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Formation of a eutherian mammal requires concurrent establishment of

embryonic and extraembryonic lineages. The functions of the trophectoderm

and primitive endoderm are to enable implantation in the maternal uterus,

axis specification and delivery of nutrients. The pluripotent epiblast represents

the founding cell population of the embryo proper, which is protected from

ectopic and premature differentiation until it is required to respond to induc-

tive cues to form the fetus. While positional information plays a major role in

specifying the trophoblast lineage, segregation of primitive endoderm from

epiblast depends upon gradual acquisition of transcriptional identity, directed

but not initiated by fibroblast growth factor (FGF) signalling. Following early

cleavage divisions and formation of the blastocyst, cells of the inner cell mass

lose totipotency. Developing epiblast cells transiently attain the state of naive

pluripotency and competence to self-renew in vitro as embryonic stem cells

and in vivo by means of diapause. This property is lost after implantation as

the epiblast epithelializes and becomes primed in preparation for gastrulation

and subsequent organogenesis.
1. Background
Mammalian preimplantation development combines establishment of a small

population of founder cells for the fetus with early differentiation of extraembryonic

tissues required to facilitate implantation, patterning and nutrition. The transcrip-

tional and translational machinery becomes activated to institute self-sufficient

cell populations from the maternally dominated zygote. Once established, the

embryonic lineage must be protected from premature differentiation to remain

susceptible to subsequent positional and temporal patterning in order to orches-

trate formation of all the tissues in the body. This property is known as naive

pluripotency [1]. An interesting and biomedically relevant asset of the murine pre-

implantation epiblast is its ability to remain undifferentiated and proliferate when

explanted into appropriate culture conditions in the form of embryonic stem (ES)

cells. In this chapter, we review the current knowledge of how this intriguing

state of ‘naive’ pluripotency is acquired in vivo.
2. Totipotency is a unique property of cleavage stages
The fertilized egg is capable of producing all embryonic as well as extraembryo-

nic lineages. This distinctive ability is referred to as totipotency. However,

preparation for totipotency in mammals begins long before fertilization. In

mouse, the volume of the developing oocyte increases approximately 500-

fold during intra-ovarian growth. Continuous transcription of the maternal

genome yields around 100 pg messenger RNA in mature oocytes, with some

transcripts remaining dormant in order to become activated after fertilization.

By contrast, sperm has lost most of its organelles during spermatogenesis in

exchange for motility and therefore depends on the egg to boot the embryonic

genome. After fertilization, maternal proteins and transcripts pave the way to

the first major wave of transcription at the 2-cell stage in mouse [2] and continue
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Figure 1. Overview of embryonic potential in relation to developmental stage from zygote to egg cylinder. Cleavage is indicated by the dotted line and correlates
with totipotency (blue). Naive pluripotency (yellow) is established at the mid-blastocyst stage and persists until implantation. The terms totipotency, naive
pluripotency and primed pluripotency (red) apply to the embryonic lineage only. (Online version in colour.)
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to play a role in the initial stages of development. The first five

cell cycles, commonly referred as cleavage divisions, are charac-

terized by a predominant S-phase, while G-phases are present

but short and variable [3,4]. Cleavage occurs in the absence of

cellular growth or increase in total cell mass [5] and strictly

depends on the large cytosolic compartment of the fertilized

egg (figure 1). Cells generated by cleavage divisions are referred

to as blastomeres. At the 2-cell stage, blastomeres retain the abil-

ity to form an entire conceptus, evident from the formation of

identical twins and demonstrated by the production of viable

offspring in mice after destruction of one of the two blastomeres

[6,7]. However, monozygotic twins are a rare phenomenon and

recent work revealed that a minimum of four preimplantation

epiblast cells has to be established for successful normal devel-

opment [8]. Moreover, the efficiency for monozygotic twins can

be increased by modulation of fibroblast growth factor (FGF)

and Wnt signalling [8].

Individual blastomeres of the 4- and 8-cell stage can also

progress in development and form trophoblastic vesicles as

well as small blastocysts [9], which can implant in the

uterus when transferred into a synchronized recipient [10].

However, the resultant decidua mostly contained trophoblast

giant cells and on only one occasion a retarded embryo [10],

suggesting that single 1/4 and 1/8 blastomeres are not

capable of producing an entire fetus on their own. Exper-

iments in which isolated blastomeres from 4- and 8-cell

stages were aggregated with host blastomeres from another

embryo have shown that they are able to differentiate into

both trophectoderm and inner cell mass (ICM) and yield

viable pups [11]. Thus, their failure to form a normal fetus

in isolation is most probably due to inadequate numbers of

cells, rather than a restriction in developmental potential.

The fact that all blastomeres derived from the 4- and 8-cell

stage contribute to both extraembryonic and embryonic

lineages demonstrates their principal equipotency.
3. Compaction controls the first lineage decision
One of the most intriguing questions in developmental

biology is how lineage identity can be acquired from appar-

ently uniform 8-cell blastomeres. A possible answer could

be that early blastomeres might not be as identical as they

appear. Several studies have highlighted differences between

individual blastomeres, including differential methylation

patterns [12], potency under the influence of certain con-

ditions [13] and transcription factor kinetics [14]. However,

the majority of blastomeres retain embryonic and extraem-

bryonic potential and differentiate based on their position

within the 8- to 16-cell embryo [15].
How do blastomeres ‘sense’ their position? A crucial event

preceding the first lineage decision is compaction, which

occurs at the late 8-cell stage, at around embryonic day (E)

2.75. During compaction, the blastomeres increase their inter-

cellular interactions, thereby providing the essential spatial

queues for the first lineage decision in the mammalian

embryo. This allows the establishment of differential compart-

ments. Initially formulated as the ‘inside–outside’ hypothesis

[9], subsequent experiments have confirmed that the spatial

location of individual blastomeres is instructive for their sub-

sequent lineage allocation [11]. In normal development,

the outer cells of the morula become biased towards the first

extraembryonic lineage, the trophectoderm. Trophectoderm

is required for implantation and subsequently will give rise

to the placenta, an extraembryonic organ pivotal for nourish-

ment, detoxification and patterning of the developing fetus

[16]. By contrast, cells located in the inside tend to form the

ICM of the early blastocyst. ICM cells maintain expression of

the POU-domain transcription factor Oct4 (Pou5f1), which is

downregulated in outside cells. In the absence of Oct4, the

inside cells fail to maintain their identity and differentiate

into trophectoderm [17]. Using ES cells, it has been shown

that Oct4 acts cooperatively with Sox2 to induce expression

of several pluripotency genes, including FGF4 [18] and

Nanog [19]. In line with this, embryo profiling at single-cell

resolution revealed Sox2 and Id2 as the earliest markers of

inner and outer cells, respectively, specifically upregulated at

the 16- and 32-cell stage [20].

During compaction, intercellular adhesion depends on

E-cadherin [21], and outside cells acquire apical–basal polarity

by asymmetric localization of the polarity proteins atypical

protein kinase C [22], Par3 [23] and the actin-associated protein

ezrin [24]. Interference with polarity regulators by RNAi micro-

injection perturbs trophectoderm development [23,25], placing

polarization upstream of the first lineage decision in the

embryo, but downstream of the ‘inside–outside’ spatial

location of the individual blastomeres. This polarity is given

particular consideration in the ‘polarity’ model of the first lin-

eage decision during cleavage [26]. Key to the model is that

the embryo becomes radially polarized at the compacted

morula stage, originally discovered by the formation of an

external microvillous pole on each blastomere. The model

then suggests that this polarity can be inherited during the

next (fourth) cleavage division, as most blastomeres will give

rise to one polar cell, which inherits the outside surface, and

one apolar cell, completely engulfed by other blastomeres.

The remaining cells divide symmetrically by splitting the

microvillous apical domain, thereby producing two polarized

daughters, both of which harbour an outside surface. This

model is consistent with the morphology of an average 16-cell
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Figure 2. Hippo signalling and an ‘inside’ requirement for the establishment of the embryonic lineage. (a) Schematic of Hippo signalling activities in inside and
outside cells of a 16-cell morula. (b) Hippo signalling alone is not sufficient for embryonic lineage formation. Potential signalling activities mediated by the inside
environment are outlined. (Online version in colour.)
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embryo, which contains approximately 10–14 outer, polar and

2–6 inner, apolar cells [26–28]. It is worth pointing out that cell

fates are not determined in the initial stages of blastocyst for-

mation, as outside 16-cell blastomeres still retain the potential

to become ICM at robust frequencies when put into an earlier

stage. Moreover, aggregations of purely outer cells can form a

new embryo, capable of development in the uterus [15], provid-

ing further evidence for the persistence of totipotency in a

substantial proportion of blastomeres at this stage.
4. Hippo signalling conveys cellular polarity into
lineage-specific gene expression

A key question in the context of embryonic lineage specification

is how ‘inside’ or ‘outside’ spatial information is translated

into transcriptional programmes. These are established by

lineage-specific master regulators, including Cdx2 and Gata3

for trophectoderm versus Oct4, Sox2 and Nanog in the ICM

[20,29–32]. Cdx2 null embryos are capable of trophectoderm

specification but require Cdx2 for morphological integrity,

subsequent development and implantation [33]. The discovery

that loss of Tead4 leads to complete failure in blastocyst cavity

formation places it upstream of the trophectoderm tran-

scriptional network [34,35]. Intriguingly, Tead4 activity is not

mediated by specific expression, but rather by intracellular

localization regulated by the Hippo signalling cascade [36].

Hippo signalling is a highly evolutionarily conserved pathway,

which, in the context of the mouse embryo, integrates positional

information into lineage specification (figure 2a). In mamma-

lian embryos, Hippo signalling is active in inside cells when

Lats1/2 phosphorylates the Yorki homologues Yap1 and

Wwtr1 [36]. Phosphorylated Yap1 is excluded from the nucleus

and degraded. Consequently, Yap1 cannot act as co-activator

for Tead4, resulting in failure to induce the trophectodermal

programme via expression of Gata3 and Cdx2 [36,37]. In outside

cells, Lats1/2 remains inactive, allowing Yap1 to enter the

nucleus, and in combination with Tead4, to prime the cell

towards trophectoderm. Consistent with this, reduction of

Lats1/2 in the early preimplantation embryo prevents ICM lin-

eage formation [38]. Recent work suggests that Lats1/2 activity

is controlled by Nf2, which promotes interaction between the

adherens junctions and Amot, another regulatory component

of Hippo signalling in early mouse development [39,40].
5. Inner cell mass specification requires an
‘inside’ environment

Hippo signalling alone is not sufficient to control entirely the

first lineage decision. Nf2 overexpression fails to alter Yap

localization, probably because of other missing components

in outside cells [40]. Knockdown of Lats1/2 leads to ectopic

Cdx2 expression in the ICM, but concurrent with persistent

expression of Oct4 and Nanog, suggesting incomplete con-

version of inner cells to bona fide trophectoderm [38]. Thus,

additional information may be required to establish ICM

fate [38], besides the lack of an apical domain. For instance,

inside cells may use gap junction-mediated intercellular com-

munication and adherens junctions, potentially leading to

cytoskeletal alterations and signalling activities via focal

adhesion kinases (figure 2b). Furthermore, inside cells may

reside in a privileged position to receive signalling molecules.

Considering the confined intercellular space, even small

amounts of secreted ligand would be experienced at higher

concentrations inside. Finally, inside cells may be exposed

to a specific ‘basal’ environment as the result of asymmetrical

protein localization in outside cells. Functional evidence for an

‘inside’ requirement in addition to Hippo signalling comes

from blastomeres grown in isolation [41]. Blastomeres were sep-

arated after each of the first five cell divisions (1/32), subjected to

lineage marker expression profiling, and compared to ICM and

trophectoderm cells. Although their expression pattern was dis-

tinct from both, it was closer to trophectoderm than ICM [41],

corroborating the requirement for an inside environment for

ICM specification. This study also demonstrated that singled

blastomeres preferentially contribute to trophectoderm in

morula aggregations [41]. Interestingly, Hippo signalling is

induced in singled blastomeres, suggesting that loss of apical–

basal polarity is insufficient to adopt ICM fate (figure 3). In sup-

port of this, blastomeres have the ability to give rise to functional

trophectoderm when transferred into a recipient female as

single cells, but do not form embryonic tissues [10]. Embryos

at the 4-cell stage denuded of the zona pellucida can rearrange

their cells into various configurations during culture. Those

adopting a linear configuration, where intercellular interactions

are low, result in blastocysts with significantly fewer ICM cells

[42] and exhibit inferior development when transferred into

the uterus, compared with tetrahedral configurations, where

intercellular interactions are maximized [43]. Single 1/4 and
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1/8 blastomeres give rise to ‘blastocysts’ at frequencies of 40%

and 15%, respectively, while the number of empty trophoblastic

vesicles increases [9]. Collectively, these data suggest that blas-

tomeres grown in isolation, despite the loss of apical–basal

polarity, become biased towards trophectoderm and fail to

enter the embryonic lineage.
6. Totipotency is gradually lost in the inner
cell mass

A widely understated characteristic of the early ICM is its

totipotency (figure 1). In this context, we define totipotency

as the ability of a cell to contribute to all embryonic and extra-

embryonic lineages. Clearly, this totipotency is different from

the ‘absolute’ totipotency of the zygote, which is capable of

forming an entire organism from one cell. However, ICMs

isolated from early blastocysts have the ability to regenerate

trophectoderm, resulting in miniature blastocysts [44,45],

and can differentiate into trophectoderm when explanted

in vitro [46,47]. Furthermore, they can contribute to trophecto-

derm in ICM–morula aggregations [48]. Aggregation of

several isolated ICMs can compensate for cell numbers and

regulate their combined size to produce apparently normal

blastocysts. Strikingly, more than one-third of these aggre-

gates give rise to complete egg cylinders upon transfer into

recipient female mice [48]. A recent study tested the develop-

mental potential of ICM cells at various blastocyst stages and

found that early ICM cells frequently contribute to trophecto-

derm when injected into a morula, confirming the previously

observed developmental plasticity [49]. This ability is gradu-

ally lost after E3.5 when the ICM cell number exceeds

approximately 16–19 cells [48,49], concomitant with the

second lineage decision in the mouse embryo: the segregation

of pluripotent epiblast and primitive endoderm (PrE).
7. The second lineage decision: partitioning the
inner cell mass into preimplantation epiblast
and primitive endoderm

With the advent of accessible custom-made antibodies and

fluorescent lineage reporters, the process of PrE and epiblast
segregation has been interrogated and is reviewed in great

detail elsewhere [50–54]. Here, we outline the differences of

the second lineage decision compared to the position-dependent

induction of trophectoderm discussed above.

The early PrE marker, Gata6, is initially co-expressed with

the pluripotent epiblast marker, Nanog, in the early ICM [55].

Consistent with this, a recent study has shown that at the early

blastocyst stage (32-cell), the transcriptome of individual

ICM cells is indistinguishable [56]. However, within the next

couple of hours of development, small transcriptional changes

become progressively manifested and the cells subsequently

segregate into two discrete populations [20,56]. In mouse,

this process is mainly driven by FGF signalling [57,58]. A

cardinal feature of epiblast cells is their temporal unresponsive-

ness to FGF signalling during the segregation process.

Transcriptome analysis of early ICM and epiblast cells has

shown that FGFR2, FGFR3 and FGFR4 are specific to the PrE

lineage, while FGFR1 is expressed in all cells [56]. Loss of

FGF4, FGFR2 or its downstream mediator, Grb2, ablates PrE

formation [57,59,60], whereas loss of the other FGF receptors

exhibits phenotypes at later stages of development. Therefore,

FGFR2 is the essential receptor for PrE specification. However,

initiation of the PrE transcriptional programme does not exclu-

sively depend on FGF signalling; embryos completely devoid

of FGF4 exhibit mosaic expression of early markers of PrE,

such as Gata6 and Sox17 [61].

In line with the genetic evidence, exogenous modulation of

FGF signalling in culture from the mid-blastocyst stage or ear-

lier influences ICM cell fate [62–64]. Inhibition of the FGF/

Erk pathway with synthetic inhibitors directs ICM cells to

become epiblast, whereas supplementation with exogenous

FGF4 or FGF2 leads preferentially to PrE. The high concen-

trations of ligand required to accomplish this lineage switch

seem somewhat perplexing, but these may approximate in

real terms to the high expression levels of FGF4 secreted by epi-

blast progenitors [56,65] acting over a comparatively short

range within the ICM. Evidence that physiological levels of

FGF4 can direct immature ICM cells to become PrE is provided

by formation of chimaeras between ES cells and cleavage stage

embryos. During the aggregation process, ES cells will preferen-

tially occupy the inside compartment of the embryo, displacing

the host cells. The resulting fetus is frequently composed

entirely of ES cell derivatives [66], whereas the extraembryonic

endoderm almost exclusively originates from the host embryo

[67] (figure 4). Once initiated, the inverse correlation of FGF4

in presumptive epiblast cells and its cognate receptor, FGFR2,

in PrE precursors increases in order to reinforce the differential

identity of the two lineages [20]. By the time the embryo is ready

to implant in the uterus, the cells are irreversibly committed to

their respective lineages [49,68].

The important question of how the symmetry of transcrip-

tional regulators is broken in the early ICM is still debated. It

has been suggested that stochastic fluctuations in gene

expression, followed by signal re-enforcement, are sufficient to

explain the second lineage decision [56]. Alternatively, it has

been proposed that the origin of ICM cells influences their sub-

sequent allocation to epiblast or PrE [28,69]. Live image tracing

of embryos from early cleavage stages revealed a trend for the

majority of cells becoming internalized during the fourth cell

cycle to contribute to the epiblast, whereas those entering the

ICM during the fifth or sixth cell cycle tended to generate PrE

[28]. In another study, which used retrospective lineage tracing

of fluorescent markers, no significant difference was observed
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between early and late entering cells [63]. The apparent contro-

versy was resolved, as most discrepancies in the outcome were

interpreted to originate from different experimental set-ups

with both authors agreeing that ‘embryogenesis is a highly

dynamic and regulative process with subtle trends that influ-

ence cell fate’ [70,71]. We support the notion that certain

biases are most likely present in normal embryos, however

any of these reported molecular lineage biases in mouse pre-

implantation development can readily be overridden by

topological rearrangements for the first, and modulation of

FGF signalling for the second lineage decision [49,62,63].
8. Naive pluripotency is acquired during
epiblast specification and captured in
embryonic stem cells

Naive pluripotency is the ability of a cell to self-renew while

retaining the potential for unbiased differentiation and germline

contribution in the context of normal development. Compelling

evidence that ES cells are derived from the preimplantation

epiblast was provided by Brook & Gardner [72], by means of

micro-dissection of periimplantation embryos. Almost half

of the epiblasts disaggregated and scattered over the culture

well gave rise to one, two or occasionally three clonal ES cell

lines. The fact that only a maximum of three clonal lines could

be derived from a single preimplantation epiblast led to the

speculation that maybe only a subpopulation of cells can give
rise to an ES cell colony [72,73], suggesting that the property of

naive pluripotency is not epiblast-wide. More recently, the use

of two inhibitors (2i) in combination with leukaemia inhibitory

factor (LIF) has allowed the derivation of ES cells from ‘recalci-

trant’ mouse strains and rats [74–76]. PD0325901 mediates

mitogen-activated protein kinase signalling inhibition, thereby

eliminating auto-induced differentiation [77,78], while the glyco-

gen synthase kinase 3 inhibitor CHIR99021 positively stimulates

the biosynthetic capacity of ES cells and stabilizesb-catenin [79].

b-catenin has been shown to sequester a repressor of pluripo-

tency genes, Tcf3 (Tcf7l1), from the nucleus, which stimulates

expression of the naive pluripotency factors Esrrb, Nanog and

Klf2 [80,81]. In 2i/LIF, ES cell derivation from the E4.5 blastocyst

is very efficient. Dissociated ICMs at this stage have been shown

to produce ES cell colonies from all embryos analysed with

numbers of clones ranging from two to 12 [62], throwing into

question the hypothesis that naive pluripotency is restricted to

privileged cells within the epiblast [73].

Although ES cells are commonly derived from the blastocyst

stage, they can be established from various preimplantation

stages and even from single blastomeres [82–85]. The resultant

ES cells have very similar characteristics, suggesting that, during

derivation, they progress to a common developmental stage

from which in vitro self-renewal can ensue. Single cell ES cell

derivation from dissociated embryos from 8-cell to the early

postimplantation egg cylinder stage in 2i/LIFon gelatin demon-

strates that clonal ES cell lines can be derived efficiently only

from mid- and late blastocyst stages [86]. This study further

showed that during derivation, epiblast cells do not traverse

through distinct developmental states at a transcriptional level

and cluster with the preimplantation epiblast at all times [86].

Thus, the window of opportunity to capture the epiblast state

in vitro coincides with the initiation of ICM heterogeneity and

epiblast specification. This is further supported by the obser-

vation that clonal ES cell colony numbers strictly correlate

with preimplantation epiblast cell numbers, which can be

modulated by activation and inhibition of FGF signalling

[62,86]. Collectively, this demonstrates that naive pluripotency

is a state acquired during preimplantation development,

rather than representing a refined derivative of totipotency.

Epiblast cells can self-renew in vitro and the foundation for

this property may be rooted in their self-renewal ability in vivo.

Diapause is a facultative condition of embryonic arrest in

rodents and other species [87–89], which occurs when implan-

tation is prevented by oestrogen deprivation caused by

persistent suckling of a previous litter. This phenomenon can

be mimicked experimentally by ovariectomy or administration

of an oestrogen antagonist. In diapause, the embryo develops

until the late blastocyst stage and segregates epiblast and

PrE. Interestingly, diapause embryos were originally used to

derive mouse ES cells [90] and have been shown to facilitate

ES cell derivation in conventional culture conditions on feeders

and in the presence of serum [72]. Quantification of inner cells

from diapause embryos revealed a small but significant

increase in ICM cell number, implying that the cells continue

to proliferate [91]. The fact that diapause embryos retain their

developmental potential suggests that mouse epiblast cells

can undergo self-renewal in vivo.

The transcriptional network of the initially totipotent

developmental stages changes drastically after almost every

cell division [20,92] and the common features of totipotency

in vivo therefore remain ill defined. Developmentally, the clos-

est totipotent state to naive pluripotency would be the early
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ICM, when the embryo is still undergoing cleavage [5]. We pro-

pose that the transcriptional networks operating during

totipotent stages in vivo are incompletely connected to the

basic cellular housekeeping machinery, including cell cycle

checkpoints, and are thus incompatible with self-sufficiency

and autonomous proliferation. By contrast, naive pluripotent

epiblast cells have developed the capacity for cell-autonomous

self-renewal in vitro and, during diapause, in vivo (figure 5).

Currently, there are no culture conditions established to cap-

ture pure populations of authentic, self-renewing blastomeres

or early ICM cells. Such totipotent cell lines would have to

co-express both early epiblast and extraembryonic markers,

readily differentiate into extraembryonic lineages in vitro
within 48 h and efficiently contribute to both embryonic and

extraembryonic tissues in chimaera assays. The establishment

of self-renewing totipotent cells in vitro will strongly depend

upon artificial integration of the totipotent transcriptional cir-

cuit to the housekeeping machinery. Moreover, it is likely

that the temporal presence of maternal genes substantially

contributes to a totipotent transcriptional network. Such key

factors would have to be identified and expressed in a

dosage and time-controlled manner in genetically engineered

cells. In contrast to ES cells, self-renewing totipotent cells

would lack a genuine embryonic counterpart and therefore

it might be challenging, although theoretically possible, to

generate such lines in the future.
9. Prerequisites for acquisition of epiblast
identity

Early ICM cells co-express epiblast markers, such as Klf2, Sox2

and Nanog, and early PrE markers, including Gata6, Pdgfra

and FGFR2 [20,56,86]. This delicate balance of opposing line-

age specifiers sets the scene for complete lineage segregation
within 24 h. Notably, this timing differs substantially from

PrE-like differentiation from ES cells in both embryoid body

[93] and monolayer [94] based protocols, in which robust PrE

marker induction typically takes around 5 days or longer

[94–96]. In presumptive epiblast cells, Nanog and Sox2

become upregulated and repress the sequential activation of

the PrE specifiers [64,97,98].

Transcriptional differences during development would

predict certain associated epigenetic motifs. Genome wide

erasure of DNA-methylation is associated with naive pluripo-

tency [99,100]. This resetting of epigenetic signatures is

potentially crucial for unrestricted germ-layer differentiation.

In females, the paternally inherited X-chromosome is silenced

during the first round of cleavage divisions. Reactivation

occurs transiently and exclusively in the embryonic lineage

just before implantation [101]. Moreover, there is a correlation

of the epigenetic status in epiblast cells in the embryo and ES

cells in vitro. Electron spectroscopic imaging of early mouse

development has shown that in morula and epiblast the

chromatin is distributed as an extended meshwork of uncom-

pacted fibres, indistinguishable from that of ES cells. By

contrast, the chromosomes of extraembryonic lineages were

found to be denser and more compacted [102]. This supports

the notion that naive pluripotency is associated with an open

chromatin state.

Another potential factor involved in epiblast specification

may be the duration of occupation of an internal position

and/or the exposure to extracellular matrix within the ICM.

The early ICM expresses a very specific pattern of Lami-

nin511 (Lama5, Lamb1, Lamc1), integrins and fibronectin

[65,86]. Isolated early ICM cells can develop the properties

of functional epiblast in vitro, when cultured on an attach-

ment matrix consisting of Laminin511 and fibronectin in

the presence of 2i/LIF [86]. The history of cell divisions in

the preimplantation embryo may similarly contribute to the
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maturation of a self-sufficient, pluripotent founder cell popu-

lation. Acquisition of epiblast or PrE fate is a gradual process

[20,56,103]. The ability of isolated ICM cells to give rise to ES

cell colonies in vitro appears to coincide with the departure of

potential for inter-lineage conversion [86]. An intriguing possi-

bility is that each ICM cell becomes irreversibly committed to

either PrE or epiblast within a single cell cycle, most likely

the seventh (figure 1). This may also coincide with the end of

cleavage and the initiation of embryonic growth.
.org
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10. Exit from naive pluripotency in vivo
A major rearrangement of the epiblast occurs following

implantation. From a loosely adherent ball of cells, a single-

layered cup-shaped epithelium emerges. This process was

long believed to occur as a result of apoptosis in the cells not

in contact with the visceral endoderm in a BMP-dependent

manner [104]. Recently, this hypothesis has been elegantly

refuted and alternatively attributed to self-organizational

behaviour of the epiblast [105]. During implantation, epiblast

cells rearrange to form a rosette, probably due to basal mem-

brane-stimulated integrin signalling. This establishment of

apical–basal polarity is a prerequisite for lumenogenesis and

subsequent gastrulation [105]. The transcriptional signature

specific to the primed state of pluripotency includes downreg-

ulation of naive pluripotency markers such as Rex1, Klf2, Klf4,

Tbx3 and Tfcp2l1 as well as upregulation of Pou3f1, Otx2 and

FGF5 [86,106–108].

One of the key drivers of exit from naive pluripotency is

FGF signalling. Preimplantation epiblast cells, and ES cells,

their in vitro equivalent, autonomously drive progression of

development by FGF4 expression [57,78]. Activation of the

Erk-cascade directs transition to the early postimplantation

epiblast, a tissue responsive to inductive cues for germ-layer

specification and subsequent development. Furthermore,

preimplantation epiblast cells express Nodal and upregulate

Acvr2b upon implantation [86], which may facilitate the

specification process. By contrast, the Wnt/Gsk3b signalling

pathway has been implicated in maintenance of naive pluripo-

tency [79–81,109]. Downregulation of Wnt/Gsk3b signalling is

required for the transition from a naive to a primed state in vitro
[79,109]. Interestingly, PrE cells express high levels of the Wnt

inhibitor Dkk1 [86], potentially facilitating the pre- to postim-

plantation epiblast transition. However, recent work

demonstrated that mice lacking the porcupine homologue

Porcn (a protein required for acetylation and function of Wnt

ligands) develop normally until gastrulation [110]. Further

studies will be required to elucidate fully the complex role of

Wnts, Gsk3b and b-catenin in preimplantation development.

Changes in signalling pathway activities between pre-

and early postimplantation development are reflected in

pluripotent stem cell lines derived from postimplantation epi-

blasts (EpiSCs), which exhibit distinct culture requirements

from those of ES cells [106,107]. EpiSCs self-renew in the pres-

ence of FGF and Activin A, whereas ES cells differentiate

upon activation of these pathways. Conversely, 2i-based cul-

ture conditions are detrimental for EpiSCs, suggesting that

the ability to thrive in the absence of FGF signalling is a dis-

tinctive feature of mouse ES cells. In corroboration of this

observation, the capacity for isolated epiblast cells to generate

naive pluripotent cell lines in feeder-free 2i/LIF culture con-

ditions is rapidly lost in the early postimplantation embryo

[86], an event which functionally marks the exit from naive

pluripotency in vivo.
11. Concluding remarks
The establishment of a pool of cells poised to respond to

positional and signalling cues to form a highly complex organ-

ism is an elegant achievement of mammalian development.

The first cell fates are specified by means of positional informa-

tion, with an ‘inside’ requirement for the embryonic lineage.

Cleavage continues and the inner cells set aside another extra-

embryonic lineage, subsequently required for patterning of

the embryo. Towards the end of preimplantation development,

the embryonic cells exit cleavage, a fundamental prerequisite

for embryonic growth. At this time, the epiblast acquires the

intriguing state of naive pluripotency, which can then be

captured in vitro as self-renewing ES cells.
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