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Abstract

This paper introduces a novel approach for dealing with the �curse of dimensionality�in the case of

large linear dynamic systems. Restrictions on the coe¢ cients of an unrestricted VAR are proposed that

are binding only in a limit as the number of endogenous variables tends to in�nity. It is shown that

under such restrictions, an in�nite-dimensional VAR (or IVAR) can be arbitrarily well characterized

by a large number of �nite-dimensional models in the spirit of the global VAR model proposed in

Pesaran et al. (JBES, 2004). The paper also considers IVAR models with dominant individual units

and shows that this will lead to a dynamic factor model with the dominant unit acting as the factor.

The problems of estimation and inference in a stationary IVAR with unknown number of unobserved

common factors are also investigated. A cross section augmented least squares estimator is proposed and

its asymptotic distribution is derived. Satisfactory small sample properties are documented by Monte

Carlo experiments. An empirical application to modelling of real GDP growth and investment-output

ratios provides an illustration of the proposed approach. Considerable heterogeneities across countries

and signi�cant presence of dominant e¤ects are found. The results also suggest that increase in investment

as a share of GDP predict higher growth rate of GDP per capita for non-negligible fraction of countries

and vice versa.
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1 Introduction

Following the seminal work of Sims (1980), vector autoregressive models (VARs) are widely used in macro-

econometrics and �nance. VARs provide a �exible framework for the analysis of complex dynamics and

interactions that exist between variables in the national and global economy. However, the application of

the approach in practice is often limited to a handful of variables which could lead to misleading inference if

important variables are omitted merely to accommodate the VAR modelling strategy. Number of parameters

to be estimated grows at the quadratic rate with the number of variables, which is limited by the size of

typical data sets to no more than 5 to 7. In many empirical applications, this is not satisfactory. Some

restrictions must be imposed for the analysis of large systems.

To deal with this so-called �curse of dimensionality�, two di¤erent approaches have been suggested in

the literature: (i) shrinkage of the parameter space and (ii) shrinkage of the data. Parameter space can be

shrunk by imposing a set of restrictions, which could be for instance obtained from a theoretical structural

model, directly on the parameters. Alternatively, one could use techniques, where prior distributions are

imposed on the parameters to be estimated. Bayesian VAR (BVAR) proposed by Doan, Litterman and Sims

(1984), for example, use what has become known as �Minnesota�priors to shrink the parameters space.1 In

most applications, BVARs have been applied to relatively small systems2 (e.g. Leeper, Sims, and Zha, 1996,

considered 13 and 18 variable BVAR) and the focus has been mainly on forecasting.3

The second approach to mitigating the curse of dimensionality is to shrink the data, along the lines of

index models. Geweke (1977) and Sargent and Sims (1977) introduced dynamic factor models, which have

been more recently generalized to allow for weak cross sectional dependence by Forni and Lippi (2001) and

Forni et al. (2000, 2004). Empirical evidence suggest that few dynamic factors are needed to explain the

co-movement of macroeconomic variables: Stock and Watson (1999, 2002), Giannoni, Reichlin and Sala

(2005) conclude that only few, perhaps two, factors explain much of the predictable variations, while Stock

and Watson (2005) estimate as much as seven factors. This has led to the development of factor augmented

VAR (FAVAR) models by Bernanke, Boivin, and Eliasz (2005) and Stock and Watson (2005), among others.

This paper proposes to deal with the curse of dimensionality by shrinking the parameter space in the

limit as the number of endogenous variables (N) tends to in�nity. Under this set up, the in�nite-dimensional

VAR (or IVAR) could be arbitrarily well approximated by a set of �nite-dimensional small-scale models that

can be consistently estimated separately, which is in the spirit of global VAR (GVAR) models proposed in

Pesaran, Schuermann and Weiner (2004, PSW). By imposing restrictions on the parameters of IVAR model

that are binding only in the limit, we e¤ectively end up with shrinking of the data. The paper thus provides

a link between the two existing approaches to mitigating the curse of dimensionality in the literature and

discusses the conditions under which it is appropriate to shrink the data using static or dynamic factor

approaches. This also provides theoretical justi�cation for factor models in a large systems with all variables

being determined endogenously. We link our analysis to dynamic factor models by showing that dominant

unit becomes (in the limit) a dynamic common factor for the remaining units in the system. Static factor

models are also obtained as a special case of IVAR. In addition to the limiting restrictions proposed in this

paper, other exact or Bayesian type restrictions can also be easily imposed.

One of the main motivations behind the proposed approach is to develop a theoretical econometric

underpinning for global macroeconomic modelling that allows for variety of channels through which the

1Other types of priors have also been considered in the literature. See, for example, Del Negro and Schorfheide (2004) for a
recent reference.

2Few exceptions include Giacomini and White (2006) and De Mol, Giannone and Reichlin (2006).
3Bayesian VARs are known to produce better forecasts than unrestricted VARs and, in many situations, ARIMA or structural

models. See Litterman (1986), and Canova (1995) for further references.
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individual economies are inter-related. The main problem is how to model a large number of endogenously

related macroeconomic variables at regional, national, or global levels. Assuming coe¢ cients corresponding

to foreign countries in country speci�c equations are at most of order O
�
N�1� (possibly with the exception

of a few dominant economies), enables us to consider asymptotic properties of IVARs.4 This analysis is

closely related to the GVAR model, originally developed by PSW and further extended by Dees, di Mauro,

Pesaran and Smith (2007).5 We show that the GVAR approach can be motivated as an approximation to an

in�nite-dimensional VAR featuring all macroeconomic variables. This is true for both, stationary systems

as well as systems with variables integrated of order one, I (1) for short.6

The main contribution of the paper is the development of an econometric approach for the analysis

of groups that belong to a large interrelated system. It is potentially applicable to the analysis of large

spatiotemporal data sets and networks, both with and without dynamic linkages. It is established that

under certain granularity conditions on the coe¢ cient matrices of IVAR and in the absence of common

factors, in the limit as N ! 1, cross sectional units de-couple from one another. This result does not,

however, hold if there are dominant units or unobserved common factors. In such cases unit-speci�c VARs,

conditioned on asymptotically exogenous cross sectional averages, need to be estimated. This is in line with

the GVAR approach of PSW and formally establishes the conditions under which the GVAR approach is

likely to work. We also consider estimation and inference in a stationary IVAR with an unknown number of

unobserved common factors. Simple cross section augmented least squares estimator (or CALS for short) is

proposed and its asymptotic distribution is derived. Small sample properties of the proposed estimator are

investigated by Monte Carlo experiments, and an empirical application to real GDP growth and investment-

output ratio across 98 countries over the period 1961-2003 is provided as an illustration of the proposed

approach.

The remainder of this paper is organized as follows. Section 2 investigates cross sectional dependence in

IVAR models where key asymptotic results are provided. Section 3 focusses on estimation of a stationary

IVAR with (possibly) a �xed but unknown number of unobserved common factors. Section 4 presents Monte

Carlo evidence. An empirical application to modelling the interactions of real GDP growth and investment-

output ratios in the world economy is presented in Section 5. The �nal section o¤ers some concluding

remarks.

A brief word on notation: �1(A) � ::: � �n(A) are the eigenvalues of A 2 Mn�n, where Mn�n is the

space of real-valued n � n matrices. kAkc � max
1�j�n

Pn
i=1 jaij j denotes the maximum absolute column sum

matrix norm of A, kAkr � max
1�i�n

Pn
j=1 jaij j is the absolute row-sum matrix norm of A.7 kAk =

p
% (A0A)

is the spectral norm of A; % (A) � max
1�i�n

fj�i (A)jg is the spectral radius of A.8 A+ is the Moore-Penrose

inverse of A. Row i of A is denoted by a0i and the column i is denoted as�ai. All vectors are column vectors.

Row i of A with the ith element replaced by 0 is denoted as a0�i. Row i of A 2Mn�n with the element i and

4See Chudik (2007b) for a theoretical micro-founded N -country DSGE model, where the orders of magnitudes of the coe¢ -
cients in the equilibrium solution, as well as in the canonical system of linear rational expectation equation characterizing the
equilibrium solution, are investigated.

5GVAR model has been used to analyse credit risk in Pesaran, Schuermann, Treutler and Weiner (2006) and Pesaran,
Schuerman and Treutler (2007). Extended and updated version of the GVAR by Dees, di Mauro, Pesaran and Smith (2007),
which treats Euro area as a single economic area, was used by Pesaran, Smith and Smith (2007) to evaluate UK entry into the
Euro. Further developments of a global modelling approach are provided in Pesaran and Smith (2006). Garratt, Lee, Pesaran
and Shin (2006) provide a textbook treatment of GVAR.

6An IVAR model featuring I (1) variables is considered in a supplement available from the authors upon request. Further
results for the IVARs with unit roots are also provided in Chudik (2007a).

7The maximum absolute column sum matrix norm and the maximum absolute row sum matrix norm are sometimes denoted
in the literature as k�k1 and k�k1, respectively.

8Note that if x is a vector, than kxk =
p
% (x0x) =

p
x0x corresponds to the Euclidean length of vector x.
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the element 1 replaced by 0 is a0�1;�i = (0; ai2; :::; ai;i�1; 0; ai;i+1; :::; ai;iN ). Matrix constructed from A by

replacing the �rst column vector by zero vector is denoted as _A�1. kxtkLp is Lp-norm of a random variable

xt. Joint asymptotics in N;T !1 are denoted by N;T
j!1. an = O(bn) states the deterministic sequence

an is at most of order bn. xn = Op (yn) states random variable xn is at most of order yn in probability.

Similarly, we use little-o notation for deterministic sequences, an = o(bn) states an is of order less than

bn, and for random variables, xn = op (yn) states xn is of order less then yn in probability. R is the set

of real numbers, N is the set of natural numbers, and Z is the set of integers. Convergence in distribution
and convergence in probability is denoted by d! and

p!, respectively. Symbol q:m:! represents convergence in

quadratic mean and
L1! stands for convergence in L1 norm.

2 Cross Sectional Dependence in IVAR Models

Suppose there are N cross section units indexed by i 2 S � f1; ::; Ng � N. Depending on empirical

application, units could be households, �rms, regions, countries, or macroeconomic indicators in a given

economy. Let xit denote the realization of a random variable belonging to the cross section unit i in period

t, and assume that xt = (x1t; :::; xNt)
0 is generated according to the following VAR(1) model:

xt = �xt�1 + ut, (1)

where � is N �N dimensional matrix of unknown coe¢ cients, and ut = (u1t; :::; uNt)
0 is the N � 1 vector

of disturbances. We refer to this model as in�nite-dimensional VAR (denoted as IVAR) in cases where

N is relatively large. Initially, we shall assume that the process has started from a �nite past, t 2 T �
f�M + 1; ::; 0; ::g � Z, M being a �xed positive integer. This assumption is relaxed in Subsection 2.1 for

stationary models. Extension of the analysis to IVAR(p) models is relegated to Appendix B.

The objective is to study the correlation pattern of a double index process fxit; i 2 S; t 2 T g, given by
the IVAR model (1), over cross section units at di¤erent points in time, t 2 T . Unlike the time index t which
is de�ned over an ordered integer set, the cross section index, i, refers to an individual unit of an unordered

population distributed over space or more generally networks. Pesaran and Tosetti (PT, 2007, De�nition

4) de�ne process fxitg to be cross sectionally weakly dependent (CWD), if for all t 2 T and for all weight

vectors, wt = (w1t; :::; wNt)
0, satisfying the following �granularity�conditions

kwtk = O
�
N� 1

2

�
, (2)

wjt
kwtk

= O
�
N� 1

2

�
for any j � N , (3)

we have

lim
N!1

V ar
�
w0
t�1xt j It�1

�
= 0, (4)

where It is the information set at time t. The concept of CWD can be articulated with respect to the

conditional as well as the unconditional variance of weighted averages, if it exists. PT consider It containing
at least xt;xt�1; ::: and wt;wt�1; ::: .9 For simplicity of exposition and without the loss of generality, time

invariant non-random vector of weights w satisfying granularity conditions (2)-(3) is considered in this paper

9Note that in the context of IVAR model (1), if It contains at least xt;xt�1; ::: and wt;wt�1; :::, then

V ar
�
w0
t�1xt j It�1

�
= V ar

�
w0
t�1ut j It�1

�
, (5)

since V ar
�
w0
t�1�xt�1 j It�1

�
= 0 regardless of the coe¢ cients matrix �. In this case, the process fxitg is CWD if and only

if the errors fuitg are CWD.
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only. Furthermore, in the context of a purely dynamic model such as the IVAR model (1) the concept of

CWD is more meaningfully de�ned with respect to the initial values. Hence, unless otherwise stated in our

analysis of cross section dependence, we take It to contain only the starting values, x (�M).10

De�nition 1 Dynamic double index process fxit; i 2 S; t 2 T g, generated by the IVAR model (1), is said

to be cross sectionally weakly dependent (CWD) at a point in time t 2 T , if for any non-random vector of

weights w satisfying the granularity conditions (2)-(3),

lim
N!1

V ar [w0xt j x (�M)] = 0 (6)

We say that the process fxitg is cross sectionally strongly dependent (CSD) at a given point in time t 2 T if
there exists a weights vector w satisfying (2)-(3) and a constant K independent of N such that for any N

su¢ ciently large,

V ar [w0xt j x (�M)] � K > 0. (7)

Consider now the following assumptions on the coe¢ cient matrix, �, and the error vector, ut:

ASSUMPTION 1 Individual elements of double index process of errors fuit; i 2 S; t 2 T g are random
variables de�ned on the probability space (
;F ; P ). ut is independently distributed of the starting values,
x (�M), and of ut0 , for any t 6= t0 2 T . For each t 2 T , ut has mean and variance,

E [ut j x (�M)] = E (ut) = 0, (8)

E [utu
0
t j x (�M)] = E (utu

0
t) = �t, (9)

where �t is an N �N symmetric, nonnegative de�nite matrix, with generic (i; j)th element �ij;t and such

that 0 < �ii;t < K <1 for any i 2 S, where the constant K does not depend on N .

ASSUMPTION 2 (Coe¢ cients matrix � and CWD ut)

k�kc k�kr = O (1) , (10)

and

% (�t) = o (N) for any t 2 T . (11)

Remark 1 Assumption 1 and equation (11) of Assumption 2 imply fuitg is CWD. The initialization of a
dynamic process could be from a non-stochastic point or could have been from a stochastic point, possibly

generated from a process di¤erent from the DGP.

Proposition 1 Consider model (1) and suppose Assumptions 1-2 hold. Then for any arbitrary �xed weights
w satisfying condition (2), and for any t 2 T ,

lim
N!1

V ar [w0xt j x (�M)] = 0 (12)

Proof. The vector di¤erence equation (1) can be solved backwards from t = �M , taking x (�M) as given:

xt = �
t+Mx (�M) +

t+M�1X
`=0

�`ut�` (13)

10 Instead of using x�M to denote the vector of starting values, we use x (�M) in order to avoid possible confusion with the
developed notation in Section 1.
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The variance of xt (conditional on initial values) is


t = V ar [xt j x (�M)] =
t+M�1X
`=0

�`�t�`�
0`, (14)

and, using the Rayleigh-Ritz theorem,11 k
tkc is under Assumptions 1-2 bounded by

k
tkc �
t+M�1X
`=0

% (�t�`) (k�kc k�kr)
`
= o (N) (15)

It follows that for any arbitrary nonrandom vector of weights satisfying granularity condition (2),

kV ar [w0xt j x (�M)]kc = kw
0
twkc � k% (
t) (w

0w)kc = o (1) (16)

where % (
t) � k
tkc = o (N),12 and w0w = kwk2 = O
�
N�1� by condition (2).

There are several interesting implications of Proposition 1. Consider following additional assumption on

coe¢ cients matrix �.

ASSUMPTION 3 Let K � S be a non-empty index set. De�ne vector ��i =
�
�i1; :::; �i;i�1; 0; �i;i+1; :::; �iN

�0
where �ij for i; j 2 S is the (i; j) element of matrix �. For any i 2 K, vector ��i satis�es



��i

 =
0@ NX
j=1;j 6=i

�2ij

1A1=2

= O
�
N� 1

2

�
. (17)

Remark 2 An example of matrix � that satisfy Assumptions 2 and 3 is13

�ii = O (1) ;


��i

r = O

�
1

N

�
for any i 2 S. (18)

Namely, when the o¤-diagonal elements of � are of order O
�
N�1�. This special case is considered in Section

3 where we turn our attention to the problem of estimating in�nite-dimensional VARs.

Remark 3 Assumption 3 implies that for i 2 K,
PN

i=1;i 6=j �ij �


��i

c = O (1).14 Therefore, it is possible

for the dependence of each individual unit on the rest of the units in the system to be large. However, as we

shall see below, in the case where fxitg is a CWD process, the model for the ith cross section unit de-couples
from the rest of the system as N !1.

11See Horn and Johnson (1985, p. 176)
12Spectral radius is lower bound for any matrix norm, see Horn and Johnson (1985, Theorem 5.6.9).
13Maximum absolute row sum matrix norm of N dimensional column vector y = (y1; y2; :::; yN )

0 is

kykr =


y0



c
= max
1�j�N

jyj j .

Similarly, maximum absolute column sum matrix norm of N dimensional column vector y = (y1; y2; :::; yN )
0 is

kykc =


y0



r
=

NX
j=1

jyj j .

14Note that


��i

c �

p
N


��i

. See Horn and Johnson (1985, p. 314). An example of vector ��i for which

limN!1
PN
i=1;i6=j �ij 6= 0 is when �ij = k=N for i 6= j and any �xed non-zero constant k.
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Corollary 1 Consider model (1) and suppose Assumptions 1-3 hold. Then,

lim
N!1

V ar [xit � �iixi;t�1 � uit j x (�M)] = 0 for i 2 K. (19)

Proof. Assumption 3 implies that for i 2 K, vector ��i satis�es condition (2). It follows from Proposition

1 that

lim
N!1

V ar
�
�0�ixt j x (�M)

�
= 0 for i 2 K. (20)

System (1) implies

xit � �iixi;t�1 � uit = �0�ixt; for any i 2 S: (21)

Taking conditional variance of (21) and using (20) now yields (19).

2.1 Stationary Conditions for IVAR(1)

Conditions under which VAR model (1) (for a �xed N) is stationary are well known in the literature, see for

instance Hamilton (1994, Chapter 10).

ASSUMPTION 4 (Necessary condition for covariance stationarity) All eigenvalues of �, de�ned by �
that satisfy the equation j���IN j = 0, lie inside of the unit circle. Furthermore, �t = � is time invariant.

For a �xed N and assuming kV ar [x (�M)]kr is bounded, xt converges under Assumption 4 in mean squared
errors to

P1
j=0�

jut�j asM !1, namely by assuming that the process has been in operation for su¢ ciently
long time before its �rst observed realization, x1. Also for a �nite N , when all eigenvalues of � lie inside

the unit circle, the Euclidean norm of � de�ned by
�
Tr
�
�j�j0

��1=2 ! 0 exponentially in j and the process

xt =
P1

j=0�
jut�j will be absolute summable, in the sense that the sum of absolute values of the elements

of �j , for j = 0; 1; ::: converge. It is then easily seen that xt will have �nite moments of order `, assuming

ut has �nite moments of the same order. In particular, under Assumptions 1, 4, and kV ar [x (�M)]kr < K,

as M !1,

E (xt) = 0, and 
 =V ar (xt) = lim
M!1


t =
1X
j=0

�j��0j <1: (22)

In the stationary case with M !1, at any point in time t

kV ar (xt)kc =








1X
j=0

�j��0j








c

� % (�)
1X
j=0

k�kjc k�k
j
r ; (23)

Observe that under Assumption 4, V ar (xit) and kV ar (xt)kc need not necessarily be bounded as N ! 1,
even if % (�) = O (1).15

15For example, consider the IVAR(1) model with

� =

0BBBBB@
0:5 1 0 � � � 0
0 0:5 1 0
...

. . .
. . .

0 0 0:5 1
0 0 0 0:5

1CCCCCA ,

and assume that var (uit) is uniformly bounded away from zero as N !1. It is clear that all eigenvalues of � are inside the
unit circle, and in particular % (�) < 1� �, where � > 0 does not depend on N . Yet the variance of xit increases in N without
bounds.
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Proposition 2 Consider model (1) and suppose Assumptions 1-2, 4 hold, kV ar [x (�M)]kr < K and M !
1. Further assume that k�kc k�kr < 1 � � where � > 0 is arbitrarily small and does not depend on N .

Then at any point in time t 2 T and for any set of weights, w, satisfying condition (2),

lim
N!1

V ar (w0xt) = 0. (24)

Proof. % (�) = o (N) under Assumptions 2, and 4. Since k�kc k�kr < 1 � �,
P1

j=0 k�k
j
c k�k

j
r = O (1).

It follows from (23) that kV ar (xt)kc = o (N). This establishes kV ar (w0xt)kc � kw0
wkc = o (1), along

similar lines used in establishing equation (16).

Hence, irrespective of whether the process is stationary and started in a �nite or a very distance past, or

it is non-stationary (including unit root or explosive) and has started from a �nite past, the fxitg is CWD, if
the conditions of Proposition 1 or 2 are satis�ed. Of course, if the process is non-stationary V ar [xt j x (�M)]
exists only for (t+M) �nite.

2.2 Strong Dependence in IVAR models and Dominant E¤ects

PT introduced the concept of dominant e¤ects. Assume covariance matrix 
t = (!ijt) has m dominant

columns, which, as de�ned in PT (2007, de�nition 14), means16

i)
NX
i=1

j!ijtj = O (N) for j 2 S (m)

ii)
NX
i=1

j!ijtj = O (1) for j 2 S \ S (m)c

where !ijt denotes the (i; j)
th element of the covariance matrix 
t, and S (m) is m-dimensional subset of

the set S.17 Observe that if the sum of the absolute elements of the column of 
t corresponding to the

individual unit j increases with N at the rate N , then the unit j has a strong relationship with all other

units and thus the process fxitg is CSD.
Dominant e¤ects could, for example, arise in the context of global macroeconomic modelling. Suppose

that the equilibrium of a theoretical N -country macroeconomic DSGE model of the world economy is de-

scribed by the following canonical system of the linear rational expectation equation

A0xt = A1Etxt+1 +A2xt�1 + vt, (25)

where A0, A1and A2 are N �N dimensional matrices of coe¢ cients, and vt = (v1t; v2t; :::; vNt)
0 is a vector

of serially uncorrelated (but in general cross sectionally correlated) structural disturbances. One lag and

one endogenous variable per economy is assumed for the simplicity of exposition. Assuming that the set

of monetary policy rules is such that there is a unique determinate equilibrium, then for a given N , the

equilibrium solution has a VAR(1) representation with the reduced form given by the VAR model (1).18

Strong cross sectional dependence could, for example, arise when the one or more absolute column sums of

A0 in (25), are not bounded in N . Foreign trade (export and import) shares are one of the main determinants

of the o¤-diagonal elements of A0 in a multicountry open economy DSGE model.19 Examining the column-

16Clearly if 
t has m dominant collumns, so does 
0t, that is 
t has m dominant rows.
17 If 
t has m dominant columns, then by Theorem 15 of PT, �rst m largest eigenvalues of 
t are O (N) in general. By the

same theorem, if �rst m largest eigenvalues of 
t are O (N), then 
t has at least m dominant columns.
18The unique solution can be obtained using, for example, the results in Binder and Pesaran (1997).
19See, for example, Chudik (2007b) for details.
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sum of the foreign trade share matrix provides additional useful information, besides the level of output,

on the position of a country in the global economy. Not surprisingly, this column sum of the foreign trade

share matrix is the largest for the US.20 Figure 1 plots �rst six countries with the largest column-sums of

the foreign trade-share matrix based on foreign trade data in 2006 for 181 countries in IMF DOTS database.

The rising role of China in the global economy is nicely documented.

0
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20

25

30

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

 United States  China  Germany  France  Japan  Italy

Figure 1: Column-sums of trade share matrix for the top 6 countries as of 2006 using three-year moving averages

Strong dependence in IVAR model (1) could arise as a result of CSD errors fuitg, or could be due to
dominant patterns in the coe¢ cients of�, or both. Residual common factor models, where weighted averages

of factor loadings do not converge to zero, is an example of CSD process fuitg, see PT (2007, Theorem

16). Section 3 considers estimation and inference in a stationary CSD IVAR model where deviations of

endogenous variables from unobserved common factors and deterministic trend follow an IVAR. An example

of CSD IVAR model, where the maximum absolute column sum norm of matrix � and/or matrix � is

unbounded, is provided in the following subsection. The supplement available form the authors presents

CSD IVAR model featuring both unobserved common factor ft and coe¢ cient matrices with unbounded

maximum absolute column sum matrix norms, and I (1) endogenous variables.

2.3 Contemporaneous Dependence: Spatial or Network Dependence

An important form of cross section dependence is contemporaneous dependence across space. The spatial

dependence, pioneered by Whittle (1954), models cross section correlations by means of spatial processes

that relate each cross section unit to its neighbour(s). Spatial autoregressive and spatial error component

models are examples of such processes. (Cli¤ and Ord, 1973, Anselin, 1988, and Kelejian and Robinson,

1995). However, it is not necessary that proximity is measured in terms of physical space. Other measures

such as economic (Conley, 1999, Pesaran, Schuermann and Weiner, 2004), or social distance (Conley and

Topa, 2002) could also be employed. All these are examples of dependence across nodes in a physical (real)

or logical (virtual) networks. In the case of the IVAR model, (1), such contemporaneous dependence can be

modelled through an N �N network topology matrix R so that21

20Element (i; j) of foreign trade share matrix is constructed as the ratio of the sum of nominal exports from country i to
country j and nominal imports from country j to country i on the aggregate foreign trade of country i (i.e. the sum of aggregate
nominal exports and imports). Therefore, the row-sum of any row of trade share matrix is, by construction, equal one.
21A network topography is usually represented by graphs whose nodes are identi�ed with the cross section units, with the

pairwise relations captured by the arcs in the graph.
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ut = R"t, (26)

where "t are IID (0; IN ), "t is independent of "t0 for all t 6= t0 2 T .22 For example, in the case of a �rst
order spatial moving average model, R would take the form

RSMA = IN + �s

0BBBBBBBBB@

0 1 0 0 : : : 0 0 0

1=2 0 1=2 0 : : : 0 0 0

0 1=2 0 1=2 : : : 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 : : : 1=2 0 1=2

0 0 0 0 : : : 0 1 0

1CCCCCCCCCA
;

where �s is the spatial moving average coe¢ cient.

The contemporaneous nature of dependence across i 2 S is fully captured by R. As shown in PT the
contemporaneous dependence across i 2 S will be weak if the maximum absolute column and row sum matrix
norm of R are bounded, namely if kRkc kRkr < K < 1. It turns out that all spatial models proposed
in the literature are examples of weak cross section dependence. More general network dependence such as

the �star�network provides an example of strong contemporaneous dependence that we shall consider below.

The form of R for a typical star network is given by

RStar =

0BBBBBBB@

1 0 � � � 0 0

r21 1 � � � 0 0

r31 0 � � � 0 0
...

...
... 1 0

rN1 0 � � � 0 1

1CCCCCCCA
;

where
NX
j=2

rj1 = O(N).

The IVAR model when combined with ut = R"t yields an in�nite-dimensional spatiotemporal model.

The model can also be viewed more generally as a �dynamic network�, with R and � capturing the static

and dynamic forms of inter-connections that might exist in the network.

2.3.1 IVAR Models with Strong Cross Sectional Dependence

Strong cross dependence could arise when matrix � and/or R have dominant columns. In this subsection,

we present a stationary IVAR model where the column corresponding to unit i = 1 in matrices �, and R is

dominant (e.g. US in the world economy). In particular, consider the following assumptions.

ASSUMPTION 5 Let � =
PN

i=1
��is

0
iN = ��1s

0
1N +

_��1 where ��i = (�1i; :::; �Ni)
0 is the ith column of

matrix �; siN is an N�1 selection vector for unit i, with the ith element of siN being one and the remaining
zero.23 Denote by _��1 the matrix constructed from � by replacing its �rst column with a vector of zeros,

22 It is also possible to allow for time variations in the network matrix to capture changes in the network structure over time.
However, this will not be pursued here.
23Subscript N is used to denote dimension of selection vector, because selection vectors of di¤erent dimensions are also used

in the exposition below. Except selection vectors, subscripts to denote dimensions are omitted in order to keep the notation
simple.
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and note that _��1 =
PN

i=2
��is

0
iN . Suppose as N !1


��1




r
= O (1) , (27)

and 


 _��1



c




 _��1



r
= O (1) . (28)

Further, let ��1;�i =
�
0; �i2; :::; �i;i�1; 0; �i;i+1; :::; �iN

�0
, where �ij, i; j 2 S, are elements of matrix �. For

any i 2 S, suppose that 

��1;�i

r = O
�
N�1� . (29)

ASSUMPTION 6 (Stationarity) Process (1) starts from an in�nite past (M !1), and k�kr < � < 1.

ASSUMPTION 7 The N � 1 vector of errors ut is generated by the �spatial�model (26). �t = � = RR0

is time invariant, where R =
PN

i=1�ris
0
iN =�r1s

0
1N +

_R�1, and�ri = (r1i; :::; rNi)
0 is the ith column of matrix

R. Let 


 _R�1





c




 _R�1





r
= o (N) , (30)

k�r1kr = O (1) , (31)

and

kr�1;�ik = o (1) for any i 2 S, (32)

where r�1;�i = (0; ri1; :::; ri;i�1; 0; ri;i+1; :::; riN )
0 and rij is generic (i; j)

th element of matrix R.

Remark 4 Assumptions 5 and 7 imply matrix � has one dominant column and matrix R has at least

one dominant column, but the absolute column sum for only one column could rise with N at the rate N .

Equation (29) of Assumption 5 allows the equation for unit i to de-couple from units j > 1, for j 6= i, as

N !1.

Remark 5 Using the maximum absolute column/row sum matrix norms rather than eigenvalues allows us

to make a distinction between cases where dominant e¤ects are due to a particular unit (or a few units), and

when there is a pervasive unobserved factor that makes all column/row sums unbounded. Eigenvalues of the

covariance matrix 
 will be unbounded in both cases and it will not be possible from the knowledge of the

rate of the expansion of the eigenvalues of the matrix 
, � and/or R to known which one of the two cases

are in fact applicable.

Remark 6 As it will become clear momentarily, conditional on x1t and its lags, double index process fxitg
become weakly dependent. We shall refer to unit i = 1 as the dominant unit.

Remark 7 Assumptions 6 and 7 imply system (1) is stationary for any N , and the variance of xit for any

i 2 S is bounded as N !1.

Proposition 3 Under Assumptions 5-7 and as N !1, equation for the dominant unit i = 1 in the system
(1) reduces to

x1t � # (L; s1N ) "1t
q:m:! 0, (33)

where # (L; s1N ) =
P1

`=0

�
s01N�

`�r1
�
L`. Furthermore, for any �xed set of weights w satisfying condition (2),

x�t � # (L;w) "1t
q:m:! 0, (34)

where # (L;w) =
P1

`=0

�
w0�`�r1

�
L` and x�t = w

0xt.
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Proof. Solving (1) backwards yields

xt =
1X
`=0

�
�`R

�
"t�`, (35)

where R =�r1s
0
1N +

_R�1. Hence

x1t �
1X
`=0

�
s01N�

`�r1
�
"1;t�` =

1X
`=0

�
s01N�

` _R�1

�
"t�`. (36)

Under Assumptions 5-7,




V ar
 1X
`=0

�
s01N�

` _R�1

�
"t�`

!





c

=







1X
`=0

s01N�
` _R�1 _R

0
�1�

0`s1N







c

,

�



s01N _R�1 _R

0
�1s1N





c
+







1X
`=1

s01N�
` _R�1 _R

0
�1�

0`s1N







c

. (37)

But 


s01N _R�1 _R
0
�1s1N





c
= kr�1k2 = o (1) , (38)

where kr�1k2 = o (1) under Assumption 7. Set �0` � s01N�
` and let �`;�1 = (0; �`2; :::; �`N )

0. Note that

under Assumptions 5-6:

k�`kc � �`, (39)

�`1 = 0, (40)

k�`;�1kr = O
�
N�1� , (41)

for ` = 0; 1; 2; :::; result (39) follows from Assumption 6 by taking the maximum absolute row-sum matrix

norm of �` = s01N�
`,

k�`kc � ks
0
1N�kr � �`. (42)

Results (40)-(41) follow by induction directly from Assumptions 5-6. Using (39)-(41), we have





1X
`=1

s01N�
` _R�1 _R

0
�1�

0`s1N







c

=







1X
`=1

�0` _R�1 _R
0
�1�`







c

,

�






1X
`=1

�2`1r
0
�1r�1







c

+







1X
`=1

�0`;�1 _R�1 _R
0
�1�`;�1







c

,

� kr�1k2
1X
`=1

�2 +



 _R�1 _R

0
�1





c

1X
`=1

k�`;�1kr k�`;�1kc ,

= o (1) , (43)

where as before kr�1k2 = o (1) under Assumption 7,
P1

`=1 �
2 = O (1) by Assumption 6,




 _R�1 _R
0
�1





c
=

o (N) by Assumption 7, and
P1

`=1 k�`;�1kr k�`;�1kc = O
�
N�1� by properties (39)-(41). Noting that

E
hP1

`=0

�
s01N�

` _R�1

�
"t�`

i
= 0, equations (38), (43) establish

1X
`=0

�
s01N�

` _R�1

�
"t�`

q:m:! 0, as N !1. (44)
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This completes the proof of equation (33). To prove (34), we write

x�t �
1X
`=0

�
w0�`�r1

�
"1;t�` =

1X
`=0

�
w0�` _R�1

�
"t�`. (45)

Since the vectors
�
w0�`

	
have the same properties as vectors f�`g in equations (39)-(41), it follows that

(using the same arguments as above),

1X
`=0

�
w0�` _R�1

�
"t�`

q:m:! 0, as N !1. (46)

This completes the proof of equation (34).

The model for unit i = 1 can be approximated by an AR(p1) process, which does not depend on the

realizations from the remaining units as N !1. Let the lag polynomial

a (L; p1) � #�1 (L; s1N ) (47)

be an approximation of #�1 (L; s1N ). Then equation for unit i = 1 can be written as

a (L; p1)x1t � "1t. (48)

The following proposition presents mean square error convergence results for the remaining cross section

units.

Proposition 4 Consider system (1), let Assumptions 5-7 hold and suppose that the lag polynomial # (L; s1N )
de�ned in Proposition 3 is invertible. Then as N !1, equations for cross section unit i 6= 1 in the system
(1) reduce to

(1� �iiL)xit � �i (L)x1t � rii"it
q:m:! 0; for i = 2; 3; ::: (49)

where �i (L) = �i1L +
�
ri1 + #

�
L;��1;�i

�
L
�
#�1 (L; s1N ), and #

�
L;��1;�i

�
=
P1

`=0

�
�0�1;�i�

`�r1
�
L` for

i 6= 1.

Proof.
xit � �iixi;t�1 � �0�1;�ixt�1 � �i1x1;t�1 � ri1"1t � rii"it = r0�1;�i"t (50)

Noting that r�1;�i satis�es equation (32) of Assumption 7, and since kV ar ("t)kc = 1 and E ("t) = 0, then

r0�1;�i"t
q:m:! 0. (51)

Considering (33) and noting that # (L; s1N ) is invertible, we have

#�1 (L; s1N )x1t � "1t
q:m:! 0:

This together with (34) implies

�0�1;�ixt�1 � #
�
L;��1;�i

�
"1;t�1

q:m:! 0, (52)

since ��1;�i satis�es condition (2) under Assumption 5. Substituting these results into (50), equation (49)

directly follows.
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Remark 8 Exclusion of x1t from (49) is justi�ed only if ri1 = 0.

Remark 9 Cross section unit 1 becomes (in the limit) a dynamic common factor for the remaining units
in the system. Denote ft = x1t. Proposition 4 implies 24

(1� �iiL)xit � rii"it + �i (L) ft for i > 1. (53)

Remark 10 Conditional on x1t, and its lags, the process fxitg become CWD.

Remark 11 For �1 = 0 and ��i = 0, we obtain from (49) the following static factor model as a special

case

(1� �iiL)xit � rii"it +

�
ri1
r11

�
ft, for i > 1, (54)

where ft = x1t.

3 Estimation of A Stationary IVAR

Let xit = (xi1t; xi2t; :::; xikt)
0 be a k�1 dimensional vector of k variables for unit (group) i 2 f1; 2; :::; Ng and

denote all the endogenous variables in the system by the Nk � 1 vector xt = (x01t;x
0
2t; :::;x

0
Nt)

0. Consider

the case where k is �xed and relatively small and (T;N)
j! 1. This set-up corresponds, for example,

to the panel of countries in the global economy, with a small set of key macroeconomic variables in each

country, such as the GVAR model developed by Pesaran, Schuermann and Weiner (2004). Alternatively, xit
could refer to panels of �rms or households with a �nite number of variables per cross section unit. Other

con�gurations of N;T and k could also be of interest. One possibility would be the case where N is �xed but

(k; T ) ! 1, which corresponds to the case of one or more advanced open economies in data-rich (k ! 1)
environment. In this paper, we con�ne our analysis to the case where k is �xed. We shall assume the same

number of variables per group only to simplify the exposition.25

Assume xt is generated as:

� (L) (xt ��� �f t) = ut, (55)

for t = 1; :::; T , where � (L) = INk � �L, � is Nk � Nk dimensional matrix of unknown coe¢ cients,

� = (�01;�
0
2; :::;�

0
N )

0 is Nk�1 dimensional vector of �xed e¤ects, �i = (�i1; :::; �ik)0, ft is m�1 dimensional
vector of unobserved common factors (m is �xed and relatively small), � =(�01;�

0
2; :::;�

0
N )

0 is Nk � m

dimensional matrix of factor loadings with

�i =

0BB@

i11 � � � 
i1m
...

...


ik1 � � � 
ikm

1CCA ,
and ut = (u01t;u

0
2t:::;u

0
Nt)

0 is the vector of error terms assumed to be independently distributed of ft0

8t; t0 2 f1; ::; Tg.26 Assumption of no observed common factors could be relaxed without major di¢ culties.27
24x1t could be equivalently approximated by cross sectional weighted averages of xt and its lags, namely x�t ; x

�
t�1; :::.

25Generalization of the model to allow for ki = O (1) number of variables per group is straightforward.
26One could also add observed common factors and/or deterministic terms to the equations in (55), but in what follows we

abstract from these for expositional simplicity.
27Note that the presence of strictly exogenous observed common factors in the system (55) poses no di¢ culties as exogenous

observed common factors could be directly included in the group-speci�c auxiliary regressions. In the case of endogenous
observed common factors (such as the price of oil for example in the context of the global economy) an additional equation
explaining the behavior of the endogenous common factors would be needed. This could be done by treating the endogenous
observed common factors as additional dominant groups (allowing for k to di¤er across groups).
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Elements of k � 1 dimensional vector uit are denoted by uit = (ui1t; :::; uikt)0. This set-up allows us to refer
to the elements of vector ut in two di¤erent ways: ult represents the lth element of ut, while uirt represents

the rth element of uit. It follows that ult = uirt for l = (i� 1) k + r. Let us partition matrix � into k � k

dimensional sub-matrices, �ij , so that

� =

0BB@
�11 � � � �1N
...

...

�N1 � � � �NN

1CCA .
De�ne the following weighted averages

x�t
mw�1

= W0
mw�Nk

� xt
Nk�1

, (56)

where W0 = (W1;W2; :::;WN ) and fWigNi=1 are mw � k sub-matrices. Matrix W is any matrix of pre-

determined weights satisfying following granularity conditions28

kWk = O
�
N� 1

2

�
, (62)

kWik
kWk = O

�
N� 1

2

�
for any i � N and for any N 2 N. (63)

x�t is not necessarily the vector of cross sectional averages as there is no explicit restriction assumed on

averaging di¤erent types of variables across groups. In empirical applications, cross sectional averages,

however, are likely to be a preferred choice in the light of Assumption 17 below. In cases where the number

of unobserved common factors (m) is lower than the number of endogenous variables per group (k), full

augmentation by cross sectional averages (mw = k) is not necessary for consistent estimation of �ii.29

Subscripts denoting the number of groups are omitted in order to keep the notation simple. Note that

as N is changing, potentially all elements of the Nk � Nk dimensional matrix � are changing. Subscript

for the number of groups in the system will only be used if necessary.

ASSUMPTION 8 (No local dominance) Let ��i = (�i1;�i2; :::;�i;i�1;0k�k;�i;i+1; :::;�iN )
0 where �ij

are k � k dimensional sub-matrices of matrix �.

k��ikr = O
�
N�1� for any i � N and any N 2 N. (64)

28Granularity conditions (62)-(63) are equivalent to the following conditions (57)-(58)

kWkc 6= o (1) (57)

kWkr = O
�
N�1� (58)

To see this, note that (63) implies
kWik2

kWk2
= O

�
N�1� (59)

But kWk2 = O
�
N�1� by (62). Therefore

kWik2 = O
�
N�2� (60)

Since dimensions ofWi is mw � k, it follows that order of magnitude of kWikM does not depend on a particular matrix norm
k�kM under consideration. Hence kWik2r = O

�
N�2�. Note that condition (58) also establishes that

kWkc = O (1) (61)

29For more details see Remark 14 below.
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ASSUMPTION 9 (Stationarity)

k�kr k�kc < � < 1 for any N 2 N. (65)

ASSUMPTION 10 (Sequence of diagonal sub-matrices of coe¢ cient matrices � as N ! 1) Diagonal
sub-matrices, �ii, of matrix � do not change with N � i.

ASSUMPTION 11 (Weakly dependent errors with �nite fourth moments) ut is independent of ut0 for
8t 6= t0. Let E (utu0t) = � , and denote E (untuhtusturt) = �nhsr.

k�kr = O (1) for any N 2 N, (66)

and

sup
N2N; n;h�kN

k	nhkr = O (1) , (67)

where kN�kN dimensional matrix	nh consists of elements �nhsr, s; r 2 f1; ::; kNg.30 uit = (ui1t; ui2t; :::; uikt)0

does not depend on N � i. For future reference, de�ne k � k matrix �ii = E (uitu
0
it).

ASSUMPTION 12 (Available observations) Available observations are x0;x1; :::;xT with the starting val-
ues x0 =

P1
`=0�

`u (�`) +�+ �f0.31

ASSUMPTION 13 (Common factors) k�kr = O (1) and �i does not change with N � i. Unobserved

common factors f1t; :::; fmt follow stationary AR(1) processes:

frt =  r (L) "frt for r = 1; ::;m, (68)

where polynomials  r (L) =
P1

`=0  r`L
` are absolute summable, "frt � IID

�
0; �2"fr

�
and the fourth mo-

ments of "frt are bounded, E
�
"4frt

�
< 1. "frt is independently distributed of ut0 for any t 6= t0 and any

r 2 f1; ::;mg.

ASSUMPTION 14 (Random factor loadings)


isr = 
sr + �isr for s 2 f1; ::; kg , r 2 f1; ::;mg and any i 2 N, (69)

where �isr � IID
�
0; �2�sr

�
, 
isr does not change with N � i. �isr is independently distributed of "r0t and ut

for any s 2 f1; ::; kg ; r; r0 2 f1; ::;mg ; i 2 N and any t 2 Z. Furthermore, the third and the fourth moments
of �isr are bounded.

ASSUMPTION 15 (Non-random factor loadings) 
isr = O (1) for any i 2 N and any s 2 f1; ::; kg,
r 2 f1; ::;mg. 
isr does not change with N � i.

ASSUMPTION 16 Let �f (0)
m�m

= E (ftf
0
t), �f (1)

m�m
= E

�
ftf

0
t�1
�
, ��
mw�m

= W0�, ��
mw�1

= W0�, and

��i (0)
k�k

= E
�
�it�

0
it

�
where

�it = �ii�i;t�1 + uit, (70)

30Please note that k�k � k�kr for any symmetric matrix since kAk
2 �

p
kAkc kAkr for any matrix A. See for instance

Horn and Johnson (1985).
31We use notation u (�`) instead of u�` in order to avoid possible confusion with the notation used in Section 2.
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for t = 1; :::; T with starting values �i0 =
P1

`=0�
`
iiui (�`). Matrix

Ci
(1+k+2mw)�(1+k+2mw)

=

0BBBB@
1 �0i ��0 ��0

�i �i�
0
i + ��i (0) + �i�f (0)�

0
i �i�

�0 + �i�f (1)�
�0 �i�

�0 + �i�f (0)�
�0

�� ���0i + �
��0f (1)�

0
i ����0 + ���f (0)�

�0 ����0 + ���f (1)�
�0

�� ���0i + �
��f (0)�

0
i ����0 + ���0f (1)�

�0 ����0 + ���f (0)�
�0

1CCCCA ,

is nonsingular for any i � N , i;N 2 N; and also in the limit as N !1.

ASSUMPTION 17 Matrix (��0��) is nonsingular for any N 2 N, and also in the limit as N ! 1.
Furthermore, ��i (0) is nonsingular and �

� 6= 0.

Remark 12 Assumption 8 implies

k��ik2 = O
�
N�1� for any i � N and any N 2 N, (71)

and matrix ��i satis�es condition (62). Under Assumptions 8 and 11, besides f1; ftg, there are no additional
common factors in the system (55). Locally dominant (spatial) dependence of errors ut is not excluded in

Assumption 11.

Remark 13 (Eigenvalues of � and �ii) Assumption 9 implies

% (�) < � < 1, (72)

as well as

% (�0�) = k�k2 < � < 1. (73)

This is because % (�) � min fk�kr ; k�kcg and k�k �
p
k�kr k�kc. Furthermore, since k�iikr � k�kr

and k�iikc � k�kc, it follows from Assumption 9 that for any i � N and for any N 2 N :

k�iikr k�iikc < � < 1, (74)

% (�ii) < � < 1, (75)

% (�0ii�ii) = k�iik
2
< � < 1, (76)

and all roots of jIk ��iiLj = 0 lie outside the unit circle.

Remark 14 Assumption 16 implies �� = W0� is a square, full rank matrix and therefore Assumption

16 implicitly assumes that the number of unobserved common factors is equal the number of columns of

the weight matrix W (m = mw). In cases when m < mw � k, full augmentation of group-speci�c VAR

models by (cross sectional) averages is not necessary. There is a trade-o¤ between, (i) possible inconsistency

of estimates introduced by the situation where the number of (cross sectional) averages in the augmented

group-speci�c VAR models is lower than the number of common factors, and (ii) possible loss of power

by augmenting the group-speci�c regressions by more (cross sectional) averages than the true number of

unobserved common factors.

Remark 15 Assumption 17 is used instead of Assumption 16 for the case when the number of unobserved
common factors is unknown, but not greater than mw.
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Remark 16 Let cov (xit;xj;t�q) = �ij (q). Note that for i = j, �ii (q) = cov (xit;xi;t�q) is the q-th order

autocovariance of xit. For q = 0, �ij (0) = cov (xit;xjt) denotes cross sectional covariance of groups i and

j. For i 6= j and q 6= 0, we have temporal cross-covariance.

Solving (55) backward and multiplying both sides byW0 yields

x�t = �
� + ��ft +

1X
`=0

W0�`ut�`. (77)

Under Assumption 11, futg is weakly cross sectionally dependent and therefore




V ar
 1X
`=0

W0�`ut�`

!




 =







1X
`=0

W0�`��0`W






 ,
� kWk2 k�k

1X
`=0



�`

2 ,
= O

�
N�1� , (78)

where kWk2 = O
�
N�1� by condition (62), k�k = O (1) by Assumption 11 (weak dependence) andP1

`=0



�`

 = O (1) under Assumption 9 (see Remark 13). Therefore (78) implies

x�t = �
� + ��ft +Op

�
N� 1

2

�
, (79)

and the unobserved common factors can be approximated as

(��0��)
�1
��0 (x�t ���) = ft +Op

�
N� 1

2

�
, (80)

provided that either Assumption 16 or 17 hold. It can be inferred that full column rank of �� is an important

assumption for the results derived in this section. In the case where m < k (that is augmenting individual

VAR models by m � 1 dimensional vector of (cross sectional) averages could be satisfactory), augmenting
the regression by k� 1 dimensional vectors of (cross sectional) averages have asymptotically no bearings on
estimates of coe¢ cients �ii below. This is because in both cases, vectors of (cross sectional) averages span

the same space asymptotically.

Consider following auxiliary VARX� (1; 1) regression

xit = ci +�iixi;t�1 +Bi1x
�
t +Bi2x

�
t�1 + �it, (81)

where Bi1 = �i (��0��)
�1
��0, Bi2 = ��iiBi1, ci = �i ��ii�i + (Bi2 �Bi1)��, �it = uit + hit, and

hit = Bi1W
0 (xt ��� �f t) + (Bi2W0 +��i) (xt�1 ��� �f t�1) .

For variable xirt, r 2 f1; ::; kg, in system (81) we have

xirt = g
0
it�ir + �irt, (82)

where �ir =
�
cir; �

(ii)
r1 ; :::; �

(ii)
rk ; b

(i1)
r1 ; :::; b

(i1)
rk ; b

(i2)
r1 ; :::; b

(i2)
rk

�0
=
�
cir;�

0
ii;r;b

0
i1;r;b

0
i2;r

�0
is (3k + 1) � 1 dimen-

sional vector of coe¢ cients32 and the vector of regressors is git =
�
1;x0i;t�1;x

�0
t ;x

�0
t�1
�0
. Denote the corre-

32�
(ii)
rn ; b

(i1)
rn ; and b(i2)rn denote element (r; n) of matrices �ii, Bi1, and Bi2, respectively. �0ii;r;b

0
i1;r , and b

0
i2;r denote row r
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sponding OLS estimator of �ir as b�ir :
b�ir =  TX

t=1

gitg
0
it

!�1 TX
t=1

gitxirt. (83)

We denote the estimator of �ii;r given by the k-dimensional sub-vector of b�ir as the cross section augmented
least squares estimator (or CALS for short), denoted as b�ii;r;CALS . b�ii;r;CALS is equivalently de�ned using
the partition regression formula in equation (103) under the Assumption 16, which ensures the invertibility

of the matrix Ci. Under the weaker Assumption 17, CALS is still well de�ned using the partition regression

formula in equation (103). Asymptotic properties of b�ir (and b�ii;r;CALS in the case where the number
of unobserved common factors is unknown) are the objective of this analysis as N and T tend to in�nity.

Following types of convergence for N and T are considered.

ASSUMPTION B1: N;T
j!1 at any order.

ASSUMPTION B2: N;T
j!1; and T=N ! { <1, where { � 0 is not necessarily nonzero.

Clearly, Assumption B2 is stronger than Assumption B1. Situations where the number of unobserved

common factors equals mw is analyzed �rst.

Theorem 1 Consider model (55). Let l = (i� 1) k + r, suppose Assumptions 8-13,16 hold and factor

loadings are governed either by Assumption 14 or 15. Furthermore, letW be any arbitrary (pre-determined)

matrix of weights satisfying conditions (62)-(63) and Assumption 16. Then for any i 2 N, and for any
r 2 f1; ::; kg, the estimator b�ir de�ned by (83) has following properties.
a) Under Assumption B1, b�ir is consistent estimator of �ir.
b) Under Assumption B2, p

T (b�ir � �ir) d! N
�
0; �llC

�1
i

�
, (84)

where �ll = V ar (uirt) = V ar (ult), and Ci is positive de�nite matrix de�ned in Assumption 16.

c) Under Assumption B1, matrix Ci and scalar �ll can be consistently estimated by

bCi = 1

T

TX
t=1

gitg
0
it; and b�ll = 1

T � 2k � 1

TX
t=1

bu2lt, (85)

respectively, where bult = buirt = xirt � g0itb�ir.
d) Under Assumption B2, p

T (b�i � �i) d! N
�
0;�ii 
C�1i

�
, (86)

where �i = (�0i1;�
0
i2; :::;�

0
ik)

0, similarly b�i = �b�0i1; :::; b�0ik�0, and �ii = E (uitu
0
it). Furthermore, �ii

can be consistently estimated by

b�ii = 1

T � 2k � 1

TX
t=1

buitbu0it. (87)

Proof.

of matrices �ii, Bi1, and Bi2, respectively.
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b) Substituting for �irt in (83) allow us to write:

p
T (b�ir � �ir) =

p
T

 
TX
t=1

gitg
0
it

!�1 TX
t=1

git�irt,

=

 
1

T

TX
t=1

gitg
0
it

!�1
1p
T

TX
t=1

githirt +

 
1

T

TX
t=1

gitg
0
it

!�1
1p
T

TX
t=1

gituirt. (88)

Under B2, equations (160)-(162) of Lemma 4 in Appendix imply

1p
T

TX
t=1

githirt
p! 0. (89)

According to Lemma 5,  
1

T

TX
t=1

gitg
0
it

!
p! Ci, (90)

if B1 holds, where Ci is nonsingular under Assumption 16. It therefore follows that under B2 
1

T

TX
t=1

gitg
0
it

!�1
1p
T

TX
t=1

githirt
p! 0. (91)

We can rewrite 1p
T

PT
t=1 gituirt as

1p
T

TX
t=1

gituirt =
1p
T

TX
t=1

aiuirt +
1p
T

TX
t=1

(git � ai)uirt, (92)

where

ait =

0BBBB@
1

�i + �i;t�1 + �ift�1

�� + ��ft

�� + ��ft�1

1CCCCA .
Lemma 6 implies (under B2)

1p
T

TX
t=1

(git � ait)uirt
p! 0. (93)

It follows from Lemma 7 that
1p
T

TX
t=1

aituirt
D! N (0; �llCi) , (94)

as T !1 (Lemma 7 is standard time series result33). (90), (93) and (94) imply

 
1

T

TX
t=1

gitg
0
it

!�1
1p
T

TX
t=1

gituirt
D! N

�
0; �llC

�1
i

�
, (95)

given B2. (91) and (95) establish (84).

33See for instance Hamilton (1994, Chapter 7 and Chapter 8).
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a)

(b�ir � �ir) =  1
T

TX
t=1

gitg
0
it

!�1
1

T

TX
t=1

githirt +

 
1

T

TX
t=1

gitg
0
it

!�1
1

T

TX
t=1

gituirt (96)

Consider now Assumption B1 whereN;T
j!1 at any order. Lemma 6 implies 1T

PT
t=1 (git � ait)uirt

p!
0. (94) establishes 1

T

PT
t=1 aituirt

p! 0. Hence

1

T

TX
t=1

gituirt
p! 0. (97)

Lemma 4, and Lemma 5 imply

1

T

TX
t=1

githirt
p! 0, and

1

T

TX
t=1

gitg
0
it

p! Ci, (98)

respectively. Hence, from (97) and (98) it follows that b�ir p! �ir.

c) Lemma 5 implies 1
T

PT
t=1 gitg

0
it is a consistent estimator of Ci under Assumption B1. xit�gitb�ir p! �it

(under B1) directly follows from the consistency of b�ir. Since �it = uit + hit and 1
T

PT
t=1 hith

0
it

p! 0

under B1 by Lemma 1, it follows b�ll p! �ll for any l 2 f1; :::; Nkg.34

d) Consider now asymptotics B2 where N;T
j!1; and T=N ! { <1. (91) and (93) imply

p
T (b�i � �i) = C�1i

0BB@
1p
T

PT
t=1 aitui;1;t
...

1p
T

PT
t=1 aitui;k;t

1CCA+ op (1) . (99)

De�ne the k (1 + k + 2mw) � 1 dimensional vector �it = (a0itui;1;t; :::;a
0
itui;k;t)

0. Note that �it is a

martingale di¤erence process with �nite fourth order moments and the variance matrix

E
�
�it�

0
it

�
=

0BBBB@
E
�
u2i1t

�
E (ui1tui2t) � � � E (ui1tuikt)

E (ui2tui1kt) E
�
u2i2t

�
E (ui2tuikt)

...
. . .

...

E (uiktui1kt) E (uiktui2t) � � � E
�
u2ikt

�

1CCCCA
 E (aita0it) ,
= �ii 
Ci. (100)

Using the central limit theorem (CLT) for martingale di¤erences (see, for example, Hamilton, Propo-

sition 7.9, p. 194) we have:

1p
T

TX
t=1

�it
d! N (0;�ii 
Ci) . (101)

34uith
0
it is also ergodic in mean and



E �uith0it�

 = O �N�1�! 0 under B1.
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Expression (99) can be written as

p
T (b�i � �i) =

0BBBB@
C�1i 0 � � � 0

0 C�1i 0
...

. . .
...

0 0 � � � C�1i

1CCCCA 1p
T

TX
t=1

�it + op (1) ,

=
�
Ik 
C�1i

� 1p
T

TX
t=1

�it + op (1) . (102)

Thus p
T (b�i � �i) d! N

�
0;�ii 
C�1i

�
,

since
�
Ik 
C�1i

�
(�ii 
Ci)

�
Ik 
C�1i

�
= �ii 
C�1i . Consistency of b�ii follows from part (c) of this

proof.

Now we consider the case where the number of unobserved common factors is unknown, but it is known

that mw � m. Since the auxiliary regression (81) is augmented possibly by higher number of �star�variables

than the number of unobserved common factors, we have potential problem of (asymptotic) multicollinearity.

But this has no bearings on estimates of �ii as long as the space spanned by unobserved common factors

including a constant and the space spanned by x�t are the same (asymptotically). This is the case when �
�

has full column rank, that is if Assumption 17 holds. Using partition regression formula, the cross sectionally

augmented least squares (CALS) estimator of vector �ii;r =
�
�
(ii)
r1 ; :::; �

(ii)
rk

�0
in the auxiliary regression (81)

is b�ii;r;CALS = (X0
iMZXi)

�1
X0
iMZxir�, (103)

where xir� = (xir1; :::; xirT )
0, Xi = [xi1 (�1) ;xi2 (�1) ; :::;xik (�1)], xir (�1) = (xir0; :::; xi;r;T�1)

0
;MZ =

IT � Z (Z0Z)+ Z0, Z = [X�;X� (�1)], X� =
�
x�1�; :::;x

�
mw�

�
, X� (�1) =

�
x�1 (�1) ; :::;x�mw

(�1)
�
, x�r� =

(x�r1; :::; x
�
rT )

0 and x�r (�1) =
�
x�r0; :::; x

�
r;T�1

�0
.

De�ne for future reference following matrices.

Q = [� ;F;F (�1)] , (104)

and

A
(2m+1)�2mw

=

0B@ ��0 ��0

��0 0m�mw

0m�mw ��0

1CA , (105)

where F =(f1�; :::; fm�), F (�1)= [f1 (�1) ; :::; fm (�1)], fr� = (fr1; :::; frT )0 and fr (�1) = (fr0; :::; fr;T�1)0 for
r 2 f1; ::;mg. Furthermore, let

�t = (�
0
1t; :::;�

0
Nt)

0
=

1X
`=0

�`ut�`, and ��t =W
0�t. (106)

It follows that �it =
P1

`=0 S
0
i�

`ut�`, where Si = (0k�k; ::;0k�k; Ik;0k�k; ::;0k�k)
0 is kN � k dimensional

selection matrix for group i.
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Theorem 2 Consider model (55). Let l = (i� 1) k + r, suppose Assumptions 8-13, 17, B2 hold and factor
loadings are governed by Assumption 14 or 15. Furthermore, letW be any arbitrary (pre-determined) matrix

of weights satisfying conditions (62)-(63) and Assumption 17. Then for any i 2 N, and for any r 2 f1; ::; kg,
the cross sectionally augmented least squares estimator, b�ii;r;CALS, de�ned by (103) has following properties.
a) p

T
�b�ii;r;CALS � �ii;r� d! N

�
0; �ll�

�1
�i
(0)
�
, (107)

where �ll = V ar (uirt) = V ar (ult) and ��i (0) is autocovariance function of the process �it de�ned in

Assumption 16.

b) p
T
�b�ii;CALS � �ii� d! N

�
0;�ii 
 ��1�i (0)

�
, (108)

where �ii = vec (�ii), similarly b�ii;CALS = �b�0ii;1;CALS ; :::;b�0ii;k;CALS�0, and �ii = E (uitu
0
it).

Proof.

a) Vector xir� can be written, using system (55), as

xir� = � (�
0
i ��0i�0ii) +Xi�

0
iisrk + F�

0
isrk � F (�1)�0i�0iisrk + uir� + eir�, (109)

where srk is k � 1 dimensional selection vector (srj = 0 for j 6= r and srr = 1), eir� = (eir1; :::; eirT )
0

and eirt = s0rk�
0
�i (xt�1 ��� �f t�1). Substituting (109) into (103) and noting that by Lemma 10,

equation (203),
X0
iMZQp
T

=
X0
iMZ [� ;F;F (�1)]p

T
= op

 r
T

N

!
, (110)

it follows

p
T
�b�ii;r � �ii;r� = �X0

iMZXi

T

��1 "
X0
iMZ (uir� + eir�)p

T
+ op

 r
T

N

!#
. (111)

According to Lemma 10 and equations (201)-(202),

X0
iMZXi

T

p! ��i (0) , (112)

under Assumption B1 (and therefore also under Assumption B2), where ��i (0) is nonsingular under

Assumption 17.

Consider now the case when N;T
j! 1; and T=N ! { < 1 (Assumption B2). Lemma 11, equation

(215), implies
X0
iMZeir�p

T

p! 0. (113)

Furthermore, we have by Lemma 11, equation (216),

X0
iMZuir�p

T
=
�0
iuir�p
T

+ op

 r
T

N

!
+ op (1) , (114)
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where the T � k dimensional matrix�i = (�i0;�i1; :::;�i;T�1)
0. We can re-write �0

iuir�=
p
T as

�0
iuir�p
T

=
1p
T

TX
t=1

�i;t�1uirt �
1p
T

TX
t=1

�
�i;t�1 � �i;t�1

�
uirt. (115)

Lemma 6, equations (174) implies

1p
T

TX
t=1

�
�i;t�1 � �i;t�1

�
uirt

p! 0. (116)

Using Lemma 12, we have

1p
T

TX
t=1

�i;t�1ult
D! N

�
0; �ll��i (0)

�
. (117)

It follows from equations (114)-(117) that

X0
iMZuir�p

T

D! N
�
0; �ll��i (0)

�
. (118)

Equations (111)-(113) and (118) now establish (107).

b) Consider the case when N;T
j!1; and T=N ! { <1 (Assumption B2). Proof of (108) is similar to

the proof of (86). Part (a) of this proof implies

p
T
�b�ii;CALS � �ii� = ��1�i (0)

0BB@
1p
T

PT
t=1 �i;t�1ui;1;t

...
1p
T

PT
t=1 �i;t�1ui;k;t

1CCA+ op (1) + op
 r

T

N

!
. (119)

De�ne k2 � 1 dimensional vector �it =
�
�0i;t�1ui;1;t; :::; �

0
i;t�1ui;k;t

�0
. Notice that �it is a martingale

di¤erence sequence with �nite fourth moments and variance

E
�
�it�

0
it

�
=

0BBBB@
E
�
u2i1t

�
E (ui1tui2t) � � � E (ui1tuikt)

E (ui2tui1kt) E
�
u2i2t

�
E (ui2tuikt)

...
. . .

...

E (uiktui1kt) E (uiktui2t) � � � E
�
u2ikt

�

1CCCCA
 E ��i;t�1�0i;t�1� .
= �ii 
 ��i (0) (120)

It follows from a vector martingale di¤erence CLT (see for example Hamilton, 1994, Proposition 7.9)

that
1p
T

TX
t=1

�it
d! N

�
0;�ii 
 ��i (0)

�
. (121)
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Expression (119) can be written as

p
T
�b�ii;CALS � �ii� =

0BBBBB@
��1�i (0) 0 � � � 0

0 ��1�i (0) 0
...

. . .
...

0 0 � � � ��1�i (0)

1CCCCCA
1p
T

TX
t=1

�it + op (1) + op

 r
T

N

!
,

=
�
Ik 
 ��1�i (0)

� 1p
T

TX
t=1

�it + op (1) + op

 r
T

N

!
. (122)

Thus p
T
�b�ii � �ii� d! N

�
0;�ii 
 ��1�i (0)

�
, (123)

since
�
Ik 
 ��1�i (0)

� �
�ii 
 ��i (0)

� �
Ik 
 ��1�i (0)

�
= �ii 
 ��1�i (0). This completes the proof.

Extension of the analysis to a IVAR(p) model is straightforward and it is relegated to the appendix B.2.

An alternative method for carrying out estimation and inference in panels with multifactor error structure is

using the method of principal components to estimate the unobserved common factors, following for example

the work of Stock and Watson (2002).35 36

3.1 Selection of Weights W

As speci�ed above the matrix of weights,W, is common across groups. However, since any weights satisfying

conditions (62)-(63) can be used in estimation of the vector b�ii, the proposed CALS estimator allows to use
di¤erent, group-speci�c, weights for estimation of the slope coe¢ cients of the individual groups. Asymp-

totically, there is no di¤erence between two sets of weights as long as both satisfy granularity conditions

(62)-(63), Assumptions 16 or 17 and both are pre-determined. In small samples, selection of optimal weights

could be an important issue. For a related discussion, see Pesaran (2006, Section 6).

3.2 Consistent Estimation of �ii In the Case Where the Number of Common
Factors Exceeds the Number of Endogenous Variables per Group

There is no restriction on the number of columns mw of the weight matrix W, besides being bounded in

N . Theorems 1 and 2 apply also for the case where the number of unobserved common factors exceeds the

number of endogenous variables, as long as matrixW satis�es Assumptions 16 or 17. However, when m > k,

it is harder to justify the choice of the matrixW, while for m � k, cross sectional averages seems a natural

choice. This is because one would expect di¤erent type of variables to be a¤ected by common factors in

35Geweke (1977) and Sargent and Sims (1977) introduced dynamic factor models, which were generalized to allow for weak
cross sectional dependence in innovations by Forni and Lippi (2001) and Forni et al. (2000, 2004).
36System (55) implies

xt �� = �f t +
1X
`=0

�`ut�`. (124)

Process
P1
`=0�

`ut�` is serially correlated, but weakly cross sectionally dependent. We can estimate the common factors ft
(up to a linear transformation) by the �rst m principal components of

xdt = xt �
1

T

TX
t=1

xt. (125)
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a heterogenous fashion. In the context of global modeling, one could expect group of advanced economies

and the group of developing economies to be a¤ected by global common factors in a heterogenous fashion,

which would justify the use of weighted averages of advanced economies and weighted averages of developing

economies instead of one cross sectional average per variable:

4 Monte Carlo Experiments: Small Sample Properties of b�ii;CALS
4.1 Monte Carlo Design

We assume one variable per cross section unit, k = 1 and xt = (x1t; :::; xNt)
0, and a single unobserved

common factor ft (m = 1). Vector of factor loadings is denoted by 
 =(
1; :::; 
N )
0. The data generating

process (DGP) used is given by

xt � 
ft = � (xt�1 � 
ft�1) + ut, (126)

which corresponds to the system (55) with � = 0. The common factor is generated according to the following

AR(1) process

f
(r)
t = �ff

(r)
t�1 + �

(r)
ft , �

(r)
ft � IIDN

�
0; 1� �2f

�
,

where the superscript r denotes replications, r 2 f1; ::; Rg. The unobserved common factor, ft; is chosen to
be relatively persistent, �f = 0:9.

In order to construct the N � N dimensional matrix �, random vectors �i = (�i1; �i2; :::; �iN )
0 are

generated �rst:

�ij =
&ijPN
j=1 &ij

, (127)

where &ij � IIDU [0; 1]. Matrix � is then constructed as follows (recall that su¢ cient condition for station-

arity is k�kr < 1):

1. (Diagonal elements) �ii = � = 0:5 for any i = 1; ::; N .

2. (O¤-diagonal elements) For 8i 6= j : �ij = �i�ij where �i � IIDU (�0:1; 0:3). Case where � = (�1; �2; :::; �N )0 =
0 (that is the matrix � is diagonal) is considered as well.

The above parameters yield k�kr � 0:8, which, together with
���f �� < 1, ensure that the DGP is stationary.

The star variables, x�it for i = 1; 2; :::; N , are constructed as simple arithmetic cross sectional average of

remaining units. N -dimensional vector of error terms for the r-th replication, denoted as u(r)t , is generated

using the following Spatial Autoregressive Model (SAR):

u
(r)
t = �uSuu

(r)
t + &

(r)
t , (128)

for t = 1; ::; T , where the spatial weights matrix is

Su =

0BBBBB@
0 1 0

1 0
. . .

. . .
. . . 1

0 1 0

1CCCCCA . (129)

Two scenarios are investigated; a low Cross Sectional Dependence (CSD) �u = 0:2, and a high CSD case

�u = 0:4. Note that for �u = 0:5, u
(r)
t given by the SAR model (83) would no longer be CWD. &(r)it , the i

th
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element of &(r)t , is drawn from IIDN
�
0; �2&

�
. Variance of u(r)t can be written as

V ar
�
u
(r)
t

�
= �2&RR

0, (130)

where N �N matrix R = (IN � �uSu)
�1. Variance �2& is chosen so that the variance of u

(r)
it on average is

1� �2, that is 37

�2& =
�
1� �2

� NPN
i=1

PN
j=1 r

2
ij

, (131)

where rij is the (i; j)
th element of the matrix R. The factor loadings, 
i; i = 1; 2; :::; N , are generated from

IIDN (2; 1), which asymptotically yields an R2 for the regression of xit on ft of around 80% on average.

DGP without common factors, that is 
i = 0 for i = 1; 2; :::; N , is also considered.

In order to minimize the e¤ects of the initial values, the �rst 20 observations are dropped. N 2
f1; 10; 25; 50; 75; 100; 200g and T 2 f25; 50; 75; 100; 200g. For each N , all parameters were set at the be-
ginning of the experiments and 2000 replications were carried out. The focus of the experiments is to

evaluate the small sample properties of b�ii;CALS as the estimator of � de�ned in (83) under alternative
DGP�s.38 Since it does not matter which cross section unit i we look at, we chose i = 1, and, for the

simplicity, we denote the corresponding CALS estimator of � simply as b�CALS in the exposition below (i.e.
we drop the subscript 11). An intercept was included in all the individual regressions when estimating �.

The same Monte Carlo experiments were also conducted for the principal component(s) augmented least

squares estimator (or simply PCALS), denoted as b�ii;PCALS , which is similar to b�ii;CALS de�ned in (103)
but the �rst principal component of xdt , de�ned in (125), is used instead of star variable x

�
it.

4.2 Monte Carlo Results

Tables 2-5 gives the bias (�100) and RMSE (�100) of b�CALS , as well as size (H0 : � = 0:5) and power

(H1 : � = 0:7) at the 5% nominal level of tests based on b�CALS for a number of di¤erent experiments with
a relatively high spatial error dependence where �u = 0:4. The di¤erent experiments relate to di¤erent

treatment of factor loadings (zero or random) and the values chosen for the o¤-diagonal elements � (zero

or random). Experiments for the case of low spatial cross sectional dependence with �u = 0:2 yield similar

results and are reported in a Supplement available from the authors. The variance of b�CALS is computed as
(2; 2) of the 4� 4 matrix b�11 bC�11 =T where b�11 and bC1 are de�ned in (85).
Estimated average pair-wise cross sectional correlation of fxitg across experiments is reported in Table 1.

The degree of cross section correlation depends very much on the presence of common factor. In cases where


 6= 0, the average of pair-wise cross section correlations lie in the range 53% to 72%. Experiments with

diagonal matrix � (� = 0) have marginally lower average pair-wise cross section correlation as compared

to the case where � 6= 0. The most noticeable di¤erence is when N = 10 and there are no common factors

(44% versus 36%). Considering the models without a common factor, it can be inferred from Table 1 that

the average pair-wise cross correlation decreases as N increases, in line with our theory�s prediction since

the process fxitg is CWD for 
 = 0. For N = 10, average pair-wise cross correlation is still quite high,

in the range of 35-46%, even without a common factor. This cross correlation is high predominantly due

to the spatial dependence of errors as opposed to the cross correlations originating from the temporal cross

dependence captured by the o¤-diagonal elements of �.

37Note that V ar
�
u
(r)
it

�
= �2&

PN
j=1 r

2
ij .

38Note that for k = 1, r = 1 and b�i = b�ir , hence we can drop the subscript r because there is only one endogenous variable
per group.
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Table 2 reports the summary results of the experiments carried out for the baseline case where 
 6= 0

(common factor is present in the DGP) and � 6= 0 (matrix � is not restricted to be diagonal). It is seen that
the cross section augmented least squares estimator of �, namely b�CALS , performs quite well for large T ,
even in the endogenous system with N being as small as 10. For small values of T , there is a negative bias,

and the test based on b�CALS is oversized. This is the familiar time series bias where even in the absence of
cross section dependence the OLS estimator of � will be biased downward for a �nite T . When N = 1, and

in all other regressions that are not augmented by star variables, the OLS estimator of �, denoted as b�OLS
(again, we focus on the regression for unit i = 1, but drop the subscript for simplicity) shows considerable

bias and relatively large RMSE due to the omition of ft.39 Power for alternatives in the interval h0; 1i is
reported in Figure 2.

Moving on to the experiments without a common factor but with � 6= 0, it can be seen from Table 3 that
the performance of the LS estimators based on regressions with or without star variables is relatively good

for N larger than 10. For N = 1, b�OLS is consistent as T ! 1. For a �xed N > 1, b�OLS is inconsistent
as T !1. In particular, for T = 200 and N = 10 the tests based on the OLS estimator of � are oversized

and the OLS estimates based on the regressions without star variables exhibit a positive bias. Note that xit
is more persistent for N = 10 as opposed to the case where N = 1, simply because the maximum eigenvalue

of the matrix � is bounded by 0:8 (for N > 1), while it is �11 = 0:5 for N = 1. Interestingly, the inclusion

of the star variables in the regressions result in a slight improvement of the size of the test when N = 10,

while the RMSE is lower for the regressions without the star variables. As N increases, OLS estimators

based on regressions without star variables achieve the correct size even for T as small as 25, while in the

case of regressions with (redundant) star variables (redundant because common factor is absent), the test is

slightly oversized for T = 25, while for T > 25, the size is relatively good. Comparing the results in Table

3 with those for the experiments where both 
 = 0 (no common factors) and � = 0 (matrix � is diagonal)

reported in Table 5, the size of the test based on b�OLS is good for all values of N; including N = 10, as

the maximum eigenvalue of � in this case is 0:5. Adding the redundant star variables slightly biases the

estimates downwards, especially for T = 25, and the RMSE is slightly higher.

Finally, in the case of the experiments with a common factor but a diagonal � (
 6= 0, � = 0), it can be
seen from Table 4 that adding star variables is crucial for a consistent estimation of �. In this case the OLS

estimator, b�OLS , is biased due to the omitted variable problem. Similar results are obtained in Table 2.
Finally, the alternative estimator, b�PCALS , which uses the �rst principal component of xdt de�ned in (125)

instead of the star variable x�it, performs similarly. These Monte Carlo results are provided in a Supplement

available from the authors on request.

39Due to the inconsistency of b�OLS , the tests based on b�OLS also show substantial size distortions. To save space, these
results are reported in a Supplement available from the authors on request.
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Table 1: Average pair-wise cross section correlation (in %) of fxitg for experiments with high spatial cross
section dependence.


 6= 0, � 6= 0 
 = 0, � 6= 0
Baseline case No common factor, � is unrestricted

T T
N 25 50 75 100 200 25 50 75 100 200
10 66.39 69.40 70.26 70.84 71.95 40.74 41.94 42.89 43.18 43.66
25 54.86 59.18 61.07 62.11 64.04 17.40 17.92 18.15 18.13 18.33
50 59.15 64.72 66.85 67.98 69.83 9.63 10.04 10.28 10.34 10.52
75 58.02 63.60 66.09 67.33 69.36 6.22 6.38 6.51 6.49 6.57
100 56.02 60.54 62.55 63.60 65.42 4.91 5.05 5.07 5.17 5.21
200 53.78 59.40 61.68 62.95 64.56 2.48 2.58 2.64 2.64 2.68


 6= 0, � = 0 
 = 0, � = 0
� is diagonal No common factor, � is diagonal

T T
N 25 50 75 100 200 25 50 75 100 200
10 65.61 68.12 69.37 69.75 70.68 35.57 35.79 35.84 35.96 35.96
25 54.12 58.78 60.61 61.60 63.39 16.02 16.16 16.35 16.31 16.33
50 58.98 64.60 66.39 67.88 69.72 8.27 8.46 8.49 8.47 8.51
75 57.64 63.86 65.81 67.44 69.14 5.59 5.67 5.69 5.72 5.73
100 55.56 60.65 62.62 63.62 65.57 4.24 4.28 4.32 4.33 4.34
200 54.18 59.24 61.32 62.82 64.51 2.14 2.17 2.16 2.16 2.17

Notes: � = 0:5 and �u = 0:4. Please refer to Section 4 for description of Monte Carlo design.
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Figure 2: Power of the test based on estimator b�CALS in the case with 
 6= 0, � 6= 0, and high spatial
dependence of errors (�u = 0:4).
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Table 2: Small sample properties of estimator b�CALS in the case of high spatial cross section dependence of
errors, nonzero factor loadings 
 6= 0, and � 6= 0.

Bias (�100) RMSE (�100)
T T

N 25 50 75 100 200 25 50 75 100 200b�CALS
10 -15.06 -8.48 -5.65 -4.38 -2.68 25.21 15.72 11.93 9.91 6.87
25 -12.99 -6.44 -3.72 -2.29 -0.79 23.64 14.78 11.45 9.32 6.37
50 -15.58 -8.58 -6.18 -4.84 -2.95 25.07 15.84 12.17 10.53 7.02
75 -15.15 -8.51 -5.40 -4.49 -2.86 24.82 15.72 11.63 10.41 6.86
100 -15.16 -7.66 -4.91 -4.04 -2.23 25.10 15.09 11.57 9.97 6.70
200 -14.23 -7.31 -4.96 -3.46 -1.68 24.35 15.27 11.81 9.60 6.45b�OLS (OLS regression without star variables)
1 12.01 21.83 25.21 26.72 29.53 21.95 24.74 26.83 27.86 30.00
10 16.63 25.94 29.23 30.41 33.15 24.38 28.02 30.40 31.26 33.45
25 17.25 25.96 29.27 30.92 33.27 24.80 28.37 30.33 31.67 33.57
50 17.78 26.26 29.78 30.93 33.51 24.62 28.37 30.84 31.68 33.81
75 17.08 26.30 29.92 30.93 33.69 24.31 28.48 31.01 31.75 33.95
100 17.50 26.29 29.03 30.99 33.69 24.38 28.56 30.18 31.78 33.99
200 17.48 25.80 29.62 31.22 33.45 24.32 28.09 30.75 31.98 33.75

Size (�100)(H0 : � = 0:5) Power (�100)(H1 : � = 0:7)
T T

N 25 50 75 100 200 25 50 75 100 200b�CALS
10 10.85 8.60 7.15 6.60 7.40 38.40 56.60 67.75 79.35 96.65
25 8.65 7.10 6.55 5.85 5.80 34.30 48.75 60.60 70.75 93.90
50 10.30 9.05 7.60 8.35 6.95 38.15 54.25 70.20 79.95 97.85
75 10.05 8.25 6.80 7.70 6.05 38.10 55.65 68.30 77.65 97.20
100 10.00 7.70 6.35 6.85 6.20 37.55 51.90 66.15 77.25 96.20
200 9.50 8.00 7.05 6.15 5.80 35.35 52.35 65.15 75.70 96.10

Notes: � = 0:5 and �u = 0:4. Estimator b�CALS is de�ned in (83). Regression for unit i = 1 is used to estimate �, but the subscript ii

is dropped for the simplicity of exposition. Variance of b�CALS is given by the element (2; 2) of the 4� 4 matrix b�11 bC�1
1 =T where b�11

and bC1 are de�ned in (85). Please refer to Section 4 for description of Monte Carlo design.
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Table 3: Small sample properties of estimator b�CALS in the case of high spatial cross section dependence of
errors and no common factors (
 = 0, � 6= 0).

Bias (�100) RMSE (�100)
T T

N 25 50 75 100 200 25 50 75 100 200b�CALS
10 -14.88 -8.88 -6.15 -5.73 -4.04 24.36 15.92 12.20 10.72 7.39
25 -12.86 -5.96 -4.14 -2.85 -1.50 23.51 14.25 11.38 9.61 6.49
50 -12.52 -6.20 -4.54 -3.31 -1.78 23.10 14.43 11.40 9.30 6.44
75 -13.25 -6.34 -3.98 -3.45 -1.49 23.81 14.80 11.16 9.91 6.49
100 -13.47 -6.31 -3.67 -3.29 -1.23 23.88 14.81 11.05 9.63 6.49
200 -12.90 -6.58 -4.37 -3.04 -1.58 23.61 14.68 11.58 9.51 6.42b�OLS (OLS regression without star variables)
1 -9.75 -4.46 -3.26 -2.54 -1.17 20.61 13.61 10.90 9.22 6.50
10 -4.72 0.61 2.59 3.45 4.84 18.69 12.27 10.52 9.48 7.69
25 -8.39 -3.23 -0.92 -0.58 0.76 20.01 13.38 10.50 8.91 6.48
50 -7.94 -3.15 -1.38 -0.45 0.89 19.88 13.01 10.29 8.68 6.17
75 -8.34 -4.33 -1.56 -1.21 -0.08 19.77 13.66 10.02 9.07 6.21
100 -9.26 -4.32 -2.66 -1.69 -0.33 20.80 13.52 10.73 8.95 6.25
200 -9.59 -4.53 -2.89 -1.82 -0.69 20.73 13.42 11.05 8.95 6.37

Size (�100)(H0 : � = 0:5) Power (�100)(H1 : � = 0:7)
T T

N 25 50 75 100 200 25 50 75 100 200b�CALS
10 9.40 8.85 7.55 8.25 8.50 36.75 57.65 70.45 83.80 98.45
25 8.30 6.75 6.20 6.30 5.75 33.80 48.85 62.90 73.75 95.85
50 8.50 6.35 6.45 4.50 5.65 32.45 49.35 65.05 76.80 96.60
75 9.25 7.60 6.00 6.40 6.05 34.00 48.40 62.00 75.15 95.30
100 8.70 6.70 5.50 6.45 5.40 33.90 48.20 60.90 74.20 95.15
200 8.65 6.75 6.40 6.20 5.40 33.20 49.35 62.25 73.20 95.60b�OLS (OLS regression without star variables)
1 5.25 5.35 5.90 5.25 5.90 26.35 41.85 58.80 72.00 94.65
10 4.40 4.85 7.30 9.10 14.50 19.00 29.20 36.45 45.75 73.30
25 4.95 5.95 5.55 4.90 6.50 23.90 37.65 49.25 63.45 89.30
50 5.10 4.95 4.95 4.35 5.55 22.40 40.10 52.95 64.15 89.80
75 4.95 5.35 4.25 5.40 5.50 23.35 41.80 53.45 65.70 93.15
100 6.15 5.45 5.55 5.05 5.60 26.00 42.20 56.85 69.90 92.95
200 5.90 5.35 5.95 4.85 5.25 25.10 42.40 56.85 69.65 94.05

Notes: �11 = 0:5; �u = 0:4 and 
 = 0. Estimator b�CALS is de�ned in (83). Regression for unit i = 1 is used to estimate �, but the

subscript ii is dropped for the simplicity of exposition. Variance of b�CALS is given by the element (2; 2) of the 4� 4 matrix b�11 bC�1
1 =T

where b�11 and bC1 are de�ned in (85). Please refer to Section 4 for description of Monte Carlo design.
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Table 4: Small sample properties of estimator b�CALS in the case of high spatial cross section dependence of
errors, nonzero factor loadings and diagonal matrix �.

Bias (�100) RMSE (�100)
T T

N 25 50 75 100 200 25 50 75 100 200b�CALS
10 -11.84 -4.29 -1.75 -0.67 1.78 23.36 13.89 10.65 9.22 6.59
25 -12.70 -5.91 -3.70 -1.80 -0.20 23.94 14.38 11.51 9.01 6.35
50 -14.31 -6.58 -4.64 -3.64 -1.39 24.65 14.70 11.47 9.70 6.35
75 -14.70 -7.07 -4.97 -3.73 -1.70 24.64 15.04 11.63 9.68 6.50
100 -15.02 -7.66 -4.98 -3.61 -1.76 24.66 15.41 11.81 9.63 6.43
200 -14.69 -7.15 -4.95 -3.73 -1.98 24.56 14.97 11.60 9.70 6.71b�OLS (OLS regression without star variables)
1 12.62 21.79 25.20 26.51 29.63 22.21 24.87 26.84 27.59 30.06
10 16.70 25.13 28.53 30.51 32.69 24.09 27.43 29.77 31.29 33.02
25 17.09 25.82 29.26 30.85 33.12 24.47 28.21 30.42 31.65 33.45
50 17.92 25.78 29.36 31.15 33.18 25.06 28.08 30.50 31.92 33.51
75 17.35 26.33 29.57 30.99 33.37 24.81 28.46 30.67 31.76 33.67
100 17.19 26.36 29.42 31.09 33.40 24.56 28.53 30.56 31.85 33.72
200 17.49 26.62 29.48 30.92 33.77 24.52 29.68 30.68 31.70 34.07

Size (�100)(H0 : � = 0:5) Power (�100)(H1 : � = 0:7)
T T

N 25 50 75 100 200 25 50 75 100 200b�CALS
10 8.70 6.60 5.75 5.85 7.75 31.95 42.25 52.80 62.95 85.80
25 9.30 6.80 7.25 4.85 5.10 32.60 45.90 61.65 70.25 92.35
50 10.00 6.90 6.55 6.40 5.40 36.80 49.80 63.65 76.40 95.20
75 9.80 7.40 5.90 6.00 5.80 36.05 50.90 65.85 77.20 95.35
100 10.45 7.80 6.80 5.75 4.95 36.35 53.10 65.50 75.30 96.05
200 9.75 7.60 6.15 6.10 6.10 36.65 51.30 64.75 77.05 96.05

Notes: � = 0:5, �u = 0:4 and �i = 0 for i 2 f1; ::; Ng. Estimator b�CALS is de�ned in (83). Regression for unit i = 1 is used to estimate

�, but the subscript ii is dropped for the simplicity of exposition. Variance of b�CALS is given by the element (2; 2) of the 4� 4 matrixb�11 bC�1
1 =T where b�11 and bC1 are de�ned in (85). Please refer to Section 4 for description of Monte Carlo design.
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Table 5: Small sample properties of estimator b�CALS in the case of high spatial cross section dependence of
errors, no common factors and diagonal matrix �.

Bias (�100) RMSE (�100)
T T

N 25 50 75 100 200 25 50 75 100 200b�CALS
10 -12.08 -5.97 -4.03 -3.14 -1.75 23.03 14.36 11.09 9.51 6.59
25 -12.38 -6.30 -4.14 -3.05 -1.47 23.18 14.59 11.19 9.62 6.26
50 -12.57 -6.25 -3.99 -3.26 -1.34 24.05 14.66 11.39 9.58 6.34
75 -12.16 -5.80 -4.32 -3.34 -1.46 23.17 13.98 11.48 9.45 6.24
100 -12.48 -6.05 -4.05 -2.78 -1.69 23.64 14.37 11.37 9.21 6.36
200 -11.90 -5.69 -4.52 -3.21 -1.51 23.14 14.17 11.49 9.50 6.39b�OLS (OLS regression without star variables)
1 -9.43 -5.30 -3.17 -2.55 -1.14 20.44 13.70 10.66 9.29 6.18
10 -9.94 -5.49 -3.10 -2.70 -1.08 21.29 13.44 10.60 9.28 6.24
25 -9.65 -5.20 -3.48 -2.46 -1.18 20.67 13.87 11.09 9.08 6.37
50 -9.86 -4.99 -3.21 -2.11 -1.04 21.31 13.58 10.63 9.02 6.43
75 -9.51 -4.77 -3.09 -2.41 -1.12 20.56 13.51 10.89 9.35 6.30
100 -9.92 -5.28 -3.19 -2.74 -1.22 20.78 13.85 10.98 9.43 6.45
200 -10.30 -5.24 -2.98 -2.53 -1.33 21.31 13.93 10.73 9.44 6.44

Size (�100)(H0 : � = 0:5) Power (�100)(H1 : � = 0:7)
T T

N 25 50 75 100 200 25 50 75 100 200b�CALS
10 8.20 6.90 5.15 5.50 5.80 31.75 48.25 63.05 74.95 95.25
25 8.50 6.70 6.10 6.25 4.85 32.15 48.80 63.00 72.50 95.40
50 10.30 7.25 6.05 5.95 4.90 32.65 48.75 62.00 75.35 94.65
75 8.20 5.30 7.00 5.00 5.35 32.05 47.35 63.25 75.05 96.00
100 8.50 6.20 5.90 5.10 4.65 32.20 46.65 62.15 73.40 96.55
200 8.85 6.20 6.80 5.85 5.35 31.50 47.05 64.10 73.85 95.80b�OLS (OLS regression without star variables)
1 5.15 5.90 4.30 5.70 4.35 25.80 44.65 58.95 72.20 95.60
10 6.20 5.00 5.15 5.40 4.90 26.90 46.55 58.80 72.85 94.95
25 5.10 5.40 6.05 5.05 5.30 26.90 45.15 60.20 72.10 95.30
50 6.60 5.20 5.60 5.50 5.05 27.30 44.95 59.05 70.75 94.45
75 4.95 4.85 5.65 5.05 5.30 24.80 44.10 59.30 70.75 95.55
100 5.20 5.85 5.55 5.90 5.15 26.45 44.15 58.65 73.00 94.50
200 5.85 5.85 5.40 5.50 5.75 27.55 45.40 58.90 71.20 95.25

Notes: � = 0:5, �u = 0:4, 
 = 0 and � = 0. Estimator b�CALS is de�ned in (83). Regression for unit i = 1 is used to estimate �,

but the subscript ii is dropped for the simplicity of exposition. Variance of b�CALS is given by the element (2; 2) of the 4 � 4 matrixb�11 bC�1
1 =T where b�11 and bC1 are de�ned in (85). Please refer to Section 4 for description of Monte Carlo design.
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5 An Empirical Application

In this section we consider an application of the IVAR methodology to one of the long standing questions

in the growth literature: does higher investment as a share of GDP causes (predicts) higher growth, or is

it higher growth that causes (predicts) a rise in investment-output ratio, or does the direction of causality

(predictability) run both ways?40

In what follows we re-examine this relationship using data on output and investment from the Penn World

Table Version 6.2 database. Speci�cally we measure output growth, denoted by x1it = �yit, as the �rst

di¤erence of the logarithm of Real GDP per capita, Constant Prices: Laspeyres, and the investment-output

ratio, denoted by x2it = invit � yit, computed as the logarithm of Investment Share of RGDPL. Out of 188

countries in this database, 98 have uninterrupted time series over the period 1961-2003, thus providing us

with a balanced panel composed of N = 98 countries and T = 43 time periods. It will be assumed that the

processes generating �yit and invit � yit are covariance stationary.41

Our theoretical framework allows us to (i) investigate the presence of dominant e¤ects by testing the joint

signi�cance of the star variables in the relationships between x1it and x2it, (ii) test whether, after controlling

for the dominant e¤ects, idiosyncratic innovations to �yit can help forecast future values of invit � yit, and
vice versa. Granger causality tests not augmented with cross section averages applied to �yit and invit�yit
are also conducted. We start by testing for the presence of dominant e¤ects.

5.1 Presence of Dominant E¤ects

It is initially assumed that f�yitgNi=1 are endogenously determined in a VAR model as de�ned by (55) with
up to one unobserved common factor where xt = (�y1t;�y2t; :::;�yNt)0. Under the assumptions of Theorem

1 the following cross section augmented regressions can be estimated consistently by least squares for each

country i ;

�yit = ai +

piX
`=1

bi`�yi;t�` +

qiX
`=0

ci`�y
�
i;t�` + uit, for i = 1; 2; :::; N; (132)

where �y�it is a cross section average of output growth. Presence of dominant e¤ects is tested by conducting

Wald tests of the joint signi�cance of the coe¢ cients for the star variables in (132), namely

HG
0 : ci` = 0 for ` 2 f0; :::; qig . (133)

Assuming (55) is the DGP and N is su¢ ciently large, the null hypothesis (133) holds only for countries

with zero factor loadings.42 The same exercise is carried out for the investment-output ratio based on the

regressions

invit � yit = di +

piX
`=1

ei` (invi;t�` � yi;t�`) +
qiX
`=0

fi`
�
inv�i;t�` � y�i;t�`

�
+ vit (134)

40A survey of the recent literature on the relationship between growth and investment is provided in Bond et al. (2004,
Section 2).
41This assumption is supported by the CIPS panel unit root test recently proposed in Pesaran (2007) that allows for cross

section dependence. Using the CIPS test with one lag and individual-speci�c intercepts the null hypothesis of a unit root in
output growth and log investment output ratios were rejected at 1% and 5% nominal levels, respectively.
42This directly follows from Theorem 1.
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The joint null hypothesis of interest in this case is given by

HIY
0 : fi` = 0 for ` 2 f0; :::; qig . (135)

Results for lag orders equal to one are reported. We also tried higher order lags but found the additional

lags to be generally unimportant.43 Two options are considered for the star variables: i) country speci�c

simple cross section averages constructed as the arithmetic average of foreign variables, for example

y�s;it = (N � 1)�1
NX

j=1;j 6=i
yjt;

and ii) country speci�c trade weighted cross section averages constructed for example as

y�w;it =
NX
j=1

wijyjt; with wii = 0;

where wij is the share of country jth trade in country i, estimated as the 1991-93 average based on foreign

trade �ows taken from IMF DOTS database.

The test results are summarized in Table 6, and give the fraction of countries for which the null hypothesis

is rejected at the 5 and 10 percent nominal levels. Figure 3 plots the fraction of rejections as a function of

the nominal size of the tests. Fractions of rejections are not very high, but well above the nominal levels

of the underlying tests. For example, in the case of regressions augmented by simple cross section averages

and using 10% nominal level, the fraction of rejections is 32.7% when testing HG
0 and 30.6% when testing

HIY
0 . Higher fractions of rejections are noted for regressions augmented with trade weighted cross section

averages. In particular, 40.8% of the tests reject HG
0 and 44.9% of the tests reject HIY

0 , using again the 10%

nominal level in both cases. Trade weighted cross section averages seem to be more appropriate in small

samples and will be used what follows.

Table 6: Fraction of the tests for which the null of no dominant e¤ects was rejected (in %).

Choice of Cross Section Averages

Simple (y�s;it) Trade Weighted (y�w;it)

Nominal level of tests: 5% 10% 5% 10%

Null hypothesis HG
0 20.4 32.7 33.7 40.8

Null hypothesis HIY
0 22.4 30.6 35.7 44.9

Notes: The underlying regressions are given by (132) and (134). Lag orders (pi,qi) are set equal to one.

43Sensitivity of the test results to the di¤erent choices of lag orders is investigated in a Supplement available from the authors
on request.
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Figure 3: Fractions of countries for which the joint signi�cance of star variables (the null hypotheses HG
0 and

HIY
0 ) was rejected.

5.2 Granger Non-causality Tests

5.2.1 Without cross section augmentation

Initially we construct �Granger non-causality�tests without cross section augmentation using the following

bivariate country-speci�c VAR models in xit � (�yit; invit � yit)0 ;

xit = di +

piX
`=1

�`iixi;t�` + "it. (136)

Hypotheses of interest are:

1. invit � yit does not �Granger cause��yit (denoted by invit � yit 9 �yit),

Ha
0 : �

(`;ii)
12 = 0 for ` � pi, (137)

2. �yit does not �Granger cause�invit � yit (denoted by �yit 9 invit � yit),

Hb
0 : �

(`;ii)
21 = 0 for ` � pi, (138)
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where �(`ii)kj denotes the generic element (k; j) of the matrix �`ii. The lag order pi = 1 turned out to be

su¢ cient again.44 Country models (136) do not explicitly control for possible dominant e¤ects.

5.2.2 With cross section augmentation

Suppose now that all the 196 variables in xt = (x01t;x
0
2t; :::;x

0
Nt)

0 are endogenously determined within a

196� 196 VAR(1) model (55) with up to two unobserved common factors. In this case the country-speci�c
VAR models must be augmented with cross averages, namely we need to consider

xit = di +

piX
`=1

�`iixi;t�1 +

qiX
`=0

B`ix
�
i;t�` + "it (139)

The hypotheses of interest in this case are given by

1. lagged values of invit � yit are not signi�cant in equations for �yit,

Hc
0 : �

(`ii)
12 = 0 for ` � pi in the regression (139). (140)

2. lagged values of �yit are not signi�cant in equation for invit � yit,

Hd
0 : �

(`ii)
21 = 0 for ` � pi in the regression (139). (141)

5.2.3 Results of Granger non-causality tests

The results of Granger non-causality tests with and without cross section augmentations are summarized in

Table 7 and Figure 4. Without CS augmentation the null hypothesis that invit�yit does not �Granger cause�
�yit is rejected in the case of 23.5% of countries at the 10% nominal level, while the hypothesis that �yit
does not Granger cause invit � yit is rejected in the case of 36.7% of the 98 countries in the sample. With

CS augmentation the rejection rates (again at the 10% nominal level) are 26.5% and 25.5%, respectively. In

the case of invit�yit 9 �yit the test results do not seem to be much a¤ected by cross section augmentation.

But for the reverse hypothesis �yit 9 invit�yit, the results seem to suggest that one would have somewhat

exaggerated the importance of country-speci�c output growth for investment by ignoring the possible e¤ects

of common factors.

Table 7: Granger non-causality tests with and without cross section augmentation.

Fraction of tests for which the null hypothesis is rejected (in %)

Without CS augmentation With CS augmentation

Nominal level of tests: 5% 10% 5% 10%

Hypothesis Hypothesis

Ha
0 (invit � yit 9 �yit) 16.3 23.5 Hc

0 15.3 26.5

Hb
0 (�yit 9 invit � yit) 25.5 36.7 Hd

0 18.4 25.5

Notes: Lag orders equal to one. Hypotheses Ha
0 ; H

b
0 ; H

c
0 and H

d
0 are de�ned in (137), (138), (140) and (141), respectively. Granger

causality tests without cross section augmentation use bivariate VAR models (136). Granger causality tests with cross section augmen-

tation use bivariate VAR models (139).

44Sensitivity of the test results to the di¤erent choices of lag orders is investigated in a Supplement available from the authors
on request.
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Figure 4: Granger non-causality tests with and without cross section augmentation.

5.3 Summary of Findings

Overall, our empirical analysis suggests that there are considerable heterogeneities across countries. There

are statistically signi�cant dominant e¤ects in the relationships for output growth and investment-output

ratios. Country-speci�c cross sectional averages play an important role in about half of the 98 economies

under consideration. �Granger causality� tests without cross section augmentation applied to �yit and

invit � yit con�rm that for a non-negligible fraction, but not the majority of, countries �Granger causality�

goes both ways. Controlling for the possible dominant e¤ects, IY ratio still helps to predict future growth

in non-negligible fraction (but not the majority) of counties.

6 Concluding Remarks

This paper proposes restrictions on the coe¢ cients of in�nite-dimensional VAR (IVAR) that bind only in the

limit as the number of cross section units (or variables in the VAR) tends to in�nity to circumvent the curse

of dimensionality. The proposed framework relates to the various approaches considered in the literature.

For example when modelling individual households or �rms, aggregate variables, such as market returns,

regional or national income, are treated as exogenous. This is intuitive as the impact of a �rm or household

on the aggregate economy is small, of order O
�
N�1�. The paper formalizes this idea in a spatio-dynamic

context. It is established that under certain conditions on the order of magnitudes of the coe¢ cients in a

large dynamic system, and in the absence of common factors, individual units de-couple from the other units
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in the system as N ! 1 and can be estimated separately. In the presence of dominant economic agent or

unobserved common factors, individual-speci�c VAR models can still be estimated separately conditioning

on observed and unobserved common factors. Unobserved common factors can be approximated by cross

sectional averages, following the idea originally introduced in Pesaran (2006).

The paper shows that the GVAR approach can be motivated as an approximation to an IVAR featuring all

macroeconomic variables. This is true for stationary models as well as for systems with variables integrated

of order one. Asymptotic distribution of the cross sectionally augmented least squares (CALS) estimator of

the parameters of the unit-speci�c models are established both in the case where the number of unobserved

common factors is known and when it is unknown but �xed. Small sample properties of the proposed CALS

estimator are investigated by Monte Carlo simulations. The proposed estimation and inference techniques

are applied to modelling real GDP growth and investment-output ratios.

Topics for future research could include estimation and inference in the case of IVAR models with dom-

inant individual units, analysis of large dynamic networks with and without dominant nodes, and a closer

examination of the relationships between IVAR and dynamic factor models.
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Appendix

A Lemmas

Lemma 1 Let Assumptions 8�9, 11, and B1 hold. Then for any p; q 2 f0; 1g and for any Nk�1 dimensional
vectors � and ', such that k�k = O (1) and k'kc = O (1), we have

1

T

TX
t=1

�0�t�p
p! 0, (142)

and
1

T

TX
t=1

�0�t�p'
0�t�q

p! E
�
�0�t�p'

0�t�q
�
, (143)

where �t is de�ned in (106). Furthermore, if also k�k = O
�
N� 1

2

�
then

p
N

T

TX
t=1

�0�t
p! 0, (144)

and p
N

T

TX
t=1

�0�t�p'
0�t�q

p! E
�p

N�0�t�p'
0�t�q

�
. (145)

Proof. Let TN = T (N) be any increasing integer-valued function of N satisfying Assumption B1. Consider

the following two-dimensional array
�
f�Nt;Ftg1t=�1

	1
N=1

, de�ned by

�Nt =
1

TN
�0�t�p,

where subscript N is used to denote the number of cross section units,45 and fFtg denotes an increasing
sequence of �-�elds (Ft�1 � Ft) such that Ft includes all information available at time t and �Nt is mea-
surable with respect to Ft for any N 2 N. Let

�
fcNtg1t=�1

	1
N=1

be two-dimensional array of constants and

set cNt = 1
TN

for all t 2 Z and N 2 N. Note that

E

(�
E

�
�Nt
cNt

j Ft�n
��2)

=
1X

`=mnp

�0�`�p��0`�p�,

� �n, (146)

where mnp = max fn; pg and46

�n = k�k
2 k�k k�k2(mnp�p)

1X
`=0

k�k2` .

45Note that vectors �t and � change with N as well, but subscript N is omitted here to keep the notation simple.
46We use submultiplicative property of matrix norms (kABk � kAk kBk for any matrices A, B such that AB is well de�ned)

and the fact that the spectral matrix norm is self-adjoint (i.e. kA0k = kAk). Note also that by Assumption 9 (and Remark
13), k�k2 < � < 1. This implies

P1
`=0



�`

2 = O (1) :
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Using Assumptions 9, and 11, �n has following properties
47

�0 = O (1) , �n ! 0 as n!1. (147)

By Liapunov�s inequality, E jE (�Nt j Ft�n)j �
r
E
n
[E (�Nt j Ft�n)]2

o
(Davidson, 1994, Theorem 9.23). It

follows that two-dimensional array
�
f�Nt;Ftg1t=�1

	1
N=1

is L1-mixingale with respect to the constant array

fcNtg. Equations (146) and (147) establish array f�Nt=cNtg is uniformly bounded in L2 norm. This implies
uniform integrability.48 Note that

lim
N!1

TNX
t=1

cNt = lim
N!1

TNX
t=1

1

TN
= 1 <1, (148)

lim
N!1

TNX
t=1

c2Nt = lim
N!1

TNX
t=1

1

T 2N
= 0. (149)

Therefore array
�
f�Nt;Ftg1t=�1

	1
N=1

satis�es conditions of a mixingale weak law,49 which implies
PTN

t=1 �Nt
L1!

0, i.e.:

1

T

TX
t=1

�0�t�p
L1! 0,

under Assumption B1. Convergence in L1 norm implies convergence in probability. This completes the proof

of the result (142). Under the condition k�k = O
�
N� 1

2

�
, result (144) follows from result (142) by noting

that



pN�


 = O (1).

Result (143) is proved in a similar fashion. Consider the following two-dimensional array
�
f�Nt;Ftg1t=�1

	1
N=1

,

de�ned by50

�Nt =
1

TN
�0�t�p'

0�t�q �
1

TN
E
�
�0�t�p'

0�t�q
�
,

where as before TN = T (N) is any increasing integer-valued function of N satisfying Assumption B1. Set

cNt =
1
TN

for all t 2 Z and N 2 N. Note that

E

�
�Nt
cNt

j Ft�n
�

= E

0@ 1X
s=p

�0�s�put�s

1X
`=q

'0�`�qut�` j Ft�n

1A� E ��0�t�p'0�t�q� ,
=

1X
s=mnp

1X
`=mnq

�
�0�s�put�s'

0�`�qut�` � E
�
�0�s�put�s'

0�`�qut�`
��
.

Let �0s = �
0�s and '0` = '

0�`.

47k�k = O (1) since k�k �
p
k�kr k�kc, k�kc = k�kr (because � is symmetric) and k�kr = O (1) by Assumption 11.

Furthermore, k�k2 < � < 1 by Assumption 9 (and Remark 13).
48Su¢ cient condition for uniform integrability is L1+" uniform boundedness for any " > 0.
49Davidson (1994, Theorem 19.11).
50As before, fFtg is an increasing sequence of �-�elds (Ft�1 � Ft) such that Ft includes all information available at time t

and �Nt is measurable with respect of Ft for any N 2 N.
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E

(�
E

�
�Nt
cNt

j Ft�n
��2)

=
1X

s=mpn

1X
`=mqn

1X
j=mpn

1X
d=mqn

E
�
�0s�put�s'

0
`�qut�`�

0
j�put�j'

0
d�qut�d

�
�

�

0@ 1X
s=mpn

1X
`=mqn

E
�
�0s�put�s'

0
`�qut�`

�1A2

. (150)

Using independence of ut and ut0 for any t 6= t0 (Assumption 11), we have

1X
s=mpn

1X
`=mqn

E
�
�0s�put�s'

0
`�qut�`

�
=

1X
`=maxfp;q;ng

�0�`�p��0`�q'

� �a;n,

where

�a;n = k�k k'k k�k k�k
�1(p;n;q)

1X
`=0

k�k2` ,

and �1 (p; n; q) = max f0; q � p; n� pg+max f0; p� q; n� qg. k�k = O (1) by Assumption 11,
P1

`=0 k�k
2`
=

O (1) by Assumption 9 (and Remark 13), k�k = O (1), k'k � k'kc = O (1), and �a;n has following properties

�a;0 = O (1) , �a;n ! 0 as n!1. (151)

Similarly, using the independence of ut and ut0 for any t 6= t0 (Assumption 11),51 the �rst term on the right

side of equation (150) is bounded by the following upper bound �b;n:

�b;n = sup
i;r2S

k	irk � k�k2
X

`=maxfp;q;ng

k�k2(`�p)
�
'0�`�q�

�2
+ 2�2a;n +

+ k�k2 k�k2 k'k2 k�k2�2(p;n;q)
 1X
`=0

k�k2`
!2
,

where �2 (p; n; q) = max f0; n� pg+max fn� q; 0g. Note that�
'0�`�

�2 � 

'0�`�

2
r
� k'k2c



�`�

2
r
= O (1) , for any ` 2 N, (152)

where k'k2c = O (1), and


�`�

2

r
< K is established in Lemma 2 (constant K is independent of N and `).

It follows from equation (152) and Assumptions 9 and 11 that �b;n has following properties

�b;0 = O (1) , �b;n ! 0 as n!1. (153)

E

�h
E
�
�Nt

cNt
j Ft�n

�i2�
is therefore bounded by �n = �a;n + �b;n. Equations (151) and (153) establish

�0 = O (1) , �n ! 0 as n!1. (154)

By Liapunov�s inequality, E jE (�Nt j Ft�n)j �
r
E
n
[E (�Nt j Ft�n)]2

o
(Davidson, 1994, Theorem 9.23). It

51E
�
�0s�put�s#

0
`�qut�`�

0
j�put�j#

0
d�qut�d

�
is nonzero only if one of the following four cases: i) s = ` = j = d, ii) s = `,

` 6= j, and j = d, iii) s = j, j 6= `, and ` = d, or iv) s = d, d 6= `, and ` = j.
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follows that two-dimensional array
�
f�Nt;Ftg1t=�1

	1
N=1

, is L1-mixingale with respect to a constant array

fcNtg. Furthermore, (154) establishes array f�Nt=cNtg is uniformly bounded in L2 norm. This implies
uniform integrability.52 Since also equations (148) and (149) hold, array

�
f�Nt;Ftg1t=�1

	1
N=1

satis�es

conditions of a mixingale weak law,53 which implies
PTN

t=1 �Nt
L1! 0, i.e.:

1

T

TX
t=1

�0�t�p'
0�t�q

L1! E
�
�0�t�p'

0�t�q
�
,

under Assumption B1. Convergence in L1 norm implies convergence in probability. This completes the proof

of result (143). Under the condition k�k = O
�
N� 1

2

�
, result (145) follows from result (143) by noting that


pN�


 = O (1).

Lemma 2 Let matrix � satisfy Assumptions 8 and 9. Then there exist a constant K < 1 independent of

N 2 N and ` 2 N0 such that 

�`�


r
< K, (155)

where � is Nk � 1 dimensional vector of ones.

Proof. Let Si = (0k�k; ::;0k�k; Ik;0k�k; ::;0k�k)
0 be kN � k dimensional selection matrix for cross section

unit i. Following equality holds

S0i�
` = �`iiS

0
i +�

0
�i
X̀
s=1

�s�1ii �`�s.

Denote D` =
P`

s=1�
s�1
ii �`�s. Assumption 9 (and Remark 13) implies

kD`k �
X̀
s=1



�s�1ii





�`�s

 � X̀
s=1

`�`�1, (156)

and kD`k is uniformly bounded (in N 2 N and ` 2 N0) by a constant �= (1� �)2.

Si�`�

r �


�`iiS0i�

r + 

�0�iD`�




r
,

�


�`iiS0i�

pk + 

�0�iD`�



pk.


�`iiS0i�

 � k�iik`pk = O (1) is uniformly bounded in N 2 N, ` 2 N0 and i � N by Assumption 9 (and

Remark 13).


�0�iD`�



 � 

�0�i

 kD`k k�k = O (1) is uniformly bounded (in N 2 N, ` 2 N0, and i � N)

by equation (156), and Assumption 8. It follows that there exist a constant K independent of N 2 N and
` 2 N0 such that 

�`�



r
� sup

`2N



�`�


r
� sup

`2N
sup

i�N; N2N



Si�`�

 < K.

Lemma 3 Consider model (55), let Assumptions 8, 9, 10�13 and B1 hold, and assume factor loadings are
governed either by Assumption 14 or 15. Then for any p; q 2 f0; 1g and for any kN � 1 dimensional vectors
52Su¢ cient condition for uniform integrability is L1+" uniform boundedness for any " > 0.
53Davidson (1994, Theorem 19.11).
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� and ', such that k�kc = O (1) and k'kc = O (1), we have

1

T

TX
t=1

�0xt�p
p! E

�
�0xt�p j �

�
, (157)

and
1

T

TX
t=1

�0xt�p'
0xt�q

p! E
�
�0xt�p'

0xt�q j �
�
. (158)

Furthermore, for k�k = O (1) and k'kc = O (1) we have

1

T

TX
t=1

�0�t�p'
0�f t�q

p! 0, (159)

where �t is de�ned in (106).

Proof. Let TN = T (N) be any increasing integer-valued function of N such that Assumption B1 holds.

Consider the following two-dimensional array
�
f�Nt;Ftg1t=�1

	1
N=1

, de�ned by

�Nt =
1

TN
�0�t�p'

0�f t�q,

where fFtg denotes an increasing sequence of �-�elds (Ft�1 � Ft) such that Ft includes all information
available at time t and �Nt is measurable with respect to Ft for any N 2 N. Let

�
fcNtg1t=�1

	1
N=1

be

two-dimensional array of constants and set cNt = 1
TN

for all t 2 Z and N 2 N. Using submultiplicative
property of matrix norm, and independence of ft and �t0 for any t; t0 2 Z, we have

E

(�
E

�
�Nt
cNt

j Ft�n
��2)

� �n,

where

�n = k�k
2 k�k k�k2maxf0;n�pg

1X
`=0

k�k2`E
n
[E ('0�f t�q j Ft�n)]2

o
.

k�k2 = O (1), k�k < � by Assumption 9 (and Remark 13), k�k �
p
k�kc k�kr = O (1) by Assumption 11,

and

E
n
[E ('0�f t�q j Ft�n)]2

o
= O (1) ,

since ft�q is covariance stationary, ft is independently distributed of factor loadings �, and


E �'0��0'�

 =

O (1) by Assumption 14 (or 15). It follows that �n has following properties

�0 = O (1) and �n ! 0 as n!1.

Array f�Nt=cNtg is thus uniformly bounded in L2 norm. This proves uniform integrability of array f�Nt=cNtg.
Furthermore, using Liapunov�s inequality, two-dimensional array

�
f�Nt;FNtg1t=�1

	1
N=1

is L1-mixingale

with respect to constant array fcNtg. Noting that equations (148) and (149) hold, it follows that the array
f�Nt;Ftg satis�es conditions of a mixingale weak law,54 which implies

PTN
t=1 �Nt

L1! 0. Convergence in L1
norm implies convergence in probability. This completes the proof of result (159).

Assumption 13 implies that sequence �0� (as well as '0�) is deterministic and bounded. Vector of

54Davidson (1994, Theorem 19.11)
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endogenous variables xt can be written as

xt = �+ �f t + �t.

Process ft is independent of �t. Consider now Assumption B1 where N;T
j! 1, at any rate. Processes�

�0�t�p
	
and

�
�0�t�p'

0�t�q
	
are ergodic in mean by Lemma 1 since k�k � k�kc = O (1). Furthermore,

1

T

TX
t=1

�0�f t
p! �0�E (ft) ,

and
1

T

TX
t=1

�0�f t'
0�f t�q

p! �0�E
�
ftf

0
t�q
�
�0',

since ft is covariance stationary m � 1 dimensional process with absolute summable autocovariances (ft is
ergodic in mean as well as in variance), and



E ��0��0'�

 = O (1) ,


E h��0��0'�2i


 = O (1) ,

by Assumption 14 (or 15). Sum of bounded deterministic process and independent processes ergodic in mean

is a process that is ergodic in mean as well. This completes the proof.

Lemma 4 Consider model (55). Suppose Assumptions 8-13 hold and factor loadings are governed either by
Assumption 14 or 15. Then for any p; q 2 f0; 1g, for any Nk�mw dimensional arbitrary matrix of weights

W satisfying conditions (62)-(63), and for any r 2 f1; ::;mwg,

1p
T

TX
t=1

�w0
r (xt�p ��� �f t�p)

p! 0 under Assumption B2, (160)

1p
T

TX
t=1

�w0
r (xt�p ��� �f t�p)x�t�q

p! 0 under Assumption B2, (161)

1p
T

TX
t=1

�w0
r (xt�p ��� �f t�p)xi;t�q

p! 0 under Assumption B2, (162)

1

T

TX
t=1

gith
0
it

p! 0 under Assumption B1, (163)

where �wr is the rth column vector of matrix W, and vectors git and hit are de�ned in (82) and (81),

respectively.

Proof.
1p
T

TX
t=1

�w0
r (xt�p ��� �f t�p) =

p
Tp
N

p
N

T

TX
t=1

�w0
r�t�p

where �t is de�ned in equation (106). Under Assumption B2,

p
Tp
N
! { <1. (164)
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Noting that



pN�wr


 = O (1) by granularity condition (62),

p
N

T

TX
t=1

�w0
r�t�p

p! 0, (165)

follows directly from Lemma 1, result (144). This completes the proof of result (160).

Let ' be any Nk � 1 dimensional vector such that k'kc = O (1). We have

1p
T

TX
t=1

�w0
r (xt�p ��� �f t�p)'0xt�q =

p
Tp
N

p
N

T

TX
t=1

�w0
r�t�p'

0 (�+ �f t�q + �t�q) . (166)

Since



pN�wr


 = O (1) for any r 2 f1; ::;mwg by condition (62), we can use Lemma 1, result (145), which

implies p
N

T

TX
t=1

�w0
r�t�p'

0�t�q
p! E (�w0

r�t�p'
0�t�q) = 0, (167)

under Assumption B1. Sequence f'0�g is deterministic and bounded in N , and therefore it follows from
Lemma 1, result (144), that p

N

T

TX
t=1

�w0
r�t�p'

0�
p! 0, (168)

under Assumption B1. Similarly, p
N

T

TX
t=1

�w0
r�t�p'

0�f t�q
p! 0, (169)

under Assumption B1, by Lemma 3, result (159).

Results (167), (168) and (169) establish

1p
T

TX
t=1

�w0
r (xt�p ��� �f t�p)'0xt�q

p! 0. (170)

Result (161) follows from equation (170) by setting '= �wl for any l 2 f1; ::;mwg. Result (162) follows
from equation (170) by setting '= sl where sl is Nk � 1 dimensional selection vector for the lth element,
l = (i� 1) k + r, and r 2 f1; ::; kg.
Finally, the result (163) directly follows from results (160)-(162). This completes the proof.

Lemma 5 Consider model (55). Suppose Assumptions 8-13, B1 hold and factor loadings are governed either
by Assumption 14 or 15. Then for any arbitrary matrix of weights W satisfying conditions (62)-(63),

1

T

TX
t=1

gitg
0
it

p! Ci, (171)

where vector git is de�ned in (82), and matrix Ci is de�ned in Assumption 16.

Proof. It follows from Lemma 3 that

1

T

TX
t=1

gitg
0
it

p! E (gitg
0
it j �) ,
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under Assumption B1. Recall that g0it =
�
1;x0i;t�1;x

�0
t ;x

�0
t�1
�
. Note that for q 2 f0; 1g :

E (1) = 1,

E (xi;t�1 j �) = �i,

E
�
x�t�q j �

�
= ��,

E
�
xi;t�1x

0
i;t�1 j �

�
= �i�

0
i + S

0
i

1X
`=0

�`��0`Si + �i�f (0)�
0
i,

! �i�
0
i + ��i (0) + �i�f (0)�

0
i under Assumption B1,

E
�
xi;t�1x

�0
i;t�q j �

�
= �i�

�0 + S0i

1X
`=0

�`��0`+maxf0;1�qgW + �i�f (q � 1)��0,

! �i�
�0 + �i�f (q � 1)��0 under Assumption B1,

E
�
x�itx

�0
i;t�q j �

�
= ����0 +W

1X
`=0

�`+maxf0;qg��0`W + ���f (q)�
�0,

! ����0 + ���f (q)�
�0 under Assumption B1,

where Si = (0k�k; ::;0k�k; Ik;0k�k; ::;0k�k)
0 is kN � k dimensional selection matrix for group i. (Ik starts

in the row (i� 1) k + 1). Therefore E (gitg0it j �) = Ci. This completes the proof.

Lemma 6 Consider model (55). Suppose Assumptions 8-13 hold and factor loadings are governed either by
Assumption 14 or 15. Then for any arbitrary matrix of weights W satisfying conditions (62)-(63), and for

any �xed p � 0,

1p
T

TX
t=1

�
x�t�p ��� � ��ft�p

�
uirt

p! 0 under Assumption B2, (172)

1

T

TX
t=1

�
x�t�p ��� � ��ft�p

�
uirt

p! 0 under Assumption B1, (173)

1p
T

TX
t=1

�
xi;t�1 ��i � �i;t�1 � �ift�1

�
uirt

p! 0 under Assumption B2, (174)

1

T

TX
t=1

�
xi;t�1 ��i � �i;t�1 � �ift�1

�
uirt

p! 0 under Assumption B1, (175)

where �it is de�ned in equation (70).

Proof. Let TN = T (N) be any increasing integer-valued function of N such that Assumption B2 holds. Let

l = (i� 1) k + r and de�ne

�Nlt =
1p
TN

��
x�t�p ��� � ��ft�p

�
ult � E

��
x�t�p ��� � ��ft�p

�
ult
�	
, (176)

where we use subscript N to denote the number of groups.55 Let fFtg denote an increasing sequence of
�-�elds (Ft�1 � Ft) with �Nlt measurable with respect of Ft for any N � i; i 2 N. First it is established
that for any �xed l 2 N, vector array

�
f�Nlt=cNt;Ftg1t=�1

	1
N=i

is uniformly integrable, where cNt = 1p
NTN

.

55Note that x�t ; �
� and �� change with N , but as before we ommit subscript N here to keep the notation simple.
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System (55) implies

x�t�p ��� � ��ft�p =
1X
`=0

W0�`ut�`�p.

For p > 0, we can write





E ��Nlt�0Nltc2Nt

�



 = N �





E
" 1X

`=0

W0�`ut�`�pult

! 1X
`=0

W0�`ut�`�pult

!0#




 ,
= N






�ll
1X
`=0

W0�`��0`W






 ,
� N�ll kWk2 k�k

1X
`=0



�`

2 ,
= O (1) ,

where kWk2 = O
�
N�1� by condition (62), k�k = O (1) by Assumption 11 (and footnote 30), andP1

`=0



�`

2 = O (1) by Assumption 9 (and Remark 13). For p = 0, we have





E ��Nlt�0Nltc2Nt

�



 =






N � V ar
 
W0utult +

1X
`=1

W0�`ut�`ult

!




 ,
� N

 
kWk2 k	llk+ �ll kWk2 k�k

1X
`=1



�`

2 +O �N�1�! ,
= O (1) .

Therefore for p � 0, f�Nlt=cNtg is uniformly bounded in L2 norm. This proves uniform integrability of array
f�Nlt=cNtg.

E jE (�Nlt j Ft�n)j =
(

0 for any n > 0 and any �xed p � 0
�mwcNtO (1) for n = 0 and any �xed p � 0

, (177)

and
�
f�Nlt;FNtg1t=�1

	1
N=i

is L1-mixingale with respect to constant array fcNtg.56 Note that

lim
N!1

TNX
t=1

cNt = lim
N!1

TNX
t=1

1p
NTN

= lim
N!1

r
TN
N

=
p
{ <1,

lim
N!1

TNX
t=1

c2Nt = lim
N!1

TNX
t=1

1

TNN
= lim

N!1

1

N
= 0.

Therefore for each �xed l 2 N, each of themw two dimensional arrays given by the vector array
�
f�Nlt;Ftg1t=�1

	1
N=i

satis�es conditions of a mixingale weak law57 , which implies

1p
TN

TNX
t=1

�
x�t�p ��� � ��ft

�
ult

L1!
p
TNE

��
x�t�p ��� � ��ft�p

�
ult
�
.

56The last equality in equation (177) takes advatage of Liapunov�s inequality. �mw is mw � 1 dimensional vector of ones.
57See Davidson (1994, Theorem 19.11).
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But 


pTNE ��x�t�p ��� � ��ft�p�ult�



c
=
p
TN kE (W0utult)kc = O

�p
TN
N

�
,

and
p
TN=N ! 0 under Assumption B2. Convergence in L1 norm implies convergence in probability. This

completes the proof of result (172).

Result (173) is proved in a very similar fashion. De�ne new vector array qNlt = 1p
TN
�Nlt where �Nlt

is array de�ned in (176). Let TN = T (N) be any increasing integer-valued function of N such that As-

sumption B1 holds. Notice that for any �xed l 2 N, array
n�p

TNqNlt=cNt;Ft
	1
t=�1

o1
N=i

is uniformly

integrable because
�
f�Nlt=cNt;Ftg1t=�1

	1
N=i

is uniformly integrable. Furthermore,
�
fqNlt;Ftg1t=�1

	1
N=i

is L1-mixingale with respect to the constant array
n

1p
TN
cNt

o
since

�
f�Nlt;Ftg1t=�1

	1
N=i

is L1 mixingale

with respect to the constant array fcNtg. Note that

lim
N!1

TNX
t=1

1p
TN

cNt = lim
N!1

TNX
t=1

1

TN
p
N
= lim

N!1

1p
N
= 0,

lim
N!1

TNX
t=1

�
1p
TN

cNt

�2
= lim

N!1

TNX
t=1

�
1

TN
p
N

�2
= lim

N!1

1

TNN
= 0.

Therefore for each �xed l 2 N, we apply a mixingale weak law58 , which implies

TNX
t=1

qNlt
L1! 0 as N !1,

under Assumption B1. Since

E
��
x�t�p ��� � ��ft�p

�
ult
�
= O

�
N�1� ,

it follows
1

T

TX
t=1

�
x�t�p ��� � ��ft�p

�
ult

L1! 0,

under Assumption B1. Convergence in L1 norm implies convergence in probability. Recall that any increasing

integer-valued function of N such that limN!1 TN = 1 was assumed. This completes the proof of result

(173).

Roots of jIk ��iiLj = 0 lies outside the unit circle under Assumption 9 (and Remark 13). System (55)

implies59

xit ��i � �ift = �ii (xi;t�1 ��i � �ift�1) +��i (xt�1 ��� �f t�1) + uit,

(Ik ��iiL) (xit ��i � �ift)� uit = ��i (xt�1 ��� 
ft�1) ,

(Ik ��iiL)
 
xit ��i � �ift �

1X
`=0

�`iiui;t�`

!
= ��i

1X
s=0

�sut�`,

xit ��i � �ift � �it =
1X
`=0

�`ii��i

1X
s=0

�sut�`,

where �it =
P1

`=0�
`
iiui;t�`. Let l = (i� 1) k + r and let TN = T (N) be now any increasing integer-valued

58See Davidson (1994, Theorem 19.11).
59Note that for any N 2 N, polynomial (IN ��L) is invertible since � (�) < 1 by Assumption 9 and Remark 13.
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function of N , such that Assumption B2 holds. De�ne

�Nlt =
1p
TN

 1X
`=0

�`ii��i

1X
s=0

�sut�`�1

!
ult. (178)

First it is established that for any �xed l 2 N, array
�
f�Nlt=cNt;Ftg1t=�1

	1
N=i

is uniformly integrable,

where cNt = 1p
NTN

.





E ��Nlt�0Nltc2Nt

�



 =






N�ll
1X
`=0

�`ii�
0
�i

 1X
s=0

�s��0s

!
��i�

0`
ii






 ,
� N�ll k��ik2 k�k

1X
`=0



�`ii

2 � 1X
s=0

k�sk2 ,

= O (1) . (179)

Hence f�Nlt=cNtg is uniformly bounded in L2 norm. This proves uniform integrability of array f�Nlt=cNtg.

E jE (�Nlt j Ft�n)j = 0 for any n > 0,

and
�
f�Nlt;FNtg1t=�1

	1
N=i

is L1-mixingale with respect to constant array fcNtg.60 Note that

lim
N!1

TNX
t=1

cNt = lim
N!1

TNX
t=1

1p
NTN

= lim
N!1

r
TN
N

=
p
{ <1,

lim
N!1

TNX
t=1

c2Nt = lim
N!1

TNX
t=1

1

TNN
= lim

N!1

1

N
= 0.

Therefore for any �xed ` 2 N, each of the ki two dimensional arrays given in the vector array
�
f�Nlt;Ftg1t=�1

	1
N=i

satis�es conditions of a mixingale weak law61 , which implies

TNX
t=1

�Nlt
L1! 0.

Convergence in L1 norm implies convergence in probability. This completes the proof of result (174).

Proof of result (175) is identical to the proof of result (173), but this time we de�ne array qNlt = 1p
TN
�Nlt

where �Nlt is array de�ned in (178).

Lemma 7 Consider model (55). Suppose Assumptions 8-13, 16 hold, factor loadings are governed either
by Assumption 14 or 15, and l = (i� 1) k + ` where i � N , ` 2 f1; ::; kg. Then for any arbitrary matrix of
weights W satisfying conditions (62)-(63),

1p
T

TX
t=1

aitult
D! N (0; �llCi) as T !1, (180)

60Using Liapunov�s inequality, it follows from equation (179) that

E
���E �s0jk�Nlt j Ft���� � cNtO (1)

for any k � 1 dimensional selection vector sjk.
61See Davidson (1994, Theorem 19.11).
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where ait is de�ned in equation (92) and the matrix Ci is de�ned in Assumption 16.

Proof. Lemma 7 is well known time series result. De�ne

zlt = aitult =

0BBBB@
1

�i + �i;t�1 + �ift�1

�� + ��ft

�� + ��ft�1

1CCCCAult,

where additional subscript i is omitted for the vector zlt since i is determined uniquely by subscript l

(l = (i� 1) k + ` where i 2 f1; ::; Ng, ` 2 f1; ::; kg). Denote elements of the k � 1 dimensional vector zlt as
zjlt, j 2 f1; ::; kg. We have:

1.

E (zltz
0
lt) = �llCi,

where matrix Ci is de�ned in Assumption 16.

2. Roots of jIk ��iiLj = 0 lies outside the unit circle for any i 2 f1; ::; Ng. ft is stationary process with
absolute summable autocovariances, and fourth moments of uit and "it are �nite. Therefore

E (zhltzjltzsltznlt) <1 for h; j; s; n 2 f1; ::; kg .

3. (1=T )
PT

t=1 zltz
0
lt

p! �llCi. This is a standard time series result62 .

Applying a vector martingale di¤erence CLT yields (180) (see for example Hamilton, Proposition 7.9).

Lemma 8 Consider model (55). Suppose Assumptions 8-13, B1 hold, and factor loadings are governed
either by Assumption 14 or 15. Then for any arbitrary matrix of weightsW satisfying conditions (62)-(63),

and for p; q 2 f0; 1g :

1

T

TX
t=1

��t�p = op

�
1p
N

�
, (181)

1

T

TX
t=1

��t�pf
0
t�q = op

�
1p
N

�
, (182)

1

T

TX
t=1

�i;t�p�
�0
t�q = op

�
1p
N

�
, (183)

1

T

TX
t=1

��t�p�
�0
t�q = op

�
1p
N

�
, (184)

�0
iQ

T
= op (1) . (185)

Furthermore,
Z0Q

T
= A0Q

0Q

T
+ op

�
1p
N

�
, (186)

X0
iZ

T
=
X0
iQ

T
A+ op

�
1p
N

�
, (187)

62See for example Hamilton (1994, Chapter 7 and 8).
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Z0Z

T
= A0Q

0Q

T
A+ op

�
1p
N

�
, (188)

Z0uir�
T

= A0Q
0uir�
T

+ op

�
1p
N

�
, (189)

where

�i
T�k

= (�i0;�i1; :::;�i;T�1)
0 , (190)

�it is de�ned in (106), matrices Z and Xi are de�ned in (103), matrices Q, F are de�ned in (104), and

matrix A is de�ned in (105).

Proof. Consider asymptotics given in Assumption B1. Lemma 1, equation (144), implies63

p
N
1

T

TX
t=1

1X
`=0

W0�`ut�`�p
p! 0.

This establishes (181). Noting ft is independently distributed of ut, and all elements of variance matrix of

ft are �nite completes the proof of equation (182). Furthermore, since (by Lemma 1)

1

T

TX
t=1

�it
p! 0,

equation (185) follows. Using Lemma 1, equation (145), it follows

1

T

TX
t=1

" 1X
`=0

S0i�
`ut�`�p

! 1X
`=0

p
NW0�`ut�`�q

!0#
! E

  1X
`=0

S0i�
`ut�`�p

! 1X
`=0

p
NW0�`ut�`�q

!0!
.

Note that




E
  1X

`=0

S0i�
`ut�`�p

! 1X
`=0

p
NW0�`ut�`�q

!0!





r

=






pN
1X
`=0

S0i�
`��0`W







r

,

�
p
N kS0ikr k�kr kWkr

1X
`=0

k�k`r k�k
`
c ,

= O

�
1p
N

�
,

and

E

  1X
`=0

S0i�
`ut�`�p

! 1X
`=0

p
NW0�`ut�`�q

!0!
p! 0,

under Assumption B1, where kWkr = O
�
N�1�, P1

`=0 k�k
`
r k�k

`
c = O (1), k�kr = O (1) and kS0ikr = 1.

63Note that 




V ar
 1X
`=0

W0�`ut�`�p

!




 =







1X
`=0

W0�`��0`W







� kWk2 k�k

1X
`=0

k�k2`

= O

�
1

N

�
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This completes the proof of equation (183). Similarly, equation (184) follows from Lemma 1, equation (145),

noting that kW0kr = O (1).

In order to prove equations (186)-(189), �rst note that row k of the matrix Z�QA is

[Z�QA]k =
 P1

`=0W
0�`uk�`P1

`=0W
0�`uk�`�1

!0
.

Using results (181)-(184), we can write

(Z�QA)0Q
T

=
1

T

TX
t=1

" P1
`=0W

0�`ut�`P1
`=0W

0�`ut�`�1

!�
1 f 0t f 0t�1

�#
= op

�
1p
N

�
, (191)

X0
i (Z�QA)

T
=

1

T

TX
t=1

"
xi;t�1

 P1
`=0W

0�`ut�`P1
`=0W

0�`ut�`�1

!0#
= op

�
1p
N

�
, (192)

Z0 (Z�QA)
T

=
1

T

TX
t=1

" 
x�t

x�t�1

! P1
`=0W

0�`ut�`P1
`=0W

0�`ut�`�1

!0#
= op

�
1p
N

�
, (193)

(Z�QA)0 (Z�QA)
T

=
1

T

TX
t=1

" P1
`=0W

0�`ut�`P1
`=0W

0�`ut�`�1

! P1
`=0W

0�`ut�`P1
`=0W

0�`ut�`�1

!0#
= op

�
1p
N

�
,(194)

where

x�t = �
� + ��ft +

1X
`=0

W0�`ut�`, (195)

xit = �i + �ift +
1X
`=0

S0i�
`ut�`. (196)

Equations (191)-(192) establish (186)-(187). Note that

Z0Z

T
=

Z0 (Z�QA)
T

+
Z0 (QA)

T
,

=
Z0 (Z�QA)

T
+
(Z�QA)0Q

T
A+A0Q

0Q

T
A,

= A0Q
0Q

T
A+op

�
1p
N

�
,

where we have used (191) and (193). This completes the proof of equation (188). Equation (189) follows

from Lemma 6, equation (173). This completes the proof.

Lemma 9 Consider model (55). Suppose Assumptions 8-13, 17, B1 hold and factor loadings are governed
either by Assumption 14 or 15. Then for any arbitrary matrix of weightsW satisfying conditions (62)-(63),

Q0Q

T

p! C
QQi, CQQi is nonsingular, (197)

�0
i�i

T

p! ��i (0) , (198)

where

C
QQi =

0B@ 1 0 0

0 �f (0) �f (1)

0 �f (1) �f (0)

1CA ,
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matrix Q is de�ned in equation(104), and matrix �i is de�ned in (190).

Proof. Assumption 13 implies matrix C
QQi is nonsingular. Equation (197) directly follows from the ergod-

icity properties of the time-series process ft.

Consider asymptotics B1, where N;T
j! 1 at any rate. Lemma 1 implies �it is ergodic in variance,

hence
�0
i �i

T

p! E
�
�i;t�1�

0
i;t�1

�
.

Note that64

E (�it�
0
it) =

1X
`=0

S0i�
`��0`Si,

=
1X
`=0

 
�`iiS

0
i +

X̀
n=1

�nii�
0
�i�

`�n

!
�

 
�`iiS

0
i +

X̀
n=1

�nii�
0
�i�

`�n

!0
,

=
1X
`=0

�`iiS
0
i�Si�

0`
ii +

1X
`=0

 
�`iiS

0
i�
X̀
n=1

�0`�n��i�
0n
ii

!
+

1X
`=0

 X̀
n=1

�nii�
0
�i�

`�n��`iiS
0
i

!
+

+
1X
`=0

" X̀
n=1

�nii�
0
�i�

`�n

!
�

 X̀
n=1

�0`�n��i�
0n
ii

!#
,

=

1X
`=0

�`iiS
0
i�Si�

0`
ii +O

�
1p
N

�
. (199)

Therefore

E (�it�
0
it)! ��i (0) , (200)

as N !1. This completes the proof.

Lemma 10 Consider model (55). Suppose Assumptions 8-13, 17, B1 hold and factor loadings are governed
either by Assumption 14 or 15. Then for any arbitrary matrix of weightsW satisfying conditions (62)-(63)

and Assumption 17,

X0
iMZXi

T
=

X0
iMQXi

T
+ op

�
1p
N

�
, (201)

X0
iMQXi

T

p! ��i (0) , (202)

X0
iMZQp
T

= op

 r
T

N

!
, (203)

X0
iMZuir�p

T
=

�0
iMQuir�p

T
+ op

 r
T

N

!
, (204)

where ��i (0) is de�ned in Assumption 16, MZ = IT � Z (Z0Z)+ Z0, matrices Z, Xi and Q are de�ned in

equations (103)-(104) and matrix �i is de�ned in (190).

64 In equation (199), we mean that 




E ��it�0it��
1X
`=0

�`iiS
0
i�Si�

0`
ii






 = O
�

1p
N

�
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Proof.
X0
iMZXi

T
=
X0
iXi

T
� X

0
iZ

T

�
Z0Z

T

�+
Z0Xi

T
. (205)

Results (187)-(188) of Lemma 8 imply

X0
iZ

T

�
Z0Z

T

�+
Z0Xi

T
=
X0
iQ

T
A

�
A0Q

0Q

T
A

�+
A0Q

0Xi

T
+ op

�
1p
N

�
. (206)

Using de�nition of the Moore-Penrose inverse, it follows�
A0Q

0Q

T
A

��
A0Q

0Q

T
A

�+�
A0Q

0Q

T
A

�
=

�
A0Q

0Q

T
A

�
. (207)

Multiply equation (207) by
�
Q0Q
T

��1 �
AA0��1A from the left and by A0 �AA0��1 �Q0Q

T

��1
from the right

to obtain65

A

�
A0Q

0Q

T
A

�+
A0 =

�
Q0Q

T

��1
. (208)

Equations (208) and (206) imply

X0
iZ

T

�
Z0Z

T

�+
Z0Xi

T
=
X0
iQ

T

�
Q0Q

T

��1
Q0Xi

T
+ op

�
1p
N

�
. (209)

Result (201) follows from (209) and (205).

System (55) implies

Xi = ��
0
i + F (�1)�0i +�i. (210)

where �i is de�ned in (190). Since Q = [� ;F;F (�1)], it follows

X0
iMQXi

T
=
�0
iMQ�i

T
=
�0
i�i

T
+
�0
iQ

T

�
Q0Q

T

��1
Q0�i

T
. (211)

Noting (198), (185), and (197), result (202) follows directly from (211).

Results (186)-(188) of Lemma 8 imply

X0
iZ

T

�
Z0Z

T

�+
Z0Q

T
=
X0
iQ

T
A

�
A0Q

0Q

T
A

�+
A0Q

0Q

T
+ op

�
1p
N

�
. (212)

Substituting equation (208), it follows

X0
iZ

T

�
Z0Z

T

�+
Z0Q

T
=
X0
iQ

T

�
Q0Q

T

��1
Q0Q

T
+ op

�
1p
N

�
. (213)

Equation (213) implies
X0
iMZQp
T

=
X0
iMQQp
T

+ op

 r
T

N

!
= op

 r
T

N

!
.

This completes the proof of result (203).

65Note that plimT!1
1
T
Q0Q is nonsingular by Lemma 9, equation (197). AA0 is nonsingular, since matrix A has full

row-rank by Assumption 17.
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Results (187)-(189) of Lemma 8 imply

X0
iZ

T

�
Z0Z

T

�+
Z0uir�
T

=
X0
iQ

T
A

�
A0Q

0Q

T
A

�+
A0Q

0uir�
T

+ op

�
1p
N

�
.

Substituting equation (208), it follows

X0
iZ

T

�
Z0Z

T

�+
Z0Q

T
=
X0
iQ

T

�
Q0Q

T

��1
Q0uir�
T

+ op

�
1p
N

�
. (214)

Equations (214) and (210) imply, noting that MQ

�
��0i + F�

0
i

�
= 0 since Q = [� ;F;F (�1)],

X0
iMZuir�p

T
=

X
0

iMQuir�p
T

+ op

 r
T

N

!
,

=
�

0

iMQuir�p
T

+ op

 r
T

N

!
.

This completes the proof.

Lemma 11 Consider model (55). Suppose Assumptions 8-13, 17, B1 hold and factor loadings are given
either by Assumption 14 or 15. Then for any arbitrary matrix of weightsW satisfying conditions (62)-(63),

X0
iMZeir�
T

= op

�
1p
N

�
, (215)

X0
iMZuir�p

T
=

�0
iuir�p
T

+ op

 r
T

N

!
+ op (1) , (216)

where ��i (0) is de�ned in Assumption 16, matrices MZ and Xi are de�ned in equations (103), and matrix

�i is de�ned in (190) and vector eir� is de�ned in equation (109).

Proof.

X0
ieir�
T

=
1

T

TX
t=1

"
xi;t�1

 
s0rk

1X
`=0

��i�
`ut�`�1

!0#
,

Z0eir�
T

=
1

T

TX
t=1

" 
x�t

x�t�1

! 
s0rk

1X
`=0

��i�
`ut�`�1

!0#
.

Note that ��i satisfy conditions k��ikr = O
�
N�1�, therefore result (215) directly follows from equations

(192) and (193).

Note that

�0
iMQuir�p

T
=

�0
iuir�p
T

+
�0
iQ

T

�
Q0Q

T

��1
Q0uir�p

T
,

=
�0
iuir�p
T

+ op (1) , (217)

since Q0uir�p
T

= Op (1), plimT!1
1
TQ

0Q is nonsingular by Lemma 9, equation (197), and �0
iQ
T = op (1) by

Lemma 8, equation (185). Substituting (217) into equation (204) implies result (216). This completes the

proof.
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Lemma 12 Consider model (55). Suppose Assumptions 8-13, hold and l = (i� 1) k+ ` where i 2 f1; ::; Ng,
` 2 f1; ::; kg. Then,

1p
T

TX
t=1

�i;t�1ult
D! N

�
0; �ll��i (0)

�
, as T !1. (218)

Proof. Lemma 12 is well-known time series result. Proof of Lemma 12 is similar to the proof of Lemma 7.
Denote

zlt = �i;t�1ult,

where additional subscript i is omitted for the vector zlt since i is determined uniquely by subscript l

(l = (i� 1) k + ` where i 2 f1; ::; Ng, ` 2 f1; ::; kg). We have:

1.

E (zltz
0
lt) = �ll��i (0) ,

where matrix ��i (0) is de�ned in Assumption 16.

2. Roots of jIk ��iiLj = 0 lies outside the unit circle for any i 2 f0; 1; :::; Ng, and fourth moments of uit
are �nite. Therefore

E (zhltzjltzsltznlt) <1 for h; j; s; n 2 f1; ::; kg .

3. (1=T )
PT

t=1 zitz
0
it

p! �ll��i (0). This is a standard time series result.
66

Applying a vector martingale di¤erence CLT yields (218) (see for example Hamilton 1994, Proposition

7.9).

B Extension of the Analysis to IVAR(p) Models

B.1 Cross Sectional Dependence in IVAR(p) Models

Nature of cross section correlation pattern in IVAR(1) models at any given point in time, t 2 T , is investigated
in Section 2. This subsection extends the analysis to IVAR(p) models, where p is �nite. It is assumed that

xt = (x1t; x2t; :::; xNt)
0 is given by the following IVAR(p) model:

xt =

pX
j=1

�jxt�j + ut, (219)

where �j for j = 1; :::; p are N � N dimensional matrices of coe¢ cients, and as before, errors ut =

(u1t; :::; uNt)
0 satisfy Assumption 1. The process starts from a �nite past, t > �M , M being �xed. This

assumption is relaxed in Subsection B.1.1 below for stationary models.

We can rewrite the IVAR(p) representation (219) in the companion form0BBBBBBB@

xt

xt�1
...

xt�p+2

xt�p+1

1CCCCCCCA
=

0BBBBBBB@

�1 �2 ::: �p�1 �p

Im 0 ::: 0 0

0 Im 0 0
...

...
. . .

...
...

0 0 ::: Im 0

1CCCCCCCA

0BBBBBBB@

xt�1

xt�2
...

xt�p+1

xt�p

1CCCCCCCA
+

0BBBBBBB@

ut

0
...

0

0

1CCCCCCCA
; (220)

66See for example Hamilton (1994, Chapter 7 and 8).

56



which is an IVAR(1) model, but in the Np�1 vector of random variables Xt = (x
0
t;x

0
t�1; :::;x

0
t�p+1)

0, namely

Xt = �Xt�1 +Ut; (221)

where � is now the Np�Np companion coe¢ cient matrix,

� =

0BBBBBBB@

�1 �2 ::: �p�1 �p

Im 0 ::: 0 0

0 Im 0 0
...

...
. . .

...
...

0 0 ::: Im 0

1CCCCCCCA
; (222)

and Ut = (u
0
t;0; :::;0)

0 is the Np� 1 vector of error terms. xt is then obtained as

xt = S
0
1pXt, (223)

where Np�N selection matrix S1p =
�
IN ; 0N�N ; 0N�N ; :::; 0N�N

�0
. Thus extension of the results

in Section 2 is in most cases straightforward.

Proposition 5 Consider the IVAR(p) model (219) and suppose Assumptions 1-2 (on errors ut and the
companion coe¢ cient matrix �) hold. Then for any arbitrary nonrandom vector of weights w satisfying

condition (2), and for any t 2 T ,
lim
N!1

V ar [w0xt j X (�M)] = 0 (224)

Proof. The vector di¤erence equation (221) can be solved backwards from t = �M , taking X (�M) as
given:

Xt = �
t+MX (�M) +

t+M�1X
`=0

�`Ut�`.

The variance of Xt (conditional on starting values X (�M)) is


t = V ar [Xt j X (�M)] =
t+M�1X
`=0

�`S1p�t�`S
0
1p�

0`,

and, using the Rayleigh-Ritz theorem,67 k
tkc is under Assumptions 1-2 bounded by

k
tkc �
t+M�1X
`=0

% (�t�`) (k�kc k�kr)
`
= o (N) . (225)

It follows that for any arbitrary nonrandom vector of weights satisfying granularity condition (2),

kV ar (w0xt)kc =


w0S01p
tS1pw




c
�


% �S01p
tS1p� (w0w)




c
= o (1) , (226)

where %
�
S01p
tS1p

�
� kS1pkr kS1pkc k
tkc,68 kS1pkc = kS1pkr = 1, k
tkc = o (N), and w0w = kwk2 =

O
�
N�1� by condition (2).

67See Horn and Johnson (1985, p. 176)
68Spectral radius is lower bound for any matrix norm, see Horn and Johnson (1985, Theorem 5.6.9).
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IVAR(p) model (219) is thus CWD under Assumptions 1-2 at any point in time t 2 T . Consider the
following additional assumption on coe¢ cients matrices f�jgpj=1.

ASSUMPTION 18 Let K � N be a non-empty index set. De�ne vector �j;�i =
�
�
(j)
i1 ; :::; �

(j)
i;i�1; 0; �

(j)
i;i+1; :::; �

(j)
iN

�0
where �(j)ik for i; k 2 S are elements of matrix �j. For any i 2 K, vector �j;�i satis�es

�j;�i

 = O

�
N� 1

2

�
for j 2 f1; ::; pg . (227)

Corollary 2 Consider model (219) and suppose Assumptions 1-2 (on errors ut and the companion coe¢ -
cient matrix �), and Assumption 18 hold. Then

lim
N!1

V ar

0@xit � pX
j=1

�
(j)
ii xi;t�1 � uit j X (�M)

1A = 0, for i 2 K. (228)

Proof. Assumption 18 implies that for i 2 K, vectors
�
�j;�i

	p
j=1

satisfy condition (2). It follows from

Proposition 5 that for any i 2 K, and any j 2 f1; ::; pg :

lim
N!1

V ar
�
�0j;�ixt j X (�M)

�
= 0. (229)

System (219), and equation (229) establish

lim
N!1

V ar

0@xit � pX
j=1

�
(j)
ii xi;t�1 � uit j X (�M)

1A = lim
N!1

V ar

0@ pX
j=1

�0j;�ixt j X (�M)

1A = 0; for i 2 K.

B.1.1 Stationary Conditions for IVAR(p)

Conditions under which IVAR(p) model (219) is stationary for �xed N are well known in the literature, see

for instance Hamilton (1994, Chapter 10).

ASSUMPTION 19 (Necessary conditions for covariance stationarity) Let �t = � be time invariant and

all the eigenvalues of the companion coe¢ cients matrix �, de�ned by � that satisfy the equation j���INpj =
0, lie inside of the unit circle.

For �xed N and kV ar [X (�M)]kr < K, we have under Assumptions 1, 19 and asM !1 (following similar

arguments as in subsection 2.1),

E (xt) = 0, and V ar (xt) =
1X
`=0

D`�D
0
` <1, (230)

where D` � S01p�`S1p. In the stationary case with M !1, at the point in time t

kV ar (xt)kc =






1X
`=0

D`�D
0
`







c

� % (�)
1X
`=0

kD`D
0
`kc . (231)

Observe that V ar (xit) for given i, as well as kV ar (xt)kc need not necessarily be bounded as N !1, under
the Assumption 19, even if % (�) = O (1).
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Proposition 6 Consider model (219) and suppose Assumptions 1-2 (on errors ut and the companion co-
e¢ cient matrix �), and Assumption 19 hold, kV ar [X (�M)]kr < K and M ! 1. Furthermore, assume
there exists arbitrarily small � > 0 that do not depend on N and such that % (E) < 1� �, where

E
p�p

=

0BBBBBBB@

k�1k k�2k ::: k�p�1k k�pk
1 0 ::: 0 0

0 1 0 0
...

...
. . .

...
...

0 0 ::: 1 0

1CCCCCCCA
. (232)

Then at any point in time t 2 T and for any nonrandom weights w satisfying condition (2),

lim
N!1

V ar (w0xt) = 0. (233)

Proof. D` = S
0
1p�

`S1p solves the following matrix di¤erence equation

D` =

pX
j=1

�jD`�j , (234)

with starting values D0 = IN , and Dk = 0N�N for k = 1 � p; :::;�2;�1. Taking the spectral matrix norm
of the both sides of equation (234), we have

kD`k �
pX
j=1

k�jk kD`�jk .

It follows that for any arbitrary small � > 0 that do not depend on N , there exists `0 (�) 2 N that do not
depend on N (recall p is �nite) such that

kD`k < (% (E) + �)` for any ` > `0 (�) .

Choose � = �
2 . Noting that the spectral norm is self-adjoint (see Horn and Johnson, 1985, p. 309),

kD`D
0
`k � kD`k2 <

�
% (E) +

�

2

�2`
<
�
1� �

2

�2`
for any any ` > `0

� �
2

�
.

This implies that
P1

`=0 kD`D
0
`k = O (1).69 Since also % (�) = o (N) under the Assumptions 2 and 19, it

follows from (231) that kV ar (xt)k = o (N). This establishes kV ar (w0xt)k �


w0S01p
tS1pw



 = o (1), along

similar arguments used in establishing equation (226).

69Recall k�k2 � k�kc k�kr = O (1) under Assumption 2.

1X
`=0



D`D
0
`



 � 1X
`=0

kD`k2 =
`0X
`=0




S01p�`S1p


2 + 1X
`=`0+1

kD`k2 .

But since `0 = `0
�
�
2

�
does not depent on N ,

P`0
`=0




S01p�`S1p


2 �
P`0
`=0 k�k

2` = O (1) and
P1
`=`0+1

kD`k2 <P1
`=`0

�
1� �

2

�`
= O (1).
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B.2 Estimation of a Stationary IVAR(p) Model

Extension of the estimation of IVAR(1) to IVAR(p) model is straightforward. Any IVAR(p) model can be

written as an IVAR(1), see Appendix B.1, equations (219)-(223). If each of the coe¢ cients matrices f�jgpj=1
of IVAR(p) model satis�es Assumption 8 then so does the corresponding companion Nkp�Nkp dimensional
matrix� (see equation (222)). Note that� does not satisfy Assumption 9. Therefore an alternative su¢ cient

condition for absolute summability, such as

1X
`=0



�`�0`

 = O (1) ,

will be needed. One possibility is the condition presented in Appendix B.1.1 (see Proposition 6), that is

% (E) < 1� �,

where arbitrarily small � > 0 does not depend on N and the p�p dimensional matrix E is de�ned in equation
(232). Thus the analysis of IVAR(p) models is almost identical to that of IVAR(1) model above.
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