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Abstract

The contingency table literature on tests for dependence among discrete multi-category vari-
ables is extensive. Existing tests assume, however, that draws are independent, and there are no
tests that account for serial dependencies−a problem that is particularly important in economics
and finance. This paper proposes a new test of independence based on the maximum canonical
correlation between pairs of discrete variables. We also propose a trace canonical correlation test
using dynamically augmented reduced rank regressions or an iterated weighting method in order
to account for serial dependence. Such tests are useful, for example, when testing for predictabil-
ity of one sequence of discrete random variables by means of another sequence of discrete random
variables as in tests of market timing skills or business cycle analysis. The proposed tests allow
for an arbitrary number of categories, are robust in the presence of serial dependencies and are
simple to implement using multivariate regression methods. Monte Carlo experiments show that
the proposed tests have good finite sample properties. An empirical application to survey data
on forecasts of GDP growth demonstrates the importance of correcting for serial dependencies
in predictability tests.

JEL Classifications: C12, C22, C42, C52
Keywords: Contingency Tables, Canonical Correlations, Serial Dependence, Tests of Pre-
dictability
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1 Introduction
Time-series of discrete data that fall in multiple categories are frequently encountered in eco-
nomics and finance. For example, in macroeconomic surveys participants are often asked to
predict the most likely range for variables such as GDP growth, inflation or interest rates. Sim-
ilarly, financial analysts and brokerages often categorize stocks into buy, strong buy, hold, sell
and strong sell recommendations. The NBER recession/expansion indicator that tracks the evo-
lution of the US business cycle is an example of a binary variable as is the bull and bear market
indicator frequently used to characterize conditions in stock markets (see Pagan and Sossounov
(2003) and Lunde and Timmermann (2004)).
Besides the discreteness of the data, a key feature that characterizes these examples is the se-

rial dependence or persistence in the underlying variables. This could be due to the construction
of the data−a single isolated quarter with negative GDP growth is usually not viewed as a reces-
sion, nor is the emergence of a short period with negative stock returns sufficient to constitute a
bear market−or may reflect the serial dependence properties of the underlying data generating
process as in Hamilton’s (1989) regime switching model for GDP growth.
While an extensive literature on contingency tables has developed tests for cross-sectional

dependence between discrete random variables, such tests are generally valid only in the case
of serially independent outcomes. For example, Fisher’s Chi-square test assumes independence
across draws. This assumption is highly unlikely to hold for many economic and financial vari-
ables. In such cases, as emphasized recently by Pagan (2005), it becomes important to allow for
serial dependence in statistical tests.1

This paper develops new tests for dependencies between discrete random variables that cover
dynamics of general form. An area where tests of such dependencies is of particular interest is
in the evaluation of predictive performance when interest lies in testing whether one sequence of
discrete random variables (‘outcomes’, {yt}) is predicted by another sequence of discrete random
variables (‘forecasts’, {xt}) as in the literature on market timing−see Henriksson and Merton
(1981), Cumby and Modest (1987) and Pesaran and Timmermann (1992). While our analysis is
ideally suited for this type of application, it is more generally applicable to address the issue of
dependencies among discrete random variables that are subject to time-series dynamics.
More specifically, in the case of my category realizations (yit, i = 1, 2, ...,my), and mx ≤ my

categories for an associated variable (xjt, j = 1, 2, ...,mx), we cast the relationship between the
my − 1 category realizations, yt = (y1t, y2t, ..., ymy−1,t)

0, and the mx − 1 category variables,
xt = (x1t, x2t, ..., xmy−1,t), as a regression of a

0yt on b0xt where a and b are viewed as nui-
sance parameters. In the case of serially independent outcomes (yt), we show that a test of
independence between yt and xt can be based on the canonical correlation coefficients between
yt and xt. This gives rise to a new maximum canonical correlation test. This test has a non-
standard distribution so we compute the finite sample critical values for different numbers of
categories and sample sizes by stochastic simulations. We also propose a trace test based on the
average canonical correlation and show that this is identical to the standard Fisher Chi-square
contingency table test of independence.
In the case of serially dependent outcomes we show that a valid multi-category dependence

test can be constructed using canonical correlations of suitably filtered versions of yt and xt
after accounting for the effect of lagged values of zt = (y0t,x

0
t)
0. This gives rise to a trace test

based on a dynamically augmented reduced rank regression that is very simple to compute. We
also propose an iterative procedure that estimates standard errors of the canonical correlation

1Harding and Pagan (2004) and Pagan (2005) propose a test of business cycle synchronization that allows for
serial dependencies in the outcomes of pairs of binary variables using the generalized method of moments. These
papers do not consider the general multivariate case, however.
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statistic in a way that accounts for serial dependence and heteroskedasticity. A common feature
of the proposed tests is that they do not rely on making functional form assumptions regarding
the specific relationship between yt and xt and their underlying distributions, nor do they require
maintaining assumptions regarding the nature of the time-series dynamics of yt and xt.
Small sample properties of the proposed maximum and trace canonical correlation tests are

investigated through Monte Carlo experiments. Standard tests that ignore serial correlation
are generally found to be severely oversized and tend to over-reject when the degree of serial
correlation in the outcome variable is high. In contrast, the canonical correlation test based on
dynamically augmented regressions generally has the right size unless the number of forecast
categories, mx, is large relative to the sample size, T. The use of the proposed tests is illustrated
by an application to output forecasts using data from the Survey of Professional Forecasters.
The plan of the paper is as follows. Section 2 discusses the frequently encountered setup with

binary random variables and contrasts the case with and without serial dependence. Section 3
generalizes the results to the case with multiple categories but assumes a static setting. This is
generalized in Section 4 to cover multiple categories and serial dependencies. Section 5 presents
Monte Carlo simulation results, while Section 6 reports the empirical application and Section 7
concludes. An appendix provides some of the proofs.

2 Binary Variables
We first establish some familiar results for the 2×2 case involving a pair of binary variables. This
case has been extensively discussed in the statistical literature and, as we shall see, a number of
existing tests arise as special cases in this setup. To this end, let I(A) be an indicator function
that takes the value of unity if A > 0 and zero otherwise, and suppose we are interested in testing
whether one binary variable, xt = I(Xt) is related to another binary variable, yt = I(Yt) using
a sample of observations (y1, x1), (y2, x2), ..., (yT , xT ). We first cover the case without serial
dependence and then extend this to allow for such dependencies.

2.1 No Serial Dependence

In the absence of serial dependence in outcomes, the non-parametric sign test proposed by
Pesaran and Timmermann (1992) can be used. Let P̂ be the so-called hit-rate, i.e. the proportion
of cases where Yt and Xt fall in the same category (have the same sign), while P̂∗ is the hit rate
expected under the null of independence between xt and yt. The PT test statistic is given by

PT =
P̂ − P̂∗h

V̂ (P̂ )− V̂ (P̂∗)
i 1
2

, (1)

where

P̂ = T−1
TX
t=1

I(YtXt), P̂∗ = ȳx̄+ (1− ȳ)(1− x̄), (2)

V̂ (P̂ ) = T−1P̂∗(1− P̂∗), (3)

V̂ (P̂∗) = T−1(2ȳ − 1)2x̄(1− x̄) + T−1(2x̄− 1)2ȳ(1− ȳ) (4)

+4T−2ȳx̄(1− ȳ)(1− x̄),
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and ȳ = T−1
PT

t=1 yt, x̄ = T−1
PT

t=1 xt.
2 Under the null hypothesis that yt and xt are distrib-

uted independently (namely xt has no power in predicting yt), PT is asymptotically distributed
as a standard normal, PT a∼ N(0, 1).

2.1.1 A Regression Approach

As a step towards allowing for serial dependence in the outcomes, we next show how this test
can be cast in a regression context. It turns out that the PT statistic can be well approximated
by the t-ratio of the coefficient of xt = I(Xt) in the Ordinary Least Squares (OLS) regression of
yt = I(Yt) on xt and an intercept:

yt = α+ βxt + ut, (5)

where E (ut |xt, xt−1, ... ) = 0. We deal with the case where ut could be serially correlated and/or
heteroskedastic below.
The t-ratio of the OLS estimator of β in the above regression is given by

tβ =
r
√
T − 2√
1− r2

, (6)

where r is the simple correlation coefficient between yt and xt. To establish the relationship
between tβ and the PT statistic, note that

I(YtXt) = I(Yt)I(Xt) + [1− I(Yt)] [1− I(Xt)]

= 2ytxt − yt − xt + 1,

and hence

P̂ = T−1
TX
t=1

I(YtXt) = 2T
−1

TX
t=1

ytxt − ȳ − x̄+ 1.

Using (2) we have

P̂ − P̂∗ = 2

Ã
T−1

TX
t=1

ytxt − ȳx̄

!
= 2T−1

TX
t=1

(yt − ȳ) (xt − x̄) = 2Syx.

Also, after some algebra, it is easily seen that

V̂ (P̂ )− V̂ (P̂∗) = 4T
−1ȳ(1− ȳ)x̄(1− x̄)− 4T−2ȳ(1− ȳ)x̄(1− x̄).

Ignoring the second term which is of order T−2, and noting that x2t = xt and y2t = yt, we have

Sxx = T−1
TX
t=1

(xt − x̄)
2
= x̄(1− x̄), Sxy = Syx = T−1

TX
t=1

(xt − x̄) (yt − ȳ) ,

Syy = T−1
TX
t=1

(yt − ȳ)2 = ȳ(1− ȳ).

It follows that (up to order T−1)

PT =
P̂ − P̂∗n

V̂ (P̂ )− V̂ (P̂∗)
o 1

2

≈
√
TSyxp
SyySxx

=
√
T r. (7)

2The PT statistic is undefined when ȳ or x̄ take the extreme values of zero or unity.
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This in turn establishes that the student-t test of β = 0 in (6), and the PT test defined by (1),
will be asymptotically equivalent. The two test statistics are also likely to be numerically very
close in most applications.

2.2 Serial Dependence

As noted in the introduction one of the main shortcomings of the existing tests of predictability
for variables that fall in multiple categories, including the PT test, is the assumption that under
the null hypothesis (β = 0), the outcomes, yt, are serially independent. This assumption is clearly
restrictive and unlikely to hold for many economic and financial time series. For example, the
presence of regimes whose dynamics is determined by a Markov process as in Hamilton (1989)
might give rise to persistence in output growth. Serial correlation in such variables is likely to
generate serial dependence in the qualitative outcomes and could cause distortions in the size of
the PT test, typically in the form of over-rejection.
In the context of the regression based test (6), the serial dependence in outcomes under the

null hypothesis translates into serial dependence in the errors, ut. Due to the discrete nature
of the yt = I(Yt) series, the pattern of serial dependence in yt could differ from that of Yt and
additionally yt could be conditionally heteroskedastic even if Yt is not and vice versa.
In testing β = 0 in (5), serial dependence in the errors, ut, can be dealt with either para-

metrically or by using Bartlett weights as proposed by Newey and West (1987) in constructing
a test statistic

t̃β =
β̂r

V̂NW

³
β̂
´ , (8)

where β̂ is the OLS estimator of β, and V̂NW

³
β̂
´
is the (2, 2) element of

V̂NW (φ̂) =
1

(T − 2) x̄2 (1− x̄)
2

µ
x̄ −x̄
−x̄ 1

¶
F̂h

µ
x̄ −x̄
−x̄ 1

¶
, (9)

φ̂ = (α̂, β̂)0, h is the length of the lag window,

F̂h = Ω̂0 +
hX

j=1

µ
1− j

h+ 1

¶
(Ω̂j + Ω̂

0
j),

and

Ω̂j = T−1
TX

t=j+1

ûtût−j

µ
1 xt−j
xt xtxt−j

¶
.

Clearly, other estimates of the variance of β̂, based on different estimates of the spectral density
of ût = yt− α̂− β̂xt at zero frequency could be used. We shall return to these additional choices
in the Monte Carlo section.

3 Multiple Categories: Static Case
While the binary case is used extensively in empirical work, a number of applications require
generalizing the setup to allow for an arbitrary (but countably finite) number of categories. For
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example, survey data often has multiple categories such as ‘down’, ‘unchanged’ and ‘up’.3 To
facilitate analysis of such cases, consider the general case where a time series of T observations
on some explanatory or predictive variable, x, is arranged into mx categories (states) while
observations on the dependent or realized variable, y, are categorized into my groups.4 Without
loss of generality we assume that mx ≤ my. Denote the x-categories by xjt so that xjt = 1 if
the jth category occurs at time t and zero otherwise. Similarly, denote the realized outcomes by
yit so yit = 1 if category i occurs at time t and zero otherwise.
Convert the categorical observations into quantitative measures by assigning the weights ai

to yit for i = 1, 2, ...,my and bj to xjt for j = 1, 2, ...,mx and t = 1, 2, ..., T as follows5

yt =

myX
i=1

aiyit, and xt =

mxX
j=1

bjxjt.

Since the outcome categories are mutually exclusive, the regression of yt on an intercept and xt
can be written as

amy +

my−1X
i=1

¡
ai − amy

¢
yit = α+ βbmx + β

⎡⎣mx−1X
j=1

(bj − bmx)xjt

⎤⎦+ ut,

or, more compactly,
θ0yt = c+ γ0xt + ut, (10)

where yt= (y1t,y2t, ...,ymy−1,t)
0, xt= (x1t,x2t, ...,xmx−1,t)

0, c = α+ βbmx − amy and

θ =

⎛⎜⎜⎜⎝
a1 − amy

a2 − amy

...
amy−1 − amy

⎞⎟⎟⎟⎠ , γ =

⎛⎜⎜⎜⎝
β (b1 − bmx)
β (b2 − bmx

)
...

β (bmx−1 − bmx)

⎞⎟⎟⎟⎠ .

A test of predictability can now be carried out by testing γ = 0 in (10), conditional on a given
value of θ. Under this setup the testing problem reduces to the static regression test of the
previous section when my = mx = 2. In the more general case the test of γ = 0 will depend on
the “nuisance” parameters, θ.
Throughout our analysis we assume that the following conditions hold:

Assumption 1: The number of categories, mx and my is finite and remains fixed as T →∞.
Assumption 2: The sequence of sample averages x̄jT = T−1

PT
t=1 1{xt=j}, ȳiT = T−1

PT
t=1 1{yt=i}

satisfy the conditions x̄jT (1− x̄jT ) 6= 0 and ȳiT (1− ȳiT ) 6= 0 for all i = 1, ...,my, j = 1, ...,mx,
and for all sample sizes, T , including as T →∞.
Assumption 3: θ ∈ Θ and γ ∈ Γ where Θ are Γ are compact sets.

These assumptions are standard from the literature on contingency tables. The assumption
that the number of states is finite and fixed is almost always satisfied in empirical applications.

3Another example arises in the analysis of contagion where positive as well as negative discrete jumps in
market returns or spreads could be of interest (see, for example, Favero and Giavazzi (2002) and Pesaran and
Pick (2006)).

4That we consider pairs of variables, x, y, is not restrictive. For example, a new variable, x, could be formed
from the product space of a set of underlying variables Xm1 ×Xm2 ....×Xmq .

5We are assuming that these measurement weights remain fixed over time.
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The second assumption (uniform representativeness) requires that all categories must be repre-
sented in a given sample while categories with zero representation must be dropped. Since this
result should hold in the limit as T →∞, it follows from this assumption that none of the states
can be absorbing. The third assumption is more of a technical requirement and it is hard to
think of realistic cases where it is not satisfied.
Under assumptions 1-3 it is easy to establish consistency of the test statistics discussed

below. Because the data is discrete, we do not need the underlying variables, Yt and Xt to
satisfy particular moment conditions. The key is assumption 2 that must holds uniformly for
each T and as T →∞.
In what follows we first consider testing the null hypothesis, H0 : γ = 0 conditional on a given

value of θ under classical assumptions applied to ut conditional on xt. We then examine the
properties of the test for other values of θ. The case of serially correlated and/or heteroskedastic
errors will be dealt with subsequently.

3.1 F(θ)-statistic

For a given value of θ, a standard F−statistic can be employed to test independence of yt and
xt :

F (θ) =

µ
T −mx

mx − 1

¶
θ0SyxS

−1
xxSxyθ

θ0
¡
Syy−SyxS−1xxSxy

¢
θ
, (11)

where
Syx = S

0
xy = T−1Y0MτX, Syy = T−1Y0MτY, Sxx = T−1X0MτX.

Y = (y1,y2, ...,yT )
0 and X = (x1,x2, ...,xT )

0, are the T × (my − 1) and T × (mx − 1) obser-
vation matrices on the qualitative indicators, respectively, and Mτ = IT − τ (τ 0τ )−1τ 0, where
τ =(1, 1, ..., 1)0. Since it is not known a priori which element of θ might be non-zero, we employ
the normalizing restriction θ0Syyθ = 1. This requires that at least one element of θ is non-zero.
It follows from Assumption 2 that Sxx and Syy are non-singular matrices. To see this, note

that due to the multinomial nature of the underlying data the limits of Sxx and Syy exist for all T .
Furthermore, since the events in the mx or my categories are mutually exclusive, T−1X0X, and
T−1Y0Y will be diagonal matrices, with their ith diagonal element given by x̄iT = T−1

PT
t=1 xit

and ȳiT = T−1
PT

t=1 yit, respectively. For example (dropping, for simplicity, the T subscript on
these sample averages),

Sxx =

⎛⎜⎜⎜⎜⎜⎝
x̄1 (1− x̄1) −x̄1x̄2 . . . −x̄1x̄mx−2 −x̄1x̄mx−1
−x̄2x̄1 x̄2 (1− x̄2) . . .
...

...
. . .

...
...

−x̄mx−2x̄1 −x̄mx−2x̄2 . . . x̄mx−2 (1− x̄mx−2) −x̄mx−2x̄mx−1
−x̄mx−1x̄1 −x̄mx−1x̄2 . . . −x̄mx−1x̄mx−2 x̄mx−1 (1− x̄mx−1)

⎞⎟⎟⎟⎟⎟⎠ . (12)

Similarly, the (i, j) element of Sxy is given by T−1
PT

t=1 xityjt − x̄iȳj . For these matrices to be
non-singular it is necessary that x̄j 6= 0 and ȳi 6= 0 for all i, j. Since x̄i = 1 would necessarily imply
that x̄j = 0 for j 6= i, to ensure that Sxx and Syy are non-singular we must have x̄j (1− x̄j) 6= 0
and ȳi (1− ȳi) 6= 0 for all i = 1, ..,my and j = 1, ...,mx. This is guaranteed to hold by Assumption
2.
We denote the probability limits of x̄i, ȳi, Sxx, Syy, and Sxy by μix, μiy, Σxx, Σyy, and Σxy,

respectively:
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p lim
T→∞

x̄j = μjx ∈ (0, 1), p lim
T→∞

ȳi = μiy ∈ (0, 1),

p lim
T→∞

Sxx = Σxx, p lim
T→∞

Syy = Σyy, p lim
T→∞

Sxy = Σxy.

Clearly, Σxx and Σyy will be non-singular so long as μix (1− μix) 6= 0 and μiy
¡
1− μiy

¢
6= 0,

which again is implied by Assumption 2.

3.2 Maximum Canonical Correlation Test

A general approach to dealing with the dependence of F (θ) on the nuisance parameters is to
base the test on

Fmax = Argmax
θ
[F (θ)]

subject to the normalizing restriction that θ0Syyθ =1. This idea has been used in the statistical
literature (e.g. by Davies (1977)) in cases where certain parameters of the statistical model
disappear under the null hypothesis, and has been applied in econometrics to the analysis of
non-nested models by Pesaran, (1981), and to testing non-linear effects in dynamic models by
Andrews and Ploberger (1994) and Hansen (1996). However, our application of Davies’s main
idea differs from these applications since the nuisance parameter, θ, does not disappear under
the null.
Using (11), the first order condition for optimization of F (θ) is given by¡

SyxS
−1
xxSxy

¢
θ̂ =ρ̂2Syyθ̂, (13)

where

ρ̂2=
F
³
θ̂
´³

mx−1
T−mx

´
1 +

³
mx−1
T−mx

´
F
³
θ̂
´ . (14)

The value of θ that maximizes F (θ) is therefore given by the eigenvector associated with the
maximum eigenvalue of

S = S−1yy SyxS
−1
xxSxy. (15)

Denoting the non-zero eigenvalues of S in descending order by ρ̂21 ≥ ρ̂22 ≥ ... ≥ ρ̂2mx−1, we have
(using (14))

Fmax =
(T −mx)ρ̂

2
1

(mx − 1)
¡
1− ρ̂21

¢ , (16)

which is an obvious generalization of (6) and reduces to t2β in the case of mx = 2.
Note that ρ̂2i i = 1, 2, ...,mx − 1 are the squared canonical correlation coefficients between

the indicators, xt, and the realizations, yt. The concept of canonical correlations was proposed
by Hotelling (1935, 1936) and considers the degree of linear dependence between two random
vectors. In the context of the categorical data this would involve choosing the weights, ai, i =
1, 2, ...,my − 1 and bj , j = 1, 2, ...,mx− 1 such that the simple correlation between

Pmy−1
i=1 aiyit,

and xt =
Pmx−1

j=1 bjxjt is maximized. See, for example, Anderson (2003, Ch. 12). There are
mx − 1 such canonical correlations, given by the square roots of the ordered non-zero solutions
of the determinantal equation (recall that mx ≤ my)¯̄

SyxS
−1
xxSxy − ρ2Syy

¯̄
= 0.
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These are the same as the mx − 1 non-zero eigenvalues of the matrix S defined by (15). The
estimator of θ, denoted by θ̂1, is given by the eigenvector associated with ρ̂21, which satisfies¡

SyxS
−1
xxSxy − ρ̂21Syy

¢
θ̂1= 0. (17)

Since ρ̂21 < 1 and Fmax is a monotonic function of ρ̂
2
1, a test of γ = 0 in (10) is thus reduced to

testing the statistical significance of the largest canonical correlation between yt and xt. The
exact joint probability distribution of the canonical correlations, 1 > ρ̂21 > ρ̂22 > ... > ρ̂2mx−1, is
provided in Anderson (2003, pp. 543-545) for the case where the distribution of yt conditional
on xt is Gaussian. In the present application where the elements of yt (conditional on xt) can
be viewed as independent draws from a multinominal distribution, the exact distribution of the
canonical correlations will be less tractable but can readily be simulated as we show below.

3.3 Reduced Rank Regression Approach: Trace Canonical Correlation
Test

The null of independence between x and y implies not only that ρ1 = 0 but that ρ1 = ρ2 = ... =
ρmx−1 = 0. An alternative to the maximum canonical correlation test is therefore to base a test
of γ = 0 on an average concept of F (θ) given by6

F̄ =
(T −mx)

mx − 1

mx−1X
i=1

ρ̂2i
1− ρ̂2i

≈
(T −mx)

mx − 1
Tr (S) .

This test can also be derived in the context of the reduced rank regression

yt = a+Πxt + εt, (18)

where in our application the null hypothesis of interest is Π = 0, or rank (Π) = 0.7 Under
Assumptions 1 and 2, and assuming that under the null hypothesis the outcomes or εtare serially
independent an asymptotic test of Π = 0 is given by

(T −mx)

mx−1X
i=1

ρ̂2i
a∼ χ2(mx−1)2 . (19)

Pmx−1
i=1 ρ̂2i can also be computed by Tr(S) and for this reason is often called the trace test.
As noted earlier in the case of Gaussian errors the exact sample distribution of the squared

canonical correlations is provided in the literature. In the case of multi-category observations
under the null hypothesis the errors will follow a multinomial distribution and the form of the
exact distribution of the squared canonical correlations will be rather complicated to write down
but as noted above can be easily simulated. However, since under Assumptions 1 and 2 all
moments of εt exist, and Sxx and Syy tend to finite non-stochastic positive definite matrices,
then as T →∞, (T −mx)Tr(S) will follow the same asymptotic distribution as in the case with
Gaussian errors established in the literature.

6Average type test statistics have been proposed by Andrews and Ploberger (1994) when testing in the presence
of nuisance parameters that disappear under the null hypothesis.

7A detailed account of reduced rank regression techniques is provided in Anderson (2003, section 12.7), a topic
which has re-emerged into prominence as a result of the developments in the cointegration literature. See, for
example, Johansen (1995). Johansen’s setting with integrated variables does not, of course, apply here.
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3.4 Relationship to Fisher’s Chi-squared Test

In the special case where the realizations of X and Y are serially independent, the standard
approach to testing independence of categorized variables is to arrange the outcomes in the form
of a contingency table and then compute an appropriate test statistic from the individual cell
frequencies. We next show that there is an exact relationship between the trace statistic and
Fisher’s contingency table χ2−test of independence. To this end we first introduce some new
notations.
When testing the independence of yit, and xjt for i = 1, 2, ...,my, j = 1, ...,mx the appropriate

contingency table is given by

Y,X 1 2 · · · mx

1 n11 n12 · · · n1mx n1.
2 n21 n22 · · · n2mx n2.
...

...
...

...
...

...
my nmy1 nmy2 · · · nmymx nmy.

n.1 n.2 · · · n.mx n

Here nij is the frequency of the joint occurrence of yit and xjt, namely nij =
PT

t=1 yitxjt, and

ni. =

mxX
j=1

nij =
TX
t=1

yit, n.j =
myX
i=1

nij =
TX
t=1

xjt,

n =

myX
i=1

ni. =

mxX
j=1

n.j = T.

The familiar Fisher Chi-square test of independence for data arranged in a contingency table is
given by

χ2 = T

⎛⎝myX
i=1

mxX
j=1

n2ij
ni.n.j

− 1

⎞⎠ . (20)

The appendix contains a proof of the following proposition which shows that the trace test
based on the reduced rank regression (18) is in fact identical to the familiar contingency table
χ2−test:

Proposition 1 The Fisher Chi-square test for independence of data arranged in an mx ×my

contingency table (mx ≤ my) is identical to a trace test based on the canonical correlations

myX
i=1

mxX
j=1

n2ij
ni.n.j

− 1 =
mx−1X
i=1

ρ̂2i ,

where ρ̂i is the sample estimate of the i
th canonical correlation between Y = (y1,y2, ...,ymy−1)

and X = (x1,x2, ...,xmx−1), yi = (yi1, yi2, ..., yiT )
0 and xi = (xi1, xi2, ..., xiT )0. Furthermore,

mx−1X
i=1

ρ̂2i = Tr
h
(Y0MτY)

−1
(Y0MτX) (X

0MτX)
−1
(X0MτY)

i
,

where Mτ = IT − T−1τTτ
0
T , τT = (1, 1, ..., 1)

0.
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The values or ‘labels’ assigned to the categories for the X and Y variables may have a specific
meaning in some applications but are oftentimes arbitrary−think of the convention of labelling
recessions as unity and expansions as zeros. It would be unfortunate if such labels had an effect
on the outcome of the proposed tests. However, as we next show, a convenient and reassuring
property of the tests is that the labelling is irrelevant to the test statistic:8

Proposition 2 The maximum canonical correlation and trace canonical correlation tests are
invariant to the values taken by the my categories of Y and the values taken by the mx categories
of X.

This result implies that the trace and the maximum canonical correlation statistics are both
invariant to the measurement of the categorical variables. Another way to establish this result
which takes advantage of our framework is to notice that the test statistics remain unchanged
if yt and xt are pre-multiplied by non-singular matrices of order (my − 1) × (my − 1) and
(mx − 1)× (mx − 1), respectively. Denote these matrices by Ty and Tx, and let

ỹt = Tyyt and x̃t = Txxt,

and note that the canonical correlations of ỹt and x̃t are given by the non-zero roots of¯̄
Sỹx̃S

−1
x̃x̃Sx̃ỹ − ρ̃2Sỹỹ

¯̄
= 0,

where

Sỹx̃ = S0x̃ỹ = T−1TyY
0MτXT

0
x,

Sỹỹ = T−1TyY
0MτYT

0
y,

Sx̃x̃ = T−1TxX
0MτXT

0
x.

Since Ty and Tx are non-singular, we also have¯̄
Sỹx̃S

−1
x̃x̃Sx̃ỹ − ρ̃2Sỹỹ

¯̄
=

¯̄
Ty

¡
SyxS

−1
xxSxy − ρ̃2Syy

¢
T0y
¯̄

= |Ty|2
¯̄
SyxS

−1
xxSxy − ρ̃2Syy

¯̄
.

Finally, since |Ty| 6= 0 this establishes that ρ̃2i = ρ̂2i for i = 1, 2, ...,mx − 1.

3.5 Simulation of Critical Values

The idea of basing a test of dependence on (T −mx)ρ̂
2
1,where ρ̂

2
1 is the largest of the squared

canonical correlation has not, to our knowledge, previously been considered. Critical values are
therefore unknown for this test. Notably, the ordering of squared canonical correlations induces
a non-standard distribution and means that (T −mx)ρ̂

2
1 will not follow a standard chi-squared

test even in large samples. Furthermore, even for the trace test where ranking is not an issue,
the chi-squared distribution is only achieved asymptotically, so the critical values will differ in
small samples.
To compute the critical values of the maximum F (canonical correlation) statistic, Fmax =

(T −mx)ρ̂
2
1, and the average F (trace canonical correlation) statistic, F̄ = (T −mx)

Pmx−1
i=1 ρ̂2i ,

we undertook the following simulation experiment. Lettingmx = my = m, we generated random

8The connection between correlation coefficients and contingency table statistics was first derived by Hirschfeld
(1935) and further elaborated by Lancaster (1958) in their attempts to solve the optimal score problem described
in the proof of the proposition.
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samples from the multinomial distribution with 2(m−1) categories for m = 2, 3 or 4. We carried
out 100, 000 replications and considered sample sizes of T = 20, 50, 100, 500 and 1, 000. Table 1
reports 90% and 95% critical values for the maximum canonical correlation test (panel A) and
the trace canonical correlation test (Panel B). The critical values are of course identical for the
two tests when m = 2.
When m = 2, the 95% critical values are below their asymptotic value of 3.84 for the smallest

samples of T = 20 or 50 but then rise to a value above this when T = 100. Hence there is no
monotonic relationship between sample size and the 95% critical value when m = 2. In contrast,
the critical values seem to rise monotonically with the sample size when m = 3 or 4. Notice
that a test that ignores the ranking information and hence wrongly assumes that (T − m)ρ̂21
∼ χ21 would be grossly oversized as the critical values are much greater than implied by this
distribution.

4 Multiple Categories in the Presence of Error Depen-
dence and Heteroskedasticity

We finally turn to the general case with multiple categories and serial dependence in the out-
come variable. A significant advantage of the maximum canonical correlation and reduced rank
regression framework is, as we shall see, that it allows a natural extension of the test to dynamic
contexts which does not seem possible within the standard contingency table set up. Serial
dependence in ut can be allowed for either parametrically or by using a heteroskedasticity and
autocorrelation consistent (HAC) procedure.

4.1 Dynamically Augmented Reduced Rank Regression

To allow for possible serial dependencies in the outcomes we consider the regression model (10)
and assume that the errors, ut, could be serially correlated. Suppose that ut follows a stationary
first order autoregressive process

ut = ϕut−1 + εt, |ϕ| < 1, (21)

where εt are serially independent. For this error specification, using (10) we have

θ0yt = c (1− ϕ) + γ0xt − ϕγ0xt−1 + ϕθ0yt−1 + εt.

As in the previous section, a consistent test of γ = 0 can now be carried out using the maximum
or the average of the canonical correlation coefficients of Y and X after filtering both sets of
variables for the effects of yt−1 and xt−1. More specifically, we compute the eigenvalues of

Sw= S
−1
yy,wSyx,wS

−1
xx,wSxy,w, (22)

where
Syy,w = T−1Y0MwY, Sxx,w = T−1X0MwX, and Sxy,w = T−1X0MwY,

Mw = IT −W (W0W)
−1
W0,W = (τ ,X−1,Y−1),

X−1 and Y−1 are T × (mx − 1) and T × (my − 1) observation matrices on xt−1 and yt−1,
respectively.
It is now easy to show that the trace test based on Sw is the same as testing Π = 0 in the

dynamically augmented reduced rank regression

Y = XΠ0 +WB+E, (23)
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where E is a T × (my − 1)matrix of serially uncorrelated errors. Higher order error dynamics
can be accommodated by including further lags of y and x as columns ofW. Under Π = 0, and
for T sufficiently large, using results established in Anderson (2003, Section 12.4), we have

(T −mx)Tr(Sw)
a∼ χ2(mx−1)2 . (24)

4.2 Iterated Method

An alternative to dynamically augmenting the reduced rank regression is to adjust the moment
matrices used in calculating the variance matrix of γ̂ to account for heteroskedasticity and
autocorrelation in the errors in (10). The F -statistic corresponding to (11) in this case is given
by

F (θ) =

µ
T −mx

mx − 1

¶
θ0SyxH

−1
xx (θ)Sxyθ

θ0
¡
Syy−SyxH−1xx (θ)Sxy

¢
θ
,

where

Hxx(θ) = lim
T→∞

E

"
1

T

TX
s=1

TX
t=1

(xt − x̄) (xs − x̄)0 ut(θ)us(θ)
#
,

x̄ =(x̄1, x̄2, ..., x̄mx−1)
0, ȳ =

¡
ȳ1, ȳ2, ..., ȳmy−1

¢0
, and under γ = 0

ut(θ) = θ0(yt − ȳ).

Hence

Hxx(θ) = lim
T→∞

E

"
1

T

TX
s=1

TX
t=1

θ0(yt − ȳ) (xt − x̄) (xs − x̄)0 (ys − ȳ)0θ
#
,

can be viewed as the long run variance of T−1/2
PT

t=1 dt(θ), where dt(θ) = θ0(yt − ȳ) (xt − x̄) .
Since elements of xt and yt are bounded, Hxx(θ) exists under general assumptions concerning
the serial dependence and heteroskedasticity of the error terms, as set out in Newey and West
(1987).
Unlike the serially independent case, the first order conditions for maximization of LM(θ)

cannot get reduced to solving an eigenvalue problem. An asymptotically equivalent alternative
(under γ = 0) is to use a first-stage consistent estimate of Hxx(θ) that abstracts from the serial
dependence of the errors. Such an estimator of θ is given by (17), and the first-stage estimate of
Hxx(θ) can be obtained by (using a Bartlett window)

Ĥxx,h(θ̂1) = Γ̂0 +
hX

j=1

µ
1− j

h+ 1

¶
(Γ̂j + Γ̂

0
j), (25)

Γ̂j = T−1
TX

t=j+1

dt(θ̂1)d
0
t−j(θ̂1),

dt(θ̂1) = θ̂
0
1(yt − ȳ) (xt − x̄) .

Using this estimator, one can solve the following eigenvalue problem³
SyxĤ

−1
xx (θ̂1)Sxy − ρ̃21Syy

´
θ̃1= 0,
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where ρ̃21 is the largest value of ρ̃
2 that solves¯̄̄
SyxĤ

−1
xx (θ̂1)Sxy − ρ̃2Syy

¯̄̄
= 0.

Under the null that γ = 0, and conditional on the initial estimator of θ, θ̂1, the Trace test is
now given by

(T −mx)Tr
h
S̃(θ̂1)

i
a∼ χ2(mx−1)2 , (26)

where
S̃(θ̂1) = S

−1
yy SyxĤ

−1
xx (θ̂1)Sxy.

The estimate of θ used for the estimation ofHxx(θ) can be iterated upon as required until conver-
gence is achieved, subject to the normalization restriction, θ0Syyθ = 1.9 The heteroskedasticity
and autocorrelation consistent t-statistic corresponds to the GMM test recently proposed by
Harding and Pagan (2004) in the context of serially dependent binary variables (m = 2).

5 Monte Carlo Simulations
The previous section introduced a range of test statistics and derived their asymptotic distribu-
tion. However, it is also important to understand the finite sample properties of these tests, so in
this section we undertake some Monte Carlo experiments to shed light on this question. We use
the following setup. To capture serial dependence, Yt was simulated from a first-order autore-
gressive process with parameter, ϕ, and Gaussian increments.10 Autocorrelations of ϕ = 0.0, 0.5
and 0.8 were considered, corresponding to zero, medium and strong serial correlation scenarios,
respectively. To allow for different degrees of dependence between Yt and Xt, we consider three
values for the cross-correlation of their increments, ryx = 0.0, 0.2 and 0.8. Finally, the simulated
data were categorized into mx = my ≡ m equally probable bins. Two thousands replications
were carried out for each experiment. We report results for sample sizes of T = 20, 50, 100, 500
and 1000.
The simulations consider the three trace statistics (19), (24) and (26) and the corresponding

maximum canonical correlation tests. In each case we assume a critical level of five percent,
using the finite sample critical values from Table 1. For the dynamically augmented reduced
rank regression (23) that includes lags of Xt and Yt, we consider up to four lags, selected in each
case using the Akaike Information Criterion. The number of lags used in the HAC procedure is
proportional to T 1/3.
We also consider the performance of the PT test for market timing referred to in Section 2

which tests whether the diagonal elements in a contingency table differ from their values implied
under the null of independence,

H∗0 :
mX
i=1

(Pii − Pi.P.i) = 0.

Notice that whenm > 2, the null hypothesis for the PT test differs from the null of independence,
whereas the two coincide when m = 2. In the multicategory case (7) can be generalized to

√
mV −1/2s Sm ∼ N(0, 1), (27)

9Alternatively one could follow a simultaneous non-linear approach to the estimation of θ, as in the continuous
updating procedure employed in GMM estimation (see, for example, Hall (2004)).
10To consider the effect of higher order dynamics, we also simulated from a second-order autoregressive process.

The simulation results were very similar to those reported for the AR(1) process and are hence omitted.
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where

Sm =

mxX
i=1

(P̂ii − P̂i.P̂.i)

P̂ii =
nii
n
, P̂i. =

ni.
n
, P̂.i =

n.i
n
,

Vs =

µ
∂f(P0)

∂P

¶0
(Ψ− P0P

0
0)

µ
∂f(P0)

∂P

¶
and

∂f(P0)

∂P
=

½
1− P.i − Pi. for i = j
−Pj. − P.i for i 6= j

.

This is the form of the PT statistic used in the simulations.

5.1 Size

Table 2 reports the size of the test statistics assuming a zero correlation between Yt and Xt

(ryx = 0), whilst varying the degree of serial dependence in Yt, as measured by ϕ. In the absence
of any serial correlation (ϕ = 0, in Panel A), the test statistics generally have the right size.
Exceptions to this only occur when m is large relative to the sample size (i.e. when m = 3 or 4
and T = 20)−cases where one would hesitate to rely on statistical tests. In the latter case the
dynamically augmented and iterated canonical correlation tests tend to be somewhat oversized,
reflecting the effect of estimation error in very small samples. The PT test also tends to be
oversized in the smaller samples. Similar findings are well known in the time series literature on
hypothesis testing with serial adjustment in cases where the sample size is small relative to the
number of estimated parameters.
Turning to the case with serially correlated outcomes (but still no cross-correlation, i.e. ryx =

0), under mild serial correlation (ϕ = 0.5 in Panel B), the static canonical correlation test statistic
is somewhat oversized with rejection rates of 7-10 percent. A similar but somewhat larger
over-rejection rate is observed for the PT test. The size of the dynamically augmented test
statistics are generally reasonably close to the 5% nominal level. The iterated test is undersized
in the smaller samples when m = 2 or m = 3. Small sample size distortions disappear for the
dynamically augmented and iterated tests as the sample grows. In contrast, the size distortions
grow as a function of the sample size for the static canonical correlation test that assumes serially
uncorrelated outcomes.
When the serial correlation gets even stronger (ϕ = 0.8, in Panel C), size distortions become

much more serious for the static canonical correlation test and the PT test. At this level of per-
sistence, rejection rates around 20-30% are common for either test. In contrast, the dynamically
augmented and iterated test that allow for serially correlated outcomes generally have the right
size. Furthermore, they appear to converge to the right limits in the largest sample sizes and
hence properly adjust for serial dependencies. In contrast, the static canonical correlation test
is clearly over-sized in both the small and the largest samples with a bias that grows with the
sample size.

5.2 Power

Table 3 presents values of the power when the correlation between innovations to X and Y
is ryx = 0.2. In the absence of any serial correlation in the outcomes (ϕ = 0), the power of
the static and dynamically augmented canonical correlation statistics is around 10 percent in
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samples with 50 observations. This rises to 25 and 80 percent when the sample size is increased
to 100 and 500 observations, respectively. Power is close to 100% in the largest sample with
1000 observations. For the static and dynamically augmented canonical correlation statistics,
the power does not vary too much across different values of m except for in the very smallest
sample with T = 20, where the size distortions of the dynamically augmented test leads to over-
rejections. The iterated test generally has weak nominal power as a result of its tendency to be
undersized in the smaller samples.
Introducing mild serial persistence (ϕ = 0.5 in Panel B) does not change the results very much

although the rejection rate is now generally marginally higher for the static canonical correlation
test than for the dynamically augmented test due to the tendency of the former to over-reject
as documented in Panel B of Table 2. This same point also explains the much higher rejection
rates for the static canonical correlation test in the high persistence scenario covered in Panel C.
Table 4 shows results when the correlation between innovations to X and Y is raised to

ryx = 0.8. Not surprisingly, the power of the static and dynamically augmented test is generally
very high for this case−close to 70% in the smallest sample with 20 observations and close to
unity in the larger samples. Once again, the iterated procedure tends to have lower power in the
smaller samples due to the fact that it is undersized for these cases.
The power of the tests should of course be seen in relation to the size-distortions discussed

previously. If size distortions grow as a result of serial correlation, the power of some tests may
appear to increase as a result of stronger serial correlation, even though this is not really the
case. To demonstrate this point, Figures 1-3 plot the rejection rates as a function of the cross-
sectional correlation between innovations to X and Y under no persistence (ϕ = 0, in Figure
1), mild persistence (ϕ = 0.5, in Figure 2) and strong persistence (ϕ = 0.8, in Figure 3). The
figures assume m = 2, T = 100 and uses 2,000 simulations. Figure 1 shows that in the absence
of serial persistence, the iterated test is undersized and the static canonical correlation test has
marginally higher power than the dynamically augmented test. This is to be expected since the
static test uses the correct assumption of zero coefficients on lagged values of X and Y and hence
estimates fewer parameters. Figure 2 shows that the static canonical correlation test tends to
get oversized in the presence of serial correlation. It is clear from Figure 3 that this problem
grows very severe as the degree of persistence of the outcome variable goes up. Under mild serial
persistence the dynamically augmented and iterated canonical correlation methods tend to have
the right size whereas the latter is a bit oversized under strong serial persistence.

5.3 Alternative Adjustments for Heteroskedasticity and Serial Corre-
lation

When mx = my = 2, we considered a standard least-squares t−test without correction for serial
correlation in addition to t−tests that account for serial correlation using either the Newey-
West (1987) or Kiefer-Vogelsang (2002) corrections. We also corrected for serial correlation by
means of Andrews’ plug-in bandwidth (Andrews (1991), Andrews and Monahan (1992)) and the
Phillips, Sun and Jin (2005) approach. These approaches were applied separately for Bartlett,
Parzen and QS (quadratic spectral) kernels used to adjust for serial correlation. We consider two
regressions, namely one that does not include lagged values of the dependent and independent
variables (regression I), along with a regression that includes lags of X and Y (regression II)
selected by the AIC.
Table 5 presents the results. To save space we report results only for least squares, Bartlett

and QS kernels, but very similar results were obtained using other kernels. In the case with-
out serial correlation, the tests generally have the correct size, albeit with a tendency of the
dynamically augmented regressions to be slightly oversized in the smallest sample with T = 20
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observations. Results are robust across kernels used to compute the standard errors. Turning
to the case with mild serial persistence (panel B), the results now suggest that the static OLS
method is oversized in the largest samples, while the other methods control size much better.
Finally, for the case with strong serial persistence, the OLS method rejects in close to 25% of
the cases, indicating again that serial correlation is a big problem for this method and leads to
significant size distortions. Correcting for serial correlation by using Bartlett or QS weights only
partially resolves this problem as the tests based on these methods still tend to be oversized with
a rejection rate closer to 10-15% in the smaller samples. The best method seems again to be to
dynamically augment the regression and use HAC standard errors. Under this method the size
of the tests is close to the correct value of 5% except for in the smallest sample, T = 20, where
the rejection rate is closer to 10%.
In the case without serial correlation, the power is around 10% in the smallest samples,

growing to 25% when T = 100 and to 80% and close to 100% in the two largest samples. In
the case with strong serial correlation and mild correlation between innovations to X and Y , the
power of the dynamically augmented methods that use HAC standard errors declines to around
15%, 40% and 75% in the samples with 100, 500 and 1,000 observations. While the power appears
to be higher for the simple OLS method, this only reflects the size distortions described earlier.
Power is uniformly high in the experiments with a correlation between innovations to X and Y
of 0.8 even in the presence of strong serial correlation.

6 Survey Forecasts of GDP Growth
Our empirical application considers the Survey of Professional Forecasters which reports current-
and next-year forecasts of real GDP growth in the form of probability values spread across various
outcome ranges. Our sample covers the period between 1992Q1 and 2005Q2, the longest recent
period during which the definition of the outcome ranges was not subject to change. We study
real GDP growth forecasts and realizations in the ranges below 2%, between 2% and 3%, between
3% and 4% and above 4%. The range with the highest probability among survey participants−the
most likely range−is assigned unity, while the other ranges get a zero. The same ranges are then
used for the ‘realized’ time series which we take to be the real-time vintages of output growth.
By using real-time data, we avoid distortions due to subsequent data revisions that could not
have been known by the survey participants. All data is published by the Philadelphia Federal
Reserve.
Table 6 reports the value of the PT, static, dynamically augmented and iterated maximum and

trace canonical correlation tests usingm = 2 categories (based on the ranges (−∞, 3%), [3%,∞)),
m = 3 categories (based on the ranges (−∞, 2%), [2%, 4%), [4%,∞)) andm = 4 categories (based
on the ranges (−∞, 2%), [2%, 3%), [3%, 4%), [4%,∞)).11
For the current-year predictions, the PT test and the static canonical correlation test indicate

strong evidence of predictability irrespective of the number of categories used. However, it should
be kept in mind that these tests tend to be seriously over-sized in situations with significant serial
correlation. Adjusting for serial correlation is important here: The autocorrelation of the first
linear combination of the dependent variable is 0.8, while that of the second and third linear
combination is 0.40.
In view of the serial correlation in the data, it is therefore not surprising that the dynamically

augmented and iterated canonical correlation tests are far smaller than the static canonical
correlation test. Moreover, these test statistics generally fall some distance below the 5% finite-

11Although these ranges are not of equal length, they account for the fact that, much of the time, GDP growth
falls in the range between two and four percent per annum.
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sample critical values reported in Table 1 (assuming a sample size of 50). The only case with
robust evidence of current-year predictability is when mx = my = 4, where both the dynamically
augmented and iterated canonical correlation statistics generate p−values far below 5%. This
suggests that survey participants have the ability to predict the finer ranges of output growth
and that information is lost by aggregating the data too much.
Turning to the year-ahead forecasts, most results indicate lack of forecasting ability. The

PT test is now insignificant and even slightly negative. The static canonical correlation test
generates a p−value around 5% using m = 3 categories. However, when account is taken of
persistence in the data, once again the test statistic declines substantially and is now far from
being significant.
These results indicate no ability to predict the correct range of real GDP growth one-year

ahead, whereas current-year GDP growth is predictable. The analysis also demonstrates that,
in practice, it can make a sizeable difference whether or not persistence is accounted for when
calculating test statistics for multi-category data.

7 Conclusion
This paper proposed new canonical correlation test statistics that can be used for robust inference
concerning the relationship between multicategory variables in the presence of serial dependen-
cies. The need for such statistics arises in a variety of applications in areas such as business cycle
research, market timing analysis and in the analysis of survey data.
In the absence of serially dependent outcomes we show that the traditional contingency

table test statistic is identical to a trace tests based on reduced rank regressions of categorical
variables. Casting the problem in this manner allows us to develop methods to control for serial
dependence in the context of dynamically augmented regressions. It is worth emphasizing that
the reduced rank regression approach is extremely easy to implement and only requires computing
a multivariate regression of (m− 1) categorized variables on an intercept, (m − 1) explanatory
variables and lags of these and then using standard HAC estimates for standard errors.
Our Monte Carlo simulations and empirical application demonstrate that standard test sta-

tistics that are based on a multinomial setup with draws that are assumed to be independent over
time can be severely over-sized in the presence of serial dependencies in the underlying data. In
contrast, the proposed maximum and trace canonical correlation statistics perform well in small
samples and appear to have good power properties. It is our hope that applied researchers will
use the proposed test statistics in the analysis of serially dependent multicategory data.
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Appendix
Proof of Proposition 1. To establish the result we first write the various moment matrices

in the trace expression in terms of nij notations. Since the events in the various categories are
mutually exclusive, Y0Y and X0X will be diagonal matrices with their ith diagonal elements
given by

ni. =
TX
t=1

yit and n.j =
TX
t=1

xjt.

Also the (i, j) element of Y0X is nij , and

τ 0TY = h0y = (n1., n2., ..., nmy−1.)
0, τ 0TX = h0x = (n.1, n.2, ..., n.mx−1)

0,

(Y0Y)
−1
hy = τmy−1, (X

0X)
−1
hx = τmx−1,

where τmy−1 is a (my − 1)× 1 vector of ones. Hence

Y0MτY = Y0Y−T−1hyh0y, Y0MτX = Y0X−T−1hyh0x.

But

(Y0MτY)
−1
= (Y0Y)

−1
+

T−1 (Y0Y)−1 hyh
0
y (Y

0Y)−1

1− T−1h0y (Y
0Y)−1 hy

,

and noting that

h0y (Y
0Y)
−1
hy =

my−1X
i=1

ni. = T − nmy.

we have

(Y0MτY)
−1

= (Y0Y)
−1
+
τmy−1τ

0
my−1

nmy.
,

(X0MτX)
−1

= (X0X)
−1
+
τmx−1τ

0
mx−1

n.mx

.

Therefore

(Y0MτY)
−1
Y0MτX =

"
(Y0Y)

−1
+
τmy−1τ

0
my−1

nmy.

# ¡
Y0X−T−1hyh0x

¢
= (Y0Y)

−1
Y
0
X−T−1(Y0Y)

−1
hyh

0
x

+
τmy−1τ

0
my−1Y

0X

nmy.
− T−1

τmy−1τ
0
my−1hyh

0
x

nmy.
.

It is easily seen that

(Y0Y)
−1
hyh

0
x = τmy−1h

0
x,

τ 0my−1Y
0X = (hx − qx)0,

τmy−1τ
0
my−1hyh

0
x = τmy−1h

0
x

³
τ 0my−1hy

´
=

¡
τmy−1h

0
x

¢ ¡
T − nmy.

¢
,
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where qx = (nmy1, nmy2, ..., nmy,mx−1)
0. Using these results, after some algebra we have

(Y0MτY)
−1
Y0MτX= (Y

0Y)
−1
Y 0X−τmx−1q

0
x

nmy.
,

(X0MτX)
−1
X0MτY = (X0X)

−1
X
0
Y−

τmx−1q
0
y

n.mx

,

where qy = (n1mx , n2mx , ..., nmy−1,mx)
0. Hence

Tr
h
(Y0MτY)

−1
(Y0MτX) (X

0MτX)
−1
(X0MτY)

i
= Tr

h
(Y0Y)

−1
(Y0X) (X0X)

−1
(X0Y)

i
−
q0y(Y

0Y)−1Y
0
Xτmx−1

n.mx

−
q0x(X

0X)−1X
0
Yτmy−1

nmy.
+
(q0xτmx−1)

¡
q0yτmy−1

¢
nmy.n.mx

.

Consider now the various terms in this expression. First, since Y0Y and X0X are diagonal
matrices and the typical element of Y0X is nij , it readily follows that

Tr
h
(Y0Y)

−1
(Y0X) (X0X)

−1
(X0Y)

i
=

my−1X
i=1

mx−1X
j=1

n2ij
ni.n.j

.

Also,
Y0Xτmx−1 = hy − qy, X0Yτmy−1 = hx − qx,

and (recalling that (Y0Y)−1 hy = τmy−1)

q0y(Y
0Y)
−1
Y
0
Xτmx−1 = q0y(Y

0Y)
−1
(hy − qy)

= q0yτmy−1 − q0y(Y0Y)
−1
qy

q0x(X
0X)
−1
X
0
Yτmy−1 = q0x(X

0X)
−1
(hx − qx)

= q0xτmx−1 − q0x(X0X)
−1
qx

Finally,

q0xτmx−1 =

mx−1X
j=1

nmyj = nmy. − nmymx ,

q0yτmy−1 =

my−1X
i=1

nimx
= n.mx

− nmymx
,

with

q0y(Y
0Y)
−1
qy =

my−1X
i=1

n2imx

ni.
,

q0x(X
0X)
−1
qx =

mx−1X
j=1

n2myj

n.j
.
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Therefore, it follows that

q0y(Y
0Y)−1Y

0
Xτmx−1

n.mx

=
q0yτmy−1

n.mx

−
q0y(Y

0Y)−1 qy
n.mx

= 1−
nmymx

n.mx

−
my−1X
i=1

n2imx

ni.n.mx

,

q0x(X
0X)−1X

0
Yτmy−1

nmy.
=

q0xτmx−1
nmy

− q
0
x(X

0X)−1 qx
nmy.

= 1−
nmymx

nmy.
−

mx−1X
j=1

n2myj

nmy.n.j
,

and

(q0xτmx−1)
¡
q0yτmy−1

¢
nmy.n.mx

=

¡
nmy. − nmymx

¢ ¡
n.mx

− nmymx

¢
nmy.n.mx

= 1−
nmymx

nmy.
−

nmymx

n.mx

+
n2mymx

nmy.n.mx

.

Substituting these terms in the expression for trace, we have

Tr
h
(Y0MτY)

−1
(Y0MτX) (X

0MτX)
−1
(X0MτY)

i
=

my−1X
i=1

mx−1X
j=1

n2ij
ni.n.j

− 1 +
my−1X
i=1

n2imx

ni.n.mx

+

mx−1X
j=1

n2myj

nmy.n.j
+

n2mymx

nmy.n.mx

=

myX
i=1

mxX
j=1

n2ij
ni.n.j

− 1,

as required.
Proof of Proposition 2. To prove the proposition, we show that nothing is gained by using

“optimal scores”, i.e. by optimizing over the values assigned to the variables in each category
- see, e.g., Kendall and Stuart (1979, pp. 597-606). Accordingly, suppose that the problem of
interest is to assign scores ai (i = 1, 2, ...,my) and bj (j = 1, 2, ...,mx) to the categories of an

my ×mx table, such that a maximal correlation between y∗t =

myX
i=1

aiyit and x∗t =
mxX
j=1

bjxjt is

obtained. Without loss of generality the scores are standardized so that y∗t and x∗t have zero
means and unit variances. In the case of serially independent outcomes, yit and xjt, and for n
sufficiently large we have

E(y∗t ) = n−1
myX
i=1

aini. = 0, E(x∗t ) = n−1
mxX
j=1

bjn.j = 0,

V ar(y∗t ) = n−1
myX
i=1

a2ini. = 1, V ar(x
∗
t ) = n−1

mxX
j=1

b2jn.j = 1

Cov(y∗t , x
∗
t ) = Corr(y∗t , x

∗
t ) = n−1

myX
i=1

mxX
j=1

nijaibj .
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The first order conditions for this optimization problem are given by

mxX
j=1

nijbj − λyni.ai = 0, for i = 1, 2, ...,my

myX
i=1

nijai − λxn.jbj = 0, for j = 1, 2, ...,mx,

where λy and λx are Lagrange multipliers associated with the constraints V ar(y∗t ) = 1 and
V ar(x∗t ) = 1, respectively. In matrix notations

Y 0Xb =λy (Y 0Y)a, X 0Ya =λx (X 0X )b,

a0 (Y 0Y)a = 1, and b0 (X 0X )b = 1, where Y and X are T × my and T × mx matrices on
yit, i = 1, 2, ...,my and xjt, j = 1, 2, ...,mx, for t = 1, 2, ..., T , a = (a1, a2, ..., amy

)0, and
b = (b1, b2, ..., bmx)

0. In the earlier notations X = (X,xmx
) and Y = (Y,ymy

). Note that
Y 0Y and X 0X are diagonal matrices with diagonal elements given by ni. > 0 and n.j > 0,
respectively, and Y 0X is an my × mx matrix with its (i, j) element given by nij . Also R =

n−1
myX
i=1

mxX
j=1

nijaibj = n−1a0 (Y 0X )b. It is now easily seen that λy = λx = R, and hence

h
Y 0X (X 0X )−1X 0Y−R2 (Y 0Y)

i
a= 0,h

X 0Y (Y 0Y)−1 Y 0X−R2 (X 0X )
i
b= 0.

Since Y 0Y and X 0X are non-singular and mx ≤ my, R2 can be obtained by computing the
eigenvalues of (X 0X )−1X 0Y (Y 0Y)−1 Y 0X , that are the same as the non-zero eigenvalues of
(Y 0Y)−1 Y 0X (X 0X )−1X 0Y. Since Xτmx = τT and Yτmy = τT , it is easily seen that one
of the eigenvalues is unity.12 This leaves mx − 1 non-zero eigenvalues, R21 ≥ R22 ≥ ... ≥ R2mx−1.
The solutions to a and b are given by the eigenvectors associated with R21. It also follows that

Tr
h
(X 0X )−1X 0Y (Y 0Y)−1X 0Y

i
=

myX
i=1

mxX
j=1

n2ij
ni.n.j

= 1 +

mx−1X
j=1

R2j ,

which is the result obtained in Proposition 1.

12Let a = τmy and note that since Yτmy = τT , and X (X 0X )−1 X 0τT = Xτmx = τT , we have

Y0X X 0X −1 X 0Y−R2 Y0Y τmy = (1−R2)Y0τT = 0.

But Y0τT = (n1., n2., ..., nmy.) > 0 and it must be that R2 = 1.
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Table 1. Finite Sample Critical Values for Maximum Canonical Correlation and
Trace Canonical Correlation Tests

A. Maximum Canonical Correlation Test
90% 95% 99%

sample size m = 2 m = 3 m = 4 m = 2 m = 3 m = 4 m = 2 m = 3 m = 4
20 2.73 5.90 8.39 3.69 7.01 9.40 6.31 9.26 11.54
50 2.71 6.62 10.09 3.79 7.99 11.61 6.30 11.07 14.78
100 2.63 6.80 10.71 3.87 8.27 12.43 6.60 11.64 16.09
500 2.67 7.00 11.14 3.85 8.59 12.99 6.70 12.10 17.01
1000 2.71 6.97 11.20 3.84 8.50 13.03 6.66 12.11 17.07

B. Trace Canonical Correlation Test
90% 95% 99%

sample size m = 2 m = 3 m = 4 m = 2 m = 3 m = 4 m = 2 m = 3 m = 4
20 2.73 6.63 11.52 3.69 7.84 12.98 6.31 10.52 16.16
50 2.71 7.36 13.46 3.79 8.88 15.34 6.30 12.26 19.39
100 2.63 7.57 14.12 3.87 9.18 16.19 6.60 12.71 20.66
500 2.67 7.77 14.55 3.85 9.48 16.72 6.70 13.32 21.44
1000 2.71 7.74 14.60 3.84 9.40 16.84 6.66 13.28 21.45

Notes: The table is based on 100,000 Monte Carlo simulations under the null of no serial correlation in the data,
m is the number of categories.
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Table 2. Size Properties of the Tests (rejection frequencies under no cross-correlation, rxy = 0)

A. No Serial Correlation (ϕ = 0)
m Sample PT Trace Canonical Correlation Maximum Canonical Correlation

Size Test Static Dyn. Augm. Iterated Static Dyn. Augm. Iterated
2 20 0.042 0.042 0.061 0.009 0.042 0.061 0.009
2 50 0.077 0.053 0.059 0.035 0.053 0.059 0.035
2 100 0.068 0.068 0.060 0.048 0.068 0.060 0.048
2 500 0.053 0.053 0.051 0.047 0.053 0.051 0.047
2 1000 0.051 0.043 0.046 0.044 0.043 0.046 0.044
3 20 0.106 0.061 0.141 0.024 0.054 0.132 0.018
3 50 0.073 0.052 0.077 0.017 0.050 0.067 0.003
3 100 0.070 0.054 0.065 0.016 0.056 0.065 0.011
3 500 0.048 0.050 0.053 0.036 0.051 0.053 0.034
3 1000 0.060 0.066 0.065 0.053 0.059 0.057 0.047
4 20 0.129 0.048 0.304 0.174 0.057 0.281 0.194
4 50 0.068 0.045 0.104 0.045 0.049 0.095 0.036
4 100 0.065 0.054 0.074 0.028 0.052 0.070 0.012
4 500 0.062 0.051 0.056 0.033 0.052 0.058 0.024
4 1000 0.054 0.054 0.058 0.044 0.051 0.051 0.033
B. Medium Serial Correlation (ϕ = 0.5)
m Sample PT Trace Canonical Correlation Maximum Canonical Correlation

Size Test Static Dyn. Augm. Iterated Static Dyn. Augm. Iterated
2 20 0.072 0.072 0.063 0.015 0.072 0.063 0.015
2 50 0.105 0.090 0.053 0.045 0.090 0.053 0.045
2 100 0.103 0.101 0.055 0.043 0.101 0.055 0.043
2 500 0.086 0.086 0.050 0.050 0.086 0.050 0.050
2 1000 0.097 0.090 0.060 0.062 0.090 0.060 0.062
3 20 0.149 0.074 0.141 0.036 0.077 0.137 0.025
3 50 0.112 0.085 0.077 0.013 0.079 0.074 0.004
3 100 0.097 0.081 0.063 0.018 0.085 0.057 0.016
3 500 0.088 0.077 0.048 0.041 0.076 0.050 0.042
3 1000 0.073 0.086 0.057 0.049 0.087 0.058 0.046
4 20 0.142 0.077 0.338 0.198 0.071 0.326 0.219
4 50 0.092 0.070 0.094 0.053 0.068 0.088 0.047
4 100 0.078 0.082 0.071 0.035 0.071 0.076 0.019
4 500 0.075 0.074 0.052 0.035 0.073 0.052 0.027
4 1000 0.081 0.073 0.050 0.035 0.064 0.051 0.029
C. High Serial Correlation (ϕ = 0.8)
m Sample PT Trace Canonical Correlation Maximum Canonical Correlation

Size Test Static Dyn. Augm. Iterated Static Dyn. Augm. Iterated
2 20 0.153 0.153 0.068 0.034 0.153 0.068 0.034
2 50 0.234 0.202 0.049 0.081 0.202 0.049 0.081
2 100 0.235 0.224 0.058 0.089 0.224 0.058 0.089
2 500 0.245 0.245 0.046 0.073 0.245 0.046 0.073
2 1000 0.246 0.234 0.056 0.080 0.234 0.056 0.080
3 20 0.231 0.167 0.161 0.045 0.171 0.151 0.035
3 50 0.207 0.232 0.082 0.020 0.225 0.074 0.007
3 100 0.203 0.267 0.053 0.025 0.263 0.057 0.017
3 500 0.206 0.306 0.050 0.047 0.304 0.050 0.050
3 1000 0.207 0.307 0.054 0.051 0.297 0.051 0.050
4 20 0.196 0.135 0.349 0.267 0.141 0.324 0.298
4 50 0.183 0.255 0.126 0.085 0.238 0.111 0.076
4 100 0.165 0.275 0.076 0.049 0.268 0.070 0.032
4 500 0.177 0.286 0.057 0.041 0.275 0.055 0.024
4 1000 0.165 0.290 0.050 0.039 0.285 0.047 0.033

Notes: Results are based on 2,000 Monte Carlo replications, using the finite-sample critical values from Table
1. When m = 2, the PT statistic is a test of independence, while when m > 2, the null of this test is that
the diagonal cell probabilities in the m ×m contingency table take their values under the null of independence
between the row and column variables - m is the number of categories.
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Table 3. Power of the Tests (under the alternative of medium cross-correlation, rxy = 0.2)

A. No Serial Correlation (ϕ = 0)
m Sample PT Trace Canonical Correlation Maximum Canonical Correlation

Size Test Static Dyn. Augm. Iterated Static Dyn. Augm. Iterated
2 20 0.082 0.082 0.089 0.013 0.082 0.089 0.013
2 50 0.154 0.123 0.134 0.081 0.123 0.134 0.081
2 100 0.266 0.266 0.238 0.195 0.266 0.238 0.195
2 500 0.828 0.828 0.815 0.811 0.828 0.815 0.811
2 1000 0.984 0.980 0.981 0.978 0.980 0.981 0.978
3 20 0.134 0.078 0.156 0.029 0.080 0.156 0.021
3 50 0.138 0.117 0.152 0.029 0.118 0.143 0.011
3 100 0.228 0.212 0.231 0.098 0.208 0.219 0.068
3 500 0.755 0.829 0.830 0.774 0.837 0.837 0.786
3 1000 0.960 0.994 0.993 0.988 0.995 0.994 0.992
4 20 0.101 0.063 0.313 0.180 0.067 0.283 0.201
4 50 0.102 0.099 0.154 0.063 0.107 0.160 0.053
4 100 0.163 0.172 0.208 0.068 0.169 0.191 0.032
4 500 0.648 0.790 0.793 0.645 0.820 0.819 0.662
4 1000 0.914 0.988 0.989 0.976 0.990 0.991 0.982
B. Medium Serial Correlation (ϕ = 0.5)
m Sample PT Trace Canonical Correlation Maximum Canonical Correlation

Size Test Static Dyn. Augm. Iterated Static Dyn. Augm. Iterated
2 20 0.096 0.096 0.085 0.017 0.096 0.085 0.017
2 50 0.215 0.175 0.141 0.104 0.175 0.141 0.104
2 100 0.290 0.278 0.202 0.178 0.278 0.202 0.178
2 500 0.793 0.793 0.703 0.701 0.793 0.703 0.701
2 1000 0.972 0.966 0.941 0.942 0.966 0.941 0.942
3 20 0.173 0.105 0.181 0.035 0.106 0.175 0.024
3 50 0.164 0.144 0.132 0.024 0.143 0.132 0.009
3 100 0.251 0.256 0.204 0.063 0.252 0.199 0.053
3 500 0.719 0.798 0.750 0.603 0.802 0.752 0.615
3 1000 0.933 0.984 0.971 0.931 0.986 0.970 0.937
4 20 0.129 0.090 0.347 0.237 0.095 0.328 0.263
4 50 0.150 0.136 0.150 0.079 0.137 0.140 0.067
4 100 0.161 0.203 0.175 0.060 0.209 0.162 0.030
4 500 0.663 0.762 0.716 0.441 0.781 0.735 0.446
4 1000 0.899 0.968 0.970 0.845 0.970 0.979 0.864
C. High Serial Correlation (ϕ = 0.8)
m Sample PT Trace Canonical Correlation Maximum Canonical Correlation

Size Test Static Dyn. Augm. Iterated Static Dyn. Augm. Iterated
2 20 0.172 0.172 0.081 0.033 0.172 0.081 0.033
2 50 0.326 0.300 0.106 0.141 0.300 0.106 0.141
2 100 0.381 0.360 0.135 0.168 0.360 0.135 0.168
2 500 0.724 0.724 0.430 0.473 0.724 0.430 0.473
2 1000 0.908 0.900 0.736 0.764 0.900 0.736 0.764
3 20 0.240 0.181 0.178 0.042 0.186 0.170 0.033
3 50 0.256 0.309 0.118 0.033 0.308 0.108 0.013
3 100 0.357 0.422 0.154 0.059 0.422 0.158 0.043
3 500 0.661 0.761 0.518 0.321 0.763 0.528 0.328
3 1000 0.839 0.921 0.845 0.596 0.921 0.849 0.604
4 20 0.205 0.148 0.350 0.285 0.160 0.323 0.321
4 50 0.230 0.311 0.153 0.103 0.298 0.147 0.090
4 100 0.262 0.390 0.143 0.071 0.387 0.142 0.047
4 500 0.594 0.751 0.515 0.188 0.757 0.534 0.187
4 1000 0.824 0.917 0.869 0.427 0.921 0.887 0.464

Notes: Results are based on 2,000 Monte Carlo replications, using the finite-sample critical values from Table
1. When m = 2, the PT statistic is a test of independence, while when m > 2, the null of this test is that
the diagonal cell probabilities in the m ×m contingency table take their values under the null of independence
between the row and column variables - m is the number of categories.
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Table 4. Power of the Tests (under the alternative of high cross-correlation, rxy = 0.8)

A. No Serial Correlation (ϕ = 0)
m Sample PT Trace Canonical Correlation Maximum Canonical Correlation

Size Test Static Dyn. Augm. Iterated Static Dyn. Augm. Iterated
2 20 0.732 0.732 0.709 0.330 0.732 0.709 0.330
2 50 0.994 0.989 0.991 0.972 0.989 0.991 0.972
2 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 20 0.819 0.727 0.771 0.297 0.740 0.774 0.247
3 50 0.993 0.998 0.996 0.758 0.997 0.996 0.636
3 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 20 0.721 0.630 0.812 0.640 0.681 0.790 0.651
4 50 0.989 0.997 0.995 0.840 0.996 0.996 0.793
4 100 1.000 1.000 1.000 0.994 1.000 1.000 0.992
4 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
B. Medium Serial Correlation (ϕ = 0.5)
m Sample PT Trace Canonical Correlation Maximum Canonical Correlation

Size Test Static Dyn. Augm. Iterated Static Dyn. Augm. Iterated
2 20 0.708 0.708 0.639 0.302 0.708 0.639 0.302
2 50 0.992 0.986 0.980 0.970 0.986 0.980 0.970
2 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 20 0.802 0.717 0.737 0.282 0.736 0.723 0.236
3 50 0.986 0.996 0.991 0.662 0.996 0.992 0.514
3 100 1.000 1.000 1.000 0.999 1.000 1.000 0.999
3 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 20 0.705 0.615 0.776 0.589 0.656 0.751 0.611
4 50 0.981 0.997 0.994 0.765 0.998 0.996 0.704
4 100 1.000 1.000 1.000 0.973 1.000 1.000 0.965
4 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
C. High Serial Correlation (ϕ = 0.8)
m Sample PT Trace Canonical Correlation Maximum Canonical Correlation

Size Test Static Dyn. Augm. Iterated Static Dyn. Augm. Iterated
2 20 0.675 0.675 0.516 0.288 0.675 0.516 0.288
2 50 0.975 0.958 0.864 0.887 0.958 0.864 0.887
2 100 1.000 0.999 0.986 0.993 0.999 0.986 0.993
2 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 20 0.735 0.688 0.626 0.277 0.710 0.609 0.239
3 50 0.963 0.977 0.942 0.536 0.980 0.943 0.389
3 100 0.999 1.000 1.000 0.954 1.000 1.000 0.960
3 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 20 0.638 0.600 0.735 0.571 0.636 0.706 0.589
4 50 0.936 0.976 0.958 0.667 0.976 0.960 0.628
4 100 0.997 1.000 1.000 0.868 1.000 1.000 0.814
4 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Notes: Results are based on 2,000 Monte Carlo replications, using the finite-sample critical values from Table
1. When m = 2, the PT statistic is a test of independence, while when m > 2, the null of this test is that
the diagonal cell probabilities in the m ×m contingency table take their values under the null of independence
between the row and column variables - m is the number of categories.
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Table 5. Alternative Procedures for Allowing for Serial Correlation

A. Size (rxy = 0.0)
sample serial Static regressions Dyn. Augm. regressions
size correl. OLS Barlett QS OLS Barlett QS
20 0.0 0.042 0.045 0.051 0.078 0.091 0.098
50 0.0 0.077 0.050 0.053 0.069 0.067 0.068
100 0.0 0.068 0.064 0.062 0.066 0.064 0.068
500 0.0 0.053 0.049 0.048 0.052 0.052 0.051
1000 0.0 0.051 0.047 0.047 0.046 0.046 0.046
20 0.5 0.072 0.084 0.101 0.081 0.101 0.111
50 0.5 0.105 0.074 0.080 0.058 0.057 0.059
100 0.5 0.103 0.071 0.066 0.060 0.061 0.062
500 0.5 0.086 0.057 0.055 0.052 0.051 0.053
1000 0.5 0.097 0.069 0.065 0.060 0.061 0.061
20 0.8 0.153 0.150 0.179 0.083 0.095 0.101
50 0.8 0.234 0.129 0.124 0.055 0.051 0.057
100 0.8 0.235 0.120 0.113 0.062 0.058 0.059
500 0.8 0.245 0.076 0.072 0.047 0.051 0.052
1000 0.8 0.246 0.081 0.070 0.057 0.058 0.059
B. Power (rxy = 0.2)
sample serial Static regressions Dyn. Augm. regressions
size correl. OLS Barlett QS OLS Barlett QS
20 0.0 0.082 0.088 0.100 0.110 0.130 0.141
50 0.0 0.154 0.114 0.115 0.144 0.140 0.137
100 0.0 0.266 0.249 0.243 0.254 0.248 0.245
500 0.0 0.828 0.822 0.821 0.819 0.819 0.820
1000 0.0 0.984 0.982 0.982 0.982 0.981 0.982
20 0.5 0.096 0.102 0.113 0.102 0.117 0.118
50 0.5 0.215 0.161 0.171 0.150 0.149 0.152
100 0.5 0.290 0.238 0.232 0.212 0.207 0.213
500 0.5 0.793 0.724 0.717 0.706 0.704 0.704
1000 0.5 0.972 0.946 0.944 0.941 0.940 0.939
20 0.8 0.172 0.170 0.192 0.100 0.106 0.112
50 0.8 0.326 0.220 0.218 0.111 0.098 0.099
100 0.8 0.381 0.221 0.203 0.147 0.141 0.140
500 0.8 0.724 0.480 0.459 0.434 0.435 0.436
1000 0.8 0.908 0.759 0.750 0.738 0.737 0.740
C. Power (rxy = 0.8)
sample serial Static regressions Dyn. Augm. regressions
size correl. OLS Barlett QS OLS Barlett QS
20 0.0 0.732 0.731 0.733 0.748 0.726 0.726
50 0.0 0.994 0.989 0.990 0.992 0.990 0.992
100 0.0 1.000 1.000 1.000 1.000 1.000 1.000
500 0.0 1.000 1.000 1.000 1.000 1.000 1.000
1000 0.0 1.000 1.000 1.000 1.000 1.000 1.000
20 0.5 0.708 0.704 0.712 0.684 0.627 0.640
50 0.5 0.992 0.985 0.984 0.983 0.975 0.974
100 0.5 1.000 1.000 1.000 1.000 1.000 1.000
500 0.5 1.000 1.000 1.000 1.000 1.000 1.000
1000 0.5 1.000 1.000 1.000 1.000 1.000 1.000
20 0.8 0.675 0.671 0.690 0.554 0.476 0.485
50 0.8 0.975 0.935 0.933 0.875 0.811 0.813
100 0.8 1.000 0.995 0.994 0.988 0.979 0.980
500 0.8 1.000 1.000 1.000 1.000 1.000 1.000
1000 0.8 1.000 1.000 1.000 1.000 1.000 1.000

Notes: Results are based on 2,000 Monte Carlo replications and assume m = 2 categories. The static regressions
do not include lags of x and y, while the dynamically augmented regression includes a number of lags of each
variable selected by the Akaike Information Criterion.
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Table 6. Empirical Results from the Survey of Professional Forecasters Predictions of GDP
Growth

m Trace Canonical Correlation Maximum Canonical Correlation
Static Dyn. Augm. Iterated Static Dyn. Augm. Iterated

A. Current Year results
2 4.928∗ 2.009 2.640 4.928∗ 2.009 2.640
3 13.347‡ 3.124 5.946 13.27‡ 2.979 5.888
4 44.886‡ 21.03‡ 41.398‡ 31.07‡ 14.185∗ 35.634‡

B. Next year results
2 1.578 0.084 1.234 1.578 0.084 1.234
3 9.512∗ 6.649 7.311 7.557† 6.568 6.182
4 13.230 8.450 9.046 7.754 6.873 7.091

Notes: †, ∗ and ‡ indicate significance at the 10%, 5% and 1% levels, respectively.
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Figure 1. Power Curves for Maximum Canonical Correlation Test (ϕ = 0,m = 2, T = 100)
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Figure 2. Power Curves for Maximum Canonical Correlation Test (ϕ = 0.5,m = 2, T = 100)
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Figure 3. Power Curves for Maximum Canonical Correlation Test (ϕ = 0.8,m = 2, T = 100)
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