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Abstract

This paper is concerned with consistent nearest neighbor time series estima-

tion for data generated by a Harris recurrent Markov chain. The goal is to vali-

date nearest neighbor estimation in this general time series context, using simple

and weak conditions. The framework considered covers, in a unified manner, a

wide variety of statistical quantities, e.g. autoregression function, conditional

quantiles, conditional tail estimators and, more generally, extremum estimators.

The focus is theoretical, but examples are given to highlight applications.

Key Words: Nonparametric Estimation, Quantile Estimation, Semipara-

metric Estimation, Sequential Forecasting, Tail Estimation, Time Series.

1 Introduction

This paper is concerned with conditional nonparametric and semiparametric estima-

tion from data generated by a stochastic process that can be represented as a Harris

Recurrent Markov Chain (HRMC). The class of HRMC is quite general and includes
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processes that may not be stationary (e.g. univariate random walks). The basic inter-

est of the paper is to consider a process X = (Xi)i∈N with values in some set E ⊆ RK

(K ≥ 1) and some measurable function f on E and to estimate Ei−1f (Xi) (Ei−1 is

expectation conditional on the sigma algebra generated by (Xs)s<i) or some related

quantity like inff Ei−1f (Xi) over some class of functions from which we can derive

conditional extremum estimators. Most common examples include conditional distrib-

ution function estimation (f (x) = I {x ≤ y}, y ∈ E), regression estimation (f (x) = x)

and, as just mentioned, conditional extremum estimators. The goal is not to derive new

estimators, but to validate, in a unified manner, the application of nearest neighbor

estimation to time series problems. Nevertheless, some of the applications consider es-

timators that might be new. The advantage of nearest neighbor estimators over kernel

estimators is that they are usually more stable, as they automatically adapt to regions

where there is sparsity of data.

Assuming the HRMC condition, the goal is to state simple general conditions that

would imply consistency for nonparametric and/or semiparametric estimation, avoiding

mixing conditions. When dealing with real data, it is often difficult to check mixing

and/or dependence conditions. When the hypotesized data generating process (DGP)

is available, computation of mixing conditions is difficult (Doukhan, 1994) and for this

reason some new weak dependence coefficients are used (e.g. Doukhan and Louhichi,

1999, and Ango-Nze and Doukhan, 2004 for applications to econometrics). However,

there are many weak dependence coefficients, and the choice of one condition among

many may require ad hoc arguments for each different model. On the other hand, we

may suppose that the data come from a given class of stochastic processes, but no other

information is available. Wemay not even know if the process is stationary. The natural

question to ask is the following: is it possible to identify a broad class of stochastic

processes in which many econometric and statistical models can be embedded and such

that nonparametric estimation is still consistent? This question has been positively

answered by Yakowitz (1993), where a slightly more general class of stochastic processes

than HRMC has been considered, but attention is limited to autoregression function

estimation. Karlsen and Tjostheim (2001) slightly restricted the class of stochastic
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processes, but considered more general nonparametric estimation problems. Karlsen

and Tjostheim (2001) studied nonparametric kernel estimation, while Yakowitz (1993)

used a nearest radii approach, also used here and to be described in due course. The

nearest radii approach considerably simplifies the argument. Markov chains (MC) and

in particular HRMC have also been considered as an important case of DGP around

which to develop empirical methods for inference (e.g. Horowitz, 2003, Bertail and

Clémençon, 2006).

Unlike Karlsen and Tjostheim (2001), the present paper is only concerned with

consistency and weak conditions required to assure it. Inferential arguments in condi-

tional nonparametric estimation have been carefully handled by Karlsen and Tjostheim

(2001). Restricting our interest on consistency only, the conditions used here are par-

ticularly simple. Unlike Yakowitz (1993), this paper is not restricted to autoregression

function estimation, but more general nonparametric and semiparametric procedures

are studied. The main idea is to be able to consistently estimate the conditional

distribution function. This allows us to derive consistency for a large number of non-

parametric and semiparametric problems imposing mild smoothness conditions on the

transition distribution only. Several examples will be given to highlight the number of

possible applications of interest to the empirical researcher. In this respect, the class

of problems considered includes extremum estimators, hence, it is more general than

some of the problems considered by Karlsen and Tjostheim (2001).

The present paper complements the previous ones in an effort to provide nonpara-

metric estimators for time series without the need to impose dependence conditions

beyond the null recurrence hypothesis, hence allowing for nonstationary time series. It

is remarkable that the proofs remain simple and do not require complicated technical

conditions.

Note that mixing conditions are commonly used in the nonparametric literature

(e.g. Robinson, 1983, for an early reference, see also the monograph of Pagan and

Ullah, 1999), though recently, more general weak dependence conditions have also

been employed (Ango-Nze et al., 2002). The present discussion does not only differ

from previous work because mixing and weak dependence conditions are not used (and
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stationarity is not always necessary), but, as already mentioned, because the class of

problems is more general than the regression problem usually studied in the literature.

Section 2 discusses the nearest neighbor procedure and states minimal conditions

under which the nonparametric estimator of the conditional distribution function is

consistent. This result is then used to show consistency in a variety of cases with

an illustrative example of conditional tail estimation and one of optimal sequential

forecasting of conditional quantiles. Section 3 informally overviews issues of applied

nature like neighbors’ selection and dimensionality reduction. Its purpose is to provide

suggestions for future research in nonparametric time series. Proofs of results can be

found in the Appendix. Next we just mention a few models that can be embedded in

HRMC.

1.1 Many Important Econometric and Statistical Models are

HRMC

Recall that an MC is a discrete time process such that, conditioning on the present,

the future and the past are independent. Then, an HRMC, say X, with state space E

is an irreducible MC such that

Pr (Xn ∈ B i.o.|X0 = x) = 1, x ∈ E (i.o. stands for infinitely often)

for any set B of positive ψ measure, where ψ is some suitable sigma finite measure

(e.g. Meyen and Tweedie, 1993, for details).

By suitable definition of the state space E, it is possible to embed many econometric

and statistical models in the class of HRMC, under suitable restrictions (e.g. non-

explosive coefficients). Linear autoregressive, SETAR, multilinear, and ARCH models,

all fall within the class of HRMC. Many examples can be obtained by considering the

class of models that can be embedded in the following multivariate stochastic difference

equation

Xn = AnXn−1 +Bn, (1)

where (An)n∈N and (Bn)n∈N are iid matrix and vector valued random variables (Babillot

et al., 1997, for details on recurrence and references)
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Example 1 Consider the ARCH(2) model

Yn = Znσn,

σ2n = α0 + α1Y
2
n−1 + α2Y

2
n−2,

where (Zn)n∈N is a sequence of independent identically distributed (iid) random vari-

ables. Then, Y 2
n admits the representation⎛⎝ Y 2

n

Y 2
n−1

⎞⎠ =

⎛⎝ Z2nα1 Z2nα2

1 0

⎞⎠⎛⎝ Y 2
n−1

Y 2
n−2

⎞⎠+
⎛⎝ α0Z

2
n

0

⎞⎠ .

If Zn is symmetric around zero, there is a one to one mapping between Yn and Y 2
n .

This is in the form of (1).

The above example extends to any finite order. As will become obvious, we need

the HRMC to be observable, i.e. we must observe Xn at time n.

Example 2 Consider the GARCH(1,1) model

Yn = Znσn,

σ2n = α0 + α1Y
2
n−1 + βσ2n−1,

where (Zn)n∈N is a sequence of iid random variables. Then, Y 2
n admits the representa-

tion ⎛⎝ Y 2
n

σ2n

⎞⎠ =

⎛⎝ Z2nα1 Z2nβ

α1 β

⎞⎠⎛⎝ Y 2
n−1

σ2n−1

⎞⎠+
⎛⎝ α0Z

2
n

α0

⎞⎠ .

In this case, Xn = (Y
2
n , σ

2
n)
0, but σ2n is not observable.

In the case of GARCH, the Markov chain contains the unobservable component

σ2n that can be approximated by a finite MA process in (Y 2
n )n∈N if we assume the

invertibility condition β < 1. Then, we could deal with this problem by method of

sieves allowing the state space to increase with time. This could be done imposing

suitable stationarity conditions. However, for general HRMC this is not possible, as

this class includes null recurrent chains that are not stationary. Hence, in this general

context, some important estimation procedures will not be discussed unless they can
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be dealt within the unifying framework of the paper. This is restrictive, nevertheless,

estimation for many models is accounted for. As just mentioned, the class of HRMC

also includes models that do not possess a stationary distribution (e.g. the univariate

random walk model commonly used in econometrics). Further details on examples can

be found in Meyn and Tweedie (1993, ch.2).

As noted by Karlsen and Tjostheim (2001), the availability of large data-sets

(e.g. high frequency financial data) makes the use of nonparametric methods for non-

stationary time series a possibility. Hence, while not always efficient, we can even

hope for successful nonparametric estimation for nonstationary time series. In these

cases, the nonparametric approach could be used for preliminary data analysis and

data exploration or as a preliminary stage for adaptive estimation. Going back to the

GARCH example, there has been considerable interest in realized volatility estimation

(e.g. Barndorff-Nielsen and Shephard, 2002). Nonparametric methods could be used

to forecast volatility once an estimate of realized volatility is available. This would be

a fully nonparametric alternative to parametric GARCH.

2 Conditional Estimation using Nearest Neighbors

Let X = (Xn)n∈N be an aperiodic HRMC on a state space
¡
E ⊆ RK , E¢ with transition

probability P (x,A) and invariant measure π. The Markovian probability with initial

value x is denoted by Px. We shall use linear functional notation, as commonly done in

the MC literature, e.g. for some suitable function f , Pf (x) :=
R
E
f (y)P (x, dy) and

for some set B ⊂ E, Pf (B) :=
R
B

R
E
f (y)P (x, dy) [π (dx) /π (B)] (and the use of this

notation will not require further explanation). Note that if π (E) < ∞ the HRMC is

said to be positive recurrent, while null recurrent if π (E) =∞. Null recurrent MC do
not possess stationary distribution. At first, we shall be concerned with estimation of

P (x, {y ∈ E : y ≤ s}) = Pr (Xn ≤ s|Xn−1 = x) ,

where for K > 1 the inequality is meant elementwise and the meaning of this notation

will be assumed throughout without reminder. By relatively standard results, consis-

6



tent estimation of the transition distribution allow us to derive in a unified manner a

wide variety of estimators which are discussed in the sequel.

For simplicity, but with abuse of notation, we shall write P (s|x) as a short cut for
P (x, {x : x ≤ s}), the conditional distribution function.

2.1 The Estimator

We shall follow Yakowitz (1993). Denote by m → ∞ the number of neighbors. The

estimator is derived in terms of the recurrence times of X to some conditioning set

B (x, rm)→ {x} as rm → 0, which is a ball of d-radius rm (d usually being topologically

equivalent to the Euclidean distance, and irrelevant to the development of the paper).

To ease notation, we shall use Bm, Bm (x) and B (x, rm) interchangeably, whichever

is felt more appropriate. For any set B ⊆ E, define TB := inf {n > 0 : Xn ∈ B} and
TB (i) := inf {n > TB (i− 1) : Xn ∈ B}, TB (1) := TB, i.e. TB (i) is the time of the ith

visit to B. Hence,

P̂m (s|Bm) := P̂m (Bm, {y ∈ E : y ≤ s}) = 1

m

mX
i=1

I {X (TBm (i) + 1) ≤ s} (2)

is an m nearest neighbor estimator for the one step ahead conditional distribution

(X (i) = Xi for typographical reasons). The same linear functional notation used for

P will also be used for P̂m, e.g. P̂mg (Bm) =
R
E
g (y) P̂m (Bm (x) , dy).

Note that by the Harris recurrence assumption, TB (i) < +∞ a.s. for each i. This

means that as n → ∞ we shall be able to allow m → ∞ so that the estimation error

goes to zero. However, for consistency, we shall also require B (x, rm)→ {x} so that the
bias is vanishing (i.e. the conditioning set needs to shrink as the sample size increases).

To this end, we shall first fix a sequence rm → 0 as m→∞. This means that fixed a
radius rm, we shall wait for the m visit to Bm (x) in order to construct P̂m, which is

an m nearest neighbor estimator. By Harris recurrence, this will happen a.s. in finite

time for any m.

Let L (n) be a slowly varying function of n at infinity (e.g. Bingham et al., 1987).

If we assume X to be β-recurrent (using the terminology in Karlsen and Tjostheim,

2001), then, by Theorem 2.1 in Chen (1999),
Pn

i=1 f (Xi) ³ nβL (n) in probability,
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β ∈ [0, 1], for any non-negative π integrable f such that πf > 0. (Note that Chen,

1999, calls this MC regular and expresses the condition in terms of recurrent times ofD-

sets: using results about atoms and small functions, the two definitions are equivalent,

e.g. Chen, 1999.) Clearly, β = 1 is the positive recurrent case. It is well known

(e.g. Chen, 1999, Karlsen and Tjostheim, 2001) that a random walk is recurrent of

index β = 1/2. Hence, if we knew β, we would know that nβ/mn → ∞ is necessary.

(When β = 1, we recover the familiar necessary condition for consistency on the m

neighbors.) Mutatis mutandis, this is the approach of Karlsen and Tjostheim (2001),

where in practice a lower bound for β has to be estimated, though the formal approach

requires the use of Nummelin splitting technique (e.g. Meyn and Tweedie, 1993) and

considerable technicalities. Note that in Karlsen and Tjostheim (2001) the badnwidth

is a function of β. Here, no assumption of regularity is made so that the estimator can

be constructed only using the predetermined sequence of sets B (x, rm). Noting that

π (B (x, rm)) < ∞ because π is sigma finite, under the assumption of β recurrence in

Karlsen and Tjostheim (2001), we could use Theorem 2.1 in Chen (1999) and impose

conditions directly on the neighbors, without worrying about the choice of the radius

rm.

2.2 Consistency of the Conditional Empirical Distribution Func-

tion

The conditions used for consistency of the conditional empirical distribution are for-

mally listed below. Further conditions might be required in the applications and these

will be stated when needed.

Condition 3 X := (Xn)n∈N is an aperiodic Harris recurrent Markov chain on a state

space
¡
E ⊆ RK, E¢ with transition probability P (x,A) and invariant measure π. The

sigma algebra E is countably generated.

Remark 4 It is possible to allow for a more general state space and some details are

given in the Appendix. If E = RK equipped with its usual metric, E is countably
generated.
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Condition 5 Pr (X1 ≤ s|X0 = x) is a.s. continuous in x ∈ E for any s ∈ E.

Remark 6 If continuity does not hold, the results are still true for π-almost all x.

Condition 7 rm → 0 and m→∞.

Remark 8 By Condition 3, Condition 7 is always feasible.

Theorem 9 Under Conditions 3, 5 and 7,

sup
s∈E

¯̄̄
P̂m (s|Bm (x))− P (s|x)

¯̄̄
a.s.→ 0.

We now use this result to consider more interesting problems.

2.3 Estimation of Conditional Minimum Estimators

The following set up is a bit abstract. The reader mainly interested in examples might

skim through the remaining of this section and look at Section 3 to get a feeling of the

possible applications.

Consider the following problem

inf
f∈F

Pf (x)

where F is some set of functions (and recall that Pf (x) is the expectation of f (Xn)

conditioning on Xn−1 = x). Suppose f (y) = fθ (y) is convex in θ ∈ Θ for some

suitable set Θ. Then, the above problem can be seen as an abstract version of the

more common problem of minimizing the risk Pfθ (x) with respect to θ. Solution of

this problem allows us to define population values for many statistical estimators.

Example 10 Suppose fθ (x) = |x− θ|2 and x ∈ E ⊆ R. Then,

arg inf
θ∈Θ

Pfθ (x) = E (Xn|Xn−1 = x) ,

i.e. the expectation of Xn conditioning on Xn−1 = x.
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Example 11 Suppose fθ (x) = |x− θ| and x ∈ E ⊆ R. Then,

arg inf
θ∈Θ

Pfθ (x) =M (Xn|x) ,

which denotes the median of Xn conditioning on Xn−1 = x.

Example 12 Suppose fθ (x) = u |x− θ|++(1− u) |x− θ|− and x ∈ E ⊆ R, u ∈ (0, 1).
Then,

arg inf
θ∈Θ

Pfθ (x) = Qu (Xn|x) ,

which denotes the u quantile of Xn conditioning on Xn−1 = x.

For a general treatment of the problem, it is simpler to define minimization with

respect to f ∈ F rather than θ ∈ Θ. Examples will be given in due course.

We shall use standard concepts like integrability under the measure induced by the

kernel P fixed at x.

Definition 13 The measure induced by the transition kernel P at fixed x ∈ E will be

denoted by πx:

πx (A) := P (x,A) .

Note that πx should not be confused with Px, e.g. πx (A) = Pr (Xn ∈ A|Xn−1 = x),

while Px (Xn ∈ A) = Pr (Xn ∈ A|X0 = x).

We also introduce the following definition.

We need to restrict the class of functions F to be considered.

Condition 14 For any x ∈ C ⊆ E, the following holds:

i. F has envelope function F (x) := supf∈F |f (x)| such that lim supm PF p (Bm (x)) <∞
for some p > 1;

ii. F is any family of πx-a.s. equicontinuous functions on E.

Remark 15 We may have C = E. However, in some applications we may just want

to consider C = {x}, i.e. a singleton or some other subset of E.
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Remark 16 A family of equicontinous functions contains functions that are not nec-

essarily Lipschitz for a given metric, e.g. any finite set of continuous functions. More-

over, we can allow for more general families of functions, possibly discontinuous. To

limit the notational burden in the text, we do not pursue this generalization here, but

detail can be found in the appendix.

Corollary 17 Under Conditions 3, 5, 7 and 14,

sup
f∈F

¯̄̄
P̂ f (Bm (x))− Pf (x)

¯̄̄
a.s.→ 0,

for any x ∈ C.

Remark 18 This result is a generalization of Theorem 2 in Yakowitz (1993), where,

mutatis mutandis, p > 2 is required. Moment conditions higher than 2 are also used

for consistency in Theorem 5.2 of Karlsen and Tjostheim (2001), though their results

are not directly comparable because they use a different nonparametric estimator. Note

that these authors do not consider the uniform in F case.

The above result can be used to derive conditional extremum estimators. Define

f̂m (x) := arg inf
f∈F

P̂mf (Bm (x)) and f0 (x) := arg inf
f∈F

Pf (x) ,

so that f0 is the unfeasible optimal choice of f ∈ F (i.e. unknown), while f̂ is the
feasible estimator. Then, under an additional identifiability condition, we have that f̂

and f are close to each other for each fixed x. To formalize this we need the following

additional condition, which is minimal.

Condition 19 For any x ∈ C ⊆ E, let G = Gx be any arbitrary open set that contains

f0 (x) and let Gc be its complement. Then,

inf
f∈Gc

Pf (x) > Pf0 (x) .

Corollary 20 Suppose (F, ρ) is a metric space. Under Conditions 3, 5, 7, 14, and 19,

ρ
³
f̂m (x) , f0 (x)

´
p→ 0,

for any x ∈ C.
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2.4 Sequential Forecasting

We now consider sequential forecasting. Define

f̂m,n := f̂m (Xn−1) and fn := f (Xn−1) ,

so that fn is the unfeasible Fn−1 measurable optimal choice of f ∈ F, while f̂m,n is the

feasible estimator. The goal is to strengthen Corollary 20 for the more general problem

of sequential forecasting. A detailed example will be given in the next subsection in

order to explain the abstract setup. We introduce a strengthening of Condition 14.

Condition 21 Condition 14 holds with C such that for any n ≥ 1 and any � > 0,

P n (x,C) > 1−� (P n is the n transition probability, e.g. P n (x,C) = Pr (Xn ∈ C|X0 = x)).

Remark 22 Note that P n (x,E) ≤ 1 if P (x,E) ≤ 1, which is the case by definition.
Condition 21 might be helpful if Condition 14 does not hold for C = E but still holds

for some set of arbitrary smaller measure. Note that C is not required to be compact.

Theorem 23 Suppose (ρ,F) is a metric space and ρ
³
f̂n, fn

´
is Px-uniformly inte-

grable for any n. Under Conditions 3, 5, 7, 19, and 21,

1

N

NX
n=1

Exρ
³
f̂m,n, fn

´
→ 0,

where Ex (Xn) = E (Xn|X0 = x), i.e. expectation w.r.t. Px.

Theorem 23 says that the average loss incurred using the estimated forecast f̂m,n is

equivalent to the one incurred using the optimal unfeasible sequential forecast fn.

To provide some understanding of the condition ”ρ
³
f̂m,n, fn

´
is Px-uniformly inte-

grable for any n”, suppose: fn := En−1Xn, X is a random walk with values in R and

ρ (x, y) = |x− y|. Then, f̂m,n :=
Pm

i=1X (TB (i) + 1) /m where B = Bm (Xn−1) and

Ex
¯̄̄
f̂m,n − fn

¯̄̄p
< ∞ under a p moment condition on the innovations of the random

walk. Hence, ρ
³
f̂m,n, fn

´
is Px-uniformly integrable for any n.
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3 Applications

Nearest neighbor estimation is a standard statistical technique. We use this space

to show some of its applications to problems covered by the previous results. These

applications might not be that standard and are presented for illustrative purposes

only. In particular, two applications are considered: conditional likelihood estimation

and sequential forecasting of conditional quantiles.

3.1 Conditional Likelihood Estimation

Suppose that the transition kernel admits the following representation

P (x,A) =

Z
A

p (y; θ (x))μ (dy) ,

where μ is a sigma finite measure and θ (x) is a function of x taking values in Θ . Then,

(p (y; θ))θ∈Θ is a model where θ = θ (x) is unknown and we ignore a parametric form

for θ (x). Hence the model p (y; θ (x)) depends on the infinite dimensional parameter

θ (x).

Example 24 Suppose Xn = θ (Xn−1)Zn, where (Zn)n∈N is iid standard Gaussian

noise and θ (Xn−1) is a function of Xn−1. Then, p (y; θ (x)) = φ (y/θ (x)) /θ (x) de-

noting the standard Gaussian density by φ. This is a simple Markovian model for

heteroskedastic data. If we are unable or unwilling to make a parametric assumption

for θ (x), then, we could use nonparametric methods to estimate it. The conditionally

Gaussian ARCH process of finite order is a special fully parametrized case of this model.

In some models (notably the ones belonging to the exponential family), we also

have that there is a function g such that

θ (x) =

Z
A

g (y) p (y; θ (x))μ (dy) .

Example 25 Suppose p (y; θ) = exp {ha (θ) , g (y)i+ b (θ)} c (y), for some positive func-
tions a,b and c, where θ =

R
g (y) p (y; θ) dμ (y). Clearly, a and g could be vector valued

functions. This density is said to belong to the exponential family model, with nat-

ural parameter θ, canonical parameter a (θ) and canonical statistic g (x). Properties of
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these models in relation to econometrics can be found in van Garderen (1997). The

Gaussian, the Poisson and the Binomial distributions all belong to this family.

When p (y; θ (x)) is the density kernel, it is natural to ask if nonparametric estima-

tion can be used to consistently estimate p (y; θ (x)) or θ (x). Clearly, the case

θ (x) = Pg (x) =

Z
A

g (y) p (y; θ (x))μ (dy)

is dealt by Corollary 17. A general alternative to this method is to choose θ (x) to

maximize

E [ln p (Xn; θ) |Xn−1 = x] (3)

with respect to θ. Denoting the true unknown function to estimate by θ0 (x), the

justification of (3) is the usual one via the scoring rule: under regularity conditions,

(∂/∂θ)E [ln p (Xn; θ) |Xn−1 = x] =

Z
E

(∂p (y; θ) /∂θ)

p (y; θ)
p (y; θ0 (x))μ (dy)

=

Z
E

µ
∂p (y; θ0 (x))

∂θ0 (x)

¶
μ (dy) = 0

if θ = θ0 (x). Corollary 17 shows that, under regularity conditions,

sup
θ∈Θ

¯̄̄̄Z
E

ln p (y; θ)Pm (dy|Bm (x))− E [ln p (Xn; θ) |Xn−1 = x]

¯̄̄̄
a.s.→ 0,

so that the semiparametric likelihood approach is consistent: this is just an application

of Corollary 20. If Θ is compact or can be approximated a.s. by a compact set

and ln p (y; θ) is continuous in θ and in Lp (πx) for some p > 1 and for any x0 in

the neighborhood of x, and has a unique maximum, then Conditions 14 and 19 are

satisfied and no further work is required for Corollary 17 and 20 to hold. For the sake

of concreteness we give an example of semiparametric likelihood estimation in the case

of tail estimation for extreme events.

3.1.1 Example: Estimating Tail Events for HRMC

Suppose that E ⊆ R and denote by yP := sup {y ∈ E : Pr (Xn ≤ y|Xn−1 = x) < 1},
i.e. the largest element in the support of P given x. Our goal is to find an estimator

for

Pr (Xn > z|Xn−1 = x) ,

14



when z is very large. When z is quite large, the estimated survival function 1 −
P̂m (z|Bm (x)) can be a poor estimator of tail probabilities and clearly infeasible for

events beyond the sample range. For this reason, we may use a semiparametric ap-

proach. We assume that the MC has peak over threshold function satisfying

lim
y↑yP

sup
0<s<yP−y

¯̄̄̄
¯Pr (Xn > y + s|Xn > y,Xn−1 = x)−

µ
1 + α

s

β (y)

¶−1/α ¯̄̄̄¯ = 0 (4)

for some positive function β (s) and real α (Embrechts et al., 1997, ch.3, for details).

In the iid case, this is the standard assumption that Xn is in the maximal domain of

attraction of the generalized extreme value distribution and conditions can be used to

assure that this is the case also in the dependent case (e.g. Leadbetter and Rootzen,

1988, Section 2). The difference here is that we are considering high levels conditioning

on Xn−1 = x so that α and β (y) may depend on Xn−1 = x. When y ↑ yP it is often the
case that Xn and Xn−1 are independent unless the kernel P exhibits tail dependence

(e.g. Joe, 1997). The relevance of estimation of conditional tail events for time series

as opposed to unconditional tail estimation is an empirical question that cannot be

addressed here.

Using (4) we approximately have

Pr (Xn > y + s|Xn−1 = x) ' Pr (Xn > y|Xn−1 = x)

µ
1 + α

s

β (y)

¶−1/α
(5)

for large fixed y. Using the fact that

sup
y∈E

¯̄̄
P̂m (y|Bm (x))− Pr (Xn ≤ y|Xn−1 = x)

¯̄̄
a.s.→ 0

by Theorem 9, and by the discussion about semiparametric conditional likelihood, we

find α and β maximizing

− lnβ (y)−
Z
{s>y}∩E

µ
1 +

1

α

¶
ln

µ
1 + α

s− y

β (y)

¶−1/α−1
P̂m (ds|Bm (x)) (6)

in place of

−E
"
lnβ (y) +

µ
1 +

1

α

¶
ln

µ
1 + α

Xn − y

β (y)

¶−1/α−1 |Xn > y,Xn−1 = x

#
,
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as Pr (Xn > y|Xn−1 = x) in (5) does not depend on α and β (y). In the unconditional

case, this procedure is standard (e.g. Embrechts et al., 1997, Ch.6) and for y large but

such that P̂m (y|Bm (x)) can be reasonably estimated, we have

Pr (Xn > y + s|Xn−1 = x) '
h
1− P̂m (y|Bm (x))

iÃ
1 + α̂

s

β̂ (y)

!−1/α̂
,

where α̂ and β̂ (y) are the estimators from (6). The threshold level y is a crucial

parameter to estimate and this problem is no different from the unconditional case: y

should be large to minimize the bias in (4), but also small so that the estimation error

is not too large (see Embrechts et al., 1997, for suggestions).

3.2 Sequential Forecasting of Conditional Quantiles

As an application of Theorem 23, we consider sequential forecasting of conditional

quantiles of X. In order to avoid issues related to non-uniqueness of quantiles in high

dimension, we assume that E ⊆ R. This is just done for notational simplicity. If we
required a larger state space to embed a higher order MC, the quantile of Xn would

refer to the first entry in Xn, as all the other entries are past values for the original

model. Hence, the conditional u quantile of Xn is given by

Q (u|x) := inf
s∈R
{Pr (Xn ≤ s|Xn−1 = x) > u} .

To apply the results of the previous subsections, we need to consider a loss function

that once minimized gives the conditional population quantile. Hence, define g (x) =

(1− u) |x|− + u |x|+ and fθ (x) = g (x− θ), so that fθ is convex in θ. By Example 12,

Q (u|x) = inf
θ∈R
E [fθ (Xn) |Xn−1 = x]

= inf
θ∈R

Pfθ (x) ,

using compact notation. Therefore, the conditional quantile estimator is given by

Q̂ (u|Bm) : = inf
s

n
P̂ (s|Bm) ≥ u

o
(7)

= inf
θ∈R

P̂mfθ (Bm (x)) .
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(In practice, (7) is directly obtained from the order statistics, X (TB (i1) + 1) ≤ .... ≤
X (TB (im) + 1).) By convexity of g, an application of Jensen’s inequality gives the

following bound on quantile sequential forecasting

1

N

NX
n=1

En−1g
³
Xn − Q̂ (u|Bm (Xn−1))

´
≤ 1

N

NX
n=1

En−1g (Xn −Q (u|Xn−1)) + error,

(8)

error =
1

N

NX
n=1

En−1g
³
Q (u|Xn−1)− Q̂ (u|Bm (Xn−1))

´
, (9)

where En−1 is expectation conditional onFn−1, the sigma algebra generated by (Xs)s<n.

Our goal is to apply Theorem 23 to show that error = op (1). To this end, we state

the relevant conditions.

Condition 26 Q (u|x) is the unique solution θ0 (x) of

Pr (Xn < θ0 (x) |Xn−1 = x) ≤ u ≤ Pr (Xn ≤ θ0 (x) |Xn−1 = x) , x ∈ E.

Condition 27 For any n, some α > 0, and x ∈ E, Px (|Xn| ≥ z) = O
¡
z−(1+α)

¢
.

In words the above condition requires the MC not to drift away from its central

values (tightness), and it is stronger than the more general condition of not being

evanescent (see Meyen and Tweedie, 1993). For example a random walk in R is not

evanescent, but does not satisfy Condition 27, as it is not bounded in probability

(see Nicolau, 2002, for a discussion of this and related models that are bounded in

probability and embedded to the class of HRMC, under suitable restrictions).

We have the following.

Corollary 28 Under Conditions 3, 5, 7, 26 and 27, for any u ∈ [a, b] ⊂ (0, 1),

1

N

NX
n=1

En−1g
³
Xn − Q̂ (u|Bm (Xn−1))

´
≤ 1

N

NX
n=1

En−1g (Xn −Q (u|Xn−1)) + op (1) .

By Corollary 28 we can expect to forecast non extreme quantiles almost as well as

if we used the true conditional quantiles.
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4 Discussion

The goal of this paper is to identify general weak conditions that allow us to solve

a broad class of nonparametric and semiparametric time series problems by nearest

neighbor estimation. However, some issues of practical nature, whose detailed account

is beyond the scope of this paper, deserve some mention. One is the choice of neighbors

and the second is related to the curse of dimensionality and dimensionality reduction

techniques. We briefly consider these two problems mainly relating to some existing

results in the literature.

4.1 Choosing the Number of Neighbors by Prequential Vali-

dation

One fundamental issue in smoothing methods is the choice of smoothing parameter.

In the present context, we considered two parameters: rm and mn, i.e. the radius of

the d-ball and the number of required neighbors in this ball. The need to choose these

two parameters makes practical implementation complex. Further restricting the class

of HRMC, we may assume β recurrence so that the HRMC makes Op

¡
nβ
¢
visits to the

set B (x, rm). Under this condition, we only need to discuss choice of mn. The reader

will see that the argument and the notation can then be simplified, with little loss of

generality.

Suppose that we have preselected J sequences
n
m
(j)
n , j = 1, ..., J

o
, where m(j)

n is an

increasing (sub-linear) function of n. Our goal is to identify the jth sequence that gives

the best relative performance for some given criterion. If we selected a large enough

number of sequences, we could be confident that one of them would satisfy Condition

7.

To be specific, select a measurable loss function R for the estimator P̂m. Note that

all the estimators we consider are functions of P̂m, where m = mn and for ease of

notation the subscript is often omitted. The loss function at time n is a function of

(Xi)i≤nand we shall generically write R(j)
n+1 := R

³
P̂m(j) (Xn+1|Bm(j) (Xn))

´
for the loss

incurred at time n+1 when we use m(j) = m
(j)
n neighbors and only observations up to
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time n to construct P̂m(j) so that when Xn+1 is revealed we incur the loss R(j)
n+1.

Example 29 Let X̂(j)
n+1 :=

R
E
sP̂m(j) (ds|Bm(j) (Xn)) be the m

(j)
n neighbor estimator for

the mean of Xn+1 conditional on Xn. Then, R(j)
n+1 :=

¯̄̄
Xn+1 − X̂

(j)
n+1

¯̄̄2
.

For a sample of N observations, we shall choose

ĵ := arg min
j∈{1,...,J}

NX
n=1

R(j)
n+1 (10)

to be the optimal choice of j.

Example 30 Let m(j)
n := αjn

β(j), where αj is a small positive constant and βj ∈ (0, 1)
for j = 0, ..., J . Then, ĵ identifies the sequence m

(j)
n which gives smallest total lossPN

n=1R(j)
n+1.

It follows that the number of neighbors is the same irrespective of the conditioning

value Xn, so that
PN

n=1R(j)
n+1 is a global criterion for the loss based on m

(j) neighbors.

Note that neighbors automatically adjust the level of smoothing depending on the

sparsity of data in different regions.

The approach just described is based on the prequential (predictive sequential)

principle of Dawid (e.g. Dawid, 1986, Dawid and Vovk, 1999, and Seillier-Moiseiwitsch

and Dawid, 1993). Since ĵ in (10) is a random variable, the above rule might not be

satisfactory. If j1 and j2 identify two sequences in
n
m
(j)
n , j = 1, ..., J

o
that lead to

equivalent conditional losses,

M
(j1,j2)
N :=

NX
n=1

³
R(j1)

n+1 −R(j2)
n+1

´
is a martingale and standard inference can be conducted (Seillier-Moiseiwitsch and

Dawid, 1993).

Proposition 31 Suppose En
³
R(j1)

n+1 −R(j2)
n+1

´
= 0 and

³
R(j1)

n+1 −R(j2)
n+1

´2
is uniformly

integrable, and N−1PN
n=1 En

¯̄̄
R(j1)

n+1 −R(j2)
n+1

¯̄̄2
→ σ2 <∞. Then,

N−1/2M (j1,j2)
N

w→ N
¡
0, σ2

¢
( w→ is weak convergence).
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Given an apriori confidence level, the above result allows us to develop an automatic

choice of sequence among
n
m
(j)
n , j = 1, ..., J

o
. Suppose that [0, cα] is a (1− α) 100%

one sided confidence interval for the standard normal distribution. For each j and

given confidence level, choose j such that N−1/2M (j,ĵ)
N ∈ [0, σcα] and m(j)

N is largest. By

the assumptions of Proposition 31, σ2 can be replaced by a consistent estimator. This

approach allows us to impose maximum smoothing without significant increase in the

approximation error. More refined approches based on sequential testing are possible

(e.g. Belomestny and Spokoiny, 2005), but their description is beyond the scope of this

paper.

A successful alternative to selection of j is averaging among different estimators

based on different smoothing levels. This approach is widely used in different contexts,

(e.g. Breiman, 1996, for linear model selection, Hoeting et al., 1999, for Bayesian

model averaging, Polyak and Juditsky, 1992, for stochastic approximation estimators,

Resnick and Starica, 1999, for tail index estimation) and can be seen as a special case

of forecast combination (e.g. Timmermann, 2006, for a survey).

Example 32 Suppose X̂
(j)
n+1 is as in Example 29. Then, for (w1, ..., wJ) in the J

dimensional unit simplex,

X̂n+1 :=
JX

j=1

wjX̂
(j)
n+1

is a combined estimator.

Estimation of the weights can be carried out by different methods.

Example 33 Using the notation of Example 29, define

NX
n=1

Rn+1 (w1, ..., wJ) :=
NX
n=1

¯̄̄̄
¯Xn+1 −

JX
j=1

wjX̂
(j)
n+1

¯̄̄̄
¯
2

and choose (w1, ..., wJ) such that the above is minimized.

Often it is not clear what is a best choice of weights. For this reason it is common

to use equal weights as is done in several of the mentioned references, perhaps over

the j’s that have reasonable performance so not to increase the bias too much (e.g.

Granger and Jeon, 2004)
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Example 34 Using the notation of Example 29, select all the j’s such that N−1/2M (j,ĵ)
N ∈

[0, σcα] and to ease notation denote the selected sequences by
n
m
(j)
n , j = 1, ..., J 0

o
. Then

define the estimator by
J 0X
j=1

X̂
(j)
n+1

J 0
.

The forecast combination literature is quite rich in examples of combined forecasts

and other alternatives exist, but are not discussed here (e.g. Capistrán and Timmer-

mann, 2006, for equally weighted forecasts). The relative merit of these approaches

is both a theoretical and empirical question beyond the scope of this paper. We now

turn to the problem of dimensionality reduction.

4.2 Imposing Restrictions on High Order MC

Some processes admit an MC representation only when embedded into a large state

space. The effect of dimension on the neighbor’s estimation is quite detrimental and

this problem is common to all local methods. A way to mitigate this problem is

to incorporate extra knowledge or assumptions in the metric d used to construct the

neighbors. One simple way to do so is to consider different metrics that are topologically

equivalent, but have different implications for the estimation. Recall that two metrics

d1 and d2 on a set E are topologically equivalent if y, x ∈ E, d1 (y, x) = 0 if and only

if d2 (y, x) = 0.

Example 35 Suppose d is the Euclidean distance on RK and dλ is such that for x,

y ∈ RK and for positive λ bounded away from zero,

dλ (x, y) :=

Ã
KX
k=1

λk−1 |xk − yk|2
!1/2

.

Then, dλ and d are topologically equivalent and in particular d = d1.

Example 35 with λ < 1 can be used if there is higher order dependence, but with

decreasing importance on the past, so that k represent the kth lag. Then, the mn

neighbor using dλ may vary considerably for different choices of λ. This approach
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leads to an implicit dimensionality reduction. Clearly, we could directly restrict d to

act on some manifold in E.

Example 36 Suppose that for some function R : E → R

Pr (Xi ≤ s|Xi−1 = x) = Pr (Xi ≤ s|R (Xi−1) = R (x)) ,

then we can substitute the E valued conditioning value x with the R valued R (x). There

is a clear advantage if E = RK and K > 1. Hall and Yao (2005) have studied this

problem when R (x) is a linear function and need to be estimated.

Another approach is to estimate the model with unrestricted d and combine it with

a low dimensional parametric model via shrinkage.

Example 37 Using the notation of Example 29, let X̂n+1 be the selected nearest neigh-

bor estimator, and let X̃n+1 = ân+ b̂nXn be the linear least square predictor of EnXn+1

based on the sample (Xi)i≤n. Then, consider the estimatorh
wX̂n+1 + (1− w) X̃n+1

i
where w ∈ [0, 1] is chosen such that

NX
n=1

¯̄̄
Xn+1 −

h
wX̂n+1 + (1− w) X̃n+1

i¯̄̄2
is minimized recursively. Shrunk estimators are commonly used in high dimensional

problems (e.g. Ledoit and Wolf, 2004).

4.3 Final Remarks

The study of optimal selection of neighbors’ size and dimensionality reduction are

fundamental in practical situations. The above suggestions are mainly based on the

author’s preferences and experience in applied work. Many existing results in the

literature should also be applicable to the general context of HRMC. However, in this

more general context, formal justification is required for any of the existing approaches

(including the ones mentioned here) and this will be subject of future research. The
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main focus of this paper is on conditions that allow us to derive consistent estimators for

HRMC without mixing conditions. It is hoped that the generality of these conditions

and the general class of problems considered might be appealing to the time series

analyst and forecaster.

A More General State Space

Many of the results of this paper hold for a state space more general than E ⊆ RK .

We can consider a general state space E with a countably generated sigma algebra E .
A nice example is E ⊆ R∞ equipped with the metric d∞ (x, y) =

P∞
i=1 2

−if (d (xi, yi))

where xi, yi ∈ R, f (t) = t/ (1 + t) and d is any metric topologically equivalent to the

Euclidean norm. Then, R∞ is metrizable by d∞ (Dudley, 2002, Proposition 2.4.4).

Since a metrizable space is countably generated, mutatis mutandis, the results of the

paper can be derived in this more general framework where the conditioning sets are

balls of d∞-radius rm. Clearly, difficulties arise, e.g. in general Theorem 9 will not

hold uniformly because the set {y ∈ E ⊆ R∞ : y ≤ s} does not have finite bracketing
number. However, let E = E1 × E2 where E1 ⊆ RK and E2 ⊆ R∞ (K finite). If we

restrict attention to {y1 ∈ E1 : y1 ≤ s} (s ∈ E1) then Theorem 9 still holds when we

want to estimate the conditional distribution

Pr (Xn ∈ {y1 ∈ E1 : y1 ≤ s} ∩E2|Xn−1 ∈ E)

using the nearest neighbor estimator based on balls of d∞-radius rm. One may proceed

along these lines to partially rederive the other results of the paper.

B Remarks on Continuity in Condition 14

Condition 5 is used to show that the bias vanishes. This together with Condition 14

avoids assuming that Pf (x) is smooth in x and allows us to disregard conditions on

the bracketing numbers of F.
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The approach of the paper is to use Theorem 9 to show that

sup
f

¯̄̄
P̂mf (Bm (x))− Pf (x)

¯̄̄
a.s.→ 0

for any family of πx-a.s. equicontinuous bounded functions. However, Theorem 9 im-

plies more, as its statement holds for functions that are not continuous, i.e. I {x : x ≤ s}
is discontinuous. Hence, there is some gain in deriving convergence as a corollary of

Theorem 9 because, as mentioned in Remark 16, we could consider larger classes of

functions (though in the statement of the results we refrained to do so to avoid extra

notation). We recall the following definition.

Definition 38 A bounded function f on E is of bounded variation in the sense of

Vitali also called uniform bounded variation (UBV ) (e.g. Clarkson and Adams, 1933,

Lenze, 2003) if for any compact subset of E,

f (x) = μ1 ({s : s ≤ x})− μ2 ({s : s ≤ x})

where μ1 and μ2 are finite measures on the compact sets of E.

Remark 39 In one dimension this is the usual definition of bounded variation. In

higher dimensions, there is no unique way to define bounded variation, though the

usual modern definition is different and weaker (e.g. Ziemer, 1989).

Then, we note the following.

Lemma 40 Suppose UBVb is the class of uniformly bounded functions in UBV . Under

the Conditions of Theorem 9,

sup
f∈UBVb

¯̄̄
P̂ f (Bm (x))− Pf (x)

¯̄̄
a.s.→ 0,

for any x ∈ E.

Proof. The uniform convergence of Theorem 9 is a.s. convergence under the Kol-

mogorov metric (e.g. Rachev, 1991). Let Mb be the class of bounded monotone
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increasing functions in each argument with domain E. It is sufficient to prove uniform

convergence inMb. Hence, by Lemma 10 in Sancetta (2007) deduce that

sup
f∈Mb

¯̄̄
P̂ f (Bm (x))− Pf (x)

¯̄̄
a.s.→ 0 if and only if sup

s∈E

¯̄̄
P̂ (s|Bm (x))− P (s|x)

¯̄̄
a.s.→ 0

and the result is proved.

For definiteness let Eb be an arbitrary, but fixed, family of uniformly bounded

equicontinuous functions. Note that by equicontinuity, each element in Eb can be

turned into a Lipschitz function under the metric

d (x, y) := sup
f∈E

|f (x)− f (y)|

for each x, y ∈ E (see the proof of Corollary 11.3.4 in Dudley, 2002). This shows that

Eb may contain many functions of interest on top of Lipschitz functions. However, by

Lemma 40 we may further increase the set of functions allowed by Condition 14 ii. to

F ⊆ Eb ∪ UBVb. A tail condition as in Condition 14 i. allows us to truncate so that

we can avoid the uniform boundedness condition. Note that while the intersection of

Eb and UBVb is not empty, it is not possible to establish an inclusion of one family

into another. In fact there are uniformly continuous functions that are not of bounded

variation (e.g. f (x) = x sin (1/x) for x ∈ (0, 2π], 0 elsewhere is not in UBVb). Clearly,
f (x) = {s ∈ E : s ≤ x} is in UBVb but not in Eb. Hence Eb ∪ UBVb is fairly rich.

Example 41 Suppose f (x) =
PI

i=1 fi (x) I {x ∈ Ai}, where (Ai)i∈{1,...,I} are non over-

lapping hyper-rectangular sets, i.e. Ai := [si, ti], si ≤ ti ∈ RK and f1, ..., fI are πx-a.s.

uniformly bounded and absolutely continuous functions (e.g. Dudley, 2002, for defini-

tions). Then, ¯̄̄
P̂ f (Bm (x))− Pf (x)

¯̄̄
a.s.→ 0.

As already mentioned, we could truncate to allow for unbounded functions (see

Lemma 46 below).

C Proofs

We recall the definition of bracketing numbers (e.g. van der Vaart and Wellner, 2000,

for more details) to be used in the present context.

25



Definition 42 For measurable functions l and u, the bracket [l, u] is the set of all

functions f such that l ≤ f ≤ u and an Lp (πx) �-bracket is a bracket such that

[P |u− l|p (x)]1/p ≤ �. The minimal number of Lp (πx) �-brackets needed to cover a set

F is called the bracketing number and it will be denoted by NF (�, Lp (πx)).

We can now turn to the proof of the results.

C.1 Proof of Theorem 9

The proof of Theorem 9 depends on some intermediary results. We split the proof in

control over the estimation error (e.g. variance) and over the approximation error (e.g.

bias). The estimation error is first.

Lemma 43 Under Condition 3, for any B ⊂ E, such that P (s|B)π (B) <∞,

sup
s∈E

¯̄̄
P̂m (s|B)− P (s|B)

¯̄̄
a.s.→ 0,

as m→∞.

Proof. Note that

P̂m (s|B) =
1

m

mX
i=1

I {X (TBm (i) + 1) ≤ s}

=

Pn
i=1 I {Xi ∈ B}

m

Pn
i=1 I {Xi ∈ B,Xi+1 ≤ s}Pn

i=1 I {Xi ∈ B}
where n is such that

m =
nX
i=1

I {Xi ∈ B} .

Clearly, given m, n is random, and given n, m is random, but in any case one goes to

infinity a.s. if the other does. Hence,Pn
i=1 I {Xi ∈ B,Xi+1 ≤ s}Pn

i=1 I {Xi ∈ B}
a.s.−→ P (s|B)

following Duflo (1997),asymptotic property (c) of a recurrent chain, p.277. To obtain

uniform convergence, note that we can find a finite number S of bracketing functions
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(I {Xn ≤ ys} , s = 1, ..., S) for the indicator function of sets of the form
©
y ∈ E ⊆ RK , y ≤ s

ª
(K bounded away from ∞) such that

E (|I {Xn ≤ ys+1}− I {Xn ≤ ys}| |Xn−1 = x) ≤ �,

where ys+1 > ys. Hence, the convergence is also uniform (e.g. Theorem 2.4.1 in van

der Vaart and Wellner, 2000, for further details).

We now consider the approximation error.

Lemma 44 Set Bm := B (x, rm). By Conditions 5 and 7

sup
s∈E

|P (s|Bm)− P (s|x)|→ 0.

Proof. Recall that Pf (B) :=
R
B

R
E
f (y)P (x, dy) [π (dx) /π (B)]. Then,

P (s|Bm)− P (s|x) =
Z
Bm

[P (s|y)− P (s|x)] π (ds)
π (Bm)

→ 0

by strong differentiability of the integral and by Condition 5, (e.g. Theorem 1.3.8 in

Ziemer, 1989). Note that, by the same cited theorem, the result holds true for π-almost

all x if Condition 5 fails. Then, using a finite number of bracketing functions for the

indicator function of sets {y : y ≤ s}, as in Lemma 43,

sup
s∈E

|P (s|Bm)− P (s|x)| = sup
s∈E

|Pr (Xn ≤ s|Xn−1 ∈ B (x, rm))− Pr (Xn ≤ s|Xn−1 = x)| a.s.→ 0.

Proof of Theorem 9. By the triangle inequality,

sup
s∈E

¯̄̄
P̂m (s|B (x, rm))− P (s|x)

¯̄̄
≤ sup

s∈E

¯̄̄
P̂m (s|Bm)− P (s|Bm)

¯̄̄
+ sup

s∈E
|P (s|Bm)− P (s|x)|

and the terms on the r.h.s go to zero by Lemmata 43 and 44 respectively.

C.2 Proof of Corollaries

To prove Corollary 17 we need two lemmata.

27



Lemma 45 Let Eb be a family of πx-a.s. uniformly bounded and equicontinuous func-

tions. Under the conditions of Theorem 9,

sup
f∈Cb

¯̄̄
P̂mf (Bm (x))− Pf (x)

¯̄̄
a.s.→ 0.

Proof. By Theorem 9, P̂m (s|Bm (x)) converges weakly a.s. to P (s|x). Then, uniform
convergence in Eb follows by Corollary 11.3.4 in Dudley (2002).

Lemma 46 Suppose F satisfies i. in Condition 14. Then, for any � > 0, there is a

large enough b such that

sup
f∈F

¯̄̄
P̂m

¯̄
fI{|f |>b}

¯̄
(Bm (x)) + P

¯̄
fI{|f |>b}

¯̄
(Bm (x))

¯̄̄ a.s.≤ �.

Proof. Set F b := F {F > b}, where F is the envelope of F. Mutatis mutandis, as in

Lemma 43, for some ball B centred at x, define

Mm =
mX
i=1

(1− Ei)F b (X (TB (i) + 1)) ,

where Ei is expectation conditional on the sigma algebra generated by X (TB (i)) ,

X (TB (i)− 1) , ..., X (0). Hence,

Mm/m = P̂mF
b (B (x))− PF b (B (x)) ,

where Mm is a martingale and ¯̄̄
P̂mF

b (Bm (x)) + PF b (x)
¯̄̄

=
¯̄
Mm/m+ 2PF b (B (x))

¯̄
[by definition of Mm/m]

≤ |Mm/m|+ 2PF b (B (x))

= : I+ II.

By i. in Condition 14

∞X
i=0

Ei
¯̄
(1− Ei)F b (X (TB (i) + 1))

¯̄p
(i+ 1)p

a.s.
< ∞
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as the numerator is πB integrable for some p > 1 and B small enough. Therefore,

by the strong law of large numbers for martingales, I= Mm/m
a.s.→ 0 (e.g. Chow and

Teicher, 1988). Since Bm (x) → {x}, PF p (x) ≤ lim supm PF p (Bm (x)) < ∞ implies

II= PF b (x) ≤ �, for any � > 0, by suitable choice of b. Noting that

sup
f∈F

P̂m

¯̄
fI{|f |>b}

¯̄
(Bm (x)) ≤ P̂mF

b (Bm (x)) ,

and similarly for P , the result follows.

Proof of Corollary 17. Set f b := f {|f | > b} and fb := f {|f | ≤ b}. Then,

sup
f∈F

¯̄̄
P̂mf (Bm (x))− Pf (x)

¯̄̄
≤ sup

f∈F

¯̄̄
P̂mfb (Bm (x))− Pfb (x)

¯̄̄
+ sup

f∈F

¯̄̄
P̂m

¯̄
f b
¯̄
(Bm (x)) + P

¯̄
f b
¯̄
(x)
¯̄̄

= I+ II.

Since fb∈ Eb by ii. in Condition 14, Lemma 45 applies and Ia.s.→ 0. Since the envelop of

F satisfies suitable moment conditions, Lemma 46 applies as well and II
a.s.≤ � where � is

arbitrary for b large enough.

Proof of Corollary 20. The proof can be deduced from the proof of Lemma 48

(below).

C.3 Proof of Theorem 23

Lemma 47 Suppose (Zn)n∈N is a sequence of uniformly integrable positive random

elements such that Zn
p→ 0. Then,

1

N

NX
n=1

Zn → 0 in L1.

Proof. For any N 0 < N ,

1

N

NX
n=1

EZn =
1

N

N 0X
n=1

EZn +
1

N

NX
n=N 0

EZn

≤ max
1≤n≤N 0

N 0

N
EZn + max

N 0≤n≤N
EZn

= I+ II.
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Let N 0 = o (N), so that by uniform integrability I→ 0. Recall that convergence in

probability plus uniform integrability is equivalent to convergence in L1 (e.g. Rogers

and Williams, 2000, Theorem 21.2), so that EZn → 0. Letting N 0 →∞ we then have

II→ 0.

Lemma 48 Suppose (ρ,F) is a metric space. Under Conditions 3, 5, 7, 19, and 21,

conditioning on X0 = x,

ρ
³
f̂m,n, fn

´
p→ 0.

Proof. Note that fn := fn (Xn−1) and f̂m,n := f̂m (Xn−1) are random, as they depend

on Xn−1. Let G(n) = G(n) (Xn−1) be an arbitrary open set that contains fn and let£
G(n)

¤c
be its complement. It is enough to show that

I := Pr
³
fn ∈ G(n), f̂n ∈

£
G(n)

¤c´
= o (1) ,

as G(n) is arbitrary. To this end note that

I = Pr

Ã
inf

f∈[G(n)]c
P̂mf (Bm (Xn−1)) ≤ inf

f∈G(n)
P̂mf (Bm (Xn−1)) , fn ∈ G(n)

!

because the infimum of P̂mf (Bm (Xn−1)) is attained in
£
G(n)

¤c
. Moreover, note that

for any set A ⊆ F

inf
f∈A

Pf (Xn−1)− sup
f∈A

¯̄̄
P̂mf (Bm (Xn−1))− Pf (Xn−1)

¯̄̄
≤ inf

f∈A
P̂mf (Bm (Xn−1)) ≤ inf

f∈A
Pf (Xn−1) + sup

f∈A

¯̄̄
P̂mf (Bm (Xn−1))− Pf (Xn−1)

¯̄̄
.

Define

Rn := sup
f∈G(n)

¯̄̄
P̂mf (Bm (Xn−1))− Pf (Xn−1)

¯̄̄
,

and

R0n := sup
f∈[G(n)]c

¯̄̄
P̂mf (Bm (Xn−1))− Pf (Xn−1)

¯̄̄
.
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Then,

I ≤ Pr

Ã
inf

f∈[G(n)]c
Pf (Xn−1) ≤ inf

f∈G(n)
Pf (Xn−1) +Rn +R0n, fn ∈ G(n)

!

≤ Pr

Ã
inf

f∈[G(n)]c
Pf (Xn−1) ≤ inf

f∈G(n)
Pf (Xn−1) + 2�, fn ∈ G(n)

!
+

+

Z
E

Pr (Rn ≥ �|Xn−1 = xn−1)P n−1 (x, dxn−1)

+

Z
E

Pr (R0n ≥ �|Xn−1 = xn−1)P n−1 (x, dxn−1)

= II+ III+ IV.

Since � is arbitrary, by Condition 19, II= 0 because either fn ∈
£
G(n)

¤c
or fn ∈ G(n).

Denoting by Cc the complement of C, where C ∪ Cc = E, consider the following

inequalities,

III =

Z
C

Pr (Rn ≥ �|Xn−1 = xn−1)P n−1 (x, dxn−1)

+

Z
Cc

Pr (Rn ≥ �|Xn−1 = xn−1)P n−1 (x, dxn−1)

≤
Z
C

Pr (Rn ≥ �|Xn−1 = xn−1)P n−1 (x, dxn−1) + P n−1 (x,Cc)

≤
Z
C

Pr (Rn ≥ �|Xn−1 = xn−1)P n−1 (x, dxn−1) + �

= V+ �,

using Condition 21. By Corollary 17, Pr (Rn ≥ �|Xn−1 = xn−1)→ 0 for any xn−1 ∈ C.

Moreover,Z
C

Pr (Rn ≥ �|Xn−1 = xn−1)Pn−1 (x, dxn−1) ≤
Z
C

1P n−1 (x, dxn−1) ≤ P n−1 (x,E) = 1.

Hence V→ 0 by the Dominated Convergence Theorem, so that III→ 0 because � is

arbitrary. An identical argument shows that IV→ 0 as well.

Proof of Theorem 23. By Lemma 48, ρ
³
f̂n, fn

´
p→ 0 conditioning on X0 = x.

Then, apply Lemma 47.
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C.4 Proof of Corollary 28

Proof of Corollary 28. Using (8) and (9) we note that the relevant quantity to

bound is

1

N

NX
n=1

En−1g
³
Q (u|Xn−1)− Q̂ (u|Bm (Xn−1))

´
=

1

N

NX
n=1

g
³
Q (u|Xn−1)− Q̂ (u|Bm (Xn−1))

´
[because Q (u|Xn−1) and Q̂ (u|Bm (Xn−1)) are Fn−1 measurable]

< 2
1

N

NX
n=1

¯̄̄
Q (u|Xn−1)− Q̂ (u|Bm (Xn−1))

¯̄̄
=: I

by definition of the loss function g. By an application of Theorem 23, we shall show

that I= op (1). To this end, we check that Condition 21 is satisfied and that I is

uniformly integrable. Let Θ be some compact set and define

Q0 (u|Bm (x)) := arg inf
θ∈Θ

Pfθ (x) and Q̂0 (u|Bm (x)) := arg inf
θ∈Θ

P̂mfθ (Bm (x)) .

Then,

I ≤ 2
1

N

NX
n=1

¯̄̄
Q0 (u|Xn−1)− Q̂0 (u|Bm (Xn−1))

¯̄̄
+ 2

1

N

NX
n=1

|Q (u|Xn−1)−Q0 (u|Xn−1)|

+2
1

N

NX
n=1

¯̄̄
Q̂ (u|Bm (Xn−1))− Q̂0 (u|Bm (Xn−1))

¯̄̄
= II+ III+ IV,

and we shall control each term separately.

Control over II.

The loss function is Lipschitz continuous so that ii. in Condition 14 is satisfied. By

Condition 27, using the fact that Θ is compact, E
£
supθ∈Θ |Xn − θ|1+α |X0 = x

¤
<∞,

so that also i. in Condition 14 is satisfied. Since x was arbitrary, it follows that

Condition 21 is also satisfied. To show Condition 19 use Condition 26. To show Px-

uniform integrability of I, note that Q0 (u|Xn−1), and Q̂0 (u|Bm (Xn−1)) are in Θ, hence

they are bounded. Therefore, by Theorem 23, II
p→ 0.

Control over III.
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Since u is bounded away from 0 and 1, by Condition 27, there is a compact set C

such that Q (u|Xn−1) ∈ C. Therefore, for any Θ ⊇ C, Q (u|Xn−1) = Q0 (u|Xn−1) and

III= 0.

Control over IV.

Since P̂m (s|Bm (x)) is an unbiased estimator of P (s|Bm (x)), by Theorem 1 in Rychlik

(1994), for u ∈ [a, b] ⊂ (0, 1),
[P (θ|Bm (x))− u] + 1/m

(1− u) + 1/m
≤ Pr

³
Q̂ (u|Bm (xn−1)) ≤ θ|Xn−1 ∈ Bm (xn−1)

´
≤ P (θ|Bm (x))

u
,

so that using the definition of quantile and the above bounds, it is not difficult to see

that, by Condition 27, the law of Q̂ (u|Bm (Xn−1)) conditioning on X0 = x has tails

proportional to the tails of the law of Xn conditioning on X0 = x. Hence, by Condition

27,

Pr
³
Q̂ (u|Bm (Xn−1)) > θ|X0 = x

´
= o

³
θ−(1+α)

´
for θ large enough. This implies that Q̂ (u|Bm (Xn−1)) is uniformly integrable and there

is a compact Θ such that Pr
³
Q̂ (u|Bm (Xn−1)) ∈ Θ|X0 = x

´
> 1 − � for any � > 0.

Since

Pr
³¯̄̄
Q̂ (u|Bm (Xn−1))− Q̂0 (u|Bm (Xn−1))

¯̄̄
> 0|X0 = x

´
= Pr

³
Q̂ (u|Bm (Xn−1)) /∈ Θ|X0 = x

´
≤ �,

the conditions of Lemma 47 are satisfied and IV
p→ 0. Putting everything together, it

follows that I
p→ 0.
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