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Summary

This thesis describes the development and applications of sub-micron current-perpendicular-to-
plane devices fabricated by three-dimensional etching with a focused ion beam microscope. This
technique was applied to a range of materials, including the study of c-axis Josephson junctions
in the high temperature superconductor Tl2Ba2CaCu2O8, the fabrication of superconducting
quantum interference devices with sub-micron loop areas, and GaN light emitting diodes. The
main body of research was carried out in the study of Nb based Josephson junctions working
at a temperature of 4.2 K. Junctions with normal metal, insulating and ferromagnetic barriers
were characterised, as well as the first metallic antiferromagnetic Josephson junctions using
γ-Fe50Mn50 as the barrier. ‘Pseudo-spin-valve’ Josephson junctions were also created using a
Co/Cu/Fe20Ni80 barrier. In this case the relative orientation of the magnetic moments of the
Co and Fe20Ni80 could be changed with an applied magnetic field. The magnetoresistance and
critical current of the device showed a strong correlation, implying a direct influence of the
magnetic structure of the device on the critical current.
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Introduction 1

Introduction

Although the magnetic properties of lodestone have been known of for thousands of years,
and superconductivity is less than 100 years old [1], the two phenomena are both examples of
essentially similar physics: the interaction of electrons in solid via quantum mechanical exchanges
on the microscopic level to form an ordered macroscopically coherent system.

Ferromagnetism is a complimentary phase transition to superconductivity. In the BCS the-
ory of superconductivity the electron-electron attraction around the Fermi surface forms Cooper
pairs of electrons with anti-parallel spins. In the case of ferromagnetism it is an electron repul-
sion, (due to Hund’s rule) that forms parallel aligned spins. In both cases the effects are only
understandable on a microscopic level within the framework quantum mechanics.

The antagonism between parallel spin ferromagnetism and anti-parallel Cooper pairs in
(most) superconductors has attracted more and more interest in recent years. Ternary and
borocarbide compounds display an intermixing of superconducting and magnetic ordering across
the phase diagrams [2]. Ferromagnetism and superconductivity exist simultaneously in different
layers of the high temperature superconducting cuprate RuSr2GdCu2O8 [3]. More recently the
heavy fermion materials such as UGe2 [4] and perhaps also ZrZn2 [5] are becoming accepted as
ferromagnetic superconductors [6].

Equally however, much interest is still generated by the behaviour of simple metallic su-
perconductors, themselves understood for many years, which can show essentially the same
inhomogeneous superconductivity as exhibited by the more complex materials, when grown as
heterostructures with ferromagnetic interlayers. Recent interest has been enhanced by the po-
tential application of such devices in the development of solid state Quantum Computers, which
will out-perform conventional computers by orders of magnitude [7, 8]. The so-called π-junction
is an important logic element in this scheme, and can be realised in several ways, utilising for ex-
ample the d-wave nature of the cuprates [9], the controllable properties of normal metal barriers
with metallic superconducting electrodes [10], as well as junctions with ferromagnetic barriers
[11]. Part of the present work seeks to realise a further possibility: a magnetically controllable
π-junction, fabricated by means of a spin active barrier.

The outline of the thesis is as follows. The basic theory of magnetism is dealt with first,
with an emphasis on ferromagnetism. This allows the inclusion of the effect of ferromagnetism
into the theories of low temperature superconductors and the Josephson effect in chapters 2
and 3. The film growth and fabrication stages are outlined in chapter 4, as well as details
of the measurement systems. The new three dimensional device fabrication technique using
the focused ion beam (FIB) is presented in chapter 5. The fabrication of intrinsic Josephson
junctions in the high temperature superconductor Tl2Ba2CaCu2O8 will then be discussed, as
well as Nb/MoSi2/Nb junctions, superconducting quantum interference devices, and finally GaN
light emitting diodes. The work on Tl2Ba2CaCu2O8 was carried out in collaboration with P. A.
Warburton and A. R. Kuzhakhmetov (University College London), who measured the devices;
H. Wu and C. R. M. Grovenor (Oxford University) who grew the thin films and G. Burnell
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who helped produce many of the devices with the FIB. For the GaN devices the films were
grown by M. J. Kappers, and I also acknowledge the help of D. Robson. For the case of the
Nb/MoSi2/Nb junctions, the films were grown by Y. Chong, (National Institute of Standards,
Boulder, Colorado), and some devices were made in the FIB by G. Burnell. A range of different
Josephson junctions are then considered: insulating barriers, normal metal, and ferromagnetic
metals. Chapter 8 describes the fabrication of spin-active Josephson junctions, beginning with
giant magnetoresistive multilayers, antiferromagnetic metallic barriers, and finally the spin-valve
junctions. The directions of possible future work are presented in chapter 9.

This thesis is a collection of many ideas, some of them ‘proof of principle’ for the FIB
fabrication technique, rather than an in-depth study of a single type of junction. For this reason,
the theoretical chapters are broad and lacking any detail in addition to that directly relevant to
the present work, although I have tried to give both microscopic and phenomenological models
for all of the physics discussed. For that I offer no apology - but I hope that the references
presented, in particular those given at the start of the chapters, will allow further investigation
by the reader if required.

Units & terminology

Throughout this work SI units have been used in all but the most pathological of cases. This
was done despite the continuing use in the literature of non-SI units, such as mbar for vacuum
systems, Oersteds, Gauss and emu for magnetic measurements, and Ångström for distances.
This thesis strongly overlaps the magnetic and superconducting fields of research, the literature
of the latter would seem to be less resistant to using SI units. To avoid confusion when switching
between the discussions on magnetism and superconductivity the SI system is therefore used
throughout.

The abbreviations F (AF), as well as meaning (anti)ferromagnet(ic), will also refer to (anti)-
parallel alignment of individual ferromagnetic layers within a thin film multilayer structure. It
should be clear from the context which meaning should be taken, otherwise the full term is
used. Other common symbols used in the literature have been changed to avoid confusion with
other terms, however some symbols do retain multiple meanings. Again, the context of their
use should be clear.

Finally, the term ‘electron’ is used in several ways, for brevity, and refers to ‘bare’ electrons
in a vacuum in the discussion of SEMs and FIBs for example, as well as the Fermi liquid
‘quasi-particle’ excitation at low temperatures in a solid.
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[2] L. N. Bulaevskĭı, A. I. Buzdin, M.L.Kulić, and S. V. Panjukov, Adv. Phys. 34, 175 (1985).
[3] J. Tallon, C. Bernhard, M. Bowden, P. Gilberd, T. Stoto, and D. Pringle, IEEE Trans.

Appl. Supercond. 9, 1696 (1999).
[4] S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K. W. Haselwimmer, M. J. Steiner,

E. Pugh, I. R. Walker, S. R. Julian, P. Monthoux, G. G. Lonzarich, A. Huxley, I. Sheikin,
D. Braithwaite, and J. Flouquet, Nature 406, 587 (2000).

[5] C. Pfleiderer, M. Uhlarz, S. M. Hayden, R. Vollmer, H. von Lohneysen, N. R. Bernhoeft,
and G. G. Lonzarich, Nature 412, 58 (2001).

[6] T. He, Q. Huang, A. P. Ramirez, Y. Wang, K. A. Regan, N. Rogado, M. A. Hayward, M. K.
Haas, J. S. Slusky, K. Inumara, H. W. Zandbergen, N. P. Ong, and R. J. Cava, Nature
411, 54 (2001).

[7] V. V. Ryazanov, Usp. Fiz. Nauk 169, 920 (1999), [Phys. Usp. 42 825 (1999)].
[8] G. Blatter, Nature 421, 796 (2003).
[9] C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000).

[10] J. J. A. Baselmans, B. J. van Wees, and T. M. Klapwijk, Phys. Rev. B 65, 224513 (2002).
[11] V. V. Ryazanov, A. V. Veretennikov, V. A. Oboznov, A. Y. Rusanov, A. A. Golubov, and

J. Aarts, Usp. Fiz. Nauk 171, 81 (2001).

3



Chapter 1

Ferromagnetism

The phenomenological and microscopic theories of ferromagnetism are reviewed [1, 2, 3, 4], this
is followed by a discussion of magnetically active (thin film) device structures [5].

4
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1.1 Ferromagnetism

1.1.1 Ginzburg-Landau phenomenological theory

The philosophy of the Ginzburg-Landau theory of second order phase transitions exploits the
fact that near the phase transition, some ‘correlation length’ ξ diverges, and the microscopic
details of the system can be summed over (it is therefore a mean-field theory), and treated purely
phenomenologically. The only remaining important elements are then the dimensionality and
symmetries of the system. The transition is defined in terms of some ‘order parameter’ which is
zero in the higher symmetry state. At the phase transition this symmetry is broken, the system
falls into a lower symmetry state, and the order parameter acquires a non-zero value.

An example of the application of this theory is ferromagnetism. A material cooled below its
Curie temperature TM , becomes ferromagnetic (TM is used to avoid confusion with the super-
conducting transition temperature TC). Above TM , in zero applied field, the spins are randomly
orientated (in a state of high symmetry). The ‘order parameter’ M, (the net magnetisation)
is zero. Below TM the spins break the rotational symmetry of the system (choosing a particu-
lar direction to point in), and are correlated over a macroscopically large area: the size of the
magnetic domain (section 1.1.5). M is now non-zero. A phenomenological Hamiltonian for the
system in terms of the magnetisation per unit volume M is

f(M, T ) = f0(T ) +
ε(T )

2
M2 + η(T )M4 + ν(T )(∇M)2 + .... − H · M , (1.1)

where the ... represents higher orders terms. H is the applied field, and ε, η and ν are phe-
nomenological parameters. The shape of f(M,T) for various parameter values is shown in figure
1.1. For ε > 0, the minimum of f is no longer at M = 0. Clearly ε must be related to TM .
It is easy to show that ε = (T − TM )/TM . For ν > 0 uniform M minimises f . ν is therefore
a phenomenological term related to the microscopic exchange energy which aligns the spins. It
is clear from the ∇M term that the lowest energy excitations of the system will be ones with
large spatial wavelengths, where M changes slowly from one point to the next. These collective
modes are known as magnons1, (see section 1.2.5).

(a) (b) (c)

H

f

M

Figure 1.1: Ginzburg-Landau free energy for a ferromagnet, with η > 0: (a) ε > 0, (b) ε < 0, (c) with
an applied field H.

1Analogous to e.g. phonons, which occur as a result of the broken spatial symmetry of a crystal.
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1.1.1.1 Critical behaviour near TM

The ‘correlation length’ ξ, over which fluctuations in M are correlated, diverges near TM . Many
of the physical properties (‘response functions’) of the ferromagnet (F) also diverge, among them
the susceptibility, dM/dH, and specific heat capacity. Of relevance in this work dρ/dT , the first
derivative of the temperature dependent resistivity, also diverges. This can be understood by
considering the increased electron scattering by scale-invariant fluctuating domains. Fisher [6]
proposed the functional form

1
ρM

(
dρ

dT

)
=

(
A±

λ±

) (∣∣∣∣TM − T

TM

∣∣∣∣
−λ±

− 1

)
+ B± , (1.2)

to describe the behaviour. The ± signs refer to the values above and below TM respectively,
and ρM is the resistivity at TM . A± and B± are constants, λ± is the ‘critical exponent’ which
should be a constant for systems with the same symmetry and dimensionality. CuxNi1−x alloys
have been investigated in the case of x = 0.3 by Sousa et al [7]. In that case λ+ (above TM )
≈ 0.07, was consistent with measurements of elemental ferromagnets [8]. However, the value of
λ was found to be strongly dependent on the choice of TM , with the best fit to equation 1.2
found for a value of TM nearly 10 K greater than Tmax (the peak in the (dρ/dT )) [7]. Rossiter
[9, 10] has also pointed out that composition inhomogeneities and clustering in alloy systems
gives spatially varying TM that will tend to blur the transition. In the present work it was not
possible to achieve ε < 10−2 required to examine the critical behaviour in detail. Electrical
measurements of R(T ) were used to give a measure of TM in Cu0.4Ni0.6 films too thin to obtain
M(T ) data. As will be seen in section 7.4.1, it was difficult to reduce the error in TM to less
than a few tens of K, but this was accurate enough to show some variation of TM with film
thickness.

1.1.2 Microscopic exchange interaction

It is possible to write down a simple effective Hamiltonian2 describing the interaction of a lattice
of N spins:

Heff = −2
N∑

i>j

JijSi.Sj . (1.3)

Conventionally the − sign is chosen so that Jij > 0 gives ferromagnetic coupling. The exchange
integral

Jij ∝
∫

φ∗
i (r1)φ∗

j (r2)
e2

|r1 − r2|φi(r2)φj(r1) dr1 dr2 (1.4)

describes the Coulomb interaction due to the overlap of the wavefunctions φ1 and φ2. Con-
sidering a simple argument for the H2 molecule: the two electrons would prefer, (due to the
Coulomb term) to both be near to the nuclei. Pauli exclusion forbids parallel spins occupying
the same space, therefore the anti-parallel state is lower in energy. More generally, inter-atom

2The Heisenberg Hamiltonian.
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wavefunctions are not orthogonal, and a first principles calculation using equation 1.4 is not
possible for more complex materials [1]. Ferromagnetism can only be explained by a complex
balance of energies, which are strongly dependent on the band-structure of a given material.
From experiment ferromagnetism is found in for example the 3d transition metals Co, Ni and
Fe. Stoner’s criterion, which ignores the first principles calculations and assumes Jij > 0, can
be used to give a phenomenological justification for the appearance of ferromagnetism.

1.1.3 Stoner’s criterion

Co, Ni and Fe are the three most common ‘itinerant’ 3d transition metals that are ferromagnetic
at room temperature. Their outer electrons are delocalised3 and shared between the 4s and 3d
orbitals, with the unfilled 3d shell being responsible for the net magnetic moment. To explain
the ferromagnetism of these materials, Stoner’s criterion considers an unpolarised metal with N

electrons. The number of up (↑) and down (↓) spins are equal: 2N↑ = 2N↓ = N . If there is a
shift in the ↑ and ↓ Fermi seas the kinetic energy cost is

∆E1 =
(N↑ − N↓)2

2N (EF )
=

N2P 2

2N (EF )
, (1.5)

where the electron polarisation P = (N↑ − N↓)/N , and N (EF ) is the density of states (DoS),
at the Fermi energy EF . This is balanced by a gain in potential energy due to the electrons

EF
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Figure 1.2: Schematic of the splitting of the density of states about the Fermi surface in a 3d ferromagnet.

involved in the exchange interaction. This exchange is a scattering process, and therefore only
electrons near the Fermi surface take part. If IS (the phenomenological version of Jij), is the
potential energy gain when a spin is flipped due to the exchange interaction, then the potential
energy gain is

∆E2 = −IS

2
(N↑ − N↓)2 = −N2IS

2
P 2. (1.6)

3This is of course an over-simplification: see for example [11].
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The Stoner criterion for a ferromagnetic instability is then

∆E1 + ∆E2 < 0 ⇒ ISN (EF ) > 1 . (1.7)

N (EF ) can be thought of as some ‘bandwidth’: Co, Fe and (particularly) Ni all have relatively
sharp peaks in the DoS near EF , (as the schematic in figure 1.2), which means a large number
of electrons contribute to the criterion given by equation 1.7.

The bands are split by an amount 2EEx. By analogy with the splitting of the DoS by an
applied field in Pauli paramagnetism, the exchange field (some internal field holding the spins
together) can be defined by the relation

EEx = HExMS , (1.8)

where MS is the saturation magnetisation. EEx and HEx are often used interchangeably in the
literature concerning the S/F proximity effect (see section 2.4), but it is the exchange splitting
EEx that is the relevant energy scale in these systems.

1.1.3.1 Nesting

The shape of the DoS near EF is important for Stoner’s criterion to be met. However the
argument neglected the shape and structure of the Fermi surface itself. In particular ‘nesting’
was ignored. Nesting occurs when large section of occupied (electron) bands can be connected
to unoccupied (hole) bands via a wavevector q in momentum space (figure 1.3). The electrons
and holes can form bound states (the pairing is analogous to the BCS superconducting state
- section 2.2), and generate antiferromagnetic (AF) order (a spin density wave), before the

q

Electrons
Holes

Figure 1.3: Nesting vector q in the band structure of Cr projected onto the (100) plane. Taken from [4]
and [12].

Stoner criterion can be met. The property of nesting will be returned to in the study of the
superconductor / AF proximity effect (section 2.5), since the symmetry breaking on the Fermi
surface due to the nesting has a profound effect on superconductivity.
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1.1.4 Magnetic anisotropy

In the thin films used in this work, there are a large number of competing energies as well as the
exchange coupling, that finally determine the behaviour of the magnetic moments in the sample.
Although the exchange coupling between spins is the strongest interaction, and determines the
magnitude of MS , the magnetisation direction can be determined by the weaker energies. These
terms are generally not isotropic in space. The anisotropies most relevant to the present work
are listed in table 1.1.

Energy Preferred spin alignment
Exchange Ferromagnetic
Zeeman With applied field
Magnetostatic Antiferromagnetic
Crystallographic anisotropy With certain crystal axes
Induced anisotropy Direction of applied field during deposition
Shape anisotropy Parallel to interface (thin films / patterned structures)
Exchange bias Uni-directional (field-cool direction)

Table 1.1: Different energies in a ferromagnet important for this work.

1.1.4.1 Induced anisotropy

Induced anisotropy can be achieved by depositing a thin film in a magnetic field [13]. Various
other means such as annealing in a field, or angled depositions are possible, but not relevant to
this work. The induced anisotropy will be considered further in chapter 4.

1.1.4.2 Shape anisotropy in thin films

The magnetic moment, with all other things equal, will tend to lie in the plane of a thin film.
This is due to the energy cost of the relatively large field produced by magnetic ‘charges’ on the
surface in figure 1.4 (a) compared to (b). The case of perpendicular magnetisation is neglected

Figure 1.4: Demagnetising field for magnetic moments (a) out of plane (b) in plane, for a thin ferro-
magnetic film.

in the present discussion - see [14] for more information.
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1.1.5 Domain walls

From the above discussion, the balance of the different anisotropies determines the final direction
of M. This assumes that there is no further energy cost for spatially uniform M. The stray field
of such a uniform magnetisation must also be considered. There are several ways of representing
the total magnetostatic energy of a ferromagnetic system4. One version is given by

EM = −µ0

2

∫
H′2 dV . (1.9)

The sum is over all space [2], and H′ is the field at a given point due to all the moments. The in-
tegral is always positive, and for macroscopic systems this term can become the dominant energy
- the result being the preference for flux closure rather than perfect ferromagnetic alignment, as
shown in figure 1.5. This is the so-called pole-avoidance principle. This can be understood since
the ‘overlap integral’ of equation 1.4 means that the exchange interaction between F moments
is a short-range force5; whereas the magnetostatic (dipole) interaction is long-ranged, and in-
tegrated over the whole sample. Different domains within the ferromagnet therefore form to
achieve this flux closure.

Figure 1.5: Magnetic moment alignment in zero applied field with (a) exchange term dominant and (b)
one possible arrangement of domains to produce flux closure with the magnetostatic term dominant.

1.1.5.1 Bloch and Néel domain walls

The exchange coupling makes it unfavourably for the direction of the moments to switch suddenly
between domains. Figure 1.6 (a) shows a Bloch domain wall [15] containing smoothly rotating
moments which minimises the energy cost due to the exchange interaction.

For the case of the thin film, the ‘magnetic charges’ formed by the Bloch wall moments
rotating out of plane means that it is more favourable for the moments to rotate in the plane
of the film. A Néel wall [16] (figure 1.6 (b)) is formed in preference to a Bloch wall in this way.
The width of the domain wall is strongly dependent on the material and its anisotropies, but

4For example see section 7.2 in [1].
5Details of the actual range (nearest or next-nearest exchange) is not important.
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Figure 1.6: Spiraling magnetic moments for (a) a Bloch wall, and (b) a Néel domain wall for thin films.
n is the film normal. Adapted from Chikazumi [2].

Figure 1.7: Saturation magnetisation (MS), remanent magnetisation (MR), coercive field (HC) and
saturation field (HS) determined by a M(H) measurement.

is typically of the order of tens to 100 nm. Nucleating and moving domains around over defect
pinning sites takes energy, and is a hysteretic process. This gives a generic explanation to the
shape of the M(H) loop in figure 1.7. The M(H) loop is characterised by a saturation moment
MS , obtained above an applied field HS ; a remanent moment MR, present after applying a field
HS and reducing it to zero; and the coercive field HC : the field required to change the sign of
M . An initial magnetisation curve (rising from H = 0, M = 0), is also observed if the sample
is demagnetised. This can be done by sweeping the applied field through a series of minor
hysteresis loops with decreasing amplitude until M = 0.
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1.2 Magnetically active devices

1.2.1 Giant magnetoresistance

A Giant Magnetoresistance (GMR) change with applied field was discovered by Baibich et al
[17] in multilayers of Fe/Cr grown by molecular beam epitaxy. In that case the MR = 100% ×
(Rmax − Rmin)/Rmax = ∆R/Rmax was nearly 50 % at 4.2 K. GMR was subsequently found in
sputtered multilayer films and granular alloys. This can be understood in a simple picture by
considering the change in electron scattering as the ferromagnetic moments are moved around
from the antiferromagnetically (AF) aligned state to ferromagnetic (F) alignment by the applied
field. The scattering rate of an electron is given via Fermi’s Golden rule as ∝ N (EF ) [18]. Hence
there is more scattering when there are more states available for the electrons to be scattered
into.6 If the shape of the density of states near EF is assumed to be the same as in figure 1.2,
the down spin electrons in figure 1.8 (a) (F alignment) experience a much larger scattering than
the up spins; whereas the situation is equal in the AF case. Considering the two spin channels
as parallel resistors, (figure 1.8 (c) and (d)), the change of resistance between the F and AF
states is then clear.

Co

e

Cu

e

(a) (b)

ee

(c) (d)

Figure 1.8: Paths of majority and minority spin electrons through a GMR multilayer: (a) F alignment,
(b) AF alignment, and equivalent circuits (c) and (d).

It was later found that the strength of the GMR effect oscillated as a function of the thickness
of the spacer between the ferromagnetic layers (figure 1.9). For many materials (other than Cr),
the ‘1st AF peak’ - where the alternate ferromagnetic layers are coupled antiferromagnetically
occurs at ∼ 1 nm spacer thickness, followed by a region of F coupling and a ‘2nd AF peak’ at
∼ 2 nm thickness [19]. The strength of the AF coupling, (the field required to align the anti-
parallel moments), decreases with spacer thickness (3rd order peaks have only seen for materials
with strong coupling). A detailed discussion of the theoretical explanation for the oscillation

6Due to Pauli expulsion only electrons near the Fermi surface can be scattered.
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will not be presented. However a simple model of oscillatory and decaying coupling due to
spin dependent electron confinement in the spacer leads to a good qualitative picture [20]. The
phenomena of GMR will be returned to in section 8.2, as diagnostic tool in the development of
the fabrication technique described in section 5.1.

Figure 1.9: Oscillation of the GMR with Cr
spacer in a [(2 nm)Fe / (tCr)Cr ]N multilayer, for
N = 20 (open circles) and 30 (closed symbols).
Taken from Parkin et al [21].

Figure 1.10: Current direction through thin film
layers for (a) CPP and (b) CIP measurement,
with an applied field H.

It is possible to measure the GMR in either the Current-In-Plane (CIP) or Current-
Perpendicular-to-Plane (CPP) configuration, as shown in figure 1.10. The CIP measurement
requires no patterning and is therefore easier to perform on thin films. The CIP geometry has
the disadvantage of a lower GMR relative to the equivalent CPP measurement. The theoretical
description is also more complex. The CPP configuration gives easier access to many of the fun-
damental parameters of the system [22], but is more complex to achieve experimentally. Various
methods have been developed to produce the preferred CPP configuration with micron-scale
superconducting contacts [23], (these require sensitive resistance measurements due to the low
resistance) and sub-micron length scales accessed using including deposition through nanowires
formed in an insulating polycarbonate matrix [24], or e-beam lithography [25], as well as the
technique discussed in section 5.1.

1.2.2 Spin-valves

The fields required to rotate the magnetic moments from parallel to anti-parallel in section 1.2.1
are relatively large and unsuited for use in magnetic memory applications. A simple spin-valve
(SV) consists of two F layers which rotate from anti-parallel to parallel alignment, and show
a MR for the same reason as the GMR multilayers. If the two layers are made of different
materials (a pseudo-spin-valve (PSV)) the different coercive fields can be exploited: the softer
F layer aligns with a relatively small applied field, with the harder material not switched. The
higher resistance anti-parallel state is achieved. In this case the spacer layer is relatively thick,
and is used to decouple the ferromagnetic layers to prevent them from switching at the same field.
For a CIP configuration the Cu spacer cannot be too thick, since the %MR will be decreased
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due to the Cu shunting the current. This is not a restriction in the CPP case. A review of CPP
SVs can be found in reference [26].

1.2.3 Exchange bias

As an alternative to a PSV, exchange bias can be used to change the properties of one of the
ferromagnetic layers. In this case an antiferromagnet is grown next to the ferromagnetic layer.
The exchange bias coupling between the AF and F layers causes a uni-directional anisotropy to
be formed. The centre of the M(H) loop is shifted from H = 0 by an amount Hbias.7 This effect
was discovered over 40 years ago [27], (for recent reviews see [28, 29]). In addition to the shift
of the hysteresis loop, the HC of the biased F layer is also increased. This can be understood
qualitatively by considering the schematic in figure 1.11 (a). The surface spins of the AF and
F couple together as shown. This coupling gives the preferred direction, (the bias), but also
increases the energy required to move the ferromagnetic domains around, i.e. HC is increased.
This very simplified picture hugely overestimates the strength of the coupling: Hbias ∼ a few T,
compared to tens of mT typically obtained experimentally.

F

AF

(a) (b)

Figure 1.11: (a) Näıve picture of exchange bias effect: spins at the surface of the AF align and pin the
spins in the F layer (b) γ-FeMn 3Q spin structure for an f.c.c. unit cell, taken from Schulthess et al [30].

In practice exchange bias can be set by field cooling through the blocking temperature TB of
the AF, (TB ≤ TN , where TN is the Néel temperature: the antiferromagnetic equivalent of TM ),
or by growing an F/AF bilayer in an applied field H > HS . This field saturates the F layer
before the AF is grown. TB and Hbias both decrease as the AF thickness is decreased below
∼ 6 − 7 nm [31].

1.2.3.1 Antiferromagnetic γ-FeMn

The f.c.c. disordered AF γ-Fe50Mn50 has a bulk TN = 490 K [28], and has been frequently used
in the study of exchange bias. Although its magnetic / exchange bias properties have been
intensively studied, the crystal structure is complex and difficult to probe. The precise nature

7Hex is commonly used in the literature, but avoided here to prevent confusion with the exchange field.
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of the magnetic structure of this material is still under debate [32, 33]. The 3Q structure is
one possibility considered in the literature, as shown in figure 1.11. In this case, the Fe and
Mn atoms are randomly distributed around the lattice sites, with the moments in figure 1.11
pointing in the four < 111 > directions. The nature of the groundstate is not clear however.
Simulations imply that a more complex ‘3Q-R’ structure may have a lower energy [32] - the
question still remains open.

The electronic properties are less well studied, and there have not been any experimental
studies of properties such as the Fermi velocity, electronic heat capacity of FeMn thin films.

1.2.3.2 Interface spin compensation

The nature of the F/AF interface is critical to understand the exchange bias properties. The
spins in the AF can be uncompensated, i.e. a section is taken through one of the sublattices
such that the surface moments are aligned ferromagnetically. Alternatively the surface can be
compensated, and resemble the bulk AF. In this case the exchange bias may also form via a
‘spin-flop’ with the F moments at 90◦ to both AF sublattices [34].

Clearly such detail is very dependent on the sample treatment and growth, (see [29] for more
details). This may have implications for boundary conditions set on S/AF interfaces, to restrain
possible theoretical models of the work discussed in section 8.3.

1.2.4 MR vs ferromagnetic thickness

If the magnetic layers are made thinner, the GMR decreases [35]. This is found for SVs and
GMR multilayers. To examine the MR in the general case, the CPP PSV in figure 1.12 is
considered. Following the work of Valet and Fert [22, 36], in the limit that the spin diffusion
length �S 
 total F thickness, a simple ‘two-resistor’ model can be used. The spin diffusion
length - the length scale over which the electron is spin-flip scattered - is dominated by spin-orbit
coupling and magnetic impurity scattering at low temperatures, and is estimated as > 100 nm
[22]. Throughout this work this limit will be assumed.

Yang et al [37] assumed spin independent Nb/F interfaces such that R↑
Nb/F = R↓

Nb/F =

2RNb/F . Similarly for the normal metal (Cu) ρ↑N = ρ↓N = 2ρN . The bulk F resistivity and
N/F interface resistance have different values dependent on the spin direction. Going from left
to right in figure 1.12, for thicknesses tX of the layer X, the resistance area product in the AF
configuration for the up spin electron is

ARAF↑ = 2ARNb/Co + ρ↑CotCo + AR↑
Co/Cu + 2ρCutCu

+AR↓
Py/Cu + ρ↓PytPy + 2ARNb/Py. (1.10)

By appropriate swapping of ↑ and ↓ in equation 1.10, the value of ARAF↓ can be found, as well
as those for the parallel configuration: ARF↑ and ARF↓. The total AR and A∆R can now be
found, and therefore the % MR.
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1.2.5 Temperature dependence

Figure 1.13 shows the R(H) behaviour of a CIP GMR multilayer, (with tCu near to the 2nd AF
peak), measured at 298 K and 77 K. The hysteresis indicates non-ideal and weak AF coupling
in this case, but this does not detract from the generic T dependence. Both the % MR and HS

are increased as T is decreased. The increase in HS can be attributed to two effects. Thermal
activation of domain wall movement over pinning sites is decreased at lower temperatures [38],
(as is the case in other F materials). The GMR interlayer coupling is also known to increase [39]
at lower temperatures - this has been attributed to the Fermi-Dirac statistics in the N spacer,
or the decrease in magnon scattering. The increase in the MR is also attributed to a decrease
in spin-flip electron-magnon scattering [40, 41].

Nb PyCo NbCu

S FF SN

e

Figure 1.12: Cross section of a CPP PSV struc-
ture, with an ‘up’ spin electron moving from left
to right.

Figure 1.13: R(H) for a [Cu/Co]6 multilayer
(dCu ∼ 2 nm) at 298 K and 77 K.

1.2.6 Effect of film roughness

The comparison between two Nb/GMR/Nb multilayers with nominally identical GMR layers is
shown in figure 1.14. One has thin, (∼ 5 nm) Nb layers above and below the GMR multilayer,
the other with thicker (150 nm) Nb. The increased roughness of the Nb underlayer has lead
to an increased HC . This has been explained (figure 1.15) in terms of magnetostatic coupling
between the ‘charges’ of two finite thickness F layers, due to the conformal roughness of the
film. The charges act as barriers reducing the mobility of domain walls, increasing HC , and
also increases the tendency for F coupling, making the MR response weaker. This will be a
consideration returned to in section 8.2.

1.2.7 Effect of lateral size

The domains in section 1.1.5, which reduced the stray flux, cost energy. For small enough
samples this energy is too large, and the patterned magnetic element is single domain.8 For

8Although this does not necessarily imply uniform magnetisation [44].
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Figure 1.14: Nb/GMR/Nb M(H) loops with
the same GMR layers, and thin and thick Nb lay-
ers, (see section 8.2 for film details).

Figure 1.15: Ferromagnetic coupling of mag-
netic layers due to conformal roughness. After
Néel [42] and Kools et al [43].

a high aspect ratio ferromagnetic wire, it is energetically favourable for the moments to point
along the length of the wire to reduce the demagnetising field, (using the same argument as the
thin films in section 1.1.4.2). The coercive and saturation fields of the wire in that direction is
therefore increased as the width is decreased [45]. Edge roughness due to the milling may also
increase HC [46]. These are just two possible outcomes of lateral patterning of thin F films.
The physics of this type of patterning is important technologically and intensively studied. For
a very thorough and recent review see [44].

The GMR of sub-micron high aspect ratio shapes is affected only weakly or not at all [47].
Although this would seem surprising, it may be that patterning induced defects / roughness
mask the increase in MR. The reduction in the number of domains with size can also change the
shape of the R(H) response ([48] and section 8.4.3). This is due to the fact that the complex
reversal mechanisms in these cases are no longer averaged over many domains. The resistance
of individual domains can therefore be a significant fraction of the total value.
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Chapter 2

Superconductivity

The basic theory of low temperature superconductors is introduced [1, 2, 3]. The proximity
effect between superconductors, normal [4], ferromagnetic [5] and antiferromagnetic metals is
then examined, with the relationship to Andreev reflection [6]. Following this there is a brief
discussion of the ‘high temperature’ superconducting cuprates.

20
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2.1 Principal features

After the discovery of the sudden drop in resistivity in Hg at liquid helium temperatures [7],
many other materials were subsequently found to show a similar transition at a variety of tem-
peratures. The d.c. resistivity below this superconducting transition temperature was zero to
within experimental error. Bulk niobium has the highest transition temperature TC = 9.25 K,
of the naturally occurring elements at atmospheric pressure. When the transition to the super-
conducting state occurs, the material does not simply become a perfect conductor. Meissner
and Ocshenfeld [8] showed that magnetic flux is expelled from a superconductor when cooled
below TC . This perfect diamagnetism is in contrast to the trapping of flux expected on the basis
of Faraday’s law for a perfect conductor.

The phase transition that occurs at TC provides the energy required to expel flux. The
‘Meissner effect’ therefore can only occur up to a certain critical magnetic field. Type I super-
conductors are no longer superconducting above this critical flux density BC , (the flux density B

is used in place of the field H to avoid confusion with the coercive field HC). Type II supercon-
ductors are no longer perfect diamagnets above a flux density BC1, and the flux enters the bulk
as quantised vortices, (section 2.1.3). Only at the higher flux density BC2 is superconductivity
totally suppressed.1

2.1.1 Two-Fluid model and London theory

As a phenomenological model of superconductivity, the Two-Fluid model [9] assumes a certain
fraction of the normal electrons become dissipationless superelectrons. This fraction is temper-
ature dependent, ranging from zero just above TC , to one at 0 K. This model gives a simple
explanation of why the critical field changes with temperature, and provided limited quantitative
agreement with experiment.

F. London and H. London [10] adopted the diamagnetic property as being most fundamental
and assumed a superfluid wavefunction with effective superelectron pair density np of the form
Ψ = √

np eiθ that was rigid to the ‘vorticity’ imparted by a magnetic field, (the pair density is
used as a convenience, second guessing the result of the microscopic theory in section 2.2). Using
the standard gauge invariant [1] quantum mechanical form for current density in the presence
of a vector potential A, the supercurrent density J is then

ΛJ = −
(

�

2e
∇θ + A

)
. (2.1)

Λ = me/nse
2, and the superelectron density ns = 2np. With the addition of Maxwell’s equations

the Londons were able to account for the zero resistivity and also show that magnetic flux does
penetrate the superconductor, but decays exponentially into the bulk. The characteristic decay
length is the London penetration depth λ = (Λ/µ0)

1
2 which is of the order of 44 nm for Nb -

a typical value for a metallic low TC superconductor. The surface supercurrent J provides an
equal and opposite magnetic field which cancels the applied field.

1Other fields such as the surface critical field BC3 are ignored for simplicity.
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Integrating equation 2.1 around a closed loop, the phase θ must be single valued to within
a factor of 2π. ∮

(A + ΛJ) · dx =
�

2e
2πn, (2.2)

where n is an integer. For the case of a bulk superconductor a contour can be chosen inside the
material where J = 0. The integral

∮
A · dx is the flux Φ through the loop. Defining the flux

quantum Φ0 = h
2e , equation 2.2 leads to Φ = nΦ0. The flux through the loop of superconductor

is quantised in units of Φ0.

2.1.2 Ginzburg-Landau theory

The Ginzburg-Landau (GL) theory allows the number density of superelectrons to vary in space.
At TC a more subtle symmetry is broken compared to the rotational symmetry of a ferromagnet
(section 1.1.1). The superfluid wavefunction, now written as ψ(x), breaks the gauge symmetry
and chooses a definite quantum mechanical phase, which is rigid (as in the London model) over
macroscopic length scales. The phenomenological free energy density is written in terms of ψ

which is complex, and can be position dependent:

f(ψ, T ) = f0(T ) + ε(T )|ψ|2 +
1
2
α |ψ|4 + β |(−i�∇ + e∗A)ψ|2 + .... (2.3)

Where α, β and ε are phenomenological terms, and e∗ some effective charge, (which turns out
to be twice the electronic charge). Conventionally β is taken as 1/2m∗ where m∗ = 2me - the
mass of a pair, and ε ∝ (T − TC)/TC , analogous to the ferromagnetic case. Minimizing over all
space:

1
2m∗ (−i�∇ + 2eA)2ψ + (ε + α|ψ|2)ψ = 0 . (2.4)

Equation 2.4 allows ψ to be found for any given A. With suitable boundary conditions [1] the
GL penetration depth and coherence lengths can be derived from equation 2.4:

λGL =
√

m∗α/4µ0e2|ε| , (2.5)

ξGL =
√

�2/2m∗|ε| . (2.6)

ξGL(T ) is the characteristic length scale over which ψ(x) varies. Using the microscopic theory
(section 2.2) ξGL in the dirty limit can be shown to be

ξGL = 0.855
√

ξ0�

(
TC − T

TC

)− 1
2

. (2.7)

Where, (in the clean limit: � 
 ξ0), ξ0 ≈ �vF /kBTC . vF is the Fermi velocity, � the electronic
mean free path and kB Boltzmann’s constant (also see section 2.2).
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2.1.3 Abrikosov vortices

Using the GL theory, Abrikosov [11] considered a superconductor in a magnetic field, and showed
that when the ratio κ = λGL(T )/ξGL(T ) was large enough (κ > 1/

√
2) the superconductor /

normal interface was unstable, and broke up into normal and superconducting regions. This is
the case of type II superconductors above BC1, where flux enters the bulk as quantised vortices,
(type I have κ < 1/

√
2). These vortices are characterised by a core of size ∼ ξGL(T ) in which |ψ|

is suppressed, and a circulating supercurrent which shields the flux line from the bulk, extending
a distance ∼ λGL(T) from centre of the core (figure 2.1).

If these vortices move, voltages are generated and the superconductor can no longer carry
current without dissipation [12]. However it is energetically favourable for the normal core of the
vortex to sit on an impurity or damaged region which is not superconducting. Vortices can be
pinned at such sites, and prevented from moving. This pinning is important both technologically
[13] and in the present work (section 7.1).

Figure 2.1: Schematic of the behaviour of the
flux density B (solid line), and the wavefunction
ψ (dashed line) around a vortex. Taken from Wal-
dram [1].

-k

k

-k
k

Figure 2.2: Scattering transition of paired elec-
trons (with zero net momentum), around the
Fermi surface in the Cooper model.

2.2 Microscopic theory

The prediction by Fröhlich [14] and experimental verification of the ‘isotope effect’ showed
that lattice phonons were important in coupling electrons to form the superconducting state.
Cooper showed that for a small attractive potential Vk,k′ = 〈k,−k|V |k′,−k′〉 (figure 2.2) a
pair of electrons in contact with the Fermi sea is unstable with respect to condensation into a
bound pair [15]. This provided a mechanism of bonding electrons together involving phonon
coupling. The theoretical model was not simple, since the coupled state cannot be derived by a
perturbation of the uncoupled state [16, 17].

The Bardeen-Cooper-Schrieffer (BCS) theory [18] followed from the work of Cooper, and was
able to account for the properties of superconductors in terms of the condensation of ‘Cooper’
electron pairs into a macroscopically occupied groundstate. The calculation of parameters such
as the penetration depth, coherence length and critical fields could be then made from first
principles. Lattice phonons interacting with the electrons provide the attractive potential energy
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V required by the Cooper theory. In a very basic model, an electron distorts the crystal lattice
producing a local region of low potential energy. As long as the interaction is not too strong, (i.e.
the momentum transfer is small compared to the phonon frequency), the electron moves off in
a time much faster than the lattice relaxes, (so-called overscreening) enabling another electron
to take advantage of the potential well, which effectively couples the two electrons together.

The superconducting groundstate |ψG〉 can be written as

|ψG〉 =
∏
k

(uk + eiθvka
†
k↑a

†
−k↓)|0〉 , (2.8)

with
|u2

k| + |v2
k| = 1 . (2.9)

Here |0〉 is the vacuum state, eiθ is an arbitrary phase factor associated with all of the Cooper
pairs. The a†ks operators obey the fermionic commutation rules, (which embody Pauli’s exclusion
principle), and create an electron with spin s and momentum k. |uk|2 gives the probability of
the momentum pair state being empty, and |vk|2 it being full. Using this groundstate the energy
of an electron with momentum k is given by

E2
k = ε2

k + ∆2
k . (2.10)

εk is the reservoir energy, from which the electron is excited, and ∆k is the superconducting gap

Figure 2.3: (a) Excitation spectrum for a normal metal measured relative to the Fermi energy. The
excitation above EF can be considered as electron-like (•) or hole-like (◦). (b) Detail of the gap in
the superconductor spectrum (solid line) compared to the normal case (dashed line) near the Fermi
wavevector kF , according to equation 2.10.

in the energy spectrum (figure 2.3). An energy of 2∆k must therefore be supplied to break up
a Cooper pair, and produce excitations. Since the gap has blurred the Fermi energy above and
below kF , these excitations can have electron-like and hole-like properties, and will be referred
to as quasi-particles. In addition to the intra-pair attraction it is the strong overlap and pair-
pair correlations which cause the gap to open. The pairs are immune to scattering due to these
pair-pair correlations caused by Pauli exclusion.
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The gap ∆k is determined using

∆k = −
∑
k′

Vk,k′∆k′

2Ek′
. (2.11)

In the weak-coupling limit V can be approximated as a (negative) constant. In this simplest
case, the most energetically favourable state is an s-wave symmetry (∆ independent of k) with
the Cooper pairs having overall zero momentum, and spin singlet (−k ↑, +k ↓). The singlet
ensures the overall fermionic anti-symmetry of the wavefunction.

The coherence length can now be understood in BCS theory as the ‘size’ of a Cooper pair.
In the clean limit ξ0 = �vF /π∆(0). Where ∆(0) ≈ 1.76kBTC , (this is valid for many metals).
Given the electron density in most metals, and the size of ξ0, Cooper pairs spatially overlap in
conventional BCS superconductors.

It is important to note that for the formulation used in equation 2.8, the number operator
is not an eigenstate. The distribution of N is strongly peaked around the actual value, but its
value is uncertain. This is important for the Josephson effect (chapter 3). In fact it is possible
to show that the N and θ are conjugate variables such that

∆N ∆θ ≥ 1 . (2.12)

2.3 The proximity effect

When a superconductor is placed in good electrical contact with another material it is clear that
the gap parameter ∆ must change with position. The standard mean field approach of BCS
theory is inapplicable in this situation. Gor’kov [19] was able to show that the GL theory could
be derived from a limiting case of the BCS microscopic model, and used position dependent gap
∆(x) as an order parameter [20]:

∆(x) = V (x)F (x) . (2.13)

|F |2 gives the probability of finding a Cooper pair at position x. The effective electron-electron
interaction is given by V (x), which is attractive in the superconductor, but can be zero in the
other material. In the superconductor / normal metal (S/N) bilayer with V = 0 in the N layer,
∆ = 0 in the normal metal, but F (x) is non-zero close to the interface.2

A simple model of the interface with no current is shown below in figure 2.4. Werthamer and
de Gennes [21] theory extended Gor’kov’s work assuming thick layers in the dirty limit: such
that the microscopic details at the interface become less important.

The characteristic decay length in the normal metal ξN in the clean and dirty limits is given
by

ξ0
N = �vF /2πkBT , (2.14)

2The case V < 0 for a normal metal is the case that it is a superconductor with T > TC .



Superconductivity 26

Figure 2.4: Behaviour of ψ(x) near a S/N inter-
face.

Figure 2.5: Andreev reflection of an quasi-
electron (•) as a quasi-hole (◦) at an S/N inter-
face. After Zagoskin [6].

and

ξN =
√

�vF �

6πkBT
. (2.15)

respectively. In figure 2.4 the boundary conditions at the interface are such that not only is
there some ‘leakage’ of the Cooper pair density into the normal metal, but also the proximity of
the metal reduces the Cooper pair density in the superconductor. In thin films this weakening
of the superconductivity near the boundary leads to suppression of TC .

In the one frequency approximation for film thickness dS,(N) > ξS,(N) in the dirty limit the
TC of an S/N bilayer is given as

q tan(q dS) =
DNNN (EF )
DSNS(EF )

K tanh(KdN ) . (2.16)

q and K are the wavevectors in the S and N layers, DX = 1
3vF � and NX(EF ) are respectively

the electronic diffusion constant and density of states at the Fermi level in the X layer.

2.3.1 Andreev reflection

Current can flow from a normal metal into a superconductor with an applied voltage < ∆. Since
single particle excitations cannot exist in the superconductor with sub-gap energies, the incoming
electrons must be converted into Cooper pairs. This process is known as Andreev reflection [22],
and is shown schematically in figure 2.5. The magnitude of ∆(x) steadily increases upon passing
into the bulk superconductor. When the energy of the electron E = ∆(x) the quasi-electron’s
momentum is near perfectly reversed,3 the spin flipped, and a quasi-hole returns from right to left
in the figure. To conserve charge, spin and momentum a Cooper pair enters the superconductor.

In clean structures where Andreev reflection is the dominant process, (in the absence of
normal reflection due to e.g. Fermi velocity mismatch), interference of the quasi-electrons and
holes can lead to oscillatory transport properties. These effects will not be discussed - see [23]
for a review. Importantly for the present case, Andreev reflection is strongly altered in the case
of an S/F boundary. This will be discussed in section 2.4.1.

3Not specularly reflected.
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2.4 Ferromagnetic proximity effect

The orbital motion of electrons in an applied magnetic field causes the break up of Cooper pairs.
This effect is present when a ferromagnetic layer is considered in proximity to a superconductor.
However, more important in this case is the so-called paramagnetic effect, in which a relatively
strong magnetic field suppresses superconductivity by aligning the spins of the electrons in a
Cooper pair. On a microscopic level following Demler et al [24], a Cooper pair is considered
adiabatically transferred from a superconductor into a ferromagnet, in the absence of significant
spin-orbit coupling. Electrons with spin parallel to the exchange field in the Cooper pairs are
decreased in potential energy, the spins anti-parallel to the exchange field are increased in energy
by the same amount. In order for the total electron energy to remain constant the momenta
change by an amount ±∆k = ±EEx/�vF . Fermionic antisymmetry requires that the pair must
also be described with the spin up and spin down electrons interchanged in momentum space,
(figure 2.6 (a)(i) and (ii)).

Figure 2.6: (a) Two possible configurations (i) and (ii) for the momentum change of electrons in a
Cooper pair due to (b) band splitting in the presence of exchange field. After Demler et al [24].

Combining the two possibilities into a singlet produces a wavefunction of the form cos(Q(x1+
x2))Ψ(x1 − x2), where Ψ(x1 − x2) is the original wave function of the Cooper pair in the super-
conductor, (with electrons at x1 and x2), and Q is the centre of mass momentum 2EEx/�vF .
The amplitude and phase of the order parameter spatially oscillates. This type of spatially in-
homogeneous superconductivity with a non-zero centre of mass momentum is formally the same
as the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state [25, 26] predicted for type II materials
in high applied magnetic fields.4 The FFLO state occurs in a relatively small region of the
(H, T ) phase diagram [28]. In this case the superconductivity is induced in the ferromagnet by
the superconductor, with HEx analogous to the high applied field in the FFLO case, and the
‘bulk’ multilayer is a combination of BCS and FFLO states in the S and F layers respectively.
However the Cooper pair is not an eigenstate in the F layer. Hence the order parameter decays
exponentially away from the S/F interface, as in the S/N case. The S/F proximity effect is

4Experimental observations of the FFLO state in bulk samples have been made only recently [27].



Superconductivity 28

characterised by an decaying, but oscillating order parameter.
The two characteristic length scales in the ferromagnetic layer, the decay length ξF1, and

the oscillation period ξF2 arise from the general form given by [29]:

ξF =
[

�D

2(πkBT + iEEx)

] 1
2

. (2.17)

For a strong ferromagnet EEx 
 kBT , and ξF1 = ξF2. Other limits of equation 2.17 will be
discussed in section 3.2.

2.4.1 Implications for Andreev reflection

Quasi-particles have their spin flipped when they undergo Andreev reflection (section 2.3.1). In
the S/F case a majority (up) spin quasi-electron is reflected as a minority (down) spin. Assuming
the up and down spin channels do not mix, the conductance is then controlled by the minority
band density of states, if magnon assisted spin-flip scattering is ignored [30]. In such cases a
non-equilibrium accumulation of spins may build up at the S/F interface [31].

This may have important consequences in the measurement of CPP GMR multilayers dis-
cussed in section 1.2.1. Several experiments [32, 33], (as well as the present work: section 8.2),
use superconducting Nb electrodes. Theoretical modelling by Taddei et al [34] found a large
suppression in the CPP GMR for structures with superconducting electrodes in the clean limit,
due to Andreev reflection at the S/F interface. As shown in their schematic (figure 2.7), because
the up spin quasi-electrons are reflected as down spin quasi-holes, in total they ‘see’ the same
resistance in the anti-parallel (AF) and parallel (F) orientations of the GMR stack, (compare
with figure 1.8). Taddei et al initially concluded that spin-flip scattering was the only cause
of the GMR observed experimentally [34], but later added the possibility that spin orbit cou-
pling could reduce the difference between the theory and experiment [35]. Other models using
semi-infinite S layers (rather than the finite thicknesses of the work of Taddei et al), showed a
similar suppression to zero MR in the diffusive limit, but recovered the MR in the ballistic /
quasi-ballistic limit [36, 37]. The Andreev conductance of domain walls near the S/F interface

(a) (b)

h

e

S S

h

e

Figure 2.7: Schematic diagram of the scattering potentials experienced by Andreev reflected quasipar-
ticles in a GMR multilayer due to an S/F interface in the (a) AF and (b) F alignments. Taken from
Taddei et al [34].

has also been considered by Chtchelkatchev et al [38]. In this case, in the limit of full polarisation
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in the ferromagnetic layer, the sub-gap Andreev conductance is proportional to the total length
of domain walls at the S/F interface.

2.4.2 Multilayer studies

It was noted by de Gennes that ξF would typically be < 10 nm due to the pair breaking exchange
field, and that films of that thickness were ‘very difficult to prepare’ [39]. Advances in thin film
growth now allow the preparation of high quality S/F structures within this thickness range.

The oscillations of ξF mean that for a suitable thickness of ferromagnetic dF , the groundstate
phase difference between consecutive S layers in a S/F multilayer can be π, instead of 0 [40, 41]
(also see section 3.2).5 This was predicted to give a non-monotonic dependence of the transition
temperature vs ferromagnetic thickness TC(dF ), in S/F multilayers.

Wong et al [42] initiated the renewed theoretical and experimental interest in the field when
they studied the critical field BC2 parallel to the plane, in V/Fe superlattices. A crossover in the
field dependence from two-dimensional to three-dimensional was found when dV ∼ ξBCS and
dFe ∼ a few atomic planes, implying coexistence of superconductivity and ferromagnetism for
the three-dimensional case. Similar behaviour was then found in V/Ni [43] and Mo/Ni structures
[44].

Following this work, an array of different multilayer systems have since been examined.
Recent reviews can be found in [5, 45]. Many different systems were studied, showing oscillating
TC(dF ) [46, 47, 48]. Many however found no such behaviour [49, 50, 51, 52], other than a strong
decoupling effect of the superconducting layers by only a few nm of ferromagnetic material.
Evidence for π coupling was cast into further doubt when oscillatory TC(dF ) was found in
F/S/F trilayers [53, 54]. In these cases π-coupling must be ruled out, since there is only one
superconducting layer.

Various theoretical models of trilayer and multilayer systems have developed predicting os-
cillatory TC(dF ) [22, 41, 55, 56]. The interface roughness and alloying for such thin F layers is
crucial [54]. These factors, along with spin-orbit coupling can wash out the oscillatory behaviour
[45]. The different results have been attributed to changes in the S/F interface transparency at
the onset of ferromagnetism, which is dependent on the system studied [57, 58], making clear
evidence for a π shift difficult to prove. As shall be seen in section 3.2 it has only been with the
use of weak F layers, (alloys with low TM ), that ξF is large enough that π phase shifts can be
controllably demonstrated using tunnel and Josephson junctions.

2.4.3 ‘Spin-valve’ structures

Various designs have been put forward to use the ferromagnetic layer - the orientation of which
can be changed with an applied field - to controllable alter the superconducting layer in proximity
to it. In the simplest case of an S/F bilayer, the transport properties can be varied in accordance

5The 0-π transition was found to be continuous with stable states between 0 and π but only “in a narrow
range” [41].
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with the hysteresis of the ferromagnet. This has been interpreted in terms of domain structure
in the F layer [59] or spontaneous vortices in the S layer [60].

Other ‘spin-valve’ devices using multiple ferromagnetic layers (figure 2.8) have been examined
theoretically, [61, 62, 63]. These structures are predicted to show a strong variation of TC with
the relative orientation of the ferromagnetic layers. In the case of the F/S/F structure, only a
small change in TC has been found experimentally [64] compared to the theoretical value.

Figure 2.8: Schematics of (a) the F/S/F spin-valve as suggested by Tagirov [62] and (b) the S/F1/F2

structure of Oh et al [63].

2.4.3.1 Anomalous proximity effect

There is increasing evidence for coupling through ferromagnetic materials over a length scale two
orders of magnitude greater than the typical values of ξF above [65, 66, 67, 68]. This surprising
result may be explained due to the presence of domain walls in the ferromagnetic layer. The
rotating magnetic moment may turn the singlet Cooper pair into a triplet state, which can
penetrate the ferromagnet to a similar distance as the singlet state in the normal metal case
[69, 70, 71]. Currently this possibility has not been confirmed.

2.5 Antiferromagnetic proximity effect

Krivoruchko has considered the superconductor / antiferromagnet (S/AF) system, where the
same charge carriers take part in the superconductivity and antiferromagnetism [72, 73]. In
the case of band antiferromagnetism due to nesting of the Fermi surfaces (section 1.1.3.1), the
symmetry in momentum space is destroyed, similar to the splitting of the Fermi surface in the
ferromagnetic case. Therefore a band antiferromagnet heavily suppresses superconductivity. In
the dirty limit (for both S and AF), assuming that the characteristic frequencies of the system
are such that �ω ∼ TC � TN then the AF wavevector has the form kAF = 2/ξAF (rather than
the complex form kF = 2(1 + i)/ξF which gives rise to the oscillating order parameter in the
ferromagnetic case - section 2.4). This leads to a coherence length ξAF , of the form

ξAF =
[
2�D

EEx

] 1
2

. (2.18)

EEx ∼ kBTN is now the exchange coupling energy between the AF spins [72].
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As seen in section 2.4, there is a large body of experimental and theoretical work concerning
the S/F proximity effect. This is not the case for the S/AF system. Cr is a good example
known to have a variety of spin density wave phases [74], and has attracted some investigation
in Nb/Cr multilayers [75], and Cr/V/Cr trilayers [76]. Nb/CuMn (spin-glass) systems have
also been studied [77], but very few other systems (see references in [73]). In the absence of a
large theoretical literature, much of the theory presented in this section and section 3.3 uses a
simplified model to give a generic understanding of the S/AF system.

The TC of S/AF bilayers with varying dS and dAF are presented in section 8.3.2. In reference
[76] the data was analysed in terms of the Werthamer theory [78], which considers the case that
the metals are identical in the normal state - i.e. the Fermi velocities, residual resistivity and
Debye temperatures are the same, and uses a single effective coherence length. In the present
case however the Nb and FeMn films are significantly different, and the coherence lengths of the
S and AF should be considered separately. Hence the de Gennes theory in the one frequency
approximation is used [79] (section 2.3).

The AF is taken to have TC = 0 K. Using

1
q
≈ ξS

√
2

(
T − TC

TC

)− 1
2

(2.19)

and K = kAF = 2/ξAF in equation 2.16 above, the TC of the S/AF bilayer satisfies

1√
2 ξS

√(
TCS

TC
− 1

)
tan

[
dS√
2 ξS

√(
TCS

TC
− 1

) ]
=

2
ξAF

DAFNAF (EF )
DSNS(EF )

tanh
[
2dAF

ξAF

]
, (2.20)

where ξS = 0.855(ξ0�)
1
2 . 1/q is within 20 % of ξGL in this approximation [80]. The largest

root of this equation gives TC , the transition temperature of the bilayer. Here NS,AF (EF ) are
the density of states at the Fermi level of the S and AF respectively, and TCS the transition
temperature of the plain S layer, (without the AF next to it).

A more complex Green’s function method, which goes beyond the one frequency approx-
imation, used by Krivoruchko [73] will not be presented here, but will be compared to the
experimental data in section 8.3.2.

2.6 Superconductivity in the cuprates

The first member of the family of ‘High Temperature Superconductors’ (HTS) to be discovered
was La2−xBaxCuO4 [81]. Many different cuprates were subsequently discovered, all based around
the layered perovskite structure, with superconductivity strongly sensitive to the stoichiometry
[82]. At present HgBa2Ca2Cu3O8 has the highest TC = 157 K at a pressure of 23.5 GPa [83],
with Tl2Ba2CaCu2O8 (Tl-2212), having TC ∼ 100 K [84], (see figure 2.9 (a) and section 6.1).

Of most relevance to this work is the layered and anisotropic electrical properties of the
cuprates both above and below TC . For example, above TC , values of the resistivity ratio
ρc/ρab for the different crystallographic direction a, b and c vary from 10 for optimally doped
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Figure 2.9: (a) The crystal structure of Tl-2212 from Poole [82] after Subramanian et al [85]. (b)
Amplitude and phase of the gap parameter ∆(k) with dx2−y2 symmetry relative to the crystallographic
directions a and b (a = b in this case).

YBa2Cu3O6+x (YBCO) to 105 for Bi2Sr2CaCu2O8+x [1]. The superconductivity is thought to
preside in the CuO2 planes, with the other layers acting as a combination of spacer and charge
reservoir. The coherence length ξ is relatively short in both the a-b plane and c directions (of the
order of 2 nm and 0.5 nm respectively [1]). Hence the superconductivity in neighbouring CuO2

planes can be only weakly coupled. Due to the weak interplane coupling intrinsic Josephson
junctions are observed when current is passed in the c-direction of the more anisotropic cuprates
(see section 3.6 for further theory and section 6.1.5.1 for measurements of Tl-2212 junctions).

There is currently no full theoretical description of the superconducting and normal state
properties of the HTS. The superconductivity is based on Cooper pairs [86], and Knight shift
measurements and symmetry arguments [87] mean that the Cooper pairs are singlet, but the
microscopic mechanism is not clear. The determination of the symmetry of the gap parameter
∆ was one of the key experimental results which constrains the possible theories of the HTS [87].
After several crucial phase sensitive experiments [88, 89] using YBCO it was generally agreed
that the symmetry is dominated by a dx2−y2 component. The amplitude of ∆ varies in k-space,
and the phase changes sign across nodal lines at 45◦ to the a and b directions (figure 2.9 (b)).
The work in YBCO has been repeated with similar results for compounds in the different groups
of the HTS family [90], but the universality of the d-wave symmetry is not confirmed.

For device physics the result of d-wave symmetry is somewhat similar to the oscillating phase
of the order parameter in the ferromagnet. The π shift for example in S/F multilayers, can be
mirrored by arranging that the two lobes of the d-wave with different sign should meet, or by
using d-wave / s-wave junctions [91, 92], (see figure 3.10 in section 3.6.2).
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[17] A. B. Migdal, Zh. Éksp. Teor. Fiz. 34, 1438 (1958), [JETP 7 996 (1957)].
[18] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
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Chapter 3

Josephson Effect

The theory of the Josephson effect for insulating, normal metal [1, 2], antiferromagnetic, fer-
romagnetic, and inhomogeneous ferromagnetic barriers is outlined. SQUIDs [3] and cuprate
junctions [4] are then considered.

36



Josephson Effect 37

3.1 The Josephson effect

The Josephson effect occurs when Cooper pairs pass through a ‘weak-link’. It was theoretically
predicted [5] and verified experimentally soon afterwards in single junctions [6], and loops with
two junctions [7]. The initial prediction was for the case of an S/I/S (I = insulator) tunnel
junction. Cooper pairs were shown to be able to tunnel through the barrier with a rate of the
same order of magnitude as ‘normal’, single particle excitations. Initially it was thought that
the probability of two electrons tunnelling at the same time would be much less than single
particle tunnelling, and that the effect would therefore be too small to observe.

To understand why the Josephson effect is observable, it is noted from the previous chapter
that macroscopic phase coherence is a crucial requirement for superconductivity, but also that
there is a number-phase uncertainty (equation 2.12). For an isolated system ∆N = 0 and hence
θ is not determined: the phase is rigid, but the absolute value is arbitrary. When two coupled
systems are considered the relative phase is important, (consider for example equation 2.1).
Now that ∆θ is restrained,1 N is uncertain in the two superconducting banks. This uncertainty
can be seen as the decaying ‘tail’ of the wavefunction ψ having some finite value in the other
S electrode. The Josephson effect is therefore not the same as two single electrons tunnelling
at the same time. The electrons are not independent: they both come from the same phase
coherent reservoir, which has some finite probability of existing in the other electrode. The
phase coherence plays the crucial rôle in allowing the measurement of the Josephson current. In
fact the ubiquity of the Josephson effect is such that this weak coupling limit can be applied to
any macroscopic wavefunction [8].

The ‘weak-link’ is defined such that when a phase difference of 2π (or integer multiples) is
applied across the weak-link, it returns reversibly to its original state. This is in contrast to
the application of a phase gradient in a bulk superconductor, (equation 2.1) which leads to a
supercurrent, and does not return to its original state. From this definition, a ‘weak-link’ has
a 2π-periodic free energy. The free energy is written as F = −F0 cos φ where F0 > 0, such
that F is minimal for φ = θ1 − θ2 = 0 in zero magnetic field. The phase difference of the two
superconducting banks is measured in the direction of the momentum change, and therefore
opposite to the conventional current. Using �∂φ/∂t = 2eV , and identifying dF/dt with the
power IV , the Josephson relation

I = IC sinφ (3.1)

is obtained, where IC = 2eF0/�. At zero voltage the ‘d.c. Josephson effect’ gives supercurrent
flowing through the junction whose amplitude depends only on the phase difference across it, so
long as |I| < IC . An applied voltage causes the phase difference and hence the supercurrent to
oscillate at a frequency of 2eV/h ∼ 480 GHz/mV: the so-called ‘a.c. Josephson effect’. This high
frequency oscillation is averaged to zero over a normal measurement time. Shapiro [9] showed
that the application of microwaves to a junction can lock-in to this high frequency a.c. current,
generating spikes in a voltage biased I − V characteristic, (or steps if the junction is current

1The fact that ∆θ is fixed is not completely trivial - see [1].
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biased - as in the present work), at voltages determined only by the frequency of the microwave
signal and fundamental ratio e/h. This can be used to generate voltage standards (section 6.2),
and is known as the ‘inverse a.c. Josephson effect’.

It is important to note that equation 3.1 is only a first order term, and departures from
sinusoidal behaviour are often found [2].

3.1.1 S/I/S junctions

When I > IC in an S/I/S junction at T = 0 K, no current flows until a voltage 2∆/e is dropped
across the junction, (assuming ∆ in the two S electrodes is the same). Above this voltage Cooper
pairs are split up, and a resistive quasi-particle branch is seen, (figure 3.1). Calculating F0 from
the BCS theory, the ICRN product for an S/I/S junction is [10] :

IC(T )RN =
(

π∆(T )
2e

)
tanh

(
∆(T )
2kBT

)
. (3.2)

For the RCSJ model discussed in section 3.1.5 it is important to note that S/I/S junctions can

Figure 3.1: Positive quadrant of I − V char-
acteristic at T = 0 K for an S/I/S (black) and
S/N/S (red) junction.
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Figure 3.2: Josephson junction of width X with
barrier thickness d. Current I flows as shown. A
flux density B is applied out of plane.

have significant capacitance compared to metallic junctions, leading to significant hysteresis in
the I − V curves.

3.1.2 S/N/S junctions

The S/N/S case can be considered as two S/N bilayers. From the proximity effect discussed in
section 2.3 it is clear that an S/N/S Josephson junction can be formed. For a long (dN 
 ξN )
S/N/S junction in the dirty limit:

IC(T )RN =
(

3π∆2
s

2ekBTc

)
dN/ξN

sinh(dN/ξN )
. (3.3)
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∆s is the value of ∆(x) just next to the S/N interface [11]. Likharev [2] considered the rigid
boundary condition ∆s = ∆bulk = ∆ and obtained

IC(T )RN =
(

2|∆2|
πekBTc

)
dN/ξN

sinh(dN/ξN )
(3.4)

in the long limit, but also calculated IC(T )RN for a range of dN/ξN ratios. Near TC the T

dependence of ∆s means that IC ∝ (T − TC) for rigid boundary conditions, and (T − TC)2 for
soft boundary conditions [12].

The normal state resistance is determined largely through RN = (ρNdN + 2RS/N )/A where
ρN is the N layer resistivity, RS/N is the specific contact resistance, and A the junction area,
(although in equation 3.3 RN = ρNL, [11]).

3.1.3 Response to magnetic field

When a flux B threads a Josephson junction, the gauge invariant phase is given by

φ = θ1 − θ2 − 2e

�

∫ 2

1
A · dy . (3.5)

This causes the phase to vary across the junction width according to

φ(x) = φ(0) − 2πBxd̃/Φ0 . (3.6)

d̃ = d + 2λ, where d is the barrier thickness (figure 3.2). As long as the junction width is short
compared to the Josephson penetration depth λJ then the field generated by the current can be
neglected, and the current flows uniformly across the junction. λJ is given by

λJ = (�/2eµ0JC d̃)
1
2 . (3.7)

JC = IC/XZ is the junction critical current density, with Z the junction dimension normal to
the page in figure 3.2. In this case the critical current as a function of applied field, IC(H),
is analogous to the diffraction of light, and can be found by Fourier transforming the junction
‘aperture’. For a ‘single slit’ junction with uniform current

IC = XZ JC

∣∣∣∣∣sin(πBXd̃/Φ0)
πBXd̃/Φ0

∣∣∣∣∣ (3.8)

as shown in figure 3.3. IC(H) can be modelled for non-uniform current flow [3]. An important
case is when the junction dimensions ≥ λJ . The flux is screened from the centre of the junction,
and the self field of the current cannot be neglected. The IC(H) becomes triangular and can be
asymmetric, depending on the geometry (figure 3.4) [3].
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Figure 3.3: Josephson junction IC vs flux in
the barrier, showing the ideal ‘Fraunhofer diffrac-
tion’.

Figure 3.4: A Nb/Mo/Nb junction IC(H) in the
long limit (see section 7.2). Inset: Geometry of
the ‘in-line’ junction.

3.1.4 Finite S thickness

In the derivation of the ‘Fraunhofer’ modulation IC(H) in section 3.1.3 it was assumed that the
electrode thickness was large compared to λ, and a contour could be taken where no screening
current flowed. In the present work the Nb electrodes are of the order of 150 - 180 nm thick.
Due to geometrical effects [13] λ in a thin film can be much larger than the bulk value. The
condition dNb > λ is therefore not guaranteed. Following Weihnacht [14] if the current flowing
is negligible, and the barrier thickness d is ignored, applying the London theory to figure 3.2:

H(y) = HA

coth
(

y±dS/2
λ

)
coth

(
dS
2λ

) (3.9)

The + sign is for y > 0 and − for y < 0 as measured from the barrier. HA is the external field.
It has been assumed that the electrode thickness dS and λ are the same on both sides of the
junction. The distance between the minima of the ‘Fraunhofer’ is now given by

µ0∆H =
Φ0

2λX tanh dS
2λ

. (3.10)

When the currents flowing are significant the Josephson penetration depth is modified to

λ−2
J =

4e

�
µ0JCλ coth

(
dS

λ

)
. (3.11)

3.1.5 RCSJ model

The Resistively and Capacitively Shunted Junction model, (RCSJ) considers an idealised Joseph-
son element, in parallel with some resistance for I > IC , as well as a capacitance C, due to the
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area of the weak link between the electrodes. The I(V, φ) relation is then

I = Ic sinφ +
V

R
+ C

dV

dt
. (3.12)

Using τ = t(2eIC/C�)1/2 equation 3.12 can be rewritten [13] as

d2φ

dτ2
+

1
β2

c

dφ

dτ
+ sinφ =

I

Ic
. (3.13)

The parameter βc = R(2eICC/�)1/2, and is known as the McCumber parameter [15]. This is a
measure of the damping in the junction. For βc = 0 equation (3.13) can be solved analytically
for I > IC to give the average voltage V̄

V̄ = R(I2 − I2
C)

1
2 (3.14)

as shown in figure 3.1. The ‘RSJ’ fit is usually reasonable for many S/N/S junctions (section
7.2), where C is negligible.

3.2 S/F/S junctions

The π state discussed in section 2.4.2 is realised in a Josephson junction when F0 < 0 (section
3.1). The groundstate minimum is now at π, and JC < 0. The original prediction of a π-junction
made by Bulaevskĭı et al [16] considered magnetic impurities in a tunnel barrier, which affected
the individual electrons of a Cooper pair in turn as they crossed the barrier. Using equation 3.5
the π-junction in a loop of S then has a groundstate with a spontaneous current, and flux of
Φ0/2 through the loop.

Metallic F barriers in the dirty limit were first considered by Buzdin and Kupriyanov [17].
Near TC they used the GL equations to obtain

ICRN =
(

π∆2d2
F

8eξF TC

) | sinh(dF /ξF ) cos(dF /ξF ) + cosh(dF /ξF ) sin(dF /ξF )|
sinh2(dF /ξF ) cos2(dF /ξF ) + cosh2(dF /ξF ) sin2(dF /ξF )

(3.15)

as shown in figure 3.5. When the term inside the || is negative the π contact is obtained.
In terms of the oscillating order parameter, the π-junction is formed with the ferromagnet

thickness dF ∼ πξF2 - half a period of the oscillation of the order parameter. Equation 2.17 can
be approximated for EEx ≥ kBT by [19]:

ξF1,(2) =


 �D[

E2
Ex + (πkBT )2

] 1
2 + (−)kBT




1
2

. (3.16)

ξF1 increases with decreasing temperature, whereas ξF2 decreases. Hence a crossover as a
function of T from 0 to π coupling is possible, in the range of thicknesses as shown in figure 3.6.
Crucially, when compared to the multilayer TC measurements (section 2.4.2) measuring a single
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Figure 3.5: Re-entrant IC(dF ) for a S/F/S junc-
tion. Taken from Buzdin et al [17].

Figure 3.6: Free energies for 0 and π junctions.
A crossover from 0 to π with T can be observed
in the range 0.4 < dF /2πξF2 < 0.8. Taken from
Ryazanov et al [18].

junction removes the issue of the changing F properties with thickness when many different S/F
samples are grown.

This temperature crossover was observed in Nb/CuxNi1−x/Nb junctions by Ryazanov et al
[18], as a cusp in the IC(T ). In the case of the π phase shift for a single junction, the IC(H) is
not shifted, (the π shift adds to the constant term φ0 in equation 3.6). A shift is only observed in
two junction loop with one ‘0’-junction and one π-junction, or more complex arrangements such
as the frustrated five junction loop used by Ryazanov et al [20]. Kontos et al have measured the
superconducting density of states in the F layer (Pd1−x Nix) using an N/I/F/S structure [21],
finding the change from the 0 to π phase. They have also measured the re-entrant ICRN (dF )
in S/I/F/S structures [22], as predicted by equation 3.15 (figure 3.5). Sellier et al have also
examined CuNi alloys [23, 24], and were able to quantitatively fit the ICRN product using the
spin-flip scattering length as an adjustable parameter.

Junctions with Gd [25] and Ni [26] have also been fabricated, with the latter claiming double
re-entrance in the JC(dF ), but with a relatively small number of data points. Shadow deposition
has also been used to create sub-micron Co junctions [27, 28], with distorted IC(H) patterns:
their importance will be discussed in section 8.4.

3.3 S/AF/S junctions

No measurements have ever been made of antiferromagnetic Josephson junctions other than
one system which studied YBCO / magnetic oxide / YBCO junctions [29] with the barrier
near the ferromagnetic-antiferromagnetic transition. In that case however there was not strong
evidence of true Josephson coupling. In section 8.3 the results of S/AF/S junctions with the AF
γ-Fe50Mn50 are presented. There is no present theory for such junctions. Following de Gennes
theory for a dirty S/N/S junction (section 3.1.2) JC ∝ exp(−kAF dAF ). Using kAF = 2/ξAF this
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leads to
JC(dAF ) ∝ exp(−2dAF /ξAF ) . (3.17)

Although it is not clear if this is a justified equation, it will be used as a generic model, assuming
that any corrections will only be of the order of unity when a fuller theory of AF junctions is
developed.

3.4 Non-homogeneous F devices

3.4.1 S/F/X/F/S

The initial work on S/F/S junctions assumed a homogeneous exchange field. More recent the-
ory has been concerned with inhomogeneous barriers, in which the magnetism can be actively
controlled. Bergeret et al [30] first considered the S/F/I/F/S case with dS,F < ξS,F . They
demonstrated a formal (logarithmic) divergence of IC with an anti-parallel alignment of the two
F layers as HEx → ∆. The IC for anti-parallel alignment was always larger than the parallel
case - the Exchange Field Supercurrent Enhancement (EFSE).

This created much interested in this system. Golubov et al [31] considered Bergeret’s work
in the dirty limit for both the S and F layers, for arbitrary thickness of the F layer and barrier
transparency. It was found that for the parallel alignment of the F layers the 0 − π transition
should be observed, as well as EFSE for the anti-parallel case with thin F layers, again with
HEx ≈ ∆. The qualitative reasoning for this effect is that the energy shift due to the exchange
field is equal to the local gap induced in the F. In this case the peak in the local DoS is shifted
to zero energy, (i.e. the Fermi level) giving the divergence of IC at T = 0.2 This is analogous
to the Riedel singularity of the a.c. Josephson supercurrent when eV = 2∆ [32]. The 0 − π

crossover however is not the same as that in section 3.2 due to the oscillating order parameter,
(dF < ξF ). A π/2 jump in phase occurs at each S/F interface. By swapping between the F and
AF alignments, Golubov et al pointed out that it was possible to switch from the 0 to π state.

More generally, the case of SF/X/SF junctions were considered by Chtchelkatchev et al [33],
(SF is either a superconducting ferromagnet, or a S/F bilayer). They considered the case where
the exchange field |HEx| ≤ ∆. An enhancement of the IC was found for the AF alignment of
the two F layers as before. For X=I (insulator) the EFSE effect is seen if the transparency
is small, but as the transparency increases, the EFSE effect decreases. For the case that X
is a dirty normal metal there is no EFSE, and only a weak (10%) enhancement of the IC for
the SFINISF case. In the ballistic limit for the F/N/F structure Zaitsev [34] has predicted an
enhanced IC in the AF state, with the ratio (IF

C − IAF
C )/IF

C of the order of unity, much larger
than the corresponding MR, for the case that HEx > ∆. It is not clear in this case how the
mechanism differs from the other limits discussed above.

2A BCS DoS was used in [31].
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3.4.2 Other inhomogeneous structures

Three other systems are also relevant to the present work. Clinton and Johnson [35] used
the destruction of superconductivity by the inhomogeneous stray field from the end of a ‘line
charge’ of magnetic moment in the planar geometry to create a Josephson junction. Although the
Josephson current does not pass through the F layer, this idea is important for the later analysis
(section 8.4). There is also the possibility of triplet components in the Josephson junctions,
as referred to in section 2.4.3.1. This has been considered by Bergeret et al [36]. Depending
on the choice of parameters, (in particular the wavevector of the magnetic modulation), the π

state could be made not to occur, and the IC(T ) behaviour change from S/N/S-like, to strongly
non-monotonic. Finally Gor’kov and Kresin [37] considered a multilayer GMR system, and
predicted giant magneto-oscillations of the Josephson current as the F layers are canted from
AF alignment. In this case the microscopic mechanism was not outlined, and the half metal
limit is considered, without taking account of possible triplet correlations [38, 39].

3.5 SQUIDs

3.5.1 Single junction in a loop

Consider the superconducting loop containing a single junction (known as an r.f. SQUID), as
shown in figure 3.7 (a). The junction has a phase difference φ across it, and flux Φ threading it.
Following equation 3.5, with the contour such that J = 0, then 2πn = (2e/�)Φ + φ. Ignoring
multiples of 2π, which just give periodic behaviour:

φ = −2π
Φ
Φ0

. (3.18)

The flux is given by
Φ = Φex + IL , (3.19)

which is the sum of the applied flux Φex, and that due to the current in the loop of inductance
L.

Figure 3.7: Superconducting loop linked by flux Φ with (a) one junction and (b) two junctions in the
loop. (c) Asymmetric biasing of a d.c. SQUID with different junction critical currents.
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3.5.2 The d.c. SQUID

In the case of the d.c. SQUID with two junctions, (figure 3.7 (b)) the flux Φ linking the junction
produces phase differences φ1 and φ2 across each junction. In the most general case, (following
Barone and Paterno [3]) the case of an asymmetric loop is considered, with the two junctions
having different ICs: IC1 and IC2, (figure 3.7 (c)). The unequally divided current around the
SQUID links net flux through the loop. The current in the device is given by

I = IC1 sinφ1 + IC2 sinφ2 . (3.20)

By analogy with equation 3.18,

φ2 − φ1 = 2π
Φex

Φ0
+ β1 sinφ1 − β2 sin φ2 . (3.21)

Where βi = 2πLiICi/Φ0, and the total loop inductance L = L1 +L2. The critical current of the
junction is then found by maximising I in equation 3.20, subject to the constraint of equation
3.21. It is straightforward to show that this can be done by solving for φ2 in the relation

φ2 = cos−1

[ −IC1 cos φ1

IC2(1 + β1 cos φ1) + β2IC1 cos φ1

]
. (3.22)

With φ1 and φ2 known, IC and Φex can then be found using equations 3.20 and 3.21. Figure
3.8 shows the φ2 vs φ1 plot, and the resulting IC vs Φex/Φ0. In this case the ratios IC2/IC1 and
L2/L1 were chosen to be the same. The IC(Φex/Φ0) plot is characterised by a non-zero Imin

C ,
and an anti-symmetric response (IC(−Φex) = −IC(Φex)).

Figure 3.8: (a) Numerical model of φ2 vs φ1 and (b) corresponding |IC(Φex/Φ0)| normalised to IC1+IC2,
showing the anti-symmetry between positive and negative ICs, and asymmetric peak shape. In this case
IC2/IC1 = L2/L1 = 0.63.

For the simpler case of negligible inductance, L → 0, Φ = Φex, and analytical solutions for
the above relations can be found. Following the same method as section 3.1.3, the analogy with
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diffraction leads us to a ‘Young’s double slit’ IC(H):

IC(Φ) = [(IC1 − IC2)2 + 4IC1IC2 cos2(πΦ/Φ0)]
1
2 . (3.23)

When the junction ICs are equal, (IC1 = IC2 = I0), this reduces to

IC(Φ) = 2I0

∣∣∣∣cos
(

πΦ
Φ0

)∣∣∣∣ . (3.24)

Figure 3.9: Dependence of Imin
C /Imax

C on the screening parameter βL (black) for IC1 = IC2, taken from
Peterson et al [40].

A screening parameter βL, is defined analogously to the βis above:

βL =
2πI0L

Φ0
=

πImax
C L

Φ0
. (3.25)

As can be seen from figure 3.9, the minimum IC obtained (Imin
C ) by modulating the SQUID with

a field is strongly dependent on βL. This is clear from the above general numerical analysis, as
well as the analytical cases described above. The value of βL is also an important parameter in
the noise performance of a SQUID (see [41] for a review). In many applications it is the voltage
modulation rather than ∆IC that is measured by biasing the SQUID at constant I > IC , (section
6.3).

Finally it is important to consider the effect of the single junctions in the SQUID loop. Using
the diffraction analogy, if the size of the loop becomes comparable to the individual junction
dimensions, then the amplitude of the SQUID IC(Φ) oscillation is modulated by the Fraunhofer
pattern of the single junctions, (see section 6.3.2).
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3.6 Josephson junctions in the cuprates

3.6.1 Intrinsic junctions

The short coherence lengths and layered structure of the cuprates (section 2.6) gives rise to
intrinsic junctions in the c direction in the more anisotropic materials. Intrinsic junctions were
first found in Bi2Sr2CaCu2O8+δ (Bi-2212) by Kleiner et al [42]. These have aroused much
interest since they give access to important parameters describing the c-axis transport used
in the theories of the HTS, without the problems of surface effects introduced in for example
tunnelling spectroscopy [4].

Various methods for making c-axis measurements are used. Mesas can be etched in single
crystals or thin films to controllably create tens to thousands of junctions. This process can
be done in parallel, (using two cleaved Bi-2212 lamellae which are annealed together) to create
many thousands of junctions in series [43, 44]. Also step-edge junctions and vicinal films have
been used (see section 6.1.3).

By careful ramping of the current it is possible to trace out the different branches of the
I−V . Each branch corresponds to one (or a small number) of atomic plane Josephson junctions.
The hysteresis and multiple branches of the I − V curves seen in intrinsic junctions imply an
S/I/S character to the individual junctions (figure 6.2). A sub-gap current is always observed,
unlike the LTS case. This is consistent with the d-wave scenario in which quasi-particles are
always present for T > 0 K. In the HTS however, the gap is less well defined than the analogous
artificial LTS stack. Sub-gap resonant structures have also been observed, (first in Bi-2212
single crystal junctions [45] and later in other systems, including Tl-2212 - section 6.1.5.1). The
nth resistive branch is split into two hysteretic regions, each with n branches, (i.e. a total of
2n + 1 branches). This has been ascribed to resonances between the Josephson oscillations and
c-axis optical phonons [46]. The 2n + 1 multiplicity is a consequence of each of the n junctions
switching between the three possible resistance branches which can be occupied [47].

Early measurements created much interest in the so-called ‘back-bending’ (negative differ-
ential resistance) of the I − V s at high bias. This was initially attributed to a variety of
non-equilibrium effects, but it later became clear that heating was the cause of the distortions
[48, 49]. Heating is significant in single crystals and even the micron sized mesas made with
optical lithography. The sub-micron method using a focused ion beam introduced by Kim et al
for whiskers and thin films [50, 51], and developed in the present work ([52, 53] and chapters
5 and 6), seem to suffer less from heating effects. This is presumably due to the reduced IC ,
meaning that the power generated is easier to remove.

3.6.2 Other HTS junctions

Unlike the LTS technologies, epitaxial growth is required for HTS thin film to avoid grain
boundaries which can form weak links. This strongly restricts circuit design. Using bicrystal
substrates grain boundary growth can be controlled: the common [001] tilt grain boundaries for
example show S/N/S-like Josephson coupling for tilt angles between 15◦ − 45◦ [54]. Electron
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beam writing [55] and proton damage [56] have also been used to fabricate planar junctions,
but these are time consuming and/or expensive. Ramp edge junctions (see for example [57]) are
perhaps the best way to integrate HTS with standard multilevel processing, but still not ideal.

Grain boundary junctions enable the investigation of the d-wave symmetry in the a−b plane.
In this way π-SQUIDs can be made, as shown in figure 3.10, by exploiting the change of sign of
the order parameter between neighbouring ‘lobes’ in k-space. Finally c-axis HTS/LTS junctions

b

a

d-wave

s-wave

grain boundary

(a) (b)

Figure 3.10: Two methods of generates π-SQUIDs: using (a) a d-wave / s-wave combination [58] or (b)
an all d-wave (grain boundary) case [59].

(e.g. YBCO/Pb [60]) and [001] twist junctions [61, 62] have been studied. Both of which have
argued for an order parameter in the HTS which is a combination of d and s-wave [63, 64, 65].
This developing area will not be discussed in detail.
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Chapter 4

Film deposition, processing &

measurement

The film deposition, lithography and milling used to form micron scale tracks is discussed, as
well as the method of processing in the focused ion beam used to create a planar device. This is
followed by details of the measurement set-up.
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4.1 Film deposition

4.1.1 Substrate preparation

All films were deposited on (100) silicon substrates with a 250 nm oxidised surface layer, unless
otherwise stated. A four inch wafer was diced with diamond edged circular saw into 10 × 5 mm2

chips. The wax used to glue down the wafer during cutting was removed using an ultrasound
bath of chloroform, followed by further soaking and ultrasound in acetone. Prior to loading into
the sputter deposition system the chips were cleaned using an airgun with acetone followed by
isopropanol.

4.1.2 Sputter deposition

Sputtering uses an argon plasma to bombard a target material to produce molecular or atomic
fragments. These fragments are then collected on the substrate and the thin film is built up. The
sputtered atoms undergo multiple collisions with the plasma gas before reaching the substrate.
In this way the pressure of a sputtering gas allows control over the kinetic energy of the sputtered
atoms reaching the substrate. This in turn controls the mobility and the resulting stresses in
the film.

The ‘UFO’ Ultra High Vacuum, (UHV), sputter deposition system described below uses
d.c. planar magnetron targets. The strong permanent magnets keep the plasma near to the
target. This makes the sputtering process more efficient, at the expense of preferential removal
of material around a ‘race-track’ section of the target, (figure 4.1).

N

S

Eroded ‘race-track’
Electric field

Magnetic field line

Figure 4.1: A planar d.c. magnetron, (adapted from Ohring [1]).

4.1.2.1 Growth modes

Sputtered films grown at relatively low temperatures and pressures in general have a polycrys-
talline microstructure and grow in columnar grains. The grain size has a strong influence on for
example the coercive field of ferromagnetic films, and can also affect the TC of superconducting
films (section 8.3.2). A more in depth discussion into the factors affecting thin film growth can
be found in [1] and [2]. Detailed microstructure characterisation of films grown in the ‘UFO’
sputtering system can be found in [3].
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4.1.3 The ‘UFO’

A schematic of the ‘UFO’ system is shown in figure 4.2. Five targets out of a choice of: Nb, Co,
Cu, Fe50Mn50, Fe20Ni80 (permalloy - Py) or Cu40Ni60 could be loaded into the main chamber at
a given time. The load-lock kept the main chamber at high vacuum, ensuring no contamination
of the targets between depositions, and also allowed many different films to be grown in a single
day. After cooling for at least three hours with liquid nitrogen, the base pressure was typically
better than 3 × 10−7 Pa with oxygen partial pressure ≤ 3 × 10−9 Pa.

liquid
nitrogen

needle valve
from argon reservoir

bellows

turbo
pump

turbo
pump

loadlock

magnetron

to stepper motorto power
supply

gate valve

valve

sample arm

Figure 4.2: Schematic outline and photograph of the load-lock ‘UFO’ sputtering system.

For the sputtering, Ar gas with purity greater than 99.9999% was used. All the films grown
in this system used a sputtering pressure of 0.5 Pa, which was stable to within ± 2 × 10−3 Pa
(0.4 %) during film growth. The films grown from section 7.4.1 onwards were all grown using
the ‘UFO’. Earlier films were grown in similar UHV systems with sputtering pressures in the
range 0.5 − 2 Pa (depending on the material to be deposited).

The sample holder (figure 4.3) allowed an in-plane magnetic field of µ0H ∼ 40 mT to be
applied to up to four 10 × 5 mm2 chips during the film deposition. This induces an easy axis
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Applied field

permanent magnet

slot for

10 5 mm chipX
2

aluminium casing

Figure 4.3: Sample holder for in-situ applied field used in the sputter deposition system.

(section 1.1.4) in the field direction, as can be seen in the M(H) loops of a single Co layer
(figure 4.4). The applied field was also used to saturate deposited ferromagnetic layers before an
exchange biasing FeMn layer is grown on top, to fabricate spin valves (sections 1.2.3 and 8.4.1).

Figure 4.4: M(H) loops of a 140 nm thick Co film with applied field parallel and perpendicular to the
direction of the field during the deposition.

4.1.3.1 Deposition rates

Deposition rates were found using a profilometer (for the first half of the work), and an atomic
force microscope (AFM) in tapping mode to measure a step height across a lift-off edge, (section
4.2.1), of height ≥ 50 nm. The deposition rate of a material on the substrate is dependent on
the rate of rotation of the sample holder, the total number of rotations, the gas pressure, the
substrate-target distance and linearly on the power through the magnetron. The stepper motor
in the ‘UFO’ was used to rotate the sample holder past the targets with speeds in the range
0.05 − 1 rpm. The angle control was better than 5◦ in over 100 rotations. The substrate-target
distance was fixed at 90 mm. Table 4.1 shows a summary of the deposition rates for the various
materials deposited in the ‘UFO’ system.
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Target Rate (nm / W / pass at 1 rpm)
Nb 0.0089
Cu 0.0304
Co 0.0234

Cu40Ni60 0.0167
Py 0.0187

Fe50Mn50 0.0183

Table 4.1: Deposition rates for various targets used in the ‘UFO’ system.

4.2 Track formation

4.2.1 Photolithography

Photolithography can be used both before and after the film deposition to produce micron scale
tracks. The basic process is shown in figure 4.5. In both cases a photosensitive polymer resist
is spun onto the surface of the chip. The resist is then exposed to a source of ultra-violet (UV)
radiation behind a mask of the required pattern. ‘Positive’ resists were used in this work: the
polymer chains in the regions of the resist exposed to the UV undergo a photochemical reaction
and become soluble in a developer solution. The developer is used to dissolve these regions,
leaving the required pattern. A pre-grown film is then patterned using ion milling, or a film
deposited and ‘lifted-off’ (section 4.2.1.2).

(a) (b) (c)

(d) (e) (f)(i) (ii)

UV

Ar
+

Figure 4.5: Schematic of track formation: (a) photoresist (red) spun on film (grey), (b) exposure with
UV, (c) after developing, (d) after ion milling, (e) final tracks after removing photoresist, (f) exaggerated
resist profile for (i) overexposed and (ii) chlorobenzene treated samples.

Practically this was done by exposing the chip in a Karl Suess mask aligner. The lithography
was done in the following stages:

• After cleaning with an acetone spray, the chip was transferred to a resist spinner, and 3-4
drops of Hoechst AZ1529 resist pipetted onto it.
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• Spun on a standard programme of 6000 rpm for 30 seconds giving a layer of resist of thick-
ness ∼ 2.4 µm at the centre of the chip, with a thicker ‘edge-bead’ around the perimeter.

• Exposure of the edge-bead (to allow close proximity to the mask for fine exposure), using
a rectangular mask of dimensions slightly smaller than the chip.

• Develop in a 4:1 developer : water solution for not more than 30 seconds.

• Fine exposure in ‘soft contact’ mode: expose for between 9 and 10 seconds.

• Develop in a 3:2 developer : water solution again for not more than 30 seconds.

The ‘Cam 39’ chrome-on-glass mask designed by G. Burnell is used for the main patterning.
The ‘Cam 39’ mask gives a track width of 4 µm at its thinnest section, (figure 4.6).

4.2.1.1 Lift-off

For so-called ‘lift-off’, the bare substrate is patterned before deposition, using a negative version
of the ion milling mask. After the film is deposited, the metal sputtered onto the resist is
removed when the resist beneath it is dissolved in acetone, leaving the required track pattern
behind. The rounded resist profile, (due to scattering of the UV radiation, which is greatest
near the surface of the photoresist - figure 4.5 (f)(i)), can be a problem. The film grows up the
sides of these rounded resist walls, forming a continuous layer that peels off when the resist is
dissolved. Large metal edges sticking up above the tracks can also be left - which is problematic
for the Focused Ion Beam processing (section 5.1). Overdeveloping the photoresist will also
tend to smooth out the edges of the tracks leading to the same effect. Treatment of the resist
with chlorobenzene, (after UV exposure but before developing), causes an overhang in the edge
profile, (figure 4.5 (f)(ii)). This prevents growth of the film over the sides. Given these added
complexities, ‘lift-off’ was not used for the majority of this work.

(a) (b)

Figure 4.6: (a)‘Cam 39’ mask design for a 10 × 5 mm2 chip used in this work, showing contact pads
for wirebonding to. (b) Central detail: thinnest track widths are 4 µm.

4.2.1.2 Ion milling

Argon ions from a plasma are accelerated at the sample which mills the metallisation away. The
patterned resist acts as a thick layer of protection against the bombarding ions, (and will also
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mill more slowly due to the lighter mass of the carbon atoms in the polymer). Regions not
covered in resist are therefore milled away, and when the resist is dissolved, the desired pattern
remains in the film. For the early bilayer films (section 7.1) a large diffusion-pumped milling
system was used. For the remaining of the work, a turbo-pumped system was used, which was
fitted with a load-lock. This considerably reduced the pumping time to reach base pressure
and also milled at a higher rate. In both cases the sample stage was water cooled, and rotated
continuously to ensure uniform milling. The system base pressure was ≤ 2 × 10−4 Pa, Ar / 2%
O2 milling pressure 4 × 10−2 Pa, with beam voltage 500 V, and beam current density 1 mA
cm−2.

4.3 Device fabrication

4.3.1 The Focused Ion Beam microscope

The Focused Ion Beam microscope1 (FIB) can image samples using secondary electrons produced
by the rastering ion bombardment. This is analogous to a scanning electron microscope, (SEM).
Repeated scanning or dwelling over a region can create features by milling material from the
surface. Many different ion sources are possible [4], but the most reliable is presently the liquid
gallium source, which is used in the present work. The gallium self assembles into a sharp tip,
(diameter ∼ 2 nm) at high electric field. From this tip Ga+ ions are extracted. These ions
pass through a series of apertures and electrostatic lenses which focus them onto the sample.
An outline of the ion column is shown in figure 4.7. The working pressure in the chamber was
< 10−3 Pa, while the ion column pressure was maintained at < 10−5 Pa.

Suppressor and
liquid metal
ion source

Extractor cap

Lens 1

Beam defining aperture

Steering quadrupole

Blanking plates

Deflection octupole

Blanking aperture

Lens 2

Sample and stage

Figure 4.7: Outline and photograph of the FIB (adapted from [5]).

1FEI200 series FIB xP 2.25.
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The impinging ions either implant themselves or mill material from the surface of the sample.
Beam currents in the range 1 pA to 1 nA are available by changing the beam defining aperture.
Typically the 4, 11, 70 and 150 pA beams were used in this work, (section 5.1), with a beam
voltage of 30 kV. The spot size of the FIB is limited by chromatic aberration due to a distribution
of ion energies. Due to this limitation the spot size increases with beam current [5]. For a 4 pA
beam current the optimal spot size ∼ 10− 15 nm. The beam profile is approximately Gaussian,
although deviations in the tail (several orders of magnitude lower than the beam peak) have
been observed [4].

In contrast to other forms of lithography, FIB processing requires no masking with resists,
post-FIB wet or dry etching, or resist removal. FIBs are being increasingly used for a range of
applications, (for a recent review see [6]), including the site-specific preparation of transmission
electron microscope (TEM) specimens, failure analysis in the semiconductor industry, and mi-
cromachining applications. Other applications of the FIB for optoelectronics will be discussed
in section 6.4.

4.3.1.1 Platinum deposition and enhanced etch

The Ga+ beam can be used to deposit Pt by injecting an organometallic gas containing Pt into
the chamber during milling, through a needle brought close to the sample surface. Where the
beam dwells the compound is broken down, the volatile organic gases escape and Pt is deposited,
(although in practice there is a combination of Pt, Ga and other organic compounds [7]). The
Pt deposition was used in the fabrication of Nb/Mo/Nb junctions, (figure 5.6 and section 7.2)
as well as the GaN devices (section 6.4).

Iodine gas can also be injected into the chamber to produce so-called Enhanced Etch (EE).
This reactive gas greatly increases the milling rate of the FIB as well as reducing the Ga damage
/ amorphous layer usually found, by forming volatile compounds with the milled material which
is subsequently pumped out of the system ([8, 9] and section 5.2). EE was used in the fabrication
of S/I/S junctions (section 7.3), but not extensively for most of the work, since the increased
milling rate was unnecessary and less controlled than the normal milling. A drawback of I2 is
the formation of CuI crystals: hence EE cannot be used in the presence of Cu.

4.3.2 Planar junction fabrication

A 50 nm wide trench is cut with the FIB across a micron scale track of a Cu/Nb bilayer (figure
4.8). A variable thickness S/N/S Josephson junction is created. Some Nb is left at the bottom
of the trench: it is weakened both by the proximity effect of the normal metal underlayer, and
gallium poisoning / damage by the FIB. The Cu (typically 75 nm thick [10]) serves as a thermal
shunt to reduce heating and hysteresis in the I −V characteristic, (which is observed in the case
of Nb only devices), as well as carrying some supercurrent due to the proximity effect (section
2.3).
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Figure 4.8: Planar junction fabrication with the FIB.

4.3.2.1 In-situ resistance

Early attempts to make the trench cuts reproducibly were not successful [11]. An in-situ resis-
tance measurement, developed by W. Booij and A. Latif [12], was used to calibrate the depth
of cut into the metal. A four probe measurement of the resistance of the track is made as the
FIB mills.2 A typical R(t) obtained is shown in figure 4.9. Here the track is milled through at a
measurement time ∼ 23 seconds. The close up of the plot shows the slight increase in resistance
due to Ga implantation when an image is taken, followed by a steady increase as the track is
milled through. An R(t) for a Nb only sample can be converted into depth verses milling time,
(for a constant beam current) by assuming a rectangular trench in series with the rest of the
track, (whose resistance is constant). This can be used to calibrate cuts into a bilayer, (which
was grown with the same Nb thickness as the calibration sample), assuming negligible drift in
the FIB in the time between cuts. A TEM study by R. Hadfield has found that trenches with
an aspect ratio of more that 2.5 cannot be reliably rectangular in shape, (caused by redeposition
of the milled material on the sides of the trench) [13, 14]. Hence for a 50 nm wide trench, the
Nb thickness should be ≤ 125 nm.

In the case of the bilayer system, the change in the resistance ∆R of the track is not simply
related to the cut depth. Results have shown however that there is a correlation between ∆R

and IC , (see section 7.1 and [10]). Hence ∆R can be used to predict the junction properties.
Reproducible results have been achieved as long as the FIB extraction current is maintained at
2.2 µA. Results for planar junctions with a CuxNi1−x alloy instead of Cu as the underlayer will
be discussed in section 7.1.

4.3.2.2 Applications

Since the junction length is relatively short, arrays of junctions can be cut by the FIB occupying
a small distance. Applied microwaves can ‘phase-lock’ the individual junctions. For an array
of n junctions, Shapiro steps are seen in the I − V at a voltage nVs, where Vs is the Shapiro
voltage for a single junction. This technique has a potential application in voltage standards

2Using a Keithley 2000 DMM with LabVIEWTM software written by G. Burnell.
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Figure 4.9: In-situ R(t) for a calibration cut through a track with a 4 pA beam current. Inset: Detail
showing the effect of imaging with the FIB.

([15] and section 6.2.1). However phase-locked arrays of FIB junctions in Cu/Nb bilayers up to
only n = 10 have been so far demonstrated [10].

The planar FIB technique has more recently been used to produce planar junctions in MgB2

[16], and as an initial step in the processing of metal-masked ion implanted YBCO junctions
[17]. The flexibility of the FIB also allows more novel geometries to be formed: a ‘Corbino’
geometry has been made [13, 14]. This is formed by milling a circular trench in the track, with
an electrical contact to the centre of the superconducting island. In this geometry flux can only
enter the barrier in units of Φ0, giving an interesting IC(H) response.

4.4 Measurement rigs

4.4.1 4.2 K dip probe

All electrical measurements were done with a four-point technique. Chips were secured onto a
custom design copper chip carrier with silver conducting paint or carbon tape. Each section
of the ‘Cam 39’ mask was connected to several contact pads, (figure 4.6) which could be wire-
bonded to the copper pads of the chip carrier using an ultrasonic wirebonder with 25 µm diameter
Al wire. Two similar dip probes were used interchangeably in this work. The measurement rigs
and accompanying hardware and software were developed by G. Burnell, W. Booij, P. McBrien,
R. Moseley and the author. The generic dip probe consisted of a diode thermometer, heating
element, in-plane solenoid and out-of plane Helmholtz pair for applying magnetic fields, (0− 80
mT at 4.2 K), and a microwave antenna (12− 18 GHz). A low noise current and voltage source,
(giving a typical noise level of 0.5 − 1 µV in a 10 kHz bandwidth), applied a quasi-d.c. (∼ 15
Hz) sinusoidal current output. A µ-metal shield was placed over the end of the probe to reduce
stray magnetic field. Measurements involving the magnetic fields are done at 4.2 K to prevent
heating of the sample by the Cu coils. The ‘Dualscope’ (written in LabVIEWTM by G. Burnell)
software was used to display and control the measurements. The set up is shown in figure 4.10.
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Low noise current source
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(GPIB card and

DAQ card)
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Temperature controller
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(Marconi 6159A)

Probe
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GPIB line

control / signal voltage

current

monitor voltage
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Probe 1 2 Heliox

Temperature

Magnet current supply and Oxford IPS 120-10

DAQ card 12-bit 16-bit 12-bit

controller Lakeshore DRC 82C Lakeshore 340 Oxford ITC 503

HP 6625 HP 6625 HP 6574A

Figure 4.10: Schematic of electronics used for measurements, and table detailing the different equipment
for each probe.

A lockin amplifier3 allowed the measurement of voltage signals as low as 1 nV. A simple
op-amp adder box4 was used to combine the lockin reference oscillation, (in the range 5 − 30
mV at 1 kHz), to a d.c. voltage output of the analogue-to-digital (AD) card, which was used
to control the current source. The d.c. offset was then ramped by the software to obtain the
differential resistance as a function of bias current (figure 4.11).

Low noise current source
Dell PC

(GPIB card and
DAQ card)

TM

Probe

Lockin amplifier

Adder box

voltage control current out

1 kHz reference out

signal in

IN

Voltage amplifier

GPIB line

control / signal voltage

current

OUT

output
d.c. out (ramped)

Figure 4.11: Schematic set-up for lockin amplifier measurements.

4.4.2 Oxford Instruments HelioxTM

For lower temperature measurements with larger magnetic fields the closed cycle 3He-based
Oxford Instruments HelioxTM was used. This system has a base temperature of 0.34 K with a

3EG & G Princeton Applied Research models 5210 and 5320L were both used.
4Using a Burr-Brown INA105 precision unity gain operational amplifier.
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superconducting coil producing a maximum field of 2 T. The principal of operation of the 3He
system is shown in figure 4.12. The sample sits in a vacuum, thermally connected to the 1 K
pot and 3He pot. 4He is drawn up through a capillary from the dewar into the 1 K pot, which
is pumped on by a rotary pump. This achieves a temperature ∼ 1.2 − 1.4 K. With the sorp
at 50 K, (figure 4.12 (a)) 3He is then condensed into the 3He pot. The sorp is then allowed

Inner vacuum
chamber

sorption pump

4
He pumped
in 1K pot

3
He pot

3
He condensed

at 1.2K

sample

(a) condensing
(sorp at 50K)

(b) pumping
(sorp at <10K)

Figure 4.12: Schematic of Oxford Instruments HelioxTM cooling system: (a) condensing 3He, (b)
pumping on 3He, (taken from [18]).

to cool (figure 4.12 (b)) and pump on the condensed 3He, reducing the temperature to 0.34 K.
Base temperature could be maintained for several hours before the cycle had to be restarted. A
drawback of the magnetic end piece of the Heliox was the extension required to place the sample
in the centre of the coil. This extra length of material gave an additional unknown temperature
gradient (see section 7.4.2).

4.4.3 Magnetic measurements

4.4.3.1 Magnetoresistance measurements

Resistance measurements with an in-plane field up to 330 mT, with temperature in the range 77−
300 K were also possible, using a water cooled electromagnet system. The electrical measurement
set-up was similar to the probes discussed above. This was used to characterise the GMR and
spin-valve devices (sections 8.2 and 8.4) in the CIP configuration, (with thin Nb layers), before
growing devices for CPP processing.
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4.4.3.2 Vibrating sample magnetometer

All magnetic hysteresis (M(H)) measurements were made in a Vibrating Sample Magnetometer
(VSM)5. Typically measurements were made on 10 × 5 mm2 samples at room temperature, and
could be made in and out of plane. A 4He cryostat enabled measurements down to 10 K. The
increased noise and the smaller sample size limit (4 × 4 mm2) meant that many of the Cu40Ni60

and thin pseudo-spin-valve structures discussed in chapters 7 and 8 could not be measured
at low temperatures. Quantitative measurements of the magnetic moment of samples require
careful calibration: in particular given the relatively large size of the samples compared to the
pick-up coils of the VSM and the calibration sample used. Hence the VSM was used primarily
for measurements of the Curie temperature, coercive fields, exchange bias and qualitative shape
of the M(H) loops, rather than an accurate determination of the total moment of the samples.

5Princeton Measurements Corporation MicroMagTM Model 2900.
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Chapter 5

Three-dimensional FIB fabrication

technique

The three-dimensional focused ion beam fabrication technique used to create CPP devices is
discussed. Details of this technique have been published in reference [1], which is reproduced in
Appendix B.

66
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5.1 Sandwich junction fabrication

To compliment the planar FIB technique discussed in section 4.3.2, a three-dimensional technique
for creating CPP devices has been developed. This technique was used by Kim et al to study
intrinsic c-axis Josephson junctions in whiskers and thin films of the HTS cuprates [2, 3]. In
the present work this specific technique is extended to produce Josephson junctions in low
temperature superconductor (LTS) heterostructures, giant magnetoresistive multilayers and spin
valves, and other structures in which CPP transport is required.

5.1.1 Sample holder

The stage of the FIB can be rotated about an axis co-linear with main track of the ‘Cam39’
pattern between θ = 0◦ and θ = 45◦, where θ is the angle between the beam and the film normal.
Rotation of 180◦ about an axis normal to the sample stage is also possible (figure 5.1). Using
a custom 45◦ wedge holder, the two axes of rotation allow the full range of θ = 0◦ (figure 5.1
(a)) to θ = 90◦ (figure 5.1 (b)) between the beam and the sample normal to be achieved. The
sample holder shown in figure 5.1 (c) was designed by D.-J. Kang, and allowed a third chip to
be loaded for conventional processing at the same time. This sample holder was used for most
of the work presented.

Figure 5.1: Schematic of the sample holder used in FIB, showing two axes of rotation to achieve
0◦ ≤ θ ≤ 90◦ milling from (a) θ = 0◦ to (b) θ = 90◦. (c) A second design, for three 10 × 5 mm2 chips.

5.1.2 Device fabrication procedure

The fabrication procedure is shown in figure 5.2. A film is deposited and Ar+ milled to give 4
µm wide tracks (figure 5.2 (a)). This track is thinned to ∼ 700 nm from an angle of θ = 0◦

with a beam current of 150 pA (figure 5.2 (b)). A box of area ∼ 4 × 2 µm2 typically would
take between 1 − 3 minutes to mill, depending on the material and thickness. This milling can
be calibrated either by eye, (using the change of contrast in the image when the substrate is
reached), or by using the stage current / end-point detection measurement, (figures 5.3 and 9.2).
Figure 5.3 also shows how the milling of different layers can be distinguished: the relatively high
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Figure 5.2: FIB procedure for device fabrication: (a) initial micron scale track (b) thinned with 150 pA
beam and then cleaned (c) side cuts 1 and 2 to create the final device structure.

conductivity of the CuNi barrier giving a peak in the stage current as shown. The large drop
in the stage current is seen as the SiO layer is reached. After further milling the stage current

Figure 5.3: Stage current vs milling time, for a 5 × 2 µm2 box milled from θ = 0◦ on a 200 nm Nb /
10 nm CuNi / 200 nm Nb trilayer, using a 150 pA beam current.

increases again, (figure 9.2) as the Si layer is reached, and implanted with Ga. Typically the
milling was continued for a few seconds after the SiO layer is reached, to ensure that there was
no possibility of shorting between the electrodes. The sidewalls of the narrowed track are then
cleaned with a beam current of either 4 or 11 pA, using the standard software ‘cleaning tool’:
which repeatedly steps in a single pixel wide line. This removes excessive gallium implantation
from the larger beam size of the higher beam currents (figure 5.4), and makes the sidewalls more
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Figure 5.4: (a) Track narrowed with 150 pA showing significant bright edges due to tapering, (b) after
further cleaning and narrowing with a 11 pA beam.

vertical due to the smaller spot size, (figure 5.7 (b)). The cleaning takes ∼ 3 minutes per device.
The track width is then ≤ 500 nm. The sample is then tilted to θ = 85◦, and the isolating cuts
are made with a beam current of 4 or 11 pA to give the final device (figure 5.2 (c)). The two
side cuts, 1 and 2, will be referred to as the ‘undercut’ and ‘overcut’ respectively. These cuts
typically took between 10 − 40 seconds depending on the dimension y and the beam current.
Throughout the processing the ion beam had a dwell time per pixel of 0.1 µs and a beam spot
overlap of 50%.

The side cuts in the device force the current vertically through the barrier, (or in the case of
intrinsic junctions the red region in figure 5.5 has purely c-axis transport). Since the current is
injected and removed from the top electrode, there are in fact two junctions in series: the small
junction, and a much larger one (on the right hand side of figure 5.5). This second device is
much larger than the central one, and will have both a much smaller resistance than the first
device and such a large critical current, in the case of superconducting devices, that it can be
neglected. The thickness of the device in the y direction (figure 5.5) is important - since milling

x

y
z

Figure 5.5: Diagram of final junction with convention for dimensions as used in this work.

cannot take place at θ = 90◦, due to beam distortion caused by the interaction of the Ga+ ions
and the substrate. This could be overcome by heavily overmilling into the substrate with the
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Ar+ ions, but this was not viable on the basis of the increased milling time. Simple trigonometry
shows that for a y dimension of 500 nm, milling from one side at an angle of θ = 85◦ introduces
at least an error of ∆z = 500 nm × tan5◦ ∼ 44 nm. For the heterostructure films, where the
top and bottom electrodes must be isolated from one another, the overcut and undercut must
therefore mill into the top and bottom electrodes by at least 50 nm to ensure this isolation is
achieved (figure 5.7 (a)).

Early devices had deposited Pt on the track before milling, to provide mechanical support
and thermal heat sinking of the Nb above the undercut (figure 5.6 (a)). It was found for the
Nb superconducting devices that so long as dNb ≥ 150 nm, a current of several mA could be
supported at 4.2 K (sections 6.2.3 and 7.2), and the Pt was an unnecessary addition and hence
not used for later devices (figure 5.6 (b)). The Pt technique was required for the GaN devices
(section 6.4.3), which were measured at room temperature.

Figure 5.6: (a) FIB image of an early Nb/Mo/Nb device from θ = 85◦ with Pt deposited over the
device, (b) a later Nb/CuNi/Nb device from θ = 65◦ without Pt, the CuNi barrier can be seen as thin
brighter line.

Figure 5.7: Exaggerated side views of (a) milling from an angle θ < 90◦, (b) rounded and tapering
profile due to Gaussian beam profile, (see also figure 5.8).
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Figure 5.8: FIB image of a final device from θ = 0◦. The undercut and overcut are marked with white
arrows. The tapering due to the aspect ratio and Gaussian beam profile of the overcut is clear.

5.2 Limitations of the FIB technique

The device dimensions are typically in the range 500−5000 nm in the x-direction and 200−700
nm in the y-direction (figure 5.5). The minimum achievable device area is of the order of 100
× 100 nm2 for controllable milling. Beam drift during milling, and the beam profile (figures
5.7(b) and 5.8), prevent smaller features being reliably cut. Smaller dimensions are possible in
a more uncontrolled manner. The Gaussian beam profile rounding of the top of the device does
not give vertical sides to the devices, (figure 5.7 (b)). This is a problem with TEM preparation
where parallel side walls are crucial, and can be overcome by slightly tilting the sample by ±
1◦−4◦ away from θ = 0◦ [4] when cleaning the sidewalls. In the present case however this is not
such an important factor, since the top edges of the device act as an electrode, and rounding is
not important. This effect serves only to slightly increase the error of the x and y dimensions
of the junctions - which is of the order of 30 − 50 nm.

FIB processing inevitably leads to Ga implantation. Potential poisoning / damage / amor-
phous layer formation due to this Ga implantation must also be considered. Table 5.1 shows
stopping and straggling distances of Ga+ ions calculated for a variety of elements, (the longitu-
dinal straggle is the standard deviation of the distribution of distances about the mean stopping
distance). Much work has been carried out concerning the effect of Ga+ damage, in particular
magnetic materials. Ga+ implantation is known to cause swelling and amorphous layer forma-
tion before removal of material by sputtering begins [8]. For more complex crystal structures,
for example the HTS, the implantation is anisotropic, and has been determined to be 60 nm
in the c-axis of Bi-2201 and Bi-2212 [9]. This implantation will not be the same in the a − b

planes due to the different lattice spacing. This is known as ‘channelling’, and is also observed
as contrast between different crystallographic orientations in a polycrystalline sample (see figure
9.4).

How the magnetic properties of thin films change when they are patterned down to nanoscale
features of varying aspect ratio and shape is of course critical technologically. The MR obtained



Three-dimensional FIB fabrication technique 72

.

Element Stopping Longitudinal Lateral
distance (nm) straggling (nm) straggling (nm)

Mo 9.9 6.4 4.6
Pt 6.8 6.1 4.7
Au 7.5 6.8 5.3
Nb 11.3 7 5.1
Fe 10 4.9 3.6
Si 25.7 8.7 6.7
Al 22.6 7.5 5.8
Ag 10.1 7 5
Pb 12.9 11.8 9.1
Cu 9.5 5 3.7

Table 5.1: Stopping distances and straggling lengths for 30 kV Ga+ ions in various materials. (Taken
from [5], after [6, 7])

in small and narrow shapes, is expected to be enhanced, (section 1.2.7). For the present geometry
the devices are relatively long and thin. Kaminsky et al [10] found that direct Ga implantation
can modify thin films of Py, reducing the coercivity even to the extent that the ferromagnetism
at room temperature can be destroyed. Ozkaya et al [11] found an increased coercive field in
implanted Py, which they attribute to magnetostrictive stresses induced in the film, as well as
a slight change in the composition of the NiFe. Katine et al [12] claimed an effective ‘dead’
layer of magnetic material ∼ 100 nm with FIB trimming of spin-valve sensors. Xiong et al [13]
and Roshchin et al [14] however have both made similar studies (with Py and Fe respectively),
and found that objects in soft magnetic materials as small 100 nm can be fabricated with no
significant effect on the magnetic properties. It has also been shown that even moderate, (∼150
◦C) temperatures can drastically alter the GMR in the case of the 1st and 2nd AF peaks in
Co/Cu multilayers [15]. The FIB is known to increase the temperature locally when milling
material. This is mainly an important effect in insulators where the thermal conductivity is
lower, and for larger beam currents [16], so it is not considered as an issue in this work.

Many of the above cases try to quantify the doses of Ga implanted in the films using simply
the value of It/eA, where I is the beam current applied for a time t over an area A, (e is the
electronic charge). Doses of the order of 1016 ions / cm2 are required before significant removal of
material begins [8, 11]. The doses in the present case are difficult to quantify since the majority
of the material is removed and the implantation is due to the tails of the beam profile. It is
expected that much of the milling at θ = 0◦ damages only to the top layer of the electrode, with
only a relatively small lateral straggle affecting the more critical barrier region. When milling
at θ = 85◦ the barrier is affected more directly, (since there is no material above to shield it),
but the milling rate is increased at this angle, and the doses received are therefore smaller [8],
(although it is stressed again that all of the above damage / Ga dose is due only to the tails of
the Gaussian beam).

As shall be seen, although the penetration distance of the Ga+ into various materials may
be different, it is the material-dependent effect of the Ga that is more crucial: for example the
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Tl-2212 devices (section 6.1.5.1) show intrinsic S/I/S junctions - implying that the resputtered
/ amorphous regions are still insulating and the Ga damage only becomes important for the
smaller devices, whereas AlOx in LTS S/I/S junctions would seem to suffer more profoundly
(section 7.3.3).
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Chapter 6

Applications to other devices

The application of the three-dimensional FIB device fabrication described in chapter 5 to various
systems is presented. The fabrication and measurement of Tl2Ba2CaCu2O8 intrinsic Josephson
junctions is discussed. A large section of this work is published in reference [1], which is repro-
duced in Appendix B. Nb/MoSi2/Nb junctions, SQUIDs and GaN light emitting diodes are then
considered.
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6.1 Tl2Ba2CaCu2O8 intrinsic junctions

6.1.1 Introduction

An outline of the important features of the HTS was given in section 2.6, and the theory of c-axis
intrinsic junctions was discussed in section 3.6. As was noted previously, the important aspect of
figure 2.9 is the layered nature of the structure. The CuO and TlO planes (the superconducting
layers), are separated by insulating layers containing Ba and Ca. The Josephson junctions
formed have a total thickness of the order of 1.5 nm, with two junctions per unit cell.

6.1.2 Film growth

The Tl-2212 films were grown1 on (001) LaAlO3 substrates in a two stage process [2]:

• Amorphous precursor r.f. sputtered from Ba-Ca-Cu-O target

• Ex-situ anneal in a sealed crucible with a thallium source at 850 ◦C

For both the c-axis and the vicinal films (discussed in section 6.1.3), the Tl-2212 recrystallises
during the annealing to grow expitaxially on the LaAlO3 substrate [3]. For the c-axis CPP
devices, a ∼ 300 nm thick Au or Ag/Au film was ex-situ sputtered onto the film to serve as a
capping layer to protect against both water degradation and also Ga implantation when imaging
and milling from θ = 0◦ in the FIB.

Ar+ ion milling of the precursor film before thallination was also possible, however the
present work contains only devices patterned on samples which were milled after thallination.
The film thickness was typically 800 nm. Thicker films, although easier to process in the FIB,
were found to contain regions of low contrast when viewed in the FIB, which were interpreted
as either areas of a secondary phase, or voids. These made the fabrication of devices difficult.
Hence most of the devices in this work were patterned on the 800 nm thick films.

6.1.3 Previous planar junctions

Previous work has been done in the planar geometry, using CIP devices patterned on 20◦ vicinal
Tl-2212 films. In these vicinal films the c-axis is offset by 20◦ from the normal to the plane
of the substrate. In this way, a CIP measurement forces the current to take a path which is
a combination of a − b plane and c-axis transport. By patterning micron scale bridges [4], or
using the FIB to reduce the track width to the sub-micron scale [5, 6], the IC of these devices
was made small enough to be measurable. The film thicknesses in these cases was ∼ 250 nm.

6.1.4 Present work

As discussed in section 5.1, the three-dimensional FIB technique has been previously applied
to create HTS intrinsic junctions in whiskers and thin films. It is interesting to note that the
intrinsic S/I/S nature of the HTS does not suffer from the shorting problems found in metallic

1By H. Wu, Oxford University.
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S/I/S junctions, (see section 7.3.3). An good explanation for this is that the resputtered material
in the HTS case is some form of oxide. This is likely to be insulating, and not short out the
junctions, unlike the case of the metallic junctions.

In addition to the c-axis devices fabricated by the FIB technique (figure 6.1 (a)), pseudo-
vicinal devices were also fabricated. In this case triangular side cuts are made instead of the
usual squares (figure 6.1 (b)). Now the current passing through the device must pass both in
c-axis and a − b planes, as in the CIP devices fabricated on vicinal films. Hence the drawback
of lower quality of vicinal films is avoided by using a c-axis film. Such pseudo-vicinal devices
showed similar behaviour of the planar CIP devices [7].

Figure 6.1: (a) Tl-2212 c-axis device (b) a pseudo-vicinal device fabricated by G. Burnell in a c-axis
film using triangular side cuts. Both images were taken from θ = 85◦.

6.1.5 Results2

6.1.5.1 I − V s, current density scaling and resonances

A typical I − V for a c-axis CPP device is shown in figure 6.2. A total of 94 ± 2 branches are
present, which is consistent with the z dimension of the device as seen in the FIB, and the ∼ 1.5
nm junction spacing. In the case of intrinsic junction fabrication special attention should be
paid to error ∆z introduced by milling at θ = 85◦ (figure 5.7): in the heterostructure case ∆z

must be taken into account in order to fully isolate the top and bottom electrodes, and ensure
that current only flows through the barrier. In the intrinsic case, the milling angle means that
there will an increased number of junctions in the stack compared to the z dimension measured.

The gap at 2N∆/e as indicated in figure 6.2 corresponds to a voltage of 2.44±0.01 V, giving
2∆ = 25.9 ± 0.5 meV. This value is consistent with previous bulk measurements [8, 9]. The
RN of the stack is 26.6 ± 0.5 kΩ, giving a single junction ICRN = 5.6 mV. This is significantly
lower than the zero temperature limit of the standard BCS form for an S/I/S junction (equation

2All of the results presented in this section were obtained from measurements by A. Kuzhakhmetov, University
College London.



Other devices 78

3.2) of π∆/2e ∼ 20 mV. This discrepancy has been seen elsewhere [10, 11]. The ratio of the
minimum return current (the critical current when the current is reduced to zero from high bias)
to the IC is ∼ 0.03. This implies a value of βC > 103 [12], indicating low dissipation in the
junctions. Figure 6.3 shows the scaling of IC with junction area A. Although the linear scaling
is as expected, the best fit line does not pass through the origin, implying IC → 0 for some
non-zero area. The JC(A) scaling (inset figure 6.3) shows more clearly the changing properties
of the stacks for A ≤ 0.5 µm2. This decrease may be attributed to a combination of the change
in the physics of the smaller devices (due to charging effects / Coulomb blockade), as well as the
increased effect of Ga damage / implantation. However both of these effects would be expected
to become important at a smaller scale than observed in the present case (see discussion and
references in [1]).

Figure 6.2: I −V curve for 960 × 460 nm2 area
Tl-2212 stack with ∼ 94 junctions in series at 4.2
K. Stack depth z ∼ 150 nm. High bias RN and
gap for all junctions are indicated. Inset: Detail
of the individual branches, sub-gap structure is
evident below 2 µA.

Figure 6.3: Scaling of IC with junction area A,
for Tl-2212 junctions at 4.2 K. Different coloured
circles refer to different c-axis films. Triangles
are vicinal CIP devices for comparison. Inset:
Scaling of JC with junction area.

Sub-gap resonances were observed in the I − V , as shown magnified in figure 6.4. Such
features have been previously found in intrinsic junction I − V s of single crystals, and are
thought to be a consequence of the a.c. Josephson oscillation coupling to longitudinal optical
phonons in the c-axis (section 3.6). The characteristic frequency scale of the Josephson junction
oscillation ICRN/Φ0 ∼ several THz. This corresponds to 50 − 100 cm−1, which is in the far
infrared region. This is a similar range to phonon frequencies measured in Tl-2212 [13, 14]. The
resonances are therefore consistent with the model of coupling between the Josephson oscillations
and phonon modes.

6.1.5.2 In-situ resistance measurement

The in-situ resistance measurement (section 4.3.2.1) was used to try to achieve greater control
over the number of junctions in a stack. After milling the undercut from θ = 85◦, the chip
was removed from the FIB and loaded onto the in-situ sample holder. The overcut was then
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Figure 6.4: Magnified image of the inset of fig-
ure 6.2, showing some sub-gap resonances at 4.2
K. Numbers refer to the quasi-particle branch of
the I − V , and the order of the splitting of each
branch.

Figure 6.5: In-situ R(t) taken while milling the
overcut trench from θ = 0◦. Initial jump corre-
sponds to milling through the Au capping layer.

made from θ = 0◦ by milling a trench in an analogous manner to the planar junction fabrication
technique (section 4.3.2), while making a four point measurement of the R(t). Due to the
anisotropy of the resistivities in the a − b and c directions of Tl-2212 in the normal state, a
jump in R was expected in the R(t) as soon as current was forced to flow in the c direction,
i.e. z > 0. An increase was observed (figure 6.5), but no sudden jump was seen. The final
devices fabricated by this method did not show good I − V characteristics. The unreliability
of the milling from θ = 0◦, and the smoothly varying R(t) may have been associated with the
roughness of the original Tl-2212 film (see figure 6.1), as well as an increased milling rate at the
sides of the track due to edge effects. Both of these problems would mean that the trench did
not mill uniformly, making accurate control of z difficult.

6.1.5.3 Further work: High frequency devices

FIB devices were made on c-axis films by G. Burnell using two different designs to examine
the high frequency behaviour of the junctions. Single devices were made at the centre of a
semi-logarithmic antenna design, to couple the device to an external THz source. A second
design fabricated two devices side-by-side, to act as emitter and receiver of the THz radiation
respectively. In the case of the double junctions, a single junction with y in the range 1− 2 µm
was fabricated, and then cut into two from θ = 0◦, to give two devices each with y ∼ a few 100
nm. Since the initial y dimension was relatively large, the side-cuts were made using a 70 pA
beam current to avoid stage drift problems associated with the longer milling times when using
a lower beam current. Unfortunately, to date, neither of these designs have shown significant
high frequency coupling.
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6.2 Nb/MoSi2/Nb junctions

6.2.1 Motivation

When an array of n Josephson junctions is phase-locked with microwave radiation of frequency
f , Shapiro steps are found at a voltage nVs, where Vs = h

2ef is the voltage the step appears
at for a single junction. This technique is used by the National Institute of Standards (NIST),
among others, to produce voltage standards, since the microwave frequency can be known to
a very high degree of accuracy. Currently S/I/S junctions are used [15], but S/N/S junctions
are also being investigated as the next generation of standards, due to their reproducibility and
stability [16].

Tens of thousands of junctions are required for a 1 V standard. To allow accurate control over
the barrier widths, S/N multilayers are grown and etched into series arrays of mesa structures.
Despite this technique, the junction size makes the total array area large compared to the
wavelength of the microwaves. Phase-locking the junctions is then difficult. To achieve as high
a density of junctions as possible the N barriers and the S spacers in the multilayer should be as
thin as possible [17], while maintaining a large ICRN product, and suitable heat dissipation of
the power generated. A high resistivity barrier is attractive, since for a given required voltage,
the power dissipation is reduced [18]. NIST has found that amorphous MoSi2 is a good candidate
for this purpose. For the thinner MoSi2 barriers the JC is prohibitively large for their micron-
scale junctions. To investigate the single junction properties as the MoSi2 thickness is reduced,
the FIB technique was hoped to provide information on the ICRN and JC scaling with dMoSi,
as well as investigating the power dissipation properties of sub-micron junctions.

6.2.2 Film details

The films were d.c. magnetron sputtered3 on oxidised Si, with the structure Nb(300 nm) / dMoSi

/ Nb(300 nm), with dMoSi = 15.1, 10.2, 7.9 and 5.9 nm (referred to as wafers A, B, C and D
respectively). Previous studies [19] had indicated that the JC follows the empirical form

JC ∼ 170 exp
(−dMoSi

3.7

)
(6.1)

where dMoSi is measured in nm, and JC has units of mA/µm2. On this basis, the devices on
wafer A should have a IC of the order 0.7 mA for a 500 × 500 nm2 junction, increasing to 8.6
mA for wafer D. The latter being comparable to the overhanging bridge Nb IC at 4.2 K. The
x and y dimensions were therefore required to be as small as was possible to fabricate with the
FIB, in order to achieve a small enough IC . The dimensions of devices which showed Josephson
junction behaviour are presented in table 6.1.

3By Y. Chong of NIST, Boulder, Colorado.
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Wafer x (nm) y (nm)

A 400 700
A 250 730
A 145 250
A 195 380
A 110 270
A 200 310

B 170 220
B 180 195
B 80 120
B 230 220
B 150 340

Table 6.1: Nominal x and y dimensions of Nb/MoSi2/Nb devices fabricated.

6.2.3 Results

Figure 6.6 shows the first results obtained with devices patterned on wafer A. The inset of figure
6.6 shows the I − V curve at high bias. The low bias hysteresis is associated with heating in
the junction, while the much larger hysteresis at high bias is the bridge IC of the Nb above the
undercut. Under 12.82 GHz microwave irradiation 14 Shapiro steps could be observed (figure
6.6). If the microwave power was chosen correctly, the IC could be suppressed enough to make
the junctions non-hysteretic to within the noise level of the measurement. As can be seen from
the IC(H) (figure 6.7) the IC is not suppressed to zero, (the I − V curves confirmed that this
was not an artifact of the voltage criterion used to find IC), thus there was some non-uniformity
in the junctions. Attempts to make devices on the C and D wafers were not successful. Devices

Figure 6.6: I − V with and without microwave
radiation of a 400×700 nm2 Nb/MoSi2/Nb device
with dMoSi2 = 15.1 nm, at 4.2 K. Inset: high bias
I − V showing the Nb bridge IC .

Figure 6.7: IC(H) showing the two ICs of the
hysteretic I −V for a similar sized device to that
of figure 6.6 at 4.2 K. Lines are a guide to the eye.

with dimension < 100×100 nm2 were either very easily destroyed by passing too large a current,
or showed resistive behaviour. As can be seen from figure 6.8, the lack of physical support and
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heat sinking for such devices would limit their mechanical survival.

Figure 6.8: FIB image from θ = 85◦ of one of the smallest Nb/MoSi2/Nb devices fabricated.

6.2.4 Discussion

As shown in the inset of figure 6.9, the JC of these devices were comparable to the values
predicted by equation 6.1, given the error bars associated with measuring the junction area.
On the other hand, the ICRN products of the FIB junctions were somewhat larger than the
measurements made at NIST, particularly in the case of wafer B, (figure 6.9). In this case,
since the junction dimensions were approaching the controllable limits of the FIB technique, a
significant fraction of the device would have been Ga damaged. This may have changed the
properties of the MoSi2, increasing the JC and ICRN .

From the inset of figure 6.6, the Nb bridge becomes normal at a bias current of Imax = 1975
µA, when the power dissipation Pmax = I 2

maxRN = 1.2 × 10−6 W. As a comparison with the

Figure 6.9: Scaling of ICRN with barrier thick-
ness in the present work (red) and previous mi-
cron scale junctions fabricated at NIST (black).
Inset: JC(dMoSi) for FIB devices compared equa-
tion 6.1 (line). NIST data courtesy of Y. Chong.

Figure 6.10: Pmax vs electrode width (for junc-
tion width = 4 µm), and junction width (for
electrode width = 16 µm), for a SiO2 substrate.
Taken from Chong et al [18].
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NIST devices, figure 6.10 shows how the maximum power dissipation in the micron scale mesa
junctions decreases with both the junction and base electrode width. This scaling is caused by the
dominance of radial heat conduction to the substrate via the base electrode. The characteristic
length scale over which the electrode equilibrates with the substrate, the thermal healing length
�t, was found to be 2.7 µm [18]. Hence it is not possible to extrapolate these results, with the
approximation of the model [18], to dimensions < �t. In the present case, the device and one
of the electrode dimensions are smaller than �t. A simple estimate of Pmax can be made using
Pmax = AY ∆T [19]. Here ∆T = T − TC = 5 K and Y = 1 × 105 Wm−2K−1 is the thermal
boundary conductance between the Nb and the SiO2 substrate [18]. The base electrode area A

is approximated as y�t = 0.73 × 2.7 µm2. This leads to Pmax ∼ 1 µW, in agreement with the
measured value above. For this application, the small electrode area of the FIB devices causes
difficulties in removing the heat effectively. However the relatively thick Nb electrodes and thin
barriers, in addition to the high ICRN product of these films made them suitable for use in the
fabrication of nanoSQUIDs, as discussed in the next section.

6.3 SQUIDs

Two junction d.c. SQUIDs can be fabricated by any reproducible junction technology. The
ability to create two junctions in a relatively large loop is not surprising in itself. The results of
the macroSQUID measured in section 6.3.1 were of most interest in terms of the feasibility of
measuring the voltage modulation of a structure with two metallic, low ICRN junctions. This
is important in, for example, the possible measurement of π-SQUIDs (see section 9.2). On the
other hand, the nanoSQUIDs discussed in section 6.3.2, are more interesting in themselves, since
the possibility of creating nanoscale SQUIDs is of increasing interest for applications as detectors
in the study of magnetic clusters [20]. There is increasing work concerning the fabrication of
sub-micron loops by various means, (for example see [21] and references therein).

6.3.1 MacroSQUID

The SQUID design used consisted of a washer with outer dimension 2 mm and width 750 µm,
directly coupled to a slit type loop with inner dimension 5 µm, as shown in figure 6.11. This
design is known to have an inductance of L = 100 pH, and an effective magnetic area of 0.123
mm2 [22]. For the FIB fabrication there was concern that when milling the side cuts for the
second device, the Ga+ beam would damage the first junction directly behind it. A block of
Pt was deposited in the centre of the loop to prevent this from happening. Serendipitously the
separation of the two tracks when viewed from θ = 85◦ (figure 6.12) allowed the two devices
to be made without damaging one another, while at the same time the separation was not too
great, so that both devices could be imaged using the depth of focus of the FIB. The Pt could
therefore be removed, and both devices made without needing to re-align the chip.

The area of the pick-up loop meant that the out-of-plane magnetic field required to modulate
the SQUID was relatively small. The field was applied using a few turns of wire mounted on a
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Figure 6.11: Schematic of the 2 mm washer and close-up of SQUID loop used. Junction positions are
marked by crosses on the right-hand figure.

plastic screw suspended above the sample. For this reason the field calibration was not known,
but can be calculated from the period of the IC(H) response, and the known effective magnetic
area. The conversion factor between Icoil and the applied flux density is found to be 0.222±0.004
nT/µA. A Nb/CuNi/Nb trilayer with dCuNi ∼ 8 nm was used for the SQUID fabrication (see
section 7.4.2). The IC of the SQUID was ∼ 240 µA, and the RN ∼ 70 mΩ. Due to the relatively
low ICRN product of these junctions, the lock-in amplifier was used to measure dV /dI vs I as
the current in the magnetic coil Icoil was varied. The IC(Icoil) response is shown in figure 6.13.

Figure 6.12: FIB image from θ = 85◦ showing the two devices in the SQUID loop.

The IC was extracted directly from the dV /dI measurement using various resistance criterions
as shown. The asymmetry of the peaks is associated with the design of the SQUID mask, as
well as some inevitable differences between the ICs of the two junctions [23]. The dV /dI vs
I curves were integrated using Simpson’s rule, and the ∆V (Icoil) extracted from the resulting
I − V s for varying bias currents above IC . The maximum modulation of ∼ 10 nV occurs for
a bias current of 253 µA ≈ 1.05 IC . Given an inductance of 100 pH, the parameter βL ∼ 36.
This is consistent with the relatively small modulation depth ∆IC observed in figure 6.13, (see
section 3.5.2).
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Figure 6.13: Modulation of the SQUID IC vs
Icoil for various resistance criterions. Lines are a
guide to the eye.

Figure 6.14: Corresponding voltage modulation
for the results from figure 6.13 using various val-
ues of current bias (µA).

6.3.2 NanoSQUIDs

As Kim et al have previously shown [24], a SQUID with a sub-micron area loop can be created
by milling a third side cut through the centre of the junction. This is shown schematically in
figure 6.15. A FIB image is shown in figure 6.16. In the work of Kim et al the dimensions of
the device were all relatively large: the Bi-2212 whisker was several microns thick, the loop x

dimension was ∼ 8 µm, and the junction y dimension was 1.5 µm. The SQUIDs showed a poor
IC(H) modulation. In the present work smaller loop areas were fabricated.

xloop zloop

Figure 6.15: Idealised picture of the finished
d.c. nanoSQUID, with loop dimensions xloop and
zloop.

Figure 6.16: FIB image from θ = 65◦ of a
Nb/CuNi/Nb nanoSQUID.

In section 6.3.1, not only were the junction areas � the area of the SQUID pick-up loop, but
also the applied field was out-of-plane, and therefore there was no change of the junction ICs
due to the usual Fraunhofer modulation. For the nanoSQUIDs, the finite size of the junction
with respect of the loop must be considered. In terms of the analogy with the diffraction of
light, there are two δ-functions convoluted with a top hat in Fourier space. This corresponds to



Other devices 86

a Fraunhofer single junction IC(H) multiplied by a cosine SQUID modulation:

IC(Φex) = 2IJ

∣∣∣∣cos
(

πΦs

Φ0

) [
sin(πΦJ/Φ0)

πΦJ/Φ0

]∣∣∣∣ , (6.2)

where ΦJ is the flux that passes through each of the junctions, and Φs is the flux linking the
SQUID loop, (the junction ICs are assumed identical - see section 3.5.2).

6.3.2.1 CuNi barrier

The Nb / CuNi(8 nm) / Nb trilayer as used in section 6.3.1, was used to create the first
nanoSQUIDs. The good contrast between the Nb and CuNi allowed good control over the
positioning of the third side cut to create the loop. The IC(H) response of one device, (loop
area 475 × 180 nm2 and junction x dimensions 420 nm and 350 nm) is shown in figure 6.17.
Despite the clear periodicity in the response, the IC(H) cannot be satisfactory fitted using
equation 6.2, (the peaks near ±30 mT being the most obvious anomaly). This may be due
in part to the additional unclear nature of the CuNi barriers themselves, and the fact that
stray flux from the junctions may be feeding into the SQUID loop. Due to the size of the
loop the applied fields required to modulate the SQUID are large enough to move the magnetic
moment in the barrier, and change the flux in the SQUID. The other IC(H) shown in figure 6.18

Figure 6.17: IC(H) for a Nb/CuNi/Nb
nanoSQUID at 4.2 K, with H ⊥ x.

Figure 6.18: ‘Beating’ IC(H) for a
Nb/CuNi/Nb nanoSQUID at 4.2 K, with
H ⊥ x.

shows a similar periodic and distorted behaviour. In this case however, the ‘beating’ pattern is
reminiscent of two combined SQUID modulations with different periods (see for example [25]).
This may be caused by significant inhomogeneities or resputtered shorting on one or both of the
single junctions. This would transform a single junction into a second SQUID, in addition to
the nanoSQUID loop. This is quite possible due to the relatively small size of the SQUID loop
- meaning that aspect ratio problems would tend to increase the amount of resputtering.
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6.3.2.2 MoSi2 barrier

To avoid the added complication of the ferromagnetic CuNi barriers, the Nb/MoSi2/Nb devices
discussed in section 6.2 were also used to fabricate nanoSQUIDs. The IC(H) shown in figure
6.19 was fabricated with 370×270 nm2 loop, with x = 220 nm and 120 nm for the two junctions.
This shows a much clearer SQUID modulation and Fraunhofer envelope function. Figure 6.20
shows the slight anti-symmetric nature of the pattern.

Figure 6.19: IC(H) for hysteretic I − V of
a Nb/MoSi2/Nb nanoSQUID at 4.2 K. Applied
field H ⊥ x. Lines are guides to the eye.

Figure 6.20: Low field |IC(H)| of figure 6.19,
for both IC > 0 (black) and IC < 0 (red). Lines
are the corresponding theoretical fits (see text).

The theoretical fit in figure 6.20 uses the most general numerical solution discussed in section
3.5.2: a non-negligible loop inductance L, and different single junction ICs. The two values of
IC1 and IC2 are calculated using a simple potential divider:

ICi =
xiI

max
C

x1 + x2
; i = 1, 2 . (6.3)

x1 and x2 are the junction dimensions measured in the FIB. The only unknowns in the model are
the inductances L1 and L2. The total inductance L = L1 + L2 is used as the fitting parameter
to match the modulation depth of the IC(H) data. It is then important to decide how the
values of L1 and L2 depend on the asymmetry of the device. In the limit of a large loop area
compared to the single junction stacks, the difference between L1 and L2 due to the different
values of junction dimensions x1 and x2 is negligible, and L1 = L2 can be assumed. When the
junctions and loop are of comparable dimensions, a simple model is used, which assumes that
the inductances scale in the same way as the ICs, leading to

Li =
xiL

x1 + x2
, (6.4)

analogous to equation 6.3. In the case of figure 6.20, the latter limit is used. A total inductance
L = 2.6 pH was found to fit the modulation depth of the SQUID, as shown in figure 6.20.
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The values of x1 and x2 had to be changed to 150 nm and 180 nm (from 120 nm and 220 nm
respectively), to obtain the best fit. However this variation is acceptable due to the error of the
FIB measurement.

In order that many periods of the IC(H) could be measured with the copper coil of the
dip probe at 4.2 K, the central loop of another SQUID was made relatively large. This device
had loop dimensions of xloop = 1380 nm and zloop = 390 nm. The junction x values were
245 nm and 220 nm. Figure 6.21 shows the IC(H) response for an applied field H ⊥ x. The
SQUID I − V was hysteretic up to a field of about 25 mT, however figure 6.21 shows the out
branch IC only for clarity. A SQUID modulation with a period of 2.25 mT is observed. The
re-entrance of the Fraunhofer envelope is clear. The first Fraunhofer minima is at 42 ± 1 mT.
The relatively small difference between the junction dimensions (within the experimental error
of the FIB measurement), is consistent with the lack of asymmetry in the IC(H), as shown in
the low field detail in figure 6.22. The theoretical fits shown in figure 6.22 used x1 = x2 = 230

Figure 6.21: Out branch IC(H) for a
Nb/MoSI2/Nb nanoSQUID at 4.2 K with loop
area 1380× 390 nm2. Applied field H ⊥ x. Lines
are a guide to the eye.

Figure 6.22: Low field IC(H) of figure 6.21 with
theoretical fits for L = 4 pH (red) and 7 pH
(black).

nm. As can be seen from the fitting, the modulation depth can be fitted using a value of L = 7
pH, but with poor agreement with the shape of the data. Whereas the L = 4 pH fit gives good
agreement for 0.7 < IC/Imax

C < 1, but predicts a smaller Imin
C than is observed. Given that the

loop area for this device was a factor of five larger than the previously discussed nanoSQUID,
which was fitted with L = 2.6 pH, the larger value of L for this loop would seem to be more
acceptable. The model used has assumed flux quantisation, which may not be the case for the
largest loop, for which the Nb above and below the SQUID loop is of the order of 100 − 150
nm thick: in this case it may not be possible to draw an integration contour along which the
supercurrent density J = 0.

For both of the devices described above, a single value of the penetration depth λ = 105±10
nm could be used to fit both the Fraunhofer and SQUID modulation periods using equation
6.2, when the device dimensions measured in the FIB were used. This simple fit for λ also
neglects the finite size of the devices, (see section 3.1.4). Using equation 3.10, a corrected value
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of λ = 40 ± 5 nm is obtained, which is consistent with other measurements (section 8.3).
By biasing the nanoSQUID of figure 6.21 at various currents, the voltage modulation against

applied field was also found. This modulation using three different bias currents is shown in
figure 6.23. The maximum peak-to-peak voltage modulation was ∼ 24 µV.

Figure 6.23: Voltage modulation as a function
of applied field at different bias for IC(H) in figure
6.21.

Figure 6.24: Inductance vs λ for the
nanoSQUID of figure 6.21, using 3dmlsi software.
Red lines above and below are extremal values as-
suming ±50 nm error on each junction and loop
dimension measured by the FIB.

6.3.2.3 Modelling of inductances

The 3dmlsi finite element software was used to independently find the inductance of the
nanoSQUID loops discussed above [26]. The larger of the two nanoSQUIDs above was modelled.
The junctions were ignored, and the whole nanoSQUID treated as a single superconducting loop.
The program split the loop into triangular elements, using typically ∼ 460 boundary elements,
which enabled the calculations to be carried out relatively quickly.

As can be seen from figure 6.24, the calculated range of L (using a reasonable error window
of the FIB dimensions) gives a lower predicted inductance than found via the IC(H) fitting, but
the agreement is acceptable, given that one of the assumptions of program is that the lateral
dimensions of the structures are all large compared to the film thicknesses, which is not the case
in this work.

6.4 Gallium nitride LEDs

There is much interest in GaN and related materials, due to the potential uses in blue/green light
emitting diodes, lasers, and solid state lighting [27]. There are many problems associated with
the processing of these materials due to their inert chemical nature and strong bond energies
[28]. The relatively high work function of p-type GaN:Mg also hinders the production of good
Ohmic / low resistance metal wiring contacts [29, 30]. This is a drawback for spreading layer
contacts above light emitting diodes.
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FIBs are being increasing used in all aspects of the semiconductor industry. They have been
used to implant and intermix dopants to create microelectronic and optoelectronic devices both
during [31, 32] and after [33, 34] film deposition. The smoothness of mirror facets for GaN laser
diodes can be improved by FIB cleaning [35, 36]. Small apertures for optical recording heads [37]
have been produced. Heterostructure field effect transistor pillars as small as 20 nm have also
been fabricated in bilayers of GaN/AlGaN, [38] with reasonable photoluminescence properties.
The properties of generic FIB patterning of GaN have be studied in references [39, 40].

In reference to the present work, there is interest in the polarisation of light emitting devices
with high aspect ratio, and dimensions ≤ wavelength of light, [41, 42]. The changing properties
of nanoscale diodes has also been theoretically investigated [43], and the potential to investigate
LED structures small enough to contain a small number, or no dislocations is also of interest [44].
With the present FIB technique submicron junction areas are obtainable. The specific contact
resistance of such junctions should not be as large as an identically conventionally patterned
mesa structure, due to the remaining overhanging p-type material, which is not present in the
mesa structure.

6.4.1 Film preparation

A schematic cross section of the heterostructure is shown in figure 6.25 (a). The films were
prepared4 on c-plane sapphire in a close coupled showerhead metal organic chemical vapour
deposition reactor at ∼ 13 kPa between 710 − 800 ◦C. This process has been found to create
high quality quantum well heterostructure films. The wavelength of the light emitted can be
controlled by the temperature of the quantum well growth. A wavelength in the range λ =
400 − 600 nm is possible, with a spread of ∼ 2 nm over a two inch wafer [45].

For the devices fabricated, the n and p-type thicknesses were 1600 nm and 200 nm respec-
tively, (there was also a 500 nm thick undoped GaN buffer layer beneath the n-type layer). The
quantum wells structure was five repeats of a 10 nm thick InGaN/GaN bilayer. A layer of ∼
200 nm thick Au, or Ni/Au was ex-situ sputter deposited onto the film before the broad beam
Ar+ ion milling, (as can be seen in the FIB image of a device in figure 6.25 (b)). This enabled
wirebonds to be made to the chip. For the image shown in figure 6.27 however, a 20 µm wide
region in the centre of the chip was not covered with Au, to allow the light produced to be easily
visible from above.

6.4.2 Results

The CPP devices fabricated in the FIB were measured with a lock-in amplifier, and integrated
to obtain the I−V characteristic, as shown in figure 6.26. A clear diode response is observed. In
contrast to the superconducting devices, it is important to note that the four-point measurement
of the I −V contains a series resistance due to the distance of the device from the voltage leads
in the mask design (figure 4.6 (b)). A series resistance of 23.5 MΩ has been subtracted from
the I − V in figure 6.26. A van der Pauw measurement of an unpatterned film at 295 K gave

4By M. J. Kappers.
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Figure 6.25: (a) GaN LED film cross section (thicknesses not to scale). (b) FIB image of GaN LED
device from θ = 65◦. The darker surface layer is ex-situ deposited Au.

a value of the resistivity / thickness ratio ρ/d ∼ 2 × 106 Ω. Assuming a total film thickness of
∼ 1800 nm, (neglecting the undoped GaN layer), with track lateral dimensions of 25 µm and
4 µm, the resistance is calculated to be ∼ 12 MΩ, which is of the correct order of magnitude.
When the extra resistance due to the narrowed sections around the device is estimated, it is
found to be of the same order as the 12 MΩ above. The value of the linear subtraction is
therefore justifiable, however without accurate modelling, it is difficult to fit the value of 23.5
MΩ perfectly. A possible solution to the problem of the series resistance would be to use the
cross geometry discussed in section 9.3, but this was not attempted in these devices. When

Figure 6.26: GaN I−V after linear subtraction
of a series resistance. Inset: Differential resis-
tance output from the lockin amplifier.

Figure 6.27: In-situ R(t) and dR/dt of a
metal/GaN heterostructure. Inset: glowing GaN
LED viewed in an optical microscope with 50 V
applied.

biased at room temperature under an optical microscope a blue/green light is seen from the
device area (inset figure 6.27), confirming that CPP current flow was occurring. It is clear that
the FIB processing has not destroyed the quantum well structure. The relatively high resistance
of the device, and the difficulties of obtaining enough light to be visible at the magnification
shown meant that 50 V had to be applied to the device, (the current was of the order of several
mA). The large resistance of the tracks (see above) would seem to rule out a significant voltage
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drop across the quantum wells in this case, and does not explain how the light can be produced.
However this argument assumes the series resistance is voltage independent. This will not be
true, since significant heating will occur in the tracks, reducing the series resistance at 50 V, and
increasing the voltage dropped across the quantum wells. Many devices were destroyed during
the process of taking these images. Attempts were also made to try to record the spectrum of
the light using an optical spectrometer. Unfortunately this was not possible due to difficulties
in focusing the emitted light into the spectrometer’s probe.

6.4.3 Fabrication problems

As discussed in section 5.2, the FIB processing typically requires each electrode thickness to
be ≥ 150 nm. However in the GaN case, the different doped GaN layers and the quantum
wells do not show strong contrast in the FIB. Despite knowing the layer thicknesses this did
add a greater margin of error to the side cuts, particularly in the case of the thinner p-type
(top) electrode. This was made worse since the devices were made relatively large (both y and
x ≥ 700 nm), in order to be visible under the optical microscope. This increase in milling
time gave a larger error in the cuts due to beam and stage drift. A more conservative 500 nm
thick layer would allow more margin of error to ensure that the wells are isolated. The in-situ
resistance measurement (section 4.3.2.1) was used to calibrate the thicknesses and milling rates
of the p and n-type. Figure 6.27 shows the R(t) measured while a multilayer of Au/Ni/p-type
GaN/quantum wells/n-type GaN/undoped GaN/sapphire was milled through with an 11 pA
beam. The individual layers can be distinguished by the bumps in the R(t) and peaks in the
dR/dt. In this way calibrated cuts from θ = 0◦ could be viewed from θ = 85◦ to give a more
accurate guide to the position of the quantum wells.

The overhanging p-type bridge was frequently destroyed by excessive current density. This
problem can be reduced by using a relatively thick electrode. Metallisation above the p-type
layer can also be used: this will introduce some contact resistance and also reduce the amount
of light visible from above the device. As a compromise the FIB was used to deposit a block
of Pt 1 µm thick, over an area ∼ 1 × 1 µm2 over a region of the track, before any milling had
taken place. After thinning and cleaning, the undercut hole was made directly below the Pt
block. This Pt provides physical support for the overhanging bridge of p-type material, as well
as acting as a heat sink for Joule heating in the thinned region, but without the disadvantage
of covering over the active region of light emission with metallisation. This technique was used
in fabrication of the glowing device shown in the inset of figure 6.27.
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[13] A. A. Tsvetkov, D. Dulić, D. van der Marel, A. Damascelli, G. A. Kaijushnaia, J. I. Gorina,
N. N. Senturina, N. N. Kolesnikov, Z. F. Ren, J. H. Wang, A. A. Menovsky, and T. T. M.
Palstra, Phys. Rev. B 60, 13196 (1999).
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Chapter 7

Single barrier Josephson junctions

The results for S/F bilayer junctions, S/N/S, S/I/S, and S/F/S CPP devices are discussed.
The issues related to the FIB fabrication procedure are highlighted for each case.
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7.1 F/S bilayers

7.1.1 Planar junction characteristics

As described in section 4.3.2, variable thickness bridges can be formed by milling a 50 nm trench
across a micron scale track of an N/S bilayer. This technique was used on a CuxNi1−x/Nb bilayer
with dNb = 120 nm and dF ∼ 50 nm. x was in the range 0 ≤ x ≤ 0.7. The CuNi alloy was
formed by depositing a fine multilayer of Cu/Ni with individual layer thicknesses < 1 nm. After
FIB processing Josephson junction I − V s were obtained, which showed Shapiro steps at the
appropriate voltages with applied microwaves (figure 7.1). As with the N/S case [1] the in-situ
resistance measurement gave control over the depth of cut in the FIB: the resistance change ∆R

correlated with IC per unit width of junction, (inset figure 7.1).

Figure 7.1: I − V (black) and with 13.69 GHz
microwaves (red) at 4.2 K for a Ni/Nb junction
with dF = 50 nm. Inset: Scaling of IC normalised
to track width with in-situ resistance change ∆R.

Figure 7.2: IC(H) for a Cu/Nb junction at 4.2
K. Left inset: Scaling of IC offset with Hmax.
Right inset: Colour code for direction of field
sweep.

The IC(H) (H applied perpendicular to plane), was hysteretic and in many cases heavily
distorted from the ideal Fraunhofer pattern. The period of the ideal Fraunhofer is increased
relative to that predicted by equation 3.8 due to the ‘flux focusing’ effect of the electrodes in the
planar geometry [2]. The hysteresis of the IC(H) is not directly related to any flux threading
the junction due to the F layer - since it is also observed in N/S bilayer junctions (figure 7.2).
Such behaviour has also been seen in plane Nb tracks [3], HTS grain boundary junctions [4],
and bulk samples [5]. From these other works a simple interpretation of the behaviour can be
built up by examining the flux fed into the junction by screening currents set up in response
to vortices near the junction. The hysteretic motion of these vortices is reflected in the IC(H)
observed. The more vortices near the junction, the larger the hysteresis. Due to this, the offset
of the peak IC from zero field increases with the maximum applied field, Hmax, (left inset of
figure 7.2), as seen in other planar devices [6].

In the F/S case, the vortex entry into the track and the pinning will be strongly affected by
the F layer [7]. Domain structures in the F layer may also contribute to the flux in the junction
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causing non-uniform current flow, and the distorted IC(H). However no significant changes in
the behaviour occurred with the composition of Cu/Ni underlayer - this is presumably since the
majority of the supercurrent was carried by the remaining Nb in the trench.

7.1.2 Limits of the planar technique

The calibration of the FIB cuts showed that there was always Nb present at the bottom of
the junction trenches in working devices. The junctions are not truly S/F/S. Following the
discussions of section 3.2 a barrier length ≤ 20 nm is required in the dirty limit, even for weak
ferromagnetic barriers. This is difficult to achieve in a 120 nm thick Nb film due to the aspect
ratio of the cut. Even for thinner Nb layers the spot size of the FIB sets a more fundamental limit
(section 4.3.1). The reproducibility and uniformity of the trenches is not good enough to enable
control over junction widths < 50 nm. These limitations motivated the trilayer fabrication
technique developed in chapter 5. The barrier thickness is then set by dF , the film thickness,
which can be controlled to < 1 nm.

7.2 Trilayer S/N/S junctions

7.2.1 Device fabrication

Trilayer Nb/Mo/Nb (S/N/S) junctions were the first junctions fabricated using the three di-
mensional FIB technique discussed in chapter 5. The barrier thickness was in the range 150
nm< dMo < 250 nm, and both S layers had dNb = 150 nm. As previously discussed, Pt was
deposited on top of these devices to serve as mechanical support for the Nb above the undercut.
This was later found to be unnecessary.

7.2.2 I − V characteristics

The junctions showed RSJ-like I − V characteristics, and Shapiro steps when microwaves were
applied, (inset figure 7.3). The ICRN scaling with dMo (figure 7.4) shows the expected increase
for thinner Mo barriers for dN > 150 nm, but the thinnest samples showed a depressed ICRN .
Similarly the resistivity of the Mo calculated using the high bias RN were consistent for larger
dMo, but showed more scatter for thinner barriers. A significant proportion of the error in the
latter case was associated with the measurement of the junction area. An error ±30 nm becomes
very significant for the thinnest barriers, where the area was generally smaller, so that the IC is
small enough to be measurable. The anomalous values of ρMo and ICRN for dMo ∼ 150 nm may
hint at different barrier properties for this film. This possibility was not investigated further.
The quadratic behaviour of IC(T ) (figure 7.3) implies ‘soft’ boundary conditions - i.e. the gap
∆s near the Nb/Mo interface is suppressed from the bulk Nb value [8].
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Figure 7.3: ICRN (T ) for a several devices with
dMo ∼ 250 nm, with a quadratic fit to one plot.
Inset: Device 11110C4 I−V and with 15.21 GHz
microwaves (red).

Figure 7.4: ICRN (dMo) for a series of trilayer
Nb/Mo/Nb devices. Inset: ρMo vs dMo extracted
from the junction RN .

7.2.3 Behaviour with applied magnetic field

The magnetic field was applied in-plane, perpendicular to either the x and y dimensions, (see
figure 5.5 for dimension convention). Since the fabrication technique requires y < 500 nm for
the film thicknesses used, whereas the x dimension was as large as 5 µm, multiple peaks in
the IC(H) were mostly observed when H ⊥ x (figure 7.5). The agreement with the best fit
Fraunhofer in figure 7.5 is good, indicating a uniform current flow. The fit used a value of
λ = 25 ± 5 nm, which is slightly smaller than that obtained via other devices. By varying the
junction dimension x and measuring the position of the first minima in the IC(H) with H ⊥ x

(inset figure 7.5), a 1/x scaling is found, as expected. Therefore the cuts made with the FIB are
actually determining the magnetic area of the junction.

The higher JC of the thinner Mo barriers enabled junctions with dimensions longer than
the Josephson penetration depth λJ , to be fabricated. These showed more triangular IC(H)
behaviour with H ⊥ x (figure 7.6) compared to more rounded response for H ⊥ y (inset of
figure 7.6). Using a value of λ = 40 nm (section 6.3.2.2), equation 3.7 can be solved to obtain
λJ = 270 ± 55 nm. The ratio x/λJ = 6 ± 1. In this case the extrapolated first minima in the
IC(H) occurs at B = 2µ0JCλJ [9]. Using JC = 1.4±0.5×1010 Am−2, a value of B = 9.4±2 mT
is obtained. This is in reasonable agreement to the value of 5 mT obtained from the linear fits
in figure 7.6. The largest contribution to the errors in the above calculation was an estimated
error of ±40 nm in the 100 nm y dimension. Due to the difficulty of measuring such lengths in
the FIB, this error may be an underestimate. The value of λJ should therefore not be taken as
accurate, although the agreement with theory is acceptable.

7.2.4 Conclusions for Mo devices

A problem of the Mo barrier was the lack of contrast with the Nb electrodes when viewed in
the FIB. The cuts made in the FIB may not have sufficiently isolated the junction region in
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Figure 7.5: Device 11110C4 IC(H) for H ⊥ x
with x = 890 nm, and fit to ideal Fraunhofer,
(dMo ∼ 250 nm). Inset: Position of the first min-
ima vs junction width for several devices. Line is
1/x scaling.

Figure 7.6: IC(H) for dMo ∼ 180 nm, with x =
1600 nm and y = 100 nm. H ⊥ x. Red lines are
linear fits to the sides of the main peak. Inset:
IC(H) for H ⊥ y. Black lines are a guide to the
eye.

some cases. This would reduce the effective value of dMo, and explain the scatter of the ICRN

observed. In retrospect, to enable a larger error margin for the side cuts, the Nb electrodes
should have been grown thicker. Also, a ∼ 5 nm Cu layer for example could have been inserted
at the Nb/Mo interfaces. This would not significantly change the properties of the junction,
but would provide contrast for the FIB processing, to ensure the full removal of the Mo by the
side cuts. Another possible problem is that the TC of Mo may have been altered by the Ga
implantation [10]: such effects have been observed with nitrogen and sulphur implantation, but
the effect of Ga is unknown. This may add to the variation in the devices, but it is clear from
the above results that the basic FIB technique can produce working Josephson junctions in these
heterostructures.

7.3 Tunnel junctions

7.3.1 Junction deposition

The Nb/Al/AlOx/Al/Nb junction structure was deposited in the following stages, with the Ar
sputtering pressures as indicated:

• 200 nm Nb grown at 0.7 Pa

• Al with thickness in the range 5 − 20 nm deposited at 0.7 Pa

• Oxidation: one hour at 1 kPa of pure O2

• Pump for one hour to remove O2

• Al with thickness in the range 5 − 20 nm deposited at 0.96 Pa

• 200 nm Nb grown at 0.7 Pa (first ∼ 5 nm at 4 Pa)
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The bottom (oxidised) Al thickness will be referred to as dAl. Before loading, the Al target was
cleaned with a wire brush, followed by 20 minutes ultrasound in ∼ 0.1 M aqueous NaOH solution
to remove the oxide layer. The relatively high pressures used to grow the film immediately above
the oxide layer was used to prevent damage of the barrier by the impinging atoms. This growth
procedure has been used previously to form high quality S/I/S junctions [11].

7.3.2 I − V characteristics

The junctions fabricated with 5 nm of Al possessed a critical current (figure 7.7). The thicker
Al films showed a decrease in resistance around zero bias, (inset figure 7.8), but no measurable
true supercurrent. The resistance of all of the devices increased at some ‘gap’ like feature, (inset
of figure 7.7 and figure 7.8). The value of the ‘gap’ voltage as a function of T is shown in figure
7.9. A BCS theory fit to the data above 4.2 K gives 2∆/e = 2.68 meV using TC = 9.15 K, which
is comparable to that obtained from conventionally patterned devices [11]. The ‘gap’ value at
4.2 K is anomalously large, and was ignored in the fitting. The reason for this anomaly is not
clear.

Figure 7.7: Low bias I −V for a S/I/S junction
at 4.2 K with dAl = 5 nm. Inset: High bias I−V .
Arrow marks ‘gap’ feature.

Figure 7.8: I − V and dV /dI for a S/I/S junc-
tion at 4.2 K with dAl = 20 nm. Inset: Detail of
dV /dI around zero bias.

All of the junctions showed a sub-gap resistance of the order of 1−10 Ω. This resistance was
close to Ohmic. The resistance in figure 7.8 is RS = 5.7 Ω just below the ‘gap’ and RN = 10.2
Ω just above it. The resistance area product was RNA ≈ 1 × 10−11 Ωm2. This was typical for
all of the different dAl values studied. No scaling of RS/RN with RNA was observed (figure
7.10), compared to the expected increase of RS/RN with RNA [12]. Scaling an 8 × 8 µm2

junction to the dimensions of the device in figure 7.8 (1460 × 600 nm2) an RNA of the order
6 − 8 × 10−10Ωm2 is expected [11, 12], which is nearly two orders of magnitude larger than
observed.

The ‘sub-gap’ IC(H) showed a strong modulation. Away from the central peak of the IC(H),
the behaviour deviated from an ideal Fraunhofer pattern. This suggests an inhomogeneous
current distribution. One particular possibility is the presence of metallic shorts on each edge
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Figure 7.9: Temperature dependence of the
‘gap’ in the I − V for a device with dAl = 5 nm.
Line is a BCS theory fit with TC = 9.15 K and
2∆/e = 2.68 meV. Inset: Sub-gap IC(H).

Figure 7.10: Scaling of the ratio RS/RN with
RNA for several Al thicknesses.

of the device, with the device then acting in a similar way to a SQUID loop. In this picture
the S/N/S SQUID is in parallel to the S/I/S junction. This does not explain why the ratio
RS/RN < 1. Considering some form of series resistance does not solve this problem either.
Given that the films with larger dAl showed no supercurrent, the supercurrent density carried
by these shorts is relatively small.

7.3.3 FIB problems

The oxide barrier in the S/I/S case is two orders of magnitude thinner than the Mo devices
studied in section 7.2. The insulating barrier also has a much higher resistivity. With these
considerations in mind, it is clear that metallic and/or superconducting shorts caused by re-
sputtered material in the FIB are much more important in the S/I/S case compared to S/N/S.
It has been previously shown that tunnel barriers patterned by standard lithography techniques
can be trimmed with an FIB to reduce the barrier area [13]. This process used relatively high
beam currents (1 nA followed by cleaning with 100 pA and enhanced etch). The perimeter of
the trimmed barrier required anodisation afterwards to remove metallic shorts created by re-
sputtering. Despite the relatively low beam currents used in the present work, this would seem
to be the case here also.

Several techniques were employed to try to solve this problem. S/I/S barriers with much
shorter oxidation times (10 minutes at 10 Pa) were grown, in order to reduce the barrier RNA

product [14], and make it less susceptible to shorting. The aspect ratio of the side cuts was also
reduced, by making y smaller, and making the cuts in two stages: first, a larger cut with an 11
pA beam, then a smaller cut was made close to the barrier with a 4 pA beam, in an effort to
allow space for the resputtered material to escape from the vicinity of the barrier. Both of these
techniques did not improve the I − V characteristics.
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7.3.3.1 Enhanced etch

The enhanced etch (EE) was also used to reduce the Ga implantation and resputtering (section
4.3.1.1). The initial thinning of the micron scale tracks could be made with an 11 pA beam: a
box of 0.4× 5× 2 µm3 milled in about 2 minutes. This milling rate was comparable to the rate
using a 70 pA beam without the EE. These cuts were not cleaned further. The EE could not be
used at tilt of θ = 85◦ due to a physical restraint: the needle that delivers the gas approaches
from an angle which is blocked by the sample holder, (from the right in figure 5.1). Hence it was
not possible to make the side cuts with the EE. However devices were re-cleaned from θ = ±
3◦ with the EE after the side cuts were made. There was no significant improvement in the
I −V characteristics using the EE. Using the EE after the milling the side cuts was problematic
since the increase in the milling rate, (and therefore also the milling rate of the beam tail),
significantly reduced the width of the overhanging Nb bridge.

7.3.3.2 Anodisation

An anodisation rig developed by C. Elwell and G. Burnell was used to try to post-anodise the
junctions. The rig consisted of a Keithley 487 picoammeter / voltage source controlled with a
LabViewTM program1 which recorded I(t) for a constant applied V . The chip was covered in
photoresist, except for a ∼ 10 − 20 µm window where the anodisation was required. A current
contact was made to the common bar of the chip. A droplet of buffered electrolyte solution
[15, 16] was placed over the window, and the second current contact made to the top of the
droplet. The experiment was monitored by measuring the decrease in I(t) as the anodisation
proceeded. The colour change of the surrounding Nb tracks was used to verify that anodisation
had taken place [16]. However no improvement was seen in the I − V s. Wetting of the whole
of the device might not have taken place, (in particular the holes created by the side cuts),
which would explain the lack of improvement in the I − V s. Anodisation techniques have been
recently used to create S/I/S junctions with the three dimensional FIB technique [17]. In that
work the anodisation was done up to 60 V before the superconducting shorts were removed
[18]. This is higher than the 17 V maximum used in the present work. It is therefore clear
that the anodisation was not optimised in the present work, but that the principle can be used
successfully.

The magnitude of the resistance and critical current density of the metallic shorts in these
devices is important. An RN of the order of Ohms is much larger than the typical RN of the
metallic junctions (with similar lateral dimensions), to be considered in the rest of this thesis,
(of the order of tens of mΩ). Judging from the IC(H) in the inset of figure 7.9, the leakage
supercurrent is < 10 µA for the thinnest dAl, and even smaller for the thicker Al barriers. Both
the relatively large resistivity and low supercurrent density imply a minimal effect of shorts on
the metallic junctions to be discussed.

1Written by G. Burnell.
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7.4 S/F/S junctions

7.4.1 Characterisation of Cu0.4Ni0.6 films

A Cu0.4Ni0.6 sputtering target was used to deposit all of the CuNi films in this section. The
composition of the target and a thick film were measured by energy dispersive X-ray (EDX)
in an SEM system2, and were the same to within the experimental error of 1.5 %. The Curie
temperature of a 300 nm thick film measured in the VSM was difficult to assign accurately
(figure 7.11). This is since the M(T ) was measured with an applied field, which above TM acts
on the paramagnetic CuNi to give a background moment. This gives a larger apparent moment
than the true value of the saturation moment MS , of the hysteresis loop in the ferromagnetic
state. The cooling rate of ∼ 0.4 K/s was also relatively high, so an estimate of TM ∼ 125− 140
K is taken. This is slightly lower than expected for this composition [19], but acceptable within
the error margins of the composition found with the EDX.

Figure 7.11: M(T ) measured with an applied
field of µ0H= 100 mT for a 300 nm thick CuNi
film. Inset: In-plane M(H) measurement at 30
K.

Figure 7.12: Variation of TM with dCuNi

in CuNi single layers, CuNi/Nb bilayers and
X/CuNi multilayers with X = Cu or Nb. Line
is Ising model fit for the Cu/CuNi data assuming
TM (bulk)= 125 K (from Ruotolo et al [20]).

To control the value of ξF in the S/F/S junctions, it is important to know if TM is changing
with film thickness. The signal to noise ratio of the VSM was such that only relatively thick films
(dF > 100 nm) could be measured directly. Thinner layers could only be measured by growing
CuNi/Cu or CuNi/Nb multilayers, with the Nb and Cu acting to decouple the CuNi layers.
This requires a much larger volume of CuNi to be deposited compared to a single layer, meaning
longer depositions, but also has the disadvantage that the CuNi layers are not all identical (due
to the increasing roughness with thickness). TM was therefore also found electrically by finding
the peak in the dρ/dT (section 1.1.1.1). This enabled single thin films or CuNi/Nb bilayers to
be characterised, (the Nb was used as a cap to prevent oxidation of the CuNi). Figure 7.12

2JEOL 5800 LU.
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shows a range of results of TM vs dCuNi obtained for these various heterostructures, using both
the M(T ) and R(T ) measurements. Although the consistency between the different films is not
perfect, it is clear that TM is decreasing for dF < 30 nm.

Figure 7.13: R(T ) for a 8 nm thick CuNi film
(warming and cooling). Inset: dR/dT for 5 nm
(red) and 30 nm (black) CuNi films with 5 nm
Nb cap.

Figure 7.14: Fits to dR/dT using B′ − A′ ln |ε|
for various TM with T > TM , for the 5 nm thick
CuNi film from the inset of figure 7.13.

For the R(T ) measurements a cooling / warming rate of 20− 30 mK/s was used (compared
to ∼ 100 mK/min used by Sousa et al [21]). R(T ) measurements were ‘ellipse-averaged’: the
measured value of R was extracted from the ratio of best fit sine waves to the quasi-d.c. bias
current and voltage. This was averaged until T changed by 0.3 K, or R by 0.1 %. The 0.3 K
temperature window usually determined the number of I − V s averaged, which was typically
60 − 70. An example of an R(T ) is shown in figure 7.13. The inset shows different shapes of
the derivative dR/dT of a CuNi and a CuNi/Nb film. The derivative dR/dT was found using
a parabolic fit to three consecutive points, and finding the tangent at the middle point. Taking
the log of equation 1.2 gives [21]

1
ρM

dρ

dT
= B − A ln |ε| , (7.1)

where the A and B in equation 7.1 and A′ and B′ in figure 7.14 are simply related via the
ratio ρMR(T )/ρ(T ). The values for A and B obtained from figure 7.14 for the various TM are
summarised in table 7.1. These compare favourably to A = 2.6 − 3.1 × 10−4 K−1 obtained by
Sousa et al in bulk Cu0.3Ni0.7 samples [21]. It is clear however that the value of TM cannot
be determined to better than 10 K in this manner, and that TM does not occur at the same
point as the maximum of dR/dT . This has been found elsewhere [21]. The blurring of the peak
in dR/dT may be due to compositional inhomogeneities and also temperature gradients in the
sample. The case is worse when the fit is attempted on the other dR/dT curve (inset figure
7.13). The further broadening in this case may be caused by a range of TM in the relatively
thick film, due to an initial ‘dead’ magnetic layer at the substrate/CuNi interface, and another



Single barrier junctions 105

TM (K) ρM (Ωm) A (K−1) B (K−1)
90 8.06 × 10−7 4.3 × 10−4 1.9 × 10−4

80 8.01 × 10−7 4.9 × 10−4 2.3 × 10−4

70 7.97 × 10−7 5.4 × 10−4 3.0 × 10−4

60 7.94 × 10−7 6.2 × 10−4 3.8 × 10−4

Table 7.1: Values of A and B used in equation 7.1 for curves in figure 7.14.

at the CuNi/Nb interface due to alloying.

7.4.2 S/F/S junctions

Nb/CuNi/Nb trilayers were grown with dCuNi thicknesses in the range 5−13 nm. The Josephson
junction ICRN (dF ) showed a monotonically increasing ICRN with decreasing dF , although
with considerable scatter (figure 7.15). The value of ρCuNi calculated from RNA/dF was more
consistent, (inset figure 7.15) except for the thinner barriers where again the generally smaller
junction area A contained significant error due to the limitations of FIB measurements, (as
in section 7.2.2). Figure 7.16 shows a good Fraunhofer IC(H) response, indicating a uniform
current flow, (the ICRN product was such that each point of the IC(H) had to be measured with
the lockin amplifier). The IC(T ) in this case showed a quadratic dependence near TC , (inset
figure 7.16) similar to the Nb/Mo/Nb junctions.

Figure 7.15: Scaling of ICRN with dCuNi. Inset:
Scaling of RNA/dF for the same devices.

Figure 7.16: IC(H) for a 8.5 nm CuNi barrier
at 4.2 K, H ⊥ x. Line is a Fraunhofer fit. Inset:
IC(T ) with quadratic fit.

The junction behaviour with temperature was of considerable interest: a cusp and re-entrance
of the IC(T ) would indicate the 0−π-junction crossover. This was observed in a zero field cooled
sample, as shown in figure 7.17, (the inset shows an example of a lockin amplifier measurement
of the IC). The slight kink in the IC(T ) plot was an artifact due to a change in the range
of the current supply, without changing the oscillation voltage of the lockin amplifier. This
change slightly altered the magnitude of the signal and hence the IC , since a resistive criterion
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was used to extract IC . In order to achieve good temperature stability the magnetic coil was
not fitted onto the Heliox (section 4.4.2) for this measurement. However this prevented the
measurement of IC(H), which is required to confirm that the Fraunhofer is centred on zero field.
If the Fraunhofer is not centred on zero field, (due to net induction in the junction: see [22] and
section 8.4.3.4) a re-entrant IC can be produced due to the changing value of λ with T . A full
IC(H, T ) measurement was beyond the time constraints of the measurement. Qualitatively the
IC(T ) measurement can be compared to the work of Sellier [23]. This is shown in figure 7.18,
and is qualitatively good. However other devices patterned on the same sample, measured at
4.2 K did not show the increasing IC(T ) expected in this temperature range, (compare figures
7.16 and 7.17), but did show a Fraunhofer IC(H). This should not be too concerning since the
large variation in IC seen by Sellier in figure 7.18 was for only a 1.5 nm variation in dF . In the
case of Sellier’s work, the TM of the CuNi films was ∼ 23 K [24] - therefore an even stronger
thickness dependence is expected in the case of the present CuNi films which have a larger TM .
It is therefore not possible to rule out small changes in the thickness or properties of the barrier,
which would have a large effect on the IC behaviour, (this point will be returned to in section
8.4.3.4).

Figure 7.17: IC(T ) for a Nb/CuNi/Nb device
with dCuNi = 8.5 nm. Arrow marks the point
where the current range was changed. Inset:
dV /dI vs current at 0.36 K.

Figure 7.18: IC(T ) from figure 7.17 (symbols)
compared to Cu0.52Ni0.48 junctions of Sellier [23].
Curves 1−3 had dF = 18, 19 and 19.5 nm respec-
tively. The IC of curves 1 and 3 have been scaled
by a factor of 0.5 and 3 respectively for clarity.

When a magnetic field was applied ⊥ y, several devices showed an IC(H) response which
resembled a SQUID modulation, with a linear envelope. Such a response is shown in figure 7.19,
and the characteristics of three devices detailed in table 7.2. From the table it is clear that
the oscillation period is decreasing in proportion with the increasing y dimension. Assuming a
magnetic area of y×(2λ+dF ), and taking λ = 40 nm (section 6.3.2.2), the predicted Fraunhofer
period is then 55 mT - slightly larger than observed. The period is therefore of a similar order to
the observed modulation, but clearly the shape is not a Fraunhofer. The SQUID-like appearance
of the modulation may be due to inhomogeneous current flow in the device. This inhomogeneity
could be caused by domain structures in the CuNi layers, but also may be associated with some
damage of the CuNi barrier on the ‘cleaned’ faces of the device, which locally increases the
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Figure 7.19: IC(H) of device b (table 7.2) at 0.34 K for H ⊥ y. Lines are a guide to the eye.

JC . In particular for the CuNi case, any slight change in the TM of the material due to Ga
implantation for example, will strongly affect the local JC .

Device Nominal y (µm) IC(H) period (mT) Period × y (mT µm)
a 0.51 60.8 31.1
b 0.42 70.4 29.4
c 0.39 81.3 32.0

Table 7.2: Scaling of IC(H) period for H ⊥ y with y dimension for three Nb/CuNi/Nb devices. dCuNi ∼
9 nm.

Since the important basic results of S/F/S junctions had been previously published by
Ryazanov et al [22, 25] and Kontos et al [26, 27], further detailed measurements were not
made of these films, but devices with composite F layers were studied.



References

[1] R. H. Hadfield, Ph.D. Thesis, University of Cambridge (2002).
[2] P. A. Rosenthal, M. R. Beasley, K. Char, M. S. Colclough, and G. Zaharchuk, Appl. Phys.

Lett. 59, 3482 (1991).
[3] T. Aomine, E. Tanaka, S. Yamasaki, K. Tani, and A. Yonekura, J. Low Temp. Phys. 74,

263 (1989).
[4] D. Dimos, P. Chaudhari, and J. Mannhart, Phys. Rev. B 41, 4038 (1990).
[5] J. E. Evetts and B. A. Glowacki, Cryogenics 28, 641 (1988).
[6] E. E. Mitchell, C. P. Foley, K.-H. Müller, and K. E. Leslie, Physica C 321, 219 (1999).
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Chapter 8

Development of a spin-active

Josephson junction

The development of a spin-active Josephson junction is discussed. Results for S/GMR/S,
S/AF/S and S/spin-valve/S CPP devices are presented. The results of sections 8.3 have been
published in reference [1]. Section 8.4 has been submitted for publication in reference [2]. These
papers are reproduced in Appendix B.
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8.1 Development of spin-active devices

As discussed in section 3.4.1 the S/F/I/F/S junctions allowed, in theory, the crossover from a 0
to π-junction by changing from the AF to F alignment of the magnetic layers. This would achieve
a controllable π-junction. To control the F layers in-situ the value of HC of the ferromagnetic
layers must be considered, as well as the size of the Josephson junction. If the area of the
junction is large, then the field required to move the magnetic moments around will strongly
suppress the IC due to the normal IC(H) behaviour, and wash out any effects due to the changes
in the F layers. This motivates relatively small junctions, which can be achieved using the FIB
technique.

Due to the problems of creating S/I/S junctions (section 7.3.3) the insulating barrier was
replaced by a normal metal (Cu) barrier. Both the GMR, S/[F/N]nS, system and the spin-valve
(SV) structure S/AF/F/N/F/S were investigated. In the SV case, the AF pinning layer has the
advantage that identical F layers can be grown ensuring correct cancellation of the net moment
in the AF configuration, and the M(H) loop has uni-directional anisotropy. This is beneficial
since any uni-directional asymmetry in the IC(H) would stand out above the normal Fraunhofer
suppression which is symmetric or anti-symmetric in H.

8.2 S/GMR/S structures

8.2.1 Film details

Nb/(Cu/Co)10/Nb films with dNb = 5 nm and 150 nm were both grown to measure the CIP and
CPP GMR. The CIP films, without thicker Nb layers, could be grown and measured relatively
quickly, (no patterning was required), and were used to find the correct Cu thickness for the
GMR anti-parallel coupling. CPP device heterostructures with the same thickness of Cu were
then grown. The Co and Cu thicknesses were ∼ 2 nm and 1 nm respectively. This value of dCu

is near the 1st AF peak (section 1.2.1). The M(H) loops (figure 1.14) did not show ideal AF
alignment. This is expected for a relatively small number of Co layers given that the ‘edge’ Co
layers do not couple fully with the other layers. The thicker Nb underlayer for the CPP devices
increased HC relative to the CIP film as expected.

8.2.2 MR measurements

A total of six CPP devices were measured at 4.2 K. With the maximum applied field at 4.2 K
these devices showed MR = 100×(Rmax − Rmin)/Rmax in the range 5 − 9 % . As can be seen
from figure 8.1, the MR was not saturated at the maximum applied field of µ0H = 80 mT.
There was no scaling of MR with area, or junction dimension. However it is difficult to draw
any conclusions from this variation without being able to saturate the magnetic moments, since
HS may vary between samples. Most of these devices were destroyed by an electrical discharge,
and could not be characterised in the Heliox. The CIP film and remaining CPP devices were
measured in the Heliox at 0.34 K to enable a large enough magnetic field to be applied to
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saturate the ferromagnetic layers. The MR measurement shown in figure 8.2 was carried out on
a CPP device which had dimensions x = 800 nm and y = 300 nm. An MR of ∼ 13.0 ± 0.2 % was

Figure 8.1: In-plane R(H) at 4.2 K for a 800 ×
300 nm2 CPP device Nb/(Cu/Co)10/Nb device.
Line is a guide to the eye.

Figure 8.2: In-plane R(H) at 0.34 K for a CIP
plane film and a CPP device, (same device as
figure 8.1).

obtained at 0.34 K for the CIP device and 11.5 ± 0.7 % for the CPP device. The CPP device
would be expected to have a larger MR. The increased roughness of the thicker Nb underlayer
in the CPP case means that the degree of parallel alignment is increased due to ‘orange peel’
coupling between the F layers, and the MR reduced due to this effect. The low field hysteresis
- visible in the 4.2 K R(H) data (figure 8.1), also indicates imperfect AF coupling between the
layers.

8.2.3 Discussion

From section 1.2.4 the two resistor model can be used to examine the values of RA and MR
obtained in these GMR devices. Table 8.1 shows various values of resistivity and interface
resistance at 4.2 K. In the third section of table 8.1 the values of ρ↑↓F are found using the relation
ρ
↑(↓)
F = 2ρ∗F (1 − (+)β). Similarly R

↑(↓)
F/N = 2R∗

F/N (1 − (+)γ). Where β and γ are the bulk and
interface spin asymmetry coefficients [3]. For the Nb/(Cu/Co)10/Nb case, in the anti-parallel
(AF) configuration, considering the ‘up’ spin:

ARAF↑ = 2ARNb/Co + 2ARNb/Cu + 9AR↑
Co/Cu + 10AR↓

Co/Cu

+10 × 2ρCudCu + 5ρ↑CodCo + 5ρ↓CodCo . (8.1)

It is assumed that the Co layer at the Nb/Co interface is ‘up’ spin for both configurations,
(this does not affect the results). In a similar way to section 1.2.4 the values of ARAF↓, ARF↑ and
ARF↓ can be found, and hence AR and A∆R. This calculation gives ARAF = 2.56±0.09×10−14

Ωm2 and ARF = 1.61 ± 0.04 × 10−14 Ωm2, giving an MR = 37.2 ± 0.6 %. The predicted
MR is larger than found, even at 0.34 K, but the ARAF product compares favourably to the
experimental value of 1.44 ± 0.25 × 10−14 Ωm2.



Spin-active Josephson junctions 112

Importantly the GMR effect is not destroyed by the FIB processing. It would also have been
possible to increase the total Co thickness and number of repeats to obtain a much larger % MR.
However, a key point of the thinner Co layers is that a Josephson current (due to resputtered
Nb shorting the barrier) was not obtained. By considering thinner Co layers a Josephson GMR
device may be possible, but the drawback of needing the Heliox for every measurement motivated
the examination of spin valves, which have a lower HC and HS , and could therefore be measured
with smaller applied fields in the dip probes.

Property Value Error Units

2ARNb/FeMn
(a) 2.0 × 10−15 1.2 × 10−15 Ωm2

2ARNb/Cu
(b) 2.2 × 10−15 3.0 × 10−16 Ωm2

2ARNb/Co 6.1 × 10−15 5.0 × 10−16 Ωm2

2ARNb/Py 7.0 × 10−15 1.5 × 10−15 Ωm2

2AR∗
Co/Cu 1.05 × 10−15 5.0 × 10−17 Ωm2

2AR∗
Py/Cu 1.0 × 10−15 8.0 × 10−17 Ωm2

ρ∗Co 7.6 × 10−8 5.0 × 10−9 Ωm
ρ∗Py 1.64 × 10−7 2.0 × 10−8 Ωm
ρCu 4.5 × 10−9 5.0 × 10−10 Ωm

βCo 4.6 × 10−1 8 × 10−2 -
γCo 7.5 × 10−1 5 × 10−2 -
βPy 5.0 × 10−1 1.6 × 10−1 -
γPy 8.1 × 10−1 1.2 × 10−1 -

ρ↑Co 1.04 × 10−7 1.94 × 10−8 Ωm
ρ↓Co 2.81 × 10−7 5.23 × 10−8 Ωm
ρ↑Py 2.19 × 10−7 7.49 × 10−8 Ωm
ρ↓Py 6.56 × 10−7 2.25 × 10−7 Ωm

AR↑
Co/Cu 5.25 × 10−16 4.3 × 10−17 Ωm2

AR↓
Co/Cu 3.68 × 10−15 3.01 × 10−16 Ωm2

AR↑
Py/Cu 3.8 × 10−16 6.4 × 10−17 Ωm2

AR↓
Py/Cu 3.62 × 10−15 6.09 × 10−16 Ωm2

Table 8.1: Values used to calculate AR, taken from measurements at 4.2 K by Yang et al [4], (a) Bass
et al [5] and (b) Park et al [6].
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8.3 S/AF/S

When considering the development of a spin-valve junction (S/AF/F/N/F/S), (section 8.1) it is
important to understand the S/AF/S system. In this section the results of TC measurements on
AF/S bilayers are also presented, and compared to the results obtained from S/AF/S Josephson
junctions.

8.3.1 Experimental details

For all samples containing FeMn, a 5 nm underlayer of Cu was grown, in order to achieve the
required f.c.c. AF γ-FeMn phase [7]. Nb/Cu/FeMn/Nb structures were grown for Josephson
junctions with FeMn thickness dFeMn, in the range 2 − 6 nm, with both Nb thicknesses 150
nm. For the bilayer measurements Cu/FeMn/Nb films were grown. Devices with ICRN > 1 µV
were characterised by directly measuring the I − V . For samples with ICRN < 1 µV, dV /dI

was measured with the lock-in amplifier. TC measurements were made on unpatterned 10 × 5
mm2 films. The rate of cooling was < 10−2 K/s near TC , and the ellipse averaging parameters
(section 7.4.1) were 0.1 % change for R, and 0.02 K for T near TC .

8.3.2 TC measurements of Cu/FeMn/Nb films

The film TCs were measured while independently varying the S and AF thicknesses, as shown
in figures 8.3 and 8.4 respectively. The R(T ) curves showed a transition width of the order of
0.1 K, and the TC was defined as the midpoint of the transition. An absolute error of 0.05 K
was found by measuring the TC of a thick Nb film, and repeated TC measurements showed a
relative error of ∼ 0.05 K. For thicknesses of FeMn < 1 nm a broadened transition (∼ 0.2 K)
was observed (figure 8.5). This was presumably associated with large percentage variation of
the film thickness over the substrate. As can be seen in figure 8.5, the TC could be claimed to
oscillate in this regime, but given the possible variation in thickness, and the small number of
thicknesses measured, the data is simply not consistent in this thickness regime. Any possible
non-monotonic behaviour in TC could only be reliably found in this regime by using a single
sample with continuously varying FeMn thickness, where TC could be found at many different
points. Such a sample would not be so affected by run-to-run variation in the deposition rates,
which would be important in this thickness regime.

As shown in figure 8.3, for a constant dFeMn = 6.5 nm, with varying Nb thickness, a suppres-
sion of TC was observed relative to the plain Nb film. In figure 8.3 the final point with TC < 4.2
K was measured in the Heliox, with a different calibration and thermal environment, hence the
relative error in TC is larger.

For a constant Nb thickness of 25 nm the TC of the film drops dramatically as soon as the
thinnest layer of FeMn is grown underneath (figure 8.4). The two points at dAF = 0 in figure
8.4 are for Nb only and a Cu/Nb bilayer respectively. Since ξN in Cu is relatively large, only a
small decrease of the TC of the Nb is expected, as was seen. The strong suppression of TC with
the FeMn layer, and the saturation of the suppression above only a few nm of material implies
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Figure 8.3: Variation of TC vs Nb thickness for
a constant FeMn thickness of 6.5 nm, (triangles),
compared to plain Nb films (circles). Fit to tri-
angles is de Gennes’ theory.

Figure 8.4: Variation of TC vs FeMn thickness
for a constant Nb thickness of 25 nm. Inset: De-
tail for thinner films, with de Gennes’ theory fit.

Figure 8.5: Variation of R(T ) behaviour for the thinnest FeMn thicknesses in the Cu/FeMn/Nb bilayers,
both cooling and warming. R(T ) has been normalised to R(10 K) for clarity. Broadened transitions for
thinnest layers is clear. Arrows for the 0.5 nm sample indicate warming and cooling.

a short coherence length, ξAF of the order of 1 − 2 nm in the FeMn.
As can be seen from figures 8.3 and 8.6, in this thickness regime the Nb only film TC is also

decreasing. For a correct comparison with the Cu/FeMn/Nb films therefore, measurements on
plain Nb films of decreasing thickness were also made. The reduction of TC in the plain Nb
films can be attributed to a combination of grain size and resistivity effects, as well as an inverse
proximity effect due to the NbO layer on the surface, and a ‘dead’ initial layer during growth
[8]. The correlation between TC and resistance ratio R(295 K)/R(10 K), (RRR) shown in figure
8.6 is associated with the increasing grain size with dNb, (which increases the mean free path),
and is consistent with previous studies [9].
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Figure 8.6: TC and RRR variation vs thickness
for Nb only films. Lines are the best fit cubic and
linear curves for TC and RRR respectively.

Figure 8.7: Normalised IC(H). Line is a best-
fit Fraunhofer pattern. Inset: JC vs dFeMn for
junctions at 4.2 K. Line is a best fit exponential
exp(−2dAF /ξAF ) with ξAF = 2.4 nm.

8.3.3 Josephson junctions

The Josephson junctions showed resistively shunted junction (RSJ), I − V characteristics, with
IC in the range 10 µA − 1.2 mA, and RN 6− 60 mΩ. The re-entrant IC(H) in figure 8.7 shows
the presence of a Josephson current through the FeMn, although an ideal Fraunhofer pattern was
not obtained. In this case the modulation is normalised to zero field critical current IC = 500
µA. The junction dimension perpendicular to the direction of the applied field was ∼ 600 nm
and the total barrier thickness, (Cu and FeMn) was 7 nm. Correcting for the finite thickness of
the Nb electrodes (section 3.1.4), the Fraunhofer fit gives λ = 40 nm. This compares well to the
values obtained in section 6.3.2.2 from the nanoSQUIDs. The lack of suppression of IC to zero
is an artifact of the voltage criterion used: the IC was suppressed to zero to within the 1 µV
noise level of the measurement in this case. The Josephson penetration depth is estimated for
the thinnest case (dAF ∼ 3 nm and JC ∼ 1× 109 Am−2) to be λJ ∼ 2 µm. The largest junction
dimension for that thickness was 1.2 µm, so the junctions were close to the long junction limit
only for the largest junction with the thinnest barriers.

The inset of figure 8.7 shows the variation of JC with dFeMn. Fitting JC ∝ exp(−2dAF /ξAF )
(section 3.3) to the inset of figure 8.7, the characteristic decay length ξAF = 2.4 nm is found.
The errors in JC(dAF ) consist of measurement error of the sub-micron junction area, as well as
scatter due to variation of dAF over the area of the chip. There may also be additional variation
due to domain structures in the AF, and spin compensation at the interfaces which are spatially
inhomogeneous. All devices for a given film thickness are patterned on the same 10 × 5 mm2

chip, hence interface transparency and contamination should be comparable for a given dAF .

8.3.4 Discussion

From section 2.5, if FeMn is considered as a band antiferromagnet, ξAF in the dirty limit is given
by:

ξAF =
[
2�D

EEx

] 1
2

(8.2)
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where D = 1
3vF � and EEx ∼ kBTN the exchange coupling between the AF spins. TN in this

case is in the range 450−490 K [10]. In the case of FeMn, because it is a highly disordered alloy
system, a short mean free path �, of the order of 1 nm or less is expected [11]. A reasonable
value of ξAF using equation 8.2 with vF = 2 × 106 ms−1 (both Fe and Mn have vF ∼ 2 × 106

ms−1 [12]) is of the order of 4 − 5 nm. This estimate is in agreement with the value from
the trilayer junctions, and much shorter than the corresponding coherence length in a normal
metal. Further information can be gained from the measurement of the coherence length. From
equation 8.2 using TN = 450 K, and ξAF = 2.4 nm from section 8.3.3, the diffusion constant D

is found to be 1.7 × 10−4 m2s−1.
Given D the DoS at the Fermi level can be found using the Einstein relation σ = 2e2N (εF )D

[13]. For this calculation the value of σFeMn is required. This was found using a series of Cu(5
nm)/FeMn/Nb(6 nm) films grown for differing FeMn thicknesses (the Nb is to prevent oxidation
of the FeMn). Assuming a simple parallel resistor model, plotting the ratio of total thickness
and resistivity against FeMn thickness should give a straight line with gradient equal to the
conductivity of the FeMn. σFeMn was found to be 8.4× 105 (Ωm)−1, from the linear fit in figure
8.8. The DoS at the Fermi level, N (εF ), in FeMn is found to be 9.6 × 1046 states J−1m−3.
Nakamura et al calculated an average DoS of 0.5 states / eV / atom [14]. Using a unit cell
dimension of a = 0.36 nm, (calculated from data in [15]) this becomes 2.4× 1047 states J−1m−3,
so the comparison is reasonable.

For parallel resistors, the intercept of figure 8.8 is given by σNbdNb+σCudCu. Using the value
of σNb (see below) this intercept is predicted to be of the order of 0.16 Ω. The smaller observed
value is associated with additional interface resistance, and the NbO surface layer, which would
be significant for dNb = 6 nm, which both reduce the effective value of σNb. This intercept is also
consistent with a higher value of σFeMn obtained from the junction RN values: which contains
an additional 30− 50 % component to RN due to the Nb/FeMn to the interface resistance, (see
table 8.1).

Figure 8.8: Linear fit to find σFeMn using dif-
ferent thicknesses of FeMn in a Cu/FeMn/Nb
trilayer at 295 K. Inset: Hysteresis loop of a
Nb/Cu/FeMn/Co/Nb trilayer after annealing at
0.2 T from 200 ◦C for 30 minutes.

Figure 8.9: Reduced temperature vs dS/ξS

for various ratios of dAF /ξAF , taken from
Krivruchko [16]. Symbols are the present data
for Cu/FeMn/Nb samples.
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Equation 2.20 was used to fit the TC data: all of the required values can be found from the
results above. From the trilayer junctions ξAF = 2.4 nm. The thicknesses dS and dAF are known
for a given film. To find ξS in the dirty limit ξS = 0.855(ξ0�)

1
2 is used with ξ0 ≈ �vF /kBT0.

Substituting using the free electron form D = 1
3vF � = σk2

Bπ2/3e2γ, [17, 18] gives

ξS =
[
π�kBσ

6e2γT0

] 1
2

. (8.3)

Here the electronic specific heat capacity γ = 720 Jm−3K−2, [19] and T0 = 9.25 K - the bulk TC

of Nb. From a van der Pauw measurement at 295 K, σNb = 2.7 × 107 (Ωm)−1 for these films.
A linear fit was used to follow the variation of RRR value with dNb (figure 8.6). For a given
thickness of Nb σNb(10 K) was calculated using the RRR linear fit and ξS found using equation
8.3. ξS was found to be of the order of 6 nm.

The plain Nb transition temperature TCS was similarly followed using the empirical cubic
fit to the TC (figure 8.6). Finally from σ = 2e2N (εF )D the ratio DAFNAF (εF )/DSNS(εF ) is
identical to σFeMn/σNb = 0.031. Equation (2.20) was then solved numerically1 to obtain TC .

For varying Nb thickness, the fit with no adjustable parameters is shown as a solid line in
figure 8.3. This is clearly not a good fit to the data. For the case of varying FeMn thickness,
as can be seen from figure 8.4, the theoretical fit saturates for dAF ≥ 2.5 nm. This saturation
would be expected for a coherence length of that order, however the saturation value of TC is
much higher than found experimentally. The additional variation of TC for dFeMn > 10 nm is not
expected from equation (2.20). This may be due to a different phase of FeMn being produced in
films thicker than 20 nm [7]. The model of Krivoruchko [16] used a Green’s function formulation
of the Usadel equations, (in the dirty limit). Using the parameter η = ξAF σS/ξSσAF = 10, the
family of reduced temperature vs dS/ξS curves for various dAF /ξAF was calculated (figure 8.9).
TC0 is the saturation value of TC for large dS . In the present case η ≈ 13 and dAF /ξAF = 2.7.
Although an exact comparison of the data with the fit is therefore not possible, the qualitative
features of the model would seem to be in better agreement with the data than the de Gennes’
theory fit.

A Nb(150 nm)/Cu(5 nm)/FeMn(4.5 nm)/Co(2 nm)/Nb(150 nm) structure was also grown
as a reference to check the AF nature of the FeMn with the Nb/Cu underlayer. The M(H) loop
showed that there was some exchange bias associated with the applied field during deposition.
The relatively weak nature of this (µ0Hbias ∼ 15 mT) implies that there are many misaligned
domains in the Co being pinned by the AF. This was due to the F layer being grown after the
AF layer, unlike the usual case where the F layer is saturated by the applied field before the AF
is grown. The film was annealed in a field of 0.2 T at 200 ◦C for 30 minutes, and field cooled.2

After annealing the exchange bias was measured as µ0Hbias ∼ 33.5 mT (inset of figure 8.8).
This shows that the FeMn is an AF in this thickness regime, as expected. In this regime the
magnitude of the exchange bias and also TN is changing with dFeMn [20]. It has been assumed

1Using Mathematica r© 3.0.
2This was done by M. Ali, University of Leeds.
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above that at 4.2 K, (T � TN ), there is no variation of the exchange coupling energy between
the spins in the FeMn, leading to a constant value of ξAF . If this was not the case, a stronger
decay of JC vs dFeMn would be observed (if ξAF was decreasing for increasing dFeMn in equation
3.17), than the exponential seen. Hence it would seem valid to take a constant value of ξAF in
this thickness range.

Many models of exchange bias in magnetic films use compensation of spins at the interface as
a crucial parameter. Indeed the true structure of the present device might be S/N/F/AF/F/S:
where the F layers are uncompensated AF spins. A full theoretical description of these bilayers
and junctions may enable additional information concerning the nature of thin films of γ-FeMn
to be gained, as well as provide a quantitative fit to the measurements of the Josephson junctions.

8.4 S/spin-valve/S

8.4.1 Development of spin-valve devices

As discussed in section 8.1, the uni-directional asymmetry of the M(H) response of the spin-
valve (SV) structure AF/F/N/F is a useful signature to look for in the IC(H) response of a
S/spin-valve/S Josephson junction. From section 8.3 however, JC is strongly reduced by the AF
layer. To obtain as large a JC as possible, a thin FeMn layer is required. However, when the
AF thickness is reduced, Hbias decreases such that the M(H) loop no longer has uni-directional
asymmetry (figure 8.10). Using FeMn with CuNi to raise the JC also adds the complexity of

Figure 8.10: In-plane M(H) loops at 300 K, showing the effect of FeMn thickness on a
Nb/Py/Nb/Py/FeMn/Nb spin valve. Curves are offset vertically for clarity.

requiring field cooling from TM to produce exchange bias, which was not straight forward in the
dip probes, and not possible in the Heliox above 50 K. The physics of a system with TM < TN

is also not clear [21]. It would be possible to use a CuNi/Py/FeMn structure, as used by Gu
et al [22] in F/S/F structures (section 2.4.3). In this case the FeMn/Py exchange bias is set at
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room temperature, and the CuNi follows the magnetisation of the Py below TM , and is hence
also exchange biased. In the case of the CPP Josephson junctions however, the additional Py
decreases the JC further.

The pseudo-spin-valve structure (PSV) structure with no AF layer avoids the reduction of JC ,
at the expense of requiring two F layers with different HC to obtain an anti-parallel configuration.
There is also no uni-directional asymmetry in the M(H) loop. Results for Nb/CuNi/Cu/Co/Nb
and Nb/Py/Cu/Co/Nb structures barriers are presented in sections 8.4.2 and 8.4.3.

8.4.2 Co/Cu/CuNi junctions

A Nb/CuNi/Cu/Co/Nb structure was grown with nominal thickness of 4, 4 and 2 nm for the
CuNi, Cu and Co respectively. dNb = 5 nm for the CIP measurements, and 150 nm for CPP
measurements. These films did not show a double switch in the M(H) loops to within the level

Figure 8.11: CIP R(H) for CuNi/Cu/Co device
at 77 K, with H applied parallel and perpendic-
ular to I.

Figure 8.12: IC(H) for CuNi/Cu/Co device at
0.36 K, with H ⊥ y. Device dimensions x = 1600
nm, y = 420 nm. Inset: Direction of field sweep.

of the noise of the VSM when measured at 30 K. CIP R(H) measurements at 77 K showed
an MR dominated by anisotropic magnetoresistance (figure 8.11), due to the effect of the field
on the current [23]. This may be due to the relative low TM for such a CuNi thickness (figure
7.12), meaning that the CuNi magnetisation was relatively weak at 77 K. CPP devices showed
a Josephson current, with JC ∼ 5×108 Am−2 at 0.36 K. The IC(H) (figure 8.12) was hysteretic
in the same sense as an R(H) measurement (i.e. the peak in IC is seen at a small positive
field after saturating in a negative field). The lack of clear spin-valve behaviour in the M(H)
loop, and the difficulty of characterising such devices with the VSM encouraged the study of the
Py/Cu/Co devices in the next section, which were possible to characterise in the VSM at room
temperature.
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8.4.3 Py/Cu/Co junctions

8.4.3.1 Experimental details

The Nb thicknesses were 180 nm and Cu spacer thickness was 8 nm, (to avoid significant ‘orange
peel’ magnetostatic coupling between the ferromagnetic layers - section 1.2.6). The Co and Py
layers which showed a Josephson current were 1 ± 0.2 nm and 1.6 ± 0.2 nm respectively. For

Figure 8.13: Comparison of M(H) loop at 30 K for a film with relatively thick F layers (2 nm Co and
3.2 nm Py), with a R(H) measurement at 4.2 K. MR ∼ 2% in this case.

the IC(H) and R(H) measurements the I −V was directly measured. The R(H) measurements
used a bias current of 2−3 mA. Current induced switching of the F layers is not present since the
current density is ∼ 1 × 1010 Am−2 which is a few orders of magnitude lower than required [24].
The magnetic field was applied in-plane ⊥ y. As seen in the relatively thick device in figure 8.13,
the peaks in the R(H) of a device and the switches in the moment of a M(H) measurement of a
4× 4 mm2 film are consistent with one another as expected. This device showed no measurable
Josephson current at 4.2 K. For the thinner F layers, figures 8.14 and 8.15 show the two different
behaviours of R(H). The sudden jumps in figure 8.15 compared to the smooth variation of R

in figure 8.14 can be explained by sudden switches of a small number of domains in the barrier,
which would represent a significant fraction of the total resistance of a device with relatively
small area. The crossover from smooth to sharp R(H) switching took place as the junction area
A was reduced below ∼ 0.45 µm2, but was not strongly dependent on the device aspect ratio
x/y. The double switching behaviour has been seen elsewhere [25], and is likely to be associated
with different domain structures being present during the switching. In both cases, despite the
different R(H) behaviour, MR = (Rmax-Rmin) / Rmax of the order of 0.5 % was obtained. For
all of the R(H) measurements made, the MR was in the range 0.47− 0.79 %, with the majority
of devices in the range 0.55 ± 0.05 %. The MR is consistent with the reduced F layer thickness
[26], which results in a weaker degree of spin polarisation of the current. The IC(H) was not a
Fraunhofer and was hysteretic in the same sense as the MR measurements (inset of figure 8.16),
and the CuNi/Cu/Co junctions (section 8.4.2). In the inset of figure 8.16 the junction dimension
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in the direction perpendicular to the field was 320 nm.
To avoid the complexity of the IC(H) measurements, which is a combination of the Fraun-

hofer modulation and the PSV response, the ‘zero field’ IC was also measured. These measure-
ments were done using the following method:

• Saturating field applied of ± 30 mT

• ∓Hset applied in the opposite direction

• Field reduced to zero

• IC measured with lock-in amplifier

In this way, the IC of different remanent states of the PSV could be measured. Of particular
interest was the parallel and anti-parallel remanent state ICs. In the following figures, the zero
field IC is the average of the absolute values of the positive and negative ICs.

Figure 8.14: Smooth variation of the zero field
IC compared to R(H). Junction size was 950 ×
570 nm2.

Figure 8.15: Sudden jump of zero field IC com-
pared to R(H). Junction was 600 × 730 nm2.

8.4.3.2 Results

The symbols in figures 8.14 and 8.15 show the zero field IC vs Hset. The correlation between
IC and R(H) is striking. For a total of six devices, the zero field IC vs Hset was measured
for the full range of |µ0Hset| ≤ 30 mT. Four of these devices had ∆IC = (Imax

C -Imin
C ) / Imax

C

= 30 ± 2 %. Extremal values of 17 % and 45 % were obtained for the other two devices.
There was no noticeable scaling of ∆IC with junction dimension, area or aspect ratio. The zero
field IC(T ) monotonically decreased with T , with parabolic behaviour as IC → 0, (figure 8.16).
When normalised to the IC at 4.2 K, both the demagnetised and saturated remanent states
showed very similar behaviour. If the temperature dependencies were significantly different,
it might be possible to show that the average coherence length of the PSV was changed in
the two cases. The lack of any difference between these measurements does not preclude this
possibility: the quadratic behaviour can be attributed to a dominance of the T dependence of
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the superconducting gap near TC , which may mask any variation in the coherence length. More
investigation of the temperature dependence below 4.2 K is required, where the value of the gap
is saturated.

Figure 8.16: IC(T ) normalised to IC(4.2 K) for
a 320 × 780 nm2 device. Inset: Hysteretic IC(H).

Figure 8.17: Scaling of R and ∆R with A, lines
are best fit to 1/A power law. Inset: Scaling of
JC with aspect ratio x/y.

The junction RN is the same as the value of the R(H) measurements, and will be referred
to as simply R. The ICR was in the range 0.8 to 2 µV. The ICR for a given thickness of barrier
should be constant. Despite the apparent large difference in the shape of the R(H), the ICR

was the same to within a factor of approximately two, which is reasonable if 0.1 nm variation of
barrier thickness over the chip is allowed, and a coherence length of 1 nm assumed. Given that
Co and Py are strong ferromagnets, a small JC is expected, despite the thin barrier thicknesses.
For the Co junctions of Sürgers et al [27], where the barrier thickness was 5 nm, JC at 2.1 K was
∼ 1 × 107 Am−2. Assuming JC ∝ exp(−d/ξF ) with ξF ≈ 1 nm, a thickness 2 nm gives JC ∼
2 × 107 Am−2, for those devices. Although the comparison is crude, the present experimental
values (at 4.2 K, not 2.1 K) in the range 0.5 − 1.2 × 108 Am−2 are somewhat larger than this.
In the case of reference [27] however, the films were e-beam evaporated at room temperature,
and no base pressure of the system was given. The films may therefore not be of comparable
structure or quality.

For the present devices, JC was constant to within a factor of two over the range of areas, but
showed an interesting scaling with device aspect ratio x/y (inset of figure 8.17). This scaling is
not understood at present, but may be associated with a local increase in JC due to Ga damage
of the ‘cleaned’ faces of the device parallel to the x dimension. The value of IC and the R(H)
behaviour with thermal cycling was not perfectly reproducible, although the magnitude of the
peak IC in figures 8.18 and 8.19 - two different cools - is the same to within experimental error.
The same qualitative behaviour was observed for each device for different measurements. This
difference between separate measurements is possibly due to different magnetic configurations
‘frozen in’ when cooled.

The comparison between figures 8.15 and 8.18 is of considerable interest. The first sudden



Spin-active Josephson junctions 123

Figure 8.18: R(H) and zero field IC , with H ⊥
y. Dimensions were x = 320 nm, y = 780 nm.

Figure 8.19: R(H) and zero field IC , with
H || y. Dimensions as figure 8.18.

switch of R(H) in figure 8.15 is not accompanied by a change in the zero field IC . This may
be attributed to a metastable state not present at zero field. This could not be confirmed by
measuring minor MR loops since the device was destroyed. Independently of this point, most
of the PSV devices, such as figures 8.14 and 8.15 showed a decrease (increase) of zero field IC

with decreasing (increasing) MR. However in the case of figure 8.18 (and more weakly figure
8.19), the zero field IC shows a sudden increase near a ‘shoulder’ of the MR loop, just before
R decreases to the saturation value. As can be seen from the difference between figures 8.18
and 8.19, further investigation into the dependence of this ‘re-entrant’ IC effect on applied field
orientation and device dimension is required

8.4.3.3 Numerical analysis of MR

Both R and the change in R, ∆R, were inversely proportional to the device area A (figure 8.17),
as would be expected for constant F thicknesses in a simple two resistor model, (see below).
A∆R was in the range 5.4−8.7×10−17 Ωm2, and AR = 1.1±0.2×10−14 Ωm2. The theoretical
A∆R and AR products can be found (sections 1.2.2 and 8.2.3). The resistance area product in
for example the AF configuration for the up spin electron can be written as

ARAF↑ = 2ARNb/Co + 2ARNb/Py + AR↑
Co/Cu + AR↓

Py/Cu

+2ρCudCu + ρ↑CodCo + ρ↓PydPy. (8.4)

In the present case the thicknesses d of the layers of Cu, Co and Py are 8, 1 and 1.6
nm respectively. Inserting these into equation 8.4 with the values from table 8.1, ARAF =
9.0 ± 1.2 × 10−14 Ωm2 and ARF = 8.6 ± 1.2 × 10−14 Ωm2 are obtained. The model gives
A∆R = 0.3 ± 1.6 × 10−15 Ωm2. The uncertainty of the parameters of Yang et al was therefore
too large to predict the MR of these devices. The contributions of the surface scattering can be
compared to the bulk terms. For example in the ARAF↑ in equation 8.4 the surface contributes
1.7 ×10−14 Ωm2, but only 9.4 ×10−16 Ωm2 for the bulk. As expected for such relatively thin
layers, the interface scattering dominates the MR.



Spin-active Josephson junctions 124

8.4.3.4 Modelling the junction behaviour

With this device geometry stray flux from the PSV contained in the electrodes is present (figure
5.5). However given the strong correlation between IC and R for the two very different types
of R(H) behaviour, and that R is determined solely by magnetic structure of the barrier, it
should be concluded that the effect of stray field from the electrodes is not important in directly
determining IC , (although the stray field can act as an applied field and change the moments
in the device). A more quantitative argument can be used [28]: modelling the electrode fringe
field as a line source, the flux density B = µ0MSdF /2πr, where r is the distance from the end
of the track. The saturation magnetisation MS = 1.42 × 106 Am−1 for Co. Considering the
barrier as simply a 2 nm thick Co film, for r = 500 nm, B ∼ 1 mT. This flux density, while not
insignificant, is not large compared to HC , and will cause only blurring of any sharp transitions
in the R(H) or IC(Hset) response. The strong correlation between the MR and zero field IC

would also seem to rule out the presence of pinholes in the individual F layers, which would
allow some Josephson current to pass through only one F layer. The relatively thick Cu spacer,
and good wetting of the Cu on the Py layer makes the possibility of pinholes which pass through
the whole PSV very unlikely.

Figure 8.20: Schematic of the ‘return flux’ of the
net magnetisation (a) penetrating the Nb elec-
trodes over a depth λ, (b) through the N spacer
in the spin-valve.

mA

Oe

Figure 8.21: IC(H) curves (1) before and (2)
after magnetisation above TC , by field cooling
through TM . Taken from Ryazanov [29].

The magnetic induction from the barrier itself must also be considered. Using a simplistic
model, in the worst case, if it is assumed that all of the moment present in the barrier passes into
the junction, perpendicular to the dimension x, then the flux in the junction is Φ = xdF µ0MS .
For x = 0.5 µm, Φ ∼ 0.8Φ0. This can explain the suppression of IC , but not the lack of scaling
of ∆IC with the dimension x, and also neglects the ‘return flux’ in the opposite direction, which
can penetrate the S electrode up to a depth of λ and reduce the net flux Φ threading the junction,
(figure 8.20 (a)). With the PSV barrier, in contrast to the single ferromagnetic layer junctions,
the return flux can also pass through the Cu spacer, again reducing the net flux through the
junction, (figure 8.20 (b)). Net magnetic induction has been shown to shift the IC(H) pattern
away from zero field and reduce the zero field IC (figure 8.21). Devices demagnetised both
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above and below TC (T = 10 K for the ‘above TC ’ case) showed an increase of R above Rmax

as expected [30] (figure 8.22), but no increase in zero field IC above Imax
C (figure 8.23). It would

seem therefore that stray induction does not strongly influence these devices.

Figure 8.22: Initial R(H) at 4.2 K after demag-
netising at 10 K (red), with normal measurement
afterwards (black). Device and field direction is
same as figure 8.18. Lines are a guide to the eye.

Figure 8.23: Initial zero field IC at 4.2 K after
demagnetising at 10 K (red), with normal mea-
surement afterwards (black). Device and field di-
rection is same as figure 8.18. Lines are a guide
to the eye.

It is important to note that most of the S/F/S junctions in the literature are tens of microns
across. To quote Ryazanov et al [31] “the averaging of a small-scale structure of magnetic
domains in the F layer resulting in highly uniform current flow”. This is not the case for
sub-micron junctions where there will be a relatively small number of domains present. Such
junctions have not been investigated in detail in the literature. The IC(H) shown in figure 8.21
was measured after field cooling through TM . Once the net induction was set, the fact that the
Fraunhofer period ∆B � HC (for a 50 × 50 µm2 junction), meant that the F layer was not
affected by measuring IC(H). This is not the present limit: here ∆B ∼ HC , so care should be
taken when considering figure 8.21 in the case of sub-micron junctions.

If it is possible to rule out the effects of net induction in and around the barrier, it is then
necessary to gain some qualitative understanding of reason for the correlation of the IC and
MR. Most of the models of S/F/X/F/S junctions discussed in section 3.4.1, were in the limit
of ∆ → HEx and unsuitable to be applied directly to the present case. The possible sub-
gap Andreev transport or triplet pairing in domain walls (sections 2.4.1 and 2.4.3.1), is quite
speculative at this stage. Therefore a simple model of ‘phase-unwinding’ is used to give some
qualitative picture in this case. Using a similar analysis to section 2.4, the phase of a Cooper
pair increases with the distance x inside the F layer: ∆φ = Qx, (Q is the Cooper pair centre of
mass momentum). On passing into the second F layer with opposite magnetisation, the Cooper
pair would begin to unwind the phase built up, (in the limiting case this must be true, since
the system is the same as an antiferromagnetic Josephson junction - section 2.5 - which showed
no π transition since there was no complex term in the coherence length which changed the
phase of the wavefunction). The change in the zero field IC between the parallel and anti-
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parallel remanent configurations can therefore be considered as a transition, (in the ideal case
of complete phase unwinding), from an oscillating order parameter, to a monotonically decaying
case. This is shown schematically in figure 8.24.

Figure 8.24: Simple schematic model of the change in ICRN (marked with arrow) when switching from
(a) parallel alignment of the PSV (oscillating order parameter) to (b) a monotonically decaying order
parameter, (no π transition), assuming perfect ‘phase-unwinding’ in the second F layer, or (c) incomplete
phase-unwinding. Relative magnitudes of curves (a)-(c) are for illustration only.

Importantly, the PSV was grown with dCo and dPy such that the magnetic moments cancel
in the anti-parallel state. From equation 1.8, EEx = HExMS . It is the exchange splitting EEx

which determines Q, and hence the rate of phase-winding with distance. Moment cancellation
is therefore not the same as complete phase-unwinding. This interpretation can be verified by
examining the variation of ∆IC with both the total F thickness dCo + dPy, while also changing
dCo and dPy individually, (see section 9.2). The possibility of incomplete phase-unwinding may
also give some intuitive picture of the re-entrant IC in figure 8.18, if the ferromagnetic thicknesses
are such that a transition from curves (a)→(b)→(c) is possible in figure 8.24.
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9.1 S/F superlattices

Much of the literature discussed in section 2.4.2 concentrated on measuring the transition tem-
perature or critical field of S/F multilayers. The latter was used to measure two-dimensional to
three-dimensional crossover in the behaviour of the superconducting layers as the ferromagnetic
thickness was increased. There was no discussion in these works of Josephson coupling in the
intermediate regime. Despite the recent work on S/F/S junctions by an increasing number of
groups, there is no work published measuring the CPP JC in S/F superlattices. Studies of such
structures have recently begun with work by A. Ruotolo et al [1], using Nb/Cu0.4Ni0.6 super-
lattices. In this work the FIB can be used in two ways. Micron scale tracks can be thinned to
reduce the CIP IC , and the IC(H) measured in an analogous manner to the S/F bilayer de-
vices measured by R. J. Kinsey (see [2] and section 2.4.3). The same structure can then milled
from θ = 85◦ to create a CPP device, and the same measurements repeated. The combina-
tion of CIP and CPP measurements will give more insight into the transport properties of such
heterostructures.

As can be seen from the FIB image in figure 9.1, the contrast in the FIB allows the individual
Nb and CuNi layers to be distinguished for relatively thick layers (dNb = 20 nm and dCuNi = 17
nm in this case). When the side cuts are made, the number of Nb and CuNi layers in the
CPP stack can be easily counted. For thinner multilayers, the FIB stage current can be used to
calibrate cuts from θ = 0◦. As shown in figure 9.2, the oscillations of the stage current are clear
as the beam mills through a total of 15 Nb/CuNi bilayer repeats, (dNb = 20 nm and dCuNi = 8.5
nm). The increase in the stage current at time ∼ 160 s indicates the removal of the SiO2 layer,
and Ga implantation in the Si substrate. Unlike the attempts to calibrate the number of Tl-
2212 intrinsic junctions by milling from θ = 0◦ and using the in-situ resistance (section 6.1.5.2),
in this case the cut from θ = 0◦ can be made before the undercut, and therefore before the
thinning of the track. In this way, the edge effects which made the previous work unsuccessful
are significantly reduced.

500 nm

Figure 9.1: View from θ = 65◦ of a (Nb/CuNi)7
multilayer grown by A. Ruotolo.

Figure 9.2: Stage current during milling of a
∼ 3 × 1 µm2 box with 150 pA beam through a
CuNi/(Nb/CuNi)15 multilayer from θ = 0◦.
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9.2 Spin-valve Josephson junctions

If the Co and Py barriers used for the devices in section 8.4 are replaced by weaker ferromagnetic
layers, (e.g. CuxNi1−x or PdxNi1−x) then for T < 4.2 K a much larger JC may be obtained.
These current densities may be large enough for the Josephson current to produce spin torque
effects [3], (current induced switching of the magnetic moments in the spin-valve). These current
induced switches have been observed only with ‘normal’ currents using Cu electrodes (see below).
Oscillations of the magnetic moments in such experiments have also been recently measured,
with the frequency of the dynamics in the microwave region [4]. There is a clear possibility of
coupling these dynamics with the a.c. Josephson current, which is in the same frequency regime.

For more direct applications, it would be important to show that the spin-valve Josephson
junctions can be formed into π-junctions in the parallel state, and can be switched between
the 0 and π states by changing from the parallel to the anti-parallel configuration of the spin-
valve. Initially this could be investigated by examining the behaviour of ∆IC with ferromagnetic
thickness, (see section 8.4.3.4). In addition to this, the fabrication of a controllable SQUID would
be an important step. In this case, only one of the two junctions in a d.c. SQUID is switched
into the π state. The IC(H) response of such a (0, π)-SQUID possesses a minimum at H = 0,
in contrast to the maximum obtained for (0, 0) and (π, π)-SQUIDs. Such a controllable SQUID
would be a magnetic version of the voltage controlled design using normal metal junctions [5].

It is important to remember at this stage that the FIB junctions are in fact two junctions in
series, (section 5.1.2). Although the larger second junction is negligible in most cases, it is not
for phase sensitive measurements. Assuming it was possible to arrange one of the two smaller
junctions to be in a different state to the other, the phase difference of the larger junctions must
also be considered. This problem can be solved simply by cutting the two FIB junctions in an

I

Figure 9.3: Schematic of an ‘unwrapped’ SQUID, showing the two sets of FIB side cuts. Current flows
only through the two red junctions as indicated.

anti-symmetric way, as shown in figure 9.3. In this way the two larger junctions are shorted out
and do not affect the measurement. This geometry is the same as that used in section 6.3.1. To
put the two junctions into different states (one parallel, one anti-parallel), it may be possible to
pass relatively large control currents in lines running close to one of the junctions. The magnetic
field of this current could be used, in addition to the applied field, to switch one of the devices.
Another possibility would be to exploit the shape anisotropy of the magnetic layers, and cut
the two devices with different shapes / aspect ratios, such that the devices react differently for
a given direction of in-plane field.
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9.3 Other spin-valve devices

Following the work with Nb electrodes, C. W. Leung has shown that CPP spin valve devices can
be measured up to room temperature with copper electrodes, (figure 9.4 (a)). The Cu electrodes
are used in preference to superconducting materials in most of the recent work investigating
current induced switching in Cu/Co nanopillars (for example see [4, 6] and references therein).
This is due to the relatively high current densities required (∼ 1 × 1012 Am−2), which are in
excess of the JC of Nb at 4.2 K. To be able to achieve these current densities, the spin-torque
devices typically have lateral dimensions of 10s to 100s of nm. Early results obtained by C. W.
Leung suggest that the device dimensions obtainable in the FIB are small enough that current
induced switching of magnetic layers can be observed [7].

In these devices the series resistance due to the Cu leads can decrease the observed MR. To
avoid this problem, the devices can be made at a junction of four tracks [8]. Four side cuts in
the FIB can then be made to form a Kelvin bridge, which enables a four point measurement to
be made of the CPP region alone, (figure 9.4 (b)).

Figure 9.4: (a) FIB image of a Cu/spin-valve/Cu device from θ = 65◦, showing the contrast due to
channelling of the Ga+ ions in different grain orientations in the Cu. (b) SEM image from θ ∼ 35◦, of a
Kelvin bridge structure using four FIB side cuts. Images courtesy of C. W. Leung.

The flexibility of the FIB allows the further possibility of milling a hole through the device
from θ = 0◦, (figure 9.5 (b)). Such a structure has been predicted to be useful as a potential
memory element [9]. It also shows interesting current induced switching behaviour [10]. Apply-
ing this idea to the superconducting devices, much work has be done on the vortex dynamics of
such structures (‘annular’ Josephson junctions), particularly in the S/I/S (underdamped) limit
[11, 12]. The FIB allows the opportunity to extend this micron scale work to annular junctions
in the sub-micron regime.

9.3.1 TEM imaging and in-situ biasing

It was noted in section 4.3.1 that the FIB is frequently used to prepare samples for Transmission
Electron Microscopy (TEM). These samples are simply the present device structure, without
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Figure 9.5: (a) Schematic of an idealised junction with central hole through active barrier region. (b)
FIB image from θ = 0◦ showing the ∼ 300 nm diameter hole (marked with arrow) milled through the
final device.

the side cut holes. Lorentz TEM and electron holography can be used to qualitatively and
quantitatively image magnetic moments in such samples [13]. Combining this with the possibility
of in-situ current biased measurements [14, 15], and the current-induced switching discussed
above, there is the opportunity to image the two states before and after the current-induced
switching of the spin-valve. This geometry would compliment previous TEM imaging of spin-
valve structures from θ = 0◦ [16].
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IRC in Superconductivity seminar, University of Cambridge, 27th November 2003
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ESF π-shift workshop, Sant Feliu de Guixols, Spain, 6th-8th November 2002
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SQUID 2001, Stenungsbaden, Sweden
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