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This paper describes a mathematical model for the dynamic magnetic power losses in the laminated steel stator of high frequency 

permanent magnet machines, such as Brushless DC (BLDC) Motors. The model presented is based on a utilization of the dynamic 

Jiles-Atherton model. Accurate dynamic BH curve fitting and magnetic power loss derivations have been achieved, where the 

calculated magnetic losses have shown around 95% accuracy from 5 Hz to 2000 Hz, over a flux density range of 1.0 T to 1.6 T. This 

approach has been applied to estimate the magnetic power loss of a small scale, high frequency (>10,000 rpm) BLDC motor, with 

calculated and measured losses being in close agreement. 
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I. INTRODUCTION 

HE magnetic power losses in ferromagnetic materials 

have been continuously studied since the first formulation 

of power loss in ferromagnetic materials was derived by 

Steinmetz [1]. According to more recent research [2],[3], the 

magnetic losses are normally decomposed into the sum of a 

frequency independent hysteresis contribution,Physteresis, and 

a frequency dependent dynamic contribution,Pdynamic.  

On one hand, considering magnetic domain wall theory, the 

hysteresis contribution Physteresis corresponds to domain wall 

displacement against the pinning effect [4]. On the other hand, 

in terms of the physical origin of the dynamic 

contribution Pdynamic , it was considered as the sum of the 

classic eddy current loss [5], [6], and a supplementary term of 

excess or anomalous loss[7],[8], [9]: 

𝐏𝒗 = 𝐏𝐡𝐲𝐬𝐭𝐞𝐫𝐞𝐬𝐢𝐬 + 𝐏𝐞𝐝𝐝𝐲 + 𝐏𝐚𝐧𝐨𝐦𝐚𝐥𝐨𝐮𝐬

= 𝐤𝐡𝐟𝐦𝐁𝐧 + 𝐤𝐞𝐟𝐦
𝟐 𝐁𝟐 + 𝐤𝐚𝐟𝐦

𝟏.𝟓𝐁𝟏.𝟓(1) 

Where P𝑣 is the total magnetic loss per unit volume, kh, ke, 

and ka are the coefficients of the hysteresis loss, eddy current 

loss, and anomalous loss, 𝑓𝑚 is the frequency of the magnetic 

field, and B is the induction flux density [10]. 

However, this formula has been proven inappropriate for 

non-oriented laminations when the magnetic field frequency 

𝑓𝑚  is higher than 400 Hz [11]. It is surmised that the 

discontinuous character of the magnetization process at the 

microscopic level is a nonlinear and complex function of 

magnetization and frequency [3], [9], [12], and that the 

hysteresis loss is influenced by the dynamic loss at high 

frequency [3]; which means the interactions of the three terms 

in (1) need to be taken into account for high frequency 

calculations. 

In this paper, we introduce a transient mathematical model 

which can automatically take the interactions of the three 

terms in (1) into account. This model is able to calculate the 

BH curves and magnetic power losses in laminated steel 

accurately, over a wide range of frequencies between 5 Hz and 

2,000 Hz and a magnetic flux density from 1.0T to 1.6T i.e. 

the conditions typically found in a modern BLDC motor. The 

key elements of this model are the Jiles-Atherton Model [4] 

and its extension to conducting magnetic materials [13], which 

will be called the ‘dynamic Jiles-Atherton model’ in this 

paper. Several necessary modifications have been made to the 

original dynamic Jiles-Atherton model in order to make it 

work correctly for laminations in high frequency permanent 

magnet synchronous machines (PMSMs), such as BLDC 

motors.  

Since the working frequencies of modern BLDC motors are 

normally from hundreds to thousands Hz, the conventional 

power loss formulae for 50 Hz are no longer appropriate for 

this kind of electrical machine [11].Our proposed dynamic 

Jiles-Atherton model offers an accurate mathematical 

approach for modeling the magnetic power loss in this kind of 

machine, over a wide range of magnetic working frequencies 

and flux densities. Only two BH curves are needed for any 

given Bmax to simulate the dynamic properties of the selected 

laminated steel.  

II. MATHEMATICAL MODELS 

A. Static Jiles-Atherton Model 

Jiles and Atherton [4] proposed a mathematical model of the 

hysteresis mechanism in ferromagnetic materials, based on  

physical insights into the magnetization process. The five 

original equations of Jiles-Atherton model are listed below: 

𝐌𝐚𝐧(𝐇𝐞) = 𝐌𝐬(𝐜𝐨𝐭𝐡(𝐇𝐞 𝒂⁄ ) − (𝒂 𝐇𝐞⁄ ))        (𝟐) 

Where Man is the anhysteretic magnetization, He  is the 

effective field, Ms is the saturation magnetization, and 𝑎 is a 

parameter with dimensions of magnetic field, which 

characterizes the shape of the anhysteretic magnetization.  

𝑯𝒆 = 𝑯 + 𝜶𝑴       (𝟑) 

Where 𝐻 is the applied field, 𝑀 is the bulk magnetization, 

and 𝛼  is a mean field parameter representing interdomain 

coupling. 

𝐌 = 𝐌𝐫𝐞𝐯 + 𝐌𝐢𝐫𝐫      (𝟒) 

T 
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Where Mrev is the reversible magnetization, and Mirr is the 

irreversible magnetization. 

𝐌𝐫𝐞𝐯 = 𝐜(𝐌𝐚𝐧 − 𝐌𝐢𝐫𝐫)      (𝟓) 

Where c is the coefficient of proportionality which can be 

determined experimentally by the ratio of the initial 

differential susceptibilities of the normal and anhysteretic 

magnetization curves [4],[14]. 

𝛍𝟎 ∫ 𝐌𝐚𝐧𝐝𝐇𝐞 = 𝛍𝟎 ∫ 𝐌𝐝𝐇𝐞

+ 𝛍𝟎𝐤𝛅(𝟏 − 𝐜) ∫ (
𝐝𝐌𝐢𝐫𝐫

𝐝𝐇𝐞

) 𝐝𝐇𝐞        (𝟔) 

Where the coefficient k  is the pining parameter which 

determines the amount of energy dissipated, and δ is a 

directional parameter which ensures that energy is always lost 

through dissipation; which means δ = +1  when dH dt⁄ ≥ 0 

and δ = −1 when dH dt⁄ < 0.  

According to the explanation above, (2), (3), (4), (5) & (6) 

are the five original equations of the Jiles-Atherton model. 

Jiles and Atherton initially assumed that c = 0 and Mrev = 0 

in (6) in the first edition of the Jiles-Atherton model [4]. This 

assumption makes M = Mirr , and leads to the differential 

equation for hysteresis: 

 

𝐝𝐌

𝐝𝐇
=

𝟏

(𝟏 + 𝐜)

𝐌𝐚𝐧 − 𝐌

𝐤𝛅 − 𝛂(𝐌𝐚𝐧 − 𝐌)
+

𝐜

(𝟏 + 𝐜)

𝐝𝐌𝐚𝐧

𝐝𝐇
       (𝟕) 

Where the parameter c in (7) comes only from (5). 

However, according to domain wall theory, domain wall 

bending will normally occur in ferromagnetic materials [4], 

which means that the assumption of Mrev = 0  is not 

necessarily valid.  Additionally, the value of c is significant in 

all the measured materials in a later publication by Jiles[14], 

which is normally 0.14 to 0.55 within the maximum bounds 

from 0 to 1. Under these circumstances, Jiles abandoned the 

assumptions that c = 0 and Mrev = 0 when he tried to extend 

the static Jiles-Atherton model into a dynamic model [8], in 

other words, the static Jiles-Atherton model is not consistent 

with the dynamic Jiles-Atherton model [13].  

Therefore, in order to avoid this inconsistency, we re-

derived the static Jiles-Atherton model based on the five 

original equations mentioned above without the assumption 

that c = 0 and Mrev = 0 . Thus, the re-derived differential 

equation for magnetic hysteresis is: 

𝐝𝐌

𝐝𝐇
=

𝐌𝐚𝐧 − 𝐌

𝐤𝛅 − 𝛂(𝐌𝐚𝐧 − 𝐌)
+

𝐜𝐤𝛅

𝐤𝛅 − 𝛂(𝐌𝐚𝐧 − 𝐌)

𝐝𝐌𝐚𝐧

𝐝𝐇
      (𝟖) 

And by substituting (3) into (2): 

𝐌𝐚𝐧 = 𝐌𝐬 (𝐜𝐨𝐭𝐡 (
𝐇 + 𝛂𝐌

𝒂
) − (

𝒂

𝐇 + 𝛂𝐌
))       (𝟗) 

The five original equations of the Jiles-Atherton model have 

been simplified into two equations; which are (8) and (9). This 

re-derived static Jiles-Atherton model is consistent with the 

dynamic Jiles-Atherton model [13] in our simulations.  

As seen in (8) and (9), there are in total five 

parameters α, a, c, k, M𝑠 in the re-derived Jiles Atherton model. 

According to Jiles [13],  B = μ0(M + H) ≅ μ0M  in 

laminations because H ≪ M  in soft magnetic materials, so 

Ms ≅ Bs/μ0  will apply in laminations, where Bs  is the 

saturation flux density given by the manufacturer. Therefore, 

there are actually four parameters α, a, c & 𝑘which need to be 

determined for the re-derived Jiles-Atherton model. The 

numerical method for the parameter identification can be 

found in Jiles’ paper [14].  

In order to simplify the experimental system and increase 

the BH curve fitting accuracy of the parameter identification 

process, several evolutionary computing methods have been 

previously used, based on the iterative trial and error basis 

using measured hysteresis loops [15], [16], [17], [18], [19], 

[20]. We selected particle swarm optimization (PSO) [21], 

[22] as our approach because it can achieve better accuracy 

based on simpler tuning and less iteration time compared with 

other approaches [20]. The tuning of the PSO method in this 

application is shown in the Appendix A. 

B. Dynamic Jiles-Atherton Model 

Jiles has already attempted to illustrate the frequency 

dependence of hysteresis curves in conducting magnetic 

materials [13]. The classical eddy current instantaneous power 

loss per unit volume is proportional to the square of the rate of 

change of magnetization as discussed by Chikazumi [5], [13]. 

This gives:  

𝐝𝐖𝐞𝐝𝐝𝐲

𝐝𝐭
=

𝐝𝟐

𝟐𝛒𝛃
∙ (

𝐝𝐁

𝐝𝐭
)

𝟐

=
𝛍𝟎

𝟐𝐝𝟐

𝟐𝛒𝛃
∙ (

𝐝𝐌

𝐝𝐭
)

𝟐

      (𝟏𝟎) 

Where Weddy is the dissipation due to eddy current loss, ρ is 

the resistivity in Ωm ,  d  is the cross-sectional dimension in 

meters; which is thickness for laminations or diameter for 

cylinders and spheres.  β is a geometrical factor which varies 

from  β = 6 in laminations, β = 16 in cylinders and β = 20 in 

spheres[13].  

The expression of the anomalous instantaneous power loss 

with respect to magnetic induction derivative 𝑑𝐵/𝑑𝑡 has been 

developed and justified by Fiorillo and Novikov [12]. The 

anomalous instantaneous power loss per unit volume can be 

expressed as: 

𝐝𝐖𝐚𝐧𝐨𝐦𝐚𝐥𝐨𝐮𝐬

𝐝𝐭
= (

𝐆𝐝𝐰𝐇𝟎

𝛒
)𝟏 𝟐⁄ ∙ (

𝐝𝐁

𝐝𝐭
)

𝟑 𝟐⁄

= (
𝐆𝐝𝐰𝐇𝟎

𝛒
)𝟏 𝟐⁄ ∙ (

𝛍𝟎𝐝𝐌

𝐝𝐭
)

𝟑 𝟐⁄

       (𝟏𝟏) 

Where W𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 is the dissipation due to anomalous loss, 

G is a dimensionless constant of value 0.1356 [12], w and d 

are the width and thickness of the laminations. H0  is a 

parameter representing the fluctuating internal potential 

experienced by domain walls [9]. 

However, the original dynamic Jiles-Atherton model has 

not been commonly used in practice due to its relatively low 

accuracy. The major problem with the original dynamic Jiles-

Atherton model is that the pre-determined parameter H0is not 

actually constant in this transient mathematical model, but 
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should be determined based on each individual case; which is 

solved using the PSO method in our work.  

For the excess loss in (11), Jiles calculated the cross-

sectional area S as (w × d), which is the cross-sectional area 

of one layer of the laminations. Actually, one layer of 

lamination is not normally used in practical applications. 

Additionally, Jiles has missed out the absolute value sign for 

dB/dt [12], which will cause unphysical behavior when the 

value of dB/dt becomes negative. Therefore, the anomalous 

loss (11) should be modified to: 

𝐝𝐖𝐚𝐧𝐨𝐦𝐚𝐥𝐨𝐮𝐬

𝐝𝐭
= (

𝐆𝐒𝐇𝟎

𝛒
)𝟏 𝟐⁄ ∙ |

𝐝𝐁

𝐝𝐭
|

𝟑 𝟐⁄

= (
𝐆𝐒𝐇𝟎

𝛒
)

𝟏 𝟐⁄

∙ |
𝛍𝟎𝐝𝐌

𝐝𝐭
|

𝟑 𝟐⁄

       (𝟏𝟐) 

Where S is the cross-sectional area of the laminated steel 

stack. 

Taking both classic eddy current loss and anomalous loss 

into consideration, the energy balance equation of the 

hysteresis (6) can be extended to [13]: 

𝛍𝟎 ∫ 𝐌𝐚𝐧(𝐇)𝐝𝐇𝐞

= 𝛍𝟎 ∫ 𝐌(𝐇)𝐝𝐇𝐞 +   𝛍𝟎𝐤𝛅(𝟏

− 𝐜) ∫ (
𝐝𝐌𝐢𝐫𝐫

𝐝𝐇𝐞

) 𝐝𝐇𝐞  

+ ∫
𝛍𝟎

𝟐𝐝𝟐

𝟐𝛒𝛃
(

𝐝𝐌

𝐝𝐭
)

𝟐

𝐝𝐭

+ ∫ (
𝐆𝐒𝐇𝟎

𝛒
)

𝟏

𝟐

|
𝛍𝟎𝐝𝐌

𝐝𝐭
|

𝟑

𝟐

𝐝𝐭     (𝟏𝟑) 

In accordance with Jiles’ paper [13], the left-hand side 

corresponds to the energy of the lossless anhysteretic process 

𝐖an,  the first term on the right-hand side is the contribution 

to the magnetostatic energy 𝐖M, the second, third, and fourth 

terms on the right-hand side are the dissipation due to domain 

wall pining loss 𝐖hysteresis , the dissipation due to eddy 

current loss  𝐖eddy, and the dissipation due to anomalous loss 

𝐖anomalous , respectively. If there is no dissipation, the 

magnetization must follow the anhysteretic curve. This 

equation can be manipulated to: 

𝐌𝐚𝐧(𝐇) = 𝐌(𝐇) + 𝐤𝛅(𝟏 − 𝐜) (
𝐝𝐌𝐢𝐫𝐫

𝐝𝐇𝐞

) +
𝛍𝟎𝐝𝟐

𝟐𝛒𝛃
(

𝐝𝐌

𝐝𝐭
) (

𝐝𝐌

𝐝𝐇𝐞

)

+ (
𝐆𝐒𝐇𝟎𝛍𝟎

𝛒
)

𝟏

𝟐

|
𝐝𝐌

𝐝𝐭
|

𝟏

𝟐

(
𝐝𝐌

𝐝𝐇𝐞

)       (𝟏𝟒) 

Equation (14) can be directly solved together with (2), (3), 

(4) & (5) using numerical methods.  

It can be seen that there is only one additional parameter 

H0 which needs to be determined in the dynamic model. 

Therefore, we can measure one additional high frequency BH 

curve under the same Bmax as the static measurement, and use 

the PSO method to find it. The details of the tuning of the PSO 

method are shown in the Appendix B. 

III. APPLICATION OF MATHEMATICAL MODELS 

A. Application of the Dynamic Jiles-Atherton Model to 

Magnetic Loss for Alternating Magnetic Fields 

The original Jiles-Atherton model [4] was proposed to 

model the saturated static hysteresis mechanism in 

ferromagnetic materials, and the five parameters α, a, c, k & M𝑠 

were set as constants for each kind of material [14]. Actually, 

even though we use the same material, our experimental 

results reveal that a different number of layers in the laminated 

steel stack will result in slightly different BH curves, where 

the thicker lamination stacks need a lower excitation field to 

achieve the same Bmax. This phenomenon may be caused by 

flux leakage from the toroid stack, the alignment of displaced 

magnetic domains or material sample variations. These factors 

make each lamination stack a unique case, which therefore 

needs to be calculated individually. 

Furthermore, the five static parameters are not constants and 

will gradually change when the maximum magnetic flux 

density  Bmax changes. In order to deal with this issue, several 

improved static models have been proposed to take into 

account the influence of  Bmax[15], [23], [24], [25]. However, 

none of these improved models are used in our work as they 

are not consistent with the dynamic Jiles-Atherton described 

above.  

Instead, we decided to use the method of a parameter 

array[15] in this work. Given that the saturated magnetic flux 

density is Bsat, we divide the maximum magnetic flux density 

Bmax into small steps within the range from 0.5 Bsatto 0.8 Bsat, 

and perform the parameter optimization separately for every 

measured magnetic flux step, to obtain a parameter array for 

the static Jiles-Atherton model. The same array will be used in 

the dynamic Jiles-Atherton model, and the additional 

parameter H0  will be determined based on a high frequency 

dynamic BH curve at the same magnetic flux density step. 

Therefore, as long as the parameter array is determined, the 

dynamic Jiles-Atherton model will be able to calculate the 

dynamic BH curves at frequencies up to several kilohertz. 

B. Application of the Dynamic Jiles-Atherton Model to the 

Magnetic Loss of a PMSM (BLDC motor) 

According to Guo’s review paper, empirical formulae have 

been derived to model the magnetic properties under a rotating 

magnetic field in order to calculate the magnetic power loss in 

electrical machines, but their measurement techniques and 

modeling approaches are still far from standardization [26]. In 

this paper, we developed a new approach instead of the 

conventional time stepped FEM [11], [26], [27] to utilize the 

proposed dynamic Jiles-Atherton model to estimate the 

magnetic power loss in a PMSM. More mathematical work 

needs to be done to make the dynamic Jiles-Atherton model 

and time stepped FEM compatible with each other. Our 

proposed new approach is computationally fast (as the flux 

density distribution within the stator geometry is only 

calculated once by FEM) and yields accurate results over a 

wide speed range for the PMSM. 

Generally, in commercial PMSMs, the geometry of the 



>FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE)< 

 

4 

laminations is designed to concentrate the magnetic flux 

within the winding areas, and the flux density at other 

positions is invariably much lower. This characteristic also 

concentrates the magnetic power losses within the winding 

areas.  An example of the calculated flux density distribution 

(using FEM) of a commercial BLDC motor can be seen in Fig. 

1. Furthermore, the flux density in the winding area is almost 

purely alternating due to the geometric design, as shown by 

the plot in Fig. 2. These two factors mean that the magnetic 

power loss in the PMSM is predominantly due to the 

alternating flux. Therefore, provided we can neglect the 

relatively small but unknown power loss difference between 

alternating and rotational fluxes, then the dynamic Jiles-

Atherton model is applicable to modeling the power loss of  

PMSMs.  

 

 
 

Fig. 1  Section of the Measured Commercial BLDC Motor 

(𝐒𝐭𝐚𝐭𝐨𝐫 𝐃𝐢𝐚𝐦𝐞𝐭𝐞𝐫 ∅ = 𝟒𝟎𝐦𝐦) 

 

Fig. 2  Stepped Finite Element Method Analysis of the 

Magnetic Flux Density at Point A 

According to our experimental measurements, when the 

maximum magnetic flux density decreases from Bmax to 

0.5 Bmax, the total magnetic loss will decrease from Pmax  to 

around 0.1 Pmax. This indicates that the power loss in low flux 

density elements is negligible compared to that in the high 

flux density elements.  Therefore, we calculated the equivalent 

volume which encounters the maximum flux density Bmax , 

and used it as the functional volume to calculate the total 

magnetic loss with the dynamic Jiles-Atherton model. 

As shown in Fig. 1, the peak flux density will reach Bmax in 

the whole volume of each winding branch when it is lined up 

with the magnet, so they are 100% functional. Actually, we 

might slightly overestimate the power loss in the winding 

branches because a small proportion of the elements at the 

edges do not encounter  Bmax. However, the total volume at 

the edges is much smaller than that of the branches, which 

makes the difference negligible compared to the total 

magnetic loss. In the middle circular ring, the magnetic flux of 

a winding branch will separate into two paths and go into two 

neighboring winding branches through the ring. Since the flux 

will tend to go through the outside of the ring, we can assume 

an outside functional ring, and the thickness of that functional 

ring should be 0.5w , if we assume that all the flux is 

concentrated to reach Bmax . In practice, the flux density 

between the branches is lower than 0.5 Bmax  in the FEM 

simulation, wherein the loss is negligible compared to the loss 

in the elements with Bmax. Therefore, we should subtract this 

volume from the total functional ring, and this will reduce the 

volume of the functional ring by about 50%. Hence, assuming 

the thickness of the lamination is D, the total functional 

volume can be derived as: 

𝑽𝒇𝒖𝒏 = {𝟎. 𝟓 × 𝝅[(𝑹 + 𝒓)𝟐 − (𝑹 + 𝒓 − 𝟎. 𝟓𝒘)𝟐] + 𝟏𝟐 × 𝑳

× 𝒘 + 𝟏𝟐 × 𝒉 × 𝟐𝒘} × 𝑫                     (15) 
Then the total magnetic loss can be calculated as: 

𝑷 = 𝑨𝑩𝑯 ∙ 𝑽𝒇𝒖𝒏 ∙ 𝒇𝒎                       (16) 

Where ABH is the area within the BH curve at the magnetic 

field frequency 𝑓𝑚. 

IV. EXPERIMENTAL RESULTS 

A. Core Losses under Alternating Magnetic Field 

and Agreement with Modeled Values 

In order to measure the BH curves of the steel laminations 

under alternating magnetic fields, we extracted the laminated 

stator core stacks from commercial motors and incorporated 

them into the test system shown in Fig. 3. Raw data has been 

downloaded from the oscilloscope and processed in Matlab to 

derive the measured BH curves. This is similar to a test system 

previously described by other researchers  [28]. 
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Fig. 3 BH Curve Test System for the Laminated Core 

The lowest working frequency of our system is 5 Hz, due to 

the bandwidth limitation of the power amplifier. We have 

measured the BH curves at 5 Hz and 10 Hz, and found that 

relative to the 400+ Hz BH curves, the difference between the 

shapes of the 5 Hz and 10 Hz curves is small, and we therefore 

assume that the 5 Hz values can adequately represent the static 

BH curve. Other researchers have found similar results [29], 

[30], [31]. However, we do see a decline in modeling accuracy 

at lower frequencies which may be due, at least in part, to this 

assumption - this is discussed in more detail later. 

We measured two laminated stator core stacks with the 

same section as shown in Fig. 1 but with different thicknesses, 

which are 10 mm and 20 mm, and we use the 20 mm stack 

here as an example. 

 
 

Fig. 4  Measured 5 Hz BH Curves of 20mm Core 

To reduce the experimental noise, our measured results are 

filtered by the Matlab built-in block encompassing the 

Savitzky-Golay method [32]. The static Jiles-Atherton 

parameters are extracted by the PSO method in the Appendix 

A, with the results shown in Table 1. 

Table 1 

JILES-ATHERTON PARAMETERS FOR 20 MM NON-

ORIENTED LAMINATION STACK BY PSO 

B𝑚𝑎𝑥[T] α a c k 

1.0 1.222e-03 6.934e+02 1.796e-01 1.002e+02 

1.2 1.076e-03 6.148e+02 1.626e-01 1.116e+02 

1.4 9.624e-04 5.571e+02 1.480e-01 1.242e+02 

1.6 9.101e-04 5.317e+02 1.140e-01 1.257e+02 

 

Another high frequency dynamic BH curve is needed to 

determine the dynamic parameter H0  for each Bmax  value 

through the PSO method described in Appendix B. The total 

magnetic loss per unit volume can be calculated as 

𝑷𝒗 = 𝑨𝑩𝑯 ∙ 𝒇𝒎  (W/m3)    

= 𝟏 × 𝟏𝟎−𝟗  ∙ 𝑨𝑩𝑯 ∙ 𝒇𝒎 (W/mm3)        (17) 

Where ABH is the area within the BH curve at the magnetic 

field frequency 𝑓𝑚. 

The results are shown in Fig. 5 to Fig. 12. 

 

 
Fig. 5  Measured and Calculated BH Curves of 20mm 

Core (𝐁𝒎𝒂𝒙 = 𝟏. 𝟔𝑻,  𝑯𝟎 = 𝟏. 𝟐𝟑 × 𝟏𝟎−𝟒) 

 
Fig. 6  Dynamic Magnetic Power Loss for 20 mm Core 

(𝐁𝒎𝒂𝒙 = 𝟏. 𝟔𝑻, 𝑯𝟎 = 𝟏. 𝟐𝟑 × 𝟏𝟎−𝟒) 
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Fig. 7  Measured and Calculated BH Curves of 20 mm 

Core (𝐁𝒎𝒂𝒙 = 𝟏. 𝟒𝑻, 𝑯𝟎 = 𝟑. 𝟑𝟎 × 𝟏𝟎−𝟐) 

 
Fig. 8  Dynamic Magnetic Power Loss for 20 mm Core 

(𝐁𝒎𝒂𝒙 = 𝟏. 𝟒𝑻, 𝑯𝟎 = 𝟑. 𝟑𝟎 × 𝟏𝟎−𝟐) 

 
Fig. 9  Measured and Calculated BH Curves of 20 mm 

Core (𝐁𝒎𝒂𝒙 = 𝟏. 𝟐𝐓, 𝐇𝟎 = 𝟐. 𝟗𝟓 × 𝟏𝟎−𝟐) 

 

 
Fig. 10  Dynamic Magnetic Power Loss for 20 mm Core 

(𝐁𝒎𝒂𝒙 = 𝟏. 𝟐𝑻, 𝑯𝟎 = 𝟐. 𝟗𝟓 × 𝟏𝟎−𝟐) 

 

 

Fig. 11  Measured and Calculated BH Curves of 20 mm 

Core (𝐁𝒎𝒂𝒙 = 𝟏. 𝟎𝐓, 𝐇𝟎 = 𝟏. 𝟗𝟕 × 𝟏𝟎−𝟏) 

 
Fig. 12  Dynamic Magnetic Power Loss for 20 mm Core 

(𝐁𝒎𝒂𝒙 = 𝟏. 𝟎𝑻, 𝑯𝟎 = 𝟏. 𝟗𝟕 × 𝟏𝟎−𝟏) 

It can be seen from the figures that the BH curves will 

gradually become more elliptical than the standard BH curves 

with increasing frequency. Although the BH curve fitting 

becomes worse in the elliptical frequency range, the energy 

fitting is still accurate up to 1200 Hz.  

Our simulation software can solve the standard BH curves 

for any given frequency. However, it cannot solve the highly 

elliptical BH curves higher than 1200 Hz in this case, due to 

the limitation of the solving engine. We anticipate that the 

accuracy of the dynamic Jiles-Atherton model would still be 

good for higher frequencies if a better solving engine could be 

utilized. 

The accuracy of each calculated magnetic power loss has 

been calculated based on: 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚, % = [𝟏 −
|𝑷𝒗,𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅 − 𝑷𝒗,𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅|

𝑷𝒗,𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅

] x 100 %         (18) 

The results are summarized in Table 2. It can be seen that 

the accuracies of most of the calculations are 95 % or above, 

except for the 50 Hz ones. The reduced accuracy at lower 

frequency is possibly caused by the approximation of using 

the 5 Hz BH curve for the static parameter identification. 

Quasi-static BH curves would therefore be preferable for 

parameter identification for accurate low frequency modeling. 
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Table 2 

% ACCURACY OF THE CALCULATED RESULTS 

FOR 20 MM LAMINATION STACK 

 
    1.0 T     1.2 T     1.4 T     1.6 T 

50 Hz 88.1 88.0 86.6 95.4 

200 Hz 99.1 99.9 100 95.7 

400 Hz 95.1 99.3 98.9 94.1 

600 Hz 95.9 98.7 97.9 97.0 

800 Hz 99.9 98.9 97.0 99.2 

1000 Hz 97.3 99.9 96.2 99.1 

1200 Hz 95.8 96.0 95.6 98.3 

1400 Hz - - - 97.6 

1600 Hz - - - 96.9 

1800 Hz - - - 98.8 

 

 

However, over our frequency range of interest, which is  

400 Hz to 2000 Hz, the influence is negligible because the 

increased dynamic losses dominate over the small differences 

between the quasi-static and 5 Hz situations. 

 

B. Core Losses of Rotating PMSM and Agreement with 

Modelling Above 

In terms of the experimental measurements of the PMSM 

losses, we used the back-to-back motor test system illustrated 

in Fig. 13, under open load conditions.  The rotational speed 

and torque of the sample machine are measured to determine 

the power absorbed.  For the BLDC motors under test, which 

have 7 rotor pole pairs, the maximum magnetic field 

frequency measured of 1900 Hz corresponds to a rotational 

speed of just over 16,200 rpm. 

 

 
Fig. 13 Test System of PMSM 

To measure the magnetic losses of the electrical machine, 

we firstly measured the total loss of the PMSM comprising the 

magnetic loss and mechanical loss, then we replace the 

laminated stator core with a 3-d printed plastic core of the 

same shape to measure the mechanical loss.  Finally, the 

purely magnetic loss of the laminations is determined by 

subtracting the mechanical loss from the total loss.  

The measured and calculated results for the PMSM with 

core stacks of 10 mm and 20 mm can be seen in Fig. 14 and 

Fig. 15. 

 
Fig. 14  Magnetic Loss of  PMSM with 10mm Core 

 
Fig. 15  Magnetic Loss of  PMSM with 20mm Core 

The measured and calculated magnetic losses can be seen to 

match closely over the frequency range considered.  For the 

example PMSM machines (BLDC motors with a frame size of 

50 mm and lamination stacks of 10 mm and 20 mm) the 

magnetic losses ~ 40 – 80 W represent about 5 % of the 

maximum motor rating of 800 – 1600 W. 

V. SUMMARY & CONCLUSIONS 

In this paper, a modified dynamic Jiles-Atherton model has 

been presented to calculate the BH curves and magnetic power 

losses in laminated steel.  Only two measured BH curves are 

required for any given Bmax  to simulate the dynamic 

properties of the selected laminated steel over a wide 

frequency range.  The calculated BH curves, in combination 

with the flux density distribution in the stator, were used to 

derive the magnetic power losses in an example machine, a 

BLDC motor, via the following steps: 

1. FEM was used to find the distribution of the magnetic 

flux density B𝑚𝑎𝑥 in the motor stator 

2. The functional volume of the laminated steel was then 

determined from the FEM flux density distribution 

3. The BH curve of the lamination stack was measured at 

low frequency for the stipulated B𝑚𝑎𝑥 
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4. The static Jiles-Atherton parameters from the measured 

BH curve were then determined via the PSO method 

5. A high frequency dynamic BH curve of the same 

lamination stack was measured for the same B𝑚𝑎𝑥 

6. The 𝐻0 value for the dynamic Jiles-Atherton model was 

also determined via the PSO method 

7. Dynamic BH curves could then be generated for any 

reasonable frequency via the dynamic Jiles-Atherton 

Model 

8. The total magnetic power loss of the motor was 

subsequently calculated for a range of speeds, using 

equation (16). 

    The calculated magnetic losses have shown around 95% 

accuracy over a wide range of frequencies between 5 Hz and 

2,000 Hz with a magnetic flux density from 1.0 T to 1.6 T, 

when compared with experimental measured values. 

Although this new approach neglects a number of factors 

including slot harmonics and power losses at low flux density, 

it can still yield accurate results over a wide speed range and is 

computationally fast. Therefore, it is suitable for machine 

design optimization in which the designer is altering the 

machine parameters continuously and then running 

simulations to see if the efficiency has improved or worsened.  

Furthermore, this dynamic Jiles-Atherton model has the 

potential to be extended to calculate the BH curves for 

rotational magnetic fields, based on vector generalization [33], 

[34], or implemented in a time-stepped finite element analysis 

such as the inverse Jiles-Atherton model [35].  

APPENDIX 

A. PSO Method for Parameter Identification in the Static 

Jiles-Atherton Model 

PSO is an evolutionary computation technique developed 

by Kennedy and Eberhart [21]. This concept originated as a 

simulation of a simplified social system, but has since been 

found effective for engineering optimization [21], [36].  

The basic principle of the PSO is similar to the food-

seeking process of a swarm. Assuming a swarm consists of N 

individuals looking for a “cornfield” in an S  dimensional 

space, and each individual can “remember” its personal best 

position “ pbest[ ] ” and the globally best position 

“gbest[ ]”. Kennedy and Eberhart [21] pointed out that the 

swarm will eventually land on the cornfield if the velocity of 

the swarm is set as 

𝐯[ ] = 𝐰 ∗ 𝐯[ ] + 𝐜𝐩 ∗ 𝐫𝐚𝐧𝐝( )

∗ (𝐩𝐛𝐞𝐬𝐭[ ] − 𝐩𝐫𝐞𝐬𝐞𝐧𝐭[ ]) + 𝐜𝐠

∗ 𝐫𝐚𝐧𝐝( )
∗ (𝐠𝐛𝐞𝐬𝐭[ ] − 𝐩𝐫𝐞𝐬𝐞𝐧𝐭[ ])       (𝟏𝟗) 

Where v[ ] is the velocity matrix of the swarm, present[ ] is 

the present position matrix of the swarm, rand( )  is a 

random number between 0 and 1. w is inertia weight proposed 

by Shi and Eberhart [37], and they recommended that a w 

decreasing linearly from 0.9 to 0.4 will work properly for most 

applications [36], [38]. cp and cg  are acceleration constants 

which represent the weighting of the stochastic acceleration 

terms that pull each particle toward pbest[ ] and gbest[ ]. 
By analyzing the simulation results, Kennedy and Eberhart 

[21] concluded that approximately equal values of the cp and 

cg seem to result in the most effective search of the problem 

domain, and a default value of cp = cg = 2 is preferred by 

them because it works very well for all the types of 

simulations they have done [36]. 

The population size of the particles is problem-dependent, 

and the recommended value was initially 15 to 30 [21], and 

then increased to 20 to 50 [36]. Actually, the population size 

of 30 is very commonly used in practical simulations [38], 

which has also been used in this research project. 

A constraint function is used to evaluate if the current 

position is better or worse, and the “pbest[ ]” “gbest[ ]” 

will be replaced by the current ones if they are better. 

𝐟𝐢𝐭𝐧𝐞𝐬𝐬 = 𝐟𝐜𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭(𝐱[ ])       (𝟐𝟎) 

Where x[ ] = x[ ] + v[ ]  is the current position of the 

swarm. 

When using the PSO method in an S dimensional space, a 

reasonable searching range should be pre-determined in each 

dimension in order to speed up the simulation and prevent 

over searching. In terms of the Jiles-Atherton model 

parameters, the value of Ms ≅ Bs/μ0 = 2.05T/(4π × 10−7H ·

m−1) ≅ 1.631 × 106A ∙ m−1  has been given by the 

manufacturer [39]. The range of  c has been given by Jiles and 

Atherton [4] as (0 , 1). According to Lederer’s research, the 

parameter k is the same as the coercive field strength H𝐶[15]. 

However, referring back to Jiles’ work [14], we find the value 

of k is quite close to the value of H𝐶  within a difference of 

around 10%.  Therefore, we set the searching range of k to be 

(80%H𝐶  , 120%H𝐶) as a reasonable range.  In terms of α and 

a, we use a very large range to cover almost all ferromagnetic 

materials. The searching ranges of the 5 parameters are listed 

in Table 3. 

Table 3 

SEARCHING RANGE OF JILES-ATHERTON 

PARAMETERS 

Parameter Range 

α [ 10−7 , 10−2] 

a [ 10−1 , 104] 

c [ 10−4 , 0.9999] 

k [0.8 × H𝐶 , 1.2 × H𝐶] 

M𝑆 1.631 × 106 

 

The BH curve fitting constraint function is set as 

𝐟𝐢𝐭𝐧𝐞𝐬𝐬 =
𝟏

𝐍
√∑(

𝐁𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐝(𝐢) − 𝐁𝐜𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐝(𝐢)

𝐦𝐚𝐱 (𝐁𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐝)
)𝟐

𝐍

𝐢=𝟏

       (𝟐𝟏) 

This PSO model can then be used with the static Jiles-
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Atherton Model to determine the 4 unknown parameters of the 

Jiles-Atherton Model. 

B. PSO Method for Parameter Identification in the 

Dynamic Jiles-Atherton Model 

We use the same static parameter array of α, a, c, k & M𝑠 for 

the dynamic Jiles-Atherton model at each magnetic flux 

density step to keep the model consistent. Therefore, only one 

additional parameter H0 will be determined based on a high 

frequency dynamic BH curve. 

Since we use a 5 Hz BH curve for the static parameter 

identification, which will reduce the accuracy at lower 

frequency, we should use a high frequency BH curve where 

the increased dynamic losses dominate over the small 

differences between the quasi-static and 5 Hz situations; in 

order to avoid an inherited error from the static parameter 

identification process. On the other hand, our Matlab/ 

Simulink system is not able to solve extreme  H0  values at 

very high frequency. Therefore, a reasonable frequency range 

should be selected for the H0  identification process, and 

150 Hz ≤ 𝑓𝑚  ≤ 250 Hz  has been found to be a suitable 

range in our case.  

According to the original publication concerning the 

anomalous loss [9], the value of  H0  for the measured 

laminated steel is normally around 0.06 A/m to  0.15 A/m. 

Therefore, we choose the searching range as [10−6, 10] in the 

PSO method.  

Since the anomalous loss was originally proposed to 

calculate the magnetic power loss rather than the magnetic BH 

curve [7], [8], [9], it is better to use an energy fitting constraint 

function rather than a BH curve fitting constraint function for 

the H0 determination. The energy fitting constraint function is 

set as 

fitness =
|𝐏𝒗,𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅 − 𝐏𝒗,𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅|

𝐏𝒗,𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅

        (𝟐𝟐)       

Where P𝑣,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  and P𝑣,𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑  can be calculated 

according to (17).  

This PSO model can then be used with the dynamic Jiles-

Atherton Model to determine the unknown parameter H0. 
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