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ABSTRACT  

As many countries around the world face an aging infrastructure crisis, there is an increasing need to develop more 
accurate monitoring and assessment techniques for reinforced concrete structures. One of the challenges associated with 
assessing existing infrastructure is correlating externally measured parameters such as crack widths and surface strains 
with reinforcement stresses as this is dependent on a number of variables. The current research investigates how the use 
of distributed fiber optic sensors to measure reinforcement strain can be correlated with digital image correlation 
measurements of crack widths to relate external crack width measurements to reinforcement stresses. An initial set of 
experiments was undertaken involving a series of small-scale beam specimens tested in three-point bending with variable 
reinforcement properties. Relationships between crack widths and internal reinforcement strains were observed including 
that both the diameter and number of bars affected the measured maximum strain and crack width. A model that uses 
measured crack width to estimate reinforcement strain was presented and compared to the experimental results. The 
model was found to provide accurate estimates of load carrying capacity for a given crack width, however, the model 
was potentially less accurate when crack widths were used to estimate the experimental reinforcement strains. The need 
for more experimental data to validate the conclusions of this research was also highlighted.  
Keywords: Assessment, crack widths, Digital Image Correlation, distributed fiber optic strain sensors, reinforced 
concrete structures 
 

1. INTRODUCTION  
Many of the reinforced concrete infrastructure assets (e.g. bridges, dams, and tunnels) that were built in the post-war 
construction booms of the 1950s and 60s are coming to the end of their theoretical design lives. However, there are 
limited financial resources with which to maintain, repair, and replace these structures. Thus an approach that would 
allow safety critical structures to be identified so that they can be made an investment priority is needed. In reinforced 
concrete, the stress in the steel reinforcement is of critical importance since if the reinforcement stress is too high this 
could be indicative of overloading or even imminent failure of the structure. The stress in the reinforcement is 
typically highest at the location of cracks in the concrete since cracks develop due to localized concentrations of 
tensile stress. Measuring the reinforcement strains, and thus the stress, is not possible within existing reinforced 
concrete infrastructure; however cracks are monitored as part of visual inspections required for many critical 
infrastructure assets. If a technique could be developed for measuring crack widths during visual inspections and an 
approach for relating these crack measurements to reinforcement stress could also be developed, this would enable 
safety critical structures to be identified. 
 
Calvi1 has proposed a method for using crack widths obtained during visual inspections to estimate the reinforcement 
stress. Although Calvi undertook an initial validation of his model using an experimental database, one of the 
challenges associated with validating this approach is correlating the crack width with the maximum strain in the 
reinforcement. In his experimental campaign, Calvi did this by debonding the reinforcement in the area of the crack, 
which created a region of constant strain. However, in actual structures it is not possible to know where cracks will 
develop exactly nor is it feasible to provide debonded regions to enable the measurement of strain at the exact 
location of the crack. Without prior knowledge as to where a crack will form, consistently locating a conventional 
strain gauge on the reinforcement at the future location of the crack is impossible. Other researchers2, 3 have required 
the use of numerous strain gauges installed along the reinforcement with the assumption that one of these gauges will 
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capture the strain at the formation of the crack. This technique has numerous problems including the large quantity of 
strain gauges and wires required, which may themselves affect the bond between the reinforcement and the 
surrounding concrete, and the cost of the instrumentation and the installation. Measurement of the crack width is also 
difficult. Current approaches to crack width measurement in the field typically involve the use of a crack gauge or a 
telltale, both of which have to be read by the inspector and are thus subject to significant measurement error4.  
 
Recent advances in sensor technologies may enable the problems associated with both strain and crack width 
measurement to be overcome. Distributed fiber optic sensors (FOS) enable the strain to be measured over gauge 
lengths equivalent to conventional strain gauges (e.g. 5 mm) but at the same time allowing strain to be measured 
along the full length of a fiber optic cable. This eliminates the need for a number of strain gauges and their wires 
while still enabling the maximum strain to be measured at any location on the reinforcement. Digital Image 
Correlation (DIC) uses images taken by digital cameras to track displacement fields during the loading of a structure. 
Using DIC software the crack width can be measured with an accuracy that is several orders of magnitude higher than 
conventional crack sensors depending on the setup. Thus, DIC allows the processing of crack width data following 
any test as long as the crack develops within the camera’s field of view, and distributed FOS will allow reinforcement 
strain measurements to be captured at the crack location. This allows FOS measured strains at crack locations to be 
correlated with the corresponding DIC measured crack widths.  
 
The ultimate goal of the research is to develop a technique for measuring crack widths using DIC and use these 
measurements to determine the reinforcement stress. In the current research an experimental investigation has been 
undertaken using both distributed DIC and FOS measurements in an attempt to relate crack width to reinforcement 
stress. These results are then compared to a proposed model. The objectives of this study are to: (i) develop a method 
for measuring crack widths and reinforcement strains in reinforced concrete beams using distributed sensors, (ii) 
determine the relationships between crack width and reinforcement strain in beams with varying reinforcement 
properties, and (iii) compare the experimental results to a previously developed analytical model. This paper is divided 
into five sections: Section 2 provides background information on the sensor technologies and the analytical model used 
to relate crack width to reinforcement strain. Section 3 outlines the experimental and analytical procedures used in this 
research program. Section 4 presents the results of the research, and Section 5 presents the general conclusions of the 
research and opportunities for future work. 

2. BACKGROUND 
2.1 Fiber Optic Strain Sensing 

There are two main types of FOS technologies: discrete and distributed. Discrete technologies provide readings at a 
limited number of defined points along the fiber optic cable while distributed technologies enable the entire fiber optic 
cable to be used as a series of sensors. Fiber Bragg Gratings (FBG) have shown comparable accuracy to conventional 
strain gauges but like conventional strain gauges only have the capability to measure strain readings at discrete 
locations5. Distributed FOS systems are based on measuring light reflected back through the fiber optic cables 
(backscattered light) to the FOS analyzer unit. There are three main types of backscattered light: Raman, Brillouin, and 
Rayleigh. Raman sensing systems can only be used to measure temperature and as such do not apply to the current 
research. Brillouin systems have been used to measure strain in a number of civil engineering applications including 
reinforced concrete beams6. However, the major limitation with Brillouin systems for this application is that the spatial 
resolution is approximately one meter, which is too large to measure the strains at the crack location7. As such, the 
backscatter sensing technology used in the current research is based on Rayleigh Backscatter, which occurs due to 
interactions between the propagated light pulse and the silica density composition of the fiber at each point along its 
length. The light pulse reflects off of these imperfections along the fiber length and scatters portions of the light spectrum 
back to the analyzing unit8. When the fiber is strained the distance between these imperfections changes, which in turn 
changes the backscattered light spectrum measured at that location. By comparing the backscatter spectrum measured in 
sequential scans to one from a reference scan, strain and temperature measurements can be calculated based on change in 
light frequency along the full fiber length. Using this technology, strain and temperature readings have been measured 
with an accuracy of approximately 1 microstrain or 0.1 degrees Celsius with a spatial resolution of 10 millimeters over 
fiber lengths spanning up to 70 meters long9. However, strain and temperature readings are not independent, and 
therefore require the temperature to remain constant or to be measured to distinguish and correct for temperature induced 
strains. In the current research the testing was conducted at constant temperature to eliminate these effects. 
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Previous researchers have used Rayleigh based distributed FOS to measure strains in reinforced concrete structures. For 
example, Villalba and Casas10 used this technology to detect the presence of cracks in a slab specimen under load even 
before the cracks were visible. Regier11 evaluated different adhesive and fiber coating combinations based on the 
accuracy of the measurement produced when compared with electrical resistance strain gauge readings. The 
combinations of polyimide fiber with Loctite 4851 cyanoacrylate adhesive was determined to be the combination that led 
to the most accurate strain readings for internal steel reinforcement (and thus will be employed in the current study). 
Regier and Hoult12 used the system to measure the distributed strain profile of a reinforced concrete bridge during a load 
test. While Regier and Hoult13 used the technique to detect localized reinforcement deterioration including investigating 
changes in internal reinforcement strain along the full length of the bar. However, the current investigation is the first 
that the authors know of to attempt to correlate internal FOS strain measurements with external crack measurements. 
 
Bare fiber optic cables are inappropriate for civil engineering applications and are thus covered in a buffer or coating to 
increase their strength and durability. When a fiber is coated there is a compromise between the transfer of strain and 
temperature from the material being monitored to the fiber optic cable core where the strain readings are ultimately 
measured. The fiber optic cable used in this research has a polyimide coating. Polyimide coated fibers have good strain 
and temperature transfer between the polyimide coating and the fiber core, however durability and susceptibility to large 
strain gradients are issues13. 
 
2.2 Digital Image Correlation 

DIC is the use of digital images to measure displacements of regions of interest in images of a deformed object as 
compared to its undeformed state (i.e. the reference image). In structural engineering applications this usually entails 
taking images of a structure before and during loading to determine displacements and in some cases strains.  
 
DIC has been used by a number of researchers for the measurement of crack widths in reinforced concrete. For example, 
Lecompte et al.14 used DIC on a prestressed beam test to detect cracking while Destrebecq et al.15 employed DIC to 
detect the development of cracks in a reinforced concrete beam tested in the laboratory. Ferreira et al.16 used DIC to 
measure crack widths in notched reinforced concrete beam tests. And in a recent study Jason et al.17 used DIC to measure 
horizontal crack width opening in the constant moment region of beams to better understand the reinforcement bond 
stress. However, while many researchers have used DIC to measure crack widths and to attempt to understand 
reinforcement stress, the focus of the current study is the linking of DIC measured crack widths with distributed FOS 
reinforcement strain measurements in an attempt to understand the relationship between reinforcement stress and crack 
width. 
 
In the current research the DIC measurements were obtained using a software package called GeoPIV18. GeoPIV was 
initially developed for geotechnical monitoring but has since been applied to measuring bridge displacements19 as well as 
surface strain in axial20 and bending members21. 
 
2.3 Correlation of Crack Width to Reinforcement Strain Model 

Calvi1 has developed the “Assessment of Cracked Reinforced Concrete” (ACRC) model, which relates measured crack 
widths to estimated reinforcement stresses. The ACRC model’s primary inputs are crack width, crack slip, and crack 
orientation, as well as the material and geometric properties of the section, which are used to develop an estimate of the 
global stress and strain state in a reinforced concrete element.  

In order to generate a compatibility relationship in the ACRC model, Calvi1 developed a relationship between 
reinforcement strain, sε , and external concrete crack width, w, using previously generated analytical steel-concrete bond 
relationships from Shima et al.22 and Maekawa et al.23. Calvi1 suggests that equation 1 can be used to estimate the strain 
in the reinforcement at a crack location. 
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The term  presented in equation (1) was suggested to be 2 for deformed reinforcement by Shima et al.22 based on their 
experimental testing but depends on bond degradation and can potentially range up to a value of 6. The term ,  is a 
non-dimensional reinforcement pull-out slip term that can be determined using equation (2). 
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The reinforcement pull-out slip, sb, can be estimated using equation (3) based on the empirical relationship developed by 
Maekawa et. al.23 The reinforcement diameter, db, is given in millimeters. And Kfc is a concrete strength adjustment 
factor given by equation (4). 
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Thus, in the method presented by Calvi1 if the crack width, w, can be measured and the concrete strength, '
cf , is known, 

the reinforcement strain can be estimated. If the modulus of elasticity, E, and bar area, As, are known, the reinforcement 
stress can then be estimated using Hooke’s Law. 

3. METHODOLOGY 
3.1 Specimens 

Three different reinforced concrete beam specimens were tested denoted as: A, B, and C. Each beam had a total length of 
840 mm and a loaded span of 740 mm. The cross section for beam specimens A, B, and C is shown in Figure 1. The 
concrete mix for each specimen was designed to have a compressive strength of approximately 30 MPa. Stirrups with a 
diameter of 5 mm at a spacing of 100 mm were used in all specimens in an attempt to ensure a flexural failure and avoid 
the development of large shear cracks during the test. The overall cross-section dimensions and the approximate 
effective depth of all the specimens were kept constant to isolate the effect of the different longitudinal reinforcement 
areas and diameters on the specimen behavior. The reinforcement ratio for specimen A was 1% while specimens B and C 
had a reinforcement ratio of 2% as indicated in Table 1. The reinforcement bar surface area, given as the reinforcement 
circumference in Table 1, differs between all three specimens. The variations in reinforcement ratio and surface area 
were selected to enable observations to be made about the impact of these properties on the relationship between crack 
width and reinforcement stress.  
 
 Table 1: Specimen reinforcement geometric properties 
 

Specimen A (1x10M) B (2x10M) C (1x15M) 
Reinforcement area (mm2) 100 200 200 
Reinforcement ratio 1% 2% 2% 
Total Reinf. Circumference (mm) 35.5 71 50 
Reinf. Circumference/area ratio 0.355 0.355 0.25 
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Figure 1. Specimen dimensions (mm), including reinforcement specifications and fiber optic cable locations 

 
3.2  Instrumentation 

A distributed FOS system was used to measure reinforcement strain at the mid-height of each specimen’s reinforcement 
bars. The fiber optic cable was a polyimide fiber bonded with a Loctite 4851 cyanoacrylate adhesive. Prior to the 
installation of the fiber optic cable, the reinforcement was cleaned of rust, dirt and oil with rubbing alcohol to ensure 
bond between the fiber and the reinforcement. One polyimide fiber was installed on each side of the reinforcement bars 
for all specimens. The internal fiber locations are illustrated in Figure 1. 
 
DIC was used to measure crack widths at the mid height of the reinforcement on the surface of the beam. Both sides of 
each specimen were monitored using Canon Rebel T2i cameras with 180 mm macro lenses with a field of view of 5196 
pixels by 3464 pixels. Both cameras were focused on the middle third of the beam’s loaded span where flexural cracks 
were expected to form. A speckle pattern was applied to the middle third of each beam with black and white spray paint 
to add surface texture to increase the strain measurement accuracy of the GeoPIV algorithm. An example of a textured 
beam specimen showing the field of view of the camera is shown in Figure 2. 
 

 
 

Figure 2. Example of field of view of DIC images showing speckle pattern applied to the concrete beam exterior  
 

3.3 Test Set-Up and Procedure 

Each beam specimen was tested in 3 point bending. The specimens were loaded at a rate of 5 mm per minute under 
displacement control. A 50 mm wide and 5 mm thick steel plate that spanned the full width of beam (100 mm) was 
placed on a thin layer of plaster on top of the beam to spread the point load out evenly over the 50 mm by 100 mm load 
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pad area. Load and stroke data was acquired directly from the testing machine and logged using a data acquisition system 
at a rate of 10 Hz. Fiber optic data was acquired using a LUNA OBR 4600 analyzer. DIC data was acquired from the 
Canon Rebel T2i images that were taken using a trigger system that stored each image on the camera’s memory card. 
Additional lighting was provided to ensure image consistency and clarity. The full test set-up including the LUNA OBR 
4600 analyzer and cameras is shown in Figure 3. 
 
The ultimate applied point load was estimated to be approximately 20 kN, 40 kN, and 40 kN for specimens A, B, and C, 
respectively. Specimen A was loaded in 2 kN increments until yielding of the longitudinal reinforcement commenced at 
approximately 24kN. Specimens B and C were loaded in 4 kN increments until initial yielding at 36 kN and 38 kN, 
respectively. This loading plan provided a similar number of load stages for each specimen, and numerous matching load 
stages for specimen comparison (e.g. 2 kN, 4 kN… 12 kN, 16 kN… etc.). 
 
An initial fiber optic reference scan was taken prior to each test which was then subtracted from subsequent scans to in 
order to provide a spectral shift measurement that was used to calculate the strain along the fiber optic cable. Fiber optic 
readings were taken and saved at each load stage until the test was terminated. Ten images were taken using the Canon 
Rebel T2i cameras prior to testing to create reference images and at each load. Multiple images were required for 
averaging in the analysis process to reduce errors induced by outlying images potentially caused by lighting differences 
or human obstruction. Lastly, observations were recorded at each stage including crack formations, crack growth, and 
any unexpected results or behavior. 
 

 
 

Figure 3. Test set-up including LUNA OBR 4600 and DIC camera orientation. 
 

3.4 Analytical Method 

The crack widths were measured using the DIC technique. This was done by tracking the movements of subsets (64 by 
64 pixel areas in the image) on either side of a crack location, and converting pixel measurements into a crack width in 
millimeters using a scale factor. An example of the DIC subsets used on either side of a flexural crack at the level of the 
internal reinforcement is shown in Figure 4(a). The FOS system was used to measure the strain along the reinforcement 
using a gauge length of 5 mm and a sensor spacing of 5 mm. An illustration of the strain distribution over the length of 
the reinforcement with the crack location highlighted is shown in Figure 4(b). The crack widths measured with DIC and 
maximum reinforcement strains measured with FOS were then used to examine the relationship between crack width and 
reinforcement stress as discussed in the next section. 
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This is likely because the FOS strain measurements are not used in to evaluate any of the results presented in Figure 7, 
thus no issues regarding the localized high measured reinforcement strains seen in Figure 5 affect the results of Figure 7. 
The theoretical prediction for Specimen B provides the highest load for a given crack width while the prediction for 
Specimen A provides the lowest load, which is the same trend that was seen in the experimental data. The prediction for 
specimen B is in fact double the prediction for Specimen A since for a given strain in the reinforcement, and thus a given 
crack width, the force in the reinforcement is double because Specimen B has twice the reinforcement area. Despite the 
fact that the model shows good correlation between applied load and crack width, it is important to note that further 
development is necessary regarding the correlation of crack width to internal reinforcement strain. Applied loads and 
structural element behavior are not always known in the field, thus a more accurate relationship between concrete crack 
width and internal reinforcement strain would be useful for structural health evaluation applications. 
 
Although this research has provided a proof of concept for the use of sensor technologies to develop relationships 
between reinforcement strain and crack width, more work is required before the method can be applied practically. A 
larger experimental database is required involving results from specimens with different reinforcement, cross sectional 
and loading parameters. In addition, other models that relate crack width to reinforcement stress should be studied since, 
as was indicated in the discussion, the current model does not differentiate between the number of reinforcement bars 
used whereas other researchers suggest this is an important parameter. 

5. CONCLUSIONS 
This research program investigated the use of distributed FOS and DIC to measure reinforcement stress and surface 
crack widths, respectively. Using these sensor technologies it was possible to obtain the maximum reinforcement strain 
at a crack and the corresponding crack width. The FOS reinforcement strain measurements were compared to theoretical 
estimates of the strain and the difference between the two values was found to be variable depending on the specimen. 
The measurements suggested that using multiple small diameter bars led to better crack control than using a single small 
or large diameter bar at a given stress level. This finding was in agreement with the work of other researchers. 
Interestingly the results also suggested that bar diameter affected the crack control at a constant stress level although it 
should be noted that the experimental database is very limited. A model was used to estimate the reinforcement strain 
based on the measured crack width and it was found to show some correlation to experimental reinforcement strains for a 
given crack width when the experimental FOS results were close to the theoretical strains. The model also showed good 
correlation with the measurements when comparing theoretical applied loads to experimental applied loads for a given 
crack width. Further work is required to determine the impact of a variety of parameters on crack width measurements 
and to relate these measurements to reinforcement stress. 
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