. We believe that a constant additive error or even an exact

formula could be found with similar techniques but with a much longer and

more tedious proof. With our methods we prove the following theorem.

Theorem 2.1. We have

M(n) =
13

18
n2 +O(n).

Theorem 2.1, together with Theorem 1.1 which in particular says that

percolating sets of size n internally span the n× n grid in time at most 5
8
n2 +

O(n), implies that, somewhat surprisingly, the slowest percolating sets do not

have the minimum possible number of sites.

This chapter is joint work with Fabricio S. Benevides, with the exception

of Section 2.5 which is solo work, and is based on our forthcoming paper, [16].

2.2. Notation

To solve the problem we consider in this chapter we shall mostly use the

notation and preliminary observations presented in Section 1.2. Having defined
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M(n) in the previous section, we only need two extra definition before we start

our investigations.

In this chapter we show that to infect [n]2 in the maximum possible time one

should first infect some smaller rectangular grid, not necessarily a square one,

in maximum time. This motivates a definition of the maximum percolation

time in rectangles, i.e., for any k, ` ∈ N let

M(k, `) = max{T : there exists a set A percolating in time T in [k]× [`]}.

Note that clearlyM(k, `) = M(`, k). For a rectangle R ∈ Rec(k, `), to simplify

our notation, we shall often write M(R) instead of M(k, `).

We shall be interested in infection time of particular sites. Thus, let IA(v)

be the minimum T such that v ∈ AT starting from A0 = A. If starting from

A the site v never becomes infected, i.e., v /∈ 〈A〉, then we set IA(v) =∞.

2.3. Slowly percolating sets

In this section we prove a recursive formula for M(k, `) in order to later

prove an asymptotic formula for M(n). Let us start by giving a trivial upper

bound and a natural lower bound on M(n). Since every percolating set in [n]2

contains at least n sites and for the infection to continue we need to infect

at least one new site at every step we have M(n) ≤ n2 − n. On the other

hand, the example shown in Figure 2.1 for the [7]2 grid, generalizing in a self–

explanatory way to [n]2, shows that there exist initially infected sets of size

linear in n for which at approximately half of the number of steps only one site

becomes infected while the other steps, with the exception of the first one, yield

infection of only two new sites. This clearly implies that M(n) ≥ 2n2

3
+O(n).

We will prove that for every n there is a set which percolates [n]2 in timeM(n),

for which at every time step at most two new sites become infected, but the

number of steps for which a single site becomes infected is significantly larger

than in the example in Figure 2.1.
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1 1 1

Figure 2.1. An initial set giving a lower bound M(n) ≥ 2n2

3
+O(n).

The outline of our proof is as follows. First we define a notion of a (k, `)-

perfect set of initially infected sites; next, we prove that the function M(k, `)

satisfies a certain recursive relation and simultaneously show that (k, `)-perfect

sets exist and that their percolation time satisfies the same relation asM(k, `).

Although we do not find an exact solution for the recursion, we are able to find

good lower and upper bounds on M(n). For the lower bound we construct an

explicit set of initially infected sites which is “almost” (n, n)-perfect. Finally,

for the upper bound, we define a relaxed version of the infection process and for

any (n, n)-perfect set A we build an appropriate instance of this new process;

from this new instance we get an upper bound for the time that A takes to

percolate. Let us now make our arguments formal.

Definition 2.2. Given k, ` ∈ N we say that a set A is (k, `)-perfect if the

infection process starting from A can be described in the following way. There

exists a nested sequence of rectangles P0 ⊂ P1 ⊂ . . . ⊂ Pr ∈ Rec(k, `), such

that Pi ∈ Rec(si, ti), with the following properties:

(a) either s0 ≤ 2 or t0 ≤ 2 or s0 = t0 = 3; and s1, t1 ≥ 3 with (s1, t1) 6=

(3, 3),

(b) for each 1 ≤ i ≤ r,

Pi ∈Rec(si−1 + 1, ti−1 + 1) ∪ Rec(si−1 + 2, ti−1) ∪ Rec(si−1, ti−1 + 2)∪

Rec(si−1 + 2, ti−1 + 1) ∪ Rec(si−1 + 1, ti−1 + 2) ∪ Rec(si−1, ti−1 + 3)∪

Rec(si−1 + 3, ti−1),
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(c) for every 0 ≤ i ≤ r, the rectangle Pi is internally spanned by A ∩ Pi
in the maximum possible time, that is, in time M(Pi),

(d) for every 0 ≤ i ≤ r, if Pi has no side of length 1 then among the sites

becoming infected last in Pi there is at least one of its corner sites,

(e) for every 1 ≤ i ≤ r, if

Pi ∈ Rec(si−1 + 1, ti−1 + 1) ∪ Rec(si−1, ti−1 + 2) ∪ Rec(si−1 + 2, ti−1)

then there exists a site vi−1 ∈ A such that Pi−1 ∪ {vi−1} internally

spans Pi and vi−1 is at distance exactly 2 from one of the corner sites

in Pi−1 (one which becomes infected last in Pi−1, if there is such) and

at distance at least 3 from any other site in Pi−1 (see Figure 1.3 in

the previous chapter),

(f) for every 1 ≤ i ≤ r, if

Pi ∈Rec(si−1 + 2, ti−1 + 1) ∪ Rec(si−1 + 1, ti−1 + 2) ∪ Rec(si−1, ti−1 + 3)∪

Rec(si−1 + 3, ti−1)

then there exists a pair of sites vi−1, wi−1 ∈ A such that Pi−1∪{vi−1, wi−1}

internally spans Pi and vi−1 is at distance exactly 2 from one of the

corner sites in Pi−1 (one which becomes infected last in Pi−1, if there

is such) and at distance at least 3 from any other site in Pi−1, while

wi−1 is at distance exactly 1 from one of the last corner sites to become

infected in 〈Pi−1 ∪ {vi−1}〉 and at distance at least 2 from any other

site in 〈Pi−1 ∪ {vi−1}〉 (see Figure 2.2).

From condition (b) it follows that for every 1 ≤ i ≤ r we have Φ(Pi−1)+2 ≤

Φ(Pi) ≤ Φ(Pi−1) + 3. From condition (c), taking i = r, it follows that any

(k, `)-perfect set infects a rectangle in Rec(k, `) in time M(k, `). In particular,

any (n, n)-perfect set maximizes percolation time in [n]2.

Given a (k, `)-perfect set and a sequence P0 ⊂ P1 ⊂ . . . ⊂ Pr ∈ Rec(k, `)

associated with it, for 1 ≤ i ≤ r and 1 ≤ m ≤ 7, we say that we use Move m
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1 2

ti−1

si−1

Move 5 at moment i

ti−1

si−1

1
2

Move 7 at moment i

Figure 2.2. Move 5 and 7 (Move 4 and 6 are obtained by ro-
tating the above figures by 90 degrees).

at moment i (to construct Pi from Pi−1) if Pi belongs to the m-th term of the

following list:

(1) Rec(si−1 + 1, ti−1 + 1),

(2) Rec(si−1 + 2, ti−1),

(3) Rec(si−1, ti−1 + 2),

(4) Rec(si−1 + 2, ti−1 + 1),

(5) Rec(si−1 + 1, ti−1 + 2),

(6) Rec(si−1, ti−1 + 3),

(7) Rec(si−1 + 3, ti−1).

Let us recall and extend the notation we used for sequences of moves in

Chapter 1, which we shall also use here. We say a finite (possibly empty)

sequence of moves is of the form [a1|a2| . . . |ar]∗ if all its terms belong to

{a1, a2, . . . , ar} ⊆ [7]; we say that it is of the form [a1|a2| . . . |ar]≤j if, in addi-

tion, it has at most j terms. We shall concatenate these expressions to create

more general ones which describe the corresponding sets of concatenated se-

quences of moves. For example, all of the sequences 1444336366, 43333, 16633

are of the form [1]≤1[4]∗[3|6]∗, but 144334 is not.

In the next lemma we determine the value of M(k, 2) and give an example

of a (k, 2)-perfect set for each natural k.

Lemma 2.3. For any natural number k we have M(k, 2) =
⌊

3(k−1)
2

⌋
. Fur-

thermore, there is a (k, 2)-perfect set, A0(k, 2), which percolates [k] × [2] in

time M(k, 2).
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Proof. First let us consider the case when k is even. Let A be any set

that percolates [k] × [2]. Since percolation time is at most the number of

initially healthy sites, if |A| ≥ k/2 + 2 then it percolates in time at most

2k − (k/2 + 2) = (3k − 4)/2. On the other hand, by Corollary 1.4, we must

have |A| ≥ k/2 + 1. Therefore we may assume that the cardinality of A is

exactly k/2 + 1. Then the lemma for k even follows from Lemma 1.10

For k odd, the set in Figure 2.3 has the minimum cardinality necessary for

a set to percolate [k]×[2] and at each time step causes infection of only one site.

Therefore it percolates in the maximum time which is indeed
⌊

3(k−1)
2

⌋
. Thus

it is an immediate observation that it satisfies all conditions of a (k, 2)-perfect

set. �

. . .
. . . . . .

k

Figure 2.3. A (k, 2)-perfect set achieving maximum percola-
tion time on [k]× [2] for k odd.

In the next theorem we state a recursive formula for M(k, `). We should

keep in mind the description of (k, `)-perfect initial sets because the proof of

the theorem is built on the proof of existence and a construction of such sets.

Since M(k, `) = M(`, k), we shall omit some cases where k < `.

Theorem 2.4. We have M(1, 1) = M(2, 1) = 0; M(k, 1) = 1 for all k ≥ 3;

M(k, 2) =
⌊

3(k−1)
2

⌋
; and M(3, 3) = 4. For k, ` ≥ 3 such that (k, `) 6= (3, 3), we
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have

M(k, `) = max



M(k − 1, `− 1) + max{k, `} − 1,

M(k − 2, `) + `+ 1,

M(k, `− 2) + k + 1,

M(k − 2, `− 1) + k + `− 2,

M(k − 1, `− 2) + k + `− 2,

M(k, `− 3) + 2k − 1,

M(k − 3, `) + 2`− 1,

(2.1)

where we assume M(k, 0) = M(0, `) = −∞. Furthermore, for any k, ` > 0

there exists a (k, `)-perfect set.

Proof. We prove Theorem 2.4 by induction on k+`. A small case analysis

immediately gives the result for ` = 1 and for (k, `) = (3, 3). For ` = 2 we use

Lemma 2.3. Note that in all these cases there exist (k, `)-perfect initial sets

for which, in the definition of (k, `)-perfect sets, we have r = 0.

Now, assume that we are given k, ` ≥ 3 such that (k, `) 6= (3, 3). Our

induction hypothesis is that for any k′, `′ ≥ 1 such that k′ + `′ < k + `, there

exists a (k′, `′)-perfect set AM(k′, `′) which percolates in time M(k′, `′), as in

the statement of Theorem 2.4.

We shall first prove that the following inequality holds.

M(k, `) ≥ max



M(k − 1, `− 1) + max{k, `} − 1,

M(k − 2, `) + `+ 1,

M(k, `− 2) + k + 1,

M(k − 2, `− 1) + k + `− 2,

M(k − 1, `− 2) + k + `− 2,

M(k, `− 3) + 2k − 1,

M(k − 3, `) + 2`− 1.

(2.2)
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Assume without loss of generality that k ≥ 4. Recall that, for k′, `′ ≥ 2,

from the definition of (k′, `′)-perfect sets we may assume that one of the corners

of the rectangle spanned by AM(k′, `′) becomes infected at timeM(k′, `′). Now,

consider the following seven ways of infecting [k]× [`] (see again Figure 1.3 in

the previous chapter and Figure 2.2).

(1) Let
〈
AM(k − 1, `− 1)

〉
= [k − 1] × [` − 1]. Since k − 1, ` − 1 ≥ 2,

we may assume that (k − 1, ` − 1) becomes infected at time M(k −

1, `− 1). Let A(1) = AM(k− 1, `− 1)∪ {(k, `)}. Then A(1) takes time

M(k − 1, `− 1) + max{k, `} − 1 to percolate.

(2) Let
〈
AM(k − 2, `)

〉
= [k− 2]× [`]. Since k− 2, ` ≥ 2, we may assume

that (k − 2, `) becomes infected at time M(k − 2, `). Let A(2) =

AM(k − 2, `) ∪ {(k, `)}. Then A(2) takes time M(k − 2, `) + ` + 1 to

percolate.

(3) When ` ≥ 4, we have k, `− 2 ≥ 2. Let
〈
AM(k, `− 2)

〉
= [k]× [`− 2].

We may assume that (k, `− 2) becomes infected at time M(k, `− 2).

Let A(3) = AM(k, ` − 2) ∪ {(k, `)}. Then A(2) percolates in time

M(k, `− 2) + k + 1.

(4) Let
〈
AM(k − 2, `− 1)

〉
= [k − 2] × [` − 1]. Since k − 2, ` − 1 ≥ 2,

we assume that (k − 2, 1) becomes infected at time M(k − 2, ` − 1).

Let A(4) = AM(k − 2, ` − 1) ∪ {(k, 1), (k, `)}. Then A(4) takes time

M(k − 2, `− 1) + k + `− 2 to percolate.

(5) When ` ≥ 4, we have k − 1, ` − 2 ≥ 2. Let
〈
AM(k − 1, `− 2)

〉
=

[k − 1] × [` − 2]. We may assume that (1, `− 2) becomes infected at

time M(k − 1, ` − 2). Let A(5) = AM(k − 1, ` − 2) ∪ {(1, `), (k, `)}.

Then A(4) takes time M(k − 1, `− 2) + k + `− 2 to percolate.

(6) When ` ≥ 5, we have k, `− 3 ≥ 2. Let
〈
AM(k, `− 3)

〉
= [k]× [`− 3]

and assume that (k, `− 3) becomes infected at time M(k, `− 3). Let

A(6) = AM(k, `− 3)∪ {(k, `− 1), (1, `)}. Then A(6) percolates in time

M(k, `− 3) + 2k − 1.
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(7) When k ≥ 5, an analogous construction to case (6), with a (k − 3, `)-

perfect set AM(k−3, `) spanning [k−3]×[`] in timeM(k−3, `). Taking

A(7) = AM(k−3, `)∪{(k−1, `), (k, 1)} we obtain a set spanning [k]×[`]

in time M(k − 3, `) + 2`− 1.

The above constructions show that inequality (2.2) holds when k, ` ≥ 5.

We now check that inequality (2.2) also holds for the small values of k and

` for which some of these constructions do not apply. Constructions (3) and

(5) do not apply when ` = 3 since then we cannot ask for one of the corners

of smaller rectangles to become infected respectively at times M(k, `− 2) = 1

and M(k − 1, ` − 2) = 1. However, since k ≥ 4, in these cases we have

M(k, `− 2) + k + 1 = k + 2 and M(k − 1, `− 2) + k + `− 2 = k + 2 which is

at most M(k − 1, `− 1) + k − 1 =
⌊

3(k−2)
2

⌋
+ k − 1 ≥ k + 2.

Construction (6) does not apply for ` = 4 since then again we cannot ask for

one of the corners of [k]× [`− 3] to become infected at time M(k, `− 3) = 1.

However, for ` = 4 we have M(k, ` − 3) + 2k − 1 = 2k which is less than

M(k, `− 2) + k+ 1 =
⌊

3(k−1)
2

⌋
+ k+ 1 ≥

⌊
2k+1

2

⌋
+ k+ 1 = 2k+ 1. Analogously

we deal with the fact that construction (7) does not apply for k = 4. Thus the

lower bound on M(k, `) is proved.

For each of the sets A(j) constructed above, among the sites of
〈
A(j)

〉
that

become infected last there is a corner of [k]× [`]. Thus it is clear that all sets

A(j) satisfy the conditions (a)-(f) to be (k, `)-perfect sets except for, possibly,

condition (c). To finish the proof of Theorem 2.4, we only need to prove the

upper bound on M(k, `) analogous to inequality (2.2), since this will imply

that at least one of the sets A(j) percolates in time M(k, `) and therefore is

(k, `)-perfect. So, it remains to show that
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M(k, `) ≤ max



M(k − 1, `− 1) + max{k, `} − 1,

M(k − 2, `) + `+ 1,

M(k, `− 2) + k + 1,

M(k − 2, `− 1) + k + `− 2,

M(k − 1, `− 2) + k + `− 2,

M(k, `− 3) + 2k − 1,

M(k − 3, `) + 2`− 1.

(2.3)

Let A be any set which internally spans the rectangle R = [k] × [`] in

time M(k, `). Consider disjoint sets A′, A′′ and rectangles R′, R′′ satisfying

conditions (1), (2) and (3) of Proposition 1.6. Define, T (R′, R′′) as the time

to grow from R′ ∪ R′′ to R = 〈R′ ∪R′′〉, that is, the time needed to infect all

sites in R \ (R′ ∪R′′) given that all sites in R′ and R′′ are infected and no site

in R \ (R′ ∪R′′) is. Let

S(R′, R′′) = max{M(R′),M(R′′)}+ T (R′, R′′).

It is clearly seen that, for any choice of A′, A′′ ⊂ A satisfying Proposition 1.6,

S(R′, R′′) is an upper bound on the time that A takes to percolate. As we shall

see, for most choices of A a simple upper bound on S(R′, R′′) will be enough to

show that the time that A takes to percolate is at most the right hand side of

inequality (2.3). However, in one particular case we will have to look carefully

for a better bound.

Our technique of bounding S(R′, R′′) will require the following claim which

says that, under our induction hypothesis, maximum percolation time is strictly

increasing.

Claim 2.5. Let s, t be such that s + t < k + `. If s ≥ 1 and t ≥ 2 then

M(s + 1, t) ≥ M(s, t) + 1. Similarly, if s ≥ 2 and t ≥ 1 then M(s, t + 1) ≥

M(s, t) + 1.
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Proof of Claim. Let s ≥ 1 and t ≥ 2. For s = 1, the result is trivial (as

M(2, 2) ≥ 1 and M(1, 2) = 0 and, for t ≥ 3, M(2, t) ≥ 3 and M(1, t) = 1).

For s, t ≥ 2, by the induction hypothesis, we may assume that there exists a

set AM(s, t) which internally spans the rectangle [s] × [t] in time M(s, t) and

such that

IAM (s,t)(s, t) = M(s, t) ≥ 1.

Note that we must have some 1 ≤ i ≤ t−1 such that (s, i) ∈ AM(s, t). Let i∗ be

the smallest such i. Let Ã = AM(s, t)∪{(s+1, i∗)}. Clearly
〈
Ã
〉

= [s+1]× [t]

and for any j ∈ [t] \ {i∗} we have IÃ(s + 1, j) ≥ IAM (s,t)(s, j) + 1. Thus

M(s+ 1, t) ≥ IÃ(s+ 1, t) ≥M(s, t) + 1. �

Assume without loss of generality that M(R′) ≥ M(R′′). Note that, in

order to internally span R, the rectangles R′ and R′′ must be at distance 0, 1

or 2. Consider some minimal non-empty rectangle R̃′′ ⊂ R′′ such that R′ ∪ R̃′′

spans R. Whenever R′ and R′′ intersect, that is dist(R′, R′′) = 0, we can choose

R̃′′ so that it is disjoint from R′. Furthermore, whenever dist(R′, R′′) = 1

then unless R′′ has a side of length 1 we can always choose R̃′′ such that

dist(R′, R̃′′) = 2. Since T (R′, R′′) ≤ T (R′, R̃′′) andM(R′) ≥M(R′′) ≥M(R̃′′),

we have S(R′, R′′) ≤ S(R′, R̃′′). Denote R′ ∈ Rec(s1, t1) and R̃′′ ∈ Rec(s2, t2).

With case analysis we find that, since R̃′′ is chosen to be minimal, R′ and

R̃′′ must either satisfy one of the Conditions (a), (b) or (c) considered in

the previous chapter for R′ and R′′ (see Figure 1.5), or one of the following

conditions (or their analogues obtained by swapping k with `).

Condition (d): there is an 0 ≤ m ≤ `− t1 such that the rectangles R′ and R̃′′

align as in Figure 2.4 (d) with s1 + s2 = k − 1, t1 < `, t2 = `.

Condition (e): there is an 0 ≤ m ≤ `− t1 such that the rectangles R′ and R̃′′

align as in Figure 2.4 (e) with s1 = k−1, s2 = 1, t1 < `, t2 = `.

Condition (f): there is an 0 ≤ m ≤ ` − 1 such that the rectangles R′ and R̃′′

align as in Figure 2.4 (f) with s1 = k−1, s2 = 1, t1 = `, t2 = 1.
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t1
t2

s1

s2

(d)

m

R′ R̃′′ t1
t2

s1

s2 = 1
(e)

m

R′ R̃′′

t1

t2 = 1

s1

s2 = 1
(f)

m
R′

R̃′′

Figure 2.4. Additional alignments of rectangles R′ and R̃′′ that
need to be considered.

Assume first that Condition (b) holds. Note that, in this case,

S(R′, R̃′′) = M(R′) + max{s1 + t2 − 1, s2 + t1 − 1}.

It is easy to check that S(R′, R̃′′) cannot decrease if we “extend” the rectan-

gle R′ and “shrink” R̃′′. In fact, when max{s1, t1} ≥ 2 then we can use Claim

2.5 and so, for any i < s2 and j < t2, we haveM(s1+i, t1+j) ≥M(s1, t1)+i+j.

Together with

max{(s1 + i) + (t2 − j)− 1, (s2 − i) + (t1 + j)− 1} ≥

max{s1 + t2 − 1, s2 + t1 − 1} −max{i, j},

we conclude that the largest value of S(R′, R̃′′) is given when R̃′′ is a single site.

Therefore, S(R′, R̃′′) ≤M(k−1, `−1)+max{k, `}−1. When max{s1, t1} = 1

then R′ is a single site. Since we assume M(R′) ≥ M(R̃′′) we would require
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R̃′′ ∈ Rec(1, 1) ∪ Rec(1, 2) ∪ Rec(2, 1). This yields max{k, `} ≤ 3 which con-

tradicts our assumption that k, ` ≥ 3 are such that (k, `) 6= (3, 3).

Now, assume that Condition (a) (or its analogue with k and ` swapped)

holds. Observe that in this case

S(R′, R̃′′) =


M(R′) + max{s1 + t2, s2 + t1}, if t1, t2 ≥ 2,

M(R′) + s2 + t1, if t2 = 1,

M(R′) + s1 + t2, if t1 = 1.

If t1, t2 ≥ 2 it is easy to reduce it to the previous case: by Claim 2.5 we

have M(s1 + 1, t1) ≥M(s1, t1) + 1, while

max{(s1 + 1) + (t2 − 1)− 1, s2 + t1 − 1} = max{s1 + t2, s2 + t1} − 1.

Putting these inequalities together we have S(R′, R̃′′) ≤ S(R+, R−) where

R+ ∈ Rec(s1 + 1, t1), R− ∈ Rec(s2, t2 − 1) and R+, R− satisfy Condition (b).

If t2 = 1, then t1 ≥ 3 (recall, k, ` ≥ 3). Thus, as for Condition (b), we can use

Claim 2.5 and extend R′ rightwards to bound S(R′, R̃′′) from above using the

case where R̃′′ is a single site and obtain S(R′, R̃′′) ≤M(k−2, `) + `+ 1. Note

that swapping k and ` gives the bound S(R′, R̃′′) ≤M(k, `− 2) + k + 1.

Finally, if t1 = 1 then t2 ≥ 3 and, since M(R′) ≥ M(R̃′′), also s2 = 1.

Then, R becomes infected after at most k+ `− 2 steps which is not more than

M(k − 1, `− 1) + max{k, `} − 1 for all k, ` ≥ 3.

Suppose now that Condition (c) holds. Note that, for a fixed R′ and given

m, we have S(R′, R̃′′) = M(R′)+max{m+s2+1, t1−m+s2} which is maximum

when m = 0 or m = t1 − 1 and this case is equivalent to Condition (a) with

t2 = 1. Thus we see that

max{M(k−1, `−1)+max{k, `}−1,M(k−2, `)+`+1,M(k, `−2)+k+1} (2.4)

is the maximum percolation time in [k]× [`] if we limit ourselves to Conditions

(a), (b) and (c) only.
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Now we consider the case when Condition (d) applies to R′, R̃′′. Recall

M(R′) ≥M(R̃′′). Thus given m we have

S(R′, R̃′′) = M(R′) + max{s1 +m+ 1, s1 + t2 −m− t1 + 1}.

which is maximum when m = 0 or m = t2− t1. However, for these values of m

we could further shrink R̃′′ by setting t2 = `− t1 + 1. This is a contradiction

by the minimality of R̃′′ thus Condition (d) cannot yield a larger upper bound

on S(R′, R̃′′).

We deal with R′ and R′′ satisfying Condition (e) in an analogous way,

bounding S(R′, R̃′′) from above by takingm = 0 and then using the minimality

of R̃′′ to obtain a contradiction.

Finally let us consider the case where Condition (f), or its version with k

and ` swapped, applies to R′ and R̃′′. In this case we need to be more careful:

using similar arguments as before, we can only conclude that

S(R′, R̃′′) =M(R′) + max{m, `−m− 1} ≤M(R′) + `− 1, if R′ ∈ Rec(k − 1, `),

M(R′) + max{m, k −m− 1} ≤M(R′) + k − 1, if R′ ∈ Rec(k, `− 1).

(2.5)

However, this bound is not good enough. To improve it, we need to analyze

how the proximity of R̃′′ affects the infection process inside R′.

Recall that we initially chose R′ and R′′ together with A′, A′′ ( A spanning

them according to Proposition 1.6. We later chose R̃′′ ⊂ R′′ and we assumed

that Condition (f) applies to R′ and R̃′′. However, assuming that R′ = [k −

1]× [`], A′′ must contain a site of the form (k, i) for some 1 ≤ i ≤ ` as R′ and

R′′ together span R. Thus we can assume that in fact R′, internally spanned

by A′, and R′′, which is a single site, satisfy Condition (f) (dropping some sites

from A′′ could not decrease percolation time).
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We will find the following claim necessary.

Claim 2.6. Let A be a set of sites percolating in R = [k] × [`], where

k, ` ≥ 2. Then for any site (i, j) ∈ R \ {(1, 1), (1, `), (k, 1), (k, `)} we have

IA(i, j) < M(k, `).

Proof of Claim. It is enough to prove the claim for all percolating sets

minimal under containment (as for any A ⊂ B we have IB(i, j) ≤ IA(i, j) for all

i, j). Let A be such set. Applying Proposition 1.6 to R and A we obtain disjoint

sets A′ and A′′ that partition A and internally span two rectangles R′, R′′ ( R

such that 〈R′ ∪R′′〉 = R. Note that, by minimality of A, R\(R′∪R′′) contains

no initially infected sites.

If k = ` = 2 then all sites in [k] × [`] are corners and the claim is trivial.

If, without loss of generality, k > 2 then M(k, `) > 1. By Claim 2.5, we

have max{M(R′),M(R′′)} < M(k, `). So, for any (i, j) ∈ R′ ∪ R′′ we have

IA(i, j) ≤ max{M(R′),M(R′′)} < M(k, `). Now, let

B = R \ (R′ ∪R′′ ∪ {(1, 1), (1, `), (k, 1), (k, `)}) .

If {(1, 1), (1, `), (k, 1), (k, `)} ⊂ R′∪R′′ and B 6= ∅ then Φ(R′),Φ(R′′) ≤ k+`−2

(see Figure 2.5) so by Claim 2.5 we have M(R′),M(R′′) ≤ M(R) − 2 and

therefore for any (i, j) ∈ B we have IA(i, j) ≤M(k, `)−1. So, we may assume

that R \ (R′ ∪ R′′) contains some corner site of R. Let (i, j) be any site of B.

We consider the two following cases:

• If dist(R′, R′′) = 2 then M(R′),M(R′′) ≤M(R)− 2. Thus, if we have

dist((i, j), R′) = dist((i, j), R′′) = 1 then

IA(i, j) ≤ max{M(R′),M(R′′)}+ 1 ≤M(k, `)− 1.

• If either dist(R′, R′′) = 2 and dist((i, j), R′) 6= 1 or dist((i, j), R′′) 6= 1,

or if dist(R′, R′′) 6= 2, then no matter how the rectangles R′ and R′′

are aligned we can find a corner site (k′, `′) ∈ R \ (R′ ∪ R′′) such

that to infect (k′, `′) in the process we need to infect (i, j) first. This
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follows from the fact that the rectangular region in R\(R′∪R′′) which

contains (k′, `′) becomes infected starting from its own corner opposite

(k′, `′). Thus IA(i, j) < IA(k′, `′) ≤M(k, `).

Figure 2.5. The alignment of R′ and R′′ containing all 4 corner sites

Thus the proof of the claim is complete. �

An important consequence of Claim 2.6 is that when rectangles R′ and R′′

in R satisfy Condition (f) then, no matter how we locate R′′ in R, the infection

of R \ (R′ ∪ R′′) starts at latest at time M(R′)− 1. This improves the bound

on the time that A takes to percolate given by equation (2.5) to

max

M(R′) + `− 2, if R′ ∈ Rec(k − 1, `)

M(R′) + k − 2 if R′ ∈ Rec(k, `− 1)
(2.6)

To finish the proof, we apply Proposition 1.6 to R′ (we can do this as

k, ` ≥ 3 and R′′ is a single site). So let A′ be partitioned into disjoint sets A′1
and A′2 spanning rectangles R′1 and R′2 respectively, satisfying Proposition 1.6.

Assume that M(R′1) ≥M(R′2).

If R′1 and R′2 satisfy Condition (f) inside R′, with R′2 being a single site,

then we can bound the time that A takes to percolate in a much better way

than using equation (2.6). In fact, considering the possible cases it can be

bounded from above by

max


M(k − 1, `− 1) + max{k, `} − 1,

M(k − 2, `) + `+ 1,

M(k, `− 2) + k + 1,

because dist(R′1, R
′′) ≤ 2 and so, with R′1 fully infected, the processes of in-

fecting R′ \ (R′1 ∪R′2) and 〈R′1 ∪R′′〉 \ (R′1 ∪R′′) run simultaneously.
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In the remainder, we assume that R′1 and R′2 satisfy one of the conditions

(a)-(e) in R′ and improve the bound (2.6) by replacing M(R′) with a better

bound on the time that A′ takes to percolate in R′.

If R′1 and R′2 satisfy Condition (a) or (c) in R′ then, by what we already

know about the bounds for these conditions (upper bound on M(R′) is the

weakest when R′2 is a single site, see (2.4)), the bound in (2.6) is at most

max



M(k − 2, `− 1) + k + `− 2,

M(k − 1, `− 2) + k + `− 2,

M(k, `− 3) + 2k − 1,

M(k − 3, `) + 2`− 1.

If R′1 ∈ Rec(s1, t1) and R′2 ∈ Rec(s2, t2) inside R′ satisfy Condition (b) then

R′′, R′1 and R′2 are, up to some rotations, for some m ≤ t1 + t2 − 1 mutually

aligned as in Figure 2.6 (where R′′ is depicted with a shaded square).

t1

t2

s1

s2

m
R′1

R′2

Figure 2.6. Condition (b) followed by Condition (f)

Let us analyze the possible cases conditioned on the value of t2. If t2 = 1

then we have dist(R′1, R
′′) ≤ 2 so the infection of 〈R′1 ∪R′′〉 \ (R′1 ∪R′′) starts

at latest at time M(R′1). Thus, by Claim 2.5, the bound on percolation time

is maximized for s2 = 1 and m = 0 which as an upper bound on M(k, `) gives

max

M(k − 1, `− 2) + max{k, `} − 1

M(k − 2, `− 1) + max{k, `} − 1
< M(k − 1, `− 1) + max{k, `} − 1.
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If t2 > 1 then, by Claim 2.5 and Claim 2.6, the bound on percolation time

is maximized either for t2 = 2, s2 = 1 and m = t1 + t2 − 1 which as the upper

bound on M(k, `) gives

M(k − 2, `− 2) + k + `− 3 < M(k − 2, `− 1) + k + `− 2,

or for s1 = 2, t1 = 1 and m = t1 + t2 − 1 which as the upper bound gives

max

M(k − 1, `− 3) + 2k − 2

M(k − 3, `− 1) + 2`− 2
< max

M(k, `− 3) + 2k − 1

M(k − 3, `) + 2`− 1
,

or for s1 = 1, t1 = 1 and m = t1 + t2 − 1 which as the upper bound gives

max

M(k − 1, `− 2) + max{k + 1, `− 2}

M(k − 2, `− 1) + max{k − 2, `+ 1}

≤ max

M(k − 1, `− 2) + k + `− 2

M(k − 2, `− 1) + k + `− 2
.

Thus the upper bound on the percolation time of A obtained when Con-

dition (b) holds for R′1, R′2 inside R′ is at most the maximum in inequality

(2.3).

Finally, if R′1 and R′2 inside R′ satisfy Condition (d) or (e) with M(R′1) ≥

M(R′2) then, as already noted, by setting m = 0 and shrinking R′2 we can

bound from above the percolation time of A′ by the bounds obtained under

conditions (a) and (b). That completes the proof of the upper bound on

M(k, `) and of Theorem 2.4. �

Remark. Relation (2.1) does not allow us to immediately give an exact

formula for M(n). However, with the use of a computer, it is possible to write

a program evaluating M(n) and at the same time finding an (n, n)-perfect set.

Our simulations suggest that these sets have size approximately 23n
18

+O(1) (for

example, for n = 1000 it is 1277). In the next section we find the asymptotic
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formula for M(n). For the lower bound we shall use sets similar to those

suggested by our simulations.

2.4. Computing the asymptotic value of M(n)

In this section we use the existence of (n, n)-perfect sets to compute the

asymptotic value ofM(n). We say that a (k, `)-perfect set A together with the

sequence of rectangles P0 ⊂ P1 ⊂ . . . ⊂ Pr ∈ Rec(k, `) associated with it are

described by a triple (s0, t0,m1m2 . . .mr) if P0 ∈ Rec(s0, t0) and, for 1 ≤ i ≤ r,

Move mi is used to obtain Pi from Pi−1. We write T0 = M(P0) and, for i ≥ 1,

we denote by Ti the additional time it takes to infect the sites of Pi after all

sites of Pi−1 are infected. We say that T0, T1, . . . , Tr is the time sequence of

A. Finally, we say that a triple (s0, t0,m1m2 . . .mr) is a scheme that solves

M(k, `) if it describes a (k, `)-perfect set.

Note that a triple (s0, t0,m1m2 . . .mr) may describe multiple (n, n)-perfect

sets since it only determines the dimensions of the rectangles Pi but not

their precise coordinates. Nevertheless, all (n, n)-perfect sets described by

(s0, t0,m1m2 . . .mr) have the same time-sequence. Note that if T0, T1, . . . , Tr

is the time sequence of an (n, n)-perfect set then M(n) =
∑r

i=0 Ti.

Observation 2.7. Let (s0, t0,m1m2 . . .mr) be a scheme and P0 ⊂ P1 ⊂

. . . ⊂ Pr be the sequence of rectangles generated by it. Then for any 1 ≤ j ≤ r,

the triple (s0, t0,m1m2 . . .mj) is a scheme. In particular, it describes a set that

percolates Pj in maximum time.

Remark. In Appendix 2.7 we consider a number of small cases and show

that for any k, ` ≥ 3, (k, `) 6= (3, 3), there exists a scheme (s0, t0,m1m2 . . .mr)

that solves M(k, `) and is such that either s0 ≥ 3 and t0 = 2 or s0 = 2 and

t0 ≥ 3.

Let a, b be natural numbers and let x1 . . . xa and y1 . . . yb be sequences of

moves. We say that these sequences are compatible if applying moves x1 . . . xa

to a certain rectangle R yields a rectangle with the same dimensions as when
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applying moves y1 . . . yb to R. For example, for any 1 ≤ i, j ≤ 7, the sequence

ij is compatible with ji, the sequence 61 is compatible with 35, the sequence

111 is compatible with 45, but 12 is not compatible with 13 (because the order

of dimensions matters).

Fix 1 ≤ i ≤ r and denote Pi ∈ Rec(k, `). Clearly the value of Ti depends

only on k, ` and mi. We list its possible values in Table 1 (see also equation

(2.1)). For 2 ≤ i ≤ r, applying this argument twice, we can compute the value

of Ti + Ti−1, as a function of only k, `, mi and mi−1. In Table 2 we list the

values of Ti + Ti−1 for mi,mi−1 ∈ {2, 3, 4, 5, 6, 7} and in Table 3 we list the

values of Ti + Ti−1 when either mi = 1 or mi−1 = 1.

mi Pi−1 Ti

1 (k − 1, `− 1) max{k, `} − 1
2 (k − 2, `) `+ 1
3 (k, `− 2) k + 1
4 (k − 2, `− 1) k + `− 2
5 (k − 1, `− 2) k + `− 2
6 (k, `− 3) 2k − 1
7 (k − 3, `) 2`− 1

Table 1. Dimensions of Pi−1 and value of Ti givenmi, assuming
that Pi ∈ Rec(k, `).

Initially, the object of our interest in Table 2 and Table 3 is, for each pair

(a, b) with 1 ≤ a, b ≤ 7, whether for Pi ∈ Rec(k, `) the value of (Ti + Ti−1) is

larger when (mi−1,mi) = (a, b) or when (mi−1,mi) = (b, a). We summarize the

answer to that question in Figure 2.7 which tells us which pairs of consecutive

moves are prohibited in a scheme (for one could swap them and obtain a slower

percolating process). A solid directed edge from a to b means that, no matter

what the values of k and ` are, it takes strictly longer to apply Move b right

before Move a than it takes to apply them in the opposite order. Thus in this

case the consecutive pair of moves ab inside a scheme is prohibited. A dashed

directed edge from a to b means that no matter what the values of k and ` are,

it always takes at least as much time to apply Move b followed by Move a as

it takes to do the opposite. A dashed undirected edge means that the order of
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mi = 2 mi = 3 mi = 4

mi−1 = 2 2`+ 2 k + ` k + 2`− 2
mi−1 = 3 k + ` 2k + 2 2k + `− 3
mi−1 = 4 k + 2`− 3 2k + `− 3 2k + 2`− 7
mi−1 = 5 k + 2`− 3 2k + `− 3 2k + 2`− 7
mi−1 = 6 2k + `− 4 3k 3k + `− 7
mi−1 = 7 3` k + 2`− 4 k + 3`− 5

mi = 5 mi = 6 mi = 7

mi−1 = 2 k + 2`− 3 2k + `− 3 3`
mi−1 = 3 2k + `− 2 3k k + 2`− 3
mi−1 = 4 2k + 2`− 7 3k + `− 6 k + 3`− 6
mi−1 = 5 2k + 2`− 7 3k + `− 6 k + 3`− 6
mi−1 = 6 3k + `− 5 4k − 2 2k + 2`− 8
mi−1 = 7 k + 3`− 7 2k + 2`− 8 4`− 2

Table 2. Values of (Ti + Ti−1) for mi,mi−1 ∈ {2, 3, 4, 5, 6, 7},
assuming that Pi ∈ Rec(k, `).

(mi−1,mi) = (j, 1) (mi−1,mi) = (1, j)

j = 1 2 max{k, `} − 3 2 max{k, `} − 3
j = 2 max{k, `}+ `− 1 `+ max{k, `− 2}
j = 3 max{k, `}+ k − 1 k + max{k − 2, `}
j = 4 max{k, `}+ k + `− 5 k + `+ max{k − 2, `− 1} − 3
j = 5 max{k, `}+ k + `− 5 k + `+ max{k − 1, `− 2} − 3
j = 6 max{k, `}+ 2k − 4 2k + max{k, `− 3} − 2
j = 7 max{k, `}+ 2`− 4 2`+ max{k − 3, `} − 2

Table 3. Values of (Ti+Ti−1) formi = 1 ormi−1 = 1, assuming
that Pi ∈ Rec(k, `).

moves a and b maximizing the value of (Ti + Ti−1) depends on the values of k

and `. No edge between a and b means that the order we use does not affect

the value of (Ti + Ti−1).

Next, we prove a series of propositions about schemes for M(k, `).

Proposition 2.8. For any k, ` ≥ 3, (k, `) 6= (3, 3), there exists a scheme

solving M(k, `) of the form (s0, t0, [1|2|3]∗[4|5|6|7]∗) with s0 ≥ 3, t0 = 2 or

s0 = 2, t0 ≥ 3.

Proof. Given k, `, consider a scheme Q = (s0, t0,m1m2 . . .mr) with s0 ≥

3, t0 = 2 or s0 = 2, t0 ≥ 3 that solves M(k, `) (which exists by Remark 2.4)
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12 3

56

4 7

Figure 2.7. Relation between pairs of consecutive moves
(mi−1,mi) and the value of (Ti + Ti−1).

which minimizes the sum S =
∑

mi∈{1,2,3} i. Proposition 2.8 follows immedi-

ately from the following claim: in such a scheme, for any i with 2 ≤ i ≤ s, if

mi is equal to 1, 2 or 3 then mi−1 is equal to 1, 2, or 3. Let us check that this

claim holds.

Fix 2 ≤ i ≤ r. Assume first that mi = 2. From Figure 2.7 we see that

mi−1 /∈ {4, 6} and if mi−1 ∈ {5, 7} then we could swap the order of (mi−1,mi)

without changing percolation time and decreasing the value of S, contradicting

the choice of Q. Therefore, mi−1 must be either 1, 2 or 3. The case where

mi = 3 is analogous.

Assume now that mi = 1. If mi−1 ∈ {4, 5} then we could swap the order

of (mi−1,mi) without decreasing percolation time and decreasing the value of

S, contradicting the choice of Q. Now, suppose that mi−1 = 6. If k ≥ ` then,

by Table 3,

Ti−1 + Ti = max{k, `}+ 2k − 4 < 2k + max{k, `− 3} − 2

in which case we could set (mi−1,mi) = (1, 6) and increase percolation time.

If k < ` then again by Table 3 we have

Ti−1 + Ti = max{k, `}+ 2k − 4 < 2k + `− 2

in which case we can set (mi−1,mi) = (3, 5) and increase percolation time. In

either case, we contradict the fact that Q is a scheme. Therefore mi−1 6= 6.

We show that mi−1 6= 7 in an analogous way: one could either swap (7, 1) or
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replace it by (2, 4) in order to increase percolation time (doing one or the other

depending on the values of k and `). Therefore we must have mi−1 equal to 1,

2 or 3. �

Before we continue our investigations of the form of the schemes that solve

M(k, `) let us make the following observation analogous to Observation 1.13 in

the previous chapter, about the infection process started from a (k, `)-perfect

set.

Observation 2.9. For any i ≥ 1, no matter which move (1 − 7) is used

at moment i, between time step M(Pi−1) + 1 and time step M(Pi) (when the

infection of the rectangle Pi is complete), at each step at most two new sites

become infected.

From Observation 2.9 and Observation 1.14 in the previous chapter the

following claim follows. It is fully analogous to Claim 1.15 in the previous

chapter therefore we leave it without proof.

Claim 2.10. Suppose that there exists a (k, `)-perfect set A internally span-

ning a rectangle R ∈ Rec(k, `) with a sequence of rectangles P0 ⊂ P1 ⊂

. . . ⊂ Pr ∈ Rec(k, `) associated with it, described by a triple of the form

(s0, t0, [1|2|3]∗) with s0 ≥ 3, t0 = 2 or s0 = 2, t0 ≥ 3. Then there exists a

(k, `)-perfect set A′ internally spanning the rectangle R ∈ Rec(k, `) described

by a triple of the form (s0, t0, [2]∗[1]∗[3]∗), or of the form (s0, t0, [3]∗[1]∗[2]∗).

�

Proposition 2.11. For any n ≥ 4 there exists a scheme solving M(n) of

the form (s0, 2, [1]∗[3]∗[4|5|6|7]∗) or (s0, 2, [3]∗[1]∗[2]∗[4|5|6|7]∗) with s0 ≥ 3.

Proof. Consider a scheme Q = (s0, 2,m1m2 . . .mr) with s0 ≥ 3 and

sequence m1m2 . . .mr of the form [1|2|3]∗[4|5|6|7]∗ which exists by Proposi-

tion 2.8 (by symmetry, when k = ` = n we might assume t0 = 2).

Let j = max{i : mi ∈ {1, 2, 3}}. By Observation 2.7, the sequence of moves

m1 . . .mj is such that the time taken to infect Pj is maximum. Therefore, by
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Claim 2.10, we see that we may take m1 . . .mj of the form [2]∗[1]∗[3]∗ or of the

form [3]∗[1]∗[2]∗. We observe that in the first case we obtain a scheme Q′ of

the form (s′0, 2, [1]∗[3]∗[4|5|6|7]∗), as the triple (s0, 2, [2]∗[1]∗[3]∗[4|5|6|7]∗) gets

simplified to (s′0, 2, [1]∗[3]∗[4|5|6|7]∗) (and s′0 = s0 +2a where a is the number of

times that Move 2 occurs in m1 . . .mj). In the second case we have a scheme

of the form (s′0, 2, [3]∗[1]∗[2]∗[4|5|6|7]∗). �

Proposition 2.12. For any n ≥ 4 there exists a scheme solving M(n) of

the form (s0, 2, [1]≤1[3]≤2[4|5|6|7]∗) or of the form (s0, 2, [3]≤2[1]≤1[2]∗[4|5|6|7]∗).

Proof. By Proposition 2.11 there exists a schemeQ = (s0, t0,m1m2 . . .mr)

of the form (s0, 2, [1]∗[3]∗[4|5|6|7]∗) or of the form (s0, 2, [3]∗[1]∗[2]∗[4|5|6|7]∗).

Let us consider these cases separately.

Assume first that there exists Q of the form (s0, 2, [1]∗[3]∗[4|5|6|7]∗), and

choose one for which the number of times it uses Move 1 is minimal. Let j =

max{i : mi = 1}. Let Pj ∈ Rec(sj, tj). Assume that Move 3 was used at least

three times. For sj ≥ 5, we could replace the last occurrence of the sequence

333 by the compatible sequence 66 without decreasing percolation time. For

3 ≤ sj ≤ 4, we consider all possible options for Q′ = (s0, t0,m1 . . .mj), and

note that either:

(1) Q′ = (3, 2, 333), which takes strictly less time (15 steps) to span R ∈

Rec(3, 8) than Q′′ = (2, 7, 1) does (16 steps), or

(2) Q′ = (3, 2, 1333), which takes strictly less time (21 steps) to span

R ∈ Rec(4, 9) than Q′′ = (2, 9, 2) does (22 steps), or

(3) Q′ = (4, 2, 333), which takes strictly less time (19 steps) to span R ∈

Rec(4, 8) than Q′′ = (2, 5, 15) does (21 steps).

By Observation 2.7, none of the above Q′ can be an initial segment of Q.

Thus there must exist Q of the form (s0, 2, [1]∗[3]≤2[4|5|6|7]∗). Now, assume

that Move 1 is used at least twice, say, Q is of the form (s0, 2, 11m3m4 . . .mr).

If s0 ≥ 4, then Q can be replaced by (s0 − 1, 2, 14m3m4 . . .mr) for which we

still have P2 ∈ Rec(s0 + 2, 4) and whose percolation time is at least as big as
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for Q because

T0 + T1 + T2 = M(s0, 2) + s0 + (s0 + 1) =

⌊
7s0 − 1

2

⌋
and the time sequence for the modified sequence of moves gives

T ′0 + T ′1 + T ′2 = M(s0 − 1, 2) + (s0 − 1) + ((s0 + 2) + 4− 2) =

⌊
7s0

2

⌋
.

In fact, as there is a dashed directed edge from 4 to 1 and no edge between 4

and 3 in Figure 2.7 we can move the new Move 4 further in the sequence and

obtain Q̃ of the form (s0, 2, [1]∗[3]≤2[4|5|6|7]∗) with a strictly smaller number

of Move 1s used than in Q. This contradicts the minimality of the number

of Move 1s used in Q. If s0 = 3, it is enough to notice that (3, 2, 11) takes

strictly less time (10 steps) to percolate in R ∈ Rec(5, 4) than (5, 2, 3) does (12

steps). Therefore Move 1 must be used at most once. Thus Q is of the form

(s0, 2, [1]≤1[3]≤2[4|5|6|7]∗) as stated.

In the second case, assume that there exists a scheme Q of the form

(s0, 2, [3]∗[1]∗[2]∗[4|5|6|7]∗). By the same argument as in the first case, we can

conclude the Move 3 is used at most two times. In fact, the only difference is

that here we do not need to consider the subcase Q′ = (3, 2, 1333) in our analy-

sis. Therefore, there must exist a scheme of the form (s0, 2, [3]≤2[1]∗[2]∗[4|5|6|7]∗).

Assume that Move 1 is used at least twice. If Move 3 is not used then Q is

of the form (s0, 2, 11m3m4 . . .mr) and we can get a contradiction as in the first

case. So, Move 3 must be used once or twice. It follows from Observation 1.14

that, when we limit ourselves to sequences of the form (s0, 2, [1|3]∗), the slowest

sequences are obtained when Move 1s are applied to rectangles in which the

difference between the length of their longer and their shorter side is maximum.

This means that Move 3s could be used before Move 1 only if after using them

the difference in lengths of the sides of the rectangle we obtained was at least

as large as s0− t0 = s0− 2. However, since Move 3 is used at most twice then,

unless s0 is small, by putting Move 1s before 3s we obtain a sequence slower

than if we did it the other way. More precisely, the only cases in which putting
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Move 3s before 1s could possibly increase the percolation time are those where

s0 − 2 < 3 and the initial sequences of steps in Q are:

(1) Q′ = (3, 2, 311) which takes strictly less time (16 steps) to span R ∈

Rec(5, 6) than Q′′ = (2, 5, 12) does (18 steps), or

(2) Q′ = (3, 2, 3311) which takes strictly less time (24 steps) to span

R ∈ Rec(5, 8) than Q′′ = (2, 3, 155) does (25 steps), or

(3) Q′ = (4, 2, 3311) which takes strictly less time (27 steps) to span

R ∈ Rec(6, 8) than Q′′ = (2, 7, 17) does (31 steps).

As in the first case, sets described by triples Q′′ span the same rectangles as

those spanned by sets described by corresponding triples Q′. Thus we see

that the triples Q′ are not initial segments of schemes. This implies that

Move 1 is used at most once, that is, in the second case Q is of the form

(s0, 2, [3]≤2[1]≤1[2]∗[4|5|6|7]∗) as stated. �

We are now ready to prove our main result.

Proof of Theorem 2.1. We begin proving that M(n) ≥ 13
18
n2 + O(n) by

constructing a particular family of percolating sets described by triples of the

form (s0, 2, 1[4]∗[6]∗). These sets, however, are not necessarily (n, n)-perfect.

We consider the following way of spanning [n]2 for n ≥ 6:

(1) choose a natural number s ∈ (n
3
− 3, n

3
+ 3] such that 6|n+ s− 5 (note

that, in particular, this implies 2|n− s− 1),

(2) in Phase 1 span a rectangle P0 ∈ Rec(s, 2) in the maximum possible

time,

(3) in Phase 2 obtain P1 ∈ Rec(s+ 1, 3) by applying Move 1 to P0,

(4) in Phase 3 obtain Pn−s+1
2
∈ Rec(n, n−s+5

2
) by applying Move 4 n−s−1

2

times,

(5) in Phase 4 obtain P 2n−s−1
3

= [n]2 by applying Move 6 n+s−5
6

times.

Let us compute the time it takes to span [n]2 this way:

(1) Phase 1 takes time
⌊

3(s−1)
2

⌋
> n

2
− 6,

(2) Phase 2 takes time s > n
3
− 3,
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s = 5

n−s+5
2

= 6

Figure 2.8. Example of a set giving a lower bound for n = 12

(3) Phase 3 takes time

n−s−3
2∑
i=0

(s+ 5 + 3i) =
3n2 − 2sn− s2 + 8n− 12s− 11

8
>

5n2

18
+
n

2
+ 7,

(4) Phase 4 takes time

n+ s− 5

6
(2n− 1) =

2n2 − 11n+ 2ns− s+ 5

6
>

8n2

18
− 26n

9
+

4

3
.

Therefore, this way of infecting [n]2 takes time at least 13n2

18
− 14n

9
− 2

3
to complete

and the lower bound on M(n) is proved.

To find an upper bound onM(n), we would like to improve Proposition 2.12

and show that there is a scheme of the form (s0, 2, 1[4]∗[6]∗). The main issue

is that, due to the cycle 4 → 7 → 5 → 6 → 4 in Figure 2.7, there is no

obvious way to order Move 4s, 5s, 6s and 7s in our schemes. So first we shall

get rid of one type of move completely, so that the remaining ones will be easy

to order. Another problem we would have to face is the fact that divisibility

constraints restrict the number of times we can apply particular moves to

eventually construct the n× n square.

To deal with our main issue we shall introduce a more general and rather

abstract process in which fractional Moves 4, 5, 6 and 7 can be applied. In

this process, our aim is also to infect the square [n]2. It will be obvious that
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the maximum spanning time in this new process is at least as big as in the

2-neighbour bootstrap percolation. To be more precise, we will allow the

following fractional moves. For x ∈ (0,∞)

(1) Move (4, x) applied to a rectangle P ∈ Rec(s, t) spans P ′ ∈ Rec(s +

2x, t+ x) in time x(s+ t+ 1) + 3(x2 − x)/2.

(2) Move (5, x) applied to a rectangle P ∈ Rec(s, t) spans P ′ ∈ Rec(s +

x, t+ 2x) in time x(s+ t+ 1) + 3(x2 − x)/2.

(3) Move (6, x) applied to a rectangle P ∈ Rec(s, t) spans P ′ ∈ Rec(s, t+

3x) in time x(2s− 1).

(4) Move (7, x) applied to a rectangle P ∈ Rec(s, t) spans P ′ ∈ Rec(s +

3x, t) in time x(2t− 1).

We note that when x is a natural number and i ∈ {4, 5, 6, 7}, then applying

Move (i, x) is equivalent to applying the original Move i exactly x times.

Let Q = (s0, 2,m1m2 . . .mr) be a scheme solving M(n) of the form

(s0, 2, [1]≤1[3]≤2[4|5|6|7]∗) or (s0, 2, [3]≤2[1]≤1[2]∗[4|5|6|7]∗),

which exists by Proposition 2.12. Let A be an (n, n)-perfect set determined

by Q and let P0 ⊂ P1 ⊂ . . . ⊂ Pr ∈ Rec(n, n) be the sequence of rectangles

associated with it with Pi ∈ Rec(si, ti). Let j0 be such that Pj0 is the rectangle

obtained after the last occurrence of any of the Move 1s, 2s or 3s. If there

are no such moves, we set j0 = 0. Since Move 1 is applied at most once and

Move 3 at most twice we have tj0 ≤ 7. So there is an optimal scheme in which

we first infect a rectangle R ∈ Rec(sj0 , tj0) where tj0 ≤ 7, and then apply only

Move 4s, 5s, 6s or 7s. Without loss of generality assume that sj0 ≥ tj0 .

We shall first construct a particular triple

Q′ = (s0, 2,m1 . . .mj0(m
′
j0+1, xj0+1)(m′j0+2, xj0+2) . . . (m′r′ , xr′))

using (fractional) moves that infects [n]2 in our generalized process in time at

least as big as Q does in bootstrap percolation, and then bound from above

the time it takes to perform Q′. Recall that by using Move mi in Q we
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finish infection of a rectangle Pi ∈ Rec(si, ti). Set k = j0 + 1 and, for i =

j0 + 1, j0 + 2, . . . , r, build Q′ using the following procedure, in which our aim

is to ensure that at each step j > j0 the rectangles P ′j ∈ Rec(s′j, t
′
j) which we

obtain in the generalized process satisfy s′j ≥ t′j, which allows us to eliminate

all occurrences of Move 5 (for an example of this procedure see Figure 2.9):

(1) If mi = 4 or mi = 7 put m′k = mi, xk = 1 and increase k by 1.

(2) If mi = 6 and si ≥ ti put m′k = 6, xk = 1 and increase k by 1.

(3) If mi = 5 and si ≥ ti put m′k = 4, m′k+1 = 6, xk = xk+1 = 1/2

and increase k by 2; note that in the generalized process this pair

of fractional moves takes (si−1 + ti−1 + 1)/2 − 3/8 + (2(si−1 + 1) −

1)/2 = 3si−1/2 + ti−1/2 + 5/8 steps, while the original Move 5 takes

si−1 + ti−1 + 1 steps which is less than the former value as we must

have ti−1 ≤ si−1 − 1.

(4) If mi = 5 or mi = 6, and si−1 = ti−1 then

• redefine Q by, for i ≤ ` ≤ r, changing each m` = 4 to 5, m` = 5

to 4, m` = 6 to 7 and m` = 7 to 6,

• note that after this “mirror reflection” the spanning time of Q

does not change,

• as now mi = 4 or mi = 7 put m′k = mi, xk = 1 and increase k by

1.

(5) If mi = 6, si−1 = ti−1 + 2 (and so si = ti − 1) then

• redefine Q by setting mi = 5 so that si = ti + 1 and, for i + 1 ≤

` ≤ r, by changing each m` = 4 to 5, m` = 5 to 4, m` = 6 to 7

and m` = 7 to 6,

• note that both new and old Move mi takes 2si−1 − 1 time steps

and that after this modification Q still spans [n]2 in maximum

time,

• put m′k = 4, m′k+1 = 6, xk = xk+1 = 1/2 and increase k by 2;

note that in the generalized process this pair of fractional moves

takes strictly more steps than the original Move 5.
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(6) Finally we show that the only missing case mi = 6, si−1 = ti−1 +1 and

si = ti− 2 cannot occur: if it did then we could increase the spanning

time of Q by 1 step, contradicting its maximality, by applying the

following modifications:

• redefine Q by setting mi = 4 and, for i+ 1 ≤ ` ≤ r, by changing

each m` = 4 to 5, m` = 5 to 4, m` = 6 to 7 and m` = 7 to 6,

• note that now si = ti + 2 and that after this “mirror reflection”

Q still spans [n]2,

• new Move mi takes si−1 +ti−1 +1 = 2si−1 time steps while the old

Move mi took 2si−1 − 1 time steps; further steps take the same

time as before thus Q could not be a scheme.

si

ti

Figure 2.9. Example of the generalized infection process for
n = 15. Circular marks depict dimensions of rectangles
Pi ∈ Rec(si, ti) and P ′i ∈ Rec(s′i, t

′
i) obtained after consec-

utive moves. In this example we have a triple (which is
not a scheme for M(15) but we use it for demonstration
purpose) Q = (5, 2, 34654467) (solid line) and its modifica-
tion Q′ = (2, 5, 3(4, 1)(4, 1/2)(6, 1/2)(4, 1)(4, 1/2)(6, 1/2)(4, 1/2)
(6, 1/2)(7, 1)(6, 1)) (dashed line); note that here j0 = 1, sj0 = 5
and tj0 = 4 (shaded rectangle represents the rectangle Pj0).

We do not have any occurrences of Move 5 in Q′ and Move 4s, 6s and 7s

occur in multiples of 1/2, i.e., all xi’s are either 1/2 or 1. In Table 4 we show
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that wanting to maximize infection time we should keep the order of half–

moves as suggested in Figure 2.7. That is, we should have Move 7s followed

by 4s and finally by 6s.

m′i = 4 m′i = 6 m′i = 7

m′i−1 = 4 k + `− 2 (3k + `)/2− 15/8 (k + 3`)/2− 15/8
m′i−1 = 6 (3k + `)/2− 17/8 2k − 1 k + `− 5/2
m′i−1 = 7 (k + 3`)/2− 13/8 k + `− 5/2 2`− 1

Table 4. Time taken by consecutive half–Moves
(m′i−1, 1/2)(m′i, 1/2), assuming that P ′i ∈ Rec(k, `).

Thus we obtain Q′′ = (s0, 2,m1 . . .mj0(7, x)(4, y)(6, z)), for some x, y, z ∈

[0,∞), which takes at least as long to infect [n]2 in our generalized infection

process as a scheme Q solvingM(n) does in bootstrap percolation. Denote the

rectangle that we obtain when we apply Move (7, x) to Pj0 by Pj0+x ∈ Rec(s, t)

and note that we must have y = (n − s)/2 and z = (n − t − (n − s)/2)/3.

Recall that Pj0 ∈ Rec(sj0 , tj0), with tj0 ≤ 7, and therefore s = sj0 + 3x and

t = tj0 ≤ 7. To bound the spanning time of Q′′ from above, we may start

by being generous and saying that M(Pj0+x) ≤ st ≤ 7s; then we compute

the time needed to apply Move (4, y) and Move (6, z). We conclude that the

percolation time of Q′′ can be bounded from above by

st+
(n− s)

2
(t+ s+ 1) +

3

2

(n− s)
2

(n− s− 2)

2
+

(n− t− n−s
2

)

3
(2n− 1) ≤

≤ 7s+
(n− s)(s+ 8)

2
+

3(n− s)(n− s− 2)

8
+

(n+ s)(2n− 1)

6
= fn(s).

Maximizing fn(s) over 0 ≤ s ≤ n we find that its maximum is f(n+43
3

) =

13
18
n2 + 77

18
n+ 1849

72
. That gives an upper bound onM(n) and therefore completes

the proof of Theorem 2.1. �

2.5. Maximum percolation time in all dimensions

In this section we show that, for all d ≥ 2, maximum percolation time in

2-neighbour bootstrap percolation in [n]d grows like a quadratic function of n.
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We do not make any attempts at optimizing our bounds. However, our result

allows us to formulate Conjecture 2.20 which we hope will be a starting point

for further research in this area.

2.5.1. Notation. Given a site v ∈ [n]d and a number t ∈ N ∪ {0}, let

Bv(t) be the l1 discrete ball of radius t in [n]d centred at v, i.e.,

Bv(t) = {u ∈ [n]d : dist(u, v) ≤ t}.

Let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zd, where 1 appears only in the i-th co-

ordinate. Given two d-dimensional vectors a = (ai)
d
i=1 and b = (bi)

d
i=1 let

a + b = (ai + bi)
d
i=1. Given two sets A and B of d-dimensional vectors let

A + B = {a + b : a ∈ A, b ∈ B}. Finally, given a = (ai)
d
i=1 and c ∈ R let

c · a = (cai)
d
i=1.

Let [n1, n2] = {n1, n1 +1, . . . , n2} (for n1 > n2 we assume that [n1, n2] = ∅).

A cuboid in [n]d is, for some choice of 1 ≤ ji ≤ ki ≤ n for 1 ≤ i ≤ d, a set of the

form
∏d

i=1[ji, ki]. Similarly to percolation on [n]2, for 2-neighbour bootstrap

percolation in d dimensions we again have a nice characterization of closed

sets.

Fact 2.13. Given any set A of infected sites in [n]d, 〈A〉 is a union of

cuboids such that any distinct two of them are at distance at least 3.

Proof. This fact for general d follows by the same argument as Fact 1.5

for d = 2. The set A can be viewed as a union of 1× 1× . . .× 1 cuboids. Also,

any two fully infected cuboids within distance at most 2 span the minimal

cuboid containing them both. Thus, in this “cuboid process” in which we

replace a union of two infected cuboids at distance at most 2 by the minimal

cuboid containing them both, at each step we decrease the number of cuboids.

Therefore, trying to write 〈A〉 as a union of cuboids with the minimal number

of cuboids, in finitely many steps we obtain a union of cuboids such that any

distinct two of them are at distance at least 3. �
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The next proposition (see Lemma 2.3 in [12]), which is a d-dimensional

analogue of Proposition 1.6, will be our main tool in bounding the percolation

time from above.

Proposition 2.14. Let C be a d-dimensional cuboid with volume at least

2. Suppose that C is internally spanned by a set of sites A. Then there exist

disjoint subsets of A, say A′ and A′′, and cuboids C ′ and C ′′ such that:

(1) C ′ ( C and C ′′ ( C,

(2) C ′ is internally spanned by A′ and C ′′ is internally spanned by A′′,

(3) 〈C ′ ∪ C ′′〉 = C; in particular, dist(C ′, C ′′) ≤ 2.

Proof. This proposition for general d follows by the same argument as

Proposition 1.6 for d = 2 so we leave it without proof. �

Let T dn(A) denote the time that A takes to percolate in [n]d under 2-

neighbour bootstrap percolation, so that T (A) = T 2
n(A). Then the maximum

percolation time in 2-neighbour bootstrap percolation in [n]d is

Md(n) = max{T dn(A) : 〈A〉 = [n]d}

so that M(n) = M2(n). The following theorem is the main result of Section

2.5.

Theorem 2.15.

d2 − d
3

n2 +O(n) ≤Md(n) ≤ d2

2
n2 +O(n).

2.5.2. Quadratic percolation time. As usual, we prove the lower bound

on Md(n) by giving a specific family of percolating sets. To prove the upper

bound on Md(n) we use the following lemma.

Lemma 2.16. Let C,C1, C2 ⊂ [n]d be cuboids in [n]d such that 〈C1 ∪ C2〉 =

C. Let A0 = C1 ∪C2. Then there exists v ∈ C such that for all t ≥ 0 we have

Bv(t) ∩ C ⊂ At+1.
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Proof. Let C =
∏d

i=1[xi, yi], C1 =
∏d

i=1[ai, bi] and C2 =
∏d

i=1[ci, di].

Since 〈C1 ∪ C2〉 = C, for all 1 ≤ i ≤ d we must have min{ai, ci} = xi and

max{bi, di} = yi. Also, unless C1∪C2 = C (in which case the lemma is trivial)

there must exist some v = (vi)
d
i=1 ∈ C such that dist(v, C1) = dist(v, C2) = 1.

Claim 2.17. For any i ∈ [d] and any k ∈ [xi−vi, yi−vi] we have v+k ·ei ∈

Ak+1.

Proof of Claim. The claim holds for any i and k = 0 since dist(v, C1) =

dist(v, C2) = 1. Note that, since the site v is adjacent to both cuboids C1

and C2, in whichever direction we go from v, we are initially either “inside”

C1 or C2, or we remain adjacent to one of the faces of at least one of these

cuboids. For contradiction, fix i and assume that 1 ≤ k ≤ yi − vi is the

smallest number such that v+ k · ei is neither inside nor adjacent to any of C1

or C2. Then, knowing that C1, C2 ⊂ C are cuboids in [n]d, we could conclude

that max{bi, di} < vi + k ≤ yi. However, this would contradict the fact that

〈C1 ∪ C2〉 = C. We deal with xi − vi ≤ k ≤ −1 analogously. Thus the claim

holds by induction on k. �

From the claim it follows that all sites at distance 1 from v belong to A2.

To prove the lemma it is now enough to notice that any site z in C with

dist(z, v) = t+ 1 ≥ 2, not of the form v± (t+ 1) · ei, has at least 2 neighbours

in C at distance t from v which by induction belong to At+1, so z ∈ At+2.

Thus the lemma follows. �

Corollary 2.18. Let C1, C2 ⊂ [n]d be cuboids in [n]d such that 〈C1 ∪ C2〉 =

C ⊆ [n]d with C =
∏d

i=1[ji, ki]. Let A0 = C1 ∪ C2. Then At = C for some

t ≤
∑d

i=1(ki − ji) + 1.

Proof. By Lemma 2.16, infection of C ends in time equal to at most the

diameter of C plus 1 time step. �

Proof of Theorem 2.15. We start by proving the upper bound on Md(n).

Let A be any set of sites such that 〈A〉 = [n]d. By Proposition 2.14 there exist
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two cuboids C1, C2 ( [n]d internally spanned by disjoint subsets of A (say, C1

by A1 and C2 by A2) such that 〈C1 ∪ C2〉 = [n]d. By Corollary 2.18, C1 ∪ C2

span [n]d in time at most d(n− 1) + 1. Let us apply the same argument to C1:

there exist two cuboids C ′1, C ′2 ( C1 internally spanned by disjoint subsets of

A1 such that 〈C ′1 ∪ C ′2〉 = C1; since C1 is a proper subset of [n]d, by Corollary

2.18, C ′1∪C ′2 spans C1 in time at most d(n−1). Of course, an analogous claim

holds for C2. Reapplying this argument inductively we see that [n]d is spanned

in time at most

d(n−1)+1∑
i=1

i =
d(n− 1) + 2

2
(d(n− 1) + 1) =

d2

2
n2 +O(n)

thus the upper bound on Md(n) is proved.

We now prove the lower bound Md(n) ≥ d2−d
3
n2 +O(n) with the following

construction. Given n ∈ N let n0 = 3bn−1
3
c+ 1. Let

A1(n) = {1, 2, . . . , n0}

and for d ≥ 1 let

Ad+1(n) = {(a1, a2, . . . , ad, 1) : (a1, a2, . . . , ad) ∈ Ad}

∪
{

(n0, n0, . . . , n0, 3j), (1, 1, . . . , 1, 3j + 1) : j = 1, 2, . . . ,
n0 − 1

3

}
.

Then clearly 〈Ad+1〉 = [n0]d+1.

Lemma 2.19. For any d ≥ 2 and n ∈ N we have

T dn0
(Ad(n)) = T d−1

n0
(Ad−1(n)) +

n0 − 1

3
(2(d− 1)(n0 − 1) + 1)

with {n0}d becoming infected at time T dn0
(Ad(n)).

Proof. Note that for all d ≥ 2 the copy of Ad−1(n) contained in Ad(n) by

itself spans the subcube [n0]d−1×{1} of [n]d. Also, all other sites in Ad(n) are

at distance at least 2 from [n0]d−1×{1} and so they cannot interfere with the

process of infecting it. Moreover, since the site {n0}d−1 × {3} is at distance

2 from {n0}d−1 × {1} and all other sites in Ad(n) outside [n0]d−1 × {1} are
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actually at distance at least 3 from [n0]d−1×{1}, no site outside [n0]d−1×{1}

becomes infected before or at the same time as {n0}d−1 × {1}.

Thus if {n0}d−1×{1} becomes infected at time T d−1
n0

(Ad−1(n)) (and this is

true for d = 2 with T 1
n0

(A1(n)) = 0) then the infection of [n0]d−1× [2, n0] starts

only after T d−1
n0

(Ad−1(n)) time steps. To infect a “new” dth dimension Ad(n)

infects n0−1
3

stripes of the form [n0]d−1×[3(i−1)+2, 3i+1]. The infection of the

first such stripe goes at follows: on the first step the site {n0}d−1×{2} becomes

infected and then, on step t ≥ 2, all sites in [n0]d−1×{2, 3} at distance (t− 1)

from {n0}d−1×{2} become infected. After infecting all sites in [n0]d−1×{2, 3}

except {1}d−1 × {3}, which takes (d − 1)(n0 − 1) + 1 steps, all neighbours of

{1}d−1 × {4} in [n0]d−1 × {4} gain their second infected neighbour and the

infection of [n0]d−1×{4} follows. All sites at distance t ≥ 1 from {1}d−1×{4}

in [n0]d−1 × {4} become infected at step (d− 1)(n0 − 1) + 1 + t. Thus it takes

2(d− 1)(n0− 1) + 1 to fully infect [n0]d× [2, 4] and there are n0−1
3

such stripes

to infect, thus the lemma follows since clearly {n0}d is the last site to become

infected in [n0]d. �

If n 6= 3k + 1 for some k ∈ N ∪ {0} then we have n0 < n (but we still have

n0 ≥ n− 2). In that case, let

Ãd(n) = Ad(n) ∪
(
[n0 + 1, n]2 × [n0, n]d−2

)
.

Then
〈
Ãd

〉
= [n]d and the additional initially infected sites in Ãd(n) to not

accelerate the infection of the sites in [n0]d. Thus, by Lemma 2.19,

Md(n) ≥ T dn(Ãd(n)) ≥ T dn0
(Ad(n))

≥ (d2 − d)(n− 3)2 + (d− 1)(n− 3)

3

=
d2 − d

3
n2 +O(n).

This completes the proof of Theorem 2.15. �
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2.6. Further questions

In this chapter we give the asymptotic formula for the maximum percola-

tion time in the grid [n]2 under 2-neighbour bootstrap percolation. We also

prove that in [n]d we have

d2 − d
3

n2 +O(n) ≤Md(n) ≤ d2

2
n2 +O(n).

This motivates the following natural conjecture.

Conjecture 2.20. We have Md(n) = cdn
2 + O(n), where cd is some

constant depending on d only.

In this chapter we proved that c2 = 13/18. If Conjecture 2.20 is correct

then it would be interesting to analyse the behaviour of the constants cd as d

grows.

Problem 2.21. If Conjecture 2.20 is correct, determine the growth of the

function f(d) = cd.

Another natural question which we leave for further work is the one about

the maximum percolation time for higher infection thresholds in [n]d.

Question 2.22. What is the maximum percolation time in r-neighbour

bootstrap percolation on [n]d for r ≥ 3?

2.7. Appendix: analysis of small cases

Assume that (s0, t0,m1m2 . . .mr) is a scheme for M(k, `) for k, ` ≥ 3,

(k, `) 6= (3, 3). Let A be a (k, `)-perfect set described by it and let P0 ⊂ P1 ⊂

. . . ⊂ Pr ∈ Rec(k, `) be the sequence of rectangles associated with A. We

treat a number of small cases to exclude some, a priori possible, values for the

numbers s0 and t0.

Suppose for a contradiction that P0 ∈ Rec(s, 1). Since P1 ∈ Rec(s1, t1)

where s1, t1 ≥ 3 and max{s1, t1} ≥ 4, one of the following cases must occur:
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(1) P1 ∈ Rec(s, 3) with s ≥ 4: since we have M(s−1, 2) ≥ 3, by applying

Move 1 to [s − 1] × [2] we see that M(s, 3) ≥ (s − 1) + 3 = s + 2.

However, for P0 ∈ Rec(s, 1) and P1 ∈ Rec(s, 3), as in the infection

process defined by A, it takes time at most s + 1 to infect all sites

in P1 since both ending sites of the rectangle P0 must be initially

infected. This contradicts the fact that at every step i the time that

A takes to percolate Pi is maximum;

(2) P1 ∈ Rec(s+ 1, 3) with s ≥ 3: since we have M(s, 2) ≥ 3, by applying

Move 1 to [s] × [2] we see that M(s + 1, 3) ≥ s + 3. However, for

P0 ∈ Rec(s, 1) and P1 ∈ Rec(s + 1, 3), as in the infection process

defined by A, it takes time at most s + 2 to infect all sites of P1 (by

the same argument as above). This again contradicts the fact that A

is (n, n)-perfect;

(3) P1 ∈ Rec(s, 4) with s ≥ 3: since we have M(s, 2) ≥ s, by applying

Move 3 to [s]×[2] we see thatM(s, 4) ≥ s+s+1 = 2s+1. However, for

P0 ∈ Rec(s, 1) and P1 ∈ Rec(s, 4), as in the infection process defined

by A, using again the same argument it takes time at most 2s− 1 to

infect all sites of P1. This contradicts the fact that A is (n, n)-perfect.

Thus, we may assume that P0 /∈ Rec(s, 1). We deal with P0 ∈ (1, t)

analogously. Suppose now that P0 ∈ Rec(3, 3). Considering P1 ∈ Rec(s1, t1)

up to symmetries one of the following cases must occur:

(1) P1 ∈ Rec(6, 3): by applying Move 7 it takes time 5 to infect P1 after

P0 is fully infected. This procedure takes time at most M(3) + 5 = 9

to infect P1. However, by applying Move 1 to [5] × [2] we see that

M(6, 3) ≥ M(5, 2) + 5 = 6 + 5 = 11; this contradicts the fact that A

is (n, n)-perfect;

(2) P1 ∈ Rec(5, 4): by applying Move 4 it takes time 7 to infect P1 after

P0 is fully infected. This procedure takes time at most M(3) + 7 = 11

to infect P1. However, by applying Move 3 to [5] × [2] we see that
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M(5, 4) ≥ M(5, 2) + 6 = 6 + 6 = 12; this contradicts the fact that A

is (n, n)-perfect;

(3) P1 ∈ Rec(4, 4): by applying Move 1 it takes time 3 to infect P1 after

P0 is fully infected. This procedure takes time at most M(3) + 3 = 7

to infect P1. However, by applying Move 3 to [4] × [2] we see that

M(4) ≥ M(4, 2) + 5 = 9; this contradicts the fact that A is (n, n)-

perfect;

(4) P1 ∈ Rec(5, 3): by applying Move 2 it takes time 4 to infect P1 after

P0 is fully infected. This procedure takes time at mostM(3)+4 = 8 to

infect P1. By applying Move 1 to [4]× [2] we also take time M(4, 2) +

4 = 8. Although this does not contradict the (n, n)-perfectness of A,

we can replace it by an (n, n)-perfect set A′ whose infection process

starts with a P ′0 ∈ Rec(4, 2) and expands to P1, so that A′ takes the

same time to percolate in [n]2 as A.

Thus, we may assume that P0 /∈ Rec(3, 3). Therefore we have P0 ∈

Rec(s, 2) ∪ Rec(2, s) for some s ≥ 3.



CHAPTER 3

Maximum percolation time in hypercubes
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3.1. Introduction

In this chapter we consider yet another extremal problem in bootstrap per-

colation, posed by Bollobás. Namely, we study 2-neighbour bootstrap percola-

tion on the n-dimensional hypercube Qn, which we define precisely in Section

3.2, and again we look at extremal properties of the infection process when

a set of initially infected sites is chosen in a deterministic way in order to

maximize percolation time. As the main result of this chapter, we prove the

following theorem.

Theorem 3.1. If A ⊂ Qn percolates, i.e., if 〈A〉 = Qn, then it percolates

in at most
⌊
n2

3

⌋
steps. Moreover, this bound is tight for all n ∈ N

In other words, if in the definition of bootstrap percolation given in (1.1)

we set r = 2, A0 = A and G = Qn, then At = Qn for some t ≤
⌊
n2

3

⌋
whenever

〈A〉 = Qn. For n ∈ {1, 2, 3, 4} sets obtaining the maximum percolation time

can by found by exhaustive search. For n ≥ 5 a family of optimal sets can

be described as follows: a set A infecting Qn in the maximum possible time

consists of a small set initializing the process by infecting Q2 if n = 2 (mod

3), Q3 if n = 0 (mod 3) or Q4 if n = 1 (mod 3) in the maximum time, and of

pairs of sites each of which prolongs the process by infecting three “additional”

dimensions in the maximum possible time. Details of this construction can be

found in the proof of Theorem 3.14.

This chapter is solo work, and is based on my paper, [47].

3.2. Notation and basic observations

Let N0 = N ∪ {0}. The n-dimensional hypercube Qn is the graph with

vertex set {0, 1}n and edge set {{x, y} : x, y ∈ {0, 1}n, |{i : xi 6= yi}| =

1}. We shall write Ql for any of the
(
n
l

)
2n−l subcubes of dimension l in Qn.

For x = (xi)
n
1 ∈ {0, 1, ∗}n, let Qx be the subcube {z = (zi)

n
1 ∈ {0, 1}n :

zi = xi if xi 6= ∗}. Clearly, x 7→ Qx gives a 1 – 1 correspondence between

{0, 1, ∗}n and the subcubes of Qn. Let d(0, 1) = 1, d(0, 0) = d(1, 1) = d(∗, ∗) =



3.2. NOTATION AND BASIC OBSERVATIONS 81

d(0, ∗) = d(1, ∗) = 0 be the distance of two coordinates. The distance of

two subcubes Qx, Qy in Qn is d(Qx, Qy) =
∑n

i=1 d(xi, yi), where vectors x, y

represent subcubes Qx and Qy. In the hypercube graph the distance between

sets Qx, Qy is also d(Qx, Qy).

For p, q ∈ N and y0, y1, . . . , yp ∈ {0, 1, ∗} we denote by [y0]q the sequence

(y0, y0, . . . , y0) of length q, and by (y1y2 . . . yp) the set of all permutations of

the multiset {y1, . . . , yp}. We use a self explanatory notation to concatenate

and nest such sequences, e.g.,

[0]2([∗]2[1]2)0 = {00∗∗110, 00∗1∗10, 00∗11∗0, 001∗∗10, 001∗1∗0, 0011∗∗0}.

From now on let us consider 2-neighbour bootstrap percolation only. Recall

that a set A is said to be closed under percolation if 〈A〉 = A. Let us recall some

simple results from Balogh and Bollobás [8], where the authors gave bounds

on pc(Qn, 2), the critical probability in 2-neighbour bootstrap percolation on

the hypercube.

Lemma 3.2. The only subsets of a hypercube that are closed under perco-

lation are those which are a union of disjoint subcubes that are at distance at

least 3 from each other.

Proof. The lemma is equivalent to Fact 2.13. �

For vectors x, y ∈ {0, 1, ∗}n set x ∨ y = z = (zi) where zi = xi if xi = yi

and ∗ otherwise. It follows from the definition of ∨ that Qx, Qy ⊂ Qz.

Lemma 3.3. For any two vectors x, y ∈ {0, 1, ∗}n with d(x, y) ≤ 2 we have

〈Qx ∪Qy〉 = Qx∨y.

�

Analogously to bootstrap percolation on grids, given an infection process

on Qn with an initial set A ⊂ Qn, a subcube Ql ⊂ Qn is said to be internally

spanned if the restriction of the process to Ql fully infects Ql, i.e., if 〈A ∩Ql〉 =

Ql.
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Lemma 3.4. Let A ⊂ Qn be such that 〈A〉 = Qn. Then there is a nested

sequence Q0 = Q
xi1
i1
⊂ Q

xi2
i2
⊂ . . . ⊂ Q

xit
it

= Qn, of internally spanned subcubes

(with respect to A), where 2ij + 2 ≥ ij+1 for all j, 0 ≤ j ≤ t− 1. Furthermore,

for j ≥ 2 each subcube Q
xij
ij

is spanned by two internally spanned cubes, namely

by Q
xij−1

ij−1
and a subcube Qmj−1

of dimension mj−1 ≤ ij−1 which is not a member

of the sequence.

�

We call a longest nested sequence of internally spanned cubes as in Lemma

3.4 a building sequence of the hypercube. For a vector x ∈ {0, 1, ∗}n we define

the dimension of x as dim(x) = |{i : xi = ∗}|. Obviously, dim(x) equals

dim(Qx), the dimension of the cube Qx.

For the sake of consistency with the notation introduced in Section 2.5.1,

let TQn(A) = T n2 (A) = min{t : At = Qn}, where the sets At are defined as

in (1.1). Throughout this chapter we shall shall refer to TQn(A) as to the

spreading time of A in Qn. Finally we define the maximum percolation time

in the n-dimensional hypercube Qn as

MH(n) = max
A:〈A〉=Qn

TQn(A).

3.3. Slow percolation in hypercubes

In this section we shall prove that MH(n) = bn2

3
c for all n ∈ N. We start

with the following simple lemma.

Lemma 3.5. For any n ∈ N, MH(n) ≤MH(n+ 1).

Proof. Let A be such that 〈A〉 = Qn and TQn(A) = MH(n). Let

Ã = {(a1, . . . , an, j) : (a1, . . . , an) ∈ A and j ∈ {0, 1}}.

Then
〈
Ã
〉

= Qn+1 and MH(n) = TQn(A) = TQn+1(Ã) ≤MH(n+ 1). �

We shall now define a specific norm which at first sight might not be intu-

itive and might seem odd. However, due to the symmetries of the hypercube
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we shall highly benefit from it and not lose any generality by considering this

particular norm. In the following series of lemmas, which will help us under-

stand how infection spreads in Qn depending on the configuration of the set

of initially infected sites, the reader should think of the particular norm of x

as a quantity that reflects (but is not always equal to) the sum of distances

between x and S and between x and T . These six lemmas will be summarized

in Lemma 3.12.

Let n ∈ N and s, n1, . . . , ns, d ∈ N0 with n ≥ n1 + . . . + ns + d. For each

x ∈ {0, 1}n set

‖x‖a1...adn1,...,ns
=


∑n−d

i=1 xi, if
∑n1+...+ni

j=n1+...+ni−1+1 xj > 0 for all i ∈ [s] with ni > 0

and xn−d+i = ai for all i ∈ [d],

0, otherwise.

Note that, setting s = 0,

‖x‖a1...ad =

(
n−d∑
i=1

xi

)(
d∏
i=1

1{xn−d+i=ai}

)
,

so that, setting s = d = 0, ‖x‖ =
∑n

j=1 xj. Note crucially that ‖x‖a1...adn1,...,ns
> 0

only if x has at least one 1 in each of the sequences (xn1+...+ni−1+1, . . . , xn1+...+ni)

for each i = 1, . . . , s with ni > 0 and the last d terms of (x1, . . . , xn) are

(a1, . . . , ad).

Lemma 3.6. Let k, l ∈ N0, n = k + l, and set S = [∗]k[0]l and T = [0]k[∗]l

and A0 = S ∪ T . Then

At ⊃ {x ∈ {0, 1}n : ‖x‖ ≤ t+ 1} = ([∗]t+1[0]k+l−t−1)

for every t ∈ N.

Proof. By induction on t, noting that ‖x‖ ≤ 1 implies x ∈ A0, and that

every x ∈ {0, 1}n with ‖x‖ = t + 1 ≥ 2 has at least two neighbours y with

‖y‖ = t. �
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Lemma 3.7. Let k, l ∈ N0, n = k + l + 1, and set S = [∗]k[0]l+1 and

T = [0]k[∗]l1 and A0 = S ∪ T . Then

At ⊃
(
[0]k+l∗

)
∪
{
x ∈ {0, 1}n : 1 ≤ ‖x‖0 ≤ t or 1 ≤ ‖x‖1 ≤ t

}
= ([∗]t[0]k+l−t)0 ∪ ([∗]t[0]k+l−t)1

for every t ∈ N.

Proof. Clearly we have [0]k+l∗ ⊂ S ∪ T = A0. We shall show that both

‖x‖0 = 1 and ‖x‖1 = 1 imply x ∈ A1. If ‖x‖1 = 1 then either x ∈ T ⊂ A0 or

xj = 1 for some 1 ≤ j ≤ k. In the latter case x has two neighbours in A0: one

is [0]k+l1 (obtained by changing xj to 0) and one is in S (obtained by changing

xn to 0), thus x ∈ A1. In the same way we prove that ‖x‖0 = 1 implies x ∈ A1.

Now we proceed by induction noting that every x ∈ {0, 1}n with ‖x‖1 =

t + 1 ≥ 2 has at least two neighbours y with ‖y‖1 = t and analogously for

‖x‖0 = t+ 1 ≥ 2. �

Lemma 3.8. Let k, l ∈ N0, n = k + l + 2, and set S = [∗]k[0]l+2 and

T = [0]k[∗]l11 and A0 = S ∪ T . Then

A1 ⊃ [0]k+l ∗ ∗

and

At ⊃
{
x ∈ {0, 1}n : 1 ≤ ‖x‖01 ≤ t− 1 or 1 ≤ ‖x‖10 ≤ t− 1

}
∪
{
x ∈ {0, 1}n : 1 ≤ ‖x‖00 ≤ t− 2 or 1 ≤ ‖x‖11 ≤ t− 2

}
= ([∗]t−1[0]k+l−t+1)01 ∪ ([∗]t−1[0]k+l−t+1)10 ∪ ([∗]t−2[0]k+l−t+2)00

∪ ([∗]t−2[0]k+l−t+2)11

for every t ≥ 2.

Proof. An example of this case is shown in Figure 3.1. Clearly we have

{[0]k+l+2, [0]k+l11} ⊂ S ∪ T = A0. If x ∈ {[0]k+l01, [0]k+l10} then x has

two neighbours in A0 obtained by changing the value of one of the two last

coefficients, thus x ∈ A1. Hence [0]k+l ∗ ∗ ⊂ A1.
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We shall show that both ‖x‖01 = 1 and ‖x‖10 = 1 imply x ∈ A2. Indeed,

let ‖x‖01 = 1 and xj = 1 for some 1 ≤ j ≤ k+ l. Then x has two neighbours in

A1: one is [0]k+l01 (obtained by changing xj to 0) and one is in S∪T (obtained

by changing xn to 0 or xn−1 to 1, depending on whether j ≤ k or not), thus

x ∈ A2. In the same way we prove that ‖x‖10 = 1 implies x ∈ A2.

Now we proceed by induction noting that every x ∈ {0, 1}n with ‖x‖01 =

t + 1 ≥ 2 has at least two neighbours y with ‖y‖01 = t and analogously for

‖x‖10 = t+ 1 ≥ 2.

Finally we show that, for every t ≥ 3, both ‖x‖00 = t−2 and ‖x‖11 = t−2

imply x ∈ At. This is immediate as every such x has two neighbours y and

z with ‖y‖01 = t − 2 and ‖z‖10 = t − 2 which, by what we have just proved,

belong to At−1. �

Qx Qx

Qx Qx

Qy

Qy

1
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Figure 3.1. An example of spreading process on Q5 for x =
∗ ∗ 000 and y = 00 ∗ 11. Here n = 5, k = 2 and l = 1. Labels 1,
2, 3, 4 and 5 denote the time step at which vertices are infected.
We see that here TQn(Qx ∪Qy) = 5.
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In the next lemma we assume k, l > 0 to avoid a trivial situation when

k = 0 or l = 0 and S ∪ T = Qn.

Lemma 3.9. Let k, l ∈ N, n = k + l, and set S = [∗]k[0]l and T = [0]k[∗]l

and A0 = S ∪ T . Then

At ∩ {x ∈ {0, 1}n : ‖x‖k,l ≥ t+ 2} = ∅

for every 0 ≤ t ≤ k + l − 2.

Proof. By induction on t, noting that ‖x‖k,l ≥ 2 implies x /∈ S ∪T = A0,

and that for every x ∈ {0, 1}n with ‖x‖k,l = t + 1 ≥ 3, at most one of the

neighbours y of x satisfies ‖y‖k,l < t (there might be one neighbour z with

‖z‖k,l = 0 if
∑k

j=1 xj = 1 or
∑n

j=k+1 xj = 1). �

In the next lemma we avoid a trivial situation when k = l = 0 and S∪T =

Q1 by assuming without loss of generality that k > 0.

Lemma 3.10. Let k ∈ N, l ∈ N0, n = k + l + 1, and set S = [∗]k[0]l+1 and

T = [0]k[∗]l1 and A0 = S ∪ T . Then

At ∩
{
x ∈ {0, 1}n : ‖x‖1

k ≥ t+ 1
}

= ∅

for every 0 ≤ t ≤ k + l − 1.

Proof. By induction on t. Note first that ‖x‖1
k ≥ 1 implies x /∈ S ∪ T =

A0. Now, for t ≥ 1 assume that every x with ‖x‖1
k ≥ t does not belong to At−1

and note that for every x ∈ {0, 1}n with ‖x‖1
k ≥ t+ 1 ≥ 2, at most two of the

neighbours y of x satisfy ‖y‖1
k < t. These two might be w with ‖w‖0

k = t + 1

obtained by changing xn to 0 and, if
∑k

i=1 xi = 1, z with ‖z‖1
k = 0. We claim

that z, if it exists, is not in At−1.

Indeed, for z to exist we must have
∑k

i=1 xi = 1 and
∑k+l

i=k+1 xi = t ≥ 1, so

in particular l ≥ 1. Let z′ denote the vector obtained by swapping the first k

coordinates with the next l; that is,

z′ = (zk+1, . . . , zk+l, z1, . . . , zk, zk+l+1).
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Then ‖z′‖1
l ≥ t, and so, by the case t−1 of the lemma (which we are assuming

that we have already proved) applied to the sets S ′ = [∗]l[0]k+1 and T ′ =

[0]l[∗]k1, it follows that z′ is not infected after t − 1 steps of the bootstrap

process with initial set S ′ ∪ T ′. By symmetry (since we have only reordered

the coordinates), it follows that z /∈ At−1, as required.

Thus x can have at most one infected neighbour at time t−1 and therefore

it does not belong to At. �

In the next lemma we avoid a trivial situation when k = l = 0 and A1 = Q2

by assuming without loss of generality that k > 0.

Lemma 3.11. Let k ∈ N, l ∈ N0, n = k + l + 2, and set S = [∗]k[0]l+2 and

T = [0]k[∗]l11 and A0 = S ∪ T . Then

At ∩
{
x ∈ {0, 1}n : ‖x‖01

k ≥ t or ‖x‖10
k ≥ t

}
= ∅

for every 1 ≤ t ≤ k + l, and

At ∩
{
x ∈ {0, 1}n : ‖x‖11

k ≥ t− 1
}

= ∅

for every 2 ≤ t ≤ k + l + 1.

Proof. Again, an example of this case is shown in Figure 3.1. Note first

that x ∈ [∗]k+l01, x ∈ [∗]k+l10 and ‖x‖11
k ≥ 1 each imply x /∈ S ∪ T = A0.

Also both ‖x‖01
k ≥ 1 and ‖x‖10

k ≥ 1 imply x /∈ A1 as such an x can have at

most one neighbour y, obtained by changing respectively xn and xn−1 to 0, in

A0. Similarly ‖x‖11
k ≥ 1 implies x /∈ A1 as such an x can have at most one

initially infected neighbour y ∈ [∗]k+l11 with ‖y‖11
k = 0, while all of its other

neighbours y have either ‖y‖01
k ≥ 1, ‖y‖10

k ≥ 1 or ‖y‖11
k ≥ 1. What is more,

‖x‖11
k ≥ 1 implies x /∈ A2 as all these neighbours are not even in A1.

Now, for t ≥ 1 assume that every x with ‖x‖01
k ≥ t or ‖x‖10

k ≥ t does not

belong to At and that every x with ‖x‖11
k ≥ t does not belong to At+1.

Note that for every x ∈ {0, 1}n with ‖x‖01
k ≥ t + 1, at most three of its

neighbours y satisfy ‖y‖01
k < t which is a necessary condition to belong to At.
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One of these three neighbours is v with ‖v‖11
k = t+1 ≥ 2 obtained by changing

xn−1 to 1, thus also v /∈ At. The other two might be w with ‖w‖00
k = t+ 1 ≥ 2

obtained by changing xn to 0 and, if
∑k

i=1 xi = 1, z with ‖z‖01
k = 0. We claim

that z, if it exists, is not in At.

Indeed, for z to exist we must have
∑k

i=1 xi = 1 and
∑k+l

i=k+1 xi = t ≥ 1, so

in particular l ≥ 1. We now follow steps similar to those in the proof of Lemma

3.10: let z′ denote the vector obtained by swapping the first k coordinates with

the next l; that is,

z′ = (zk+1, . . . , zk+l, z1, . . . , zk, zk+l+1, zk+l+2).

Then ‖z′‖01
l ≥ t, and so, by the case t of the lemma (which we are assuming that

we have already proved) applied to the sets S ′ = [∗]l[0]k+2 and T ′ = [0]l[∗]k11, it

follows that z′ is not infected after t steps of the bootstrap process with initial

set S ′ ∪ T ′. By symmetry (since we have only reordered the coordinates),

it follows that z /∈ At, as required. Thus x can have at most one infected

neighbour at time t and therefore it does not belong to At+1.

Finally, every x ∈ {0, 1}n with ‖x‖11
k = t+1 ≥ 2 has at most one neighbour

y with ‖y‖11
k = 0 which might be in At+1. All other neighbours of x are either

v with ‖v‖11
k = t, w with ‖w‖01

k = t+ 1 or y with ‖y‖10
k = t+ 1, none of which

is in At+1. Thus x /∈ At+2. �

Let us now summarize what we know about the spreading time of Qx
k ∪Q

y
l

in Qn for particular choices of x and y.

Lemma 3.12. For vectors x, y ∈ {0, 1, ∗}m such that dim(x) = k, dim(y) =

l, dim(x ∨ y) = m, where k, l < m, d(x, y) = d ≤ 2, and such that |{i : xi =

yi = ∗}| = p, the spreading time of Qx ∪Qy in Qm is given by

TQn(Qx ∪Qy) =

m− p, if d = 2 and (k, l) 6= (m− 2,m− 2),

m− p− 1, otherwise.
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Proof. By the symmetry of the hypercube, without loss of generality

assume that l ≤ k and that

x = [∗]k[0]m−k, y = [∗]p[0]k−p[∗]l−p[1]d.

Note that the first p coordinates, for which xi = yi = ∗, do not matter when we

look at the spreading times since infection process will behave like 2p parallel

infection processes on identical (m − p)-dimensional subcubes which do not

influence each other. Thus without loss of generality assume that p = 0. Then

we have m = k + l + d and y = [0]k[∗]l[1]d.

d = 0: by Lemma 3.6 we have TQn(Qx ∪ Qy) ≤ k + l − 1 = m − 1 (note

that in this case we must have k, l > 0 as k, l < m). Also, noting

that the maximum value of the norm ‖ · ‖k,l in Lemma 3.9 is k + l,

TQn(Qx ∪Qy) ≥ k + l − 1 = m− 1.

d = 1: by Lemma 3.7 we have TQn(Qx ∪ Qy) ≤ k + l = m − 1. Also, noting

that the maximum value of the norm ‖ · ‖1
k in Lemma 3.10 is k + l,

TQn(Qx ∪Qy) ≥ k + l = m− 1. Note that if k = l = 0 then m = 1 and

the formula on TQn(Qx ∪Qy) is also correct.

d = 2: if (k, l) = (m− 2,m− 2) = (0, 0) then infection takes exactly one step

and the formula for TQn(Qx∪Qy) is correct. Otherwise, by Lemma 3.8,

TQn(Qx∪Qy) ≤ k+ l+2 = m. Also, noting that the maximum value of

the norm ‖ · ‖11
k in Lemma 3.11 is k + l, TQn(Qx ∪Qy) ≥ k + l+ 2 = m

(see Figure 3.1).

�

The next lemma will be used later to simplify a recurrence formula we shall

obtain for MH(n).

Lemma 3.13. Let a(1) = 0, a(2) = 1, a(3) = 3 and for n ≥ 4

a(n) = max

a(n− 2) + n,

a(n− 3) + 2n− 3.
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Then a(n) = a(n− 3) + 2n− 3 for all n ≥ 4.

Proof. First, we immediately see that a(4) = a(1) + 5 = a(2) + 4 = 5.

Similarly, it can be trivially checked that the lemma holds for n ∈ {5, 6}.

Now, we prove the lemma by induction. For n ≥ 4 we assume that it holds

for n, n+ 1 and n+ 2, and for n+ 3 we obtain

a(n+ 3) = max{a(n) + 2(n+ 3)− 3, a(n+ 1) + n+ 3}

= max{a(n− 3) + 4n, a(n− 2) + 3n+ 2}

= a(n− 3) + 4n

= a(n) + 2(n+ 3)− 3,

where the third equality follows from the fact that

a(n− 3) + 4n = a(n− 3) + 2n− 3 + (2n+ 3)

≥ a(n− 2) + n+ (2n+ 3)

> a(n− 2) + 3n+ 2.

�

Let us prove a recursion formula for the maximum percolation time which

we shall later use to give a closed-form expression for MH(n).

Theorem 3.14. We have MH(1) = 0, MH(2) = 1, MH(3) = 3, MH(4) = 5

and for n ≥ 5

MH(n) = max

MH(n− 2) + n,

MH(n− 3) + 2n− 3.

Proof. The values ofMH(n) for n ≤ 4 can be found by exhaustive search.

The maximum percolation time can be obtained with the following sets of sites:

n = 1 : {0, 1}, n = 2 : {00, 11}, n = 3 : {000, 110, 001},

n = 4 : {0000, 1100, 0111}.
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We shall first prove that for n ≥ 5 the following holds.

MH(n) ≥ max

MH(n− 2) + n,

MH(n− 3) + 2n− 3.

Consider the following two ways of infecting Qn. Note that the second way

corresponds to the optimal family briefly described at the end of Section 3.1.

(1) Let An−2 be a set that internally spans the hypercube Qx
n−2 for x =

[∗]n−200 in timeMH(n−2) and such that the site [0]n becomes infected

at time MH(n− 2). Let Ãn−2 = An−2 ∪ [0]n−211; then
〈
Ãn−2

〉
= Qn

and, by Lemma 3.12 case d = 2, TQn(Ãn−2) = MH(n− 2) + n,

(2) Let An−3 be a set that internally spans the hypercube Qx
n−3 for x =

[∗]n−3000 in time MH(n − 3) and such that the site [0]n becomes

infected at time MH(n− 3). Let Ãn−3 = An−3 ∪ [0]n−3110∪ [1]n (note

that we require n ≥ 5 here so that the distance between [0]n−3110 and

[1]n is ≥ 3). Then clearly
〈
Ãn−3

〉
= Qn. The set of sites infected

after MH(n− 3) steps is [∗]n−3000 ∪ [0]n−3110 ∪ [1]n. By Lemmas 3.8

and 3.11, all neighbours y of [1]n−10 having norm ‖y‖110 = n − 4,

‖y‖010 = n − 3 or ‖y‖100 = n − 3 (i.e., all sites at distance two from

[1]n in [∗]n−10), become infected at time exactly MH(n − 3) + n − 2,

so at time MH(n− 3) + n− 2 the only infected site in [∗]n−11 is [1]n.

Thus by Lemma 3.12 it takes n− 1 more steps to fully infect Qn, and

so TQn(Ãn−3) = MH(n− 3) + 2n− 3.

Now let us prove an upper bound on MH(n), i.e.,

MH(n) ≤ max

MH(n− 2) + n,

MH(n− 3) + 2n− 3.

Let A be a set spanning the hypercube Qn for n ≥ 5. Let

Q0 = Q
xi1
i1
⊂ Q

xi2
i2
⊂ . . . ⊂ Q

xit−1

it−1
⊂ Q

xit
it

= Qn
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be a building sequence of the hypercube. Let Qzm1
m1 , Q

zm2
m2 , . . . , Q

zmt−2
mt−2 , Q

zmt−1
mt−1

be the cubes that merge with cubes Q
xij
ij

as in the statement of Lemma 3.4.

Recall that for each 1 ≤ j ≤ t − 1 we have ij ≥ mj. As adding sites to a

set that spans Qn cannot increase its spreading time we may assume that A

is a minimal under containment set spanning Qn. Therefore it−1 < n. Let us

consider the possible scenarios of the infection process started from A.

(1) If it−1 ≤ n−2 then, by Lemma 3.5, after at mostMH(it−1) ≤MH(n−

2) time steps both Q
xit−1

it−1
and Q

zmt−1
mt−1 are fully infected. Then, since〈

Q
xit−1

it−1
∪Qzmt−1

mt−1

〉
= Qn, by Lemma 3.12 after at most n more steps

we have percolation. Thus in this case

TQn(A) ≤MH(n− 2) + n.

(2) If it−1 = n−1 and it−2 = n−2 then (since Q
xit−1

it−1
is internally spanned)

we must have some site v ∈ A ∩ Qzmt−2
mt−2 such that d(xit−2 , v) = 1 and〈

Q
xit−2

it−2
∪ v
〉

= Q
xit−1

it−1
. Also, there must exist some site w ∈ A∩Qzmt−1

mt−1

such that
〈
Q
xit−1

it−1
∪ w

〉
= Qn. Note that, since it−2 = n − 2, either

d(xit−2 , w) = 1 or d(xit−2 , w) = 2. Let us consider these situations

separately.

If d(xit−2 , w) = 2 then
〈
Q
xit−2

it−2
∪ w

〉
= Qn which contradicts the

minimality of A, as 〈A \ {v}〉 = Qn.

If d(xit−2 , w) = 1 then, without loss of generality, we have

xit−2 = [∗]n−200, xit−2 ∨ v = [∗]n−10, xit−2 ∨ w = [∗]n−20 ∗ .

Clearly, after at most MH(n − 2) time steps the cube Q
xit−2

it−2
is fully

infected. Then, by Lemma 3.12 case d = 1, after at most (n − 1) −

1 = n − 2 more steps both Q
xit−2

∨v
n−1 and Q

xit−2
∨w

n−1 are fully infected.

Clearly (or, by Lemma 3.12 case d = 0), after one more step we have
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percolation. Thus in this case

TQn(A) ≤MH(n− 2) + (n− 2) + 1 = MH(n− 2) + n− 1.

(3) If it−1 = n− 1, it−2 ≤ n− 3 and d(xit−2 , zmt−2) ≤ 1 then after at most

MH(n−3) time steps both Q
xit−2

it−2
and Q

zmt−2
mt−2 are fully infected. Then,

by Lemma 3.12 case d = 0 or d = 1, after at most it−1 − 1 = n − 2

more time steps Q
xit−1

it−1
is fully infected. Since it−1 = n − 1 we must

have d(xit−1 , zmt−1) ≤ 1 so, again by Lemma 3.12 case d = 0 or d = 1,

after at most n− 1 more time steps we have percolation. Thus in this

case

TQn(A) ≤MH(n− 3) + n− 2 + n− 1 = MH(n− 3) + 2n− 3.

(4) If it−1 = n − 1, it−2 ≤ n − 3, d(xit−2 , zmt−2) = 2 and mt−2 = n − 3

(note that since we assume that mt−2 ≤ it−2 then this condition in

fact implies it−2 = n − 3) then after at most MH(n − 3) time steps

both Q
xit−2

it−2
and Q

zmt−2
mt−2 are fully infected. Then, by Lemma 3.12 case

d = 2, (k, l) = (m − 2,m − 2), after at most it−1 − 1 = n − 2 more

time steps Q
xit−1

it−1
is fully infected. Again, since it−1 = n− 1 we must

have d(xit−1 , zmt−1) ≤ 1 so, again by Lemma 3.12 case d = 0 or d = 1,

after at most n− 1 more time steps we have percolation. Thus in this

case again

TQn(A) ≤MH(n− 3) + n− 2 + n− 1 = MH(n− 3) + 2n− 3.

(5) Finally we consider the case it−1 = n−1, it−2 ≤ n−3, d(xit−2 , zmt−2) =

2 and mt−2 < n− 3. Without loss of generality

xit−1 = [∗]n−10, xit−2 = [∗]it−2 [0]n−it−2 , zmt−2 = [∗]p[0]it−2−p[∗]mt−2−p110,
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with it−2 − p > 0, which follows from mt−2 < n − 3. Again after at

most MH(n− 3) time steps both Q
xit−2

it−2
and Q

zmt−2
mt−2 are fully infected

so let us assume this is the case and see how the process goes from

this point.

Even if we limit our attention only to the initially infected sites

in Q
xit−1

it−1
then, by Lemma 3.8 (the p common ∗ coordinates in xit−2

and zmt−2 do not play any role here), at most two sites in Q
xit−1

it−1
,

s = [1]n−10 with ‖s‖110 = n−3 and t = [1]n−3000 with ‖t‖000 = n−3,

are not yet infected after (n − 1) − 1 = n − 2 additional steps. Let

ỹ ∈ A be such that ỹ ∈ [∗]n−11. Such a ỹ must exist as otherwise no

site in [∗]n−11 would ever become infected. If d(ỹ, s), d(ỹ, t) 6= 2 then

all neighbours of ỹ in [∗]n−11 have their neighbour in [∗]n−10 already

infected at time MH(n − 3) + n − 2 thus at latest at this moment

the infection of the subcube [∗]n−11 starts with ỹ as its “seed” and by

Lemma 3.12 case d = 1 takes at most n− 1 steps so again

TQn(A) ≤MH(n− 3) + n− 2 + n− 1 ≤MH(n− 3) + 2n− 3.

If d(ỹ, s) = 2 or d(ỹ, t) = 2 (which strongly constrains our possi-

ble choices of ỹ) then let y∗ ∈ [∗]n−11 be such that d(y∗, ỹ) = 1,

d(y∗, s) = d(y∗, t) = 3 (we do not require y∗ ∈ A). Note that such a

site can always be found as d(s, t) = 2. Note also that we must have

‖y∗‖011 = n− 4 or ‖y∗‖101 = n− 4. Let w∗ be the neighbour of y∗ in

[∗]n−10. Clearly d(w∗, s) = d(w∗, t) = 2 since w∗ is obtained from y∗

by changing y∗n to 0. Also, ‖w∗‖010 = n− 4 or ‖w∗‖100 = n− 4.

Again by Lemma 3.8, in the process started from Q
xit−2

it−2
∪Qzmt−2

mt−2

and constrained to Q
xit−1

it−1
, w∗ becomes infected after at most (n−1)−

2 = n − 3 steps. From this follows that y∗ becomes infected after at

most n− 2 steps (recall that it is a neighbour of w∗ and of an initially

infected site ỹ). If n ≥ 6 then, also by Lemma 3.8, all sites v∗ in

[∗]n−10 at distance 2 from y∗ must have either 0 < ‖v∗‖010 ≤ n − 3,
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0 < ‖v∗‖100 ≤ n − 3, ‖v∗‖000 = n − 4 or ‖v∗‖110 = n − 4. Thus

they are as well infected after at most n − 2 steps. If n = 5 then we

could additionally have v∗ ∈ {00010, 00100}. However, these two sites

would become infected by Q
xit−2

it−2
∪Qzmt−2

mt−2 on the first step. Therefore

the infection of the subcube [∗]n−11 starts in the worst case after

MH(n−3)+n−2 steps with y∗ as its “seed” and it spreads undisturbed

by the infection state of s and t. Thus by Lemma 3.12 case d = 1 it

can take at most n− 1 additional time steps. Thus once again

TQn(A) ≤MH(n− 3) + n− 2 + n− 1 ≤MH(n− 3) + 2n− 3.

This completes the proof.

�

From Lemma 3.13 and Theorem 3.14 we get the following corollary.

Corollary 3.15. We have MH(1) = 0, MH(2) = 1, MH(3) = 3 and for

n ≥ 4, MH(n) = MH(n− 3) + 2n− 3.

�

We are now ready to prove our main result.

Proof of Theorem 3.1. The theorem holds for n ∈ {1, 2, 3}. Assume that

it holds for n− 3. By Corollary 3.15 we obtain

MH(n) = MH(n− 3) + 2n− 3

=

⌊
(n− 3)2

3

⌋
+ 2n− 3

=

⌊
n2

3
− 2n+ 3

⌋
+ 2n− 3 =

=

⌊
n2

3

⌋
.

�
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3.4. Further questions

In this chapter we found the maximum percolation time in the n-dimensional

hypercube under 2-neighbour bootstrap percolation. Another very interesting

question asks how many small percolating subsets can be found in a hyper-

cube. A simple result from Balogh and Bollobás [8] says that in 2-neighbour

bootstrap percolation every percolating set in Qn must contain at least dn
2
e+1

sites so the question can be formulated as follows.

Problem 3.16. For ε > 0 what is the number of percolating sets of size

(1
2

+ ε)n in Qn?

This problem can also be interpreted as determining the probability that

a random (1
2

+ ε)n-set of vertices of Qn percolates. Note that in our proof of

the value of MH(n) we show that the maximum spreading time is obtained for

a set of size roughly 2n
3
.



CHAPTER 4

Bootstrap percolation on infinite trees
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4.1. Introduction

In this chapter we continue our investigations of the r-neighbour bootstrap

percolation models, but we completely change the character of the questions

we look at. From now on, they will have a probabilistic character and instead

of grid-like graphs, we shall look at infinite trees.

For an infinite tree T , the critical probability for r-neighbour bootstrap

percolation, denoted pc(T, r), is defined as

pc(T, r) = inf{p : Pp(T percolates in r-neighbour bootstrap percolation) > 0}.

Note that this definition of pc(T, r) is different from that given in (0.1) for

general graphs. This modification is motivated by the fact that for a general

infinite tree the exact probability of percolation could be highly affected by

finite, yet difficult to infect from the outside, subtrees. The existence of such

substructures does not matter when we care only about the probability of

percolation being positive.

For every d ≥ 1, let Td denote the infinite (d + 1)-regular tree. Balogh,

Peres and Pete [13], expanding the work of Chalupa, Leath and Reich [27],

gave a formula for pc(Td, r) showing, in particular, that for any d ≥ 1 and

r ≥ 2 we have pc(Td, r) > 0. They also showed that every infinite tree T

with branching number br(T ) < r has the property that pc(T, r) = 1. (The

branching number is defined in Section 4.2.) Given these results, the question

was raised of finding the smallest critical probability among all trees with a

fixed branching number. With a simple example of a Galton–Watson tree it

was shown in [13] that for b ≥ r a (b + 1)-regular tree does not, in general,

minimize the critical probability for r-neighbour bootstrap percolation among

all trees with branching number b. Defining a function fr, for each r ≥ 2, by

fr(b) = inf{pc(T, r) : br(T ) ≤ b and T has bounded degree},

Balogh, Peres and Pete [13] posed the following two problems:

(1) Is fr(b) strictly positive for all real b ≥ 1?
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(2) Is fr(b) continuous apart from at b = r?

In this chapter we answer both of these questions by showing that fr(b) is a

step-function. More precisely, in Section 4.2, we prove the following theorem.

Theorem 4.1. For all r ≥ 2 and b ≥ r, fr(b) = 0.

Balogh, Peres and Pete [13] showed that fr(b) = 1 for b < r. To briefly

describe their proof, let us recall the following definition from [13], which we

shall also find very useful in Chapter 5.

Definition 4.2. Let G be a graph and k ∈ N. A finite or infinite set

of vertices, F ⊂ V (G), is called a k-fort if every vertex in F has at most k

neighbours in V (G) \ F .

If G contains an (r − 1)-fort, F , with all vertices initially healthy, then G

does not percolate in the r-neighbour bootstrap process. Moreover, the set of

eternally healthy vertices is an (r−1)-fort, so a vertex remains healthy forever

if and only if it belongs to a healthy (r − 1)-fort.

In [13] the authors proved that if a tree T has br(T ) = b < r then T

contains infinitely many (r− 1)-forts of bounded size. Then, infecting vertices

initially with some p < 1, almost surely we obtain an initially healthy (r− 1)-

fort which, by the definition, remains healthy forever and prevents percolation.

Combining Theorem 4.1 with the result of Balogh, Peres and Pete, we have

fr(b) =

1, if b < r,

0, otherwise.

It is worth noticing that we shall prove Theorem 4.1 by producing trees

with arbitrarily small, but positive, critical probabilities.

This chapter is joint work with Béla Bollobás, Karen Gunderson, Cecilia

Holmgren, and Svante Janson. The chapter is based on Section 2 of our forth-

coming paper, [20].
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4.2. Trees with arbitrarily small critical probability

In this section, a construction is given for families of infinite trees with a

fixed branching number and arbitrarily small critical probability.

The branching number is one of the most important invariants of infinite

trees which we shall now define formally. (For further information, see, for

example, Lyons [41].) Given a rooted tree T , for every edge e in the tree,

let |e| denote the number of edges (including e) in the path from e to the

root. The branching number of a tree T , denoted br(T ), is the supremum of

real numbers λ ≥ 1 such that there exists a positive flow in T from the root

to infinity with capacities at every edge e bounded by λ−|e|. For example, a

binary tree in which every vertex has exactly 2 children has branching number

2. However, in Figure 4.1 we see a tree with 2n vertices in the n-th level and

branching number 1.

. . . . . . . . .

Figure 4.1. A tree with an exponentially growing size of levels
and branching number 1.

It is easily seen that this value does not depend on the choice of the root.

Though in this chapter, only infinite trees are considered, let us mention that

for a finite tree T we define br(T ) = 0.

For b ≥ 2, let Tb denote the infinite (b+1)-regular tree. As usual, for n ≥ 1

and p ∈ [0, 1], write Bin(n, p) for a binomial random variable with parameters

n and p. In [27], it was shown that, in r-neighbour bootstrap percolation, for

each b ≥ r, the critical probability pc(Tb, r) is equal to the supremum of all p

for which the fixed-point equation

x = P(Bin(b, (1− x)(1− p)) ≤ b− r) (4.1)
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has a solution x ∈ [0, 1). Note that x = 1 is always a solution to (4.1).

An interpretation of equation (4.1) is as follows. The complete occupation

of Tb obeys the 0 − 1 law and can be shown to be stochastically equivalent

to complete occupation of a rooted b-ary tree, that is, a rooted infinite tree

in which every vertex has exactly b descendants (so all vertices have degree

b + 1 except the root which has degree b). For b ≥ r the root of a b-ary tree,

conditioned on being initially healthy, remains healthy forever iff at least b−r+

1 of its children are initially healthy and remain healthy forever in the infection

process limited to the subtrees rooted at them. Let x be the probability that,

conditioned on being initially healthy, the root does not remain healthy forever.

Then, one can show that x is the smallest solution to equation (4.1) in [0, 1].

In particular, it was noted in [27] that pc(Tb, 2) = 1− (b−1)2b−3

bb−1(b−2)b−2 and later in

[13] that pc(Tb, b) = 1− 1
b
. It can be shown that for every fixed r, as b tends to

infinity, pc(Tb, r) =
(
1− 1

r

) ( (r−1)!
br

)1/(r−1)

(1 + o(1)). This calculation is given

in Lemma 5.10 in the next chapter.

From equation (4.1) we see immediately that pc(Tb, r) > 0 for any b ≥ r ≥

2. In [13] the authors asked whether there exists εb,r > 0 such that for any

tree T with branching number br(T ) = b we have pc(T, r) ≥ εb,r, answering

this question affirmatively for r > b with εb,r = 1. Note that the question

about the maximum of pc(T, r) among trees T with br(T ) = b is trivial. For

all values of b ≥ 1 this maximum is equal to 1 as a tree T with br(T ) = b ≥ 1

might have infinitely many leaves which would all need to be initially infected

for percolation to occur.

With an explicit construction of a family of infinite trees with bounded

degree we shall now show that fr(b) = 0 for b ≥ r. The condition that the tree

T has bounded degree is included in the definition of the function fr(b) since

one can easily construct infinite trees with unbounded degree and branching

number b, and such that their critical probability is 0. We show an example

of such construction at the end of this section.
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Given b ≥ r ≥ 2 and p ∈ (0, 1), we shall show that there is an integer d and

an infinite tree with branching number b where every vertex has either degree

d + 1, d + 2, b + 1 or b + 2 and such that, infecting vertices with probability

p, the tree almost surely percolates. The idea of the proof is that, when d is

sufficiently large, vertices that are the roots of some number of levels of a copy

of Td are very likely to eventually become infected and these finite trees can

be arranged within an infinite tree to cause the percolation of the entire tree.

First, it is shown that, for the infection threshold r and for d large enough,

we can in fact obtain an arbitrarily small critical probability pc(Td, r).

Lemma 4.3. For each integer r ≥ 2 and d ≥ r, pc(Td, r) ≤ r/d.

Proof. Fix r ≥ 2, d ≥ r and p > r/d. To prove this result, it suffices to

show that for all x ∈ [0, 1) we have P(Bin(d, (1 − x)(1 − p)) ≤ d − r) > x, or

alternatively, P(Bin(d, (1− x)(1− p)) ≥ d− r+ 1) < 1− x. Then there are no

solutions of the fixed point equation (4.1) in [0, 1) and so pc(Td, r) ≤ p.

Recall the following Chernoff-type inequality: if X ∼ Bin(n, p) and m ≥

np, then P(X ≥ m) ≤ e−np(enp/m)m (see, e.g., Appendix A in Alon and

Spencer [6]). Since dp > r, we have d(1−x)(1−p) ≤ d−dp < d−r < d−r+1,

and thus

P(Bin(d, (1− x)(1− p)) ≥ d− r + 1)

≤ ed−r+1−d(1−x)(1−p)
(
d(1− x)(1− p)

d− r + 1

)d−r+1

= ed−r+1−d(1−x)(1−p)
(
d(1− p)
d− r + 1

)d−r+1

(1− x)d−r(1− x)

≤ ed−r+1−d(1−x)(1−p)
(

1− dp− r + 1

d− r + 1

)d−r+1

e−x(d−r)(1− x)

≤ exp [d− r + 1− d(1− x)(1− p)− (dp− r + 1)− x(d− r)] (1− x)

= exp(−x(dp− r))(1− x)

< 1− x,
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for all x ∈ [0, 1). Thus, there are no solutions of equation (4.1) in [0, 1) and

hence pc(Td, r) ≤ p. �

As a consequence of Lemma 4.3, for r fixed, limd→∞ pc(Td, r) = 0.

In the next lemma we show that, for any ε ∈ (0, 1), there is a large number

nε such that if we initially infect vertices in the first nε levels of Td with

probability p ≥ pc(Td, r), then the root of Td will become infected in the r-

neighbour bootstrap process with probability at least 1 − ε. For any d ≥ 1,

n ≥ 0, let T nd be the first n + 1 levels of a rooted, (d + 1)-regular tree. That

is, the root has d + 1 children, there are (d + 1)dn−1 leaves and every vertex

except the root and the leaves has exactly d children.

Lemma 4.4. For d ≥ r ≥ 2, p > pc(Td, r), and n ≥ 1, let the vertices of T nd
be infected independently with probability p > 0. For the r-neighbour bootstrap

process,

Pp(the root of T nd is eventually infected)→ 1

as n→∞.

Proof. Note that if p > pc(Td, r) then for r-neighbour bootstrap percola-

tion on Td, using a 0− 1 law argument, Pp(Td percolates) = 1 and hence

Pp(root is eventually infected) = Pp(∪t≥0{root is infected by time t}) = 1.

Using induction, one can show that the root is infected by time t exactly when

the eventual infection of the root depends on the infection status of vertices in

the first t levels. Indeed, if the root is infected at time 0, this event depends

only on the initial infection of the root itself. For t ≥ 1, if the root becomes

infected at time t, then at least r of its children are infected at time t− 1. By

induction this event depends only on vertices at distance at most t − 1 from

the children of the root and hence at distance at most t from the root itself.

Therefore, lim
t→∞

Pp(root infected based on first t levels) = 1. �
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We are now ready to prove Theorem 4.1 with the construction given in the

proof of Theorem 4.5 below. For simplicity we give a construction for integer

values of b and later describe how to modify it for b ∈ R.

Theorem 4.5. For every pair of integers r ≥ 2 and b ≥ r and every

p ∈ (0, 1), there is an infinite tree T with bounded degree and br(T ) = b

satisfying pc(T, r) < p.

Proof. Fix p ∈ (0, 1) and integers r, b with b ≥ r. Let d > max{r/p, b} so

that, by Lemma 4.3, p > r/d ≥ pc(Td, r). Let {ni}i and {mi}i be sequences of

integers, all to be defined precisely later in the proof. Our tree is constructed

level-by-level, depending on these parameters; it will be shown that the se-

quences {ni}i and {mi}i can be chosen appropriately so that the resulting tree

has the desired properties.

Begin with a copy of T n1
d . To each leaf of this tree attach a copy of Tm1

b .

Then to each leaf of the resulting tree attach a copy of T n2
d and then to each

new leaf attach a copy of Tm2
b . Continue in this manner, alternating with

(d+ 1)-regular trees and (b+ 1)-regular trees of depths given by the sequences

{ni}i and {mi}i respectively and let T be the resulting infinite tree. We would

like to show that there is a suitable choice for the sequences {ni} and {mi} so

that br(T ) = b and pc(T, r) < p (in other words, Pp(T percolates) > 0).

For each ` ≥ 1, let N` =
∏`−1

i=1(d + 1)dni−1(b + 1)bmi−1 be the number

of copies of T n`d added in the (2` − 1)-th step of the construction and let

v`1, v
`
2, . . . , v

`
N`

be the roots of those copies of T n`d and let T n`d,i denote the copy

of T n`d rooted at v`i . Define t` =
∑`−1

i=1(ni+mi) to be the depth of these vertices

in T . For each ` ≥ 1 and i ∈ {1, . . . , N`}, consider the event

A`,i = {v`i becomes infected based only on infection of vertices in T n`d,i}.

Using Lemma 4.4, choose n` to be large enough so that P(A`,i) ≥ (1/2)1/N` .

Note that N` does not depend on n`, and that n` only depends on ni and

mi for i < `. Set A` = ∩iA`,i. If A` occurs, then all vertices in level t` are
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eventually infected and hence all vertices in levels at most t` are eventually

infected. Further, if infinitely many events {A`}` occur, then T percolates.

For ` fixed, since the events {A`,i}i are independent, by the choice of n` we

have

P(A`) = P(∩iA`,i) =

N∏̀
i=1

P(A`,i) ≥
N∏̀
i=1

(
1

2

)1/N`

=
1

2
.

By the Borel-Cantelli lemma (see, for example, Lemma 2 in Chapter VIII of

Feller [29]), since the events {A`} are independent and
∑

` P(A`) ≥
∑

`
1
2

=∞,

then P(T percolates) = 1.

Up to this point, no conditions have been imposed on the sequence {mi}i
and these can be chosen in such a way that br(T ) = b. Note that, since d was

chosen with d > b, every vertex of T has at least b children and so br(T ) ≥ b.

By choosing the values of mi recursively, depending on the sequence {ni}, it

is shown below that br(T ) ≤ b.

For every n, let Ln be the n-th level of T , i.e., the vertices at distance n

from the root of T . A standard upper bound on the branching number of an

arbitrary tree gives br(T ) ≤ lim inf |Ln|1/n.

For ` ≥ 1, consider the level t`+1 =
∑`

i=1(ni+mi) with
∏`

i=1(d+1)dni−1(b+

1)bmi−1 vertices. Clearly, if m` ≥ `2 is large enough then

(
d

b

)∑`
i=1 ni
t`+1

≤ 1 +
1

2`

and `/t`+1 → 0 as `→∞ (note that m` only depends on ni for i ≤ ` and mi

for i < `). Then, the number of vertices in level t`+1 satisfies

|Lt`+1
| =

∏̀
i=1

(d+ 1)dni−1(b+ 1)bmi−1

= bt`+1

(
d

b

)∑`
i=1 ni

(
1 +

1

d

)`(
1 +

1

b

)`
≤ bt`+1

(
1 +

1

2`

)t`+1
(

1 +
1

d

)`(
1 +

1

b

)`
.

Thus, lim inf |Ln|1/n ≤ b and so br(T ) = b. �
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For simplicity, the proof of Theorem 4.5 assumes that b is an integer. For

any real b ≥ r, the construction can be easily modified to give an infinite

tree with branching number b and arbitrarily small critical probability. Given

b ≥ r let b′ = bbc ≥ r. Then we build our tree alternating (d+ 1)-regular and

(b′ + 1)-regular trees with the heights mi of the (b′ + 1)-regular trees chosen

appropriately to obtain lim inf |Ln|1/n = b.

By Theorem 4.5, for b ≥ r, fr(b) = 0, completing the proof of Theorem

4.1.

The construction in the proof of Theorem 4.5 can also be modified to

produce examples of infinite trees with branching number b, unbounded degree

and critical probability 0. Indeed, set ni ≡ 1, and for each ` ≥ 1, at step 2`−1

of the construction replace d by d`, chosen to be large enough so that for the

corresponding events A`,i,

P(A`,i) = P(Bin(d` + 1, 1/`) ≥ r) ≥
(

1

2

)1/N`

.

The sequence {mi}i, giving the number of levels of the (b + 1)-regular trees,

can be chosen to ensure br(T ) = b. The resulting infinite tree T has branching

number b, unbounded degree and pc(T, r) = 0.



CHAPTER 5

Bootstrap percolation on Galton–Watson trees
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5.1. Introduction

In this chapter we continue our studies of bootstrap percolation on infinite

trees. Motivated by the non-homogeneous nature of trees with arbitrarily

small critical probabilities constructed in the proof of Theorem 4.5 we also

study a well-known family of well-behaved trees: Galton-Watson trees. For a

non-negative integer-valued distribution ξ, let Tξ be the Galton–Watson tree

with offspring distribution ξ (a more formal definition is given in Section 5.2).

We shall see in Section 5.3 that pc(Tξ, r) is almost surely a constant (depending

on the distribution ξ but not on the realization Tξ); we let pc(Tξ, r) denote also

this constant, without risk of confusion. We define a new function fGWr (b) by

fGWr (b) = inf{pc(Tξ, r) : E(ξ) = b,P(ξ = 0) = 0}. (5.1)

The condition that P(ξ = 0) = 0 is included since any finite tree percolates

with positive probability if the probability of initial infection, p, is positive.

For this reason, we consider only offspring distributions for which the resulting

tree is almost surely infinite. While the branching numbers of infinite trees

can be difficult to determine, for Galton–Watson trees, Lyons [41] showed that,

almost surely, br(Tξ) = E(ξ).

In Section 5.3, we shall investigate the function fGWr (b) and we shall show

it to be positive for all b and r. That is, the value of E(ξ) immediately leads

to a non-trivial lower bound on pc(Tξ, r). We shall also show that our bound

is tight up to a factor of O(b).

Theorem 5.1. For b ≥ 1, let the function fGWr (b) be defined as in (5.1).

(1) If r > b ≥ 1 then fGWr (b) = 1.

(2) For r ≥ 2 there are constants cr and Cr such that if b ≥ r then

cr
b
e−

b
r−1 ≤ fGWr (b) ≤ Cre

− b
r−1 .

Note that the b-ary tree is a Galton–Watson tree given by ξ with P(ξ =

b) = 1. The b-ary tree has the same critical probability as the (b + 1)-regular
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tree Tb. By Theorem 5.1, for large b, the value of fGWr (b) is extremely far

from the value pc(Tb, 2) ∼ 1
2b2

, obtained in [13]. Moreover, for the family of

offspring distributions which we use to bound fGWr (b) from above the variance

grows exponentially in b. This discrepancy suggests that offspring distributions

highly concentrated around their means might yield much higher values for

the critical probability. This is in fact true as shown by the following theorem,

proved in Section 5.3.2.1.

Theorem 5.2. For each r ≥ 2 and α ∈ (0, r − 1), there exists a constant

cr,α > 0 such that for any offspring distribution ξ with E(ξ1+α) <∞ we have

pc(Tξ, r) ≥ cr,α
(
E(ξ1+α)

)−1/α
.

Also, for each r ≥ 2 there exists a constant Ar > 0 such that

pc(Tξ, r) ≤ crE
(

1

ξr/(r−1)

)
.

The lower bound in Theorem 5.2 is proved directly for α /∈ N. Given r, as

α→ n ∈ {1, . . . , r− 2} the constants cr,α obtained in the theorem converge to

cr,n > 0 and hence by the monotone convergence theorem, the theorem holds

for α = n.

In fact, Theorem 5.2 holds also for r = 2 and α = 1 as shown by the final

result in this chapter, given in Section 5.3.2.2. Theorem 5.3, apart from a

sharp lower bound on pc(Tξ, 2) based on the second moment of ξ, also gives

additional lower bounds on the critical probability in 2-neighbour bootstrap

percolation, as well as a sharp upper bound on pc(Tξ, 2) based on the second

negative moment of ξ. Our bounds are sharp since the constants in them

cannot be improved, as shown by the critical probability for regular trees.

Theorem 5.3. Let Tξ be the Galton–Watson tree of an offspring distribu-

tion ξ. Then

pc(Tξ, 2) ≥ max

{
1− 1

2P(ξ = 2)
,max
k≥3

{
1− (k − 1)2k−3

kk−1(k − 2)k−2P(ξ = k)

}}
,

(5.2)
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and

pc(Tξ, 2) ≤ E
(

1

(ξ − 1)(2ξ − 3)

)
≤ E

(
4

ξ2

)
. (5.3)

Additionally, if ξ has the property that E(ξ2) <∞, then

pc(Tξ, 2) ≥ 1

2E(ξ(ξ − 1))− 3
≥ 1

2Eξ2
. (5.4)

Balogh, Peres and Pete [13] noted that as b→∞, the critical probability

for the regular tree, Tb, is pc(Tb, 2) ∼ 1
2b2

, which matches the bounds given in

Theorem 5.3.

Finally, in Section 5.3.3 we shall present some examples of natural classes

of Galton–Watson trees for which the critical probability for bootstrap per-

colation can be computed exactly and compare these to the bounds given by

Theorem 5.3. To conclude, in Section 5.4, we state a few open questions and

conjectures.

This chapter is again joint work with Béla Bollobás, Karen Gunderson,

Cecilia Holmgren, and Svante Janson, with the exception of Section 5.3.2.1

which is my joint work with Karen Gunderson only. The chapter is based on

Section 3 of our forthcoming paper, [20].

5.2. Definitions, notation, and initial observations

In Chapter 4 we showed that the branching number br(T ) of an infinite

tree T does not lead to any nontrivial lower bound on the critical probability

pc(T, r), except when br(T ) < r and pc(T, r) = 1, as shown in [13]. The trees

constructed in the proof of Theorem 4.5 to show that if b ≥ r, then fr(b) = 0,

are highly non-homogeneous and the irregularities in their construction seem

crucial to their small critical probabilities. In this section we limit our attention

to the well-studied family of Galton–Watson trees, for which these anomalies

do not occur.

A Galton–Watson tree is the family tree of a Galton–Watson branching

process. For a non-negative integer-valued distribution ξ, called the offspring

distribution, we start with a single root vertex in level 0 and at each generation
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n = 1, 2, 3, . . . each vertex in level n − 1 gives birth to a random number of

children in level n, where the number of offspring of each vertex is distributed

according to the distribution ξ and is independent of the number of children

of any other vertex. This process can be formalized to define a probability

measure on the space of finite and infinite rooted trees, and Tξ is used to de-

note a randomly chosen Galton–Watson tree with offspring distribution ξ. As

previously mentioned, if P(ξ = 0) > 0 then Tξ is finite with positive probabil-

ity. Thus in this chapter we limit our attention to offspring distributions with

P(ξ = 0) = 0, for which Tξ is almost surely infinite.

While the critical probability pc(Tξ, r) is a random variable, which could

take a range of values, depending on the tree Tξ, it can be shown that in

the space of Galton–Watson trees with offspring distribution ξ, conditioned

on Tξ being infinite, pc(Tξ, r) is almost surely a constant. While this involves

standard applications of results and techniques in the theory of branching

processes, the details are given in this section for completeness.

For any rooted tree T , with root v0, let {Tw : w ∈ N(v0)} be the collection

of rooted sub-trees of T whose roots are the immediate descendants of v0; that

is, Tw is the connected component of T − v0 containing w and rooted at w.

A property A of rooted trees is called inherited if every finite tree T has this

property and, furthermore, T has the property A only if for every w adjacent

to the root, Tw has property A. Now we note a general zero-one property of

Galton–Watson branching processes. The next proposition is Proposition 5.6

in [42].

Proposition 5.4. Every inherited property of a Galton–Watson tree has

conditional probability either 0 or 1 given nonextinction.

Proof. Let T be the set of trees possessing a given inherited property.

Again, for any rooted tree T , with root v0, let {Tw : w ∈ N(v0)} be the

set of rooted sub-trees of T whose roots are the immediate descendants of

v0. For an offspring distribution ξ, let fξ(x) =
∑

k≥0 P(ξ = k)xk be the

probability generating function of ξ. It is a well known fact in the branching
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processes theory that the extinction probability of the process is given by

q = limn→∞ f
(n)(0). Also, q and 1 are the only fixed points of fξ. We have

P(T ∈ T ) =
∑
k≥0

P(ξ = k)P(T ∈ T | |N(v0)| = k)

≤
∑
k≥0

P(ξ = k)P(Tw ∈ T for all w ∈ N(v0)| |N(v0)| = k)

by definition of inherited. Since {Tw : w ∈ N(v0)} are i.i.d. given |N(v0)|, the

last quantity above is equal to∑
k≥0

P(ξ = k)(P(T ∈ T ))k = fξ(P(T ∈ T )).

Thus P(T ∈ T ) ≤ fξ(P(T ∈ T )). On the other hand, P(T ∈ T ) ≥ q since

every finite tree is in T . It follows from the observation about the fixed points

of fξ that P(T ∈ T ) ∈ {q, 1}, from which the desired conclusion follows. �

Given p > 0 and r ≥ 2 consider the property

Ap = {Pp(T percolates in the r-neighbour bootstrap process) > 0}.

If T is a Galton–Watson tree then the property Ap is inherited. This is because

every finite tree is initially fully infected with positive probability, and an

infinite Galton–Watson tree is fully infected with positive probability only if

all the subtrees in {Tw : w ∈ N(v0)} are fully infected with positive probability,

and these are also Galton–Watson trees with the same offspring distribution.

Since we consider offspring distributions with P(ξ = 0) = 0, the Galton–

Watson process survives almost surely and we see that the probability that

the Galton–Watson tree Tξ has property Ap is either 0 or 1. By the definition

of critical probability this implies that pc(Tξ, r) is almost surely a constant.

Now we show that we may assume that P(ξ < r) = 0, repeating the

argument observed earlier in [13]. If there is a k < r such that P(ξ = k) > 0,

then Tξ almost surely contains infinitely many pairs of vertices u, v such that

v is a child of u and deg(u) = deg(v) = k + 1. Then, if we initially infect

vertices of Tξ independently with some probability p < 1, almost surely we
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obtain such a pair with both u and v initially healthy, in which case {u, v} is

an initially healthy (r− 1)-fort. Thus Tξ almost surely does not percolate and

so pc(Tξ, r) = 1.

Therefore from now on we assume that P(ξ < r) = 0; in particular, E(ξ) =

b ≥ r. In this case, almost surely, Tξ contains no finite (r − 1)-forts.

In [13], Balogh, Peres and Pete characterize the critical probability for a

particular Galton–Watson tree in terms of the probability that the root of the

tree remains healthy in the bootstrap process. The details are given here for

arbitrary Galton–Watson trees.

For any tree T with root v0, r ≥ 2 and p ≥ 0, initially infecting vertices

with probability p, define

q(T, p) = Pp(v0 is in a healthy (r − 1)-fort),

the probability that v0 is never infected. Since, in general, the random variable

q(Tξ, p) depends on the tree Tξ, consider its expected value, over the space of

random Galton–Watson trees with offspring distribution ξ and set

q(p) = ETξ(q(Tξ, p)).

In what follows, it is shown that q(p) > 0 iff p < pc(Tξ, r).

Given a tree T with root v0, denote the children of the root by v1, v2, . . . , vk

and the corresponding sub-trees by T1, T2, . . . , Tk. The root v0 is contained in

an infinite healthy (r − 1)-fort iff v0 is initially healthy and at least k − r + 1

of its children are themselves contained in an infinite healthy (r − 1)-fort in

their sub-tree Ti. Since these k events are mutually independent,

q(T, p) = (1− p)
∑

X⊆[1,k]
|X|≤r−1

∏
i∈X

(1− q(Ti, p))
∏
j /∈X

q(Tj, p)

 .
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If T is a Galton–Watson tree with offspring distribution ξ then, given that the

root has exactly k children, the sub-trees T1, T2, . . . , Tk are also such (indepen-

dent) trees. Thus,

q(p) = (1− p)
∑
k≥r

P(ξ = k)
∑
i≤r−1

(
k

i

)
(1− q(p))iq(p)k−i

= (1− p)
∑
k≥r

P(ξ = k)P(Bin(k, 1− q(p)) ≤ r − 1). (5.5)

Define a function hr,p(x), depending implicitly on the distribution ξ, by

hr,p(x) = (1− p)
∑
k≥r

P(ξ = k)P(Bin(k, 1− x) ≤ r − 1).

By equation (5.5), q(p) is a fixed point of hr,p(x). Note that this is closely

related to the fixed point equation (4.1) with x in place of (1− p)(1− x).

The function hr,p(x) is continuous on [0, 1], 0 ≤ hr,p(x) ≤ (1− p) and since

d

dx
P(Bin(k, 1− x) ≤ r − 1) = kP(Bin(k − 1, 1− x) = r − 1) > 0 (5.6)

for all k ≥ r and 0 < x < 1, hr,p is strictly increasing in [0, 1] unless p = 1.

Note that for any p, hr,p(0) = 0 and so 0 is a fixed point of the function.

Using standard techniques for branching processes, we show that the critical

probability pc(Tξ, r) is given as follows in terms of the function hr,p(x).

Lemma 5.5. The critical probability pc(Tξ, r) is almost surely given by

pc(Tξ, r) = inf{p : x = hr,p(x) has no solution for x ∈ (0, 1]}.

The proof of Lemma 5.5 is given by Claim 5.6 and Lemma 5.7 below.

Claim 5.6. For every p, q(p) is the largest fixed point of hr,p(x) in [0, 1].

Proof. If p = 1 then hr,p(x) = 0 for all x ∈ [0, 1] and so x = 0 is the only

fixed point of hr,p(x) in [0, 1]. Thus q(p), itself being such a fixed point, must

be equal to 0.
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Therefore assume that p < 1. For any tree T , let T n be the first n levels

of T and define

qn(T, p) = Pp(v0 is in a healthy (r − 1)-fort of T n)

and qn(p) = ETξ(qn(Tξ, p)).

Since the definition of a fort depends only on the neighbourhood of each

vertex, a sub-tree F ⊆ T is an (r − 1)-fort iff for every n ≥ 0, F ∩ T n is an

(r − 1)-fort in T n; furthermore, the latter event is decreasing in n. Therefore,

qn(T, p)↘ q(T, p) as n→∞ and so also qn(p)↘ q(p).

Following the same recursive argument as before, we see that for every

n ≥ 0, qn+1(p) = hr,p(qn(p)). Note also that for any tree T ,

q0(T, p) = Pp(v0 is initially healthy) = 1− p.

Suppose that x0 is a fixed point of hr,p(x). Then, x0 = hr,p(x0) ≤ 1 − p =

q0(p). Proceeding by induction, suppose that for some n ≥ 0, x0 ≤ qn(p).

Since hr,p(x) is increasing, x0 = hr,p(x0) ≤ hr,p(qn(p)) = qn+1(p). Therefore,

x0 ≤ limn→∞ qn(p) = q(p), completing the proof. �

There is a small difference between the event that the root of a tree T is

the root of a healthy (r − 1)-fort and the event that some other vertex of T

is the root of a healthy (r − 1)-fort. Fix a vertex v in T that is not the root

and consider the probability that v is the root of a healthy fort, in T . Since

v already has a neighbour (its parent) not in the fort, then v is the root of a

healthy (r − 1)-fort iff v has at most r − 2 children that are not, themselves,

roots of healthy (r − 1)-forts. Thus, for T = Tξ, conditioning on v being a

vertex of the tree,

ETξ(Pp(v is the root of a healthy (r − 1)-fort) | v ∈ V (Tξ))

= (1− p)
∑
k≥r

P(ξ = k)P(Bin(k, 1− q(p)) ≤ r − 2)

= hr−1,p(q(p)).

(5.7)
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Since for all s ≥ 1 and p < 1 we have hs,p(x) = 0 iff x = 0 then in particular,

q(p) = 0 iff hr−1,p(q(p)) = 0.

Lemma 5.7. In the space of Galton–Watson trees for a fixed distribution

ξ, if q(p) > 0, then Pp(Tξ percolates) = 0 almost surely. If q(p) = 0, then

Pp(Tξ percolates) = 1 almost surely.

Proof. If p = 1 then q(p) = 0 and clearly Pp(T percolates) = 1. So

assume that p < 1.

First, assume that q(p) > 0, with the aim of showing that

ETξ(Pp(Tξ percolates)) = 0.

By equation (5.7), there is a δ > 0 be such that, for every vertex v,

ETξ(Pp(v is in a healthy (r − 1)-fort|v ∈ V (Tξ))) ≥ δ.

Since ξ ≥ r almost surely, at level t in the tree, there are at least rt vertices.

The events that these vertices are roots of healthy (r−1)-forts are independent;

thus, for every t

ETξ(Pp(every vertex of Tξ at level t is eventually infected)) ≤ (1− δ)rt → 0

as t→∞. Thus, ETξ(Pp(Tξ percolates)) = 0 and hence the set

{T : Pp(T percolates) > 0}

has measure 0.

On the other hand, suppose that ETξ(Pp(Tξ percolates)) < 1 in hopes of

showing that q(p) > 0. Then, the set of trees

{T : Pp(T percolates) < 1} = {T : Pp(T contains a healthy (r − 1)-fort) > 0}

has positive measure.

Even though the number of infinite trees is uncountable, each tree has

only a countable number of vertices and these can be thought of as a subset
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of a common countable set of vertices. Then, there is a vertex v for which,

conditioning on v being a vertex of the tree,

ETξ(Pp(v is the root of a healthy (r − 1)-fort) | v ∈ V (Tξ)) > 0.

That is, either q(p) > 0 (if v = v0) or hr−1,p(q(p)) > 0. In either case, q(p) > 0,

which completes the proof. �

Thus, combining Claim 5.6 and Lemma 5.7, Lemma 5.5 holds and the

critical probability is almost surely given by

pc(Tξ, r) = inf{p : x = hr,p(x) has no solution x ∈ (0, 1]}. (5.8)

With equation (5.8) in mind, we define the following functions.

Definition 5.8. For each r ≥ 2 and k ≥ r, define

grk(x) =
P(Bin(k, 1− x) ≤ r − 1)

x
=

r−1∑
i=0

(
k

i

)
xk−i−1(1− x)i

and for any offspring distribution ξ, set

Gr
ξ(x) =

∑
k≥r

P(ξ = k)grk(x).

Using equation (5.8), the critical probability for Tξ can be characterized in

terms of the function Gr
ξ(x). Note that for p = 0, the equation hr,p(x) = x has

a solution at x = 1 and for p = 1, the only solution to hr,p(x) = x is x = 0.

Since hr,p(x) = x(1 − p)Gr
ξ(x), then for p < 1, x = hr,p(x) has a solution in

(0, 1] iff Gr
ξ(x) = 1

1−p has a solution in (0, 1]. Note that we have Gr
ξ(1) = 1,

and so for p > 0, (1− p)Gr
ξ(1) < 1. Since Gr

ξ(x) is continuous, by Lemma 5.5,

if p < pc(Tξ, r) then supx∈(0,1]G
r
ξ(x) ≥ 1

1−p and if pc(Tξ, r) < p < 1 then for

every x ∈ (0, 1], Gr
ξ(x) < 1

1−p . The following theorem summarizes the relation

between pc(Tξ, r) and Gr
ξ(x).
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Theorem 5.9. The critical probability for r-neighbour bootstrap percolation

on the Galton–Watson tree Tξ is, almost surely, given by

pc(Tξ, r) = 1− 1

maxx∈[0,1] Gr
ξ(x)

. (5.9)

Since maxx∈[0,1]G
r
ξ(x) ≥ 1, this implies that

pc(Tξ, r) ≤ max
x∈[0,1]

Gr
ξ(x)− 1. (5.10)

�

Before proceeding, we note a few facts about the functions grk(x). First, for

all r ≥ 2,

grr(x) =
P(Bin(r, 1− x) ≤ r − 1)

x
=

1− (1− x)r

1− (1− x)

= 1 + (1− x) + (1− x)2 + . . .+ (1− x)r−1 =
r−1∑
i=0

(1− x)i.

(5.11)

For any k > r, P(Bin(k, 1−x) ≤ r) = P(Bin(k, 1−x) ≤ r−1)+P(Bin(k, 1−x) =

r) and hence

gr+1
k (x) = grk(x) +

(
k

r

)
xk−r−1(1− x)r. (5.12)

We claim that, for each fixed r ≥ 2 and k ≥ r,

grk+1(x)− grk(x) = −
(

k

r − 1

)
xk−r(1− x)r. (5.13)

Indeed, to prove equation (5.13), let X ∼ Bin(k, 1− x) and Y ∼ Bin(1, 1− x)

be independent. Then, X + Y ∼ Bin(k + 1, 1− x) and so

xgrk(x) = P(X ≤ r − 1)

= P(X + Y ≤ r − 1) + P(Y = 1 and X = r − 1)

= xgrk+1(x) + (1− x) ·
(

k

r − 1

)
(1− x)r−1xk−r+1

= x

(
grk+1(x) +

(
k

r − 1

)
(1− x)rxk−r

)
,
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which implies equation (5.13). Thus, by equation (5.13), for any k ≥ r,

grk+1(x) = grr(x)−
k∑
i=r

(
i

r − 1

)
xi−r(1− x)r ≤ grr(x). (5.14)

In particular, note that Gr
ξ(x) ≤ grr(x).

One simple example of a Galton–Watson tree occurs when the offspring

distribution is constant. When ξ ≡ b, Tξ is the b-ary tree, which has the same

critical probability as the (b + 1)-regular tree, Tb. Note that, in this case,

Gr
ξ(x) = grb(x). In the next lemma we give the asymptotic value of pc(Tb, r) as

b tends to infinity for r ≥ 2 fixed.

Lemma 5.10. For each r ≥ 2, pc(Tb, r) = (1− 1/r)
(

(r−1)!
br

)1/(r−1)

(1+o(1))

as b→∞.

Proof. Fix r ≥ 2 and b ≥ r. The critical probability for Tb in r-neighbour

bootstrap percolation is given by

pc(Tb, r) = 1− 1

maxx∈[0,1] grb(x)
=

maxx∈[0,1] g
r
b(x)− 1

maxx∈[0,1] grb(x)
. (5.15)

For a lower bound on the critical probability, note that

grb(1− y) =
P(Bin(b, y) ≤ r − 1)

1− y
=

1− P(Bin(b, y) ≥ r)

1− y
≥

1−
(
b
r

)
yr

1− y

≥
1− (by)r

r!

1− y
.

Set y0 =
(

(r−1)!
br

)1/(r−1)

so that bryr−1
0 = (r − 1)! and consider

grb(1− y0)− 1 ≥
y0 − (by0)r

r!

1− y0

=
y0

(
1− 1

r

)
1− y0

.

Then, a lower bound on the critical probability is given by

pc(Tb, r) ≥
(1− 1/r) y0

1−y0
1 + (1− 1/r) y0

1−y0
=

(1− 1/r)y0

1− y0
r

≥
(

1− 1

r

)
y0

=

(
1− 1

r

)(
(r − 1)!

br

)1/(r−1)

.
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For an upper bound on the function grb(1−y), consider separately different

ranges for the value of y. Using Chebyshev’s inequality, one can show that if

y ≥ 2r/b, then grb(1− y) < 1. Indeed, we have

grb(1− y) =
P(Bin(b, y) ≤ r − 1)

1− y
≤ by(1− y)

(by − r + 1)2(1− y)

<
by

(by − r)2
≤ by

(by/2)2
=

4

by
≤ 4

2r
≤ 1.

Consider the function

(1− y)(grb(1− y)− 1) = P(Bin(b, y) ≤ r− 1)− (1− y) = y − P(Bin(b, y) ≥ r).

(5.16)

Suppose that b > e4rr and consider y such that (rre4rb−r)1/(r−1) < y < 2r/b.

Then 2r/b < 1/2 and, using the fact that
(
b
r

)
≥ br/rr,

y − P(Bin(b, y) ≥ r) ≤ y −
(
b

r

)
yr(1− y)b−r

≤ y − br

rr
yre−2yb ≤ y − y b

ryr−1

rr
e−4r

= y

(
1− yr−1 br

e4rrr

)
< 0.

Consider now y ≤
(
rre4r

br

)1/(r−1)

. Using equation (5.16) and (5.6) with y in

place of 1− x, the maximum value for (1− y)(grb(1− y)− 1) occurs at y1 with

P(Bin(b− 1, y1) = r − 1) = 1
b
and hence

(
b
r

)
yr−1

1 (1− y1)b−r = 1/r. Thus,

y − P(Bin(b, y) ≥ r) ≤ y1 − P(Bin(b, y1) = r) = y1

(
1− 1

r

)
. (5.17)

By the choice of y1, noting that y1b ≤ (rre4r)
1/(r−1)

b−1/(r−1) = o(1),

yr−1
1 =

1

b
(
b−1
r−1

)(1− y1)−(b−r)

≤ (r − 1)!

br
br

b(b− 1) . . . (b− r + 1)
e2y1b

=
(r − 1)!

br
(1 + o(1)). (5.18)
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Thus, by (5.16), (5.17) and (5.18),

max
y∈[0,1]

(grb(1− y)− 1) ≤ 1

1−
(
rre4r

br

)1/(r−1)

(
1− 1

r

)
y1

≤
(

1− 1

r

)(
(r − 1)!

br

)1/(r−1)

(1 + o(1)). (5.19)

and the upper bound on pc(Tb, r) follows from (5.15). �

5.3. Critical probabilities for Galton–Watson trees

5.3.1. Bounds for fGWr (b). With the definitions from section 5.2, we are

now ready to prove Theorem 5.1: For every r ≥ 2 there are positive constants

cr and Cr so that for every b ≥ r,

cr
b
e−

b
r−1 ≤ fGWr (b) ≤ Cre

− b
r−1 .

The proof of Theorem 5.1 is given in two parts. The lower bound for fGWr (b)

is given in Lemma 5.11, to come, by examining properties of the function

Gr
ξ(x). The upper bound for fGWr (b) is given in Lemma 5.13 by producing a

family of Galton–Watson trees with fixed branching number and small critical

probability for r-neighbour bootstrap percolation.

Lemma 5.11. For every r ≥ 2 and for any offspring distribution ξ with

E(ξ) = b ≥ r,

pc(Tξ, r) ≥
e−

r−2
r−1

b
e−

b
r−1 .

Proof. In what follows, we shall need to consider integrals of functions

related to grk(x) and so recall from the definition of the beta function that for

all a, b ∈ Z+, ∫ 1

0

xa(1− x)b dx =
a! b!

(a+ b+ 1)!
.
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By equation (5.14), for any k ≥ r, using H` =
∑`

i=1
1
i
to denote the `-th

harmonic number,∫ 1

0

grr(x)− grk(x)

(1− x)2
dx =

k−1∑
i=r

(
i

r − 1

)∫ 1

0

xi−r(1− x)r−2 dx

=
k−1∑
i=r

(
i

r − 1

)
(i− r)!(r − 2)!

(i− 1)!

=
k−1∑
i=r

1

r − 1

i

i− r + 1

=
1

r − 1

k−1∑
i=r

(
1 +

r − 1

i− r + 1

)
=
k − r
r − 1

+Hk−r.

(5.20)

Therefore, for any offspring distribution ξ, since ξ ≥ r almost surely,∫ 1

0

grr(x)−Gr
ξ(x)

(1− x)2
dx =

∑
k≥r

P(ξ = k)

(
k − r
r − 1

+Hk−r

)

=
Eξ
r − 1

+ E(Hξ−r)−
r

r − 1
.

(5.21)

On the other hand, let M = maxx∈[0,1]G
r
ξ(x). Then by equation (5.9), pc =

pc(Tξ, r) = 1− 1
M
. Note that, since by (5.11) grr(x) is decreasing and continuous,

grr(0) = r, grr(1) = 1 and Gr
ξ(x) ≤ grr(x), we have M ∈ [1, r] and there is a

unique y ∈ [0, 1] with grr(1− y) = M . Then, by (5.11),∫ 1−y

0

grr(x)−M
(1− x)2

dx =

{
−M − 1

1− x
− log(1− x)−

r−1∑
i=2

(1− x)i−1

i− 1

}1−y

x=0

= (M − 1)(1− 1/y)− log y +
r−2∑
i=1

1− yi

i
.

Note that (M − 1)(1− 1/y) = (y+y2+...+yr−1)(y−1)
y

= yr−1 − 1. Thus, the above

expression can be simplified, as∫ 1−y

0

grr(x)−M
(1− x)2

dx = yr−1 − 1− log y +
r−2∑
i=1

1− yi

i

≥ yr−1 − 1− log y.

(5.22)
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Now, using the definition of y,

pc = 1− 1

M
=
M − 1

M
=

y + y2 + . . .+ yr−1

1 + y + y2 + . . .+ yr−1
=
y(1− yr−1)

1− yr
. (5.23)

Note that for any y ∈ [0, 1),

log

(
1− yr

1− yr−1

)
≤ log

(
1− y2r−2

1− yr−1

)
= log(1 + yr−1) ≤ yr−1

and from this, using (5.23), we obtain

yr−1 − log y ≥ log

(
1− yr

1− yr−1

)
− log y = − log

(
y(1− yr−1)

1− yr

)
= − log pc.

Since grr(x)−Gr
ξ(x) ≥ 0 then, using (5.21) and (5.22),

− log pc − 1 ≤
∫ 1−y

0

grr(x)−M
(1− x)2

dx ≤
∫ 1

0

grr(x)−Gr
ξ(x)

(1− x)2
dx

=
Eξ
r − 1

+ E(Hξ−r)−
r

r − 1

and hence

pc(Tξ, r) ≥ exp

(
−E(ξ)− 1

r − 1
− E(Hξ−r)

)
≥ exp

(
− b− 1

r − 1
− E(Hξ)

)
. (5.24)

Using the inequalityHn ≤ log n+1 for n ≥ 1 and the concavity of the logarithm

function we see that E(Hξ) ≤ log b+ 1 and thus

pc(Tξ, r) ≥ exp

(
−r − 2

r − 1

)
e−

b
r−1

b
,

completing the proof of the lemma. �

By Lemma 5.11, the lower bound in Theorem 5.1 holds with cr = e−
r−2
r−1 .

Next let us prove that there exists Cr > 0 so that fGWr (b) ≤ Cre
b
r−1 when b

is sufficiently large. We shall do this by first considering a sequence of offspring

distributions which, as we show, have critical probability 0.

For each r ≥ 2, define an offspring distribution ξr as follows. For every

k ≥ r, set P(ξr = k) = r−1
k(k−1)

. Note that for any r, E(ξr) =∞. In Lemma 5.13

below, we show that, given b > r sufficiently large, the distribution ξr can be

‘pruned’ to obtain the appropriate critical probability and mean b.
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Claim 5.12. For each r ≥ 2, and for all x ∈ [0, 1], Gr
ξr

(x) = 1.

Proof. We apply induction on r. First, for r = 2, by the definition of the

function Gr
ξ(x),

G2
ξ2

(x) =
∑
k≥2

1

k(k − 1)

(
kxk−2 − (k − 1)xk−1

)
= 1 +

∑
k≥3

1

k − 1
xk−2 −

∑
k≥2

1

k
xk−1

= 1,

as claimed. Turning to the induction step, assume that the Claim holds for

r ≥ 2: Gr
ξr

(x) = 1 for x ∈ [0, 1). Then, for x ∈ [0, 1),

Gr+1
ξr+1

(x) =
∑
k≥r+1

r

k(k − 1)
gr+1
k (x)

=
∑
k≥r+1

r

k(k − 1)

(
grk(x) +

(
k

r

)
xk−r−1(1− x)r

)
(by (5.12))

=
r

r − 1

(∑
k≥r

r − 1

k(k − 1)
grk(x)− 1

r
grr(x)

)

+
∑
k≥r+1

1

r − 1

(
k − 2

r − 2

)
xk−r−1(1− x)r

=
r

r − 1
Gr
ξr(x)− 1

r − 1

(
grr(x)− 1− x− (1− x)r

x

)
=

r

r − 1
− 1

r − 1

(
1− (1− x)r

x
− 1− x− (1− x)r

x

)
(by (5.11))

=
r

r − 1
− 1

r − 1
= 1,

so our claim holds for r + 1, completing the proof. �

By (5.9), an immediate corollary of Claim 5.12 is that, for every r ≥ 2, the

Galton–Watson tree Tξr satisfies pc(Tξr , r) = 0.
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Lemma 5.13. For every r ≥ 2, there is a constant Cr such that if b ≥

(r−1) log(4er), then there is an offspring distribution ηr,b with E(ηr,b) = b and

pc(Tηr,b , r) ≤ Cre
− b
r−1 .

Proof. If b is sufficiently large, the distribution ηr,b is constructed by

restricting the support of the distribution ξr to a finite set of integers and

redistributing the remaining measure suitably. Note that for m ≥ r we have

P(ξr ≤ m) =
m∑
k=r

P(ξr = k) = (r − 1)
m∑
k=r

(
1

k − 1
− 1

k

)
= 1− r − 1

m
. (5.25)

Also, using the convention that H0 = 0,

m∑
k=r

kP(ξr = k) = (r − 1)
m∑
k=r

1

k − 1
= (r − 1) (Hm−1 −Hr−2)

is the part of the expected value contributed by the (m−r+1) smallest possible

values of ξr. Given b and r, let k0 = max{m : (r − 1) (Hm−1 −Hr−2) ≤ b}.

Then,

b < (r − 1) (Hk0 −Hr−2) < (r − 1)Hk0 ≤ (r − 1)(log k0 + 1),

so k0 > e
b
r−1
−1 ≥ 4r for b ≥ (r − 1) (log(4r) + 1) = (r − 1) log(4er).

Let k1 = k0 − 2r > r. Then by equation (5.25) we have

A = 1−
k1∑
k=r

P(ξr = m) =
r − 1

k1

=
r − 1

k0 − 2r
.

DefineK = b−
∑k1

k=r kP(ξr = k), roughly thought of as the unallocated portion

of the expected value. Then K can be bounded from below by

K ≥
k0∑

k=k1+1

kP(ξr = k) = (r − 1) (Hk0−1 −Hk1−1) ≥ (r − 1)
2r

k0

.

Since b <
∑k0+1

k=r kP(ξr = k), we have that

K <

k0+1∑
k=k1+1

kP(ξr = k) = (r − 1) (Hk0 −Hk1−1) ≤ (r − 1)
2r + 1

k0 − 2r
.
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Thus, it follows that K/A ≤ 2r + 1 and for k0 > 4r,

K/A ≥ 2r

(
r − 1

k0

)(
k0 − 2r

r − 1

)
= 2r

(
k0 − 2r

k0

)
> r.

This implies that, for b > (r − 1) log(4er), there exists α ∈ (0, 1) such that
K
A

= αr + (1− α)(2r + 1) and hence,

k1∑
k=r

kP(ξr = k) + αAr + (1− α)A(2r + 1) = b.

This is used to define the pruned offspring distribution ηr,b as follows,

P(ηr,b = k) =


P(ξr = k) for r < k ≤ k1, k 6= 2r + 1

P(ξr = r) + αA for k = r, and

P(ξr = 2r + 1) + (1− α)A for k = 2r + 1.

Note that since k0 > 4r, k1 = k0 − 2r > 2r.

This pruning ηr,b of the distribution of ξr is used to give an upper bound on

fGWr (b). Recall that for every k ≥ r, the functions grk(x), given by Definition

5.8, are non-negative and by equation (5.14), grk(x) ≤ grr(x). By Claim 5.12,

Gr
ξr

(x) = 1 which shows that,

Gr
ηr,b

(x) ≤ Gr
ξr(x) + αAgrr(x) + (1− α)Agr2r+1(x) ≤ 1 + Agrr(x).

Therefore, since grr(x) is decreasing and grr(0) = r, we have maxx∈[0,1]G
r
ηr,b

(x) ≤

1 + Agrr(0) = 1 + Ar, and so by (5.10)

pc(Tηr,b , r) ≤ Ar =
r(r − 1)

k0 − 2r
<

r(r − 1)

e
b−r+1
r−1 − 2r

< 2er(r − 1)e−
b
r−1

for b > (r − 1) log(4er). �

Thus the upper bound in Theorem 5.1 holds with Cr = 2er(r − 1) for

b ≥ (r − 1) log(4er), and it is trivially true for some Cr for smaller b.

5.3.2. Bounds for pc(Tξ, r).

5.3.2.1. Bounds based on higher moments. In this section, we shall prove a

lower bound on the critical probability pc(Tξ, r) based on the (1 +α)-moments
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of the offspring distribution ξ for all α ∈ (0, r− 1), using a modification of the

proof of Lemma 5.11 and some properties of the gamma and beta functions.

Recall that the gamma function is given, for z with <(z) > 0, by Γ(z) =∫∞
0
tz−1e−t dt, and for all n ∈ Z+, satisfies Γ(n) = (n − 1)! (for more on

the gamma function see the work of Artin [7]). The beta function is given, for

<(x),<(y) > 0, by B(x, y) =
∫ 1

0
tx−1(1−t)y−1 dt and satisfies B(x, y) = Γ(x)Γ(y)

Γ(x+y)
.

We shall use the following bound on the ratio of two values of the gamma

function obtained by Gautschi [31]. For n ∈ N and 0 ≤ s ≤ 1,(
1

n+ 1

)1−s

≤ Γ(n+ s)

Γ(n+ 1)
≤
(

1

n

)1−s

. (5.26)

The proof of the lower bound on pc(Tξ, r) in Theorem 5.2 is first given for the

case α ∈ (0, r− 1) \N. For α ∈ {1, 2, . . . , r− 2}, we then deduce the result by

a continuity argument.

Proof of Theorem 5.2. Fix r ≥ 2, α ∈ (0, r−1) with α /∈ N and an offspring

distribution ξ. Set t = bαc and ε = α− t so that ε ∈ (0, 1) and t is an integer

with t ∈ [0, r − 2]. For the upper bound, from (5.14) and the definition of the

beta function, for every k ≥ r∫ 1

0

grr(x)− grk(x)

(1− x)α+2
dx =

k−1∑
i=r

(
i

r − 1

)∫ 1

0

xi−r(1− x)r−2−α dx

=
k−1∑
i=r

(
i

r − 1

)
B(i− r + 1, r − 1− α)

=
k−1∑
i=r

i!

(r − 1)!(i− r + 1)!

(i− r)!Γ(r − 1− α)

Γ(i− α)

=
k−1∑
i=r

i(i− 1) . . . (i− t)Γ(i− t)
(i− r + 1)Γ(i− t− ε)

· Γ(r − 1− t− ε)
(r − 1)(r − 2) . . . (r − 1− t)Γ(r − 1− t)

. (5.27)
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Let c1 = c1(r, α) = Γ(r−1−t−ε)
(r−1)(r−2)···(r−1−t)Γ(r−1−t) . Note that by inequality (5.26),

for t < r − 2,
Γ(r − 1− t− ε)

Γ(r − 1− t)
≤ 1

(r − 2− t)ε

and so

c1 ≤
1

(r − 2− t)t+1+ε
= (r − 2− t)−(α+1).

Note that this upper bound is finite for all ε ∈ (0, 1] which will be crucial in

our continuity argument. On the other hand, if t = r − 2, then

c1 =
Γ(1− ε)
(r − 1)!

=
Γ(2− ε)

(1− ε)(r − 1)!
≥ 1

2(r − 1)!(1− ε)

which tends to ∞ as ε→ 1, e.g., as α→ r − 1.

Thus, continuing equation (5.27), applying inequality (5.26) again yields

k−1∑
i=r

i(i− 1) · · · (i− t)Γ(i− t)
(i− r + 1)Γ(i− t− ε)

· Γ(r − 1− t− ε)
(r − 1)(r − 2) · · · (r − 1− t)Γ(r − 1− t)

≤ c1

k−1∑
i=r

i

i− r + 1
(i− 1)(i− 2) · · · (i− t)(i− t)ε

≤ rc1

k−1∑
i=r

it+ε

≤ rc1k
1+t+ε = rc1k

1+α.

Thus, taking the expectation over k with respect to ξ,∫ 1

0

grr(x)−Gr
ξ(x)

(1− x)2+α
dx ≤ rc1E(ξ1+α). (5.28)

Let us now bound our integral from below by some function of pc. Again, for

an offspring distribution ξ let M = maxx∈[0,1]G
r
ξ(x). Recall that we have pc =

pc(Tξ, r) = 1 − 1
M
. Recall also that, since grr(x) is decreasing and continuous,

grr(0) = r, grr(1) = 1 and Gr
ξ(x) ≤ grr(x), we have M ∈ [1, r] and there is a

unique y ∈ [0, 1] with grr(1 − y) = M . Thus M = 1 + y + . . . + yr−1 and so

(recall (5.23))

pc = 1− 1

M
=
y(1− yr−1)

1− yr
≥ r − 1

r
y, (5.29)
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using 1− yr ≤ r(1−yr−1)
r−1

. A lower bound on the integral in question is given by∫ 1

0

grr(x)−Gr
ξ(x)

(1− x)2+α
dx ≥

∫ 1−y

0

grr(x)−M
(1− x)2+α

dx

=

∫ 1−y

0

− (M − 1)

(1− x)2+α
+

t∑
i=0

1

(1− x)α+1−i +
r−2∑
i=t+1

(1− x)i−α−1 dx

=

[
− (M − 1)

(α + 1)(1− x)1+α
+

t∑
i=0

1

(α− i)(1− x)α−i
−

r−2∑
i=t+1

(1− x)i−α

i− α

]1−y

0

= −(M − 1)

(α + 1)

(
1

y1+α
− 1

)
+

t∑
i=0

1

α− i

(
1

yα−i
− 1

)
+

r−2∑
i=t+1

1− yi−α

i− α

=
1

yα

(
M − 1

α + 1

(
yα+1 − 1

y

)
+

t∑
i=0

yi − yα

α− i
+

r−2∑
i=t+1

yα − yi

i− α

)

=
1

yα

(
(1 + y + · · ·+ yr−2)(yα+1 − 1)

(α + 1)
+

t∑
i=0

yi − yα

α− i
+

r−2∑
i=t+1

yα − yi

i− α

)

=
1

yα

(
−1

α + 1
+

1

α
+

t∑
i=1

(
yi

α− i
− yi

α + 1

)
− yt+1

α + 1
+

r−t−4∑
i=0

yα+1+i − yt+2+i

α + 1

+
r−2∑

i=r−t−3

yα+1+i

α + 1
−

t∑
i=0

yα

α− i
+

r−2∑
i=t+1

yα − yi

i− α

)

≥ 1

yα

(
1

α(α + 1)
− yt+1

α + 1
−

t∑
i=0

yα

α− i

)
.

Set c2 = c2(α) =
∑t

i=0
1
α−i + 1

α+1
and consider separately two different

cases. For the first, if yαc2 ≥ 1
2α(α+1)

then since E(ξα+1) ≥ 1,

yα ≥ 1

2α(α + 1)c2

≥ 1

2α(α + 1)c2

E(ξ1+α)−1.

Thus, if c′2 =
(

1
2α(α+1)c2

)1/α

, then y ≥ c′2E(ξ1+α)−1/α.

In the second case, if yα < 1
2α(α+1)c2

, then since yt+1 ≤ yα, we have∫ 1

0

grr(x)−Gr
ξ(x)

(1− x)2+α
dx ≥ 1

yα
1

2α(α + 1)
. (5.30)
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Combining equation (5.30) with equation (5.28) yields

yα ≥ 1

2α(α + 1)

1

rc1

E(ξ1+α)−1

and setting c′1 = (2α(α + 1)rc1)−1/α gives y ≥ c′1E(ξ1+α)−1/α.

Finally, set cr,α = r−1
r

min{c′1, c′2} so that by inequality (5.29) we obtain,

pc(Tξ, r) ≥
r − 1

r
y ≥ cr,αE(ξ1+α)−1/α.

For every n ∈ {1, 2, . . . , r−2}, note that limα→n− cr,α > 0 and, by monotone

convergence theorem, there is a constant cr,n > 0 so that

pc(Tξ, r) ≥ cr,nE(ξ1+n)−1/n.

This completes the proof of the lower bound on pc(Tξ, r).

Note that in the above proof, as α → (r − 1)−, we have c1(r, α) → ∞

and hence limα→(r−1)− cr,α = 0, so the proof does not directly extend to the

case α = r− 1. We deal with this problem for r = 2 in Theorem 5.3 where an

essentially sharp lower bound on pc(Tξ, 2) is given based on the second moment

of ξ.

The upper bound in Theorem 5.2 follows from (5.10) and (5.19) which show

that for any r ≥ 2 there is a constant cr > 0 such that for any k ≥ r,

max
x∈[0,1]

grk(x)− 1 ≤ cr
kr/(r−1)

.

Thus the upper bound follows immediately from inequality (5.10). �

5.3.2.2. Bounds for pc(Tξ, 2). In this section we focus on 2-neighbour boot-

strap percolation on Galton–Watson trees. This specific problem is easier to

tackle analytically which gives us an opportunity to obtain sharp bounds on

pc(Tξ, 2). To simplify notation, we write Gξ for G2
ξ .

Proof of Theorem 5.3. First we prove the rather easy bound given in (5.2).

By the definition of function Gξ(x) we see that for each k ≥ 2 we have

Gξ(x) ≥ P(ξ = k)g2
k(x) = P(ξ = k)

(
kxk−2 − (k − 1)xk−1

)
.
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Now, g2
2(x) = 2−x so it attains its maximum in the interval [0, 1] at x = 0 with

g2
2(0) = 2, while for k ≥ 3 the functions g2

k(x) are maximized at xk = k(k−2)
(k−1)2

,

with g2
k(xk) = kk−1(k−2)k−2

(k−1)2k−3 . Thus formula (5.2) follows immediately from (5.9).

Considering the maximum value of the function g2
k(x),

kk−1(k − 2)k−2

(k − 1)2k−3
=

(
k(k − 2)

(k − 1)2

)k−1(
k − 1

k − 2

)
=

(
1− 1

(k − 1)2

)k−1(
k − 1

k − 2

)
.

One can show that for k ≥ 3 and t ≥ 1,(
1− 1

(k − 1)2

)t
≤ 1− t

(k − 1)2
+

t(t− 1)

2(k − 1)4
. (5.31)

Indeed, inequality (5.31) follows from the following argument. Clearly, for t

independent Bernoulli variables X1, . . . , Xt such that for all 1 ≤ i ≤ t we have

P(Xi = 1) = 1
(k−1)2

, we have P(max{X1, . . . , Xt} = 1) = 1 −
(

1− 1
(k−1)2

)t
.

Also, by inclusion-exclusion formula, P(max{X1, . . . , Xt} = 1) ≥ tP(X1 =

1)−
(
t
2

)
P(X1 = 1)2, which implies inequality (5.31).

In particular, setting t = k − 1 in this inequality yields(
1− 1

(k − 1)2

)k−1

≤ 1− 1

(k − 1)
+

(k − 2)

2(k − 1)3
=

(k − 2)

(k − 1)

(
1 +

1

2(k − 1)2

)
and hence for k ≥ 3, and all x ∈ [0, 1], g2

k(x) ≤ 1 + 1
2(k−1)2

. The maximum

value for g2
2(x) is g2

2(0) = 2 > 1 + 1
2
, but it is certainly true that for all k ≥ 2,

g2
k(x) ≤ 1 + 1

2(k−1)2−(k−1)
= 1 + 1

(k−1)(2k−3)
. Hence

Gξ(x) ≤ 1 + E
(

1

(ξ − 1)(2ξ − 3)

)
which with (5.10) yields the upper bound given by inequality (5.3). Note that

the first bound in inequality (5.3) is essentially sharp as demonstrated by the

(b+ 1)-regular tree Tb for which pc(Tb, 2) ∼ 1
2b2

.

Now let us prove bound (5.4). To simplify notation, for every k, let (ξ)k =

ξ(ξ − 1)(ξ − 2) . . . (ξ − k + 1) denote the k-th falling factorial. The goal is to

approximate Gξ(x) by a polynomial of degree 2 whose maximum value can be

easily calculated.
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Consider the Taylor series for Gξ(x) about x = 1. For this, note that

Gξ(1) =
∑
k≥2

P(ξ = k) = 1,

G′ξ(1) =
∑
k≥2

P(ξ = k)(−1) = −1,

G′′ξ (1) =
∑
k≥2

P(ξ = k)(−(k − 2)(k + 1)) =
∑
k≥2

P(ξ = k)(−k(k − 1) + 2)

= −E((ξ)2) + 2.

Note that for all m ≥ 1, G(m)
ξ (1) < 0, where it exists.

Set P2(x) = 1− (x− 1)− (E(ξ)2−2)
2

(1− x)2 = 2− x− (E(ξ)2−2)
2

(1− x)2. It is

shown below that for all x ∈ [0, 1], P2(x) ≤ Gξ(x). Note that

P2(x) =
∑
k≥2

P(ξ = k)

(
g2

2(x)− (k2 − k − 2)

2
(1− x)2

)
.

Recall that, by equation (5.13), for all x, g2
k+1(x)−g2

k(x) = −kxk−2(1−x)2.

Thus,

g2
k+1(x) +

((k + 1)2 − (k + 1)− 2)

2
(1− x)2

−
(
g2
k(x) +

(k2 − k − 2)

2
(1− x)2

)
= −kxk−2(1− x)2 +

2k

2
(1− x)2

= k(1− x)2(1− xk−2).

(5.32)

Considering Gξ(x)− P2(x), note that for k = 2,

g2
k(x)− g2

2(x) +
(k2 − k − 2)

2
(1− x)2 = 0.

For k ≥ 3, by (5.32),

g2
k(x)− g2

2(x) +
(k2 − k − 2)

2
(1− x)2 =

k−1∑
i=2

i(1− x)2(1− xi−2) ≥ 0.
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Hence,

Gξ(x)− P2(x) =
∑
k≥2

P(ξ = k)

(
g2
k(x)− g2

2(x) +
(k2 − k − 2)

2
(1− x)2

)
≥ 0

and so for all x, Gξ(x) ≥ P2(x).

Now, P2(x) is a parabola which attains its maximum value at x = 1− 1
E(ξ)2−2

with

P2

(
1− 1

E(ξ)2 − 2

)
= 1 +

1

E(ξ)2 − 2
− 1

2
(E(ξ)2 − 2)

1

(E(ξ)2 − 2)2

= 1 +
1

2(E(ξ)2 − 2)
.

This immediately implies a lower bound for the critical probability for Tξ,

pc(Tξ, 2) ≥ 1− 1

1 + 1
2E(ξ)2−4

= 1− 2E(ξ)2 − 4

2E(ξ)2 − 3
=

1

2E(ξ)2 − 3
.

�

5.3.3. Examples. The (b + 1)-regular tree shows that one cannot hope

for a stronger bound based on the second moment of ξ than the one given by

inequality (5.4). What is more, this bound turns out to be an accurate estimate

of the critical probability in a number of natural offspring distributions. A few

such examples are examined here for comparison. For simplicity, we consider

only r = 2, and we continue to write Gξ for G2
ξ . In what follows, the notation

ob(1) is used to denote a function tending to 0 as b→∞.

5.3.3.1. 2 or a children. For a ∈ N and b with a ≥ b > 2, consider trees

denoted Tξb,a with offspring distribution P(ξb,a = 2) = a−b
a−2

and P(ξb,a = a) =

b−2
a−2

. Note that the branching number of Tξb,a is br(Tξb,a) = E(ξb,a) = b. We do

not present a complete proof of the following theorem. However, sharp lower

bounds on pc(Tξb,a , 2) follow from Theorem 5.3.

Theorem 5.14. The critical probability in 2-neighbour bootstrap percola-

tion on Tξb,a is

pc(Tξb,a , 2) = max

{
1− a− 2

2(a− b)
,
1 + ob(1)

2ab

}
,
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with the first quantity being always greater for a ≥ 2b − 1 and the second for

a ≤ 2b− 2.

�

The random variable ξb,a is supported on only two values and so clearly

E((ξb,a)2) is finite and the assumptions of Theorem 5.3 are satisfied. We have

E((ξb,a)2) = P(ξb,a = a)a(a− 1) + P(ξb,a = 2)2

=
(b− 2)a(a− 1) + 2(a− b)

a− 2

<
(b− 2)a(a− 1)

a− 2
+ 2.

Thus, inequality (5.4) yields a lower bound on the critical probability given by

pc(Tξb,a , 2) >
1

2
(

(b−2)a(a−1)
a−2

+ 2
)
− 3

=
1

2 (b−2)a(a−1)
a−2

+ 1
=

1 + ob(1)

2ab
,

agreeing asymptotically with the correct value for a ≤ 2b− 2.

For a ≥ 2b− 1 we have in fact pc(Tξb,a , 2) = 1− 1
2P(ξb,a=2)

. The value of the

critical probability, in this case, tells us what prevents Tξb,a from percolating

when we have p < pc(Tξb,a , 2). Since a−b
a−2

> 1
2
, after deleting all vertices of

degree a + 1, the tree almost surely contains infinite components, with all

vertices having degree at most 3, with branching number c = 2 a−b
a−2

> 1. Every

initially healthy doubly infinite path contained in such subtree is an infinite

healthy 1-fort in Tξb,a . The critical probability for such paths to occur is 1/c

and so if 1 − p > 1/c then Tξb,a almost surely does not percolate. Note that

exactly the same arguments can be used to prove the first lower bound in

inequality (5.2).

5.3.3.2. Shifted Poisson. A natural offspring distribution for a Galton–

Watson tree is a Poisson distribution. Since any distribution ξ with P(ξ ≤

1) > 0 has critical probability 1, consider a Poisson distribution shifted by 2.

That is, for each b > 2, let ξbPo be the offspring distribution with the property
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that, for each k ≥ 2,

P(ξbPo = k) = e−(b−2) (b− 2)k−2

(k − 2)!
.

Then, E(ξbPo) = b and the function GξbPo
(x) is given by

GξbPo
(x) =

∑
k≥2

e−(b−2) (b− 2)k−2

(k − 2)!
(kxk−2 − (k − 1)xk−1)

= e−(b−2)(1−x)(2 + (b− 3)x− (b− 2)x2).

Here, the critical probability can be given precisely since the function GξbPo

attains its (global) maximum value when x =
b−5+
√

(b+3)(b−1)

2(b−2)
, which belongs

to [0, 1] when b ≥ 7/3; the maximum value is

exp

(
−1

2
(b+ 1−

√
(b+ 3)(b− 1))

)(
−2 +

√
(b+ 3)(b− 1)

b− 2

)
.

Thus, with a little bit of calculation, one can show that, for b ≥ 7/3,

pc(TξbPo , 2) = 1− (b− 2)e
b+1−

√
(b+3)(b−1)

2

−2 +
√

(b+ 3)(b− 1)
=

1

2b2
+

1

3b3
+O

(
1

b4

)
.

Indeed, we have√
(b+ 3)(b− 1) = b+ 1− 2

b
+

2

b2
− 4

b3
+O

(
1

b4

)
,

and so

(b− 2)e
b+1−

√
(b+3)(b−1)

2 = b− 1− 5

2b
+

13

6b2
+O

(
1

b3

)
.

Thus,

1− (b− 2)e
b+1−

√
(b+3)(b−1)

2

−2 +
√

(b+ 3)(b− 1)
= 1−

b− 1− 5
2b

+ 13
6b2

+O
(

1
b3

)
b− 1− 2

b
+ 2

b2
+O

(
1
b3

)
= 1− 1 +

1
2b
− 1

6b2
+O

(
1
b3

)
b− 1− 2

b
+ 2

b2
+O

(
1
b3

)
=

1

2b2
+

1

2b3
− 1

6b3
+O

(
1

b4

)
=

1

2b2
+

1

3b3
+O

(
1

b4

)
.
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One can apply Theorem 5.3 to the distribution ξbPo since E((ξbPo)2) = b2−2.

Thus, (5.4) yields

pc(TξbPo , 2) ≥ 1

2b2 − 7
=

1 + ob(1)

2b2

which is asymptotically correct.

5.3.3.3. Shifted geometric distribution. Consider now a shifted geometric

distribution. For b > 2, let ξbg be defined by

P(ξbg = k + 2) =
1

b− 1

(
b− 2

b− 1

)k
, k ≥ 0.

Then, E(ξbg) = b and the function Gξbg
is given by

Gξbg
(x) =

2(b− 1)− (2b− 3)x

((b− 1)− (b− 2)x)2
,

and attains its maximum when x = (2b−5)(b−1)
(b−2)(2b−3)

with value (2b−3)2

4(b−1)(b−2)
. Thus, if

b ≥ 5/2,

pc(Tξbg , 2) = 1− 4(b− 1)(b− 2)

(2b− 3)2
=

1

(2b− 3)2
.

On the other hand we see that E((ξbg)2) = 2(b− 1)2; thus (5.4) yields

pc(Tξbg , 2) ≥ 1

4(b− 1)2 − 3
=

1 + ob(1)

4b2
,

again agreeing asymptotically with the true value.

5.4. Final remarks and open problems

In chapters 4 and 5 we study general infinite trees and show that for any

b ≥ r and any ε > 0 there exists a tree with bounded degree, branching

number br(T ) = b and critical probability pc(T, r) < ε. We then show that,

by equation (5.24), given an offspring distribution ξ with P(ξ < r) = 0, for a

Galton–Watson tree Tξ we almost surely have

pc(Tξ, r) ≥ exp

(
−E(ξ)− 1

r − 1
− E(Hξ−r)

)
.

Using the concavity of the logarithm function and, setting br(Tξ) = E(ξ) = b,

this bound was simplified to pc(Tξ, r) ≥ cr
e
− b
r−1

b
, as stated in Theorem 5.1.
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However, the bound E(Hξ−r) ≤ log b is very weak unless the distribution ξ

is strongly concentrated around its mean. When ξ is concentrated though, we

already know that pc(Tξ, r) is large, e.g., by Theorems 5.2 and 5.3, as well as by

the results for regular trees in [13] and [27]. With this in mind we conjecture

that the family of offspring distributions ηr,b constructed in the proof of Lemma

5.13 minimizes pc(Tξ, r) up to a factor depending on r only.

Conjecture 5.15. The upper bound in Theorem 5.1 is essentially sharp,

i.e., for r ≥ 2 there are constants cr and Cr such that if b ≥ r then

cre
− b
r−1 ≤ fGWr (b) ≤ Cre

− b
r−1 .

The second conjecture we state in this section is an extension of Theorem

5.2 which says that for α ∈ (0, r − 1) we have pc(Tξ, r) ≥ cr,α (E(ξ1+α))
−1/α.

For r = 2 and α > 1 such bound does not hold as is seen by taking ξ = b

constant, i.e., a regular tree Tb, when pc(Tb, 2) ∼ 1
2b2

. However, Theorem 5.2

does hold for r = 2 and α = 1 as shown in Theorem 5.3. Moreover, turning to

Lemma 5.10 we observe that pc(Tb, r) ∼ crb
− r
r−1 . This motivates the following

conjecture, extending Theorem 5.2 to α = r − 1 for all r ≥ 3.

Conjecture 5.16. For each r ≥ 3 there exists a constant cr > 0 such that

for any offspring distribution ξ we have

pc(Tξ, r) ≥ cr (E(ξr))−1/(r−1) .

In Theorems 5.2 and 5.3, we give upper bounds on pc(Tξ, r) based on the(
r
r−1

)
-th negative moments of ξ. However, the example of the ξb,a offspring

distribution in Theorem 5.14 immediately shows that negative moments are

not enough to tightly bound the critical probability from above. This motivates

the following question.

Question 5.17. What other characteristics of the distribution ξ lead to

upper bounds on pc(Tξ, r)?
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