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ABSTRACT
Previous research on consistent updates for distributed network
configurations has focused on solutions for centralized network-
configuration controllers. However, such work does not address
the complexity of modern switch datapaths. Modern commodity
switches expose opaque configuration mechanisms, with minimal
guarantees for datapath consistency and with unclear configuration
semantics. Furthermore, would-be solutions for distributed consis-
tent updates must take into account the configuration guarantees
provided by each individual switch – plus the compositional prob-
lems of distributed control and multi-switch configurations that
considerably transcend the single-switch problems. In this paper,
we focus on the behavior of individual switches, and demonstrate
that even simple rule updates result in inconsistent packet switching
in multi-table datapaths. We demonstrate that consistent configu-
ration updates require guarantees of strong switch-level atomicity
from both hardware and software layers of switches – even in a
single switch. In short, the multiple-switch problems cannot be
reasonably approached until single-switch consistency can be re-
solved.

We present a hardware design that supports a transactional con-
figuration mechanism, and provides packet-consistent configura-
tion: all packets traversing the datapath will encounter either the
old configuration or the new one, and never an inconsistent mix of
the two. Unlike previous work, our design does not require mod-
ifications to network packets. We precisely specify the hardware-
software protocol for switch configuration; this enables us to prove
the correctness of the design, and to provide well-specified invari-
ants that the software driver must maintain for correctness. We
implement our prototype switch design using the NetFPGA-10G
hardware platform, and evaluate our prototype against commercial
off-the-shelf switches.

Categories and Subject Descriptors
C.0 [General]: Hardware/software interfaces; C.2.1 [Computer-
Communication Networks]: Network Architecture and Design;
B.4.3 [Input/Output and Data Communications]: Interconnec-
tions (Subsystems)

Keywords
OpenFlow; switch configuration; atomic transactions; OpenFlow
bundles; NetFPGA

1. INTRODUCTION
Network administration involves the specification of policies for

traffic handling, including the routing, shaping and dropping of
network traffic. These policies translate into detailed flow-table

configurations of individual switches. Formal approaches to such
specifications and translations [1–5] provide mechanisms and al-
gorithms to safely handle updates by managing the transition from
one configuration state to the next. Reitblatt et al. [1, 2] formally
define packet consistency to specify desirable properties that con-
figuration updates should maintain. A packet-consistent configu-
ration update requires that every packet traversing the network be
processed using either entirely the previous configuration, or the
updated one, but never a mixture of the two.

Consider a single network-administration domain – with a col-
lection of network elements subject to a common set of policies.
An operational requirement would be the transition of this network
from an old configuration to a new configuration. To achieve con-
sistency, switches within the network must simultaneously handle
both old and new versions of the desired configuration at the same
time.

One approach is to deal with these multiple versions with no
changes to existing network hardware. Previous work [1, 2, 6] has
adopted this approach, and proposed embedding appropriate con-
figuration version numbers into existing fields (e.g., VLAN tags
or MPLS labels) of the Ethernet frames of packets flowing in the
network. These version number tags indicate a particular version
of the network configuration, and would be injected into packet
frames when the packets enter the administrative domain and then
stripped when they leave.

The reconfiguration of a new policy into any switch is done using
a sequence of configuration commands issued to the switch config-
uration interface. This requires the use of the programming contract
provided by the low-level implementation of this configuration in-
terface. However, in practice, these interfaces provide little or no
guarantee regarding the order in which the configuration commands
are processed and then manifested in the datapath [5].

As a result, in OpenFlow contexts, the entity computing a con-
figuration update (typically an OpenFlow controller) often needs to
resort to a pessimistic (worst-case) approach, e.g., the use of the
OpenFlow barrier protocol. On the receipt of a BarrierRequest
from a controller, the switch must respond with a BarrierReply
when the preceding configuration commands have been completely
processed. Even then, the switch is not constrained to process and
install the individual commands within a transaction in an ordered
and timely manner; in fact, as we show, commercial switches often
take advantage of this lack of constraint, presumably for perfor-
mance reasons. In the worst case, a barrier would be needed for
each individual configuration command to enforce ordering in a
command sequence.

However, a barrier transaction per individual command is still
insufficient in the case of modern switches. The design of modern
commercial OpenFlow switches (e.g., Broadcom OFDPA [7]) in-



volves pipelines of multiple specialized flow tables. A single policy
modification frequently translates into multiple potentially parallel
and asynchronous updates across different flow tables in a single
switch. The ordering of these updates with respect to the flow of
packets within the datapath can give rise to anomalies in the packet
flow, leading to possible violations of the desired switching pol-
icy. In such cases, even if every single configuration command
was sequenced using a barrier transaction, there would still be no
guarantee that the updates to the multiple tables are manifested in
a packet-consistent manner in the datapath. Such inconsistencies
can easily lead to packet loss, with subsequent performance im-
pact. They also raise serious security concerns, since the result-
ing misrouting of packets can cause violations of network security
policies. An attacker capable of triggering reactive configuration
updates (e.g., by intrusion-prevention systems) can cause repeated
packet misrouting, leading to traffic (and information) leakage.

In this paper, we argue that a crucial building block for packet-
consistent updates in an OpenFlow network with multiple switches
is the provision of packet consistency in the internal datapath of
each switch. We emphasize this point by experimentally demon-
strating consistency violations in commercially available switches,
in various scenarios. Such inconsistencies at the individual switch
level can violate any consistency guarantees provided by proposed
solutions to the distributed network update problem. We speculate
that the relevance of such problems motivated the introduction of
the Bundle feature in version 1.4 of the OpenFlow standard. Bun-
dles support atomic updates to a switch configuration; however, no
commercial switches that we know of currently support this fea-
ture.

These problems provide the motivation for our design of a switch
datapath and its configuration interface – which we present in de-
tail. This design provides one possible implementation of the Open-
Flow Bundle feature. We prove that the design provides the desired
consistency in its configuration interface, relying crucially on in-
variants implemented in hardware as well as invariants that need to
be preserved by the software driver of the switch.

The contributions of this paper are:

•A demonstration of the lack of guarantees in the configuration
interfaces of commercially available switches, and the resulting
violations in packet-routing policies.
•A precisely specified hardware-level transactional configuration

mechanism for multi-table pipelined switch datapaths that achieves
packet consistency, along with a proof of its correctness.
•An evaluation of our OpenFlow switch prototype (Blueswitch)

that implements this mechanism on the NetFPGA-10G platform.
We believe this is the first pipelined multi-table OpenFlow switch
on an FPGA, which is also the first switch to have a provably cor-
rect configuration interface to enforce packet consistency in its
datapath. We plan to contribute this implementation as an open-
source project in the NetFPGA ecosystem.

Although our focus in this work is on the update consistency of
individual switches and the implications for the problem of dis-
tributed consistent updates, we are not proposing novel solutions
to the distributed consistency problem. Instead, we argue that so-
lutions to the broader problem must rely on individually consis-
tent switches; indeed, previous solutions implicitly assume such
behavior. These solutions would work as intended, provided ev-
ery switch ensured consistency during its individual updates – and
provided the compositional problems of multiple controllers and
multiple switches were properly addressed.

In the rest of this paper, we first provide in §2 some background
on switch architectures and their configuration, and illustrate the

Figure 1: The two memories used in switch datapaths: (i) TCAMs
for flow-match definitions, and (ii) RAMs for forwarding actions.

impact on policy enforcement of the configuration interfaces of
commercially available switches. The packet misrouting caused by
the lack of guarantees provided by these interfaces motivates our
presentation of a detailed architecture of Blueswitch in §3. After
describing its datapath in §3.1, we detail the hardware and software
interface for switch configuration in §3.2. We provide a proof of
how it maintains consistency as well as the constraints imposed on
the protocol at the hardware-software interface. In §4, we describe
the implementation of Blueswitch on the NetFPGA platform, and
evaluate its performance. We discuss the design and its evaluation
in §5, and then conclude after a review of related work.

2. MOTIVATION
This section motivates the proposed switch design by presenting

the design of lookup memories used in a modern OpenFlow switch
(§2.1) and the challenges in maintaining policy consistency in such
architectures (§2.2). We focus our analysis on OpenFlow-enabled
switches, which implement the required data-plane functionality in
a single ASIC.

2.1 Datapath Memory and its Configuration
The forwarding functionality of the packet-processing pipeline

in modern OpenFlow switches relies on a fast-lookup abstraction
with support for extensive wildcard matching and reconfigurabil-
ity. The lookup abstraction, called a flow table in the OpenFlow
specifications, stores the forwarding policy and state. Rule entries
in the flow table are logically separated into two units: (a) the flow-
match definitions, which define the matching value for each field
of the lookup tuple of an input packet, and (b) the action list, which
contains the operations that need to be performed on each matched
packet (such as sending it out on a specific physical port).

Hardware switches predominantly implement flow tables using
two memory subsystems embedded in the ASIC. The flow-match
definitions are stored in one or more Ternary Content-Addressable
Memory (TCAM) modules. TCAMs are optimized for fast lookups,
supporting O(1) lookup complexity for any match, irrespective of
the lookup key-width or the number of stored flow-match defini-
tions. The output of a TCAM lookup is used to index into a regular
RAM memory module, which stores the flow actions and statis-
tics [8, 9]. Figure 1 shows the interaction between TCAMs and
RAM memory in high performance switching engines. In routers,
for instance, an IP address is used as the input key to the TCAM,
while the output value provides the RAM address that stores the
forwarding port and the next-hop IP address. OpenFlow switches
often use multiple TCAM flow tables to store the configured rules.

The rules in the flow tables are managed by the control software
of the switch, which runs on the switch co-processor. The con-
trol framework translates high-level OpenFlow command from the



controller into equivalent flow-table modifications. The flow ta-
bles expose a hardware configuration interface to the co-processor
(typically a set of memory-mapped register ports accessed over a
dedicated channel such as PCIe) that allows the control software to
manipulate the flow-table rules.

When a rule entry is inserted into or deleted from a flow ta-
ble, both the flow-table TCAM and its associated RAM must be
updated. During configuration updates inconsistencies may arise,
since the two memory modules are weakly associated and possess
different update latencies. Ensuring this consistency is complicated
– because the update latency of a single TCAM entry is not constant
and depends on the memory design and on the number and struc-
ture of the entries already installed, whereas the update latency of
a RAM entry is constant and depends solely on the memory type.

When a datapath is implemented using multiple flow tables, a
rule update often requires the modification of the TCAM and RAM
memories of each flow table. This exacerbates the problem of
maintaining consistency between the memory modules of all the
flow tables, especially while packets continuously traverse the dat-
apath, due to the myriad race conditions involved in updating mul-
tiple TCAM and RAM memories. In addition, the number and la-
tency of the read/write port IO operations that the control software
needs to perform to effect a single rule update, across all the flow
tables, depends on the speed and latency of the interface between
the control and switching processors.

One implementation choice to guarantee atomicity during flow-
table updates by the control software is to first drain and then block
the processing pipeline before installing the update, thereby avoid-
ing the possibility of forwarding inconsistencies. However, this op-
tion significantly increases both packet-forwarding latencies and la-
tency variability during updates. Another choice is to use a double-
buffered flow-table pipeline that uses shadow tables where an up-
dated configuration is written, along with an efficient commit oper-
ation that swaps the active and shadow tables. This avoids blocking
the processing pipeline, and hence reduces packet latencies through
the switch – but at a possibly increased memory cost.

2.2 Policy Enforcement during Configuration
Updates

The above discussion on the memory architecture in a switch dat-
apath illustrates the complexity in maintaining consistency during
configuration updates. Most switches do not provide any guaran-
tees on the installation order and latency of a sequence of updates;
as a result, such updates need to be carefully sequenced to not vio-
late policy [5].

Network administrators implement policies by configuring the
rule entries in the switch flow tables. Correct enforcement of net-
work routing policies is critical in network administration. Policy
enforcement requires not only that each configuration implements
the desired policy, but also that policy violations do not occur dur-
ing configuration updates.

A common approach to guaranteeing the ordering of a sequence
of rule modifications in OpenFlow architectures employs Barrier
messages, as described in §1. However, commercial switches show
a considerable diversity in their implementations of the Barrier
protocol, and their use does not always effectively provide the guar-
antees sought – for several reasons. Firstly, various switches do not
enforce such barriers in a manner consistent with specifications.
Secondly, using the Barrier protocol introduces significant network
round-trip latencies during large policy updates – which conse-
quently affects the overall performance of the network. Thirdly, be-
cause the forwarding control logic is distributed between the soft-
ware and hardware layers of the switch, the provision of effective
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Figure 2: Number of packets misrouted during policy updates for
Arista 7050S and Pica8 P3922. Both switches exhibit a significant
number of packets misrouted (y-axis) during small policy reconfig-
urations; the number of reconfigurations is shown along the x-axis,
pairwise for flow insertion and flow modification. The evaluation
for Blueswitch is presented in §4.4.

guarantees requires the tight coordination between the two layers.
In the absence of this coordination, weak temporal synchronization
between layers is exposed, causing transient policy inconsistencies
with potentially significant security implications.

To demonstrate these problems, we conducted experiments em-
ploying a simple measurement setup described in detail in §4.2. We
compared Blueswitch with two 10 GbE OpenFlow-enabled com-
mercial switches, the Arista 7050S [10] and Pica8 P3922 [11], and
connected them directly to a host capable of high-precision traffic
generation and capture. Traffic was generated at an aggregate 2
Gbps rate of small-sized (150-byte) packets, and FlowMod oper-
ations were used to evaluate the impact of policy reconfiguration
on data-plane performance. During each experiment, we initialized
the switch with a set of rules that forwarded traffic to a set of des-
tination IP addresses via a specific output port. After a sufficient
warm-up period, during which we generated traffic targeting the
installed rules, we changed the output port using FlowMod mes-
sages, and measured the latency and impact of the policy update on
the data and control planes.

The flow-insertion latency experiment initialized the switch with
a single low-priority wildcard flow matching the destination IP ad-
dress set. The output port for each destination IP was then changed
by inserting new higher priority rules for each destination. The
flow-modification latency experiment initialized the flow table with
a set of destination-specific rules, one for each destination IP. Then,
a corresponding set of rules modified each output port, which ef-
fectively modified only the action list of the initial rule set.

During each experimental run, we sent a BarrierRequest mes-
sage after each batch of FlowMods, and used the BarrierReply to
measure the processing latency of the switch. The two experiments
provide two modification scenarios; the first requires the agent to
update both the TCAM table as well as the associated RAM, while
(theoretically) the second modifies only the RAM.

Figure 2 presents the number of misrouted packets detected dur-
ing configuration updates for the two switches. We define a packet
in a flow as misrouted if it is forwarded through the output port
of the old configuration after any packet has been received from
the output port of the new configuration. The results show that
even for small policy updates, production switches exhibit signif-
icant packet misrouting. For example, when only two rules were
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Figure 3: Flow-table reconfiguration latency for the Blueswitch, Pica8 P3922 and Arista 7050S switches. Reconfiguration latency is mea-
sured using Barrier messages (control plane) and time-stamped data-plane packets (data plane).

modified, the Arista switch misrouted 130 packets, while the Pica8
switch exhibited routing inconsistency for 480 packets. The num-
ber of misrouted packets increases roughly proportional to the size
of the configuration change, while flow insertions in most cases
incurred more policy violations than flow modifications (although
large flow modifications in the Arista switch differed in this re-
spect).

We also explored the implementation of the Barrier protocol in
these two switches, and contrasted them with Blueswitch. Figure 3
shows the latencies measured for applying the configuration up-
dates described above. We measured two different latencies: (i) the
data-plane latency (which measures the time between the trans-
mission of the new configuration and the time that at least a single
packet was received on the new port for each flow), and (ii) the
control-plane latency (which measures the time between the trans-
mission of the new configuration and the receipt of a BarrierReply).

We observed significant differences in the other two switches,
both in the semantics of their Barrier implementations and their
performance. The Pica8 switch responded with a BarrierReply as
soon as it had received and installed all rule updates in the control
software stack of the switch. This implies that the switch imple-
mentation considers a configuration update to have occurred when
the FlowMod is received and installed in software, but independent
of installation in the hardware datapath. This behavior is inher-
ited from the OpenVSwitch architecture, which uses multiple rule
caches and adaptive rule installation to improve performance. Fur-
thermore, a close inspection in the installation order of new rules
through data-plane measurements revealed that rule installation in
Pica8 does not follow the ordering of FlowMods in the update se-
quence.

In contrast, the Arista switch exhibited a more consistent behav-
ior. Its BarrierReply latencies corresponded to the observed data-
plane latencies, while data-plane measurements showed that the in-
stallation of new rules preserved the ordering of the FlowMods in
the update sequence. However, this consistent behavior incurred a
performance penalty; the rule installation latency was an order of
magnitude higher than that of the Pica8.

Our experiments employed simple reconfiguration scenarios and
focused on inconsistencies occurring within single flow-table switch
setups. Even in such simple scenarios, production switches exhib-
ited significant policy inconsistencies, while the observed atomicity
semantics were diverse. In the case of more complex switch datap-
aths that are composed of processing pipelines with multiple tables
(as proposed in recent OpenFlow specifications), we anticipate that
such inconsistencies will be even more prevalent and more difficult
to mitigate.

The various proposed solutions for consistent distributed net-

work update (discussed in §1) need to send multiple FlowMods
to each switch affected by the update. The installation of any such
FlowMod in any switch could cause the packet switching incon-
sistencies we describe here, negating the consistency guarantees
promised by such solutions. However, these proposed solutions
would work as intended if each participating switch offered a con-
sistent update semantics for every FlowMod it installed into its dat-
apath.

3. BLUESWITCH ARCHITECTURE
In this section we present the system architecture for Blueswitch,

a multi-table switch design with support for a packet-consistent
configuration interface. The primary design goal is to provably
avoid the misrouting issues encountered in the previous section.
We take into account the requirements on the software driver to
ensure this goal.

Our design is implemented using a hardware-switched data plane
configured with a software driver and switch agent. The software
agent implements the OpenFlow protocol and uses the driver to
control, configure, and monitor the switch hardware. We first de-
scribe the architecture of a generic pipelined multi-table switch to
provide a concrete context for the description of the transactional
configuration scheme. We then present and prove the correctness
of the scheme in the context of a datapath comprised of a linear
pipeline. This is compatible with the logical datapath model used
by later versions of the OpenFlow standard, and provides an im-
plementation of the Bundle feature of OpenFlow 1.4. In §5, we
discuss how to extend this scheme and support complex pipelines
with forks and joins.

3.1 Multi-Table Datapath Architecture

Datapath Structure
Figure 4 shows the architecture of the datapath. The physical ports
supply input packets to the datapath via their associated physical
port interfaces. On every packet received at a physical port, the in-
terface inserts the port identifier into the packet metadata. Packets
leave the output ports of the switch via a crossbar interconnect de-
signed with 1-to-N and N-to-1 arbitration modules. The crossbar
interconnect routes processed packets to the physical output ports
according to the metadata updated by the match processor.

Each incoming packet with metadata is stored in port-specific
FIFOs and is parsed in parallel by per-port header parsers. Header
fields and metadata parsed by each header parser are serialized
through an N-to-1 arbiter into the pipeline. A single processing
pipeline is used to save logic costs in the flow-table processor. The



Figure 4: The pipelined datapath. Broken (dashed) lines indicate the flow of metadata attached to packets.

flow-table pipeline sends the matched output actions to per-port
packet marshallers via an 1-to-N arbiter. The packet marshallers
update or modify the header and metadata of the packets stored in
the FIFOs to apply the specified output actions, and send the mar-
shalled packets to the output crossbar interconnect.

One important field inserted into the metadata for each packet is
Vp, the configuration version of the datapath; its use is described in
the following subsection on Flow-Table Structure.

In addition to physical ports, the switch design contains an in-
put port and an output port used to communicate with a host over
DMA/PCIe. These two ports allow packet interception and injec-
tion for experimental measurement purposes, as described in §4.
Switch configuration registers are exposed to control software on
the host over PCIe.

Flow-Table Structure
Figure 5 shows the structure of a single flow table. A flow table
contains two TCAMs and action processors in a double-buffered
configuration. The active TCAM and action processor, Ti, is the
one used by the matching logic, while the shadow Ui accumulates
new entries and actions from the next incoming configuration up-
date. Ti and Ui swap their active and shadow roles after every trans-
action commit. Si stores the transactional state; this sets the active
and shadow roles using the table configuration version Vi. A new
configuration for the flow table i is set by the control software into
Ui using one or more configuration commands. The configuration
transaction at i is considered complete when an input packet is re-
ceived at the table with an updated Vp, at which point the active and
shadow memories are swapped by Si. This process is specified in
detail in §3.2.

DT , Di and DA are delay logic elements to coordinate the switch-
over of the outputs of the TCAMs and action processors; they me-
diate the programming delays of the TCAM memories.

In the normal case,1 each flow table i in the pipeline matches

1That is, when the configuration version Vp of the packet matches

selected protocol fields in the packet header against the match-key
entries of the TCAM Ti. When an entry matches, the associated
actions are performed on the packet and its metadata, as shown in
Figure 5. The header fields and metadata are held in a buffer for
the duration of the lookup. After the actions are performed, the
match results and metadata are passed to the next table i+1 in the
pipeline.

For our purposes, the most important actions are Output (which
specifies on which physical port the packet should be output), Drop
(which indicates that the packet should not be output on any port),
and GotoTable (which specifies the next table j to process the packet
– which may be different from the immediately following table i+1
in the pipeline).

Modifications for a single table i are specified in terms of com-
mands sent by the software driver. The commands are either those
that modify individual match-action entries, or a distinguished EndTxn
command. Each table has an associated transactional state Si that
gates the entry of these commands into the shadow Ui. The soft-
ware driver may send update commands to this table when Si is
Open. When an EndTxn command is received (it should always be
at the end of a sequence of configuration commands for table i), Si
transitions from Open to Primed. In the Primed state, the configu-
ration logic for the table does not accept any more commands into
Ui, and incoming packets are processed normally using Ti as long
as Vp =Vi.

The software driver sends the updates for each table i in this
transactional manner, by terminating each update command sequence
to i with an EndTxn; this results in all the tables ending in the
Primed state. The driver then increments the global pipeline ver-
sion number Vp at the entrance of the datapath, which forces new
packets entering the datapath to have the updated Vp and causes
transaction commits to occur at each table as described below. The
hardware configuration logic enforces that Vp can be incremented
only if all the flow tables are in a Primed state.

Vi of flow table i, as described in §3.2.



Figure 5: Structure of a flow table.

To ensure the packet consistency of the pending Primed update
transactions, each table i compares its configuration version Vi to
the Vp in the metadata of the next packet P, that it needs to process.
If the table finds Vp > Vi, it (i) swaps the active Ti and passive Ui,
effectively committing the update transaction at i, (ii) increments
Vi to Vp, (iii) transitions Si from Primed to Open (thus forming
an implicit BeginTxn for the next transaction), and only then (iv)
processes packet P. This ensures that P (and subsequent packets
at version Vp) will see only the new configuration at this flow ta-
ble, while any immediately preceding packets see only the previous
configuration. This same update processing occurs at each table as
the packet P moves along the pipeline.

During normal header processing at each table i, the packet header
version Vp is equal to Vi, and the header is processed according to
the entries in Ti, unless the metadata specifies otherwise. If a Go-
toTable or Drop action is applied to the packet, the metadata is
updated appropriately, and the header and metadata are sent to the
next table in the pipeline. A table i receiving a packet whose meta-
data indicates a destination table j where j > i, or that the packet
is to be dropped, merely passes the packet to the next table without
performing any match processing.2

On switch initialization, the hardware sets Vp =Vi = 0 and Si =
Open for each table i.

3.2 Provably Consistent Switch Configuration
To show how this scheme ensures transactional packet-consistent

configuration, we explicitly state the invariants enforced by the
hardware and required from the software driver. The switch hard-
ware maintains the following invariants:

S1 The tables in the pipeline are ordered linearly, and each packet
header flows through every table in order. This packet-header
flow is maintained even when GotoTable or Drop actions are
applied to packet headers.

S2 The configuration trigger to increment the pipeline version
Vp is enabled only when all the tables are in Primed state,

2GotoTable going backward in the pipeline (i.e., j < i) is disal-
lowed by the protocol and is typically enforced by configuration
software. Our current implementation does not enforce this check
in hardware, instead relying on the software driver to ensure it.
However, this could easily be done in hardware.

thus preventing the software driver from performing an in-
correct increment.

S3 No commands are accepted into the shadow Ui when a table
i is in the Primed state.

S4 The delays DT , Di and DA are synchronized to ensure that,
at a configuration commit, the lookup index that is output
by a newly active TCAM is used to index into the correct
associated action RAM.

S5 The active and shadow memories Ti and Ui are swapped only
when Si is in the Primed state, and when the input packet
P at the table i has Vp > Vi, after which Si again enters an
Open state. The role swap is performed before such a P is
processed.

In turn, the software driver is required to obey the following in-
variants:

D1 For each switch configuration change, the update commands
sent to each table i need to terminate in an EndTxn command.
Note that this applies even when no changes need to be made
to a table. Hence, each table i needs to be sent at least one
command, EndTxn, for every configuration change. Other-
wise, due to the hardware enforcement of S2, the software
would not be able to increment Vp.

D2 The version increment of Vp is triggered after all tables have
entered the Primed state, and before the start of the process-
ing of the next switch configuration change. This ensures
that Vp ∈ {Vi,Vi +1} for all i at all times.

We can now use these invariants to prove that the scheme imple-
ments packet-consistent configuration in the forwarding path.

PROOF. We denote as P the first packet entering the datapath
tagged with a newly incremented Vp.

1. S2, D1 and D2 ensure that when Vp is incremented, all flow
tables i are in the Primed state.

2. S1 ensures that a packet P with an incremented Vp always
crosses every table in the pipeline and, from the previous
conclusion, finds each table in the Primed state.

3. S3 ensures that the shadow Ui of table i remains unmodified
from the time Vp is incremented to the time P reaches i.

4. S4 ensures that any packets immediately preceding P tagged
with Vp−1 are processed using the previous configuration.

5. S5 ensures the atomicity of the change seen by P.
6. S1 also ensures that when P exits the pipeline, all the flow ta-

bles are updated to the new configuration, even if P is marked
as Drop by an intermediate table.

7. Hence P and all subsequent packets tagged with Vp are pro-
cessed with the new configuration.

Although this proves the safety of the transactional scheme, there
is a liveness issue due to the use of the datapath to trigger the up-
date – namely, that if no packets enter the pipeline after the Vp is
incremented, the updates will remain uncommitted in the shadow
memories of each table. This would prevent any new configura-
tion updates from being sent by the software driver, because the
tables would all remain in the Primed state. This is addressed by a
hardware inactivity timer at the head of the datapath; this timer is
triggered when the software driver performs the increment of Vp.



Table 1: Comparison of hardware costs.

Resource Reference
Switch

Reference
Router

BlueswitchO

Slices 18.3K 20.3K 22.9K (25%)
Slice Registers 44.3K 47.2K 57.2K (29%)
LUTs 39.0K 43.1K 43.3K (11%)
LUT-Flip Flop 56.6K 61.7K 72.4K (28%)
No. of TCAMs† 1‡ 1 6

†Entry depth of all TCAMs is 32.
‡The reference switch is implemented with a CAM.
O Each percentage shown indicates the increase in resource
overhead compared with the better of the two reference de-
signs.

When the timer fires, it forces the commit and role-swap at each
table in order. The timer is enabled only when all tables are in the
Primed state.

We stress that although the implementation of a double-buffered
pipeline appears straightforward, its configuration by software re-
quires certain invariants to be preserved by the switch software
driver. In this section we have shown precisely what these invari-
ants are, and why they suffice for a correct implementation of a
packet-consistent configuration interface.

4. EXPERIMENTAL EVALUATION
This section provides an evaluation of the performance of the

Blueswitch design. Specifically, we present a prototype hardware
implementation of the proposed update architecture (§4.1) and —
using a simple testbed (§ 4.2) — we evaluate the performance of its
data-plane (§4.3) and reconfiguration (§4.4).

4.1 Prototype implementation
The prototype Blueswitch was implemented on the NetFPGA

platform, which uses the 64-bit AMBA4 AXI-Stream and 32-bit
AXI-Lite bus protocols for data transport and register control, re-
spectively. Figure 4 illustrates the implementation architecture,
which consists of four Rx and Tx 10GbE-MAC interface modules,
input and output arbiters, and the core switch module. Several mod-
ules from the NetFPGA-10G platform library were reused. We fol-
lowed the conventional Xilinx EDK toolchain flow for hardware
implementation.

The prototype switch is synthesized at a clock speed of 160MHz,
supporting a 10-Gbps full-line rate. The multi-table pipeline shared
by all datapaths allows us to implement the consistent configu-
ration architecture without compromising performance. Table 1
summarizes the switch hardware costs on the NetFPGA-10G plat-
form, which are compared to the costs of the reference switch and
router [12]. The introduction of the double-buffered TCAM in
Blueswitch increases FPGA resources utilization from 11% to 29%,
depending on the resource type.

4.2 Experimental setup
To evaluate the prototype implementation, we employed the two-

node topology depicted in Figure 6. Both nodes are equipped with
a NetFPGA card, a quad-core Intel E5-2687W CPU, and 64 GB
of RAM. The NetFPGA card on PC-A was programmed with the
Blueswitch implementation, while the NetFPGA card on PC-B was
programmed with the OSNT hardware design [13], a high-performance
and precision network traffic generator and capturer.

We have recently completed an initial port of OpenVSwitch to
Blueswitch [14]. This was completed after the submission of this

Figure 6: Experimental testbed for our evaluation tests.

paper and its acceptance, and it was not used for the experimental
results described below.

To configure the forwarding policy in the datapath, we imple-
mented a simple control application running on the host CPU, and
used special data-plane packets to trigger policy reconfiguration.
Interaction between Blueswitch and the host CPU occurs through
a register API as well as through a DMA engine, using a simple
kernel-space driver. The register API allows policy reconfiguration,
while the DMA engine is exposed in the host OS as a network in-
terface that allows data-plane packet interception and injection. In
addition, the design contains a module with a free-running clock-
cycle counter, which is used by the control application to measure
policy reconfiguration latency in cycles.

To compare our Blueswitch prototype with existing production
switches, we use two off-the-shelf 10 GbE switches, the Pica8
P3922 [11] and the Arista 7050S [10]. We performed the evalua-
tions with a set of tests developed using the OFLOPS-Turbo Open-
Flow switch evaluation platform [15].

4.3 Data-plane performance
We first examined the impact of the double-buffered TCAM de-

sign on data-plane performance. We used the OSNT design to gen-
erate traffic at a rate of 5 Gbps with variable packet sizes and con-
figured the measured systems to forward all packets to a specific
device port. Using the OSNT high-precision timestamping func-
tionality, we were able to capture all packets and for every packet
acquire the transmission and receipt timestamp to compute the for-
warding latency. Figure 7 presents a comparison of the median for-
warding latency between Blueswitch, Pica8, Arista and the NetF-
PGA reference switch and router designs. We note that the variance
of the latency measurements was negligible across all switches.

The results show that the use of a double-buffered lookup mod-
ule design does not affect the latency of the switch processing
pipeline and can achieve latency comparable to production ASICs.
Blueswitch processing latency is surpassed only by the Arista
switch, which contains a highly latency-optimized datapath. It is
worth noting that the Blueswitch processing latency is lower than
the NetFPGA reference designs. Upon investigation, we found that
the interconnect in Figure 4 performed more processing in paral-
lel, thus improving latency. Specifically, the reference NetFPGA
designs employed a single arbitration module that also performed
data-width conversions, at both input and output ports. This design



Figure 7: Forwarding latencies for Pica8, Arista, the NetFPGA
router and switch designs, and Blueswitch. The Blueswitch latency
lies between the production switches and the router.

choice improves programming flexibility, but introduces significant
latency in data arbitration.

4.4 Policy reconfiguration
We also analyzed the impact of policy reconfiguration on data-

plane performance. Specifically, we address two questions: (i)
How are packet latency and routing integrity affected during pol-
icy reconfiguration? (ii) How long does the policy reconfiguration
take?

To answer the first question, we compare the behavior of the
switch using conventional TCAM modules (without the use of the
consistent update scheme) against its behavior when the config-
uration is enforced using the consistent scheme. Our evaluation
considered two cases: (a) flow-modification tests (which measured
the effect of reconfiguring the action lists in the RAM modules of
the match tables), and (b) flow-insertion tests (which measured the
effect of the removal and insertion of new rules in the TCAM mod-
ules of the match tables). During each test, we generated data-plane
measurement probe packets on two ports of the switch at an ag-
gregate rate of 2 Gbps, and measured the round-trip time of each
packet. The measurement probe uses small UDP packets (150B)
with destination IP addresses that match the rules of the flow-table
in a round-robin manner.

Figures 8a and 8b presents the results of the rule-modification
experiment, comparing the data-plane effect of the configuration
of conventional TCAMs with our consistent configuration scheme,
respectively. This experiment initialized the switch configuration
with rules for 12 flows (with destination IP addresses of 192.168.0.2-
13). The rules matched the destination IP address of the packets and
distributed the incoming measurement traffic, which was sent to the
switch port Phy0, between the Phy1 and Phy2 switch ports. After
a sufficient warmup period, a policy reconfiguration was applied
by the Blueswitch control application. The new policy changed the
output port of half of the rules (192.168.0.2-7) from port Phy1 to
port Phy2. In the figures, we plot for a single experimental run on
a conventional and a consistent update version of the Blueswitch
design, the round-trip time (RTT) and the reception port for every
data-plane packet. On the x-axes of the plots, the figure also notes
the start and end times of the configuration process, which were
extracted from the Blueswitch control application using the clock
cycle-counter module.

It is worth noting that the default behavior of a switch on receiv-

ing a packet that does not match any rule in its match tables is to
broadcast the packet on all switch ports. This behavior also occurs
when an incoming packet finds the switch tables in an inconsistent
state.

Figure 8b shows that the consistent scheme ensures the correct
forwarding of packets during the configuration process, and that
the transitions at the start and end of the configuration are smooth,
with no significant latency being experienced by the measurement
packets. In contrast, Figure 8a exhibits that the lack of consistency
protection during an update creates transient policy violations, and
that the switch resorts to the default behavior of broadcasting the
packets on multiple switch ports.

The results for the rule-insertion experiment are shown in Fig-
ures 8c and 8d. This experiment initialized the switch to load-
balance traffic across three ports (Phy1, Phy2, and Phy3) of the
switch using the destination IP of each packet. The reconfigura-
tion removed eight rules that forwarded traffic to ports Phy2 and
Phy3, and inserted new rules that forwarded that traffic to port
Phy1, while keeping remaining traffic flows untouched. The policy
configuration when performed without using a consistent scheme
(Figure 8c) forwards packets according to an inconsistent policy,
which mixes the old and new configuration. In contrast, the con-
sistent scheme ensures no packets were misrouted (Figure 8d) and
the data-plane RTT did not exhibit significant increase during re-
configuration.

Finally, we address the second question asked at the beginning
this section, evaluating the reconfiguration latency of the Blueswitch
design for variable number of rules. Figure 3 presents a compari-
son of the time needed to perform a reconfiguration for the two
production switches and Blueswitch. The reconfiguration duration
for Blueswitch is comparable with the two production switches,
and is very close to that of the Arista switch. Since Blueswitch
uses shadow TCAMs to store the new configuration, the forwarding
performance (which uses the active TCAMs) is not impacted, and
the reconfiguration process does not interfere with lookup process-
ing. However, we point out that the configuration measurements
used for Blueswitch rely on timestamps extracted from the clock
module within the switch, whereas the latency measurements for
the production switches include the cost of transmitting the policy
changes through the control channel.

5. DISCUSSION

Datapath structure
The correctness of our current Blueswitch design requires each
packet header to be processed in order by each of the match tables
in the pipeline. This enforces a linear sequential structure on the
pipeline, which also maintains the crucial property of preserving
packet order. However, the linear structure might be too restrictive
for designs that wish to employ fork-join structures (as in [7]). We
think our design should still be applicable as long as the join points
in the pipeline have equal delays along the different paths. This
condition is required to prevent later packets entering the pipeline
from racing ahead of earlier ones at the joins by traversing the
shorter paths, which is equivalent to packet-order preservation. We
plan to prove this more rigorously and demonstrate it in a second
prototype implementation.

Area and power overhead
In ASIC implementations of switches, TCAMs are commonly the
most expensive and highest power-consuming components of the
chip. Our double-buffered TCAM implementation approach obvi-
ously increases such power and resource costs. However, power



(a) Flow-modification using the packet-inconsistent interface.
The unexpected traffic at Phy3 is a serious security violation.

(b) Flow-modification using the packet-consistent interface.

(c) Flow-insertions using the packet-inconsistent in-
terface, showing both old and new rules active.

(d) Flow-insertions using the packet-consistent interface.

Figure 8: Data-plane packet behavior during policy re-configuration using the consistent and inconsistent interface. Points represent the
round-trip time of a single packet as it is received through a specific port.



consumption can be reduced significantly by exploiting techniques
commonly used in state-of-art ASIC implementations. Clock-gating
methods can be applied to reduce the dynamic power consumption
of the shadow TCAMs, which are mostly idle between configura-
tion updates. In addition, dynamic voltage scaling (DVS) methods
can reduce the static power dissipation by lowering the supply volt-
age without losing data in the TCAM. The effective use of these
methods need to account for the frequency and size of expected
configuration update transactions.

Shadow table initialization
The choice of a double-buffered TCAM structure avoids the long
latencies involved when reconfiguring any active TCAMs, during
which the datapath would need to be blocked. However, a double-
buffered TCAM structure necessitates some mechanism of syn-
chronizing the table entries from a newly active TCAM to the new
shadow TCAM, before the shadow is reconfigured with the next
configuration. Current TCAM hardware provides no efficient hard-
ware support for this kind of table state transfer; indeed, our work
in this paper indicates the value of exploring the support for this
feature for future TCAM designs. In our implementation, the trans-
fer is done by the device-driver component of the control software
stack.

This state transfer can be performed immediately after a config-
uration commit and the swapping of the active and shadow TCAM
roles. In normal operation, switch reconfigurations do not occur
at a frequency comparable to the transfer delay; hence, for most
configuration updates, the transfer delay has no impact on configu-
ration latency.

Although not a motivation for our design choice, the double-
buffered structure does provide hardware support for a configura-
tion rollback mechanism.

Control communication
The major advantage of the configuration scheme is that large con-
figuration changes can be applied in a single switch-wide trans-
action in a manner that is atomic with respect to the packet pro-
cessing. This removes the need to factor a top-level configuration
change into a series of individual entry-wise policy-safe changes
separated by Barrier commands, reducing the number of round-
trips between the switch and the controller. In the case of multi-
table pipelines, the conversion of top-level single-entry modifica-
tions using algorithms like OTN [16] would require packet-consistent
updates to multiple tables, which our scheme supports.

Correctness
In future work, we plan to formalize the informal correctness proof
of packet-consistent configuration presented in Section 3.2 and in-
vestigate techniques for automatically linking it to the source code
for the actual hardware implementation. In the context of the con-
sistency problem in distributed network configuration updates, our
scheme provides guarantees at the level of individual switch datap-
aths that can be used to help reason about the safety of a distributed
solution.

6. RELATED WORK
As a result of the new programming opportunities afforded by

the SDN paradigm, an interesting body of work has arisen to pro-
vide provably correct network management: e.g., special program-
ming languages [3], provably correct controllers [5] and new net-
work primitives [1]. However, work to date has assumed (often
implicitly) consistent behavior at the level of individual switches.

Earlier work in configuration-consistent updates (e.g., [1], [2],
[6]) treat distributed consistency from the viewpoint of multiple
switches involved in a centrally administered network domain. As
noted earlier (§1), these schemes use an existing field in the Ether-
net frame (typically the VLAN tag or an MPLS label) to embed a
configuration version and perform updates using a distributed two-
phase commit using a centralized controller. As a result, they re-
quire the physical modification of every packet entering and leaving
the administrative domain, but they do not specify how this is to be
accomplished; indeed, a network domain may already use VLAN
tags and/or MPLS labels. In addition, the two-phase commit re-
quires that each switch table store the rule sets of both the previous
and the new configurations, thus implicitly implying the same hard-
ware resource overhead as a double-buffered scheme. Our scheme
explicitly implements double buffering and stores version numbers
internally in the switch. Thus, it does not need to modify packets
in the network.

In summary, [1], [2], [6] choose to work with existing switch
datapaths without any hardware changes, at the cost of requiring
modifications to all traffic entering and leaving the network. Our
approach chooses instead to modify the datapath architecture of
individual switches, to gain the advantage of not needing to modify
any packet in the network.

The overhead in maintaining two versions of rule configurations
simultaneously in a switch can be reduced by incrementally tran-
sitioning between two configurations through a sequence of inter-
mediate states [6], where each transition requires less rule-space
overhead. A similar problem was addressed by [17] in the context
of consistent updates of routing tables from BGP announcements.
They considered the construction of an incremental sequence of
updates that provided the same routing results as the atomic ap-
plication of a batch update; they show that a general solution is
not possible, and instead propose a near-optimal heuristic instead
(where optimality is defined in terms of routing table size). The in-
cremental sequence of intermediate consistent updates can also be
computed dynamically [18] using a heuristic scheme; this speeds
up the median configuration update speed by adapting to the dif-
ferent time-scales at which switches are able to perform their indi-
vidual updates. All of these schemes are orthogonal to how each
individual update is performed, and can be easily adapted to net-
works using our switch architecture.

In a distributed context, [19] address the issue of consistent com-
position of policies arriving from a distributed control plane con-
sisting of fault-prone controllers. They propose a transactional
interface to solve the problem of conflicting policy updates, and
prove that an atomic read-modify-write operation is necessary to
update a network consistently in the presence of controller crashes.
The Blueswitch design can support precisely such an atomic update
scheme.

The scheme leveraged in this paper is also inspired by other ap-
proaches to support atomicity of operations in hardware systems.
To support precise exception handling [20], modern pipelined pro-
cessors must effectively introduce some notion of versioning to
undo speculative instructions. Hardware transactional memories [21]
employ additional logic to extend versioning to span more than a
few micro-operations. Our approach is far more lightweight than
those approaches as packets have no enforced ordering, unlike in-
structions in an instruction stream, and as such we may always
commit to completing an action when we start it.

Recent innovative hardware switch architectures have tackled
improved resilience (e.g., [22]) and flexibility in the datapath (e.g.,
programmable hardware parsers along with the use of multiple con-
figurable match tables [23]). Although not the focus of that work,



the consistency of the configuration interface as exposed to the dat-
apath is unaddressed in these architectures. This is particularly cru-
cial in designs of the latter nature, where a minor change in a top-
level configuration translates into multiple match tables and parsing
TCAMs updates.

7. CONCLUSION
This paper demonstrates some policy violations that can occur in

a network when switches lack a configuration interface enforcing
consistent configuration. To address such violations, we have pre-
sented the Blueswitch design, which provides an improved inter-
face that is packet-consistent with respect to a modern switch dat-
apath. This results in an implementation of the OpenFlow Bundle
feature that supports atomic configuration updates. We have pro-
vided an informal proof of correctness for this design, and shown a
concrete implementation in a modern OpenFlow switch design im-
plemented on the NetFPGA platform. The design shows datapath
and configuration performance comparable to commercial switch
designs.

This approach relies crucially on invariants observed by both
sides of the hardware-software interface. The invariants ensure
the proper coordination of the updates from the multiple shadow
buffers in the switch. As described in §3.2, to ensure that control-
plane updates are consistent with respect to the datapath, hardware
double-buffering techniques require a configuration protocol when
multiple shadow buffers are involved, and this protocol requires
that the software driver maintain its invariants. These invariants
have been precisely specified, which should help considerably in
the construction of reliable software control drivers.

Switches that support such consistent configuration provide a
better foundation for recent work in formal network configuration
and programming models, enabling reasoning about configuration
correctness on complex switch datapaths.
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