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Abstract:

Power corrections to exclusive processes are usually calculated using models for twist–four

distribution amplitudes (DA) which are based on the leading–order terms in the conformal

expansion. In this work we develop a different approach which does not rely on conformal

symmetry but is based instead on renormalon analysis. This way we obtain an upper bound

for the contributions of higher conformal spin operators, which translates into a bound

on the end–point behavior of DA. The existence of such a bound is important for proving

factorization theorems. For the two–particle twist–four DA we find in the renormalon

model that the conformal expansion converges but it does not converge uniformly near

the end points. This means that power corrections to observables which are particularly

sensitive to the region where one valence quark is soft, may be underestimated when using

the first few terms in the conformal expansion. The renormalon models of twist–four DA

of the pion and the ρ meson are constructed and can be used as a viable alternative to

existing models.
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1 Introduction

The relevant non-perturbative degrees of freedom in hard exclusive processes are described

by hadron distribution amplitudes (DA) [1, 2] that detail the momentum–fraction distri-

butions of partons in the infinite momentum frame by integrating out the transverse

momentum dependence. The leading–twist parton distributions appear in the QCD de-

scription of hard exclusive reactions to the leading power accuracy and refer to parton

configurations with the minimal number of constituents. The higher–twist distributions,

in turn, are more numerous and are used to take into account a variety of effects due

to parton virtuality, transverse momentum, and contributions of higher Fock states that

are relevant for the description of power–suppressed corrections in the hard momentum.

It should be mentioned that application of QCD factorization to exclusive processes be-

yond the leading–twist approximation presents a serious challenge because of end–point

divergences related to the contributions of soft partons. Up to now such applications

have been mostly in connection with the so–called light–cone sum rules (LCSR) [3] in

which case the end–point divergences are removed by construction. More generally, end–

point contributions have to be added and there is a hope that the precise separation of

hard (twist–expandable) and soft (end–point) contributions can be achieved within the

soft–collinear effective theory, see e.g. [4]. Having in mind the existing and potential ap-

plications it is worthwhile to have a fresh look at the theoretical description of higher–twist

DA and the related uncertainties. The present work presents a step in this direction.

The existing theoretical framework for the description of DA is based on the conformal

symmetry of the QCD Lagrangian, see [5] for a detailed review. The symmetry can be used

to separate the dependence of the hadron wave function on the longitudinal momentum

fractions and the transverse coordinates (that are later traded for the renormalization

scale) in very much the same way as the rotational symmetry of the potential in quantum

mechanics allows to separate the angular and the radial dependence. The orthogonal

polynomials appearing in the expansion of distribution amplitudes [1, 2] are nothing but

the irreducible representations of the collinear conformal group and play the same role as

spherical harmonics in quantum mechanics, with the orbital angular momentum replaced

by conformal spin. One motivation for using the conformal expansion is that contributions

with different conformal spin do not mix with each other under QCD evolution to the

leading logarithmic accuracy [1, 2]. Another rationale [6] is that QCD equations of motion

(EOM) only relate terms with the same conformal spin so that any exact EOM–based

relation between DA can be satisfied order by order in the conformal expansion. It follows

that any parametrization of DA based on a truncated conformal expansion is consistent

with the EOM and is preserved by evolution.

Assuming that DA are dominated by first few terms having the lowest conformal spin,

the conformal expansion provides a practical framework for constructing models for DA

[7, 8, 9, 10, 6, 11, 12, 13, 14, 15] which are both consistent with the QCD constraints and

involve just a few non-perturbative parameters. This approach has been used extensively

for phenomenology. Its main limitation is that just the first one or two terms in the

expansion are included; the increasing number of parameters at higher conformal spins

makes this program impractical otherwise, so the assumption that the conformal expansion
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converges fast is absolutely essential.

From the theoretical point of view, convergence of the conformal expansion is ex-

pected because anomalous dimensions of conformal operators are rising logarithmically

with the spin‡ and, therefore, higher–spin contributions are suppressed at asymptotically

large scales. However, this suppression is numerically weak and not sufficient to guar-

antee convergence at the scales of practical interest. For leading twist this question can

eventually be decided by experiment and indeed the qualitative success of quark counting

rules and, more importantly, the CLEO data on the π(η)γγ∗ transition form factor [16]

strongly suggest that the meson DA are not very far from their asymptotic shape. For

higher twist, using experimental data to constrain DA seems totally unrealistic and up

to now there had been no arguments whatsoever whether truncation of the conformal

expansion is legitimate in this case or not.

The aim of this work is to construct alternative models for twist–four meson DA that

do not rely on the conformal expansion and present plausible bounds for the higher–spin

contributions to these DA. To this end, we approach the problem from a different angle,

using the concept of renormalons [17]. Owing to the breaking of scale invariance in the

quantum theory through the running of the coupling, operators of different twist mix

with each other under renormalization. Independence of a physical observable on the

factorization scale implies intricate cancellations between different twists — the so–called

cancellation of renormalon ambiguities — and the existence of these ambiguities can be

used to estimate power–suppressed corrections in a similar way as the logarithmic scale

dependence is used to estimate the accuracy of fixed–order perturbative calculations.

Most applications of renormalons have so far been in inclusive or semi–inclusive cross

sections [17, 18], although some work has already been done in the context of exclusive

processes. This includes analysis of the large–order behavior of the Brodsky–Lepage evo-

lution kernel [19], and studies of infrared renormalons in specific processes, e.g. the γ∗γπ0

form factor [20], the pion electromagnetic form factor [21], and deeply–virtual Compton

scattering [22]. Here we do not consider a specific process but instead develop a general

framework for estimating higher–twist contributions to exclusive processes involving pseu-

doscalar and vector mesons by constructing a renormalon model for DA, continuing the

work by J. Andersen [23]. We trace the cancellation of renormalons and in this way es-

tablish an explicit connection between previous renormalon calculations and the operator

product expansion (OPE) for exclusive processes, for cases that the latter exists. We then

use the renormalon model to study the convergence of the conformal expansion.

In order to explain how the concept of renormalons becomes useful for constructing

a consistent model for higher–twist DA let us discuss a concrete example. Consider the

following matrix element:

〈
0
∣∣T{d̄(x2)∆/γ5u(x1)}

∣∣ π+(p)
〉

µ2≃1/|∆2|
= (1.1)

= i(p∆) fπ

∫ 1

0

du e−iupx1−iūpx2

[∫ 1

0

dv C(v, u, ∆2, µ2
F )φπ(v; µ2

F ) + ∆2g1(u; µ2
F ) + · · ·

]
,

where ū ≡ 1 − u, fπ is the pion decay constant and the fields are taken at a small

‡This property is proven for twist–two and twist–three operators and is probably true for all twists.
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space-like separation: ∆ ≡ x1 − x2 with ∆2 < 0, |∆2| ≪ 1/Λ2
QCD. Also, µ stands for

the ultraviolet renormalization scale and for this discussion we assume that µ2 ≃ 1/|∆2|
to avoid large logarithms. The expansion in the square brackets on the right–hand side

of Eq. (1.1) is nothing but the OPE: C(v, u, ∆2, µ2
F ) = δ(u − v) + O(αs) is the twist–

two coefficient function, φπ(v; µ2
F ) is the standard, twist–two pion DA, and ∆2g1(u; µ2

F )

represents the twist–four contribution; µ2
F is a factorization scale. The function g1(u; µ2

F )

can be interpreted as the distribution of the transverse momentum (squared) of the quark

in the pion [10, 6] and is one example of the higher–twist DA that we will be interested

in.

The conformal expansion of g1(u; µ2
F ) has been constructed in [6] using the expansion

of three–particle DA involving a quark, an antiquark and a gluon, and EOM. In Sect. 4

we shall explain how this is done. Here we just quote the result:

g1(u; µ2
F ) =

{
g(J=3)(µ2

F )
[
u2 ū2

]
+ g(J=4)(µ2

F )
[
uū (13 uū + 2) (1.2)

+ 2 (6 u2 + 3 u + 1) ū3 ln(ū) + 2 (6 ū2 + 3 ū + 1) u3ln(u)
]

+ · · ·
}
,

where the coefficients g(J)(µ2
F ) renormalize multiplicatively, and J = 3, 4, . . . is the confor-

mal spin. The corresponding logarithmic scale dependence cancels against the scale de-

pendence of the twist–four coefficient function which is not shown in Eq. (1.1) for brevity.

To the leading logarithmic accuracy and with the usual choice µF = µ ≃ 1/|∆| this

function reduces to a constant which can be included in the definition of g1(u; µ2
F ). The

dots in Eq. (1.2) stand for the contribution of conformal spins J ≥ 5, which were usually

neglected. In this paper we want to study their significance.

To understand the rôle of renormalons one needs to carefully examine the separation

made in Eq. (1.1) between twist two and twist four. For a qualitative discussion it is

convenient to use a hard cutoff 1/|∆2| ∼ µ2 ≫ µ2
F ≫ Λ2 for factorization: loop momenta

k2 > µ2
F contribute to the coefficient function C(v, u, ∆2, µ2

F ) while momenta k2 < µ2
F con-

tribute to the DA. Upon expanding the coefficient function near the light–cone |∆2|µ2
F ≪ 1,

one obtains:

C(v, u, ∆2, µ2
F ) =

(
1 + c1αs + c2α

2
s + · · ·

)
− d(v, u)µ2

F∆2 · · · , (1.3)

where αs = αs(µ
2 = 1/|∆2|). It is the usual perturbative series with coefficients ci =

ci (v, u; ln (µ2
F/µ2)) depending logarithmically on the scales, and the d(v, u) term repre-

sents the leading power correction that arises because the low–momentum regions are cut

off. Since the left–hand side of Eq. (1.1) does not depend on µ2
F , any such dependence

in C(v, u, ∆2, µ2
F ) should cancel within the square brackets on the right–hand side. In

particular, the logarithmic dependence of C(v, u, ∆2, µ2
F ) on µ2

F is canceled by that of

the twist–two distribution amplitude φπ(v; µ2
F ). The cancellation of power dependence

must involve the twist–four term ∆2g1(u; µ2
F ), so it is expected that in this factorization

prescription

g1(u; µ2
F ) −→ µ2

F

∫ 1

0

dv d(v, u)φπ(v; µ2
F ) + ḡ1(u; µ2

F ) , (1.4)
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where the second term depends on µ2
F at most logarithmically. Indeed, upon renormal-

ization the relevant twist–four operators show not only logarithmic ultraviolet divergence

which is related to their anomalous dimension, but also quadratic ultraviolet divergence.

Using a hard cutoff, the dependence of twist–four on µ2
F is indeed that of Eq. (1.4):

the twist–four operators mix with the leading–twist such that the dependence on µ2
F in

Eq. (1.1) cancels out. Clearly the function d(v, u) can be computed either by considering

the dependence of the twist–two coefficient function on µ2
F , i.e. its sensitivity to small

loop momenta, or by considering the dependence of twist–four operators on µ2
F i.e. their

sensitivity to large loop momenta. Cancellation of µ2
F to power accuracy requires that

these two regularizations will be done using the same prescription.

In practice, a hard cutoff is difficult to implement. Usually, dimensional regularization

is used instead. In this case power terms in the coefficient function (Eq. (1.3)) do not ap-

pear. However, the coefficients ci computed in a MS–like scheme diverge factorially with

the order i. The factorial divergence implies that the sum of the perturbative series is only

defined to a power accuracy and this ambiguity (renormalon ambiguity) must be compen-

sated by adding a non-perturbative higher–twist correction. A detailed analysis shows

[17] that the asymptotic large–order behavior of the coefficients (the renormalons) is in

one–to–one correspondence with the sensitivity to extreme (small or large) loop momenta

and that infrared renormalons in the leading–twist coefficient function are compensated

by ultraviolet renormalons in the matrix elements of twist–four operators. At the end the

picture described above re-appears: only the details depend on the factorization method.

Returning to Eq. (1.4) we observe that the quadratic term in µF is spurious since its

sole purpose is to cancel the similar contribution to the coefficient function. It does not

contribute, therefore, to any physical observable. The idea of the renormalon model [17, 18]

is that, with a replacement of µF by a suitable non-perturbative scale, this contribution

should be of the same order and have roughly the same functional form as the physical

second contribution on the right–hand side of Eq. (1.4), which is the only one of interest.

Assuming this “ultraviolet dominance” [24, 25, 17] we get the following model:

g1(u; µ2
F ) ≃ kΛ2

QCD

∫ 1

0

dv d(v, u)φπ(v; µ2
F ), (1.5)

where by explicit calculation (see Sect. 2) one finds for d(v, u) at leading order

d(v, u) =
1

v2

[
u + (v − u) ln

(
1 − u

v

) ]
θ(v > u)

+
1

(1 − v)2

[
1 − u + (u − v) ln

(
1 − 1 − u

1 − v

) ]
θ(v < u). (1.6)

The overall coefficient in this model k = O(1) can be fixed by the normalization inte-

gral
∫ 1

0
du g1(u; µ2) corresponding to the matrix element of a local operator which can

be estimated by QCD sum rules [10, 6] or calculated on the lattice. To the accuracy of

Eq. (1.6) the logarithmic µF dependence on the left–hand side and on the right–hand side

of Eq. (1.5) do not match: one expects this model to be relevant at low scales of the order

of a few times ΛQCD.
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The “ultraviolet dominance” assumption used to derive Eq. (1.5), is in fact sufficient to

derive the full set of two– and three–particle DA of twist–four in terms of the leading–twist

DA. It is important that this approximation is fully consistent with the OPE and respects

all constraints imposed by EOM. On the other hand, it does not assume any hierarchy

of contributions of the increasing conformal spin and indeed the expressions in Eq. (1.2)

and Eq. (1.5) are very different for any reasonable choice of the leading–twist DA. Since

twist–four anomalous dimensions are not taken into account, one should expect that this

model overestimates contributions of conformal operators with high spin. It is therefore

complementary to the usual models based on using a first few terms with the lowest spin

and provides an upper–bound estimate of the neglected contributions.

The presentation is organized as follows. In Sect. 2 we formulate our program in more

precise terms, introducing the relevant techniques (Borel transform) and the systematic

approximation (large–Nf expansion) that will be used throughout the rest of the work.

The expression in Eq. (1.6) is derived and the cancellation of the renormalon ambiguity

for the matrix element of the type in Eq. (1.1) is demonstrated by an explicit calculation.

The renormalon model of the pion DA of twist–four is presented in Sect. 3 and in Sect. 4

we discuss its conformal expansion. The generalization of these results for the case of

vector mesons is considered in Sect. 5 while Sect. 6 is reserved for the conclusions.

2 Cancellation of renormalon ambiguities in the OPE

2.1 Definitions

In this section we compute the renormalon ambiguity of the leading–twist coefficient func-

tion in the simplest exclusive amplitude involving a pseudoscalar meson, and demonstrate

how the unique result is restored by adding the twist–four contributions in the OPE. To

begin with, let us set up the necessary definitions.

We choose to consider the gauge–invariant time–ordered product of two quark “cur-

rents” at a small (but non-vanishing) light–cone separation, which can be parametrized in

terms of two Lorentz–invariant amplitudes G1(u, ∆2; µ2) and G2(u, ∆2; µ2) defined as

〈
0
∣∣T{d̄(x2)γνγ5[x2, x1]u(x1)}

∣∣ π+(p)
〉

µ2 = (2.1)

= i fπ

∫ 1

0

du e−iupx1−iūpx2

[
G1(u, ∆2; µ2)pν + G2(u, ∆2; µ2)

(
p · ∆
∆2

∆ν − pν

)]
.

Here ∆ ≡ x1−x2 with |∆2| ≪ 1/Λ2
QCD, ∆2 < 0 playing the rôle of the hard scale, ū = 1−u

and µ2 is the ultraviolet renormalization scale. We use the notation [x2, x1] for the Wilson

line connecting the points x2 and x1,

[x2, x1] = P exp

[
−ig

∫ 1

0

dt ∆µA
µ(x2 + t∆)

]
. (2.2)

Note that the µ2 dependence comes entirely from the wave–function renormalization of the

quark and the antiquark fields in Eq. (2.1) and can be removed by adding the corresponding
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Z–factors. Up to this additional renormalization, the functions G1,2(u, ∆2; µ2) can be

viewed as physical amplitudes. Their advantage is that they are simpler than exclusive

amplitudes which are relevant for phenomenology (such as the two–photon one) and at

the same time retain all the features that are important in the present context.

The asymptotic behavior of Gi(u, ∆2; µ2), i = 1, 2 in the light–cone limit ∆2 −→ 0

with ∆ · p fixed can be studied by the OPE, schematically

Gi(u, ∆2) = C
(2)
i ⊗ φ(2) + ∆2

∑
C

(4)
i ⊗ φ

(4)
i + O(∆4), (2.3)

where C
(t)
i are the coefficient functions and φ(t) are the pion DA given by vacuum–to–pion

matrix elements of renormalized non-local operators, t refers to twist and the summation

goes over all independent contributions of given twist. The convolution is defined as

Ci ⊗ φ =

∫ 1

0

dv Ci(v, u, ∆2, µ2, µ2
F ) φ(v; µ2

F), (2.4)

where u, v have the meaning of the light–cone momentum fractions and we have indicated

the dependence on the factorization scale µ2
F and other variables. The Lorentz structures

in Eq. (2.1) are chosen such that the coefficient functions Ci depend on ∆2 logarithmically

as follows from power counting.

The leading–twist pion DA φπ(u) = φ(2)(u) is defined as usual by

〈
0
∣∣d̄(−z) 6zγ5[−z, z]u(z)

∣∣ π+(p)
〉

µ2
F

= ifπ(pz)

∫ 1

0

du e−ipz(u−ū)φπ(u; µ2
F ) , (2.5)

where the normalization condition is
∫ 1

0

du φπ(u; µ2
F ) = 1. (2.6)

Here and below zµ is the light–like vector, z2 = 0. Although we will usually be using

covariant notation, it is sometimes convenient to refer to light–cone coordinates where

p = (p+, 0, 0) and x = (0, x−, x⊥). The light–cone limit corresponds to x⊥ −→ 0 with x−
fixed such that z = (0, x−, 0).

In the present paper we will consider the leading–twist coefficient function to all or-

ders in αs(µ
2) but restrict ourselves to the leading order in higher–twist contributions:

C(4)(u, v) = δ(u− v) +O(αs). To this accuracy there is a single twist–four DA contribut-

ing to each of the functions G1,2:

G1(u, ∆2) =
[
1 + c1αs + c2α

2
s + · · ·

]
⊗ φπ + ∆2φ

(4)
1 (u; µ2

F ) + · · ·

G2(u, ∆2) =
[
c̃1αs + c̃2α

2
s + · · ·

]
⊗ φπ + ∆2φ

(4)
2 (u; µ2

F ) + · · · . (2.7)

In physical terms φ
(4)
1 (u; µ2

F ) and φ
(4)
2 (u; µ2

F ) correspond to contributions of valence–quark

transverse momenta and of the “wrong” components of the quark spinors, respectively. In

the notations of Ref. [6]

g1(u) = φ
(4)
1 (u) and g2(u) =

d

du
φ

(4)
2 (u).
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For an operator definition, it is convenient to use the concept of non-local operator off the

light cone [26] which is defined as the generating function (formal Taylor expansion) for

renormalized local operators. For example,

[
d̄(−x) 6xγ5[−x, x]u(x)

]
µ2

F

=
∑

k

2k+1

k!
xνxν1 . . . xνk

{[
dγν

↔

Dν1 . . .
↔

Dν1 u − Traces
]twist−2

µ2
F

+[Traces]twist−4
µ2

F
+ [Traces]twist−6

µ2
F

+ . . .
}
, (2.8)

where
↔

Dν1=
→

Dν1 −
←

Dν1 is the covariant derivative, see [26, 27] for details. Note that

the twist expansion of a non-local operator corresponds to its expansion over irreducible

representations of the Lorentz group. This involves rearrangement of traces and sym-

metrization over groups of indices if necessary, cf. [28]. This compact notation is widely

used in [6, 10, 11, 26, 13, 15]. In particular, we have [6]

〈0|
[
d̄(x2)γνγ5[x2, x1]u(x1)}

]

µ2
F

|π+(p)〉 =

= i fπpν

∫ 1

0

du e−iupx1−iūpx2

[
φ(2)(u; µ2

F ) + ∆2φ
(4)
1 (u; µ2

F ) + O(∆4)
]

+ i fπ

(
∆ν(p∆) − pν∆

2
) ∫ 1

0

du e−iupx1−iūpx2

[
φ

(4)
2 (u; µ2

F ) + O(∆2)
]
. (2.9)

Despite the similar appearance, beyond the tree level Eq. (2.1) and Eq. (2.9) describe

different objects. As follows from the Taylor expansion Eq. (2.8) the non–local operator

on the left–hand side of Eq. (2.9) is an analytic function of ∆2 at ∆2 −→ 0. It corresponds

to the analytic part of the amplitude in Eq. (2.1) [27] while the coefficient functions (by

definition) take into account singular contributions. The most striking difference is that

the non-local operator in Eq. (2.9) does not include the whole twist–two part of G2(u, ∆2)

in Eq. (2.1), which is ∼ 1/∆2. This contribution was overlooked in [23]. The non-local

operator also does not include any of the coefficient functions appearing in Eq. (2.1), which

absorb all logarithms ∼ ln(−∆2µ2
F ).

Using the EOM the two–particle pion DA φ
(4)
1 (u; µ2

F ) and φ
(4)
2 (u; µ2

F ) can be expressed

in terms of the Fock components involving an extra gluon field. Following [6] we define

the three–particle pion DA of twist four

〈
0
∣∣d̄(−z)[−z, vz]γνγ5gGµρ(vz)[vz, z]u(z)

∣∣ π+(p)
〉

=

= fπ

∫
Dαi e−ipz(α1−α2+α3v)

{pν

pz
(pµzρ − pρzµ)Φ‖(α1, α2, α3)

+

[
pρ

(
gµν −

zµpν

pz

)
− pµ

(
gρν −

zρpν

pz

)]
Φ⊥(α1, α2, α3)

}
, (2.10)

where the longitudinal momentum fraction of the gluon is α3 and the integration measure

is defined as ∫
Dαi =

∫ 1

0

dα1dα2dα3 δ(1 − α1 − α2 − α3) . (2.11)
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One obtains [6] (see also Appendix A in [12]):

φ
(4)
2 (u) =

∫ u

0

dv

∫ v

0

dα1

∫ 1−v

0

dα2
1

α3

[
2Φ⊥ − Φ‖

]
(α1, α2, α3)

(2.12)

φ
(4)
1 (u) + φ

(4)
2 (u) =

1

2

∫ u

0

dα1

∫ 1−u

0

dα2
ūα1 − uα2

α2
3

[
2Φ⊥ − Φ‖

]
(α1, α2, α3),

where α3 = 1−α1−α2. The derivation of these relations relies on exact operator identities

[26] which relate integrals over v of the quark–gluon–antiquark operator in Eq. (2.10) to

derivatives of the quark–antiquark operator appearing in Eq. (2.9).

For completeness, we present here the definitions of the other three–particle twist–

four pion DA. These distributions do not contribute to Eq. (2.1) to leading order because

of our specific choice of the (simple) correlation function, but are important for other

applications. We will use these definitions in Sect. 3 where we construct the renormalon

model.

First of all, there exist another pair of DA that correspond to the substitution§ of γ5Gµρ

by iG̃µρ ≡ i
2
ǫµραβGαβ in Eq. (2.10). To the twist–four accuracy

〈0|d̄(−z)[−z, vz]γν igG̃µρ(vz)[vz, z]u(z)|π+(p)〉 =

= fπ

∫
Dαi e−ipz(α1−α2+α3v)

{pν

pz
(pµzρ − pρzµ)Ψ‖(α1, α2, α3)

+

[
pρ

(
gµν −

zµpν

pz

)
− pµ

(
gρν −

zρpν

pz

)]
Ψ⊥(α1, α2, α3)

}
. (2.13)

The functions Ψ⊥,‖ and Φ⊥,‖ are not independent. In particular Ψ⊥ and Φ⊥ can be obtained

as the symmetric and the antisymmetric part, respectively, of a more general DA [13]

〈0|d̄(−z)[−z, vz]γ−γνγ+igG̃µρ(vz)[vz, z]u(z)|π+(p)〉 = (2.14)

= fπ

[
pρ

(
gµν −

zµpν

pz

)
− pµ

(
gρν −

zρpν

pz

)]∫
Dαi e−ipz(α1−α2+α3v)H↓↑(α1, α2, α3) .

One obtains [13]

Ψ⊥(α1, α2, α3) = −1

2

[
H↓↑(α1, α2, α3) + H↓↑(α2, α1, α3)

]
,

Φ⊥(α1, α2, α3) = −1

2

[
H↓↑(α1, α2, α3) − H↓↑(α2, α1, α3)

]
, (2.15)

see also Appendix A in [30].

In addition, we introduce a new three–particle DA Ξπ(αi) as
〈
0
∣∣d̄(−z)γµγ5gDαGαβ(vz)[vz, z]u(z)

∣∣ π+(p)
〉

=

= ifπpµpβ

∫
Dαi e−ipz(α1−α2+vα3) Ξπ(α1, α2, α3). (2.16)

§We are using the sign conventions for the ǫµραβ tensor and the γ5 matrix from Bjorken and Drell [29].

In particular, Tr(γµγργαγβγ5) = 4iǫµραβ and σ̃αβ = iσαβγ5.
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The Lorentz structure pµpβ is the only one relevant at twist four. Thanks to the equation of

motion DαGA
αβ = −g

∑
q q̄tAγβq where the summation goes over all light flavors, Ξπ(αi) can

be viewed as describing either a quark–antiquark–gluon or a specific four–quark component

of the pion: with the quark–antiquark pair in a color–octet state and at the same space–

time point. This DA was not considered previously because its conformal expansion starts

with a higher spin J = 5 (see below) whereas in [6, 13] only the terms with J = 3 and

J = 4 were included.

There exist further twist–four four–quark operators where all quark light–cone coordi-

nates are separated, and also twist–four operators which include two gluons in addition to

the quark–antiquark pair. They give rise to four–particle DA and will not be considered in

this work. Although such operators contribute to exclusive amplitudes at twist four, they

do not appear to leading order in the flavor expansion (cf. [31]) and can be systematically

neglected to our accuracy.

2.2 Infrared renormalons in the twist–two coefficient functions

The scale separation made in Eq. (2.3) is arbitrary in two respects. To a given logarithmic

accuracy the separation between coefficient functions and operator matrix elements is

ambiguous. However, the logarithmic dependence on the factorization scale µ2
F cancels

between the coefficient function C(t=2) and the corresponding DA φ(t=2) leaving their

product invariant. This can be phrased through perturbative evolution equations. To

power accuracy the separation between terms of different twist is ambiguous and the

scale–independence of “structure functions” G is only restored in the sum of all twists.

As discussed in the introduction the intuitive way to see this is to imagine using a

cutoff scale µ2
F to implement factorization: this scale serves as an infrared cutoff for

the coefficient functions while it acts as an ultraviolet cutoff for the DA. The twist–two

contribution would then depend on the scale as ∼ µ2
F∆2φ(2). To keep G invariant this

dependence should cancel against a term of the form µ2
Fφ(2) in φ

(4)
i . In other words, the

twist–four operator has a quadratic ultraviolet divergence through which it mixes with

the twist–two operator. In dimensional regularization the power–like cutoff dependence

does not occur, but the ambiguity still persists because the perturbative series develops a

factorial large–order behaviour. The perturbation theory, therefore, diverges (renormalon

divergence) and its sum is only defined to power–like accuracy. This is the renormalon

ambiguity which we are going to address now.

2.2.1 An all–order calculation

In order to evaluate the infrared–renormalon ambiguity in the twist–two coefficient func-

tions

C
(2)
1 (v, u, ∆2, µ2, µ2

F ) = δ(u − v) + c1αs(µ
2) + c2α

2
s(µ

2) + · · ·
C

(2)
2 (v, u, ∆2, µ2, µ2

F ) = c̃1αs(µ
2) + c̃2α

2
s(µ

2) + · · · (2.17)

we need to calculate them to all orders in the coupling. Of course, a full all–order calcu-

lation cannot be performed. Instead, as in other applications [17], we restrict ourselves to
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the perturbative series generated by the running–coupling effects in one–loop diagrams,

i.e. using QCD coupling at the scale of the gluon virtuality¶. A convenient tool to perform

this calculation is the Borel representation of the running coupling,

β0αs(−k2)

π
=

∫ ∞

0

dw e
5
3
w

(
Λ2

−k2

)w

, (2.18)

where β0 is the leading–order coefficient of the β function,

d(αs/π)

d lnµ2
= −β0(αs/π)2 + . . . β0 =

11

12
CA − 1

6
Nf , (2.19)

Λ = ΛMS
QCD and the exponential factor e

5
3
w originates from the renormalization of the

fermion loop in the MS scheme. This way the calculation reduces to one loop with a

modified gluon propagator
1

−k2
−→ (Λ2)w

(−k2)1+w
. (2.20)

and the result for the coefficient functions takes the form of a Borel integral

C1(v, u, ∆2, µ2, µ2
F ) = δ(u − v) +

∫ ∞

0

dw e
5
3
w B1(w; v, u, ∆2µ2, µ2

F/µ2)
(
−∆2Λ2

)w
,

C2(v, u, ∆2, µ2, µ2
F ) =

∫ ∞

0

dw e
5
3
w B2(w; v, u, ∆2µ2, µ2

F/µ2)
(
−∆2Λ2

)w
. (2.21)

The perturbative expansion of Ci can be recovered order by order from the expansion of

their Borel transforms Bi near w = 0 observing that for one–loop coupling
∫ ∞

0

dw wn
(
Λ2/µ2

)w
=

n!

(ln µ2/Λ2)n+1 = n! (αsβ0/π)n+1 .

The fixed–sign factorial behavior of the coefficients in this expansion in high orders man-

ifests itself in that the functions Bi develop singularities at finite values of w on the

positive real axis (renormalon singularities) rending the integrals in Eq. (2.21) ill–defined.

The imaginary part that arises when the integration contour is moved above (or below) of

the nearest singularity (to the origin) can be taken as a measure of the ambiguity of the

summation of the perturbative series, see [17] for details.

The relevant diagrams are shown in Fig. 1. The calculation is presented in detail in

Appendix A. We consider quarks on–shell and set the space-time dimension to d = 4 from

the beginning since w 6= 0 acts as a regulator. The result for the (not yet renormalized)

coefficient functions reads

B1(w; u, v) =
CF

2β0

Γ(−w)

Γ(1 + w)
4−w

{
θ(u > v)

1

v̄

[
(1 + w)f

(w)
+

(
1 − ū

v̄

)
− wf (w)

(
1 − ū

v̄

)]

+ θ(u < v)
1

v

[
(1 + w)f

(w)
+

(
1 − u

v

)
− wf (w)

(
1 − u

v

)]

¶This approximation is sometimes referred to as the large–β0 limit and can formally be defined con-

sidering first the large Nf limit with αsNf is fixed, and replacing Nf by −6β0 to recover the non-Abelian

contributions.
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x1 x2
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x1 x2

x1 x2

=

1 2

3 4

Figure 1: One–loop diagrams appearing in the non-local matrix element of Eq. (2.1). The upper

double line represents a path–ordered exponential (a Wilson line) connecting x1 and x2, while

the dashed line represents a dressed gluon (dressing is equivalent to summing over any number

of fermion–loops insertions in the large–Nf limit).

+
1 − w

1 + w

[
θ(u > v)

( ū

v̄

)w+1

+ θ(u < v)
(u

v

)w+1
]

− 1

1 − 2w
δ(u − v)

}
(2.22)

and

B2(w; u, v) =
CF

β0

Γ(1 − w)

Γ(2 + w)
4−w

[
θ(u > v)

( ū

v̄

)w+1

+ θ(v > u)
(u

v

)w+1
]

, (2.23)

where we used a short–hand notation

f (w)(β) =
β2w−1(1 − β)1+w

1 + w
2F1(2w, w + 1, 2 + w; 1 − β) . (2.24)

In particular

f (w=0)(β) =
1 − β

β
,

f (w=1)(β) = 1 − β + β ln β . (2.25)

The “+” prescription is defined as usual by:

f
(w)
+ (β) = f (w)(β) − δ(β)

∫ 1

0

dβ̃f (w)(β̃). (2.26)

The terms ∼ f (w) in Eq. (2.22) correspond, in Feynman gauge, to the contribution of the

vertex correction (Diagram 1) in Fig. 1 and its symmetric counterpart, the contribution
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in the third line in Eq. (2.22) and the entire Eq. (2.23) originate from the box diagram

(Diagram 2) and the remaining term ∼ 1/(1− 2w) in the last line of Eq. (2.22) stands for

the self–energy insertion in the Wilson line (Diagram 3).

2.2.2 Singularities of the Borel transform

The answer for B1(w; u, v) in Eq. (2.22) has a simple pole at w = 0. This singularity is

expected [17] and has to be removed by the subtraction of ultraviolet (UV) logarithmic

divergences due to the wave–function renormalization of the quark fields, and of infrared

(IR) logarithmic divergences that correspond to the renormalization of the leading–twist

DA. To this end, note that vanishing of the Diagram 4 in Fig. 1 is a result of an exact

cancellation between IR and UV divergent integrals. Upon introducing a scale which

regulates one singularity, the other one will appear as a 1/w pole. Schematically

B1(w; u, v)Diagram−4 =
CF

4β0

([
1

w

]

UV

−
[

1

w

]

IR

)
. (2.27)

In addition to renormalizing Diagram 4, ultraviolet subtraction removes the 1/w pole of

Diagram 3 in Fig. 1.

Having performed the UV renormalization the remaining 1/w singularities from Dia-

grams 1, 2 and 4 are removed upon performing IR factorization. The counter-term which

is to be subtracted from the DA φ(2) and added to the coefficient function B1(w; u, v) is

B1(w; u, v)c.t. =
CF

2β0

K(u, v) + O(w)

w
(2.28)

where K(u, v) is obtained as the limit at w → 0 of the expression in the curly brackets in

Eq. (2.22) and adding the IR–pole contribution in Eq. (2.27):

K(u, v) ≡
[
v

u

(
1 +

1

u − v

)
θ(u > v) +

1 − v

1 − u

(
1 +

1

v − u

)
θ(u < v)

]

+

. (2.29)

K(u, v) can easily be identified as the leading–order Brodsky–Lepage kernel [1, 2] control-

ling the µ2
F–evolution of the pion DA φπ(u; µ2

F ):

dφπ(v; µ2
F )

d lnµ2
F

=
CFαs

2π

∫ 1

0

du K(u, v) φπ(u; µ2
F ) . (2.30)

The terms O(w) in Eq. (2.28) correspond to scheme–dependent higher–order contributions

to the Brodsky–Lepage evolution kernel. In MS–like schemes the kernel has an expansion

in αs with a finite radius of convergence, see [19] for explicit expressions in the large–β0

limit. In other words in such schemes the infrared counter-term is free of Borel singularities.

To summarize, the subtraction of logarithmic UV and IR divergences removes the 1/w

singularity in the Borel transformed coefficient functions in much the same way as poles

1/(d−4) are subtracted in renormalized amplitudes when using dimensional regularization.

For the subsequent discussion it is important that in MS-like schemes the subtracted

terms are analytic functions of the Borel variable w and do not influence the structure of
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singularities of Bi at w > 0 which we are going to address now. For this reason we can

work with non-subtracted amplitudes in what follows.

First, we note the presence of a Borel singularity at w = 1/2 in the last term in

Eq. (2.22) which comes from the self-energy insertion in the Wilson line and reflects a

linear divergence in the UV region (UV renormalon). Such singularities are well–known in

the context of the heavy–quark effective theory [32] in which case they reflect ambiguities

in the non-perturbative definition of the heavy–quark mass [33, 32]. In our case, this

singularity is an artifact of choosing an oversimplified “exclusive process” in Eq. (2.1)

where a dynamical quark propagating between the points x1 and x2 is replaced by a path–

ordered exponential. It has nothing to do with the twist expansion and will not appear

in realistic physics applications. Therefore we will not consider this singularity further in

this paper.

The remaining singularities at positive integer w0 = 1, 2, . . . have IR origin and are

called IR renormalons. They obstruct the Borel integration in Eq. (2.21) and render

the sum of perturbation theory ambiguous to power accuracy ∼ (Λ2∆2)w0 . Hence we

concentrate on the IR renormalon with w0 = 1 which is the closest one to the origin and

the only one relevant for the calculation to the twist–four accuracy ∼ ∆2. For definiteness,

we choose the residue at the w = 1 singularity times π = 3.14 . . . as a measure of the

ambiguity of the Borel integral (2.21), i.e.

δIR

{
f(w)

1 − w

}
= −πf(w = 1) . (2.31)

Using Eq. (2.22) and Eq. (2.23) we obtain the ambiguity of the twist–two approximation

for the amplitudes G1 and G2

δIR {C1 ⊗ φπ} = −cΛ2∆2

∫ 1

0

dv φπ(v)

{
1

v
f (1)

(
1−u

v

)
θ(v > u) +

1

v̄
f (1)

(
1− ū

v̄

)
θ(v < u)

}

= −cΛ2∆2

∫ 1

0

dv φπ(v)
{ 1

v2

[
u + (v − u) ln

(
1 − u

v

) ]
θ(v > u)

+
1

v̄2

[
ū + (u − v) ln

(
1 − ū

v̄

) ]
θ(v < u)

}
,

δIR {C2 ⊗ φπ} = cΛ2∆2

∫ 1

0

dv φπ(v)

{(u

v

)2

θ(v > u) +
( ū

v̄

)2

θ(v < u)

}
, (2.32)

respectively, where we used Eq. (2.25) and where the overall normalization

c ≡ πCF

8β0
e

5
3 ≃ 0.7 (2.33)

corresponds to the convention in Eq. (2.31). The given number is for NF = 3. We are going

to demonstrate that this ambiguity is exactly canceled by the UV renormalon ambiguity

in the twist–four DA, which is reminiscent of quadratic UV divergence of the contributing

operators.
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−z  z vz  vz z −z

=

Figure 2: One–loop diagrams appearing in the non-local matrix element of quark–antiquark–

gluon light–cone operators. The upper double line represents a path–ordered exponential (a

Wilson line) along the light cone connecting between −z and vz and between vz and z while the

dashed line represents a dressed gluon (dressing is equivalent to summing over any number of

fermion–loops insertions in the large–Nf limit).

2.3 UV renormalons in higher–twist operators and cancellation

of ambiguities

In order to reveal the UV–renormalon divergence in the twist–four DA we consider the

perturbative series generated by running–coupling effects in the matrix element of a generic

quark–antiquark–gluon operator

d̄(−z)[−z, vz]ΓgGαβ(vz)[vz, z]u(z), (2.34)

sandwiched between quarks states with momenta q1 and q2 with q2
i 6= 0. Here Γ stands

for an arbitrary Dirac structure and z2 = 0. The relevant diagrams are shown in Fig. 2.

One obtains ‖

〈
q2

∣∣d̄(−z)ΓgGαβ(vz)u(z)
∣∣ q1

〉
= e−i(q1+q2)z

(
gλαgµ

β − gλβg
µ
α

) 4π2CF

β0

∫ ∞

0

dw e
5
3
w(−Λ2)w

×
[
d̄q2γµγρΓuq1 Iλρ(q2, (1 + v)z) − d̄q2Γγργµuq1 Iλρ(q1, (1 − v)z)

]
, (2.35)

where d̄q2 and uq1 are quark spinors and Iλρ(q, z) stands for the momentum integral

Iλρ(q, z) =

∫
d4k

(2π)4

kλ(q + k)ρ

(k2)(1+w) (q + k)2
e−ikz (2.36)

which is UV divergent at w = 1. Performing the integral and extracting the w = 1 pole,

we obtain:

Iλρ(q, z)
∣∣
w=1

=
−i

32π2(1 − w)

∫ 1

0

da a eiqz(1−a)

×
[
iqλzρ(1 − a) − iqρzλa + gλρ +

1

2
a(1 − a)q2zλzρ

]
. (2.37)

‖In the following for brevity we do not show the Wilson lines in the non-local operators.
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As a consequence of the w = 1 singularity the Borel integral in Eq. (2.35) is ill–defined.

Using Eq. (2.31) to quantify the ambiguity and specifying for the relevant Dirac and

Lorentz structures the final result can be brought to a form of operator relations (cf.

[17, 23])

δUV

{
zµ d̄(−z)γνγ5gGµν(vz)u(z)

}
= 2i cΛ2

∫ 1

0

da (1 − a)
[
d̄(−y)z/γ5u(z) − d̄(−z)z/γ5u(ỹ)

]
,

δUV

{
zµ d̄(−z)z/γ5gGµρ(vz)u(z)

}
= −2i cΛ2 zρ

∫ 1

0

da a
[
d̄(−y)z/γ5u(z) − d̄(−z)z/γ5u(ỹ)

]
,

δUV

{
zµd̄(−z)γνigG̃µν(vz)u(z)

}
= 2i cΛ2

∫ 1

0

da (1 + a)
[
d̄(−y)z/γ5u(z) + d̄(−z)z/γ5u(ỹ)

]
,

δUV

{
zµd̄(−z)z/igG̃µρ(vz)u(z)

}
= 2i cΛ2zρ

∫ 1

0

da a
[
d̄(−y)z/γ5u(z) + d̄(−z)z/γ5u(ỹ)

]
,

(2.38)

where y ≡ z(1 − (1 + v)(1 − a)) and ỹ ≡ z(1 − (1 − v)(1 − a)), and c is the constant

defined in Eq. (2.33). In order to arrive at these expressions we performed integration by

parts over a in order to remove factors of q · z and then converted the results into operator

relations in configuration space. The relations in Eq. (2.38) can be viewed as the mixing

under renormalization between the twist–four quark–gluon–antiquark operators and the

twist–two quark–antiquark operator and the first two of them were derived in [23]. In a

similar manner — see Appendix B — we obtain one more operator relation

δUV

{
d̄(−z)zβgDαGαβ(vz)z/γ5u(z)

}
=

= −4icΛ2

∫ 1

0

da a
d

da

[
1

1 + v
d̄(−y)z/γ5u(z) +

1

1 − v
d̄(−z)z/γ5u(ỹ)

]
. (2.39)

Taking matrix elements of Eqs. (2.38) and (2.39) between the vacuum and the pion state

we derive UV ambiguities of three–particle pion DA defined in Sect. 2.1 in terms of the

leading–twist pion DA:

δUV {Φ⊥(α1, α2, α3)} = cΛ2

[
φπ(α1)

1 − α1
− φπ(α2)

1 − α2

]
,

δUV

{
Φ‖(α1, α2, α3)

}
= 2cΛ2

[
α2φπ(α1)

(1 − α1)2
− α1φπ(α2)

(1 − α2)2

]
,

δUV {Ψ⊥(α1, α2, α3)} = cΛ2

[
φπ(α1)

1 − α1

+
φπ(α2)

1 − α2

]
,

δUV

{
Ψ‖(α1, α2, α3)

}
= −2cΛ2

[
α2φπ(α1)

(1 − α1)2
+

α1φπ(α2)

(1 − α2)2

]
,

δUV {Ξπ(α1, α2, α3)} = −4cΛ2

[
α2 φπ(α1)

1 − α1
− α1 φπ(α2)

1 − α2

]
, (2.40)
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where we used the symmetry property φπ(α) = φπ(1−α) to arrive at the given expressions.

Last but not least, we use EOM in Eq. (2.12) to calculate the UV–renormalon ambiguity

in the two–particle twist–four pion DA φ
(4)
1,2 and find that it coincides identically with the

IR renormalon ambiguity of the twist–two result in Eq. (2.32) but has opposite sign. It

follows that the “structure functions” Gi are unambiguous to the twist–four accuracy

δ {G1} = δIR {C1 ⊗ φπ} + ∆2δUV

{
φ

(4)
1

}
= 0 ,

δ {G2} = δIR {C2 ⊗ φπ} + ∆2δUV

{
φ

(4)
2

}
= 0 , (2.41)

as expected. For the cancellation to hold, it is important that both the leading–twist

coefficient functions and the matrix elements of higher–twist operators are calculated using

the same regularization and renormalization prescription. This can be seen as a consistency

check for the OPE analysis.

3 Renormalon model for twist–four DA of the pion

The UV–renormalon ambiguities in the twist–four DA should be viewed as indicative of

the size and the momentum–fraction dependence of “genuine” non-perturbative effects.

We define the renormalon model for twist–four DA of the pion by taking the functional

form of the corresponding UV–renormalon ambiguities, replacing the overall normalization

constant cΛ2 by a suitable non-perturbative parameter. The crucial observation is that al-

though the absolute normalization of the renormalon ambiguity in Eq. (2.31) is essentially

ad hoc, the relative normalization for the different DA in Eq. (2.40) is meaningful since the

running–coupling calculation satisfies all constraints imposed by Lorentz symmetry and

the EOM. Therefore, the renormalon model for the entire set of twist–four DA of the pion

has just one free parameter: the overall normalization. This parameter can be related to

the matrix element of the local operator

〈0|d̄γνigG̃µρu|π+(p)〉 =
1

3
fπδ2[pρgµν − pµgρν ] , δ2 ≃ 0.2 GeV2, (3.1)

where the number comes from QCD sum rules [34]. The UV–renormalon ambiguity of the

same matrix element is, on the other hand

δUV

{
〈0|d̄γνigG̃µρu|π+(p)〉

}
= 2fπcΛ2[pρgµν − pµgρν ] , (3.2)

so in Eq. (2.40) we replace

cΛ2 → 1

6
δ2 ≃ (180 MeV)2 (3.3)

and end up with the set of three–particle DA

Φ⊥(α1, α2, α3) =
δ2

6

[
φπ(α1)

1 − α1
− φπ(α2)

1 − α2

]
,

Φ‖(α1, α2, α3) =
δ2

3

[
α2φπ(α1)

(1 − α1)2
− α1φπ(α2)

(1 − α2)2

]
,
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Ψ⊥(α1, α2, α3) =
δ2

6

[
φπ(α1)

1 − α1
+

φπ(α2)

1 − α2

]
,

Ψ‖(α1, α2, α3) = −δ2

3

[
α2φπ(α1)

(1 − α1)2
+

α1φπ(α2)

(1 − α2)2

]
,

Ξπ(α1, α2, α3) = −2δ2

3

[
α2 φπ(α1)

1 − α1
− α1 φπ(α2)

1 − α2

]
. (3.4)

Note that we have made the same replacement in all five DA. It must be so because these

DA are all related — see Appendix B. Using the EOM, Eq. (3.4), (cf. Eq. (2.32)),

φ
(4)
1 (u) =

δ2

6

∫ 1

0

dv φπ(v)
{ 1

v2

[
u + (v − u) ln

(
1 − u

v

) ]
θ(v > u)

+
1

v̄2

[
ū + (u − v) ln

(
1 − ū

v̄

) ]
θ(v < u)

}
,

φ
(4)
2 (u) = −δ2

6

∫ 1

0

dv φπ(v)

{(u

v

)2

θ(v > u) +
( ū

v̄

)2

θ(v < u)

}
(3.5)

which completes the calculation.

The given expressions are valid for an arbitrary leading–twist pion DA φπ(u). For

practical applications it may be worthwhile to choose the asymptotic expression

φπ(u) = 6u(1 − u) (3.6)

which is known to provide one with a reasonable accuracy [16]. With this choice

Φ⊥(α1, α2, α3) = δ2[α1 − α2] ,

Φ‖(α1, α2, α3) = 2δ2α1α2

[
1

1 − α1

− 1

1 − α2

]
,

Ψ⊥(α1, α2, α3) = δ2 [α1 + α2] ,

Ψ‖(α1, α2, α3) = −2δ2α1α2

[
1

1 − α1
+

1

1 − α2

]
,

Ξπ(α1, α2, α3) = 0 . (3.7)

Note that Ξπ(α1, α2, α3) is vanishing in this approximation, but in general it is not zero

and has to be taken into account if corrections to the asymptotic pion DA are included.

For the two particle DA one gets [23]

φ
(4)
1 (u) = δ2

{
ū
[
ln(ū) − Li2(ū)

]
+ u

[
ln(u) − Li2(u)

]
− uū +

π2

6

}
,

φ
(4)
2 (u) = δ2

{
u2 ln(u) + ū2 ln(ū) + uū

}
, (3.8)

where Lia(x) ≡ ∑∞
n=1 xn/na. In the next section we shall compare these expressions with

the model of [6, 13] based on conformal expansion.
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4 Conformal expansion

4.1 General formalism

For fields “living” on the light–cone the conformal transformations reduce to the three–

parameter group SL(2, R) with the algebra of hyperbolic rotations, see [5] for a review.

The conformal transformations for quantum fields are governed by their conformal spin

which is defined as

j =
1

2
(s + ℓ) , (4.1)

where ℓ is the scaling dimension, ℓ = 3/2 for quarks and ℓ = 1 for gluons, and s is the spin

projection on the light cone. For Dirac spinors (quarks) the different spin components can

be separated with the help of projection operators q± = Π±q where

Π+ =
1

2
γ−γ+, Π− =

1

2
γ+γ−, Π+ + Π− = 1 . (4.2)

The q+ and q− fields have spin projections s = 1/2 and s = −1/2, and hence different

conformal spins j = 1 and j = 1/2, respectively. Similarly, the gluon field strength has to

be decomposed in different spin components: G+⊥ has spin projection s = 1 and conformal

spin j = 3/2; G⊥⊥ and G+− both have s = 0 and j = 1; finally G−⊥ has s = −1 and

j = 1/2.

Conformal expansion of DA presents an example of the classical problem of spin sum-

mation in quantum mechanics, with the only difference being that the total conformal spin

J of the multi-parton system is always larger or equal to the sum of spins of constituents:

J = Jmin + N , Jmin = j1 + . . . + jk . (4.3)

The integer number N can be identified with the total number of covariant derivatives D+

in the corresponding local operator. Adding a derivative increases the conformal spin by

one unit and does not change the twist of the operator, defined as dimension minus spin.

The generic conformal expansion for two–particle DA has the form [36]

φ(u) =
Γ(2j1 + 2j2)

Γ(2j1)Γ(2j2)
u2j1−1 (1 − u)2j2−1

∞∑

N=0

cJ P
(2j1−1,2j2−1)
N (2u − 1) , (4.4)

where P
(α,β)
N [x] are Jacobi polynomials [35], u and 1−u stand for the momentum fractions

of the parton with spin j1 and j2, respectively, and the coefficients cJ correspond to the

contribution of the total conformal spin J = j1 + j2 + N . The factor in front of the sum

is called the asymptotic distribution amplitude.

For three partons, a generic DA can be written as a double sum

Φ(αi) =
Γ(2j1 + 2j2 + 2j3)

Γ(2j1)Γ(2j2)Γ(2j3)
α2j1−1

1 α2j2−1
2 α2j3−1

3

∞∑

N=0

N∑

n=0

CJj Y
(12)3
Jj (αi) , (4.5)

where [37, 38]

Y
(12)3
Jj (αi) = (1 − α3)

j−j1−j2 P
(2j3−1,2j−1)
J−j−j3

[1 − 2α3] P
(2j1−1,2j2−1)
j−j1−j2

[
α2 − α1

1 − α3

]
(4.6)
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are the basis functions [5] corresponding to the total conformal spin J = j1+j2+j3+N and

the fixed conformal spin of the (1, 2)–parton pair j = j1 + j2 +n. The functions Y
(12)3
Jj (αi)

form a complete basis and are mutually orthogonal with respect to the conformal scalar

product: ∫ 1

0

Dαi α2j1−1
1 α2j2−1

2 α2j3−1
3 Y

(12)3
Jj (αi)Y

(12)3
J ′j′ (αi) = NJj δJJ ′ δjj′ , (4.7)

where

NJj =
Γ(j+j1−j2)Γ(j−j1+j2)

Γ(j−j1−j2+1)Γ(j+j1+j2−1)(2j−1)

Γ(J−j+j3)Γ(J+j−j3)

Γ(J−j−j3+1)Γ(J+j+j3−1)(2J−1)
.

(4.8)

Using this orthogonality property the coefficients in the expansion of any DA can be

obtained by projection:

CJj =
Γ(2j1)Γ(2j2)Γ(2j3)

Γ(2j1 + 2j2 + 2j3)

1

NJj

∫ 1

0

Dαi Φ(αi) Y
(12)3
Jj (αi). (4.9)

The use of conformal symmetry is that, for a given twist, only the coefficients CJ,j with

j1 + j2 ≤ j ≤ J − j3 in Eq. (4.5) and cJ in Eq. (4.4) for the same value of the total

spin J can be related by EOM and/or renormalization group evolution to the leading

logarithmic accuracy. It follows that any parametrization of DA based on a truncated

conformal expansion is consistent with the EOM and is preserved by evolution.

4.2 The two lowest orders

The relevant light–cone projections of the twist–four light–cone operators corresponding

to the three–particle pion DA are

H↓↑⊥ = d̄−(−z)γ⊥γ5gG⊥+(vz)u+(z) ,

O‖ = d̄+(−z)γ+γ5gG+−(vz)u+(z) ,

Õ‖ = d̄+(−z)γ+igG̃+−(vz)u+(z) ,

D = d̄+(−z)γ+γ5gDµGµ+(vz)u+(z) . (4.10)

In the first operator jd = 1
2
, ju = 1 and jg = 3/2 while in the second and the third operators

jd = 1, ju = 1 and jg = 1. In all these cases the sum is the same, J = jd + ju + jg = 3.

This is the minimum conformal spin corresponding to the asymptotic DA. In the fourth

operator jd = ju = 1 but owing to the derivative jg = 2, making the minimal conformal

spin 4. In addition, the G–parity demands that DA Φ‖ and Ξπ are antisymmetric under

the interchange of α1 ↔ α2. This implies that the matrix elements of the operators with

minimal conformal spin vanish identically in these two cases and the conformal expansion

for Φ‖ and Ξπ starts one unit of spin higher at J = 4 and J = 5, respectively.
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Figure 3: The two–particle twist–four DA φ
(4)
1 (left) and −φ

(4)
2 (right) based on the renormalon

model (full line) and model of Ref. [6] (crosses) which uses the first two orders in the conformal

expansion with the sum–rule estimate ǫ = 0.5. The normalization is chosen to be the same δ = 1.

The model developed in [6, 13] corresponds to taking into account contributions of the

lowest two conformal spins J = 3 and J = 4. To this accuracy

Φ⊥(α1, α2, α3) = 10 δ2 (α1 − α2)α
2
3 [1 + 6 ǫ (1 − 2α3)] ,

Φ‖(α1, α2, α3) = 120ǫδ2α1α2α3(α1 − α2) ,

Ψ⊥(α1, α2, α3) = 10δ2α2
3(1 − α3) [1 + 6ǫ(1 − 2α3)] ,

Ψ‖(α1, α2, α3) = −40δ2α1α2α3 [1 + 3ǫ(1 − 3α3)] ,

Ξπ(α1, α2, α3) = 0 . (4.11)

The terms ∼ δ2 are J = 3 and define the asymptotic DA while contributions ∼ ǫδ2

correspond to J = 4. For each spin J = 3 and J = 4 there exists only one independent

non-perturbative parameter and from conformal symmetry it follows that they have to

have an autonomous scale dependence. This can be checked by a direct computation.

We have defined an alternative, renormalon model of higher–twist DA in Sect. 3 by

requiring that it reproduces the correct normalization in Eq. (3.1). It is now a matter of a

simple algebra to expand the renormalon model in Eq. (3.4) in contributions of increasing

conformal spin (4.5) and compare with Eq. (4.11). We find that the structure in Eq. (4.11)

is reproduced and the parameter ǫ proves to be independent on the choice of the leading–

twist pion DA. One obtains

ǫ|Ren = 7/12 ≃ 0.58 (4.12)

which is comfortably close to the QCD sum–rule estimate

ǫ|SR ≃ 0.5 ± 0.1 [6] . (4.13)

It is important that the conformal expansion of all four DA in Eq. (4.5) yields the same

value of ǫ, which illustrates that the renormalon model is consistent with the EOM. Note
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that Ξπ(α1, α2, α3) = 0 to this accuracy; as mentioned above, its conformal expansion

starts with J = 5.

The two–particle twist–four DA of Eq. (2.3) are related to the three–particle ones

through the EOM, Eq. (2.12). Thus, when truncated to order J = 4 in the conformal

expansion, the renormalon model essentially coincides with the model of [6], with the sole

difference being the replacement of the sum–rule estimate for ǫ in Eq. (4.13), by that in

Eq. (4.12). However, in the renormalon model there is a priori no need to truncate the

expansion at J = 4: Eq. (3.8) represents the sum of all conformal spins. Figure 3

compares the two–particle DA between the model of [6] and that of Eq. (3.8). In general

the two models are close, especially for φ
(4)
2 . We note, however, a qualitative difference in

the end–point behavior. This is the subject of the next section.

4.3 Higher orders and the end–point behavior

4.3.1 Three–particle distributions

Let us start with the three–particle functions. The difference between the models in

Eq. (3.4) and Eq. (4.11) corresponds to the contribution of higher conformal spins J ≥ 5.

Most striking is that the end–point behavior of the renormalon model expressions for

small gluon momenta α3 ≡ αg → 0 is Φ ∼ const for all five three–particle distributions

in question whereas for each order in the conformal expansion Φ‖, Ψ‖ ∼ α1
3, Φ⊥, Ψ⊥ ∼ α2

3

and Ξπ ∼ α3
3.

The difference indicates that the conformal expansion is not converging. Indeed, as-

suming the asymptotic leading–twist pion DA in Eq. (3.6) we derive∗∗ the following formal

expansion of the DA in Eq. (3.7) in contributions of the conformal spin J :

{
Ψ⊥(αi)

Φ⊥(αi)

}
= δ2

{
α1 + α2

α1 − α2

}
α2

3

∞∑

J=3

(2J − 1)(J + 1)

J − 1
P

(2,2)
J−3 [1 − 2α3] ,

{
Ψ‖(αi)

Φ‖(αi)

}
= −2δ2 α1α2α3

∞∑

J=3

J−1∑

j=2

{
1 + (−1)j

1 − (−1)j

}
(2J − 1)(2j − 1)(J + j − 1)

(J − 1)J(j − 1)

×(1 − α3)
j−2 P

(1,2j−1)
J−j−1 [1 − 2α3] P

(1,1)
j−2

[
α2 − α1

1 − α3

]
. (4.14)

Taken literally the expansions in Eq. (4.14) are badly divergent for any fixed value of the

gluon momentum fraction α3 and have to be understood as distributions in mathematical

sense, i.e. they have to be convoluted with a suitable test function. Note that for the

“transverse” distributions the double sum disappears since the only non-vanishing con-

tributions come from j = 3/2 (n = 0) terms, cf. Eq. (4.5). Owing to G–parity the DA

Ψ⊥, Ψ‖ are symmetric and Φ⊥, Φ‖ are antisymmetric under replacement α1 ↔ α2. This

symmetry is realized differently for the transverse and the longitudinal components: for

∗∗To project the different DA onto the basis one uses the coefficients of Eq. (4.9). The integration over α1

and α2 separates into a product of two independent integrals upon changing variables to τ = 2(α1+α2)−1

and σ = (α2 − α1)/(α1 + α2) with both integrals ranging from −1 to 1.
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Φ⊥, Ψ⊥ it is associated with the explicit overall factor α1 ±α2 while the expansion itself is

symmetric, depending only on α1 +α2 = 1−α3. For Φ‖, Ψ‖, on the other hand, the proper

symmetry is obtained by the selection of odd/even values of j and taking into account

that P
(1,1)
j−2 [x] = (−1)j P

(1,1)
j−2 [−x].

Absence of convergence may be an artifact of the single–dressed–gluon approximation.

As well known [17], this accuracy is sufficient to identify the position of the singularity

w = 1 but does not distinguish between singularities of different strength so that all

renormalons appear as simple poles††. In the full theory they will be converted to branch

points and instead of a pole at w = 1 for a given J there will be a sum of terms with

different singular behavior

1

1 − w
−→

N∑

h=0

rJ,h

(1 − w)1−γ
(J,h)
0 /β0

, (4.15)

where β0 is defined in Eq. (2.19) and γ
(J,h)
0 are the eigenvalues of the leading–order anoma-

lous dimension matrix γ
(J)
0 for operators OJ(µ2) with conformal spin J :

µ2OJ(µ2)

dµ2
= −γ(J) OJ (µ2), γ(J) = γ

(J)
0 αs/π + · · · . (4.16)

For large spins the anomalous dimensions are dominated by soft–gluon emission and for

quark–antiquark–gluon operators one expects [38]

CF ln J ≤ γ
(J,h)
0 ≤ Nc ln J , (4.17)

where the prefactors are nothing but color charges corresponding to the possible classical

geometries of color flow. The logarithmic rise of anomalous dimensions translates to the

suppression of contributions of higher conformal spin operators at large scales µ2
F

(
αs(µ

2
F )

αs(µ2
0)

)const·lnJ

∼ J−const·ln ln µ2
F

in the same way as higher–spin contributions get suppressed for the leading–twist DA [1, 2].

This suppression will improve the expansion in Eq. (4.14) and make it convergent at very

large scales. In this sense, the renormalon model in Eq. (3.4), Eq. (3.7) can be regarded

as representing a worst–case scenario for the convergence of the conformal expansion.

4.3.2 Two–particle distributions

The large higher–spin contributions to three–particle pion DA in the soft–gluon region

α3 → 0 do not necessarily yield large corrections to physical observables because the gluon

momentum fraction is always integrated over. Two–particle DA are more directly relevant.

††This corresponds to picking up the leading quadratic divergence of the twist–four operators and

ignoring possible logarithmic enhancement/suppression. Also note that we do not show in Eq. (4.15)

the term ∼ β1/β2
0 which usually appears in a sum with γ

(J,h)
0 /β0 because we tacitly imply using the

scheme–invariant Borel transform where u is conjugate to ln(µ2/Λ2) and not to 1/(αs(µ)β0/π).
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Figure 4: The first few orders (partial sums) in the conformal expansion of the renormalon

model for the two–particle twist–four DA φ
(4)
1 (left), −φ

(4)
2 (middle) and φ

(4)
1 + φ

(4)
2 (right). The

thick black line represents Eq. (3.8).

We find that φ
(4)
1 (u) and φ

(4)
2 (u) in Eq. (3.8) in the renormalon model have the asymptotic

behavior in the end–point regions ∼ u(1 − u) and ∼ u2(1 − u)2 ln u(1 − u), respectively,

which is to be compared with the ∼ u2(1 − u)2 behavior of the leading conformal spin

contributions (asymptotic DA) in both cases [6].

The expansions we obtained for the three–particle DA can readily be inserted into

Eq. (2.12) to yield the conformal expansions of the two–particle twist–four amplitudes. In

the case of φ
(4)
2 the integration can easily be performed with the result

φ
(4)
2 (u) = −4δ2 u2(1 − u)2

∞∑

J=3,5,7,...

2J − 1

J(J − 1)2(J − 2)
P

(2,2)
J−3 (2u − 1). (4.18)

Away from the end–points one can use the asymptotic expansion [35]

P (α,β)
n (cos θ) =

cos{[n + (α + β + 1)/2]θ − (2α + 1)π/4}√
πn [sin(θ/2)]α+1/2[cos(θ/2)]β+1/2

+ O(n−3/2) (4.19)

to see that Eq. (4.18) is convergent. It is not converging uniformly at the end points, how-

ever, which explains the logarithmic enhancement compared to the asymptotic DA (and

the model of [6]). As noted in [6], the second derivative ‡‡ (d2/du2)φ
(4)
2 (u) corresponds to

the non-local light–cone operator d̄(−z)γ−γ5 u(z) = d̄−(−z)γ−γ5 u−(z) with both quarks

having spin projection s = −1/2 alias jd̄ = ju = 1/2. It follows that the conformal expan-

sion of (d2/du2)φ
(4)
2 (u) goes over Legendre polynomials, or P

(0,0)
J−1 (2u − 1). This result is

consistent with Eq. (4.18) since

d2

du2

[
u2(1 − u)2P

(2,2)
J−3 (2u − 1)

]
= (J − 2)(J − 1) P

(0,0)
J−1 (2u − 1) . (4.20)

For φ
(4)
1 a similar, closed–form all–order expression is not available. However, it is

straightforward to compute the conformal expansion order by order in J , cf. Eq. (1.2):

φ
(4)
1 (u) = δ2

{5

2

[
u2 ū2

]

J=3
+

7

24

[
uū (13 uū + 2)

‡‡In notations of [6] (d2/du2)φ
(4)
2 (u) = (d/du)g2(u).
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Figure 5: Subsequent approximations by the conformal expansion truncated at spin Jmax =

3, 4, . . . for the integrals I0 (left panel) and I1 (right panel) defined in Eq. (4.22) for φ
(4)
1 (u)

(diamonds), φ
(4)
2 (u) (circles) and φ

(4)
1 (u) + φ

(4)
2 (u) (crosses). The results are all normalized to

the exact value obtained using Eq. (3.8). Note the different scales on the vertical axis.

+ 2 (6 u2 + 3 u + 1) ū3 ln(ū) + 2 (6 ū2 + 3 ū + 1) u3ln(u)
]

J=4

+
[ 1

40
uū (140 u2ū2 + 243 uū + 42) +

21

20
(6 u2 + 3 u + 1) ū3 ln(ū)

+
21

20
(6 ū2 + 3 ū + 1) u3 ln(u)

]

J=5
+ · · ·

}
. (4.21)

Note that each term in the conformal expansion is of the order of u2(1 − u)2 near the

end–points but the expansion is not converging uniformly so that the ∼ u(1−u) behavior

emerges in the sum of all spins.

The first few orders (partial sums) in the conformal expansion of the renormalon model

are compared to the full result in Fig. 4 for the three functions: φ
(4)
1 , φ

(4)
2 and φ

(4)
1 + φ

(4)
2 .

The convergence is worst for the latter because of partial cancellation of the leading terms.

Absence of uniform convergence at the end points means that the limit u → 0, 1 and the

summation over conformal spins cannot be interchanged; the partial sums
∑Jmax

J=3 diverge

as φ
(4)
1 (u) ∼ (δ2/2)u2(1 − u)2J2

max and φ
(4)
2 (u) ∼ −2δ2u2(1 − u)2 ln Jmax, respectively.

Last but not least, we show in Fig. 5 the subsequent approximations by the conformal

expansion truncated at spin Jmax = 3, 4, . . . for the typical integrals that one encounters

in the description of hard exclusive processes in QCD:

I0 =

∫ 1

0

du

u
φ

(4)
i (u) ,

I1 =

∫ 1

0

du

u
ln(1/u) φ

(4)
i (u) . (4.22)
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The difference between the renormalon model and the model of [6] (Jmax = 4) is of order

10-30% for the first integral and somewhat larger for the second one.

5 Renormalon model for twist–four DA of the rho

A useful feature of the renormalon approach is its universality: with minor modifications

it can be applied to DA of vector mesons as well. For definiteness we consider here

ρ+ meson. One difference to the pion case is that because of spin the number of DA

proliferates significantly. We will conform to the definitions and notations of Ref. [12]

and in particular distinguish between chiral–even and chiral–odd DA corresponding to the

operators with odd/even number of γ–matrices, respectively, between the quark fields.

A second difference is that because of a sizable ρ–meson mass the twist–four ρ–meson

DA receive the Wandzura–Wilczek–type contributions of the operators with geometric

twist–two given in terms of the leading–twist ρ–meson DA with the same (longitudinal

or transverse) polarization, and the operators of geometric twist–three that are expressed

in terms of twist–three DA with the opposite polarization †. The Wandzura–Wilczek

contributions to the vector–meson DA have been calculated in Refs. [11, 12]. They have

to be added to the “genuine” twist–four contributions considered here. In this section

we collect the necessary definitions and summarize the results; see Appendix C for more

details.

In what follows Pµ stands for the ρ–meson momentum, P 2 = m2
ρ, and e

(λ)
µ is the

polarization vector e · P = 0. We use the notation

pµ = Pµ − m2
ρ

2p · z zµ, p2 = 0,

and define the transverse polarization vector by

e⊥µ = eµ − e · z
p · z

(
pµ − m2

ρ

2p · z zµ

)
.

We will also use the projector onto the directions orthogonal to p and z:

g⊥µν = gµν −
1

pz
(pµzν + pνzµ) .

5.1 Chiral–even distribution amplitudes

5.1.1 Definitions

We start by quoting the necessary definitions from Ref. [12] and in this section consider

matrix elements involving an odd number of γ matrices, which we refer to as chiral-even

†The mismatch is due to different twist definition: “dimension minus spin projection” (collinear twist)

for DA vs. “dimension minus spin” (geometric twist) for operators, see [11, 5] for details.

26



in what follows. For the vector operator the light–cone expansion to twist–four accuracy

reads:

〈0|
[
d̄(−x)γµu(x)

]
µ2

F

|ρ+(P, λ)〉 = fρmρ

{
e(λ)x

Px
Pµ

∫ 1

0

du e−iξPx
[
φ‖(u) +

m2
ρx

2

4
A(u)

]

+

(
e(λ)

µ − Pµ
e(λ)x

Px

) ∫ 1

0

du e−iξPx
B(u)

− 1

2
xµ

e(λ)x

(Px)2
m2

ρ

∫ 1

0

du e−iξPx
C(u)

}
. (5.1)

We do not consider the axial–vector operator because its light–cone expansion only includes

contributions of twist three, five, etc., that are not relevant in the present context. For

brevity, in this section we do not show gauge factors between the quark and the antiquark

fields; we also use the short-hand notation

ξ = 2u − 1.

The vector decay constant fρ is defined, as usual, as

〈0|d̄(0)γµu(0)|ρ+(P, λ)〉 = fρmρe
(λ)
µ . (5.2)

The expansion in (5.1) involves three Lorentz invariant amplitudes which we have to

interpret in terms of meson DA. Definitions of the latter involve non-local operators at

strictly light–like separations and can most conveniently be written for longitudinal and

transverse meson polarizations separately. Following [11, 12], we define chiral–even two–

particle DA of the ρ+ meson as

〈0|
[
d̄(−z)γµu(z)

]
µ2

F

|ρ+(P, λ)〉 = fρmρ

[
pµ

e(λ)z

pz

∫ 1

0

du e−iξpzφ‖(u, µ2
F )

+ e
(λ)
⊥µ

∫ 1

0

du e−iξpzg
(v)
⊥ (u, µ2

F ) − 1

2
zµ

e(λ)z

(pz)2
m2

ρ

∫ 1

0

du e−iξpzg3(u, µ2
F )

]
. (5.3)

The distribution amplitude φ‖ is of twist two, g
(v)
⊥ of twist three and g3 of twist four. All

three functions φ = {φ‖, g(v)
⊥ , g3} are normalized as

∫ 1

0

du φ(u) = 1. (5.4)

This can be checked by comparing the two sides of the defining equations in the limit

zµ → 0 and using the EOM.

Comparing (5.3) with the light–cone expansion in (5.1) one finds [12]

B(u) = g
(v)
⊥ (u),

C(u) = g3(u) + φ‖(u) − 2g
(v)
⊥ (u) . (5.5)
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The remaining invariant amplitude A(u) accounts for the transverse momentum distribu-

tion in the valence component of the wave function. We end up with two two–particle

twist–four DA of the longitudinally polarized ρ–meson, A(u) and g3(u) which are coun-

terparts of the pion DA φ1 and φ2 (a precise correspondence will be given below).

Three–particle chiral–even distributions are rather numerous and can be defined by

the following matrix elements:

〈0|d̄(−z)gG̃µν(vz)γαγ5u(z)|ρ+(P, λ)〉 = fρmρpα[pνe
(λ)
⊥µ − pµe

(λ)
⊥ν ]A(v, pz)

+ fρm
3
ρ

e(λ)z

pz
[pµg⊥αν − pνg

⊥
αµ]Φ̃(v, pz)

+ fρm
3
ρ

e(λ)z

(pz)2
pα[pµzν − pνzµ]Ψ̃(v, pz), (5.6)

〈0|d̄(−z)gGµν(vz)iγαu(z)|ρ+(P, λ)〉 = fρmρpα[pνe
(λ)
⊥µ − pµe

(λ)
⊥ν ]V(v, pz)

+ fρm
3
ρ

e(λ)z

pz
[pµg⊥αν − pνg

⊥
αµ]Φ(v, pz)

+ fρm
3
ρ

e(λ)z

(pz)2
pα[pµzν − pνzµ]Ψ(v, pz), (5.7)

where

A(v, pz) =

∫
Dαie

−ipz(αu−αd+vαg)A(αi), (5.8)

etc., and αi is the set of three momentum fractions {α1, α2, α3} = {αu, αd, αg}. The

integration measure is defined in Eq. (2.11).

Similarly to the pion case, all higher–twist two–particle DA of the ρ–meson do not

present genuine independent degrees of freedom but can be expressed in terms of three–

particle DA. The corresponding relations [12] are given in Eq. (C.1) below.

In addition, we introduce a new twist–four DA

〈
0
∣∣d̄(−z)γµgDαGαβ(vz)u(z)

∣∣ ρ+(P, λ)
〉

= fρm
3
ρ pµpβ

e(λ)z

pz
Ξρ(v, pz) , (5.9)

which can be viewed, equivalently, either as a three–particle quark–antiquark–gluon DA,

or as a special case of a four-quark DA with the quark-antiquark pair in a color–octet

state and at the same space point, cf. Eq. (2.16).

5.1.2 Renormalon model and comparison with Ref. [12]

The renormalon model for twist–four DA of the longitudinally polarized ρ–meson can

most simply be derived from the UV–renormalon ambiguity in twist–four operators. The

calculation is very similar to that in the pion case. One obtains in the single–dressed–gluon

approximation

δUV

{
zµ d̄(−z)γνγ5gG̃µν(vz)u(z)

}
= 2 cΛ2

∫ 1

0

da(1 + a)
[
d̄(−y)z/u(z) + d̄(−z)z/u(ỹ)

]
,
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δUV

{
zµ d̄(−z)z/γ5gG̃µρ(vz)u(z)

}
= 2 cΛ2 zρ

∫ 1

0

da a
[
d̄(−y)z/u(z) + d̄(−z)z/u(ỹ)

]
,

δUV

{
zµ d̄(−z)γνigGµν(vz)u(z)

}
= −2 cΛ2

∫ 1

0

da(1 − a)
[
d̄(−y)z/u(z) − d̄(−z)z/u(ỹ)

]
,

δUV

{
zµ d̄(−z)z/igGµρ(vz)u(z)

}
= 2 cΛ2 zρ

∫ 1

0

da a
[
d̄(−y)z/u(z) − d̄(−z)z/u(ỹ)

]
,

δUV

{
zβ d̄(−z)gDαGαβ(vz)z/u(z)

}
= −4icΛ2

∫ 1

0

da a
d

da

[ 1

1 + v
d̄(−y)z/u(z)

+
1

1 − v
d̄(−z)z/u(ỹ)

]
, (5.10)

where c is given in Eq. (2.33) and the variables y and ỹ are defined below Eq. (2.38). To

obtain the renormalon model, we take the matrix elements of the operators in Eq. (5.10)

between the vacuum and a ρ–meson state, project onto the relevant Lorentz structures

and fix the normalization by the local matrix element

〈0|d̄(0)gG̃µν(0)γνγ5u(0)|ρ+(P, λ)〉 = fρm
3
ρe

(λ)
µ ζ4 , ζ4 = 0.15 ± 0.10 [39] (5.11)

making the substitution

cΛ2 → 1

6
ζ4 m2

ρ . (5.12)

The resulting twist–four DA, expressed in terms of the twist–two one, read:

Ψ̃(αi) =
1

3
ζ4

[
α2φ‖(α1)

(1 − α1)2
+

α1φ‖(α2)

(1 − α2)2

]
,

Ψ(αi)
}

=
1

3
ζ4

[
α2φ‖(α1)

(1 − α1)2
− α1φ‖(α2)

(1 − α2)2

]
,

Φ̃(αi) =
1

6
ζ4

[
φ‖(α1)

1 − α1
+

φ‖(α2)

1 − α2

]
,

Φ(αi) = −1

6
ζ4

[
φ‖(α1)

1 − α1
− φ‖(α2)

1 − α2

]
,

Ξρ(αi) = −2

3
ζ4

[
α2

1 − α1

φ‖(α1) −
α1

1 − α2

φ‖(α2)

]
, (5.13)

where we used the symmetry φ‖(u) = φ‖(1 − u). Note the similarity of this result to the

pion case, Eq. (3.4): upon replacing in the latter δ2 by ζ4 one recovers the former with

−Φπ
⊥ −→ Φρ, Φπ

‖ −→ Ψρ, Ψπ
⊥ −→ Φ̃ρ, −Ψπ

‖ −→ Ψ̃ρ and Ξπ −→ Ξρ.

The two–particle twist–four DA can now be restored using EOM [12]. The calculation

(see Appendix C.1) gives:

A(u) =
8

3
ζ4

∫ 1

0

dv φ‖(v)
{
θ(u > v)

1

v̄2

[
ū + ū2 + (u − v) ln

u − v

v̄

]
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+θ(u < v)
1

v2

[
u + u2 + (v − u) ln

v − u

v

]}
,

g3(u) = −2

3
ζ4

{∫ 1

0

dv φ‖(v)

[
θ(u > v)

1

v̄2
+ θ(u < v)

1

v2

]
− φ‖(u)

uū

}
. (5.14)

Continuing the comparison with the pion case A(u) is similar to 16(φ1 − φ2) and g3 to

2d2φ2/du2.

Eqs. (5.13) and (5.14) are valid for an arbitrary leading–twist DA. Choosing the asymp-

totic expression φ‖(u) = 6u(1 − u) yields a simple model

Ψ̃(αi) = 2ζ4α1α2

[
1

1 − α1
+

1

1 − α2

]
,

Ψ(αi) = 2ζ4α1α2

[
1

1 − α1
+

1

1 − α2

]
,

Φ̃(αi) = ζ4 [α1 + α2] ,

Φ(αi) = ζ4[α2 − α1],

Ξρ(αi) = 0 (5.15)

and

A(u) = 16ζ4

{
ū
[
u ln(ū) − Li2(ū)

]
+ u

[
ū ln(u) − Li2(u)

]
− 2uū +

π2

6

}
,

g3(u) = 4ζ4

{
ln(u) + ln(ū) + 2

}
. (5.16)

This model should be compared with that of Ball and Braun (BB) in Ref. [12] based on

the two first orders in the conformal expansion:

Ψ̃BB(αi) = 40 ζ4 α1α2α3

[
1 +

63

4
ωA

4 (3α3 − 1)
]
,

ΨBB(αi) = 630 ζ4 ωA
4 α1α2α3(α2 − α1) ,

Φ̃BB(αi) = 10 ζ4 α2
3(1 − α3)

[
1 +

63

2
ωA

4 (2α3 − 1)
]
,

ΦBB(αi) = 10 ζ4 α2
3(α2 − α1)

[
1 +

63

2
ωA

4 (2α3 − 1)
]
,

ΞBB
ρ (αi) = 0 , (5.17)

where the new parameter ωA
4 is defined by the matrix element of the J = 4 local operator

in Eq. (4.21) in Ref. [12]. From QCD sum rules [12] one obtains a crude estimate:

ωA
4

∣∣
SR

= 0.8 ± 0.8 . (5.18)

To the same J = 4 accuracy

A
BB(u) =

200

3
ζ4u

2ū2 − 42ζ4ω
A
4

{
uū(2 + 13uū) + 2u3(1 + 3ū + 6ū2) lnu

30



0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
u

–3

–2.5

–2

–1.5

–1

–0.5

0

0.5

0.2 0.4 0.6 0.8 1
u

Figure 6: The two–particle twist–four DA of the ρ in the chiral–even sector, A(u) (left) and

g3(u) (right) based on the renormalon model of Eq. (5.16) (full line) and model of Ref. [12],

given by Eq. (5.19) (crosses), which uses the first two orders in the conformal expansion with

the sum–rule estimate ωA
4 = 0.8. The normalization is chosen to be the same ζ4 = 0.15.

+ 2ū3(1 + 3u + 6u2) ln ū
}
,

gBB
3 (u) = −20

3
ζ4(1 − 6uū) . (5.19)

To avoid misunderstanding, note that for this comparison we suppressed the Wandzura–

Wilczek contributions of twist–two and twist–three operators to the coefficients in the

conformal expansion in [12] and only retained the genuine twist–four contributions.

Performing the conformal expansion of the renormalon model, Eq. (5.15), up to J = 4

we recover the structure of Eq. (5.17) predicting:

ωA
4

∣∣
Ren

= −1

9
, (5.20)

which can be contrasted with the sum–rule result in Eq. (5.18). Similar to the pion case,

this number is not sensitive to the shape of the leading–twist DA.

Figure 6 compares the renormalon model with that of Ref. [12]. For g3(u) the main

difference is in the asymptotic end–point behavior: it is logarithmic in the renormalon

model and constant in the model of Ref. [12]. For A(u) the difference is more pronounced

— the asymptotic behavior is linear and quadratic in the two models, respectively — and,

moreover, it extends to the central region because of the very different J = 4 contributions‡

which are determined by Eq. (5.20) and the central value of Eq. (5.18), respectively.

Figure 7 makes a similar comparison but this time adding the Wandzura–Wilczek terms

in both models.

‡Note that there is no J = 4 contribution for g3(u).
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Figure 7: The same as Fig. 6, but including (in both models) the Wandzura–Wilczek contribu-

tions as given by Eqs. (4.22) and (4.23) in Ref. [12] with the parameters of Table 2 there, except

that we consistently use the asymptotic leading–twist DA, so a
‖
2 = 0.

5.2 Chiral–odd distribution amplitudes

5.2.1 Definitions

For the chiral-odd operator involving the σµν–matrix the light–cone expansion to twist–

four accuracy reads [12]:

〈0|
[
d̄(−x)σµνu(x)

]

µ2
F

|ρ+(P, λ)〉 = ifT
ρ

{
(e(λ)

µ Pν − e(λ)
ν Pµ)

∫ 1

0

du e−iξPx
[
φ⊥(u) +

m2
ρx

2

4
AT (u)

]

+ (Pµxν − Pνxµ)
e(λ)x

(Px)2
m2

ρ

∫ 1

0

du e−iξPx
BT (u)

+
1

2
(e(λ)

µ xν − e(λ)
ν xµ)

m2
ρ

Px

∫ 1

0

du e−iξPx
CT (u)

}
, (5.21)

where the tensor coupling fT
ρ is given by

〈0|ū(0)σµνd(0)|ρ−(P, λ)〉 = ifT
ρ (e(λ)

µ Pν − e(λ)
ν Pµ). (5.22)

In comparison, the corresponding light–cone DA are defined as

〈0|
[
d̄(−z)σµνu(z)

]

µ2
F

|ρ+(P, λ)〉 = ifT
ρ

{
(e

(λ)
⊥µpν − e

(λ)
⊥νpµ)

∫ 1

0

du e−iξpzφ⊥(u, µ2
F )

+(pµzν − pνzµ)
e(λ)z

(pz)2
m2

ρ

∫ 1

0

du e−iξpzh
(t)
‖ (u, µ2

F )

+
1

2
(e

(λ)
⊥µzν − e

(λ)
⊥νzµ)

m2
ρ

pz

∫ 1

0

du e−iξpzh3(u, µ2
F )

}
, (5.23)
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where φ⊥(u) is the leading–twist DA of the transversely polarized ρ–meson, h
(t)
‖ (u) is of

twist–three and of no interest for our present purposes, and h3(u) is of twist–four. All

three functions φ = {φ⊥, h(t)
‖ , h3} are normalized as

∫ 1

0
du φ(u) = 1. Matching (5.23) with

the light-cone expansion in Eq. (5.21) one obtains

BT (u) = h
(t)
‖ (u) − 1

2
φ⊥(u) − 1

2
h3(u),

CT (u) = h3(u) − φ⊥(u). (5.24)

The remaining invariant amplitude AT (u) describes the transverse momentum distribution

in the leading–twist component of the wave function. We end up with two two–particle

twist–four DA of the transversely polarized ρ–meson, AT (u) and h3(u) which are counter-

parts of the distributions A(u) and g3(u) for the longitudinally polarized ρ–meson and of

the pion DA φ
(4)
1 (u) and φ

(4)
2 (u) defined in Eq. (2.9). The precise correspondence will be

given below.

The three–particle DA are even more numerous than in the chiral-even case and can

be defined as [12]:

〈0|d̄(−z)σαβgGµν(vz)u(z)|ρ+(P, λ)〉 =

= fT
ρ m2

ρ

e(λ)z

2(pz)

[
pαpµg

⊥
βν − pβpµg⊥αν − pαpνg

⊥
βµ + pβpνg

⊥
αµ

]
T (v, pz)

+ fT
ρ m2

ρ

[
pαe

(λ)
⊥µg

⊥
βν − pβe

(λ)
⊥µg⊥αν − pαe

(λ)
⊥νg

⊥
βµ + pβe

(λ)
⊥νg

⊥
αµ

]
T1(v, pz)

+ fT
ρ m2

ρ

[
pµe

(λ)
⊥αg⊥βν − pµe

(λ)
⊥βg⊥αν − pνe

(λ)
⊥αg⊥βµ + pνe

(λ)
⊥βg

⊥
αµ

]
T2(v, pz)

+
fT

ρ m2
ρ

pz

[
pαpµe

(λ)
⊥βzν − pβpµe

(λ)
⊥αzν − pαpνe

(λ)
⊥βzµ + pβpνe

(λ)
⊥αzµ

]
T3(v, pz)

+
fT

ρ m2
ρ

pz

[
pαpµe

(λ)
⊥νzβ − pβpµe

(λ)
⊥νzα − pαpνe

(λ)
⊥µzβ + pβpνe

(λ)
⊥µzα

]
T4(v, pz), (5.25)

〈0|d̄(−z)gGµν(vz)u(z)|ρ+(P, λ)〉 = ifT
ρ m2

ρ

[
e
(λ)
⊥µpν − e

(λ)
⊥νpµ

]
S(v, pz),

〈0|d̄(−z)igG̃µν(vz)γ5u(z)|ρ+(P, λ)〉 = ifT
ρ m2

ρ

[
e
(λ)
⊥µpν − e

(λ)
⊥νpµ

]
S̃(v, pz). (5.26)

Of these seven amplitudes T is of twist three and the other six of twist four; higher–twist

terms are suppressed.

We also introduce one more twist–four DA as follows

〈0|d̄(−z)σµνgDαGαβ(vz)u(z)|ρ+(P, λ)〉 = ifρm
2
ρ

[
e
(λ)
⊥µpν − e

(λ)
⊥νpµ

]
pβ ΞT

ρ (v, pz) . (5.27)

As in the other cases the twist–four two–particle DA do not present independent de-

grees of freedom and can be expressed in terms of three–particle DA using EOM [12], see

Eq. (C.8) below.
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5.2.2 Renormalon model and comparison with Ref. [12]

Computing the first UV–renormalon contribution to the operator d̄(−z)σαβGµν(vz)u(z),

and taking the relevant Lorentz projections we find

δUV

{
d̄(−z)e

(λ)
⊥νz

β σµβ gGµν(vz)u(z)
}

= −icΛ2 e
(λ)
⊥ρzε

∫ 1

0

da(1 + 2a)
[
d̄(−y)σρεu(z) − d̄(−z)σρεu(ỹ)

]
,

δUV

{
d̄(−z)e

(λ)
⊥βzν σµβ gGµν(vz)u(z)

}

= icΛ2 e
(λ)
⊥ρzε

∫ 1

0

da (1 − 2a)
[
d̄(−y)σρεu(z) − d̄(−z)σρεu(ỹ)

]
,

δUV

{
d̄(−z)e

(λ)
⊥βzαzµ σαβ gGµν(vz)u(z)

}

= −2icΛ2 zνzρe
(λ)
⊥ε

∫ 1

0

da a
[
d̄(−y)σρεu(z) − d̄(−z)σρεu(ỹ)

]
,

δUV

{
d̄(−z)e

(λ)
⊥νzαzµ σαβ gGµν(vz)u(z)

}

= −icΛ2 zβzρe
(λ)
⊥ε

∫ 1

0

da
[
d̄(−y)σρεu(z) − d̄(−z)σρεu(ỹ)

]
, (5.28)

where y and ỹ are defined below Eq. (2.38). In a similar manner, for the operators

d̄(−z)Gαβ(vz)u(z) and d̄(−z)γ5iG̃αβ(vz)u(z) we obtain

δUV

{
d̄(−z)e

(λ)
⊥νz

µ gGµν(vz)u(z)
}

= cΛ2 zαe
(λ)
⊥β

∫ 1

0

da
[
d̄(−y)σαβu(z) + d̄(−z)σαβu(ỹ)

]
,

δUV

{
d̄(−z)e

(λ)
⊥νz

µγ5igG̃µν(vz)u(z)
}

= −cΛ2 zαe
(λ)
⊥β

∫ 1

0

da
[
d̄(−y)σαβu(z) + d̄(−z)σαβu(ỹ)

]
,

(5.29)

and finally for the operator d̄(−z)σµνgDαGαβ(vz)u(z) we get

δUV

{
zβ d̄(−z)gDαGαβ(vz)σµνu(z)

}

= −4icΛ2

∫ 1

0

da a
d

da

[ 1

1 + v
d̄(−y)σµνu(z) +

1

1 − v
d̄(−z)σµνu(ỹ)

]
. (5.30)

Taking the matrix elements of the operators in Eq. (5.28) through Eq. (5.30) between

the vacuum and the ρ–meson state we extract the renormalon ambiguity for these twist–

four DA in terms of φ⊥(u). Going over from the renormalon ambiguity to a model, one has

to take into account that in the present case there exist two independent local operators

of the lowest dimension that have proper quantum numbers:

〈0|d̄(0)gGµν(0)u(0)|ρ+(P, λ)〉 = ifT
ρ m2

ρζ
T
4 (e(λ)

µ Pν − e(λ)
ν Pµ),

〈0|d̄(0)gG̃µν(0)iγ5u(0)|ρ+(P, λ)〉 = ifT
ρ m2

ρζ̃
T
4 (e(λ)

µ Pν − e(λ)
ν Pµ). (5.31)
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The parameters ζT
4 ± ζ̃T

4 renormalize multiplicatively with different anomalous dimensions

[40] and from the QCD sum rules one finds [40, 12]

ζT
4 − ζ̃T

4 = 0.2 ± 0.1 ,

ζT
4 + ζ̃T

4 = 0 . (5.32)

The vanishing (or smallness) of the second number in Eq. (5.32) appears as a consequence

of vanishing of the leading contribution to the corresponding correlation function, see

Appendix C in [12].

By comparison of the expressions in Eq. (5.29) we observe that the leading UV–

renormalon contribution to the operator d̄(−z)[gGµν+gG̃µνiγ5](vz)u(z) and thus to ζT
4 +ζ̃T

4

vanishes as well. Therefore, within the renormalon model ζ̃T
4 = −ζT

4 and similarly to the

pion and the chiral–even ρ–meson cases the model has only one parameter.

Collecting everything and making the substitution

cΛ2 → 1

2
ζT
4 m2

ρ (5.33)

we obtain

T1(αi) = −T3(αi) = ζT
4

[
α2φ⊥(α1)

(1 − α1)2
− α1φ⊥(α2)

(1 − α2)2

]
,

T2(αi) = T4(αi) = −1

2
ζT
4

[
φ⊥(α1)

(1 − α1)
− φ⊥(α2)

(1 − α2)

]
,

S(αi) = − S̃(αi) =
1

2
ζT
4

[
φ⊥(α1)

1 − α1

+
φ⊥(α2)

1 − α2

]
,

ΞT
ρ (αi) = −2ζT

4

[
α2

1 − α1
φ⊥(α1) −

α1

1 − α2
φ⊥(α2)

]
, (5.34)

where we used the symmetry φ⊥(u) = φ⊥(1−u). The correspondence with the pion DA is

as follows: upon replacing δ2 by 3ζT
4 , Φπ

‖ −→ T ρ
1 , Φπ

⊥ −→ −T ρ
2 , Ψπ

⊥ −→ Sρ and Ξπ −→ ΞT
ρ .

There is no analog for Ψπ
‖ .

Finally, the two–particle twist–four DA are restored using EOM (see Appendix C.1):

AT (u) = 8ζT
4

∫ 1

0

dv φ⊥(v)

[
θ(u > v)

1

v̄2

(
ū + (u − v) ln

u − v

v̄

)

+θ(u < v)
1

v2

(
u + (v − u) ln

v − u

v

) ]
,

h3(u) = 0 . (5.35)

Note that there is no renormalon ambiguity in h3(u) at the level of a single dressed gluon,

and therefore in our model this DA vanishes. Also note that apart from the different

overall normalization (δ2 −→ 3ζT
4 ) AT (u) is the same as 16φ

(4)
1 (u) in the pion case.
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Choosing the asymptotic leading–twist DA φ⊥(u) = 6u(1 − u) we obtain simple ex-

pressions

T1(αi) = −T3(αi) = 6ζT
4 α1α2

[
1

1 − α1

− 1

1 − α2

]
,

T2(αi) = T4(αi) = 3ζT
4 [α2 − α1] ,

S(αi) = − S̃(αi) = 3ζT
4 [α1 + α2] ,

ΞT
ρ (αi) = 0 (5.36)

and

AT (u) = 48ζT
4

{
ū
[
ln(ū) − Li2(ū)

]
+ u

[
ln(u) − Li2(u)

]
− uū +

π2

6

}
,

h3(u) = 0 . (5.37)

These results can be compared with the model of [12]. The structure of the conformal

expansion to spin J = 4 accuracy is more complicated in this case as it involves three

parameters. Following [12] we write

T1(αi) = 120t10(α2 − α1)α2α1α3,

T2(αi) = −30α2
3(α2 − α1)

[
s̃00 +

1

2
s̃10 (5α3 − 3) + s̃01α3

]
,

T3(αi) = −120t̃10(α2 − α1)α2α1α3,

T4(αi) = 30α2
3(α2 − α1)

[
s00 +

1

2
s10 (5α3 − 3) + s01α3

]
, (5.38)

S(αi) = 30α2
3

[
s00 (1−α3) + s10

{
α3(1−α3) −

3

2
(α2

2 + α2
1)

}
+ s01 {α3(1−α3) − 6α2α1}

]
,

S̃(αi) = 30α2
3

[
s̃00 (1−α3) + s̃10

{
α3(1−α3) −

3

2
(α2

2 + α2
1)

}
+ s̃01 {α3(1−α3) − 6α2α1}

]
,

where, assuming that ζ̃T
4 = −ζT

4 , one obtains

s00 = −s̃00 = ζT
4 , (5.39)

and the remaining six coefficients involve three parameters 〈〈Q(1)〉〉, 〈〈Q(3)〉〉 and 〈〈Q(5)〉〉
defined by reduced matrix elements of local operators specified in Eq. (5.20) in [12]:

s10 =
28

55
〈〈Q(1)〉〉 +

7

11
〈〈Q(3)〉〉 +

14

3
〈〈Q(5)〉〉,

s̃10 = −28

55
〈〈Q(1)〉〉 − 7

11
〈〈Q(3)〉〉 +

14

3
〈〈Q(5)〉〉,

s01 = +
49

110
〈〈Q(1)〉〉 − 7

22
〈〈Q(3)〉〉 +

7

3
〈〈Q(5)〉〉,
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s̃01 = − 49

110
〈〈Q(1)〉〉 +

7

22
〈〈Q(3)〉〉 +

7

3
〈〈Q(5)〉〉,

t10 = − 63

220
〈〈Q(1)〉〉 +

119

44
〈〈Q(3)〉〉,

t̃10 =
63

220
〈〈Q(1)〉〉 +

35

44
〈〈Q(3)〉〉. (5.40)

Here we only show genuine twist–four contributions and suppress the Wandzura-Wilczek

terms. To the same accuracy

A
BB
T (u) = 120 ζT

4 u2ū2 −
(126

55
〈〈Q(1)〉〉 +

70

11
〈〈Q(3)〉〉

)[
uū(2 + 13uū)

+ 2u3(10 − 15u + 6u2) lnu + 2ū3(10 − 15ū + 6ū2) ln ū
]
,

hBB
3 (u) = 0 . (5.41)

The particular model suggested in [12] makes use of the QCD sum–rule estimate

〈〈Q(1)〉〉|SR = −0.15 ± 0.15 [40] , 〈〈Q(3) 〉〉|SR = 〈〈Q(5) 〉〉|SR = 0 . (5.42)

On the other hand, starting with the renormalon model in Eq. (5.36) and Eq. (5.37)

and isolating the J = 4 contribution§ we obtain, using Eq. (5.32),

〈〈Q(1)〉〉|Ren =
10

3
〈〈Q(3) 〉〉|Ren, 〈〈Q(3) 〉〉|Ren = −ζT

4 = −0.10 ± 0.05, 〈〈Q(5) 〉〉|Ren = 0 .

(5.43)

Note that the renormalon model prediction for 〈〈Q(1)〉〉 is consistent with the sum–rule

estimate within errors and the main difference is that 〈〈Q(3)〉〉 is non-vanishing. With the

numbers from Eq. (5.43) the J = 4 contribution to AT (u) is enhanced by roughly factor

four compared to the sum–rule estimate, but is still smaller than the leading J = 3 term.

We conclude by a numerical comparison of the two–particle DA AT (u) in the renor-

malon model, Eq. (5.37), and the model of [12] in Eq. (5.41) with QCD sum–rule estimates

of the parameters. As in previous cases, the difference is most pronounced in the end–point

regions where the two expressions have different asymptotic behavior.

6 Conclusions

In this paper we have presented for the first time a systematic analysis of twist–four meson

distribution amplitudes that goes beyond the first few orders in the conformal expansion.

Our analysis is based on the study of the high–order behavior of perturbation theory in the

single–dressed–gluon approximation which is equivalent to the study of one–loop power

divergences of the contributing twist–four operators. In general, this calculation supports

the conjecture that the shape of higher–twist DA is not far from the asymptotic form

which is associated with operators with the lowest conformal spin. However, we find that

§Note that T2 = T4 implies that 〈〈Q(5)〉〉 = 0 while T1 = −T3 leads to 〈〈Q(3)〉〉 = 3
10 〈〈Q(1)〉〉.
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Figure 8: The two–particle twist–four DA AT (u) without (left) and with (right) the

Wandzura–Wilczek terms. Each figure compares between the renormalon model (full line)

and model of Ref. [12] (crosses) which uses the first two orders in the conformal expansion

with the sum–rule estimate of Eq. (5.42). Note the different scales on the vertical axis.

the conformal expansion of the renormalon model does not converge uniformly at the end

points. Consequently, the end–point behavior corresponding to the situation where one

valence quark is soft, is qualitatively different between the sum over all spins and any

fixed order in the conformal expansion. As the principal result, we obtain that the two–

particle twist–four DA that describes the k2
⊥ distribution of valence quarks in the meson

— φ
(4)
1 (u) for pion, A(u) and AT (u) for ρ–meson — has the same linear falloff ∼ u(1− u)

at u → 0, 1 as the leading–twist DA, compared to the quadratic behavior ∼ u2(1 − u)2

of the asymptotic DA (lowest conformal spin). Taking into account the limitations of our

analysis this has to be understood as an upper bound. The existence of such a bound is

important for proofs of factorization theorems.

An attractive feature of the renormalon approach is that it allows one to construct

simple models of higher–twist DA with minimum number of non-perturbative parameters.

In this paper we constructed such models for the pion and for the ρ-meson with both the

longitudinal and the transverse polarizations. The corresponding expressions are given in

Sect. 3, 5.1.2 and 5.2.2, respectively. In each of these cases the entire set of twist–four

DA is determined in terms of the leading–twist DA with just one free parameter, the

overall normalization, corresponding to the matrix element of a certain local operator.

This approach presents a viable alternative to the models of Refs. [6, 12] based on the two

first orders in the conformal expansion. The spread between the predictions of these two

approaches is a fair measure of uncertainty in our present understanding of higher–twist

effects.

In addition to giving, for the first time, an upper bound for the possible contribution

of the operators with large conformal spins J , the renormalon model can also be used

to estimate the next–to–lowest spin J = 4 contributions. The corresponding estimates
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are given in Eq. (4.12), Eq. (5.20) and Eq. (5.43) for the pion, longitudinal ρ–meson and

transverse ρ–meson, respectively. These estimates are probably more reliable than the

corresponding QCD sum–rule results, as it is known that the sum–rule approach does not

work well for operators containing derivatives. In particular for the longitudinal ρ–meson

there is a significant difference, compare Eq. (5.20) and Eq. (5.18).

The renormalon approach can be applied in a straightforward manner to study yet

higher power corrections, of twist six and above, which are otherwise inaccessible. Higher

infrared–renormalon ambiguities in the coefficient functions of Eq. (2.21) at w0 = 2, 3, etc.

corresponding to twist six, eight, etc. can be extracted from Eq. (2.22) and Eq. (2.23)

in full analogy with the calculation of the leading renormalon ambiguity in Sect. 2.2.2.

Assuming for simplicity the asymptotic leading–twist DA, the ambiguities in the leading–

twist part of G1 read:

δw=2
IR

{C1 ⊗ φπ} = −πCF

2β0

e
10
3

42

(
−∆2Λ2

)2
2
[
u3 ln(u) + ū3 ln(ū) + uū

]
, (6.1)

δw=3
IR {C1 ⊗ φπ} = −πCF

2β0

e
15
3

43

(
−∆2Λ2

)3 8

3
uū [1 + 7uū] ,

δw=4
IR {C1 ⊗ φπ} = −πCF

2β0

e
20
3

44

(
−∆2Λ2

)4 1

75
uū

[
31 + 199uū − 2u2ū2

]
.

In general, we find in the renormalon approach that the asymptotic behavior of the form

∼ uū persists in the case of G1 to all twists¶. For G2, on the other hand, we find at any

twist higher than four an asymptotic behavior of the form ∼ u2ū2. This result suggests that

the DA of all twists probably have the same universal power behavior in the end–point

regions. This strong conjecture implies, in particular, that the twist expansion breaks

down owing to the increasing singularity of higher–twist coefficient functions.

The present study can be extended in several respects. From the theoretical point of

view the renormalon calculation that uses the modified gluon propagator in Eq. (2.20)

can be understood as changing the scaling dimension of the gluon field. It is, therefore,

tempting to try to reconcile the renormalon model with conformal symmetry of QCD with

modified conformal spin assignment for the fields. Alternatively, since the renormalon

model predictions effectively reduce to the analysis of quadratic divergences of twist–four

operators, they may have the symmetry of QCD in two dimensions. Finally, there is

a general problem of going beyond the large–β0 approximation and taking anomalous

dimensions into account.

To summarize, we believe that the renormalon approach is useful for understanding the

structure of higher–twist contributions in hard exclusive processes and allows one to obtain

quantitative estimates. Phenomenological applications are numerous but go beyond the

tasks of this work.

¶An exception is twist six (the first line in Eq. (6.1)) where the behavior is ∼ u2ū2 owing to a complete

cancellation between diagrams 1 and 3 in figure 1.
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Appendices

A Single–dressed–gluon calculation of the twist–two

coefficient function

In this Appendix we present the detailed calculation of the diagrams in Fig. 1 to arrive at

the Borel–regularized expression for the leading–twist coefficient function of the non–local

operator in Eq. (2.1). The calculation is done in the Feynman gauge and for brevity we

do not write explicitly the Wilson line connecting operators at different points.

We begin with Diagram 1 in Fig. 1 where the gluon is exchanged between the quark

and the Wilson line. The latter is defined by Eq. (2.2). The calculation of this diagram

plus its symmetric counterpart, where the gluon line is attached to the other quark, yields:

〈
p2

∣∣T{d̄(x2)γνγ5u(x1)}
∣∣ p1

〉
1

=
4π2CF

β0

∫ ∞

0

dw e
5
3
w (−Λ2)w

∫ 1

0

da ei(p2x2−p1x1)

×
[
d̄p2γσγµγνγ5up1∆

σIµ1 (p2, a∆) + d̄p2γνγ5γµγσup1∆
σIµ1 (p1, a∆)

]
, (A.1)

where d̄p2 and up1 are quark spinors, ∆ = x2 − x1 and the momentum integral Iµ1 (p, ∆) is

given by

Iµ1 (p, z) =

∫
d4k

(2π)4
e−ik∆ (p + k)µ

(k2)1+w(p + k)2

=
1

16π2

Γ(−w)

Γ(1 + w)

(
z2

4

)w ∫ 1

0

db bwei(1−b)p∆

(
ibp − 2w

∆

∆2

)µ

. (A.2)

Inserting the result of the momentum integration into Eq. (A.1), contracting the indices

and using the Dirac equation for massless quarks gives

〈
p2

∣∣T{d̄(x2)γνγ5u(x1)}
∣∣ p1

〉
1

= −CF

2β0

∫ ∞

0

dw e
5
3
w Γ(−w)

Γ(1 + w)

(−Λ2∆2

4

)w∫ 1

0

da a2w

∫ 1

0

db bw

×
[(

−ibp2 · ∆ +
w

a

)
eia(1−b)p2·∆ +

(
−ibp1 · ∆ +

w

a

)
eia(1−b)p1·∆

]
(A.3)

× ei(p2x2−p1x1)d̄p2γνγ5up1.

The terms proportional to p1(2) ·∆ can be removed using −ip ·∆eia(1−b)p·∆ = 1
a

d
db

eia(1−b)p·∆

and then integrating by parts. Now the dependence on the external momenta is only in

the spinors and the phase and can be absorbed in external quark states, so that the result

takes the form:

〈
p2

∣∣T{d̄(x2)γνγ5u(x1)}
∣∣ p1

〉
1

= −CF

2β0

∫ ∞

0

dw e
5
3
w Γ(−w)

Γ(1 + w)

(−Λ2∆2

4

)w ∫ 1

0

dα

∫ 1−α

0

dβ
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×
∫ 1

0

da a2w−1
{
− 2δ(α)δ(β) +

∫ 1

0

db bw [δ(β)δ (α − a(1 − b)) + δ(α)δ (β − a(1 − b))]
}

×
〈
p2

∣∣d̄(x2 + α∆)γνγ5u(x1 − β∆)
∣∣ p1

〉
. (A.4)

Here we introduced for later convenience two new variables α and β. The integration over

a can be taken and after rearranging the terms the result can be represented as an OPE

T{d̄(x2)γνγ5u(x1)}1 =
CF

2β0

∫ ∞

0

dw e
5
3
w Γ(−w)

Γ(1 + w)

(−∆2Λ2

4

)w ∫ 1

0

dα

∫ 1−α

0

dβ

×
[
(1 + w)

(
f

(w)
+ (β)δ(α) + f

(w)
+ (α)δ(β)

)
− w

(
f (w)(β)δ(α) + f (w)(α)δ(β)

)]

× d̄(x2 + α∆)γµγ5u(x1 − β∆) , (A.5)

where it is understood that only leading–twist operators are retained on the right–hand

side,

f (w)(β) ≡ β2w−1

∫ 1−β

0

db (1 − b)−2wbw

=
β2w−1(1 − β)1+w

1 + w
2F1([2w, w + 1], [2 + w]; 1 − β), (A.6)

and the “+” prescription is defined, as usual, by Eq. (2.26).

Next we consider Diagram 2 where the gluon is exchanged between the quarks. This

contribution reads:

〈
p2

∣∣T{d̄(x2)γνγ5u(x1)}
∣∣ p1

〉
2

= −i8π2CF

β0

∫ ∞

0

dw e
5
3
w (−Λ2)w ei(p2x2−p1x1)

× d̄p2γµγνγ5γσup1I
µσ
2 (p1, p2, ∆) , (A.7)

where the integral Iµσ
2 (p1, p2, ∆) is given by the expression:

Iµσ
2 (p1, p2, ∆) =

∫
d4k

(2π)4
e−ik∆ (p1 + k)µ(p2 + k)σ

(k2)1+w(p1 + k)2(p2 + k)2

=
i

32π2

Γ(−w)

Γ(1 + w)

(
∆2

4

)w ∫ 1

0

dα

∫ 1−α

0

dβ (1 − α − β)w (A.8)

× ei(αp2∆+βp1∆)

{[
gµσ + 2w

∆µ∆σ

∆2

]
+ . . .

}
.

Here the dots represent terms proportional to at least one external momentum p
µ(σ)
1(2) ,

which do not contribute to Eq. (A.7) by virtue of the Dirac equation. Inserting Eq. (A.8)

in Eq. (A.7), contracting the indices and absorbing the dependence on the momenta p1

and p2 in external quark states, one immediately obtains

T{d̄(x2)γνγ5u(x1)}2 =
CF

2β0

∫ ∞

0

dw e
5
3
w Γ(−w)

Γ(1 + w)

(−Λ2∆2

4

)w ∫ 1

0

dα

∫ 1−α

0

dβ
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× (1 − α − β)w

[
gµν(1 + w) − 2w

∆µ∆ν

∆2

]

× d̄(x2 + α∆)γµγ5u(x1 − β∆) . (A.9)

For the last step it was important to consider a non-forward matrix element (p1 6= p2),

because otherwise one could not identify how the quark–field operators get shifted.

The last contribution comes from Diagram 3 since Diagram 4, describing the self energy

of the incoming quark, has no scale and thus vanishes. We obtain:

T{d̄(x2)γνγ5u(x1)}3 =
i4π2CF

β0
∆2

∫ ∞

0

dw e
5
3
w (−Λ2)wI3(∆)d̄(x2)γνγ5u(x1) , (A.10)

where

I3(∆
2) =

∫ 1

0

da

∫ a

0

db

∫
d4k

(2π)4
e−i(a−b)k∆ 1

(k2)1+w
=

i

32π2

Γ(−w)

(1 − 2w)Γ(1 + w)

(
∆2

4

)w−1

.

(A.11)

Collecting the contributions in Eq. (A.5), Eq. (A.9) and Eq. (A.10) we get a gauge–

invariant result for the OPE of the T–product of quark fields to all orders in the strong

coupling in in the large-β0 limit:

T{d̄(x2)γνγ5[x2, x1]u(x1)} =
CF

2β0

∫ ∞

0

dw e
5
3
w Γ(−w)

Γ(1 + w)

(−∆2Λ2

4

)w ∫ 1

0

dα

∫ 1−α

0

dβ

×
{

gµν

[
(1 + w)

(
f

(w)
+ (β)δ(α) + f

(w)
+ (α)δ(β)

)
− w

(
f (w)(β)δ(α) + f (w)(α)δ(β)

)]

+

(
gµν(1 + w) − w

2∆µ∆ν

∆2

)
(1 − α − β)w (A.12)

− gµν
1

1 − 2w
δ(α)δ(β)

}
× d̄(x2 + α∆)γµγ5[x2 + α∆, x1 − β∆]u(x1 − β∆),

where the terms in the curly brackets are grouped as they appear from individual diagrams

in Feynman gauge: the first line corresponds to Diagram 1 (vertex correction) in Fig. 1

and its symmetric counterpart, the second line to Diagram 2 (box diagram), and the third

line to Diagram 3 (self–energy like correction to the Wilson line). Disentangling the two

Lorentz structures we end up with the answers for the unrenormalized coefficient functions

given in Eq. (2.22) and Eq. (2.23).

B The operator d̄γµγ5gDαG
αβu: UV divergence and

EOM relations

The calculation of the UV–renormalon ambiguity of the operator in Eq. (2.16) goes along

the same lines as in Sect. 2.3 and is fully analogous to the similar calculation (with no γ5)

in [17, 31]. For the matrix element between off–shell quark states (Fig. 2) we get

〈
q2

∣∣d̄(−z)gDαGαβ(vz)Γu(z)
∣∣ q1

〉
= i

4π2CF

β0

e−i(q1+q2)z
(
gσρgβν − gρ

βgσ
ν

)
(B.1)
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×
∫ ∞

0

dw e
5
3
w(−Λ2)w

[
d̄q2γ

νγλΓuq1 Īλσρ(q2, (1 + v)z) + d̄q2Γγλγνuq1 Īλσρ(q1, (1 − v)z)
]
,

where the momentum integral is

Īλσρ(q, z) =

∫
d4k

(2π)4

(q + k)λkσkρ

(k2)(1+w) (q + k)2
e−ikz. (B.2)

Computing the integral, extracting the w = 1 residue, specifying Γ = γµγ5 and projecting

with xµxβ we obtain‖ the result in Eq. (2.39). Taking the matrix element of Eq. (2.39)

between the vacuum and a pion state we end up with the renormalon ambiguity of the

DA Ξπ(αi) given in the last line of Eq. (2.40).

Going from an ambiguity to a model involves a replacement of the large–β0 renormalon

residue by a physical non-perturbative parameter, a certain local matrix element. From

[6] it is known that the normalization of all four DA Φ⊥,‖ and Ψ⊥,‖ is controlled by a single

non-perturbative parameter δ2 for J = 3. In the renormalon model, contributions of

higher spins J = 4, 5, . . . to Φ⊥,‖ and Ψ⊥,‖ are fixed uniquely in terms of δ2 so that no new

parameters appear. We are going to argue that within this construction the normalization

of Ξπ is also fixed uniquely by EOM that relate it to the J = 5 contributions to the other

DA. Thus, all five DA are given in terms of δ2 and the leading–twist pion DA.

The necessary constraint can be derived from the operator identity for the second

derivative

∂2

∂xα∂xα
d̄(−x)Γ u(x) = −∂2d̄(−x)Γ u(x) + gd̄(−x)

[
σG(−x) Γ + ΓσG(x)

]
u(x)

+ 2igxν ∂

∂xµ

∫ 1

−1

dv v d̄(−x)ΓGνµ(vx)u(x) + 2igxν∂µ

∫ 1

−1

dv d̄(−x)ΓGνµ(vx)u(x)

+ 2g

∫ 1

−1

dv

∫ v

−1

dt (1 + vt)d̄(−x)ΓxµxνGµρ(−vx)Gρ
ν(−tx)u(x)

− igxν

∫ 1

−1

dv (1 + v2) d̄(−x)Γ[Dµ, Gµ
ν ](vx)u(x) (B.3)

given in Eq. (A.9) in [12] (see also [26]). Here σG ≡ σαβGαβ and ∂µ stands for the

derivative with respect to the total translation.

Taking the matrix element of (B.3) between the vacuum and a pion state and using

the definitions of the DA we obtain

2 i

∫ 1

0

due−i pz (2 u−1)
[
(4 − 2 i pz (2 u − 1)) φ1(u) + (−3 + ipz (2 u − 1)) φ2(u)

]

=

∫
Dαi e−i pz (α1−α2)

[
2

((
1

pz 2 α2
3

− 1

)
sin(pz α3) −

cos(pz α3)

pz α3

)
Φ⊥(αi)

+

((
1

α3
+ 2 − i α1

pz α2
3

+
i α2

pz α2
3

)
sin(pz α3) +

i

α3
(α1 − α2) cos(pz α3)

)
Φ‖(αi) (B.4)

‖We performed integration by parts over a to eliminate q · z factors in order to convert to operator

notation.
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+

((
1

α3
− 1

pz 2 α3
3

)
sin(pz α3) +

cos(pz α3)

pz α2
3

)
Ξπ(αi) + i

(
2Ψ⊥(αi) − Ψ‖(αi)

)
cos(pz α3)

]
,

where we omitted the contributions of the two–gluon operator from the right–hand side.

These can be systematically put to zero to our accuracy as they start contributing at

higher order in the flavor expansion.

Expansion of Eq. (B.4) in powers of pz yields simple relations between integrals that

involve all five three–particle DA. The odd powers are trivial: both the right–hand side

and the left–hand side vanish by symmetry. The first two non-trivial relations are:

∫ 1

0

du
[
− 8 φ1(u) + 6 φ2(u)

]
=

∫
Dαi

[
− 2 Ψ⊥(αi) + Ψ‖(αi)

]
, (B.5)

∫ 1

0

du (u− ū)2
[
− 16 φ1(u) + 10 φ2(u)

]
=

∫
Dαi

[
− 4

3
(α1 − α2) Ξπ(αi)

+
2

3
(α1 − α2) (7 (α1 + α2) − 10) Φ‖(αi) −

8

3
(α1 − α2)(α1 + α2 − 1) Φ⊥(αi)

+
(
1 − 2 α2 − 2 α1 + 2 α2

2 + 2 α2
1

) (
Ψ‖(αi) − 2Ψ⊥(αi)

)]
.

The first relation does not involve Ξπ(αi) and is satisfied identically both by the model of

[6] and the renormalon model. The second relation gives the required constraint for the

normalization integral
∫
Dαi (α1 − α2) Ξπ(αi) in terms of the other four DA. It is easy to

verify that in order to satisfy this constraint one must assume in the last line of Eq. (2.40)

the same replacement cΛ2 −→ δ2/6 as in the other DA.

C Cancellation of renormalons for the ρ–meson am-

plitudes

Here we want to demonstrate cancellation of IR renormalon ambiguities in the leading–

twist coefficient functions with the UV–renormalon ambiguities in the matrix elements of

twist–four DA for the case of exclusive amplitudes involving a vector ρ–meson. Similarly

to the pion case, we consider the simplest example: a gauge–invariant T–product of quark

fields sandwiched between the vacuum and the meson state.

C.1 UV renormalons in two–particle DA

To begin with, we calculate the UV–renormalon ambiguities in the two–particle DA of

twist four. These can be obtained from the three–particle ones using EOM.

The specific EOM relations we need in the chiral–even sector are [12]:

g3(u) = φ‖ − 2
d

du

∫ u

0

dα1

∫ 1−u

0

dα2
1

α3

[2Φ(αi) + Ψ(αi)]

A(u) = 32

∫ u

0

dv

∫ v

0

dw
(
gv
⊥(w) − φ‖(w)

)
+ 32

∫ u

0

dv

∫ v

0

dα1

∫ 1−v

0

dα2
1

α3

[2Φ(αi) + Ψ(αi)] ,
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+8

∫ u

0

dα1

∫ 1−u

0

dα2
uα2 − (1 − u)α1

α2
3

[2Φ(αi) + Ψ(αi)] . (C.1)

This implies that the ambiguities of g3(u) and A(u) due to UV renormalons at w = 1 are

given by

δUV {g3(u)} = −2
d

du

∫ u

0

dα1

∫ 1−u

0

dα2
1

α3
δUV {2Φ(αi) + Ψ(αi)} ,

δUV {A(u)} = 32

∫ u

0

dv

∫ v

0

dα1

∫ 1−v

0

dα2
1

α3

δUV {2Φ(αi) + Ψ(αi)} ,

+8

∫ u

0

dα1

∫ 1−u

0

dα2
uα2 − (1 − u)α1

α2
3

δUV {2Φ(αi) + Ψ(αi)} , (C.2)

where the ambiguities of the three–particle DA can be read from Eq. (5.13) using the

inverse substitution in Eq. (5.12). For g3(u) we get

δUV {g3(u)} = 4c
Λ2

m2
ρ

d

du

∫ u

0

dα1

∫ 1−u

0

dα2

[
φ‖(α1)

(1 − α1)2
− φ‖(α2)

(1 − α2)2

]
(C.3)

= 4c
Λ2

m2
ρ

d

du

[
(1 − u)

∫ u

0

dα
φ‖(α)

(1 − α)2
− u

∫ 1−u

0

dα
φ‖(α)

(1 − α)2

]
,

where we evaluated one of the α integrals. Taking the derivative in respect to u and using

the symmetry φ‖(u) = φ‖(1 − u) yields the desired result:

δUV {g3(u)} = −4c
Λ2

m2
ρ

{∫ 1

0

dv φ‖(v)

[
θ(u > v)

1

v̄2
+ θ(u < v)

1

v2

]
− φ‖(u)

uū

}
. (C.4)

In turn, for the DA A(u) we get the following expression:

δUV {A(u)} = −16c
Λ2

m2
ρ

{
4

∫ u

0

dv

∫ v

0

dα1

∫ 1−v

0

dα2

[
φ‖(α1)

(1 − α1)2
− φ‖(α2)

(1 − α2)2

]
(C.5)

+

∫ u

0

dα1

∫ 1−u

0

dα2
uα2 − (1 − u)α1

1 − α1 − α2

[
φ‖(α1)

(1 − α1)2
− φ‖(α2)

(1 − α2)2

]}
.

Taking one of the α integrals in each line yields:

δUV {A(u)} = −16c
Λ2

m2
ρ

{
4

∫ u

0

dv

[
(1 − v)

∫ v

0

dα
φ‖(α)

(1 − α)2
− v

∫ 1−v

0

dα
φ‖(α)

(1 − α)2

]

−
[∫ u

0

dα

(
(u − α) ln

(
u − α

1 − α

)
+ u(1 − u)

)
φ‖(α)

(1 − α)2
(C.6)

−
∫ 1−u

0

dα

(
(1 − u − α) ln

(
1 − u − α

1 − α

)
+ u(1 − u)

)
φ‖(α)

(1 − α)2

]}
.

45



Finally, integrating by parts over v in the first line and rearranging the terms we obtain:

δUV {A(u)} = 16c
Λ2

m2
ρ

∫ 1

0

dv φ‖(v)

{
θ(u > v)

1

v̄2

[
ū + ū2 + (u − v) ln

u − v

v̄

]

+θ(u < v)
1

v2

[
u + u2 + (v − u) ln

v − u

v

]}
. (C.7)

In the chiral–odd sector the EOM relations between the two–particle and the three–

particle DA of twist four are given by [12]:

h3(u) = 2h
(s)
‖ (u) − Φ⊥(u)

−2
d

du

∫ u

0

dα1

∫ 1−u

0

dα2

[
α1 − α2 − (2u − 1)

α2
3

S(αi) −
1

α3

(T2(αi) − T3(αi))

]
,

AT (u) = −2

∫ u

0

dv (2v − 1) [Φ⊥(v) + h3(v)] + 8

∫ u

0

dv

∫ 1−u

0

dw [h3(w) − Φ⊥(w)] (C.8)

+4

∫ u

0

dα1

∫ 1−u

0

dα2

[
1

α3
S(αi) −

α1 − α2 − (2u − 1)

α2
3

(T2(αi) − T3(αi))

]
.

As a consequence, the ambiguity of h3(u) and AT (u) due to UV renormalons is related to

that of the three–particle DA S(αi), T2(αi) and T3(αi). Using the results for the ambigu-

ities of the three–particle DA in Eq. (5.34) with the inverse substitution in Eq. (5.33) we

obtain

δUV {h3(u)} = 4c
Λ2

m2
ρ

d

du

∫ u

0

dα1

∫ 1−u

0

dα2

{[
u − α1

(1 − α1 − α2)2
− 1

1 − α1

]
φ⊥(α1)

(1 − α1)

−
[

1 − u − α2

(1 − α1 − α2)2
− 1

1 − α2

]
φ⊥(α2)

(1 − α2)

}
. (C.9)

The square bracket in the first line vanishes upon taking the α2 integral and that in the

second line upon performing the α1 integral. Thus there is no UV renormalon ambiguity

(at w = 1):

δUV {h3(u)} = 0. (C.10)

For AT (u) on the other hand

δUV {AT (u)} = 8c
Λ2

m2
ρ

∫ u

0

dα1

∫ 1−u

0

dα2

{[
1 − 2(u − α1)

(1 − α1 − α2)
+

(u − α1)(1 − α1)

(1 − α1 − α2)2

]
φ⊥(α1)

(1 − α1)2

+

[
1 − 2(1 − u − α2)

(1 − α1 − α2)
+

(1 − u − α2)(1 − α2)

(1 − α1 − α2)2

]
φ⊥(α2)

(1 − α2)2

}
. (C.11)

Taking one α integral we obtain

δUV {AT (u)} = 16c
Λ2

m2
ρ

∫ 1

0

dv φ‖(v)

[
θ(u > v)

1

(1 − v)2

(
(1 − u) + (u − v) ln

u − v

1 − v

)

+θ(u < v)
1

v2

(
u + (v − u) ln

v − u

v

) ]
. (C.12)
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C.2 IR renormalons in coefficient functions

The IR w = 1 renormalon ambiguity in the all–order perturbative calculation of the

leading–twist coefficient functions can be obtained from a generalization of the OPE rela-

tion in Eq. (A.12) for the case of an arbitrary Dirac matrix Γ between the quark fields:

δIR

{
T{d̄(x2)Γu(x1)}

}
= −cΛ2∆2

∫ 1

0

dα

∫ 1−α

0

dβ

×
{(

f (1)(β)δ(α) + f (1)(α)δ(β)
) [

d̄(x2 + α∆)Γu(x1 − β∆)
]

(C.13)

+
1

4
(1 − α − β)

(
gµν + 2

∆µ∆ν

∆2

) [
d̄(x2 + α∆)γαγµΓγνγαu(x1 − β∆)

] }
,

where we replaced the w–integral by π times the w = 1 residue and suppressed the gauge–

link; c was defined in Eq. (2.33).

For vector mesons there are two relevant structures, chiral–even Γ = γµ, and chiral–odd

Γ = σµν . We will discuss these two sectors separately.

Chiral–even amplitudes

The matrix element of the T–product of quark operators between the ρ+ and the vac-

uum state contains three Lorentz structures which we parametrize using the structure

function Fi:

〈0|T{d̄(−x)γµu(x)}|ρ+(P, λ)〉µ2 = fρmρ

∫ 1

0

du e−ipx(u−ū) (C.14)

×
{

e(λ)x

Px
PµF1(u, x2; µ2) +

(
e(λ)

µ − Pµ
e(λ)x

Px

)
F2(u, x2; µ2) − 1

2
xµ

e(λ)x

(Px)2
m2

ρF3(u, x2; µ2)

}
.

The OPE to twist–four accuracy reads:

F1(u, x2; µ2) = C
(2)
1 ⊗ φ‖(u) +

m2
ρx

2

4
A(u) ,

F2(u, x2; µ2) = C
(3)
2 ⊗ g

(v)
⊥ (u) + . . . ,

F3(u, x2; µ2) = C
(2)
3 ⊗ φ‖(u) + C(u). (C.15)

Here φ‖(u) is the leading–twist DA of the longitudinally polarized ρ–meson, g
(v)
⊥ (u) is the

DA of twist–three corresponding to the contribution of the transversely polarized ρ–meson

and the functions A(u), C(u) represent higher–twist contributions. At leading order in αs

C
(2)
1 (u, v) = C

(3)
2 (u, v) = δ(u − v), alias F1(u, x2; µ2) = φ‖(u) and F2(u, x2; µ2) = g

(v)
⊥ (u),

while the remaining twist–two coefficient function C
(2)
3 vanishes.

In order to calculate the IR–renormalon ambiguity in the leading–twist part of the

amplitudes in Eq. (C.14) we take the appropriate matrix element of Eq. (C.13) retaining
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the leading terms in Eq. (C.15). The result reads ∗∗:

δIR

{
C

(2)
1 ⊗ φ‖(u)

}
=

−16cΛ2

m2
ρ

∫ 1

0

dv

∫ 1

0

dα

∫ 1−α

0

dβ δ(v(1 − α − β) + α − u)φ‖(v)

×
[(

f (1)(β)δ(α) + f (1)(α)δ(β)
)

+ 2(1 − α − β)
]

=
−16cΛ2

m2
ρ

∫ 1

0

dv φ‖(v)
[
θ(u < v)

1

v2

(
u + u2 + (v − u) ln

v − u

v

)

+θ(u > v)
1

v̄2

(
ū + ū2 + (u − v) ln

u − v

v̄

) ]
,

δIR

{
C

(2)
3 ⊗ φ‖(u)

}
=

4cΛ2

m2
ρ

d2

du2

∫ 1

0

dv

∫ 1

0

dα

∫ 1−α

0

dβ(1−α−β) δ(v(1−α−β) + α − u)φ‖(v)

=
4cΛ2

m2
ρ

{∫ 1

0

dv φ‖(v)

[
θ(u > v)

1

v̄2
+ θ(u < v)

1

v2

]
− φ‖(u)

uū

}
. (C.16)

Comparing these expressions with the UV–renormalon ambiguities in the twist–four con-

tributions for A(u) and C(u) in Eq. (C.7) and†† Eq. (C.4), respectively, we observe that

the ambiguities in the structure functions Fi cancel out, as expected.

Chiral–odd amplitudes

The calculation for chiral-odd amplitudes goes along similar lines. We parametrize the

matrix element in terms of three more structure functions

〈0|d̄(−x)σµνu(x)|ρ+(P, λ)〉 = ifT
ρ

∫ 1

0

du e−ipx(u−ū)
{(

e(λ)
µ Pν − e(λ)

ν Pµ

)
F T

1 (u, x2; µ2)

+ (Pµxν − Pνxµ)
e(λ)x

(Px)2
m2

ρF
T
2 (u, x2; µ2) +

1

2

(
e(λ)

µ xν − e(λ)
ν xµ

) m2
ρ

Px
F T

3 (u, x2; µ2)
}

.(C.17)

To twist–four accuracy

F T
1 (u, x2; µ2) = C

T (2)
1 ⊗ φ⊥(u) +

m2
ρx

2

4
AT (u) ,

F T
2 (u, x2; µ2) = C

T (3)
2 ⊗ h

(t)
‖ (u) + . . . ,

F T
3 (u, x2; µ2) = C

T (2)
3 ⊗ φ⊥(u) + CT (u) , (C.18)

where φ⊥(u) parametrize the leading–twist part. Repeating the procedure of the previous

section we obtain the following ambiguity:

δIR

{
C

T (2)
1 ⊗ φ⊥(u)

}
= −16c

Λ2

m2
ρ

∫ 1

0

dv

∫ 1

0

dα

∫ 1−α

0

dβ δ (v(1 − α − β) + α − u)φT (v)

∗∗The IR ambiguity of C
(3)
2 ⊗ g

(v)
⊥ is more difficult to obtain because the twist–three matrix element

vanishes for on–shell massless quark states. This ambiguity must be compensated by contributions of

twist–five operators and is of no interest for our purposes.
††Taking into account the relation of Eq. (5.5) between C(u) and g3(u).
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×
(
f (1)(β)δ(α) + f (1)(α)δ(β)

)

= −16c
Λ2

m2
ρ

∫ 1

0

dv φT (v)

[
θ(u < v)

1

v2

(
u + (v − u) ln

v − u

v

)

+θ(u > v)
1

v̄2

(
ū + (u − v) ln

u − v

v̄

) ]
,

δIR

{
C

T (2)
3 ⊗ φ⊥(u)

}
= 0, (C.19)

The absence of an ambiguity in C
T (2)
3 ⊗φ⊥(u), which is to be associated with CT (u), results

from the fact that Diagram 2 in Fig. 1 vanishes owing to the identity γασµνγ
α = 0. The

absence of this ambiguity is expected based on the fact that h3(u) has no corresponding

UV–renormalon ambiguity — see Eq. (C.10) — and the relation between CT (u) and h3(u)

in Eq. (5.24). Comparing the result for δIR{CT (2)
1 ⊗ φ⊥(u)} with the UV–renormalon

ambiguity in AT (u) in Eq. (C.12) we observe that the ambiguities in the structure function

F T
1 cancel out. This completes the calculation.
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