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Gallium nitride and its alloys are direct band gap semiconductors with a wide variety

of applications. Of particular importance are light emitting diodes and laser diodes.

Due to the lack of suitable lattice-matched substrates, epitaxial layers contain a high

density of defects such as dislocations. To reduce their number and to design a de-

vice with desired specifications, multilayered systems with varying composition (and

thus material properties) are grown. Theoretical modelling is a useful tool for gaining

understanding of various phenomena and materials properties.

The scope of the present work is wide. It ranges from a continuum theory of disloca-

tions treated within the linear elasticity theory, connects the continuum and atomistic

level modelling for the case of the critical thickness of thin epitaxial layers, and covers

some issues of simulating the electronic structure of III-nitride alloys by means of the

first principle methods.

The first part of this work discusses several topics involving dislocation theory. The

objectives were: (i) to apply general elasticity approaches known from the literature to

the specific case of wurtzite materials, (ii) to extend and summarise theoretical studies

of the critical thickness in heteroepitaxy. Subsequently, (iii) to develop an improved

geometrical model for threading dislocation density reduction during the growth of

thick GaN films.

The second part of this thesis employs first principles techniques (iv) to investigate the

electronic structure of binary compounds (GaN, AlN, InN) and correlate these with

experimentally available N K-edge electron energy loss near edge structure (ELNES)

data, (v) to apply the special quasi-random structures method to ternary III-nitride

wurtzite alloys aiming to develop a methodology for modelling wurtzite alloys and to

get quantitative agreement with experimental N K-edge ELNES structures, and (vi) to

theoretically study strain effects on ELNES spectra.
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Chapter 1

Introduction: gallium nitride and related

alloys (III-nitrides)
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Figure 1.1 : Lattice parameters against band gaps
of wurtzite forms of the III-nitrides. The range of
the visible spectrum is shown on the wavelength
axis.

GaN and its alloys with aluminium

or indium are in their stable form,

wurtzite direct band gap semicon-

ductors that have become the most

important since silicon. Optical de-

vices based on GaN emit bright

light in a wide range of wave-

lengths1 while electronic devices

can operate at high frequencies and

at high temperatures. Light emit-

ting devices are currently the main

applications of III-nitrides. Light

emitting diodes (LEDs) and laser

diodes (LDs) based on GaN and its

alloys can, in principle, cover the

range from deep ultraviolet (UV)

through visible to the far infrared (IR) region (see Fig. 1.1). Large scale displays, mo-

dern traffic lights or public lighting nowadays use GaN-based LEDs. Significant effort

is being invested in development of efficient and reliable LEDs which emit comfort-

able white light, as there is a huge market potential for replacing bulbs and fluorescent

tubes currently used. Apart from the long lifetime, the other advantages are substan-

tial energy savings as well as a reduction of CO2 emissions through greater efficiency.

Short-wavelength GaN LDs enabled development of the Blu-ray technology which is

1Gallium nitride itself emits short-wavelength light in the near ultra-violet range.

1



1.1 Short history of GaN 2

now becoming a standard to replace DVDs. If standard red laser diodes (working at

λ = 650 nm) in DVD recorders are replaced with GaN-based laser diodes emitting blue

light (λ = 405 nm), more data (up to ≈ 25 GB) could be written on every single disk

due to the shorter wavelength of the writing beam. Other exciting applications include

solar cell arrays for satellites and power amplifiers at microwave frequencies (as GaN

can operate at much higher temperatures and voltages than GaAs).

The above outline of everyday applications of GaN-based devices demonstrates how

exciting a material gallium nitride is.

1.1 Short history of GaN

The great interest in GaN has continued now for about 15 years and was started by

the commercial production of blue GaN LEDs at Nichia Laboratories in Japan, the

achievement of Shuji Nakamura and his co-workers. However, the history of GaN

goes much further into the past.

Figure 1.2 : An example of the blue
light extracted from an InGaN-based
LED: an electroluminescence test per-
formed on a blue emitting LED wafer
grown on a sapphire substrate. (Cour-
tesy of C. Salcianu, University of Cam-
bridge.)

Small needles of GaN were synthesised by

Juza and Hahn (1938), followed by a synthesis

of small crystals by Grimmeiss and Koelmans

(1959). Maruska and Tietjen (1969) used a

chemical vapour deposition method to obtain

the first large-area GaN layer. As a substrate

they used sapphire and they demonstrated

GaN to be a direct-transition-type semicon-

ductor with a band gap of about 3.39 eV. This

immediately led to an increased research inter-

est in blue LEDs based on GaN which was re-

flected in the increased number of publications

on the topic: about 3–4 per year before com-

pared with ∼30 per year after their paper (Akasaki and Amano, 2006). Although sev-

eral good papers followed in subsequent years determining various properties of GaN,

further development struggled (when compared with other III-V semiconductors, for

example GaAs or InP) mainly because of difficulties in obtaining high quality epitaxial

layers.

Yoshida et al. (1983) introduced a two-step growth method using a buffer layer which

resulted in a great improvement in crystalline quality of GaN. Amano et al. (1989)



1.2 GaN-based light emitting diodes 3

obtained p-type conductivity in GaN using Mg as a dopant. Nakamura et al. (1993)

announced the successful realisation of the first p-GaN/n-InGaN/n-GaN double-hete-

rostructure blue LEDs and shortly after that Nichia Chemical Industries started their

commercial production. Hand-in-hand with the industrial interest went money for

research projects which was reflected in a sudden increase in the number of papers

published in the field (∼2000 papers in year 2000 according to the review by Akasaki

and Amano (2006)).

The above mentioned achievements are only a few milestones in the history of GaN

and its alloys. Many more details can be found in reviews by Akasaki and Amano

(2006) and Jain et al. (2000) or in books such as the one by Gil (1998).

1.2 GaN-based light emitting diodes

GaN has a wide range of optoelectronic applications, chief amongst which are light

emitting diodes (LEDs) and laser diodes (LDs). Compared to a traditional light source,

the LED has many prominent advantages including its low energy usage, long life-

time and small size, making it a potential competitor in the domestic and business

lighting market. Because lighting accounts for about 20 % of total electricity consump-

tion, national programs promoting LEDs for lighting are underway in the US, Japan,

Korea and China, whose main motivation is large-scale energy savings, providing the

benefits of reduced oil imports and lower greenhouse gas emissions.

There are two fundamental reasons to choose the III-nitride system for light sources.

Foremost is that AlN, GaN and InN have respective direct band gap energies of 6.2 eV,

3.4 eV and 0.7 eV at room temperature, which cover the entire visible spectrum from

the UV to the IR range (see Fig. 1.1). This is in a contrast to the (Ga,Al)As based LEDs

(1.5–2.2 eV) or (Al,Ga,In)P based LEDs (1.3–2.5 eV) that cover “only” the IR to green re-

gion. The other main advantage of the III-nitride semiconductors is their strong chemi-

cal bond, which makes the nitrides very stable and resistant to degradation under high

electric currents and at high temperatures.

The basic structure of an LED is based on a p–n junction, while higher efficiency de-

signs make use of a quantum well (QW). In the p–n junction LED, electrons from the

n-side of a p–n junction and holes from the p-side are injected across the junction by the

application of a forward bias. These minority carriers recombine with majority carriers

by spontaneous transitions across the band gap (see Fig. 1.3a). In QW LEDs, the elec-

trons and holes injected across the p–n junction become confined within the well, filling
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a)
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n-type region

hn=Eg
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conduction band

b)

DEc

p-type region n-type region
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DEv

Figure 1.3 : Schematic diagram of operating principles of two basic kinds of LEDs:
(a) a p–n junction based LED and (b) a quantum well based LED. Wavelength of the
light is related to the energy gap Eg. EF is the Fermi energy.

p-contact

n-contactp-type GaN

active region

n-type GaN
buffer layer

sapphire

Figure 1.4 : Schema of GaN based LED structure.

up and causing a local increase in

the concentration of holes, nh, and

electrons, ne (see Fig. 1.3b). The ra-

diative recombination rate is pro-

portional to nenh. Therefore, in a

heterostructure LED the amount of

radiative recombination is larger

than in the case of the p–n junc-

tion based LED. This leads to an

increased number of photons emit-

ted for the same current across the

junction. Research conducted in The Cambridge Centre for Gallium Nitride is focused

on QW LEDs. A typical structure of a QW based LED includes an InGaN/GaN or

AlGaN/GaN single or (more often) multiple quantum wells active layer sandwiched

between n-type and p-type nitride materials (as shown in Fig. 1.4).

1.3 Physical properties of III-nitrides

1.3.1 Crystal structure

Like most other semiconductor materials, nitrides have tetrahedrally coordinated ato-

mic arrangements that result in either cubic (zincblende) or hexagonal (wurtzite) lattice

structures. For AlN, GaN and InN the zincblende structure is metastable while the

wurtzite variant is stable and easier to grow. Therefore, most research has been focused

on the wurtzite form which, as a consequence, has given better results up to date for

optoelectronic applications. The atomic arrangement of the nitrides can be viewed as
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a) b)
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B
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B

A

B

[1 0]1

[11 ]2

[111]

[ 20]11

[ 100]1

[0001]

Figure 1.5 : Atomic arrangement in tetrahedrally coordinated nitrides: a) cubic
zincblende and b) hexagonal wurtzite lattice (after Ponce, 1998).

consisting of two hexagonal layers. One layer is occupied by nitrogen while the other

contains the group III elements. The zincblende structure occurs when the hexagonal

double-layers are stacked in a periodic . . . ABCABC . . . sequence while the wurtzite

structure follows an . . . ABABAB . . . arrangement (see Fig. 1.5).

The three-dimensional arrangement of wurtzite nitrides is shown in Fig. 1.6 where

white colour represents nitrogen atoms while orange represents the group III atom

sites (Al, Ga or In).

a)

[0001]

〈11 02 〈

〈1 001 〈

b)

[0001]

á1 001 á

á11 02 á

c)

[0001]

á11 02

á1 001 á

á

d)

[0001]

á1 001

á11 02 á

á

Figure 1.6 : A 3D picture of the wurtzite structure together with some important projec-

tions.
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The wurtzite unit cell is generated by two lattice vectors a1 and a2 with the same

length a and separated by an angle of 120◦, and the third one c of a different length

c and perpendicular to both a1 and a2. The Wyckhoff 2b atomic positions imply that

a [nm] c [nm] u

AlN 0.311 0.498 0.382

GaN 0.319 0.519 0.377

InN 0.354 0.570 0.380

Table 1.1 : Lattice parameters used in this
work. The values are taken from papers by
Dridi et al. (2003) and Wright and Nelson
(1995).

the group III atoms are located at (1
3 , 2

3 , 0)

and (2
3 , 1

3 , 1
2) within the unit cell and the

nitrogen atoms have positions of (1
3 , 2

3 , u)

and (2
3 , 1

3 , 1
2 + u); u depends on the spe-

cific material. The lattice constants and

the parameter u used in this work are

summarised in Table 1.1. The corre-

sponding space group is P63mc (nr. 186).

1.3.2 Hetero-epitaxial relations

Four-index Miller notation is convenient for use with hexagonal structures. The impor-

tant directions and planes are shown in Fig. 1.7. The vectors a generating the unit cell

are aligned along the 〈1120〉 directions which are thus called the a-directions; similarly,

the [0001] direction is called the c-direction. Another direction of a special importance

is the 〈1100〉 direction, otherwise called the m-direction (see Fig. 1.7). Planes perpen-

dicular to those directions are labelled accordingly: the plane perpendicular to the

c-direction (the basal plane) is called the c-plane, planes perpendicular to the a- and m-

directions are called a- and m-planes, respectively. {11̄02} planes are sometimes called

the r-planes.

a)

[2 0]11

[ 2 0]1 1

[ 20]11

[1 00]1

[0 10]1

[0001]

b)

a-plane
{11 0}2

m-plane
{1 00}1

c-plane
{0001} r-plane

{1 02}1

Figure 1.7 : Directions and planes in hexagonal material.
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The same notation is used also for sapphire, which is the most commonly used sub-

strate for the epitaxial growth of GaN and related alloys. The orientation of the sap-

phire wafer determines the crystallographic orientation of the overgrown material.

This significantly influences the device properties. The standard orientation is growth

on c-plane sapphire with the overgrown c-plane GaN. The epitaxial relation is shown

in Fig. 1.8. Note the 30◦ rotational offset of the unit cells (Gil, 1998).

asapp

aGaN

Al (sapphire)

Ga (GaN)

x

y
[01 0]1 GaN

[2 0]11 GaN

[2 0]11 sapp

[0 10]1 sapp

Figure 1.8 : c-plane of GaN and sapphire. After Gil (1998).

The mismatch between sapphire and GaN lattice parameters leads to an isotropic in-

plane compressive strain in GaN of

εm
xx = εm

yy =
asapp −

√
3aGaN√

3aGaN

= −0.139 . (1.1)

Another commonly used characteristic is the lattice mismatch which is the difference

in lattice constants relative to the substrate lattice constants. In the case of c-plane GaN

on c-plane sapphire, the lattice mismatch is 0.161.

The c-axis is a polar direction leading to spontaneous polarisation, and together with

piezoelectric effects, this results in built-in charges causing electric fields parallel to the

c-axis. This leads to a decreased overlap of the electron and hole wave functions and

thus smaller recombinantion probabilities (Miller et al., 1984). Waltereit et al. (2000)

have suggested that this problem may be overcome by the use of non-polar or semi-

polar orientations where the c-axis is not perpendicular to the QW interfaces.

The a-plane GaN orientation is grown on r-plane sapphire, and belongs to a family of

non-polar materials with rapidly growing importance for device design. The arrange-

ment of atoms in the interface is shown in Fig. 1.9a, and GaN is in compression in all

directions. However, the absolute values of compressive strains along the [11̄00]GaN
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Al (sapphire)
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3

c
G

a
N

x
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Al (sapphire)

Ga (GaN)

3
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p
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Figure 1.9 : a) a-plane GaN on r-plane sapphire, b) (112̄2)-plane GaN and m-plane
sapphire. After Gil (1998).

and [0001]GaN directions differ

εm
xx =

asapp −
√

3aGaN√
3aGaN

= −0.139 , (1.2a)

εm
yy =

√

3a2
sapp + c2

sapp − 3cGaN

3cGaN
= −0.012 . (1.2b)

Semi-polar (112̄2)-plane GaN is grown on m-plane sapphire. The lattice sites for those

planes in GaN and sapphire which form the GaN–sapphire interface are shown in

Fig. 1.9b. The material is in not in a unique strain state: it is in compression along the

[11̄00]GaN direction while it is in tension in the [112̄3]GaN direction

εm
xx =

asapp −
√

3aGaN√
3aGaN

= −0.139 , (1.3a)

εm
yy =

csapp − 2
√

a2
GaN + c2

GaN

2
√

a2
GaN + c2

GaN

= 0.066 . (1.3b)

1.3.3 Mechanical properties

The lattice parameters of the III-nitrides were summarised in Table 1.1; elastic constants

are given in Table 1.2. Whenever a material property of an alloy is needed, for example

the a lattice constant of AlxGa1−xN, Vegard’s law in a form

a(AlxGa1−xN) = x a(AlN) + (1 − x) a(GaN) (1.4)

is used. Although its strict validity is under constant questioning2, Dridi et al. (2003)

concluded using first principle calculations that Vegard’s law holds for AlGaN (both

2For example, the band gap dependence seems to be better expressed by adding the bowing para-

meter to Vegard’s law

Eg(AlxGa1−xN) = x Eg(AlN) + (1 − x) Eg(GaN) + b x(1 − x) .
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lattice constants) and the a-lattice constant of InGaN and AlInN. The authors predicted

some deviations from Vegard’s law for the c-lattice constant of the latter two alloys.

However, since no better estimate of lattice and elastic constants is available for the

whole range of compositions, Vegard’s law is used throughout this work.

c11 [GPa] c12 [GPa] c13 [GPa] c33 [GPa] c44 [GPa]

AlN 411 149 99 389 125

GaN 377 160 114 209 81

InN 190 104 121 182 10

Table 1.2 : Elastic constants used in this work (Madelung, 2004).

1.3.4 Substrates

In contrast to other semiconductors, such as silicon or GaAs, bulk single crystals of III-

nitrides are not yet widely available. In the absence of bulk GaN crystals the use of for-

eign substrates is necessary for crystal growth. ZnO and SiC were identified as suitable

substrates due to their similar characteristics to nitrides (Ponce, 1998; Jain et al., 2000).

Some more exotic substrates such as GaAs, MgAl2O4, glass or quartz glass were also

tried (Ponce, 1998; Jain et al., 2000). By far the most widely used substrate is sapphire

Al2O3. This is surprising bearing in mind the large difference in thermal expansion and

in lattice parameters between sapphire and the nitrides (up to 16 %). As a consequence,

standard values of dislocation density3 in GaN films grown on sapphire are ρ ∼= 108–

1010 cm−2 which may be further reduced to values ρ = 5 × 106–107 cm−2 using for

example an epitaxial lateral overgrowth (ELOG) technique (Gibart, 2004). However,

these values are still many orders higher than the required quality of silicon or GaAs

for optoelectronic applications. Densities of about 106 cm−2 are fatal in conventional

III-V semiconductor devices (Jain et al., 2000) since dislocations act as non-radiative

recombination centres. As pointed out by Sasaoka et al. (1998) dislocations act as non-

radiative recombination centres in GaN-based devices as well. A possible explanation

for the high efficiency of GaN may be in the localisation of excitons and thus reduced

interaction with dislocations. The mechanism of such a localisation has not yet been

unambiguously identified although several models exist (Graham et al., 2003; Hitzel

et al., 2005; Chichibu et al., 2006).

3The values mentioned here correspond to the threading dislocation density, see section 1.4.1.
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Growth of c-plane GaN on the {111}-plane of silicon wafers has recently become of

great interest for several reasons: high quality and large scale silicon wafers are avail-

able for low prices and device processing lines for silicon are already around. However,

there are several difficulties which need to be overcome. Due to lattice and thermal

mismatch, tensile strains as large as ε ∼ 0.2 are generated in GaN layers which lead to

cracking (Dadgar et al., 2007). For large size wafers the effects of bowing due to differ-

ent thermal expansion coefficients of Si and GaN are more problematic. However, this

is certainly a promising direction of the III-nitride research and commercialisation.

1.4 Defects in III-nitrides

1.4.1 Dislocations

A dislocation is a line defect in a crystal, which can greatly affect its material proper-

ties. A dislocation is usually represented by an oriented dislocation line, l, and char-

acterised by its Burgers vector, b, describing displacements introduced in the crystal by

the dislocation.

Based on the relationship of l and b, three dislocation types are distinguished (see

Fig. 1.10): an edge-type dislocations, where l ⊥ b, corresponding to an extra half-

plane in the crystal, a screw-type dislocation with l‖b, and a mixed-type dislocations

(b 6⊥ l 6 ‖ b). The dislocation type can change as the dislocation line changes its direc-

tion in the crystal, since the Burgers vector b is a constant characteristic of a dislocation

which remains unchanged along the whole single dislocation line. A dislocation can

only make either a closed loop or end at the crystal surfaces. It cannot just end in the

crystal. It is worth noting that the orientation of b in the standard definition (Burgers–

Frank or a continuous elasticity definition, (see Cottrell, 1964)) depends on the actual

orientation of the dislocation line l: an opposite dislocation line direction −l yields an

opposite orientation of the Burgers vector −b. However, the uncertainty in sign of b

and l does not affect their mutual relation in terms of defining an edge, screw or mixed

type dislocation.

The Burgers vector of a perfect dislocation is a lattice vector. As such, there are three

basic types of dislocations in GaN according to the Burgers vector: a-type dislocations

with b = 1
3〈1120〉, c-type dislocations with b = 〈0001〉, and (a + c)-type dislocations

with b = 1
3〈1123〉. It is important to distinguish between these two nomenclatures:

an a-type dislocation can be either, an edge, screw or mixed dislocation depending on

the actual dislocation line direction. Since the Burgers vector cannot change along the
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A
C

C

A

B

Figure 1.10 : Changing dislocation type along a single dislocation line: screw-type
(A), mixed-type (B) and edge-type (C). After
http://oregonstate.edu/instruct/engr322/Exams/Previous/S98/ENGR322MT2.html.

dislocation line, the latter terminology is used in this text for describing dislocation

types.

Glide of a dislocation is a conservative motion where no material is added or removed

from the crystal as opposed to a nonconservative motion, climb, where diffusion of

material to or from a dislocation takes place (Cottrell, 1964). During glide, a dislocation

line remains in a glide plane which is generated by the vectors l and b. A slip system is a

convenient way to describe a dislocation in greater detail as it is given by the Burgers

vector and the glide plane.

The slip systems in wurtzite nitrides were investigated by Jahnen et al. (1998) and Srini-

vasan et al. (2003). They found that the only operable slip systems, i.e. slip systems

with a non-zero component of the resolved shear stress, are pyramidal slip systems.

After considering also a Peierls force as an obstacle to the dislocation glide, they con-

cluded that only the 1
3〈112̄3〉{112̄2} and 1

3〈112̄3〉{11̄01} slip systems are operable (see

Fig. 1.11). Slip systems in material other than c-plane are discussed in section 3.4.1.

According to the dislocation line direction, yet another terminology is often used: mis-

fit dislocations (MDs) lie in hetero-epitaxial interfaces and partially or fully relieve misfit

strain due to lattice mismatch. Dislocations running through the material (mostly fol-

lowing the growth direction) are called threading dislocations (TD).

1.4.2 Other defects

A wide spectrum of other defects can be found in III-nitrides. Point defects (including

vacancies and interstitial) are necessary for any diffusion driven process, for example

http://oregonstate.edu/instruct/engr322/Exams/Previous/S98/ENGR322MT2.html
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Figure 1.11 : The two most favourable slip systems in the wurtzite nitrides:
a) 1

3〈112̄3〉{112̄2}, and b) 1
3〈112̄3〉{11̄01}.
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Figure 1.12 : Schematic drawing of I1 type basal stacking fault and a dark field plan
view TEM image using g = 1102 close to the [1120] zone axis showing partial disloca-
tions and basal plane stacking faults in GaN. (Courtesy of C. Johnston, University of
Cambridge.)

dislocation climb. Dopants, which make III-N layers either p- or n-type semiconduc-

tors, can be also regarded as point defects.

Stacking faults are planar defects mainly observed in non-polar and semi-polar mate-

rial. They are created by a fault in stacking of the hexagonal c-planes. The perfect stack-

ing . . . ABABAB . . . as discussed in section 1.3.1 changes to . . . ABABCBC . . . where

the ABC section corresponds to the stacking fault of type I1. Similarly to dislocations,

no stacking fault can spontaneously terminate inside the material; they have to either

terminate at the crystal surface or be bounded with partial dislocations. Stacking faults

in GaN are discussed e.g. in the paper by Zakharov et al. (2005); an example of stacking

faults bounded with partial dislocations is shown in Fig. 1.12.
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V-shape defects (or V-defects), hexagonal shape surface pits, are often observed in the

InGaN/GaN systems where the InGaN QWs are under compressive strain. The apex

of a V-defect is, in the majority of cases, connected to a threading dislocation. It has

been suggested by Jahnen et al. (1998) that V-defects can act as effective centres for

releasing compressive strain. An example of V-defects in the InGaN epilayer is shown

in Fig. 1.13.

GaN buffer

InGaN

epoxy vaccum

g0002
100 nm

Figure 1.13 : Dark field image using a reflection g = 0002 of the cross-section of a sam-
ple with an In0.133Ga0.867N epilayer grown on GaN. A V-defect connected to a thread-
ing dislocation can be observed. (Courtesy of Y. Zhang, University of Cambridge.)

Other commonly observed defects are cracks in structures under tensile strain (for ex-

ample AlGaN epilayers on GaN or GaN on silicon).

1.5 III-nitrides from the experimental point of view

This section aims to give a very brief overview of experimental techniques which are

used for growth and characterisation of III-nitrides. Although this work is theoretical,

it has a close relation with experiments and a lot of the motivation originated from

experimental work. Therefore, it is important and extremely useful also to understand,

in basic terms, the experimental reality.

1.5.1 Growth techniques

There are a number of growth techniques and special treatments designed to improve

a particular property of a material (for example to lower the number of dislocations).

Generally, there are three main growth modes in epitaxy (see Fig. 1.14): Volmer-Weber

mode where 3D islands are formed due to adatom-adatom interactions being stronger

than adatom-growth surface interactions, Frank-van der Merwe mode (layer-by-layer

growth mode) where an adatom sits preferentially on an atomically smooth surface,

and Stranski-Krastanov where a transition from layer-by-layer to 3D growth mode oc-

curs (e.g. Daruka and Barabási, 1997).
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(a) (b) (c)

Θ≥2

1< <2Θ

Θ<1ML

Figure 1.14 : Cross-section views of the three primary modes of thin film
growth including (a) Volmer-Weber (3D growth), (b) Frank-van der Merwe (layer-
by-layer), and (c) Stranski-Krastanov mode. Each mode is shown for sev-
eral different amounts of surface coverage, Θ (in monolayers). Adopted from
http://en.wikipedia.org/wiki/Stranski-Krastanov_growth.

The three main methods for growth of III-nitrides are metalorganic chemical vapour

deposition (MOCVD) or metalorganic vapour phase epitaxy (MOVPE), a specific sub-

set of MOCVD for epitaxial growth, hydride vapour phase epitaxy (HVPE) and molec-

ular beam epitaxy (MBE). In MOCVD and HVPE, the crystals are grown by chemical

reactions between injected gases with designed components. It does not require high

vacuum but pressures as low as 100–102 kPa are used. MOCVD and HVPE differ in

the type of precursor gases and growth rate (HVPE is about 10× faster) (Stringfellow,

1999). On the other hand, MBE requires ultra-high vacuum (10−8 Pa) and is based on

a physical deposition of atoms. Consequently, the growth rate of MBE is often much

slower when compared to MOCVD or HVPE.

1.5.2 Characterisation techniques

Several techniques for the characterisation of the epitaxial layers are widely used. The

crystal structure is investigated using X-ray diffraction (XRD) methods. In general,

XRD provides information about the space group and lattice parameters. By fitting

simulated scans it is also possible to obtain information about thickness and composi-

tion of an epitaxial layer.

The surface topography is usually checked by means of atomic force microscopy (AFM)

and related techniques (see an example in Fig. 1.15). A surface treatment with silane

facilitates imaging of dislocations which terminate on the surface (Oliver et al., 2006).

With some add-ons AFM is capable of probing many other surface properties, for ex-

ample to study dopant profiles using scanning capacitance microscopy (SCM). Al-

http://en.wikipedia.org/wiki/Stranski-Krastanov_growth
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Figure 1.15 : Intermittent contact mode
AFM image of a GaN surface showing
terraces and small pits related to disloca-
tions. Screw- or mixed-type dislocations
are assocated with step-edge termina-
tions, whereas pits associated with edge-
type dislocations are smaller and may be
in the middle of a terrace. (Courtesy of
R. Oliver, University of Cambridge.)

though AFM is in principle a surface

method, cross-sectional views can be ob-

tained by cleaving a sample (Sumner et al.,

2008). The spatial resolution of AFM is

given by the tip quality and is usually of the

order of 101 nm; the vertical resolution can

be as good as 0.3 Å.

Electron microscopy, and in particular,

transmission electron microscopy (TEM) is

probably one of the most universal tech-

niques for characterising materials on the

nanoscale. The two basic imaging modes

are bright field and dark field, allowing

studies of various defects such as disloca-

tions or stacking faults. The final image con-

trast is built up by interference of the di-

rectly transmitted (bright field) or scattered

(dark field) electron wave functions. The

contrast and visibility of specific defects is determined by the selected diffraction con-

dition, g . In particular, the basic criterion for dislocation visibility in TEM images is

g · b 6= 0 where b is the dislocation Burgers vector (Williams and Carter, 1996). Many

TEM micrographs are shown in this work to demonstrate various phenomena, a typi-

cal example being Fig. 1.13. The advantage of TEM is its high spatial resolution, often

below 1 nm. The high resolution TEM (HRTEM) is capable of imaging single atomic

columns; however, comparison with computer simulations is needed for correct inter-

pretation of HRTEM images. The disadvantage of this technique is that it requires a

very thin film (/ 100 nm) which requires careful specimen preparation. One also needs

to be aware of the fact that the conventional TEM provides a projection of the studied

structure.

Apart from direct imaging, several advanced techniques allowing chemical analysis of

samples can be performed in the TEM. An example is high angle annular dark-field

(HAADF) imaging in a scanning TEM where the contrast is sensitive to the atomic

number Z (also called Z-contrast). Another family of techniques is called electron en-

ergy loss spectroscopy (EELS) and is discussed in greater detail in chapter 6. Energy

filtered TEM (EFTEM) is based on EELS; the final image is made up of electrons from

only a narrow energy window. Thus it allows simultaneous imaging and element anal-
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ysis. A subset of EELS, named electron energy loss near edge structure (ELNES), gives

information about the electronic structure of materials. The theoretical simulations

needed for the interpretation of experimental spectra are the subject of chapters 7–9.

Electron diffraction revealing in the first instance local crystallographic information

can be also done in TEM. There are many other sophisticated techniques such as con-

vergent beam electron diffraction (CBED) which is capable (after thorough data pro-

cessing) of providing experimental information about the charge density in a material.

The range of experimental techniques is, of course, much wider and contains scanning

electron microscopy (SEM), 3D atom probe (3DAP) measurements which can give 3D

information about the composition on the atomic scale, photoluminescence and elec-

troluminescence techniques enabling detailed studies of optical properties etc.



Part I

Dislocation theory applied to wurtzite

III-nitrides

“There are only two kinds of models: those that describe

the working of things really well, and those that really

work.”

unknown author



Chapter 2

Dislocation energy

Elastic energy in a media caused by the addition of a dislocation is called dislocation

energy which is traditionally derived within a framework of linear elasticity theory.

This theory breaks down in the dislocation core region. As a consequence, an inner cut-

off radius r0, which separates the dislocation core, must be introduced. r0 is usually

in units of the the Burgers vector’s length b and it is discussed in greater detail in

sections 2.4 and 3.3.

In the case of a dislocation in an infinite continuum the outer cut-off radius R must also

be employed in order to get a finite value of the dislocation energy. For dislocations

inside a finite crystal, the smallest distance to the crystal surface is used as the value of

R. For dislocations organised in an array, half of the next-nearest-dislocation distance

is the suitable value for R (see for example Hirth and Lothe, 1982).

It is worth noting that in the case of infinite straight dislocations, only the energy per unit

length of the dislocation dE/dl is usually evaluated1. The total energy of the dislocation

can be divided into two parts

dE
dl

=
dEcore

dl
+

dEd

dl
(2.1)

where dEcore/dl and dEd/dl account for energy inside and outside the dislocation core

region, respectively. As argued by Hull and Bacon (2002), the core energy usually

constitutes only a minor contribution to the total dislocation energy for large outer

radii R, and thus will be neglected in the majority of the following calculations. Recent

atomistic calculations provided estimates for the dislocation core energies of various

dislocation/materials systems (see sections 2.4 and 3.4.2).

Let σ̂d be the stress tensor associated with the strain field ǫ̂d caused by a straight dis-

1for simplicity often called just the dislocation energy

18
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location. Then the strain energy of the dislocation is given by

dEd

dl
=

1

2 ∑
i,j

x

V

εd
ijσ

d
ij dV

=
1

2 ∑
i,j

x

V

∂

∂xj
(uiσ

d
ij) dV − 1

2 ∑
i,j

x

V

ui

∂σd
ij

∂xj
dV (2.2)

where ui are corresponding displacements. Recalling the equilibrium conditions for

elastic media

∑
j

∂σij

∂xj
= 0 (2.3)

implies that the last integral in Eq. 2.2 vanishes. The Gauss-Ostrogradski theorem

transforms the first integral in Eq. 2.2 into a surface integral over the surface S en-

closing the volume V

dEd

dl
=

1

2 ∑
i,j

∫

S
uiσ

d
ijnj dS (2.4)

where nj refers to the outer normal of the surface S (see Fig. 2.2). The volume V has

to be chosen in such a way that all the functions ui and σd
ij are continuous inside it.

Therefore, the surface S must also contain the dislocation slip plane on which the dis-

placements undergo a step change given by the Burgers vector b.

2.1 Isotropic approximation

Using the explicit analytical expressions for the stress tensor of straight edge and screw

dislocations one gets using Eq. 2.4 (for more details see e.g. Hirth and Lothe, 1982; Hull

and Bacon, 2002)

dEd, screw

dl
=

µb2
s

4π
ln

(
R

r0

)

, (2.5a)

dEd, edge

dl
=

µb2
e

4π(1 − ν)
ln

(
R

r0

)

(2.5b)

where µ and ν are the shear modulus and Poisson’s ratio, respectively. bs and be are

the screw and edge components of the Burgers vector b, respectively. If θ is the angle

between the dislocation line and the Burgers vector then be = b sin θ and bs = b cos θ.

Therefore, the energy of a mixed dislocation in the isotropic continuum is

dEd

dl
=

µb2(1 − ν cos2 θ)

4π(1 − ν)
ln

(
R

r0

)

. (2.6)
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2.2 General approach for anisotropic materials

Steeds (1973) (following earlier accounts, for example, of Foreman (1955) or Chou and

Eshelby (1962)) has described a general procedure for treating dislocations inside an

anisotropic infinite continuum. A detailed derivation of equations for dislocation en-

ergy in material with hexagonal symmetry was given elsewhere (see Holec, 2006a,b).

Only a brief overview of the derivation is given here and the results are summarised.

In many cases, it is convenient to treat the stress fields of the edge and the screw com-

ponents separately and only then to combine them using Eq. 2.4 to get the dislocation

energy. This can be done for dislocation lines lying along the high-symmetry direc-

tions, as is shown in the following sections. In a general case there are “cross-terms”

due to which it is not possible to separate the edge and screw components. In such

cases, a fully numerical solution is used (see e.g. section 2.3).

2.2.1 Dislocations in the hexagonal c-plane ((0001) plane)

The solution is demonstrated on an example of a dislocation lying in the hexagonal

c-plane. A coordinate frame depicted in Fig. 2.1 is used. The considered problem is a

plane strain problem. As a consequence, no quantity depends on the y-coordinate, i.e.

∂/∂y ≡ 0. Displacements ux and uz correspond to the edge component of the consid-

ered dislocation whereas uy corresponds to the screw component. Strain components

are

unit cell
hexagonal

dislocation line

x

y

z

Figure 2.1 : The coordinate system con-
sists of three perpendicular axes x, y and
z. The z-axis is perpendicular to the c-
plane, the dislocation line lies along the
y-axis.

εxx =
∂ux

∂x
, εxy =

1

2

∂uy

∂x
,

εyy = 0 , εxz =
1

2

(
∂ux

∂z
+

∂uz

∂x

)

,

εzz =
∂uz

∂z
, εyz =

1

2

∂uy

∂z
.

(2.7)

The compatibility equations in this case

provide two relations

∂2εxx

∂z2
+

∂2εzz

∂x2
= 2

∂2εxz

∂x∂z
, (2.8a)

∂εyz

∂x
− ∂εxy

∂z
= 0 . (2.8b)
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The fact that εyy ≡ 0 yields an additional condition

0 = εyy = s12σxx + s11σyy + s13σzz  σyy = − s12

s11
σxx −

s13

s11
σzz . (2.9)

Here, the compliances reflecting the hexagonal symmetry have been used


















εxx

εyy

εzz

2εyz

2εxz

2εxy


















=


















s11 s12 s13 0 0 0

s12 s11 s13 0 0 0

s13 s13 s33 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 s66



































σxx

σyy

σzz

σyz

σxz

σxy


















(2.10)

where s66 = 2(s11 − s12). Steeds (1973) suggested employing two functions, F and φ,

as potentials for expressing stresses

σxx =
∂2F

∂z2
,

σxz = − ∂2F

∂x∂z
,

σzz =
∂2F

∂x2
,

σxy =
∂φ

∂z
,

σyz = −∂φ

∂x
.

(2.11)

F and φ are, in fact, the Airy stress functions. Putting all together into the compatibility

equations 2.8a and 2.8b yields
(

s33 −
s2

13

s11

)

∂4F

∂x4
+

(

2s13 + s44 − 2
s12s13

s11

)
∂4F

∂x2∂z2
+

(

s11 −
s2

12

s11

)

∂4F

∂z4
= 0 ,

(2.12a)

s44
∂2φ

∂x2
+ s66

∂2φ

∂z2
= 0 . (2.12b)

It is clear from the last equations that in this case, the problem splits into two indepen-

dent parts concerning the edge and the screw dislocation component separately.

Solution for the edge component – function F

The general form of the function F is (for more details see Steeds, 1973)

F =
2

∑
n=1

(

Bngn(ξn) + B∗
ngn(ξ∗n)

)

(2.13)
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where ξn = x + pnz, n = 1, 2. Here, pn and p∗n are pairs of complex conjugate numbers

and they are solutions of the characteristic equation

(

s33 −
s2

13

s11

)

+

(

2s13 + s44 − 2
s12s13

s11

)

p2 +

(

s11 −
s2

12

s11

)

p4 = 0 . (2.14)

Following the discussion of Steeds (1973) and similar by Hirth and Lothe (1982) on

physical requirements, the functional form of stress functions is limited to σ ∝ 1/r:

∂2

∂ξ2
n

gn(ξn) =
1

ξn
. (2.15)

The general form of the stress components corresponding to the edge component of

the dislocation is thus

σxx =
2

∑
n=1

(

Bnp2
n

ξn
+

B∗
n p∗n

2

ξ∗n

)

, (2.16a)

σzz =
2

∑
n=1

(
Bn

ξn
+

B∗
n

ξ∗n

)

, (2.16b)

σxz = −
2

∑
n=1

(
Bnpn

ξn
+

B∗
np∗n
ξ∗n

)

. (2.16c)

Eq. 2.10 together with the definition of the strain components provide an expression

for the displacement ux

ux =
∫

εxx dx

=
2

∑
n=1

{[(

s11 −
s2

12

s11

)

p2
n +

(

s13 −
s12s13

s11

)]

Bn ln(ξn)+

+

[(

s11 −
s2

12

s11

)

p∗n
2 +

(

s13 −
s12s13

s11

)]

B∗
n ln(ξ∗n)

}

. (2.17)

Similarly, one obtains for uz

uz =
∫

εzz dz

=
2

∑
n=1

{[(

s13 −
s12s13

s11

)

pn +

(

s33 −
s2

13

s11

)

1

pn

]

Bn ln(ξn)+

+

[(

s13 −
s12s13

s11

)

p∗n +

(

s33 −
s2

13

s11

)

1

p∗n

]

B∗
n ln(ξ∗n)

}

. (2.18)

It is not difficult to show that ux and uz given by Eqs. 2.17 and 2.18, respectively, pro-

vide a consistent formula for σxz.
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The first set of boundary conditions arises from the force equilibrium state of the media

expressed as

x

S

∑
j

σijnj dS = 0 (2.19)

for an arbitrary surface S enclosing the dislocation line. nj denotes components of the

outer normal to the integration surface S. This condition leads to

2

∑
n=1

(Bnpn − B∗
n p∗n) = 0 for i = x , (2.20a)

2

∑
n=1

(Bn − B∗
n) = 0 for i = z . (2.20b)

The second set of boundary equations is provided by the displacement relations. The

integral of the displacement acquisitions along a closed loop encircling the dislocation

line is equal to the Burgers vector

∮

du = b . (2.21)

Substituting ux from Eq. 2.17 into the above formula yields

bx = 2πi

(

s11 −
s2

12

s11

)
2

∑
n=1

(

p2
nBn − p∗n

2B∗
n

)

. (2.22a)

Similarly, for the z component one obtains

bz = 2πi

(

s33 −
s2

13

s11

)
2

∑
n=1

(
Bn

pn
− B∗

n

p∗n

)

. (2.22b)

The stress field of the edge component of the dislocation is fully described by Eqs. 2.16a–

2.16c where constants pn are roots of Eq. 2.14, and constants Bn are solutions of the

system of linear equations 2.20a, 2.20b, 2.22a and 2.22b.

Solution for the screw component of a dislocation – function ϕϕϕ

A solution for the screw component can be found in exactly the same way as shown

above for the edge component. The remaining stress components are

σxy =
Cp3

ξ
+

C∗p∗3
ξ∗

, (2.23a)

σyz = −C

ξ
− C∗

ξ∗
, (2.23b)
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where p3 = i
√

s44/s66. The boundary conditions provide additional relations for the

constants C and C∗. Eq. 2.19 for i = y gives

C − C∗ = 0 . (2.24a)

The condition for the displacement uy yields

−2πis44

(
C

p3
− C∗

p∗3

)

= by . (2.24b)

The stress field associated with the screw component of the dislocation is given by

Eqs. 2.23a and 2.23b, where p3 = i
√

s44/s66 and the coefficients C and C∗ are given by

solving the system of linear equations 2.24a and 2.24b as

C = C∗ = − by

4π
√

s44s66
. (2.25)

Energy of a dislocation

A dislocation may be produced by making a cut along the intended slip plane, dis-

placing one cut surface relative to the other by the Burgers vector b and welding the

material back together. This is shown schematically in Fig. 2.2. The work done by this

procedure transforms to (and is equal to) the energy of the dislocation. If the disloca-

tion is inside an infinite medium, then the surface S from Eq. 2.4 consists of parts S1

and S2 (corresponding to the cut along the slip plane), and a part enclosing the dislo-

cation core. The difference between the displacements on the surfaces S1 and S2 equals

to the Burgers vector b. As a consequence, Eq. 2.4 simplifies to

dEd

dl
=

1

2

∫

S2
∑
i,j

biσ
d
ijnj dS +

1

2

∫

around core
∑
i,j

biσ
d
ijnj dS (2.26)

where nj now denotes the outer normal to the surface S2. The latter part of Eq. 2.26 is

neglected in the present calculation. The outer cut-off radius is R, the dislocation core

radius is denoted as r0. Then one obtains

dEd

dl
=

1

2

3

∑
n=1

[

Bn(−bx pn + bz)− Cnby + B∗
n(−bx p∗n + bz)− C∗

nby

]

ln
R

r0
(2.27)

where a simplifying notation B3 = 0, C1 = 0, C2 = 0 and C3 = C was used.

2.2.2 Dislocations along the hexagonal c-axis ([0001] direction)

The energy of a dislocation lying in the hexagonal c-plane was derived in the previ-

ous section. Exactly the same approach can now be applied to a dislocation with an
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h

2r0

S2
S1 epilayer

substrate

free surface slip plane

φ

xy

z

n

Figure 2.2 : The coordinate system and the cut plane for the cut-displace-weld proce-
dure used for the estimation of the dislocation energy as described in the text. Burgers
vector b lies in the slip plane.

arbitrary dislocation line direction. The only difference is that the solutions for the

edge and screw components do not separate in the general case. As a consequence, a

more complex system of equations for coefficients Bn and Cn is obtained. The general

expression for the dislocation energy can be written as

dEd

dl
= ∑

i,j

Kijbibj ln
R

r0
= Acont ln

R

r0
(2.28)

where Kij are numerical parameters depending on the elastic constants and the partic-

ular direction of the dislocation line with respect to the hexagonal axes. Acont is the so

called prelogarithmic term (see section 2.4).

An exception is the case of a dislocation along the hexagonal c-axis, i.e. along the

[0001] direction (along the z-axis in the chosen cartesian coordinate frame). Due to the

isotropic symmetry of the hexagonal c-plane, Eqs. 2.12a and 2.12b take a different form

and thus prevent using exactly the same procedure as described in section 2.2.1.

Energy of the threading dislocation (along the [0001] direc tion)

Compatibility equations 2.8a and 2.8b now form a simpler system than in section 2.2.1

and take the same form as in the isotropic case:

∂4F

∂x4
+ 2

∂4F

∂x2∂y2
+

∂4F

∂y4
= 0 , (2.29)

∂2φ

∂y2
+

∂2φ

∂x2
= 0 . (2.30)

The different symmetry (hexagonal instead of isotropic) arises through the boundary

conditions.

Solution for the edge component can be found by following a similar derivation of

Hirth and Lothe (1982) for the isotropic media. Without loss of generality, the coordi-

nate system can be rotated in the c-plane so that the edge component be of the Burgers
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vector b lies along the x-axis. The solution is

F =
β

2
y ln

(

x2 + y2
)

. (2.31)

The boundary condition expresses the idea of Volterra dislocation formation. This

yields β:

− be = lim
y→0,y>0

∫ ∞

−∞
(εxx

(
x, y)− εxx(x,−y)

)
dx = β

(

s11 −
s2

13

s33

)

2π  

 β = − be

2π

1

s11 − s2
13/s33

. (2.32)

The strain energy for the edge component of the dislocation becomes

dEd,edge

dl
=

b2
e

8π

s33

s11s33 − s2
13

ln
R

r0
, b2

e = b2
x + b2

y . (2.33)

The solution of Eq. 2.30 is a simplified version of the one presented in section 2.2.1. The

dislocation energy per unit length for the screw component bz is thus given by

dEd,screw

dl
=

b2
s

4πs44
ln

R

r0
, bs = bz . (2.34)

All together, the final formula for the dislocation energy is

dEd

dl
=

1

4π

(

s33

2(s11s33 − s2
13)

(b2
x + b2

y) +
1

s44
b2

z

)

ln
R

r0
. (2.35)

2.2.3 Numerical comparison

To give a better idea of the difference between the above derived formulae compared

with the isotropic ones, some numerical values for the InxGa1−xN system are listed

below. A dislocation lying in the c-plane of In0.20Ga0.80N has energy

dE
dl

= (9.05b2
x + 8.06b2

y + 9.22b2
z) ln

R

r0
× 109 GPa , (2.36)

whereas a dislocation lying perpendicular to the c-plane (i.e. along the [0001] direction)

has energy

dE
dl

= (11.12(b2
x + b2

y) + 6.47b2
z) ln

R

r0
× 109 GPa . (2.37)

The isotropic equivalents of elastic constants for GaN were taken from Madelung (2004):

Young’s modulus E = 324 GPa (obtained from Brillouin scattering) and Bulk modulus
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B = 195 GPa (powder X-ray diffraction data). The shear modulus and Poisson’s ratio

were calculated as (Brdička et al., 2000)

µ =
3BE

9B − E
= 132 GPa , (2.38a)

ν =
3B − E

6B
= 0.22 . (2.38b)

As for InN, Madelung (2004) gives only a value for the bulk modulus B = 147 GPa

(calculated). Using Poisson’s ratio ν = 0.29 (Vickers et al., 2003), the shear modulus

was calculated as (Brdička et al., 2000)

µ = 3B
1 − 2ν

2 + 2ν
= 71 GPa . (2.39)

The isotropic formula for In0.20Ga0.80N then gives

dE
dl

= (12.46b2
e + 9.57b2

s ) ln
R

r0
× 109 GPa . (2.40)

All the above Burgers components are in nanometres, results are in J/m. It is clear

from these examples and from Table 2.1 that when the hexagonal symmetry is consi-

dered, lower energies that in the isotropic case are obtained. Moreover, it demonstrates

that the dislocation energy depends differently on the Burgers vector’s components for

various dislocation line orientations as shown also in Table 2.1.

Acont [eV/Å]

l ⊥ [0001] l ⊥ [0001] l‖[0001] l‖[0001]

hexagonal isotropic hexagonal isotropic

b = a, b‖x 1.54, screw 1.63, screw 1.89, edge 2.12, edge

b = a, b‖y 1.37, edge 2.12, edge 1.89, edge 2.12, edge

b = c, b‖z 4.14, edge 5.59, edge 2.90, screw 4.29, screw

Table 2.1 : Prelogarithmic terms Acont (Eq. 2.28) for two different dislocation line direc-
tions l (in the c-plane (l ⊥ [0001]) and along the c-direction) and three Burgers vectors
oriented along the three Cartesian axis evaluated with (Eqs. 2.36 and 2.37) and with-
out (Eq. 2.40) hexagonal symmetry.

2.2.4 Effect of the free surface for dislocations in the c-plane

A dislocation in an infinite material was assumed in all the above derivations. How-

ever, real structures contain well confined layers (at least in one direction) and thus a

question about the effect of hetero-interfaces and free surfaces arises.
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Willis et al. (1990) presented a mathematical derivation of the dislocation energy in

isotropic material within the vicinity of a free surface. The same approach but with

hexagonal symmetry taken into account was used previously by Holec (2006b). More-

over, a system of two different materials was investigated in the latter report. As a

consequence, a solution corresponding to a dislocation lying in a hetero-interface of a

thick substrate and a thin epilayer was obtained. The numerical results summarised by

Holec (2006b) suggest that the effect of the free surface more or less cancels the effect

of the hexagonal symmetry in the case of an InxGa1−xN epilayer on a GaN substrate

(for x / 0.3).

This solution needs a tedious numerical treatment and is computationally very com-

plex. In addition, these results do not bring any new insight and some approximations

used are debatable. Therefore, results using this approach are not further exploited in

this work. Readers interested in a more detailed discussion are referred to the report

by Holec (2006b).

2.3 Geometrical properties of dislocations in wurtzite GaN

Many considerations about dislocations are based on the minimum energy criterion,

which is one of the basic physical principles. Sections 2.1 and 2.2 gave recipes for the

calculation of the dislocation energy in isotropic and hexagonal materials. Two appli-

cations of the above will be given in this section, both showing significant differences

between isotropic and hexagonal symmetries.

2.3.1 Notation used for description of geometric relations

All directions are equivalent in the isotropic case. As a consequence, only one angle,

ϑ, is needed to fully describe a particular configuration of a dislocation line direction

and its Burgers vector (see Fig. 2.3a). Hexagonal symmetry requires two angles, θ and

φ, for the description of the dislocation line direction (see Fig. 2.3b); the Burgers vector

is described separately in this case.

2.3.2 Dislocation types in bulk

For a given Burgers vector b one may question which orientation of the dislocation line

is energetically the most favourable. The minimum value of dE iso
d /dl with respect to

ϑ is for ϑ = 0◦ regardless of the dislocation line orientation. Therefore, the screw-type
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(a)

b

dislocation line

ϑ

x

y

z

(b)

dislocation line

dislocation line

projection of a

θ

φ

x‖[2110]

y‖[0110]

z‖[0001]

Figure 2.3 : (a) Only the angle ϑ between the dislocation line and the Burgers vector
is needed to fully describe the geometrical configuration in the isotropic case. (b) In
the hexagonal (and more generally, in the non-isotropic case) two angles, θ and φ, are
needed for description of the dislocation line direction.

dislocation2 has always the lowest energy within the isotropic approximation.

The hexagonal dislocation energy of the c-type dislocation (b = [0001]) in GaN as a

function of the two angles θ and φ is plotted in Fig. 2.4. One may notice that the dislo-

cation energy does not depend on the angle φ. This is because the hexagonal c-plane

is isotropic and therefore for this Burgers vector all dislocation lines with different an-

gles φ are equivalent. It follows from Fig. 2.4 that the lowest energy configuration is

obtained for θ = 0◦ or θ = 180◦ which both correspond to the screw-type dislocation.

The situation is different for the a-type (b = 1
3〈2110〉) and the (a + c)-type (b = 1

3〈2113〉)
dislocations. The dislocation energies as functions of the angles θ and φ are shown in

Figs. 2.5 and 2.6.

Dislocation line directions with the lowest energy of the a-type dislocation are φ = 0◦

or φ = 180◦ and θ ≈ 65◦ or θ ≈ 115◦. As the Burgers vector b = 1
3〈2110〉 is charac-

terised by φb = 0◦ and θb = 90◦, the Burgers vector and the dislocation line are co-

planar and the angle between them is approximately 25◦. Therefore, the energetically

most favourable configuration for the a-type dislocation is a mixed-type dislocation,

unlike the screw-type dislocation predicted by the isotropic approximation.

The lowest dislocation energy of the (a + c)-type dislocation is obtained for the dislo-

cation line along the [0001] direction (θ = 0◦ or θ = 180◦) whereas the Burgers vector

b = 1
3〈2113〉 is characterised by φb = 0◦ and θb ≈ 31.6◦. Therefore, the angle between

the Burgers vector and the dislocation line is approximately 31.6◦. As a consequence,

2A screw-type dislocation has its Burgers vector parallel to the dislocation line direction.
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Figure 2.4 : Dislocation energy per unit length for c-type dislocations (Burgers vector
b = [0001]) in GaN for various dislocation line orientations given by different angles
θ and φ.
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Figure 2.5 : Dislocation energy per unit length for a-type dislocations (Burgers vector
b = 1

3〈2110〉) in GaN for various dislocation line orientations given by different angles
θ and φ.
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Figure 2.6 : Dislocation energy per unit length for (a + c)-type dislocations (Burgers
vector b = 1

3〈2113〉) in GaN for various dislocation line orientations given by different
angles θ and φ.

the energetically most favourable dislocation type is again the mixed-type dislocation

which contradicts the prediction of the isotropic theory.

2.3.3 Dislocation types near the free surface

In real finite crystals, dislocations which are not closed loops have to terminate at the

free surfaces of crystals and thus have to have finite length. As a consequence, the dis-

location direction is not only given by the minimum of the dislocation energy per unit

length dEd/dl. Also the actual length of the dislocation must be taken into account.

How does a dislocation know which direction is potentially the most favourable for it?

This comes as a result of growth. When a thin layer is grown on top of a surface where

a dislocation terminates, the dislocation extends in order to terminate at the (new) free

surface again. In this very thin layer the dislocation is mobile enough to adopt the

energetically most convenient direction.

Isotropic approximation

In addition to the angle ϑ between the Burgers vector and the dislocation line, ϕ de-

scribes the angle between the dislocation line and the [0001] direction. If the film thick-
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ness grows by ∆h, then the dislocation length increases by ∆h/cos ϕ. The dislocation

energy increases by

∆Ed =
µb2(1 − ν cos2 ϑ)

4π(1 − ν)

∆h

cos ϕ
ln

R

r0
. (2.41)

Minimisation of Eq. 2.41 with respect to ϕ for different kinds of Burgers vectors (dif-

ferent ϑs) gives the following predictions: for the c-type dislocations (ϑ + ϕ = 0◦) the

optimal value is ϕ = 0◦, for the a-type dislocations (ϑ + ϕ = 90◦) the optimal value

is ϕ = 0◦ (dislocation line along [0001] direction) and for the (a + c)-type dislocations

(ϑ + ϕ ≈ 32◦) the optimal value is ϕ ≈ 15.6◦. The same results were obtained and

published by Mathis et al. (2001).

One should note that this approach is not absolutely correct as the energy does not

include the effect of a free surface (see section 2.2.4). However, it is supposed to be

good enough to give some feeling about what are the important differences between

isotropic and hexagonal theories.

Dislocations in the wurtzite material with (0001) surface

The same approach is now used for the wurtzite material with the (0001) free surface.

Because of the complexity of the dislocation energy formula, all results were obtained

numerically. The calculation reveals that for the (0001) surface, dislocation lines along

the [0001] direction constitute the lowest energy configuration for all three dislocation

types (a-, (a + c)- and c-type). This contradicts the results obtained within the isotropic

approximation. It is also in good agreement with the experimental TEM observations

where dislocations (regardless of their type) are usually vertical rather than inclined

straight lines in thick GaN.

Different surface facets

Hiramatsu et al. (1999) discussed changes in growth modes and the preferred growth

facets at different temperatures and III/V ratios. They concluded that for the 3D

growth mode, the most preferable growth facets are {1122} and {1101}. Therefore,

analysis similar to the above was performed also for these facets.

All together, there are 20 different Burgers vectors: ±c, ±ai and ±c ± ai (i = 1, 2, 3).

The results are presented graphically in Figs 2.7 and 2.8. It can be concluded that the

a-type dislocations (green lines) tend to propagate almost perpendicularly to the facets

whereas the (a + c)-type and the c-type dislocations are inclined towards the [0001]
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direction. A TEM image showing such behaviour has been reported by Lang et al.

(2007).

a) b) c) d)

Figure 2.7 : Dislocation lines’ directions near the (1101) facet for several projections:
(a) a 3D view and a view with the direction of projection being (b) [0110], (c) [1120]
and (d) [1100]. The green, red and blue lines represent the a-, (a + c)- and c-type
dislocations, respectively.

a) b) c) d)

Figure 2.8 : Dislocation lines’ directions near the (2112) facet for several projections:
(a) a 3D view and a view with the direction of projection being (b) [0110], (c) [1120]
and (d) [1100]. The green, red and blue lines represent the a-, (a + c)- and c-type
dislocations, respectively.

2.4 Beyond linear elasticity – energy of the dislocation core

Recent atomistic calculations provided some details about dislocation core structures

in III–nitrides. In each case, a comparison of several dislocation core configurations

yielded the energetically most favourable structure. It turned out that the 5/7-atom

ring core possesses the lowest energy configuration in all investigated cases. De-

spite this, experimental observations of some other configurations were reported in the
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material dislocation rc [nm] Ecore [eV/Å] A [eV/Å] reference Acont [eV/Å]

GaN (a + c)-type 0.72 3.12 2.15 [1] 2.12

GaN a-type 0.7 1.57 0.91 [2] 0.81

GaN a-type 0.60 1.61 0.80 [3] 0.81

AlN a-type 0.83 1.71 0.83 [3] 0.90

InN a-type 0.54 1.66 0.56 [3] 0.41

[1] Belabbas et al. (2007)

[2] Lymperakis (2005)

[3] Kioseoglou et al.

Table 2.2 : Parameters of the 5/7-atom ring dislocation cores resulting from the atom-
istic calculations. Acont is the prelogarithmic term from Eq. 2.35 obtained within the
linear theory of elasticity. A is an estimation of the same quantity, this time based on
the atomistic calculations.

literature too. Xin et al. (1998) observed an 8-atom ring whereas Lymperakis (2005)

reported on an 4-atom ring configuration.

Belabbas et al. (2007) estimated that the dislocation core radius of the (a + c)-type dislo-

cation in GaN is ≈ b. Lymperakis (2005) and Kioseoglou et al. calculated r0 ≈ 2b for the

a-type dislocations in III-nitrides. All these calculations were done for dislocation lines

along the [0001] direction. Belabbas et al. (2007), Lymperakis (2005) and Kioseoglou

et al. also provided estimates of the core energies Ecore for these dislocations. Their

results, as will be used later in this work, are summarised in Table 2.2.

A very good agreement of the prelogarithmic factors based on the continuum elasticity

theory, Acont, and resulting from the atomistic calculations, A, was obtained. This

suggests both approaches yielded comparable results and thus can be combined into a

kind of a multiscale approach (see section 3.4.2).

2.5 Summary

A detailed derivation of the dislocation energy with hexagonal symmetry being taken

into account was given in this chapter. The results were subsequently applied to two

case studies to demonstrate some significant differences between isotropic and hexag-

onal approximations. In the first one, geometrical properties of straight dislocations

in an infinite medium were investigated. It has been shown that the often used ar-
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gument “the screw-type dislocation has lower energy than the mixed- and edge-type

dislocations” does not hold in the case of wurtzite GaN. A similar conclusion is ex-

pected also for other wurtzite III-nitrides. The second study focused on an estimate of

the energetically optimal dislocation line directions near a free surface of a finite crys-

tal. Again, different conclusions result from the isotropic and hexagonal theories. The

hexagonal theory predicts (in agreement with TEM observations) that the dislocation

line along the [0001] direction possesses the lowest energy configuration regardless of

the dislocation type. a-type dislocations tend to propagate almost perpendicularly to

the free surface whereas the (a + c)- and c-type dislocations are slightly inclined to-

wards the [0001] direction in the case of inclined {1122} and {1101} facets. In the end

of the chapter, a summary of results from the literature on atomistic calculations of

dislocation core structures of III-nitrides was given.



Chapter 3

Critical thickness

The generation of misfit strain during hetero-epitaxial growth is a well known phe-

nomenon. Misfit strain arises from the difference between the in-plane lattice para-

meter(s) of the substrate and the epilayer. The basic idea of epitaxial growth theory is

that for very thin layers it is energetically favourable to accommodate the misfit strain

elastically while for thicker epilayers the strain is accommodated by introducing de-

fects. These are misfit dislocations (see e.g. Srinivasan et al., 2003), V-defects (see e.g. Jah-

nen et al., 1998), surface roughening (see e.g. Tersoff and Legoues, 1994), stacking faults

(see e.g. Johnston et al., 2008) or cracking (see e.g. Vennéguès et al., 2005). V-defects

are commonly observed in InxGa1−xN/GaN systems whereas cracking is typical for

AlxGa1−xN/GaN systems. Stacking faults have been reported in non-polar and semi-

polar GaN grown on sapphire.

Probably the most commonly observed defects are misfit dislocations (MDs) which can

be found in silicon semiconductors, GaAs-based systems and also in III-nitrides. MDs

lie in the epilayer–substrate interface. The minimum layer thickness at which MDs are

introduced is called the critical thickness (CT) and is denoted by hc throughout this text.

A summary of various CT models, several modifications to the energy balance model

and a critical comparison with available experimental data are presented in this chap-

ter.

3.1 Experimental critical thickness

3.1.1 Methods of measuring the critical thickness

Several experimental techniques exist to determine the critical thickness. One of the

most straightforward is to use transmission electron microscopy (TEM) to observe directly

the misfit dislocations. For example, a plot of the critical thickness against the compo-

36
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sition can be obtained from TEM by investigating a series of samples that either have

varying layer thicknesses with constant composition, or varying composition with con-

stant thickness. However, this method is time demanding and needs a lot of samples.

On the other hand, it provides a direct view of the strained hetero-interface and, in

addition, constitutes a simple method of how to measure the layer thickness. TEM and

other electron microscopy techniques are often used in combination with other meth-

ods (described below) to validate the observations. However, the detection limit of the

dislocation generation onset in TEM is poor (typically for the dislocation density of the

order of 104 cm−2) due to a very small area of TEM samples.

Photoluminescence microscopy (PLM) is another technique for a direct observation of the

dislocations in the interface (see e.g. Gourley et al. (1988)). To obtain PLM images,

the sample is irradiated with laser light of an appropriate wavelength (depending on

the investigated material) which is focused to a fine spot. The light is absorbed near

the incident surface and the generated electrons and holes are then transported to the

quantum well(s) where they recombine with high efficiency. As dislocations act as

non-radiative recombination centres they appear as dark line defects in the final PLM

micrograph. The determination of the critical thickness is then similar to that by TEM.

Other methods are also ex situ approaches and therefore need a series of samples but,

compared with TEM or PLM, misfit dislocations are not directly observed.

X-ray diffraction provides accurate data for determining the in-plane (perpendicular to

the growth direction) lattice constants by analysing the peaks of X-ray rocking curves

(used for example by Bean et al. (1984) or Park et al. (2003)). For a strained layer the

in-plane lattice constant is the same as that of the substrate. After the critical thickness

is reached, relaxation of the film occurs and separate peaks corresponding to the layer

and the substrate can be observed. Generally, it seems that X-ray diffraction provides

higher values of the critical thickness than PLM measurements which points to the fact

that X-ray diffraction is not capable of picking up the absolute onset of strain relaxation

(see Gourley et al., 1988, and references therein).

Reed et al. (2000) pointed out that broad X-ray rocking curve widths and the high

density of threading dislocations make X-ray analysis more difficult in the case of III-

nitrides. Therefore, Parker et al. (1999) and Reed et al. (2000) used photoluminescence

(PL). The method is based on the red-shift of the PL spectra as the layer thickness in-

creases. Further investigation showed that this red-shift is closely connected with the

onset of the relaxation process and therefore may be used as an indicator for determi-

nation of the critical thickness.
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Reed et al. (2000) suggested another possibility of measuring the critical thickness.

They used data from measurements of the electrical properties (mobility and conduc-

tivity). They found these measurements in good agreement with the values deter-

mined by the PL technique although depending on the chosen method the results are

systematically shifted.

Floro et al. (2004) measured stress in situ during deposition. They used a multibeam

optical stress sensor (MOSS), a laser deflectometry technique. It measures the curva-

ture of a wafer imposed by the stress in an epilayer. The curvature can be directly

related to the stress in the epilayer and thus change in the curvature marks the onset

of strain relief.

3.1.2 Overview of published experimental results for GaN-b ased systems

There are very few papers reporting on critical thickness of III-nitride systems, namely

InxGa1−xN/GaN and AlxGa1−xN/GaN systems. This is probably due to obstacles and

uncertainty in the experimental techniques described in the previous section. Despite

this, a collection of published results focused on the presence of MDs was assessed for

a critical comparison with the herein presented theoretical calculations.

InGaN/GaN systems

InGaN epilayers on GaN substrates are under compressive stress. The most commonly

observed defects are V-defects which are connected to dislocations threading from the

GaN substrate. However, MDs are quite often observed too. Jahnen et al. (1998) sug-

gested that V-defects may be a source for MDs. Experimental evidence for such a

mechanism was given by Costa et al. (2006) and it was subsequently observed by Liu

et al. (2006b). These results were obtained on structures grown on conventional GaN

substrates with a threading dislocation density (TDD) of about 109 cm−2. Observations

tagged in Table 3.1 as “low TDD substrates” used GaN substrates with TDD of about

107 cm−2. Absence of TDs which may serve either as MD nucleation centres them-

selves or as nucleation sites for V-pits is probably the reason for thicker dislocation

free epilayers (see e.g. reports by Liu et al. (2006b) or Srinivasan et al. (2003)).

The available experimental data for the InxGa1−xN/GaN system are summarised in

Table 3.1.
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x h [nm] MDs? ref. notes

0.05 100 no [1] low TDD substrate

0.11 100 yes [1] half-loops generated at apexes of V-pits, a-type dislocations

(b = a), low TDD substrate

0.17 100 yes [1] in addition to half-loops, straight lines are generated,

a-type dislocations (b = 2a), low TDD substrate

0.10 100 hc [2] (a + c)-type MDs arranged in arrays, low TDD substrate

0.18 6.0 yes [3] a-type MDs, MQW sample

0.11 100 hc [4] punch-out mechanism of MDs generation

((a + c) + (a − c) → 2a)

0.17 100 yes [4] a-type MDs (b = 2a), long straight lines, low TDD substrate

0.33 112 yes [5] MDs present in the heterointerface and also in the QW itself

0.14 100 hc [6] MDs generated at apexes of V-pits

0.20–0.25 3.0 yes [7] MQW samples, observed MD loops

0.06 130 hc [8] CL imaging

0.08 102 hc [8]

0.15 74 hc [8]

0.20 60 hc [8]

0.05 100 hc [9] averaged CL imaging, conductivity and mobility measure-

ments0.10 33 hc [9]

0.16 14 hc [9]

0.13 39.7 no [10] single layer, based on TEM

0.08 36.6 no [10]

0.03 33.5 no [10]

0.08 5.7 no [11] 5 layers with different compositions in one sample (separa-

tion about 100 nm)0.12 5.7 no [11]

0.18 6.4 no [11]

0.22 6.4 yes [11]

0.23 6.4 yes [11]

[1] Liu et al. (2006b) [8] Parker et al. (1999)

[2] Srinivasan et al. (2003) [9] Reed et al. (2000)
[3] Lü et al. (2004) [10] Unpublished results. Courtesy of M. Kappers
[4] Liu et al. (2006a) and Y. Zhang, University of Cambridge.
[5] Cho and Yang (2002) [11] Unpublished results. Courtesy of M. Kappers
[6] Jahnen et al. (1998) and S. Duggi, University of Cambridge.
[7] Costa et al. (2006)

Table 3.1 : Experimental observations of MDs in InxGa1−xN/GaN systems. h denotes
thickness of the investigated epilayer. Column “MDs?” indicates whether MDs were
or were not observed. In some papers, the actual critical thickness was estimated.
Such cases correspond to hc in the “MDs?” column.
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AlGaN/GaN systems

The lattice constants of AlN are smaller than those of GaN and therefore AlxGa1−xN

grown on GaN is under tensile strain. As a consequence, AlGaN layers often crack

(see e.g. Vennéguès et al., 2005). Despite that, MDs are often observed. Vennéguès

et al. (2005) carried out a detailed study of the onset of MDs in AlGaN/GaN layers in

the whole composition range. Bethoux and Vennéguès (2005) concluded that in their

samples all cracks were accompanied by MDs that could be divided into two groups:

(i) long straight MDs and (ii) bowed MDs connected at both ends to the cracks. Floro

et al. (2004) used the MOSS technique that is capable of immediate registration of the

strain state in the epilayer. As a consequence, an in situ measurement of the CT was

possible.

Experimental data from the literature are summarised in Table 3.2.

3.2 Critical thickness models

3.2.1 Historical overview

Following earlier work of Frank and van der Merwe (1949a,b), van der Merwe

(1963a) published a theory for the calculation of stresses at an interface between two

adjacent crystals that have different lattice and/or elastic constants. Subsequently, van

der Merwe (1963b) applied these results to the problem of a thin crystalline epilayer

on an infinite substrate. This model assumes isotropic materials and the calculated

properties correspond to an epilayer fully relaxed by an array of evenly-spaced edge

dislocations (see Fig. 3.1).

According to a later discussion by Willis et al. (1990), some assumptions in the original

van der Merwe’s calculation are not obvious although they provide correct results.

This theory is mathematically rigorous but rather complex, which may explain why it

has not been widely used.

Matthews and Blakeslee (1974) introduced a force balance model (MB model). They in-

vestigated alternating layers of GaAs and GaAs0.5P0.5 and revealed that some thread-

ing dislocations bent back and forth in the layers’ interfaces, which gave rise to misfit

dislocations. Based on these observations they identified that two forces (misfit force

and tension of the dislocation line) were acting on the dislocations and the critical thick-

ness was determined by their equilibrium. The CT values obtained by this calculation

were compared with their observations and they were found to be in good agreement.
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x h [nm] MDs? ref. notes

0.14 72.1 no [1] experiments are sensitive only to the presence of MDs, not

to the cracks; therefore, these results show the onset in

MDs; multilayered samples

0.14 106.1 yes [1]

0.24 44.2 no [1]

0.24 57.7 yes [1]

0.28 25.9 no [1]

0.28 34.8 yes [1]

0.39 17.3 no [1]

0.39 24.0 yes [1]

0.46 10.6 no [1]

0.46 15.4 yes [1]

0.59 5.4 no [1]

0.59 6.9 yes [1]

0.71 4.4 no [1]

0.71 7.0 yes [1]

0.88 3.0 no [1]

0.88 3.9 yes [1]

1.00 2.6 no [1]

1.00 4.8 yes [1]

1.00 3.5 no [2] multilayered sample, surface undulations are observed be-

fore MDs, 60◦ dislocations (a-type, along [1120])1.00 10 yes [2]

1.00 40 yes [2] single layer, cracks present

0.70 25 no [2] single layer, cracks do not reach heterointerface

0.43 23 no [2] single layer, cracks do not reach heterointerface

0.20 200 yes [3] cracked AlGaN layers on GaN

0.20 350 yes [3] all cracks are accompanied by presence of MDs

0.20 500 yes [3] two types of MDs: long straight MDs and bowed MDs

bonded to the crack0.20 6000 yes [3]

1.00 56 yes [4] TEM evidence, otherwise AFM based paper

0.17 140 hc [5] laser deflectometry by MOSS. Direct measurement of CT;

however, authors propose that crack are generated first.0.29 92.0 hc [5]

0.37 30.0 hc [5]

[1] Lee et al. (2004) [4] Gherasimova et al. (2004)
[2] Vennéguès et al. (2005) [5] Floro et al. (2004)

[3] Bethoux and Vennéguès (2005)

Table 3.2 : Experimental observations of MDs in AlxGa1−xN/GaN systems. h denotes
thickness of the investigated epilayer. Column “MDs?” indicates whether MDs were
or were not observed. In some papers, the actual critical thickness was estimated.
Such cases correspond to hc in the “MDs?” column.
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of misfitof misfit
plastic accommodationelastic accommodation
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Figure 3.1 : The lattice constants of the epilayer (bigger lattice constant) and the sub-
strate do not match. When the epitaxial layer is grown, the misfit strain may be ac-
commodated either elastically and a homo-epitaxial layer is obtained or plastically by
introducing misfit dislocations in the layer–substrate interface.

Despite this success, some objections were raised. First, a probably more transparent

approach would be using energies (the forces acting on a dislocation are defined as

energy gradients anyway). Second, it is not clear what role is played by the dislocation

bending and how big an obstacle this constitutes. Last, the effect of interfaces and a

free surface of a sample is not taken into account. More details about this model are

given in section 3.2.2.

All these objections were a driving force for further investigations. People and Bean

(1985) published a paper on the CT calculation based purely on an energy balance

of the dislocation self-energy and the elastic energy (discussed in a greater detail by

Holec (2006b)). Their calculation was performed for a strained Si1−xGex layer on a

silicon substrate. They compared the experimental data published by Bean et al. (1984)

with values predicted by their model and found them to be in very good agreement.

People and Bean (1985) also compared the same data with the force balance model and

with van der Merwe’s calculations where they found discrepancies for the calculated

CT up to one order of magnitude1. However, some drawbacks and uncertainties of

this model were pointed out by Hu (1991).

1This is due to the dislocation energy being restricted only to the area limited by so called the dislo-

cation width (Holec, 2006b).
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The story then continued with a semi-empirical model by Dodson and Tsao (1987) and

studies of the excess stress for glide of a dislocation in a strained epitaxial layer by

Freund and Hull (1992) and Fischer and Richter (1994). They resulted in a well-known

model by Fischer et al. (1994) which has been recently revised (see Fischer, 2006). It is

one of the “force models” and it was again discussed in detail by Holec (2006b).

Almost at the same time, calculations done by Willis et al. (1990), Jain et al. (1997) and

Freund and Suresh (2003) based on the minimisation of the overall energy appeared in

the literature (energy balanced (EB) model). This approach is described in section 3.2.3.

When formulated coherently, the MB and EB models give the same predictions which

are in agreement with basic physical principles. One of the advantages of the EB model

is that additional considerations such as hexagonal symmetry or more complex geom-

etry can be incorporated in a straightforward manner. Therefore, mainly the EB model

is used in this work.

The development of a good critical thickness theory was obtained in the late 1990s.

Reviews such as those published since then by Jain et al. (1997) or Freund and Suresh

(2003) show good agreement between the EB model and the experimental data for

conventional SiGe/Si and GaAs-based systems. However, some questions have arisen

recently while using these CT models for GaN-based semiconductors.

The real situation is very complex, which leads to a very wide spread of experimen-

tal data (as mentioned in previous section 3.1.2). Different authors used different CT

models in order to fit their experimental findings without any discussion of their ac-

tual validity. Basic predictions and several extensions of CT models (especially the EB

model) will be discussed in the rest of this chapter together with a critical comparison

of theory with available experimental data.

3.2.2 Model of Matthews and Blakeslee

This model, originally proposed by Matthews and Blakeslee (1974), is often called the

force balance model. Balance of two forces2, the line tension Fl and the misfit force Fε, is

sought.

The line tension Fl which acts against the dislocation line prolongation, is given by the

dislocation energy per unit length

Fl = −dEd

dl
. (3.1)

2Sometimes, also the Peierls force (see e.g. Jahnen et al., 1998) or image forces are taken into consid-

eration. However, this work limits itself to the original concept of only two forces.
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Dislocation energy was discussed in detail in chapter 2. The misfit force is estimated

using the Peach-Koehler formula for a force acting on a dislocation with Burgers vector

b lying along a unit vector l in an external uniform stress field σ̂ (see for example Hirth

and Lothe, 1982)

dF

dl
= (b · σ̂)× l . (3.2)

In coordinates, this equation reads

dFk

dl
= −∑

i,j

εkijli ∑
ℓ

σjℓbℓ (3.3)

where εkij is the permutation operator. The stress field caused by mismatch of lattice

parameters between an epilayer and a substrate is generally a bi-axial stress with the

only non-zero components

σxx = σyy = σm (3.4)

where σm is the misfit stress. According to Fig. 3.2a, the direction of the threading

dislocation is l = (− sin φ, 0, cos φ). The misfit stress tensor is

σ̂m =









σm 0 0

0 σm 0

0 0 0









(3.5)

and the Burgers vector has components b = (−b sin θ sin φ, b cos θ, b sin θ cos φ). As a

consequence, Eq. 3.3 gives for the y-component of the misfit force acting on the dislo-

cation

dFy

dl
= bσm sin θ sin φ cos φ . (3.6)

If h denotes the thickness of an epilayer then the length of the threading dislocation

is h/ cos φ. Therefore, the total misfit force acting in the y-direction, i.e. “competing”

with the line tension of the misfit dislocation, is

Fε =
dFy

dl

h

cos φ
= bσmh sin θ sin φ . (3.7)

The total force acting on the dislocation in the y-direction is Ftotal = Fl + Fε. For very

small epilayer thicknesses h, the total force Ftotal is negative and therefore it acts against

extension (and possibly also against creation) of the misfit dislocation. On the contrary,
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Figure 3.2 : A mechanism of creation of the misfit dislocation proposed by Matthews
and Blakeslee (1974): a) bending of a pre-existing threading dislocation. The two
“competing” forces taken into account are the line tension Fl and the misfit force Fε.
b) Different angles describing the geometry.

Ftotal is positive for thick epilayers and thus extends the misfit dislocation. The critical

thickness is therefore determined by Ftotal(hc) = 0. Eqs. 3.1 and 3.7 yield

hc =
1

bσm sin θ sin φ

dEd

dl
(hc) . (3.8)

Taking the isotropic dislocation energy Eq. 2.6 one obtains the most often used equation

for the CT within the MB model

hc =
b(1 − ν cos2 θ)

8π(1 + ν)|εm | sin θ sin φ
ln

(
hc

r0

)

(3.9)

where the isotropic relation between the bi-axial misfit strain and the misfit stress was

used

σm = 2εmµ
1 + ν

1 − ν
. (3.10)

3.2.3 Energy balance model

Balancing total energy in the system is a concept used already by van der Merwe

(1963a) and often since then. It has been recently reviewed by Freund and Suresh

(2003). For a very thin epilayer, the elastic strain energy dEm/dl relieved by the intro-

duction of a MD is smaller than the dislocation energy dEd/dl. Therefore, it is ener-

getically unfavourable for the system to introduce any MDs. On the other hand, the

energy dEm/dl exceeds the dislocation energy dEd/dl for thicker epilayers and thus

the relaxation of misfit strain by introducing MDs is preferred. The particular epilayer

thickness hc which separates these two states is the critical thickness.
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Energy relieved by a misfit dislocation

The geometry from Fig. 2.2 is assumed. The top surface of a specimen is stress free

and therefore σm
zz = 0. The only non-zero components of the uniform bi-axial mis-

fit stress are σm
xx = σm

yy = σm within the thin layer. All directions within the xy-

plane (the hexagonal c-plane) are equivalent and thus the misfit strain components are

εm
xx = εm

yy = εm. From Hooke’s law it follows

0 = σm
zz = c13εm

xx + c13εm
yy + c33εm

zz  εm
zz = −2

c13

c33
εm . (3.11)

Using again Hooke’s law, the misfit stress takes the form

σm = σm
xx =

(c11 + c12)c33 − 2c2
13

c33
εm . (3.12)

Following Freund and Suresh (2003), the work ∂W/∂l done by the mismatch stress

while bringing the unit length of the dislocation from the free surface to its position in

the interface is

dW
dl

= −dEm

dl
=
∫ 0

h
cos φ

∑
i,j

biσijnj dℓ (3.13)

where ℓ is the coordinate along the slip plane and perpendicular to the dislocation line.

The integrand is constant along the integration path. As a consequence, Eq. 3.13 results

(in agreement with Eq. 3.6) in

dEm

dl
= bσmh sin φ sin θ (3.14)

where the following relations were used:

b =









−b sin φ sin θ

b cos θ

b cos φ sin θ









, σm =









σm 0 0

0 σm 0

0 0 0









, n =









− cos φ

0

sin φ









. (3.15)

Critical thickness criterion

The critical thickness criterion is

dEd

dl
(hc) =

dEm

dl
(hc) . (3.16)

Furthermore, Freund and Suresh (2003) have shown that this approach gives the same

results as the force balance model. This is because the concept presented here is the so

called equilibrium critical thickness which does not take into consideration any disloca-

tion sources.
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3.3 Discussion or results

Some basic results on the CT are summarised in this section. They are an extension of

a similar analysis in previous work (Holec, 2006b, only for InGaN/GaN systems).

Graphs in Fig. 3.3 represent CT predictions for AlxGa1−xN/GaN and InxGa1−xN/GaN

systems as calculated using models by Matthews and Blakeslee (1974), People and

Bean (1985) and Fischer et al. (1994). Here, the MB model corresponds exactly to the

EB model. The calculations were done for the 1
3〈1123〉{1101} slip system (see Fig. 1.11)

and thus using the inner cut-off radius r0 = b (see Table 2.2).
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Figure 3.3 : Comparison of CT predictions by various models for (a) AlGaN/GaN and
(b) InGaN/GaN systems. These curves correspond to the 1

3〈1123〉{1101} slip system.

One can observe that the model of People and Bean gives extremely high estimates

of the CT and thus it can be immediately ruled out as inappropriate for III-nitrides.

The Fisher’s model gives the CT in the whole range of compositions for both systems.

Also looking at the experimental data (Table 3.1, Table 3.2 and Fig. 3.6) this model

gives reasonable estimates for the CT. These results were obtained within the isotropic

approximation. As discussed by Holec (2006b), there are some aspects of this model

that are not well understood and which prevent its correction for hexagonal symmetry

and other geometrical concerns. The last curve in these graphs corresponds to the

simplest isotropic formulation of the EB model. The EB model in this form strongly

underestimates the possible values of the CT. In the case of the InGaN/GaN system it

does not predict any CT values for x ' 0.25 (this means that in such cases there is no

solution to Eq. 3.16). Therefore, there is a need for corrections and extension of the EB

model in order to use it for III-nitrides.
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Holec et al. (2007) reported on the contribution of hexagonal symmetry for InGaN/GaN

systems. The CT curves corresponding to the EB model for the isotropic and hexago-

nal approximations as presented in sections 2.1 and 2.2.1 are shown in Fig. 3.4a. The

differences are clearer in Fig. 3.4b where the hexagonal-to-isotropic ratio of the CT is

plotted. In this particular case, the hexagonal symmetry lowers the predicted CT val-

ues by 10–20 % for x ≤ 0.3. This small correction may become a significant difference

in the region around x ≈ 0.2 where the isotropic value is hc = 4.3 nm whereas the

hexagonal value is hc = 3.6 nm. These values are very close to the thickness used for

quantum wells in InGaN based LEDs.
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Figure 3.4 : (a) Various approximations to the dislocation energy, (b) hexagonal-to-
isotropic ratio of critical thickness. The CT values correspond to InGaN/GaN system
with the 1

3〈1123〉{1122} slip system and the inner cut-off radius r0 = 2b.

The green curve in Fig. 3.4a corresponds to what is supposed to be the most accurate

estimation of dislocation energy (see Willis et al. (1990) and its correction for hexagonal

symmetry by Holec (2006b)). It takes into account the hexagonal symmetry, the effect

of a free surface of an epilayer, and different elastic constants in both an epilayer and

a substrate. This result suggests that these three effects approximately cancel out and

that the final critical thickness curve is very close to the isotropic case, in particular in

the region around x ≈ 0.2.

Srinivasan et al. (2003) concluded that only the prismatic slip systems 1
3〈1123〉{1122}

and 1
3〈1123〉{1101} are operable for glide in wurtzite III-nitrides (see Fig. 1.11). How-

ever, there are also reports of pure a-type MDs (see e.g. Vennéguès et al., 2005) which

are theoretically the most efficient MD types for relieving the misfit strain and thus

the basal plane slip system 1
3〈1120〉{0001} is included for theoretical considerations

here. Fig. 3.5 shows CT of AlGaN/GaN and InGaN/GaN systems for these three slip
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systems. In both cases, the basal plane slip system 1
3〈1120〉{0001} yields the lowest

CT values. However, neither the 1
3〈1120〉{0001} not the prismatic slip systems predict

any CT values for high x in both material systems. Differences between the two pris-

matic slip systems 1
3〈1123〉{1122} and 1

3〈1123〉{1101} are not very big in the case of

the AlGaN/GaN system. The highest CT values are obtained for the 1
3〈1123〉{1101}

slip system in both material cases. For this slip system the MDs lie along the 〈1120〉
directions which corresponds with the observations of Vennéguès et al. (2005).
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Figure 3.5 : Variations in critical thickness of (a) AlGaN/GaN and (b) InGaN/GaN
with slip systems. The cut-off radii used for prismatic slip systems were r0 = b, for
the basal slip system was used r0 = 2b (see Table 2.2).

Finally, Fig. 3.6 shows the results of calculations together with available experimen-

tal data from section 3.1.2. These calculations were done for the basal 1
3〈112̄0〉{0001}

and prismatic 1
3〈112̄3〉{11̄01} slip systems with the core radius r0 = 2b and r0 = b,

respectively. The dislocation core energy is also included as it is discussed later in

section 3.4.2. It is evident that the theoretical curves from the EB model underestimate

slightly the CT with respect to the experimental values. In the case of the AlGaN/GaN

system (Fig. 3.6a) it is usually cracks that are observed first. This is expected to push

the experimental onset of MDs to higher epilayer thicknesses when compared with

theoretical calculations where MDs are the only strain relieving mechanism. The same

argument can be used for the InGaN/GaN system (Fig. 3.6b) where V-defects are often

observed experimentally. However, the data points corresponding to the AlGaN/GaN

system seem to correlate quite well with the prismatic 1
3〈112̄3〉{11̄01} slip system. On



3.4 Advanced topics 50

a) AlGaN/GaN b) InGaN/GaN

2

2

2
2

2

2 2

2
2

3

3

4

4
4

5

1

1

1

2

2

2
2

2

2
2

2 2
3

33

0 0.2 0.4 0.6 0.8 1
aluminium content

1

100

la
ye

r 
th

ic
kn

es
s 

 h
 [n

m
]

theory: <11-20>(0001) slip system

theory: <11-20>(0001) without disl. core

theory: <11-23>(1-101) slip system

theory: <11-23>(1-101) without disl. core

exp: MDs present

exp: hc

exp: no MDs present

5

7

1111

1

3

46
8

8
8

8

9

9

2

10
10 10

11 11 11

1

0 0.1 0.2 0.3
indium content

1

10

100

1000

la
ye

r 
th

ic
kn

es
s 

 h
 [n

m
]

theory: <11-20>(0001) slip system

theory: <11-23>(1-101) slip system

exp: unknown-type MDs present

exp: a-type MDs present

exp: a+c-type MDs present

exp: unknown-type hc

exp: a+c-type hc

exp: no MDs present

Figure 3.6 : Comparison of theoretical predictions of CT with experimental observa-
tions for (a) AlGaN/GaN and (b) InGaN/GaN systems. Calculations were done for
the basal 1

3〈112̄0〉{0001} and prismatic 1
3〈112̄3〉{11̄01} slip systems with the core ra-

dius r0 = 2b and r0 = b, respectively, and with the dislocation core energy included.
Experimental data and corresponding citations refer to Tables 3.1 and 3.2.

the other hand, much larger scatter of the experimental data points is observed for the

InGaN/GaN system.

The present theoretical model predicts the equilibrium critical thickness which does not

account for the actual MDs generation mechanism. Therefore, theoretical CT values for

both the basal 1
3〈112̄0〉{0001} and prismatic 1

3〈112̄3〉{11̄01} slip systems were shown

in the above graphs while noting that the experimental onset of a-type dislocations

(unlike the (a + c)-type MDs) is expected to be significantly higher than the predicted

CT values, due to the inoperability of the basal slip system.

3.4 Advanced topics

Holec (2006b) used the EB model to investigate several “advanced” topics. Those in-

cluded (a) the effect of raised temperature during growth on the critical thickness,

(b) the CT for dislocation half-loops, (c) density of misfit dislocations after the CT is

reached, and (d) a simple model for the CT of multiple quantum wells. In this section

are summarised some additional recently investigated applications based on the EB

model for the CT.
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3.4.1 Critical thickness of non-polar and semi-polar InGaN /GaN

In all previous calculations only the c-plane systems (i.e. where the epilayer–substrate

interface was the hexagonal c-plane) were assumed. That orientation of GaN (and its

related alloys) is called polar because the surface plane always terminates with either

Ga or N. Qualitatively different properties of so called non-polar GaN (and related al-

loys), i.e. grown on the a-plane or the m-plane of the wurtzite substrates, have led to

an increased interest in these structures. Holec and Humphreys (2007) calculated CT

values for a single InxGa1−xN epilayer grown on the a- and m-plane GaN substrates

and compared them with the values obtained for the c-plane GaN.

The critical thickness criterion (Eq. 3.16) for differently orientated substrates differs in

both terms, the dislocation energy dEd/dl and the misfit relief dEm/dl. These terms

need to be recalculated for all orientations of the considered systems. The disloca-

tion energy dEd/dl can be obtained using the procedure from sections 2.2.1 and 2.2.2.

The misfit relief dEm/dl is a straightforward generalisation of the procedure from

section 3.2.3.

Slip systems of individual orientations

Srinivasan et al. (2003) concluded that the active slip system for the c-plane GaN was
1
3〈112̄3〉{112̄2}. On the other hand, Jahnen et al. (1998) identified 1

3〈112̄3〉{11̄01} as the

active slip system. Therefore, both these slip systems are considered here.

Possible slip systems were derived in a similar manner for the m-plane and the a-plane

material. The glide planes used were planes intersecting the hexagonal cell unit. Four

slip systems were found for the m-plane material and three slip systems in a case of

the a-plane material. These are shown in Figs. 3.7 and 3.8, respectively, and are listed

together with their geometrical properties in Table 3.3.

Peierls force

Several possible slip systems for each material variant were identified. However, dis-

locations do not operate with the same ease on all of them. As Srinivasan et al. (2003)

pointed out, the Peierls force acts as a frictional force against the dislocation motion.

The Peierls force used in their paper was derived within the framework of linear

isotropic elasticity. Despite the fact that hexagonal symmetry of wurtzite materials
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b φ θ

1
3〈112̄3〉{112̄2}

√
a2 + c2 arctan

a

c
90◦

c-
p

la
n

e

1
3〈112̄3〉{11̄01}

√
a2 + c2 arctan

√
3a

2c
arccos

a

2b

1
3〈112̄0〉{11̄00} a 30◦ 90◦

〈11̄00〉{112̄0}
√

3a 60◦ 90◦

1
3〈112̄3〉{11̄01}

√
a2 + c2 arctan

2c

a
√

3
180◦ − arccos

a

2b

m
-p

la
n

e

〈11̄01〉{11̄02}
√

3a2 + c2 arctan
c

a
√

3
90◦

1
3〈112̄0〉{11̄00} a 60◦ 90◦

〈11̄00〉{112̄0}
√

3a 30◦ 90◦

a-
p

la
n

e

1
3〈112̄3〉{112̄2}

√
a2 + c2 arctan

c

a
90◦

Table 3.3 : Geometrical properties of the slip systems considered in this study: b is the
length of the Burgers vector, φ is the angle between slip plane and the normal to the
interface, and θ is the angle between the Burgers vector and the dislocation line.
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Figure 3.7 : Four possible slips systems for the m-plane material: a) 1
3〈112̄0〉{11̄00},

b) 〈11̄00〉{112̄0}, c) 1
3〈112̄3〉{11̄01}, and d) 〈11̄01〉{11̄02}.
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Figure 3.8 : Three possible slips systems for the a-plane material: a) 1
3〈112̄0〉{11̄00},

b) 〈11̄00〉{112̄0}, and c) 1
3 〈112̄3〉{112̄2}.

is otherwise used here, their formula is used to provide some guidelines as to how big

this effect is for various slip systems. The Peierls force takes the form

FP = 2Gbh sec φ

(
1 − ν cos2 θ

1 − ν

)

ω exp

(−2πd(1 − ν cos2 θ)ω

(1 − ν)b

)

(3.17a)

where

ω = exp

(
4π2nkT

5GV

)

. (3.17b)

Apparently, the only parameters that change from one slip system to another are the

length b of the Burgers vector, the angles θ and φ, and the inter-planar distance d for

planes parallel with the slip plane. By substituting n = 4 (number of atoms in the

unit cell), T = 1000 K (approximate growth temperature), a = 3.189 Å, c = 5.185 Å,
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c-plane

FP/h

[N/m]

1
3〈112̄3〉{112̄2} 55.12

1
3〈112̄3〉{11̄01} 11.42

m-plane

FP/h

[N/m]

1
3〈112̄0〉{11̄00} 0.09

〈11̄00〉{112̄0} 49.18

1
3〈112̄3〉{11̄01} 21.44

〈11̄01〉{11̄02} 63.24

a-plane

FP/h

[N/m]

1
3〈112̄0〉{11̄00} 0.15

〈11̄00〉{112̄0} 27.31

1
3〈112̄3〉{112̄2} 89.61

Table 3.4 : Peierls force FP/h per unit thickness of the layer calculated from Eq. 3.17a.
The tables show FP/h for the c-plane, m-plane, and a-plane materials’ slip systems.

γ = 120◦ (unit cell parameters for volume V) and G = 200 GPa (the shear modulus)

into Eq. 3.17b, one obtains ω ≈ 1.

With ω ≈ 1, Poisson’s ratio ν ≈ 0.3, and the inter-planar distance d substituted

Eq. 3.17a, the values of FP/h are obtained. These may serve as a comparison of the

effect of the Peierls force for different systems. The results are summarised in Table 3.4.

As a consequence, only the the most favourable slip-systems with the smallest Peierls

(friction) force are taken as the final result: 1
3〈112̄3〉{11̄01} for the c-plane material and

1
3〈112̄0〉{11̄00} for both the m- and the a-plane materials.

Results

Fig. 3.9 shows the critical thickness curves for all slip systems considered here. The

most favourable slip systems for each type of material (the a-, the m-, and the c-plane)

are shown separately also in Fig. 3.10a. In the whole range 0 < x < 0.3 of indium com-

positions, the m-plane material has the lowest CT whereas the a-plane material has the

highest CT values. This is even more apparent from the graph in Fig. 3.10b where ra-

tios of the a- and the m-plane material CT to the c-plane material CT are shown. The

CT of the m-plane material is about 0.7–0.9 of the c-plane CT for the indium composi-

tions 0 < x < 0.3; the m-plane CT approaches the c-plane CT values for high indium

concentrations.

On the other hand, values of the a-plane CT are about 1.3–2.1 times higher than those

of the c-plane system for indium compositions ranging 0 < x < 0.3. The higher the

indium content is the higher this ratio becomes.
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Figure 3.9 : Critical thickness versus indium composition curves for the nine slip sys-
tems investigated in this study.

a) b)

Figure 3.10 : Critical thickness calculations for different substrate orientations: a) the
hc curves for the c-, the m-, and a-plane materials, b) ratio of the a-to-c-plane material
and the m-to-c-plane material CT.

Conclusions

This study showed that the CT for the m-plane InxGa1−xN/GaN system is very close

(but lower) than the CT for the c-plane material. On the contrary, in the case of a-plane

material the CT is approximately 1.5–2 times higher than the CT for the c-plane system.
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3.4.2 Effect of the dislocation core energy on the equilibri um critical thickness

Up to now, the dislocation core energy has been neglected. Section 2.4 summarised

results of recent atomistic calculations that provided some parameters of dislocation

cores in III-nitrides. The question now arises: What is the effect of the dislocation core

energy on the CT values?

If it is assumed that dEcore/dl does not change too much with the indium content, it

can be added into Eq. 3.16 as a constant contribution to dEd/dl and subsequently the

critical thickness curves can be recalculated. The results are shown in Fig. 3.11 (solid

lines). The EB model now does not “break” at all in the case of hexagonal symmetry

as it did without the dislocation core energy being taken into account (see section 3.3).

Moreover, compared with the results without the core energy term, the CT values are

significantly higher. The model remains still quite simple but now retains much more

physics. The same physics can now be applied to the AlGaN/GaN system. Results are

shown in Fig. 3.12.
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Figure 3.11 : Critical thickness curves for a single layer of InGaN on GaN for three
different slip systems: a) 1

3〈112̄0〉{0001}, b) 1
3〈112̄3〉{11̄01}, and c) 1

3〈112̄3〉{112̄2}.
Dashed and solid lines correspond to the result without and with the dislocation core
term, respectively.

One should be aware that all the atomistic calculations dealt with dislocation lines

along the [0001] direction whereas MDs in this case lie in the (0001) plane, i.e. along

either the 〈112̄0〉 or the 〈11̄00〉 directions. So far there has been no report in the liter-

ature of similar calculations for dislocations along the latter two directions. As a con-

sequence, the atomistic results do not correspond to the dislocations used for the CT

calculations. Nevertheless, these results are being used while assuming that the phys-

ically correct parameters of MDs would not differ too much from the only currently

available atomistic results.
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Figure 3.12 : Critical thickness curves for a single layer of AlGaN on GaN for three
different slip systems: a) 1

3〈112̄0〉{0001}, b) 1
3〈112̄3〉{11̄01}, and c) 1

3〈112̄3〉{112̄2}.
Dashed and solid lines correspond to the result without and with the dislocation core
term, respectively.

As reported by Belabbas et al. (2007), Lymperakis (2005) and Kioseoglou et al., the en-

ergetically lowest configuration is the 5/7-atom ring for all Burgers vectors. Therefore,

these parameters were used for the calculations. Table 2.2 also includes prelogarith-

mic terms as obtained from Eq. 2.28 for comparison with values that result from the

atomistic calculations. Although the dislocation lines of the MDs do not correspond to

those from the atomistic calculations, the prelogarithmic terms correspond well, which

suggests that the assumptions made here are reasonable.

Kioseoglou et al. provided a very detailed study of the a-type [0001] dislocations in

III-nitrides. Using their results it is also possible to estimate the effect of neglecting the

a) AlGaN/GaN b) InGaN/GaN

0 0.2 0.4 0.6 0.8 1

aluminium content x

1

10

100

1000

c
ri

ti
c
a

l
th

ic
k
n
e
s
s

h
c

[n
m

]

5/7-atom core
dependent on comp.

8-atom core

4-atom core

5/7-atom core
composition independent

0 0.2 0.4 0.6 0.8 1

indium content x

1

10

100

c
ri

ti
c
a

l
th

ic
k
n
e
s
s

h
c

[n
m

]

5/7-atom core
dependent on comp.

8-atom core

4-atom core

5/7-atom core
composition independent

Figure 3.13 : Critical thickness curves for a single layer of InGaN or AlGaN on GaN the
slip system 1

3〈112̄0〉{0001}. Black dashed and solid lines correspond to the energeti-
cally lowest dislocation core configuration with the 5/7-atoms ring with and without
taking into account the composition dependence of the core energy, respectively. Pink
and blue lines correspond to the 4- and 8-atoms dislocation core configurations, re-
spectively.
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dependence of Ecore on the composition x. According to Kioseoglou et al., the 5/7-atom

ring core is the lowest energy configuration for AlN, GaN and InN. Applying Vegard’s

law yields

dEcore

dl
(AlxGa1−xN) = x

dEcore

dl
(AlN) + (1 − x)

dEcore

dl
(GaN) (3.18)

and a similar expression for InGaN. Also other dislocation core configurations (4- and

8-atom rings) as discussed by Kioseoglou et al. were included. The results are shown

in Fig. 3.13. From these figures it is clear that the assumption of a composition inde-

pendent core energy does not effect the results significantly (compare black dashed

and solid lines in Fig. 3.13). Different core configurations give the same CT in the case

of the InGaN/GaN system and slightly higher CT in the case of AlGaN/GaN than the

CT for the 5/7-atom core. One should also note that in the case of InGaN/GaN the

CT ranges down to 0.4 nm for x ≈ 0.6. These values are smaller than the dislocation

core radius (rcore ≈ 0.7 nm) and therefore they are hard to interpret. As a consequence,

one should not take seriously CT values below ≈ 1 nm. That is, epilayers with high

indium or aluminium concentration are so strained that the growth of substrate lattice

matched layers becomes impossible.

3.4.3 Staircase structures

Cherns et al. (2007) reported on staircase structures of threading dislocations observed

in AlGaN multilayer samples. A series of alternating Al0.5Ga0.5N QWs with GaN bar-

rier layers was grown on a Al0.45Ga0.65N buffer layer. A series of three samples with

different QW thicknesses (1.5 nm, 2.5 nm and 3.5 nm) was grown and investigated. The

thickness of barrier layers was 10.5 nm in all cases. TEM images with low magnifica-

tion showed dislocations inclined in the QWs/barriers region, with the inclination of

the TDs from the vertical direction increasing with QW thickness. Higher magnifi-

cation TEM images then revealed that the inclination is in fact caused by a staircase

structure such as shown in Fig. 3.14. Cherns (2007) concluded that the observed dislo-

cations are a-type.

In this section some initial theoretical approaches to rationalise these observations are

discussed.

Misfit strain, misfit stress and misfit force

Only two types of layers are distinguished: an unstrained substrate (under the lowest

quantum well (QW)) or barrier (in-between QWs and above the uppermost one QW)
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Figure 3.14 : A weak-beam dark-field TEM image (g–4g condition, g = 1120) of a
sample with 3.5 nm thick Al0.5Ga0.5N QWs and 10.5 nm thick GaN barriers. (Courtesy
of P. Cherns.)

and the QWs themselves. The force acting on a dislocation can be calculated using

the Peach-Koehler formula (Eq. 3.2). In this case, b = (0, b, 0)T (a-type dislocations),

dl = (0, 0, dl)T (threading dislocation segment) and σ̂ = σ̂m. Therefore the misfit force

is

dF m

dl
= (bσm

yy, 0, 0)T . (3.19)

The Peach-Koehler misfit force acting on a TD segment has the only non-zero compo-

nent in the x-direction.

Dislocation energy and dislocation line tension

In the assumed configuration, dislocations always remain edge-type (a TD is initially

edge-type and the misfit force acts in a direction perpendicular to TD segments and

the Burgers vector). Energy of an edge-type, infinitely long dislocation per unit length

(within isotropic approximation) is

dEd

dl
=

µb2

4π(1 − ν)
ln

h

rcore
+

dEcore

dl
. (3.20)

Eq. 3.20 presents also the line tension of a long dislocation; it is a force that acts against

prolongation of a dislocation.

As pointed out by Kroupa and Brown (1961), a very short misfit dislocation (MD) seg-

ment should be treated as a kink rather than as a dislocation: the interaction between

adjacent TDs is important and cannot be neglected. It can be shown (see Hirth and

Lothe, 1982 and Kroupa and Brown, 1961) that the energy of a kink of length l (and a
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geometrical configuration such that the whole kinked dislocation is edge-type) is

Ek =
µb2l

4π(1 − ν)

(

ln
2l

rcore
− 3

)

+ l
dEcore

dl
. (3.21)

The elastic part of the above equation is negative for

l < lcore =
e3

2
rcore ≈ 10rcore . (3.22)

This is a region where the dislocation core effects are significant. In the following, the

kink energy is set to Ek = l dEcore/dl for l < lcore. The line tension acting against

prolongation of a kink is then

Tk =
dEk

dl
=

µb2

4π(1 − ν)

(

ln
2l

rcore
− 2

)

+
dEcore

dl
. (3.23)

The elastic part of the tension is negative for l < rcoree2/2 ≈ 3.7rcore and diverges for

l → 0. Similarly to the kink energy formula, it is set to Tk = dEcore/dl for l < lcore.

lcore is now smaller than it was in the case of the kink energy formula (by a factor e);

however, all these adjustments are only estimates of orders and thus in all the following

calculations is kept lcore ≈ 10rcore for both cases.

For a given h, the MD segment is treated as a kink until its length exceeds l > he3/2 ≈
10h at which length the dislocation energy term becomes smaller than the kink en-

ergy term. Therefore, switching between these two modes of MDs (a kink or a long

dislocation) is driven by the minimum energy principle.

Substrate and a single QW

A misfit dislocation will be created in the epilayer–substrate interface if the total energy

in the system is lowered by this process. The strain energy relief by the introduction of

a MD is

W(h, l) = Fm
x hl = 2µ

1 + ν

1 − ν
εm

yybhl . (3.24)

The energy introduced into the system by the MD segment is

E(h, l) =







l dEcore
dl for l / lcore ,

µb2

4π(1−ν)
l
(

ln 2l
rcore

− 3
)

+ l dEcore
dl for lcore / l / 10h ,

µb2

4π(1−ν)
l ln h

rcore
+ l dEcore

dl otherwise .

(3.25)

For a particular epilayer thickness h, a MD segment of length l is energetically favourable

if

E(h, l) −W(h, l) < 0 . (3.26)
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The h–l-parameter space can be divided into four regions according to this criterion

(see Fig. 3.15). In area “1”, the dislocation energy is bigger than the energy relief and

thus MD segments of corresponding lengths and QW thicknesses are energetically un-

favourable. On the other hand, for QW thicknesses h lower than a certain value, hk,

and reasonably short MD segment length (area “2”) the criterion 3.26 holds. As a con-

sequence, for QW thicknesses lower than hk there exists a maximum length (as a func-

tion of h) of MD segment (which is regarded as a kink rather than a dislocation) that

reduces the total energy in the system. For thicker QWs, h > hk (area “3”), any length

of a MD segment lowers the total energy and thus once the MD segment is created

it extends to infinity. The last area, “4”, corresponds to very small h or l, i.e. to the

dislocation core region where this continuum picture does not apply.

Note: hk is, in fact, the ordinary CT for the energy balance model where the dislocation

energy is assumed to be in the form of Eq. 3.20 regardless of the MD segment length.

1

2

3

4

h

hk

llcore

Figure 3.15 : h–l-parameter space. Different regions discussed in the text are marked
“1”–”4”.

Comparison with experimental observations of staircase st ructures

For comparison with experimental observations (see Cherns, 2007, p. 126), average

lengths of the MD segments corresponding to the observed dislocation inclinations

were calculated for several QW thicknesses. All these layer thicknesses lie above the

hk which is just below 1.5 nm for this system. Therefore, MD segments in all these three

cases are expected to extend to infinity (in theory) and not to find any equilibrium MD

segment length3.

3with an exception of the 1.5 nm QWs which are very close to hk and thus may be affected by inaccu-

racies in numerical values of material constants and/or not working with hexagonal symmetry etc.
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The different MD segment lengths may be explained by the different growth times

needed for growth of the QWs. Thicker layers need longer time which corresponds to

longer MD segments. If the growth rate is independent of the QW thickness, h, then

one would expect a linear dependence of the MD segment length on h. And indeed,

the three experimental data points seem to follow a linear trend.

To support this idea it would be interesting to see the same structures but with a pause

after the growth of each QW (but keeping all other conditions unchanged). Longer MD

segments are expected in such structures. In fact, the linear dependence in Fig. 3.16

should only move to the right.
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Figure 3.16 : A GaN quantum well on
top of an Al0.5Ga0.5N substrate. MDs are
expected in the region with white back-
ground. Crosses correspond to the exper-
imentally observed configurations.
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Figure 3.17 : Forces acting on a TD
segment in a QW capped with a
barrier.

Single QW with a capping layer (barrier on top)

The situation changes when a layer on the top of the QW starts to grow. The termina-

tion top point of a TD in the QW is no longer free and the overgrown barrier/capping

layer acts as an additional obstacle to the motion of a TD segment in a QW. In the

following, the problem of whether the overgrown layer can stabilise a moving TD seg-

ment in a QW is investigated.

For simplicity it is assumed that the TD segment in the barrier is immobile. The forces

acting on the TD segment in the QW are shown in Fig. 3.17. The line tensions T1 and T2

of the MD segments between the QW and the substrate and between the QW and the
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capping layer, respectively, act against the misfit force Fm. The magnitude of the total

force is

Ftotal = Fm − T1 − T2 . (3.27)

Furthermore, it is assumed that Fm − T1 > 0, i.e. that the TD segment in the QW was

moving before the capping layer was introduced. The condition when Ftotal = 0 is

now sought. The misfit force is given by Eq. 3.19. As the MD segment was already in

the regime of “a long dislocation”, the line tension T1 is given by Eq. 3.20. For the last

contribution, T2, it is assumed that the MD segment (of length l2) in the upper interface

is small enough to be considered as a kink. Therefore, Eq. 3.27 translates to

Ftotal = b2εm
yyµ

1 + ν

1 − ν
hQW − µb2

4π(1 − ν)

(

ln
hQW + hb

rcore
+ ln

2l2
rcore

− 2

)

− 2l
dEcore

dl
. (3.28)

The TD segment moves if and only if Ftotal > 0. Inspection of Eq. 3.28 reveals that the

only positive term is the misfit force; this term is independent of any barrier param-

eters. On the other hand, the negative line tension terms become more negative with

increasing barrier thickness hb.

In all the above consideration it has been assumed that the upper TD segment was

immobile. Obviously, T2 acts on this segment and thus there is a driving force on

it. The theory of dislocations provides an important result that dislocation velocity

is proportional to the applied stress v ∝ τn where n is some constant. However, if

there exists a minimum applied stress, τ0, for which the dislocation moves then the

dislocation velocity law changes to

v =







A(τ − τ0)
n for τ > τ0 ,

0 otherwise .
(3.29)

This mechanism can be imagined as some kind of a “friction” which one needs to

overcome in order to move a dislocation.

Comparison with experimental findings

Let’s assume that the stress threshold τ0 is such that when the barrier reaches a thick-

ness hb,stab when the TD segment in the QW stops moving, the length of the upper TD

segment satisfies l2 < lcore. This corresponds to either high stress τ0 or a very quickly

growing barrier. In this case, T2 = lEcore and the stabilising barrier thickness from

Eq. 3.28 is

hb,stab = rcore exp

[

8π(1 + ν)
hQW

b
εm

yy −
dEcore

dl

4π(1 − ν)

µb2

]

− hQW . (3.30)
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Results are summarised in Table 3.5. The experimental thickness of barriers was 10.5 nm.

Therefore, the samples with 1.5 nm and 2.5 nm QWs are well below this limit which

suggests that the TD segments in the QWs became immobile. On the other hand,

for the 3.5 nm QW, the barrier thickness needed for TD segment stabilisation was not

reached and the TD segments in the QWs are expected to move further.

hQW [nm] 1.5 2.5 3.5

hb,stab [nm] ≈0 3.55 19.84

Table 3.5 : Calculated barrier thicknesses that prevent a TD segment in the QW from
further motion.

If the TD segments are not stabilised, it seems reasonable to deduce that the lowest

MD segment (in the lowest interface) is the longest one and MD segments are getting

shorter in the upper interfaces of a MQW structure. In such a case the overall disloca-

tion shape would be bowed having the biggest inclination from the vertical direction

in the lowest interface. Cherns (2007, p. 127) reported that some dislocations were

“bowed” for the 3.5 nm QWs whereas in the case of 1.5 nm and 2.5 nm QWs all dislo-

cations appeared to be straight (that is with a constant inclination).

3.5 Conclusions

The critical thickness of AlGaN/GaN and InGaN/GaN systems was calculated using

the energy balance model. This model was corrected for the hexagonal symmetry of

wurtzite III-nitrides. The best agreement with experimental data was obtained when

the dislocation core energy was included. Despite the satisfying agreement with ex-

perimental observations one has to bear in mind some limiting factors as well. Firstly,

the model presents an equilibrium critical thickness which does not concider any dis-

location generation mechanism. Further, the model does not include differences in

material properties in the underlying substrate and the epilayer itself (even though an

attempt to account for this was reported as well in Fig. 3.4). Also the free surface which

affects the dislocation strain/stress field is not included.

Obstacles to the experimental determination of the CT are also significant. Directly

imaging techniques such as TEM are extremely time-consuming and inaccurate due to

low MD densities; on the other hand, measurements like XRD or MOSS may not be

sensitive enough to detect the actual onset of strain relief. As discussed, for example

by Eaglesham et al. (1988), this is also a problem in TEM where one can observe only
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MDs present in the sample (and thus it is not guaranteed that the very first MD will be

observed).

Another big question concerns the origin of MDs. Nucleation centres for new MDs

at the free surface may be surface roughness or surface steps. Other possibility may

be nucleation of MDs from apexes of V-defects in the InGaN/GaN system (as sug-

gested by Jahnen et al. (1998)) or from cracks in the AlGaN/GaN system (as reported

by Bethoux and Vennéguès (2005)). A lot of experimental effort has been put into cla-

rifying of the origin of MDs in III-nitrides. However, there is still no unique answer as

to how the MDs are being introduced. The situation is much more complex because of

other strain relieving mechanisms (such as V-pits or cracks) competing with MDs.



Chapter 4

Reduction of the threading dislocation

density

4.1 Introduction

Reduction of the threading dislocation density (TDD) remains one of the main chal-

lenges in GaN-based materials research. Several sophisticated methods of growing

low-dislocation density layers such as epitaxial lateral overgrowth (see review by Beau-

mont et al., 2001), use of SiNx interlayers (Kappers et al., 2007) or using ScN masking

layer (Moram et al., 2007) interlayers have been reported in the literature.

There are also several reports on experimental measurements of TDD reduction. Two

examples of dislocation density ρ as a function of layer thickness h of HVPE1 grown

GaN are shown in Fig. 4.1. The striking difference in these reports is in the slope of

these curves, i.e. in the rate of reduction. Another interesting observation concerns

the difference in the curves’ shapes: Jasinski and Liliental-Weber (2002) reported an

almost linear dependence in the log–log graph whereas Albrecht et al. (1999) observed

an “S”-shape dependence. This is even more interesting considering that the range of

dislocation densities ρ and layer thicknesses h investigated by Albrecht et al. (1999) is

covered by the report of Jasinski and Liliental-Weber (2002). Albrecht et al. (1999) seem

to get to a point of saturation where any further TDD reduction becomes very slow or

impossible (see the point at h ≈ 100 µm). Similar experience is also seen with MOCVD2

growth (Kappers et al., 2007, and private communication). Such observations suggest

that the actual growth conditions, the growth technique and substrate quality prior to

the growth are important in TDD reduction.

1hydride vapour phase epitaxy
2metal-organic chemical vapour deposition

66



4.1 Introduction 67

a) b)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Distance from the substrate [mm]

10
6

10
7

10
8

10
9

10
10

10
11

D
is

lo
ca

ti
o

n
d

en
si

ty
[c

m
-2

]

After J. Jasinski and Z. Liliental-Weber,

J. Electron. Mater. 31, 429 (2002)

slope ~ –1

1 10 100

distance [mm]

10
5

10
6

10
7

10
8

10
9

d
is

lo
ca

ti
o

n
d

en
si

ty
[c

m
-2

]

slope ~ –2.5

After Albrecht et al.

phys. stat. sol.(a) 176, 453 (1999)

Figure 4.1 : Threading dislocation density reduction during thickening of GaN layers
by HVPE reported by (a) Jasinski and Liliental-Weber (2002) and (b) Albrecht et al.
(1999).

Modelling the mechanisms of TDD during growth aims (i) to increase understanding

of the basic physics associated with TDD reduction and (ii) to help to identify effec-

tive ways for TDD reduction. The ultimate long term goal is to build a model with

predictive capabilities so much fewer experimental work would be needed.

This chapter discusses how the TDD reduction is effected by islands formed during

the initial stage of the standard hetero-epitaxial growth.

4.1.1 TDD reduction model by Romanov (layer-by-layer growt h)

Romanov et al. (1996, 1997) introduced a model based on “reactions” of inclined dis-

locations. Two dislocations with Burgers vectors b1 and b2 can react when they, by

some process, become contiguous. If b1 = −b2, i.e. two dislocations with oppo-

site Burgers vector meet they annihilate. Other possible reaction types are scattering

(b1 + b2 → b3 + b4), reduction (b1 + b2 → b3) or no reaction at all. In a first approxima-

tion, energies of reacting and resulting dislocations are compared in order to determine

which reaction type is favourable.

The energy per unit length of a dislocation with the Burgers vector b is, within the

isotropic approximation, (cf. Eq. 2.6)

dEd

dl
=

µ|b|2(1 − ν cos2 θ)

4π(1 − ν)
ln

(
R

r0

)

. (4.1)
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The above expression can be very roughly approximated as

dEd

dl
≈ const.|b|2 . (4.2)

The energy criterion determining which reaction takes place is called Frank’s rule and

for the reaction b1 + b2 → b3 (see Fig. 4.2) has form

|b1|2 + |b2|2 > |b3|2 (Frank’s rule) . (4.3)

If this condition is satisfied then the reaction occurs. Frank’s rule for scattering looks

similar.

l1

l2

l3

b1

b2
b3

Figure 4.2 : An example of a dislocation reaction (reduction) b1 + b2 → b3. Vectors l1,
l2 and l3 are the respective dislocation line directions.

In Romanov’s model, threading dislocations do not move physically (i.e. do not glide

or climb) but the “movement” results from growth. Suppose the situation sketched

in Fig. 4.3. The TD segments are inclined with respect to the growth direction (here

vertical) and as a consequence, the terminating points at the upper surface “move”

laterally and can eventually become contiguous. Of course, in the full 3D model, it

is very unlikely that two random TDs will intersect each other. Therefore, Romanov

et al. (1996) introduced a reaction radius rI (generally a different value for each reaction

type). If the distance between terminating points of two dislocations is shorter than rI ,

then the reaction can take place. The growth surface is assumed to be planar which

corresponds with the Frank-van der Merwe’s layer-by-layer growth mode.

h1
h2

Figure 4.3 : Lateral movement of the terminating points of dislocation lines on the top
surface. As the layer gets thicker (h1 → h2), some dislocations may converge and get
closer.

Subsequently, Romanov et al. (1996, 1997) applied this model to cubic InGaAs/GaAs

and SiGe/Si (001) systems where TDs are “60◦ dislocations” (〈110〉{111} slip system).
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Such dislocations lie on planes that are inclined with respect to the [001] growth di-

rection and thus during the growth may become close enough to react. Mathis et al.

(2001) used this model for hexagonal c-plane ((0001) plane) GaN grown on (0001)

sapphire. The inclination of (some) dislocations was obtained by considering the dis-

location energy (see section 2.3.3). Within the isotropic theory, the optimal dislocation

line direction for c- and a-type dislocations in GaN is vertical whereas for (a + c)-type

dislocations it is approximately 15.6◦ inclined from the vertical direction. Mathis et al.

(2001) also presented TEM evidence for some dislocations being inclined and claimed

agreement with the above mentioned inclination angle.

4.1.2 Experimental observations

However, as it is shown in section 2.3.3, the same concept determines that all dislo-

cation types are vertical, providing the hexagonal symmetry of wurtzite GaN is used.

Moreover, most TEM micrographs are not conclusive about the inclination3 of TDs and

many of them suggest that the crucial stage in the TDD reduction is the formation of

faceted GaN islands during the initial stage of growth (see Fig. 4.4 and Fig. 4.5). Dur-

ing this stage, dislocations change their direction due to the presence of inclined island

facets. This is a completely new mechanism that was not accounted for in the original

model by Romanov et al., and subsequently it was not used by Mathis et al. (2001).

Therefore, an immediate question arises: How does the initial islanded stage affect the

model?

4.1.3 Bougrov’s model

Bougrov et al. (2006) published work on a phenomenological model for GaN. They in-

cluded intentionally inclined dislocations using a redirection layer to the Romanov’s

model, as an analogue for a two-step growth process (Lang et al., 2006, 2007). The ad-

vantage of this treatment is that their equations remain very simple while retaining the

3D character of the investigated situation. However, various dislocation types remain

unresolved in this model and its phenomenological character inhibits a deeper under-

standing of the effect of dislocation bending. Therefore, a new model is presented here

which accounts for all dislocation types (various Burgers vectors) separately and takes

the actual geometry of islands into consideration.

3This seems to depend also on the actual growth technique used. Since Cambridge-grown samples

are obtained using the MOCVD, the statements herein are based on the observations of those samples.
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1 µm
sapphire

GaN

g

Figure 4.4 : TEM dark field image (g = 1210) of a typical thick gallium nitride speci-
men. a- and (a + c)-type dislocation are visible under this condition. A high density of
threading dislocations generated in the interface between the sapphire substrate and
the thick GaN layer can be observed. However, the TDD does not change significantly
further away from the interface. (Courtesy of J. Barnard.)

Figure 4.5 : TEM dark field and bright field images with (g = 0002) of gallium nitride
islands grown on sapphire. The effect of faceted islands resulting in inclined TDs is
clearly demonstrated. (Courtesy of D.V. Sridhara Rao.)

4.1.4 An improved model with islands

A major assumption of the present model is a simplification of the geometry to 2D.

The description of the islands becomes much more difficult than for a flat surface so a

numerical instead of an analytical treatment is needed. Despite this simplification, the

2D model brings some insight and, although not quantitatively, at least qualitatively
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accounts for the contribution of the islands. In order to keep results comparable with

the original Romanov/Mathis’s model, the isotropic approximation is used.

Several nucleation centres are assumed on the substrate surface (see Fig. 4.6a). On

each of them an island nucleates (Fig. 4.6b). As the islands grow, misfit dislocations

are generated at the substrate–epilayer interface, which subsequently turn upwards

and propagate through the film as TDs (Fig. 4.6c). The facet on which a particular

dislocation terminates determines its direction. A dislocation can change its direction

either by becoming adjacent to a different surface (after coalescence of two islands or

simply due to its movement) or by changing its type after a reaction with another TD.

The reaction can be either annihilation (which reduces the total number of dislocations

by 2), reduction (reduction by 1 dislocation), or scattering (where the total number of

dislocations remains constant but the dislocation energy is reduced). After the islands

have coalesced, growth continues in the 2D (layer-by-layer) mode (Fig. 4.6d) where

some minor reduction of the TDD still takes place.

a) b)

substrate

nucleation

centres

substrate

islands

c) d)

substrate

threading

dislocations

substrate

annihilation
reduction

Figure 4.6 : Stages of the growth: a) substrate with nucleation centres; b) small islands
start growing at the nuclei; c) islands get bigger and some of them coalesce; dislo-
cations are generated in the substrate–epilayer interface; d) the fully coalesced thick
layer after dislocation reactions (reduction and annihilation).

Dislocations in the substrate–layer interface are generated because of the lattice mis-

match of the two materials. Their purpose is to relax the misfit strain. Only disloca-

tions with an edge component of the Burgers vector lying in the interface are capable

of relaxing the misfit strain. Therefore, only the a- and (a + c)-type dislocations are

assumed to be generated at the interface; the c-type dislocations are introduced only

later on during growth as a result of dislocation reactions. The a- and (a + c)-type dis-



4.2 Results and discussion 72

locations are assumed to be equally populated in the interface and they are randomly4

distributed along the interface.

There are 20 dislocation types in the real 3D situation: 2 c-type (±c), 6 a-type (±ai, i =

1, 2, 3), and 12 (a + c)-type (±ai ± c, i = 1, 2, 3). In the 2D case, their number is re-

duced to only 8 in total: 2 c-type (±c), 2 a-type (±a), and 4 (a + c)-type (±a ± c). The

dislocation reactions are listed in Table 4.1.

c −c a −a a + c a − c −a + c −a − c

c – A – – – a – −a

−c A – – – a – −a –

a – – – A – – c −c

−a – – A – c −c – –

−a + c – a – c – {a, a} – A

−a − c a – – −c {a, a} – A –

−a + c – −a c – – A – {−a,−a}

−a − c −a – −c – A – {−a,−a} –

Table 4.1 : Table of reactions for the 2D case based on Frank’s rule (Eq. 4.3). ‘A’ is
annihilation, ‘–’ means that the two dislocations do not react. If the result is a pair of
dislocations, the reaction is called scattering. During scattering, the number of dislo-
cations is not reduced, however the total energy of dislocations is lowered.

The model is not dependent on chosen units, thus it is a scalable model (see section 4.2.5).

The length units are labelled “d.u.” (distance units) and time is measured in “t.u.” (time

units). The modelled width of the substrate is 800 d.u.; this can be considered as the

periodicity length of the model. Standard parameters of the model (given in Table 4.2)

constitute a base for comparisons between various parameter studies.

4.2 Results and discussion

The dislocation types are randomly distributed along the substrate–epilayer interface.

Therefore, a series of 50 runs was carried out for every study; these were subsequently

4Randomly in terms of their type, not position. See below.
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parameter value

periodicity of the model 800 d.u.

initial number of dislocations 80

initial dislocation spacing 10 d.u.

number of island nuclei 4

distance between neighbouring nuclei 200 d.u.

growth rates
1 d.u./t.u. (horizontal [top] facet)

2 d.u./t.u. (side [inclined] facets)

inclination of facets ≈ 30◦ from the vertical direction

Table 4.2 : A set of the standard parameters of the model used for various comparisons.

↑ ↑ ↑ ↑
Figure 4.7 : A typical output of the simulation for the standard parameters and total
time of 300 t.u.. The black lines show the evolution of a layer surface every 8 t.u..
Red, green and blue colours corresponds to the c-, a- and (a + c)-type dislocations,
respectively. The arrows show centres of the islands.

averaged. The graphs presented below show the averaged values of the number of

dislocations as a function of various parameters, often time or layer thickness. In the

case of a sample with islands, layer thickness is defined as a thickness of an equivalent

uniform layer made of the same volume of material. The model was implemented in

the system Mathematica.

A typical picture of dislocations threading through an epilayer as obtained from the

simulations is shown in Fig. 4.7.
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4.2.1 Contribution of the islands

Contribution of the islands to the TDD reduction is revealed in a basic comparison

summarised in Fig. 4.8a. Results of studies of the TD density reduction with (i.e. the

3D model) and without (i.e. the layer-by-layer growth model) islands being taken into

account are compared. Several general trends can be observed:

• The major reduction in the number of dislocations occurs at the very beginning

of the growth. The speed of reduction decreases as the thickness increases be-

cause there are fewer TDs in the material. As a consequence, the dislocation

density eventually saturates and no further reduction occurs. Both these state-

ments are intuitively clear and can be expected. It is not clear from the literature

whether this saturation appears experimentally: many results suggest that there

is no saturation (see for example Jasinski and Liliental-Weber, 2002, and Fig. 4.1).

However, Albrecht et al. (1999) published results where saturation was observed.

Kappers et al. (2007) also observed this saturation in their samples once the coales-

cence thickness was reached. This may be due to differences in growth technique

or different experimental conditions. It is also possible that saturation could have

occurred in the other examples if the growth had continued or that their experi-

mental findings are misinterpreted here.

• The TDD reduction is much faster in the case of islands: a near-to-saturation stage

is reached at the thickness of ≈ 50 d.u. (the coalescence thickness is ≈ 60 d.u.) in

the presence of the islands in contrast to ≈ 150–200 d.u in the case of the layer-

by-layer growth.

• The final number of dislocations is approximately 27 (a 66% reduction from the

initial value of 80 dislocations) in the presence of islands whereas it is approxi-

mately 48 (a 40% reduction from the initial number of 80 dislocations) in the case

of the layer-by-layer growth. Therefore, islands in this case account for additional

reductions of the TDD by 26%.

• The variation of possible final numbers of TDs due to different starting config-

urations of dislocations is slightly larger in the case of the islands than without

them. However, there is no or very small overlap of the possible results in these

two growth modes. This underlines the important contribution of islands.

Fig. 4.8b shows results based on a less strict version of Frank’s rule: Eq. 4.3 modified to

|b1|2 + |b2|2 ≥ |b3|2 . (4.4)



4.2 Results and discussion 75

While the layer-by-layer growth mode seems to be unaffected by this change, in the

case with the islands a further reduction by approximately 7% is observed, that is the

final average number of dislocations is ≈ 22. This result suggests that the case with

islands is more sensitive to the actual form of the reaction criterion, which leaves space

for further investigations on a more accurate form of Frank’s rule.
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Figure 4.8 : Effect of the islands on the total TD density: blue and green curves are
cases with and without islands taken into account, respectively. Simulations were car-
ried out with the standard parameters with (a) Frank’s rule (Eq. 4.3) or (b) the weaker
Frank’s rule (Eq. 4.4) applied.

4.2.2 Size effects: distance between islands

Further studies concentrate on the dependence of the TDD reduction on various pa-

rameters of the proposed model, in particular, on the geometry. As a first case study,

dependence on island separation is discussed (see Fig. 4.9): while keeping all but one

parameter constant and equal to the standard values (see Table 4.2), the distance λ

between neighbouring islands was varied. As a consequence, since the “base” of the

model is constant (and equal to 800 d.u.), the total number of islands in the model

varies.

Numerical results are summarised in Table 4.3. Evidently, there is a trend towards

lower numbers of dislocations with increasing λ. The last row corresponding to λ =

800 d.u. is probably affected by the periodicity error of the model. Despite the fact that

the ranges given by the standard deviation (again based on 50 runs for each λ) overlap,

the trend is clearly evident. What is even more encouraging is that this conclusion is

in good agreement with the experimental observations: Kappers et al. (2007) observed

increased TDD reduction with higher SiNx coverage prior to the regrowth which corre-
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Figure 4.9 : Results of simulations with various distances λ between neighbouring
islands.

n(500 d.u.)

λ = 100 d.u. n = (32.0 ± 4.6)

λ = 200 d.u. n = (29.2 ± 5.5)

λ = 400 d.u. n = (27.0 ± 6.6)

λ = 800 d.u. n = (27.9 ± 5.7)

Table 4.3 : Total numbers of dislocations for various distances λ between neighbouring
islands and the layer being 500 d.u. thick.

sponds to sparser islands. The effect shown here is quite small, but the initial reduction

varies strongly.

4.2.3 Random nucleation

Results of a small extension of the model are summarised in this section. Instead of

having evenly spaced islands which are all nucleated at the beginning of the simu-

lation, nucleation centres that appear at random positions in the substrate–epilayer

interface every ∆t time units are assumed.

Fig. 4.10a shows the final numbers of dislocations after 1000 t.u. of the growth corre-

sponding to ≈ 1000 d.u. thick layers, for values of ∆t ranging from 0.1 t.u. to 50 t.u..

There is no dependence of the final number of dislocations on the actual value of ∆t.



4.2 Results and discussion 77

However, by inspecting the graph in Fig. 4.10b one can identify different rates of re-

duction: for larger ∆t the reduction is slower. Bigger ∆t corresponds to sparser islands,

though not exactly in the sense of section 4.2.2. In both cases of sparse islands, large

inclined facets of the islands, which promote the dislocation reduction, are obtained.
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Figure 4.10 : (a) Total numbers of dislocations after 1000 t.u. and (b) the number of
dislocations as a function of the layer thickness for various intervals ∆t between sub-
sequent nucleation of islands. ‘LBL’ stands for layer-by-layer growth, the situation
with no islands.

4.2.4 Coalescence thickness

In order to compare simulations with some experimental data, a study of TD den-

sity dependence on coalescence thickness was carried out. Variation of the number

of nuclei within one period of 800 d.u. effectively translates into changes of the coa-

lescence thickness. Statistically evaluated results of simulations together with experi-

mental data from the literature are shown in Fig. 4.11. Although it is not possible to

correlate the absolute values of dislocation density, qualitatively correct trends are ob-

served. This suggests that the model extended to 3D would be capable of quantitative

comparisons.

4.2.5 Scalability of the model

This rather technical section discusses an important property of the model: scalability.

As was mentioned in the description of the model (section 4.1.4) it is independent of

length and time units. A multiplication of distances by factor α does not change the

physics and as a consequence, the same results are expected. To demonstrate that the
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Figure 4.11 : TD density as a function of coalescence thickness: (a) experimental data
taken from Kappers et al. (2007), and (b) results of simulations.

0 50 100 150 200 250

time t [t.u.]

0 100 200 300 400 500

time t [t.u.]

0

20

40

60

80

100

n
u
m

b
e

r
o
f

d
is

lo
c
a

ti
o

n
s

0

10

20

30

40

50

n
u
m

b
e
r

o
f

d
is

lo
c
a

tio
n
s

case 1

case 2

Figure 4.12 : A proof of scalability of the model: blue results (case 1) correspond to the
standard parameters, red results (case 2) correspond to twice as long distances and
twice faster time.

numerical implementation of the model preserves this physically important property,

a case study was carried out with results shown in Fig. 4.12. “Case 1” corresponds to

the set of standard parameters. In “Case 2”, all lengths were multiplied by a factor

of 2, i.e. 40 evenly distributed dislocations with the spacing of 20 d.u. and 2 islands

separated by 400 d.u. In order to preserve the growth rates of different facets and thus

the overall geometry of the model, time goes twice as fast in case 2 than in case 1. The

numerical results correspond very well. Small discrepancies between the two cases
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can be ascribed to the boundary conditions, i.e. a periodicity error. The results are

reasonable since the wider spread of data is in case 2 which is more affected by the

boundary conditions.

This result is considered as a proof of the physical correctness of the numerical imple-

mentation of the model.

4.3 Conclusions and outlook

Results obtained so far using an improved model for threading dislocation density

reduction including islands were summarised in this chapter. To start with, the model

was simplified to 2D. The main purpose of this study was to estimate qualitatively the

influence of islands on the TDD reduction and to investigate trends linked with various

parameters of the proposed model. A good qualitative agreement with experiments

was obtained as well. Therefore it is believed that the model as it stands is capable of

qualitative predictions of various trends.

Future work may include further studies on the effects of different parameters of the

model as well as new geometries (including different facets, different growth rates of

the facets). In addition, using the knowledge gained with the 2D model, a signifi-

cant improvement can be achieved by extending this model in 3D. Another significant

improvement would be to take into consideration the actual dislocation–dislocation

interactions. This would involve calculation of dislocation stress fields and, in fact, em-

ploying some methods of dislocation dynamics. Such work would constitute a major

effort in the development and employment of new analytical and numerical methods

and high optimisation of the code used for simulations. However, a model capable of

quantitative predictions is expected as an outcome.



Part II

First principle calculations of electron

energy loss near edge structures of

III-nitrides

“A theory is something nobody believes, except the per-

son who made it. An experiment is something everybody

believes, except the person who made it.”

Albert Einstein



Chapter 5

First principle calculations

This chapter aims to give a basic overview of the density functional theory (DFT) and

related concepts. It is mostly based on the text by Cottenier (2002) and the manuals of

Wien2k (Blaha et al., 2000) and S/PHI/nX (Boeck et al., 2003).

5.1 Density functional theory in brief

5.1.1 Formulation of a many-body problem

A solid state matter can be viewed as a collection of nuclei, positively charged ions

at positions Ri, and much lighter electrons at positions ri. Assuming that the atomic

number is Z and that there are N atoms, the problem translates into solving a system

of N + ZN electromagnetically interacting objects. This is called a many-body problem.

The corresponding exact Hamiltonian is

kinetic energy

of nuclei

kinetic energy

of electrons

electron–nucleus

interaction

electron–electron

interaction

nucleus–nucleus

interaction

Ĥ = − h̄2

2 ∑
i

∇2
Ri

Mn
− h̄2

2 ∑
i

∇2
ri

me
−

− 1

4πǫ0
∑
i,j

e2Zi

|Ri − rj|
+

1

8πǫ0
∑
i 6=j

e2

|ri − rj|
+

1

8πǫ0
∑
i 6=j

e2ZiZj

|Ri − Rj|
. (5.1)

All nuclei in the above equation can be, in principle, of different types (Zi). Different

terms correspond to various contributions as described in the equation. This Hamil-

tonian takes into account only electrostatic Coulombic interactions. Despite that, it is

practically impossible to solve such a problem exactly and thus several approximations

must be made.

81
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Nuclei are several orders heavier than electrons (mass of electron me = 9.1 × 10−31 kg

vs. mass of proton mp = 1.7 × 10−27 kg). This implies that nuclei move significantly

slower than electrons. As a consequence, it is electrons that in the first instance main-

tains the inner equilibrium and respond to all external impulses. Therefore, nuclei can

be viewed as “frozen”, and only the electronic part remains to be solved. Nuclei are

included as a source of fixed background positive charge. This is known as the Born-

Oppenheimer approximation.

Under this approximation, the kinetic energy of (now static) nuclei is zero and the

nucleus–nucleus interaction reduces to a constant. Equation 5.1 is left with a kinetic

energy of electrons, T̂, the potential energy due to electron–electron interaction, V̂.

The electron–nucleus interaction can be understood as an interaction of electrons with

a positive external potential, V̂ext. The many-body Hamiltonian becomes

Ĥ = T̂ + V̂ + V̂ext . (5.2)

It is interesting to note that the kinetic energy, T̂, and electron–electron potential, V̂,

are universal terms not depending on a particular system. The material-specific infor-

mation is completely contained in the V̂ext term.

5.1.2 Theorems of Hohenberg and Kohn

Although the problem is significantly reduced by the Born-Oppenheimer approxima-

tion, it is still far too complex to be solved. There are several methods of how to further

simplify the solution of Eq. 5.2. A modern and powerful method, which is nowadays

widely used for solid state calculations, is the density functional theory (DFT) firstly pub-

lished by Hohenberg and Kohn (1964). The DFT works with the electron density, ρ(r),

as the main variable.

The central ideas of DFT were formulated in several theorems. In what follows, formu-

lations given by Cottenier (2002) are used as they are easier to understand in today’s

scientific language. The first theorem was published by Hohenberg and Kohn (1964)

and it states:

THEOREM 1: There is a one-to-one correspondence between the ground state

density ρ(r) of a many-electron system and the external potential V̂ext.

An immediate consequence is that a ground state expectation value of any observable

Ô is a unique functional of the ground state electron density

〈Ψ|Ô|Ψ〉 = O[ρ] . (5.3)
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The most important part of the above Theorem 1 is that it claims a one-to-one corre-

spondence. The electron density ρ(r) can be calculated from the many-electron wave

function as

ρ(r) =
N

∑
i=1

∫

Ψ∗(r1, r2, . . . , ri ≡ r, . . . , rN)·

· Ψ(r1, r2, . . . , ri ≡ r, . . . , rN)dr1dr2 . . .��dri . . . drN . (5.4)

Therefore, the implication that ρ(r) is fully given by the external potential V̂ext (through

the many-electron wave function Ψ) is straightforward. However, the reverse implica-

tion is not so straightforward and in fact that is where the strength of the Theorem 1

originates. Intuitively it may seem that the electron density contains less informa-

tion than the wave function, but Theorem 1 guarantees that they do contain the same

amount of information (in terms of what knowledge can be extracted about atoms,

molecules, or solids).

THEOREM 2: For Ô being the Hamiltonian Ĥ, the ground state total energy

functional H[ρ] = EVext [ρ] is of the form

EVext [ρ] = 〈Ψ|T̂ + V̂|Ψ〉
︸ ︷︷ ︸

FHK[ρ]

+〈Ψ|V̂ext|Ψ〉

= FHK[ρ] +
∫

ρ(r)Vext(r) d3r (5.5)

where the Hohenberg-Kohn density functional FHK [ρ] is universal for any

many-electron system. EVext [ρ] reaches its minimal value (equal to the ground

state total energy) for the ground state density corresponding to Vext.

This second theorem makes it possible to use the variational principle in order to find

the ground state electron density. Out of the infinite number of possible electron den-

sities, only the one (up to an additive constant) which minimises EVext [ρ] is the ground

state density.

5.1.3 Self-consistent scheme for solving the Kohn-Sham equ ation

The Hohenberg-Kohn functional can be further divided into

FHK[ρ] = T0[ρ] + VH[ρ] + Vxc[ρ] (5.6)

where T0 is the kinetic energy of a non-interacting electron gas, VH is the Hartree po-

tential and Vxc the exchange-correlation part. This accounts for any self-interactions
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within the electron gas and constitutes the difficult part which needs additional ap-

proximations (see below).

THEOREM 3: The exact ground state electron density ρ(r) of an N-electron

system is

ρ(r) =
N

∑
i=1

φ∗
i (r)φi(r) (5.7)

where the single-particle wave functions φ(r) are the N-lowest energy so-

lutions of the Kohn-Sham equation

ĤKSφ = ǫφ (5.8)

where

ĤKS = − h̄2

2me
∇2

︸ ︷︷ ︸

T̂0

+
e2

4πǫ0

∫
ρ(r′)
|r′ − r| d3r′

︸ ︷︷ ︸

V̂H

+V̂xc + V̂ext . (5.9)

It is again important to note how strong this theorem is. In fact it says that the problem

of solving a system of many coupled partial differential equations corresponding to the

Hamiltonian in Eq. 5.2 can be transformed to solving a Schrödinger-like equation of

non-interacting particles (Eq. 5.8). The single particle wave functions φ(r) do not have

any physical meaning on their own; it is only the electron density ρ(r) they generate

which has a meaningful physical interpretation.

Also it is important to note that both, the Hartree potential, VH, and the exchange-

correlation potential, Vxc, depend on the electron density ρ, which in turn depends on

them through the Kohn-Sham equation (Eq. 5.8). Therefore, the Kohn-Sham equation

constitutes a self-consistent problem which can be solved by an iterative procedure. The

initial electron density ρ0(r) needs to be guessed; after that it is used to construct the

corresponding potentials. Subsequently, the Kohn-Sham equation is solved and a new

electron density, ρn(r), is constructed from the solution. This is repeated until conver-

gency within a prescribed accuracy is reached.

5.1.4 The exchange-correlation potential

Apart from the Born-Oppenheimer approximation, the above described DFT scheme

is exact. However, for any practical use of it, an approximation to the yet unknown

exchange-correlation potential must be made.
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A widely used approximation is the local density approximation (LDA) proposed already

by Kohn and Sham (1965). The exchange-correlation energy functional takes the form

VLDA
xc [ρ] =

∫

ρ(r)ǫxc(ρ(r)) d3r (5.10)

where the function ǫxc is the density of the exchange-correlation energy for the homo-

geneous electron gas (so called jellium model). The name for this approximation re-

flects the fact that the exchange-correlation energy density depends only on the value

of electron density at a particular point. A more sophisticated approach is the genera-

lised gradient approximation (GGA) which has the form

VGGA
xc [ρ] =

∫

ρ(r)ǫxc(ρ(r), |∇ρ(r)|) d3 r . (5.11)

There are several parametrisations for the functional form of ǫxc in which various pa-

rameters are fixed against a comparison with a large set of experimental data. The

often used parametrisation is the one of Perdew et al. (1996) usually termed as PBE

employed also for all calculations in this work. In addition, there exists many other

advanced approximations (e.g. hybrid potentials).

5.1.5 Solving the one step of Kohn-Sham equation

The above described scheme leads to a single particle Kohn-Sham equation (Eq. 5.8).

Rather than looking for the eigenfunctions φm(r) directly the solution is expressed in a

chosen basis set {φbasis
p (r)} as

φm(r) =
P

∑
p=1

cm
p φbasis

p (r) (5.12)

where cm
p are constant coefficients that need to be determined. The function space

where the eigenfunctions φm(r) belong to, has an infinite dimension and thus P should

be in principle infinite. However, for any practical use P needs to be cut to a finite value

which will obviously introduce some deviation from the exact solution. Consequently,

the “quality” of a solution depends on a chosen basis set and the actual value of P.

For a chosen basis set, the problem of the Kohn-Sham equation reduces to solving a

system of linear equations of a form









· · · · · · · · ·
... 〈φbasis

i |ĤKS|φbasis
j 〉 − ǫm〈φbasis

i |φbasis
j 〉 ...

· · · · · · · · ·

















cm
1

...

cm
P









=









0

...

0









. (5.13)
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Diagonalisation of the above Hamiltonian matrix leads to P eigenvalues and P sets of

coefficients cm
p . Although this may seem trivial, in real problems, where the matrix

sizes are of order 104 and larger, this step is the most time consuming part of the whole

calculation.

A particular choice of a basis set can significantly reduce the value of P needed for a

prescribed precision. Therefore, some basis sets are more efficient than others. The two

most often used basis sets are plane waves (in this work used in the pseudopotential

code S/PHI/nX, see section 5.3.1) and (linearised) augmented plane waves (in this work

utilised in the Wien2k code, see section 5.2.1).

5.2 Short introduction to Wien2k

Wien2k is a full-potential all-electron code developed by Blaha et al. (2000) at the Insti-

tut für Materialchemie, Technische Universität Wien, Austria. It utilises the (linearised)

augmented plane waves (LAPW) approach which is described in the following section.

5.2.1 The family of (L)APW basis sets

Generally speaking, weakly bonded electrons (for example valence electrons) are well

described by plane waves which are solutions to the Hamiltonian with a zero potential.

On the other hand, a core electron (deep in energy) “feels” practically only the nucleus

to which it is bonded and thus it is well described by spherical harmonics (solutions

for a single free atom). The (L)APW approach combines these two basis sets by setting

up a muffin tin sphere (MTS), Sα, on each atom (labelled α). The rest of the space is the

interstitial region (denoted I). A schematic division of a unit cell is shown in Fig. 5.1.

The problem with the original APW method is that the basis set depends on the eigen-

values ǫn
k which are sought using this basis set. Thus, apart from diagonalisation of

Eq. 5.13, one needs also to guess roots of the secular equation Eq. 5.13. Andersen

(1975) proposed to use a Taylor expansion for estimation of the basis set functions at

yet unknown energies ǫn
k

uα
ℓ (r′, ǫn

k) = uα
ℓ (r′, E0) + (E0 − ǫn

k)
∂uα

ℓ
(r′, E)

∂E

∣
∣
∣
∣
E=E0

︸ ︷︷ ︸

u̇α
ℓ
(r′,E0)

+O(E0 − ǫm
k )2 . (5.14)

Here, uα
ℓ
(r, E) are solutions to the radial part of the Schrödinger equation for a free

single atom α, r′ = |r − Rα| is the distance from the centre of an atom α. E0 is some trial
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r

R1

R2
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muffin tin
spheres
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Figure 5.1 : A schematic division of a unit cell (dotted area) into muffin tin spheres, Sα,
(red areas) where an expansion into spherical harmonics is made, a the interstitial re-
gion, I, (green area) where the wave function is expanded into plane waves. Notation
used in the text is also shown.

energy, close to the expected value of ǫn
k . The LAPW basis set takes the form

φk
K (r) =







1√
V

ei(k+K )·r r ∈ I

∑
ℓ,m

(

Aα,k+K
ℓm uα

ℓ
(r′, Eα

1,ℓ) + Bα,k+K
ℓm u̇α

ℓ
(r′, Eα

1,ℓ)
)

Yℓ
m(r̂′) r ∈ Sα

(5.15)

Yℓ
m are the spherical harmonics, r̂ represents a pair (ϕ, ϑ) of polar angles specifying

the direction r − Rα. A requirement of a continuous wave function across the MTS

boundary sets a system of equations for the coefficients Aα,k+K
ℓm and Bα,k+K

ℓm . In order

to make this method work efficiently, E0 from Eq. 5.14 is different for every physically

important ℓ (i.e. s-states, p-states, etc.) on each atom α rather than being a universal

single value constant. This is reflected by the notation Eα
1,ℓ.

The LAPW basis set is appropriate for delocalised valence electrons. The deep core

electrons, fully localised on a particular atom (i.e. inside a particular MTS) are ex-

panded only to spherical harmonics. Despite this, there are still problems with de-

scription of (deeper) valence states of the same character. These are called semi-core

states and are described as local orbitals (LO) in a following way

φlm
α,LO(r) =







0 r 6∈ Sα

(

Aα,LO
ℓm uα

ℓ
(r′, Eα

1,ℓ) + Bα,LO
ℓm u̇α

ℓ
(r′, Eα

1,ℓ)+

+Cα,LO
ℓm uα

ℓ
(r′, Eα

2,ℓ)
)

Yℓ
m(r̂′) r ∈ Sα

(5.16)

where Eα
2,ℓ corresponds to the higher energy of the two states. Although this increases

the size of a basis set and thus increases the computational time, much better accuracy
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can be obtained including LOs. Therefore, they are implicitly used in Wien2k calcula-

tions.

The performance of the original APW basis set can be greatly improved by using a

concept named APW+lo, where a fixed energy Eα
1,ℓ is used for an APW base function

with a subsequent LO-like correction (termed here lo). This method was developed

by Sjöstedt et al. (2000). The valence d- and f - states need many basis functions (i.e.

high Kmax) in order to be described accurately; however, a much lower number of

basis functions is needed for their accurate description within the APW+lo scheme

(Cottenier, 2002). Such a mixed basis set of LAPW/APW+lo orbitals seems to be the

best approach and, in combination with LOs for semi-core states, is routinely used in

Wien2k.

5.2.2 Practicalities of running Wien2k

There are plenty of input files which need to be set up correctly in order to make the

calculation run. Fortunately, it is only the master input file, the struct-file that needs

to be set up manually (or using a user-friendly interface w2web, a part of the Wien2k

distribution). The rest of the input files is generated automatically, and only some

minor adjustments in specific cases are needed. The struct-file contains information

about the structure itself: numbers, types and positions of the atoms, the space group

and symmetry operations. Crutial parameters are the MTS radii which can be different

for each inequivalent atom; they are also given in the struct-file.

Having the struct-file prepared, one has to initialise the calculation (see the top part of

the scheme in Fig. 5.2). In particular, several checks of the structure are done, followed

by a calculation of atomic densities by the lstart routine which are later used by the

dstart routine for calculation of the starting electron density ρ0. The energy separating

core states on one side and semi-core and valence states on the other side is required

by lstart in order to set up basis sets for various orbitals correctly (see section 5.2.1).

The value of −8 Ry was used for all calculations in this work as this value minimised

“leakage” of the core electrons out of MTS (i.e. prevented states extending beyond

MTS from being treated as core rather than semi-core states).

The other important characteristics of the numerical calculation are ℓmax, a quantity

defining the number of terms being used for an expansion into spherical harmonics,

and Kmax, the magnitude of maximum K directly determining the basis set size. Based

on the convergence tests done (see section 7.2 and appendix A), the value of Kmax ≈ 2.5

was used. This corresponds roughly to 85 eV energy cut-off of the equivalent plane

wave basis set.
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Figure 5.2 : A flowchart of a standard Wien2k calculation. Taken from the userguide
(Blaha et al., 2000).
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The last important parameter is the number of k-points, i.e. a sampling density of the

reciprocal space. All calculations need to be converged with respect to this number;

more specific details are given in corresponding sections of following chapters.

After the initialisation, the iterative process as described in section 5.1 proceeds. This

is depicted in the main part of the scheme in Fig. 5.2. This scheme represents a general

calculation in Wien2k. Calculations in this work used only lapw0 (calculation of po-

tential corresponding to the electron density ρn−1 and its decomposition into spherical

harmonics), lapw1 (diagonalisation of the Hamiltonian), lapw2 (calculation of the new

electron density corresponding to the semi-core and valence states), lcore (calculation

of the electron density corresponding to the core electrons) and mixer (combining the

old, valence and core electron densities into a new one).

Convergence criteria used in all present calculations were (i) total energy changes

between two subsequent cycles by less than 0.0001 Ry, and (ii) integrated electron

charge does not fluctuate by more than 0.001 e.

Once a converged electron density (in terms of energy, electron density and a number

of k-points) was obtained, analysis of the material properties proceeded. In particular,

routines spaghetti and tetra were used for bandstructure and density of states cal-

culations. These results are (in principle) readily available from outputs of lapw1 and

lapw2. An example of such a result for AlN is shown in Fig. 5.3.
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Figure 5.3 : A band structure and total density of states of a ground state of AlN.
Calculation details are given in section 7.2. Note the underestimated value of the
band gap, Eg, (4.2 eV instead of the experimental value of 6.2 eV) which is a common
outcome a basic DFT calculations.
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The lapw5 routine was used for calculations of the electron density as presented in

section 7.3.4. The majority of the following work concerns electron energy loss near

edge structure (ELNES) for which the Telnes.2 program and the broadening routine

were used. They are described in greater detail in chapter 6.

All the above mentioned programs and routines are parts of the Wien2k package.

5.3 Short introduction to S/PHI/nX

S/PHI/nX is a pseudopotential DFT code developed by Boeck et al. (2003) at the Max-

Planck Institut für Eisenforschung in Düsseldorf, Germany. The majority of results

presented in chapter 9 were obtained using this program and thus in this section a

short overview of the basic principles of a pseudopotential method and of this code

are given.

5.3.1 Principles of pseudopotential method

The core electrons are tightly bonded to nuclei, as a result, they are localised on a par-

ticular atom nucleus and are rapidly oscillating functions (see blue curves in Fig. 5.4).

This makes it difficult to construct a basis set which describes both the localised core

and extended valence electrons in a satisfactory way, as was discussed in section 5.2.1.

rrc

Ψps

Vps

Ψ∼ Z
r

V ∼ Z
r

Figure 5.4 : Schematic relationship
between true (blue dashed lines)
and pseudo (red solid lines) wave
functions and potential. Perfect
agreement is required for r > rc.

However, for material properties associated

with bonding, the core electrons are redun-

dant as only the valence electrons participate

in bonding. Therefore, the potential of the

atomic nucleus and the core electrons is re-

placed with a pseudopotential which (i) gener-

ates smooth wave functions and (ii) outside a

given radius, rc reproduces those wave func-

tions and the potential of a full electron system.

Howsoever simple this concept may look, it

brings in fact several difficulties. It is not easy

to generate a good quality pseudopotential in

the first instance. In order to be beneficial, a

pseudopotential must demand as small a basis

set as possible (hardness of the pseudopoten-

tial) while keeping the accuracy. Furthermore,
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it must describe different bonding configurations accurately (transferability of the pseu-

dopotential). It is a piece of art to construct a reliable and high quality pseudopotential

(Boeck et al., 2003) and thus it is usually better to rely on well established and tested

pseudopotentials from literature rather than generate new ones. This was also the case

of calculations presented in chapter 9.

An important feature of the pseudopotential approach is that it works only with va-

lence electrons. Core electrons are included in the pseudopotential. This is usually a

great advantage which results in a huge speed-up of the calculations. However, it be-

comes of a problem for the ELNES calculations (see chapter 6) where matrix elements

of the core electron states are needed. Evidently, also the core hole approximation

is inaccessible with pseudopotentials. Fortunately, since the fine features in ELNES

are governed mainly by a fluctuation of the projected density of states, ground state

pseudopotential calculations can be used as rough estimates of what features can be

expected in ELNES spectra.

The great advantage of pseudopotentials is that the plane wave basis set is suitable

for smooth pseudo wave functions. Plane waves are easy to handle and, because of

the smoothness of wave functions, the basis set size can be reasonably small. As was

mentioned in section 5.2.1, the diagonalisation of the Hamiltonian is the most time

consuming part of a calculation, and thus the relatively small plane wave basis set

reduces the calculation time significantly. The plane wave basis set, as implemented in

S/PHI/nX, is

φk
K (r) = ei(k+K )·r . (5.17)

The Kohn-Sham equation (Eq. 5.13) takes a much simpler form in this representation

than in the case of (L)APWs (see Boeck et al., 2003).

Another advantage of the plane wave basis set is that they are well suited for calcula-

tion of forces on the ions (Boeck et al., 2003). Therefore, the structure relaxation is easier

in this case than in the case of Wien2k calculations. As a consequence, all S/PHI/nX cal-

culations presented in chapter 9 correspond to relaxed structures.

5.3.2 Practicalities of running S/PHI/nX

S/PHI/nX, being a newer piece of software, has a different philosophy from the Wien2k

code. All details about the structure, parameters for initialisation, pseudopotentials,
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k-point sampling, etc. are given in a single input file1 and the calculation is afterwards

performed by a single program.

Apart from pseudopotentials, it is mainly the k-point sampling, plane wave cut-off

energy Ecut (determining the largest K in the basis set) and a minimisation scheme

that influence the quality of results. Convergence tests should always be made for

the number of k-points and energy cut-off Ecut. Each of the minimisation schemes is

suitable for a different situation; details about them can be found in the manual (Boeck

et al., 2003).

There are several “add-ons” which allow calculation of additional quantities once a

converged electron density was obtained. One of them, called sxpdos, calculates the

density of states projected on different atoms and states. This add-on was used for the

calculations in chapter 9.

5.4 Summary

This chapter introduced the basic ideas and concepts of a widely used and well estab-

lished density functional theory which allows calculations of material properties from

first principles. Its advantages as well as drawbacks and limitations were discussed.

In the second part of the chapter, basic information about two codes used in this work

was given. The majority of the calculations in the chapters 7 and 8 was done using

the full-potential all-electron linear augmented plane wave code called Wien2k. The

studies of strain-dependence presented in chapter 9 were done using the pseudopo-

tential plane wave code S/PHI/nX. A few most important practicalities of running cal-

culations with these programs were mentioned with references to particular software

manuals.

1In fact, it can be several files nested in a single input file and thus making a single unit.



Chapter 6

Electron Energy Loss Near Edge

Structure

Electron energy loss spectroscopy (EELS) is an analytical technique performed in a

transmission electron microscope in which fast electrons (typically about 100 keV and

more) impart fractions of their energy to a thin specimen. There are many energy

loss processes corresponding to different interactions of the incident electrons with the

specimen.
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Figure 6.1 : A drawing of a typical EELS spectrum.
(Adopted from http://www7430.nrlssc.navy.mil/facilities/emf/gif.htm.)

A typical EELS spectrum is shown in Fig. 6.1. The low-loss region corresponds to

energy losses below roughly 50 eV and the dominant feature is the zero-loss peak.

The zero loss peak represents electrons that suffered no inelastic scattering apart from

phonon scattering (i.e. practically no energy loss). The low-loss spectrum also con-
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tains plasmon excitations, i.e. peaks corresponding to electron energy losses due to

interaction with collective oscillations of the electron density. The major features in the

remainder of the spectrum, denoted as the core loss regime, correspond to character-

istic core loss edges related to the allowed electronic excitations between energy levels

in an atom. Since each element has a unique electron configuration with specific en-

ergy levels, the edge energies are characteristic for each element. The intensity of the

ionisation edge is directly related to the amount of element present in the specimen,

therefore allowing a quantitative analysis (see e.g. Egerton, 1996).

In addition to the quantitative elemental analysis, the ionisation edges have a small

intensity fluctuation just above the edge onset. These fine features are called electron

energy loss near edge structure (ELNES). The ELNES has been shown to reflect the

local environments of atoms such as coordination or bonding type. Having the ad-

vantage of small probe sizes (typically about 1 nm or less) and high energy resolution

(in modern microscopes with monochromators, energy resolution about 0.1 eV), this

technique becomes an excellent tool for investigating of the electronic structure of ma-

terials.

There are some other experimental techniques closely related to EELS and ELNES.

X-ray absorption near edge structure (XANES) works on the same principle as ELNES

but the core electrons are excited by X-ray instead of incident electrons. As the cross-

section (see section 6.1.2) for X-rays is much smaller than that for electrons, XANES is

performed on bulk samples using synchrotron radiation. Other techniques are Auger

electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), both probing the

core states. The excited electrons escape the material and are subsequently detected;

thus these techniques are surface sensitive. Similar to XPS is ultraviolet photoelectron

spectroscopy (UPS) which probes the valence band. A more detailed description with

further references can be found in the review by Keast et al. (2001).

This chapter gives a short overview of the theory of ELNES which is essential for un-

derstanding of the results presented in chapters 7–9. It is beyond the scope of this

work to give an exhaustive description of the theory. An excellent overview of ELNES

of both, the theory and experiment, was published by Keast et al. (2001). The clas-

sic book of Egerton (1996) concentrates mostly on the practical issues of experimental

EELS but also gives a summary of the theory behind it. All ELNES spectra in this work

were calculated using the Wien2k code (Blaha et al., 2000) described in greater detail in

chapter 5. Hébert (2007) gave an excellent review on practicalities of running Wien2k

for ELNES calculations. This chapter is mostly based on the three above mentioned

literature sources.
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6.1 Theory of ELNES in short

6.1.1 Basics of the excitation process

During the excitation process, the incident electron interacts with a core electron and

imparts a fraction of its energy to the core electron. This enables the core electron to

overcome the attraction of the nucleus and, in the case of ELNES, to be excited to an

unoccupied state (energy level). This is shown schematically in Fig. 6.2.
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Figure 6.2 : Excitation process in EELS: a) incident electron “hits” a particular atom
and b) gets scattered while exciting a core electron to previously unoccupied state.

Upon this ionisation, the atom itself is transformed from a ground state configuration

to an excited state with an empty state in the core level, called a core hole. The possible

energies imparted to the excited electron are controlled by a distribution of available

empty states. Therefore, fluctuations of the intensity just above the edge onset reflect

directly the density of (unoccupied) states.

By a simple calculation, Keast et al. (2001) showed that the typical time scale of excita-

tion is about 10−19–10−20 s. Since the lifetime of the excitation is much longer (typically

about 10−14–10−15 s), Keast et al. (2001) argued that the excited state may be influenced

by the presence of the core hole. This is discussed in greater detail in section 6.2.1. On

the other hand, the excitation time scale is relatively short compared with the typi-

cal oscillation time in crystals of about 10−13 s, and thus ion vibrations may be ne-

glected during the excitation. As a result, Born-Oppenheimer approximation holds

(see section 5.1.1) which means that the energy levels available for the excited electron

are simply those of a fixed atomic geometry. This simplifies both the simulation and

interpretation of the ELNES.
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Figure 6.3 : Excitation process in EELS: wave
vectors and energy levels.

Assume an incident electron of energy E0

and represented by a plane wave with

wave vector k0. During the interaction

with a core electron, it loses energy E

and transfers momentum q = k0 − k to

the specimen. The scattering angle, θ,

and momentum transfer are related as

follows

q2 = k2
0(θ2 + θ2

E) (6.1)

where θE is a characteristic scattering an-

gle for the energy loss, E, given by

θE =
E

γm0v2
. (6.2)

Here, γ = 1/
√

1 − v2/c2 is the relativistic factor, m0 is the rest energy of an electron

and v is the velocity of an incident electron. For non-relativistic cases, Eq. 6.2 can be

simplified to θE ≈ E/2E0.

6.1.2 Double differential scattering cross-section

Using Fermi’s Golden Rule from time-dependent perturbation theory, Bethe (1930)

obtained the double differential scattering cross-section (DDSCS) in a form (see e.g.

Hébert, 2007)

∂2σ

∂Ω∂E
=

4γ2

a2
0q4

k f

ki
∑
i, f

|〈 f | exp(iq · r)|i〉|2 δ(E − E f + Ei) . (6.3)

Here, the sum is done over all empty final, | f 〉, and initial, |i〉, one-electron states,

a0 = 0.053nm is the Bohr radius. DDSCS expresses the probability of scattering an

incoming electron with energy loss from (E, E + ∂E) and a momentum transfer q going

through the solid angle ∂Ω.

Nelhiebel et al. (1999), Schattschneider et al. (2001) and some other authors pointed

out that Eq. 6.3 is strictly correct only for isotropic samples. For the case of anisotropic

material, Schattschneider et al. (2005) derived the following formula

∂2σ

∂Ω∂E
=

4γ2

a2
0q4

1

(q2 − q2
z β2)2

k f

ki
∑
i, f

∣
∣
∣
∣

〈

f

∣
∣
∣
∣
exp(iq · r)

(

1 − p · v0

m0c2

)∣
∣
∣
∣

i

〉∣
∣
∣
∣

2

δ(E−E f + Ei) (6.4)
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where p is the momentum operator and v0 is the velocity of the incoming fast electron.

qz is the momentum transfer projected onto the direction of v0. This can be geometri-

cally interpreted in a following way (Jorissen, 2007): in the dipole limit, a relativistic

Hamiltonian shrinks the impulse transfer in the direction of propagation. The general

case is much more complex.

The energy losses are small compared with the incident electron energy, therefore the

momentum transfer q is also small. The magnitude of q can be reduced experimentally

even more by the collection aperture which limits the maximum scattering angle of the

collected signal. The assumption of small q is known as the dipole approximation. The

exponential in Eqs. 6.3 and 6.4 can be expanded as

exp(iq · r) = 1 + q · r − 1

2!
(q · r)2 + . . . (6.5)

and approximated only by the first two terms of this expansion. The first term drops

out due to the orthogonality of the initial and final state (〈 f |i〉 = 0). Therefore, DDSCS

under the dipole approximation takes the form of Eqs. 6.3 and 6.4 for the isotropic and

anisotropic cases, respectively, with q · r being substituted for exp(iq · r).

6.1.3 ELNES intensity

The ELNES intensity, I, is proportional to the DDSCS. In the latest version of the Telnes

program1 (Telnes.2) both are implemented, the isotropic and anisotropic version of

DDSCS according to Eqs. 6.3 and 6.4. Nelhiebel et al. (1999) showed that the isotropic

DDSCS (Eq. 6.4) expresses the average over all directions of q. Therefore, these two

cases in the subsequent text are referred to as directionally averaged and directionally

resolved calculations, respectively.

In either case, there are two important parts in DDSCS formulae: the matrix element

| . . . |2 and the term δ(E − E f + Ei) reflecting the joined density of states.

The matrix element expresses the radial overlap of the initial and final wave functions.

It varies slowly with energy and determines the basic shape of the edge (Keast et al.,

2001), e.g. the saw-tooth shape for K-edges. Moreover, the matrix element is non-zero

only for certain combinations of initial and final states. This is known as dipole selection

rules and in this case it implies that the matrix element is non-zero only when ∆l = ±1,

where ∆l is the change in the angular-momentum quantum number upon excitation.

The comonly used nomenclature for EELS edges together with their characteristics are

listed in Table 6.1.

1A part of the Wien2k package, see chapter 5.
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Initial state
quantum numbers

Edge Initial state n l j Final state symmetry

K 1s1/2 1 0 1/2 p

L1 2s1/2 2 0 1/2 p

L2 2p1/2 2 1 1/2 s or d

L3 2p3/2 2 1 3/2 s or d

M1 3s1/2 3 0 1/2 p

M2 3p1/2 3 1 1/2 s or d

M3 3p3/2 3 1 3/2 s or d

M4 3d3/2 3 2 3/2 p or f

M5 3d5/2 3 2 5/2 p or f

Table 6.1 : Nomenclature of EELS and ELNES edges and their characteristics (after Keast

et al., 2001).

Superimposed on the basic shape of the edge given by the matrix element is a fine

structure due to the joint density of states which is varying much faster with energy

than the matrix element. Generally speaking, density of states (DOS) expresses the

number of states available at a certain energy and it was discussed more rigorously in

chapter 5. Since the initial core state is highly localised on a particular atom, it does

not undergo the energy broadening due to interaction with orbitals of other atoms in

the solid state matter. As a consequence, the initial energy Ei is has a very small spread

or is almost a single value and therefore joined density of states can be approximated

by partial density of states (or projected density of states, PDOS) corresponding to

the final state. The PDOS is a subset of the total DOS projected on the appropriate

angular-momentum symmetry. Consequently, the ELNES is said to measure the PDOS.

Moreover, due to very small probe sizes, the ELNES in fact measures PDOS locally.

6.1.4 Broadening of spectra

The energy resolution of ELNES spectra provided by calculations is far beyond what

is accessible experimentally. There are several origins for broadening of the theoretical

ELNES spectra to the final shape observed in a microscope: the lifetime of the excited

state, lifetime of the core hole and instrumental broadening.
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The latter two are easier to model and are better understood. Hébert (2007) suggested

to model the instrumental broadening by a Gaussian distribution

Ibroadened(E) =
∫

I(E′)

σ
√

2π
exp

(
(E − E′)2

2σ2

)

dE′ . (6.6)

The full width at half maximum (FWHM), σ, is usually about 0.5–1 eV. With some most

recent instruments and special techniques it is possible to go down to about 0.1 eV.

The broadening due to core hole lifetime is generally low for edges accessible by EELS

(Hébert, 2007). Fuggle and Inglesfield (1992) showed that this can be modelled by a

convolution with a Lorentzian profile

Ibroadened(E) =
∫

I(E′)
γ

π ((E − E′)2 + γ2)
dE′ . (6.7)

The broadening parameters, γ, for various elements and edges have been tabulated

(see Fuggle and Inglesfield, 1992, and references therein) and are implemented in the

Telnes.2 code.

The broadening due to the excited state lifetime is more complicated. At the edge onset,

the broadening is zero and it increases with increasing energy (Hébert, 2007). Several

schemes have been proposed in the literature. The broadening module2 implements

broadening by a Lorentzian profile with an energy-dependent broadening parameter:

a constant broadening independent on energy, an empirical linear function of energy

γ(∆E) = 0.1∆E which was proposed by Weijs et al. (1990), a quadratic broadening pro-

posed by Muller et al. (1998) and the Heisenberg’s uncertainty principle based formula

derived by Moreau et al. (2006). All these formulae constitute approximate estimates

and a particular choice influences the resulting theoretical spectrum as demonstrated

in Fig. 6.4.

Hébert (2007) concluded that the linear function proposed by Weijs et al. (1990) had

proved to be a good compromise and gave reasonable results in most cases. There-

fore, if not stated otherwise, the linear excited state lifetime broadening is used for the

calculations reported in this text.

6.2 Modelling of ELNES

There are several codes allowing simulation of the ELNES. They can be divided into

two groups: multiple scattering methods which work in the real space (for example the

FEFF program by Ankudinov et al. (1998)) and band structure (BS) based approaches.

2A part of the Wien2k package, see chapter 5.
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Figure 6.4 : Effect of various models for excited state lifetime broadening. The bottom
(red) curve is corresponding PDOS, the second bottom (blue) curve is unbroadened
ELNES. Calculations correspond to N K-edge of AlN in ground state and with a full
core hole of 1 e.

The BS methods are based on density functional theory (DFT) (Hohenberg and Kohn,

1964; Kohn and Sham, 1965, and chapter 5) and are applied in reciprocal space. The

advantage of BS-based calculations is that once the charge density is obtained, a wide

variety of physical “coherent” properties can be derived. The drawback is that DFT is

a ground state theory and thus, strictly speaking, calculations of excited states are not

guaranteed to work. Nevertheless, the calculation of ELNES with DFT works quite

well (Hébert, 2007).

All ELNES spectra in this work were obtained using a full potential linear augmented

plane wave DFT code called Wien2k (Blaha et al., 2000) which was introduced in greater

detail in chapter 5.

6.2.1 The core hole approach

Results published in the literature suggest that better agreement with experimental

data can be obtained for simulations using core holes (Hébert et al., 2003; Lazar et al.,

2004; Luitz, 2006). In a core hole calculation of N K-edge ELNES, one takes an electron

(or fraction of it) from its ground state position at the 1s core state of N and puts it in

the lowest unoccupied state above the Fermi level or adds it as a background charge.
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This can be done very easily in Wien2k as it is a full potential code with all electrons

(including the core electrons) treated explicitly. Most core hole calculations in the liter-

ature take into account only a full core hole (i.e. a whole electron being taken from the

core to the unoccupied states), some consider also a partial core hole of 0.5 e (so called

Slater’s transition state). But in theory, one can excite any fraction of an electron in order

to create a core hole (Luitz, 2006).

nitrogen with
a core hole

supercell unit cell

Figure 6.5 : A periodic pattern of 2 × 2 × 1 supercells, each containing one unit cell
with one core hole.

In the core hole calculations, the basic unit cell (yellow box in Fig. 6.5) is first copied to

create a supercell (denoted by the green box). The supercell is described by the number

of unit cells in each direction; for example a 2 × 2 × 1 supercell means that there are

two unit cells in x- and y-directions and one in the z-direction, in total the supercell

contains four unit cells. A core hole is subsequently created on one of the atoms in the

supercell. The supercell size should be converged in order to be large enough to screen

interactions of core holes in neighbouring supercells.

The reason why core hole calculations give better agreement than ground state calcu-

lations is that the presence of a core hole can cause a shift of the energy levels and

thus modify the final DOS, similar to what happens in reality. However, one must

be aware that the core hole calculations are only another approximation in the ground

state DFT, and that there is no guarantee that they describe the physics in a meaningful

way. Nevertheless, practise shows that the core hole simulations usually work quite

well and therefore, being aware of all the facts above, they can be used in a beneficial

way.

Another commonly used approximation is the so called Z + 1 approximation (see e.g.

Muller, 2006) in which an atom on which the excitation takes place is replaced by its

neighbour in the periodic table of elements with the atomic number increased by one

(e.g. replace C by N). This approximation is not used in the present work.
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6.2.2 ELNES of III-nitrides

The edge onsets for most elements have been tabulated and could be found for ex-

ample in the book by Egerton (1996). These values are however only approximative.

Depending on a concrete local environment of an atom, they can vary by several eVs.

The relevant values for III-nitrides are listed in Table 6.2. This work focuses on the N

K-edge for two reasons: (i) experimental data for this edge was readily available at the

beginning of the study, and (ii) N is present in all binary and ternary alloys investigated

here and thus allows a comparison over a variety of compounds.

Element Edge Initial stage Energy [eV]

N K 1s1/2 400

Al K 1s1/2 1560

Al L1 2s1/2 118

Al L3 2p3/2 73

Ga L1 2s1/2 1298

Ga L2 2p1/2 1142

Ga L3 2p3/2 1115

In M4 3d2/2 451

In M5 3d5/2 443

Table 6.2 : Energies of EELS edges available for III-nitrides (after Egerton, 1996).



Chapter 7

Electronic structure of III-nitride binary

compounds

7.1 Introduction

Several theoretical studies of ELNES on III-nitrides have been reported on in the liter-

ature previously. Lazar et al. (2004) studied theoretically and experimentally the nitro-

gen K-edge of cubic and hexagonal GaN. They also discussed the effect of a core hole

on the spectra. Radtke et al. (2004) studied experimentally the evolution of the N K-

edge with aluminium composition in AlxGa1−xN alloys. Radtke et al. (2003) discussed

the anisotropy of the ELNES N K-edge in AlN together with a detailed modelling of

the N K-edge using a core hole. Using ground state calculations Keast et al. (2002) gave

a detailed experimental and theoretical report of the N K-edge evolution in InxGa1−xN.

Mizoguchi et al. (2003, 2004) discussed the N K-edge of AlN, GaN and InN with respect

to different crystal structures and orientation. Gao et al. (2004) calculated N K-edges

of wurtzite AlN, GaN and InN using pseudopotentials.

Despite the above mentioned high quality papers, a unifying theoretical study needed

for understanding of the EELS spectra of III-nitrides is missing. For example, there is

lack of a detailed study of the core hole effect on the AlN and InN N K-edge similar to

the results of Lazar et al. (2004) for GaN. This is an important starting point for accurate

simulations of the ELNES N K-edge of the III-nitride ternary alloy.

This lack of information was a driving force for a systematic study and to build a

methodology for simulations of ELNES of III-nitrides. Besides the analysis of ELNES

spectra, the relevant electronic structure of III-nitride binary compounds is discussed

in detail. This chapter provides the necessary background which is subsequently used

in the next chapter for a theoretical study of III-nitride alloys. Some of these results

have been published already (see Holec et al., 2008a,b).

104
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7.2 Computational details

The Wien2k code (Blaha et al., 2000) was used for all calculations presented in this chap-

ter. The electronic structure (in particular, the site and symmetry projected density of

states (PDOS)) of several III–V semiconductor materials was studied within the frame-

work of density functional theory (DFT) (Hohenberg and Kohn, 1964; Kohn and Sham,

1965). The PDOS, which defines the number of electron states per unit energy range

on a particular atomic orbital, is an essential input for the Telnes.2 program to enable

the calculation of ELNES spectra.

The lattice parameters of the binary compounds AlN, GaN and InN used in the calcu-

lations are summarised in Table 7.1. Wyckhoff 2b atomic positions for the atoms in a

wurtzite unit cell were used. In the core hole calculations, this unit cell was copied in

order to build a 2× 2× 2 supercell, followed by an excitation of one core electron to an

unoccupied state of one of the nitrogen atoms.

a [nm] c [nm] u RMT(N) RMT(group III)

AlN 0.311 0.498 0.382 1.65 1.85

GaN 0.319 0.519 0.377 1.65 1.92

InN 0.354 0.570 0.380 1.65 2.00

Table 7.1 : Lattice constants and muffin-tin radii used in the calculations in this chapter.
The values are taken from papers by Dridi et al. (2003) and Wright and Nelson (1995).

The parametrisation of Perdew et al. (1996) was applied to the generalised gradient

approximation (GGA) of the exchange-correlation potential. Basis functions were ex-

panded simultaneously as spherical harmonic functions (inside non-overlapping

muffin-tin spheres (MTS) centred at atomic sites) and as plane waves in the intersti-

tial region. The values adopted for radii of MTS, RMT, are given in Table 7.1. The

l-expansion (azimuthal quantum number) of the non-spherical potential and charge

density inside MTS was carried out up to lmax = 10. The plane waves were expanded

up to a cut-off parameter, Kmax, fulfilling the relation RMTKmax = 5 where RMT is the

average radius of MTS. The ground state calculations were repeated also for a higher

cut-off parameter with RMTKmax = 6. Since no significant difference between these

two cases was found (see appendix A), the lower value was used for the rest of the

calculations since it saves computational time.

The self-consistent iteration process was repeated until the charge density and the to-

tal energy were converged within the precision of 0.001 e and 0.0001 Ry, respectively.
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Subsequently, the convergence in terms of the density of states (DOS) was sought by

increasing the number of k-points (describing the discretisation of reciprocal space)

as suggested by Hébert (2007). Using these convergence criteria it was noticed that

the calculations were usually well converged for about 5 000–10 000 k-points in the

whole first Brillouin zone (translating to about 528–980 k-points, respectively, in the

irreducible wedge of the first Brillouin zone). A proportionally smaller number of the

k-points was used for the supercell calculations. The convergence results are shown in

appendix A.

It is worth mentioning that such a high number of k-points is not necessary if one

is interested only in broadened ELNES. The very fine features in the (P)DOS as well

as in the unbroadened ELNES obtained by this convergence test are experimentally

inaccessible. In the theoretical spectra they are smeared by the broadening process and

one finds the same broadened ELNES spectra with approximately one order lower

number of k-points. However, the unbroadened ELNES as well as the (P)DOS are, of

course, affected.

If not stated otherwise, the theoretical ELNES in this chapter were calculated employ-

ing following parameters: electron beam energy 200 keV, convergence semi-angle of

1.0 mrad, collection semi-angle of 2.5 mrad. A value of 0.6 eV was used for spectrome-

ter broadening of the calculated spectra.

7.3 Discussion of results

7.3.1 ELNES N K-edge of AlN, GaN and InN

In Fig. 7.1 are shown variations of the N K-edge of AlN, GaN and InN with the core

hole charge increasing from 0 e (ground state) to 1 e (full core hole). An immediate

observation is that increasing the core hole charge raises significantly the intensity of

the first peak (marked “A”). At the same time, intensity of the third peak (marked

“C”) decreases. This can be intuitively understood in terms of decreasing shielding of

the nucleus, and thus increased attraction of the unoccupied electronic states, which

results in their shift towards the lower energies. This effect is discussed in section 7.3.2

in greater detail.

In order to estimate which core hole charge gives the best agreement with experimental

data and therefore what core hole charge to use in subsequent time-expensive simu-

lations of alloys, the peak positions and intensities of the simulated data of GaN and

AlN (Fig. 7.1) were compared with several experimental spectra. In particular, results
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Figure 7.1 : Nitrogen K-edge of a) AlN, b) GaN, and c) InN as calculated in the ground
state (0.0 e), using partial (0.1–0.9 e) and full (1.0 e) core hole approach. Experimental
N K-edge of AlN and GaN is also shown (after Cherns, 2007).

of Radtke et al. (2004), Lazar et al. (2004) (only GaN), Cherns (2007) and Holec et al.

(2008a) were considered. The results discussed below are summarised in a graphical

form in Fig. 7.2 and 7.3; the data itself can be found in Table B.1.

Two criteria were used. The first one concerned relative intensities of the three peaks

“A”–“C”. GaN spectra of Radtke et al. (2004) and Cherns (2007) agree very well; op-

posite trends are observed for the monochromated results given by Lazar et al. (2004)

and Holec et al. (2008a). Despite the scatter of results (see Fig. 7.2a) which is caused

by a data noise and inability to locate the peak positions precisely (especially in the

case of the first and third peaks), it can be concluded that the best agreement in terms

of intensity ratios in the majority of cases for GaN is obtained for the core hole charge

of 0.4–0.5 e. The second criterion considered the peak positions (absolute distances

between peaks). The scatter of the results is much worse in this case (see Fig. 7.3a), and

a simple comparison of peak distances for experimental and simulated data is not con-

clusive at all. However, there might have been some misalignment in the calibration of

experimental set up which resulted in a differently “stretched” energy axis in various

experiments. Thus, ratios of distances between the three main peaks were calculated.

After that, almost a perfect agreement for all experimental results was obtained, point-

ing to the optimal core hole charge 0.4 e for GaN (see Table B.1).
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Figure 7.2 : Comparison of the relative peak intensities of the calculated N K-edge
ELNES spectra (Fig. 7.1) with experimental spectra from the liteature for a) GaN and
b) AlN. The main three peaks were considered. Solid line corresponds to the I1/I2

ratio, dashed line to the I3/I2 ratio.
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Figure 7.3 : Comparison of the relative peak positions of the calculated N K-edge
ELNES spectra (Fig. 7.1) with experimental spectra from the liteature for a) GaN and
b) AlN. The main three peaks were considered. Solid line corresponds to the I2 − I1
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The same procedure was repeated for AlN. The scatter of data is smaller in this case

(see Fig. 7.2b and 7.3b) due to better defined peaks and a smaller signal-to-noise ra-

tio. This allows more precise location of the peaks. The intensity-based comparison

favours a core hole charge of about 0.7 e. In the case of comparison based on peak po-

sitions, 0.7 e is obtained again as the best value. On the other hand, the peak distance

ratios give somewhat higher values (even over 1 e; see Table B.2).

As has been mentioned before, the comparison with experimental data is not abso-

lutely conclusive since there are big variations between individual experimental spec-

tra. These may be attributed to the different experimental conditions or samples might

be of different quality. The comparisons favour partial core holes rather than ground

state (0.0 e) or full core hole (1.0 e) calculations. Moreover, GaN tends to favour partial

core hole charge just below 0.5 e, whereas in the case of AlN, core hole charge above

0.5 e seems to be the best. The same analysis for InN and experimental spectra of Gao

et al. (2004) and Mizoguchi et al. (2004) favours 0.4 e core hole charge. Therefore, the

partial core hole of 0.5 e is used for all calculations of alloys in chapter 8.

7.3.2 p-PDOS of nitrogen atom in AlN

This section attempts to rationalise observations from the previous section 7.3.1 by a

detailed investigation of the density of states available to a core electron excited to

the conduction band state. In particular, AlN is discussed here. The study focuses

on the N K-edge; therefore, the corresponding final states are unoccupied p-states in

the conduction band of nitrogen atoms. Moreover, in the case of (partial) core hole

calculations, the site projected DOS on nitrogen with the core hole is needed.

Figure 7.4 shows p-PDOS, (px + py)-PDOS and pz-PDOS as obtained for the ground

state, partial core hole (0.5 e) and full core hole calculations. In correspondence with

the ELNES spectra the energy range is divided into four regions: the first ELNES peak

(5 eV / E − EF / 8 eV) covering the feature “A” in Fig. 7.4, the second ELNES peak

(8 eV / E − EF / 10.5 eV) covering the features “B” and “C” in Fig. 7.4, the third

ELNES peak (10.5 eV / E−EF / 13.5 eV) covering the features “D” and “E” in Fig. 7.4,

and the tail (E − EF ' 14 eV) covering the feature “F” in Fig. 7.4.

The shape and intensity of the first ELNES peak is clearly given by the number of

unoccupied px + py states; the intensity of the peak increases with increasing charge

of the core hole (see Fig. 7.4a and 7.4b). pz-PDOS provides a broad basis for this peak

and it is almost independent of the core hole charge.
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Figure 7.4 : Density of final states for electrons contributing to the N K-edge: a) the
total p-PDOS, the PDOS projected on b) px + py states and c) pz states. The bottom
spectra correspond to the ground state calculation, the middle ones to the partial core
hole of 0.5 e and the top ones to the full core hole case. Important features discussed
in the text are labelled “A”–“F”.

The second peak has the form of a twin-peak (features “B” and “C” in Fig. 7.4). The

peak “B” is weak in the ground state calculation and thus the overall shape of the sec-

ond peak is dictated by the peak “C”. However, with the increasing core hole charge,

the peak “B” intensifies at the expense of the peak “C”. As a consequence, the second

peak moves to lower energies with increasing core hole charge as can be observed in

Fig. 7.1. Once again, the main contribution in this region comes from (px + py)-PDOS

(compare Fig. 7.4a with 7.4b). The two peaks “B” and “C” can be also recognised in the

pz-PDOS (see Fig. 7.4c) with similar trends in their respective heights as observed for

(px + py)-PDOS, though their peak values are much smaller than the corresponding

maxima for (px + py)-PDOS.

The third peak exhibits very similar tendency to the second one: it consists of two

very close peaks (the features “D” and “E”). Their maxima are almost the same in the

ground state case of (px + py)-PDOS; with increasing core hole charge the peak “E”

decreases and becomes only a very weak shoulder on the high-energy side of the third

peak. On the other hand, the pz-PDOS constitutes in this case the major contribution

to p-PDOS and, in the ground state case, completely rules over the (px + py)-PDOS in

the “E” peak.

Finally, the tail region with the feature “F” seems to be independent of the core hole

charge. Its low-energy side is contributed by the px + py states whereas the high-
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energy side comes from pz states. Both contributions are individually independent

of the core hole charge.

The general observation that the peaks “move” towards lower energy with the higher

core hole charge (or that in the case of the twin-peaks the low-energy peak intensi-

fies whereas the high-energy peak weakens) can be intuitively understood in terms of

shielding. With the increasing core hole charge (from zero to one electron) the shield of

the core electrons weakens and thus the originally unoccupied states in the conduction

band are bonded more strongly to the atom nucleus. This results in their shift to lower

energies.

An interesting observation can also be made by looking at the valence p-PDOS, i.e. just

below the 0 eV energy. The integrated value of the ground state p-PDOS from −6.5 eV

to 0 eV gives a value of 2.89; (px + py)-PDOS in the same region yields 1.93 whereas pz-

PDOS gives 0.96. This agrees well with the fact that there are three valence p electrons

provided by nitrogen atoms1. The reason why one does not get the exact number 3 as

might be expected is that the concept of “an electron belonging to a particular atom”

does not make sense in the case of a crystalline solid anymore: some electrons (in par-

ticular, the valence electrons) become delocalised. Therefore, so called interstitial DOS

is introducted as the difference between the total DOS and that part of the charge that

can be unambiguously associated with particular atoms and states. As a consequence

PDOS does not give absolute numbers but rather how much of some electronic state

can be identified with a particular atom.

In the full core hole case, the total p-PDOS significantly changes its character. There is a

sharp narrow peak between −8 eV and −7 eV and a broad spectrum between −5.5 eV

and 0 eV. Similar behaviour is observed also in the (px + py)-PDOS and pz-PDOS. A

detailed analysis reveals that these sharp peaks correspond to the valence 2p states: the

integrated value of the total p-PDOS peak is 3.08 with 2.10 of (px + py)-character and

0.97 of pz-character. The “tail” between −5.5 eV and 0 eV constitutes approximately

one electron state (0.84). This is (in the calculation) filled by “leaking” electrons from

the neighbouring atoms to the nitrogen with the core hole. The partial core hole of 0.5 e

lies somewhere in between the ground state and the full core hole case.

The observation of the valence states shifting to lower energies is consistent with the

concept of decreasing screening effect with increasing core hole charge. Moreover,

a profound narrowing of the band corresponding to the valence p electrons can be

observed.

1Electron configuration of nitrogen is 1s2 2s2 2p3.
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7.3.3 Origins of the N K-edge variations of III-nitrides

Figure 7.1 shows very similar behaviour (reproduced in Fig. 7.5) of InN and GaN in

terms of the shape of the N K-edge ELNES spectrum: both have a very strong central
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Figure 7.5 : Projected density of states of a) AlN,
b) GaN, and c) InN. 0 eV on the energy axis cor-
responds to the top of the valence band.

peak (labelled “B” in the figure) sur-

rounded with “shoulders” on both

sides (labelled “A” and “C”). In con-

trast, the ground state of AlN shows

three distinct peaks “A”, “B”, and “C”.

This section addresses these variations

in terms of PDOS.

Density of unoccupied states projected

on both atoms (N and either Al, or

Ga, or In) and s, p and d states for

the ground state calculations is shown

in Fig. 7.5. Nitrogen p states, the fi-

nal states of N K-edge ELNES excita-

tion, are shown in purple colour. The

three peaks of AlN ELNES N K-edge

can be clearly identified in Fig. 7.5a, in-

cluding their increasing intensity with

higher energy losses. Similarly, one

very sharp peak at ≈7–8 eV and at

≈6–7 eV can be seen in Fig. 7.5b and

7.5c, respectively.

In all three cases, a strong correlation

between nitrogen p states on one hand

and group III element s and p states

on the other hand is clearly seen in

the region of several eVs above the va-

lence band edge (0 eV). This suggests

quite a strong interaction between N

p states and Al/Ga/In s and p states.

Since valence bands of the individual

elements are only partially filled, these

unoccupied states are solid-states ana-

logues to molecular anti-bonding or-
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bitals. One can see that group III element p states to N p states interactions are par-

ticularly strong in all three ELNES peaks as well as in the tail region at about 4 eV

above the third peak. The striking difference between AlN on one side and GaN and

InN on the other side is the interaction of N p states with Al/Ga/In s states. These

contribute mainly to the second and third peaks for AlN but to the first and second

peaks in the cases of GaN and InN (emphasised by red arrows in Fig. 7.5). The differ-

ent interaction between the unoccupied states modifies the profile of N p states which

is reflected in the N K-edge ELNES.

7.3.4 Bonding of III-nitrides

A significant difference between AlN on the one side and GaN and InN on the other

side is the electronic configuration of Al, Ga and In. While Al has in the valence shell2

only three electrons (having a configuration 3s2 3p1), Ga and In have thirteen electrons

in their valence shells (having respective configurations 3d10 4s2 4p1 and 4d10 5s2 5p1).

Differences in bonding are thus expected; this section focuses AlN and GaN.

Table 7.2 gives energy levels of valence states3. Considering that the necessary condi-

tion for a formation of a bond is the overlap of atomic energy levels of participating

states, bonding of Al 3p and 3s with N 2p states is predicted for AlN. In the case of

GaN, additional bonds may be created between Ga 3d and Al 2s states. As a conse-

quence, the GaN bond is predicted to be stronger than the AlN bond in the sense that

more electrons per atom contribute to the bonding.

Al N Ga

−3.01 eV 3p

−7.28 eV

−8.04 eV

}

3s
2p

{−8.29 eV

−8.31 eV

}

2p

4p − 2.91 eV

4s

{−8.48 eV

−9.17 eV

−15.31 eV

−15.52 eV

}

2s 3d







−18.79 eV

−18.86 eV

−19.25 eV

−19.31 eV

Table 7.2 : Atomic energy levels of valence orbitals of Al, N and Ga.

2What is here called the valence electrons are, in fact, valence and semi-core electrons in the terminol-

ogy of the Wien2k (see discussion in section 5.2.1): these occupy shallow energy levels (/ 20 eV below

the top of the valence band). As a consequence, the term valence electrons in this text is not limited to

only the unfilled shells.
3Occupied states with the highest energy. Below them is usually an energy gap of several tens of eVs.



7.3
D

iscu
ssio

n
o

f
resu

lts
114

Figure 7.6 : Projected density of states of AlN corresponding to the valence band. Electron density maps of the
valence electrons for several energy windows as discussed in the text are also shown. Maps are plotted on the
{1120} planes.
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Figure 7.7 : Projected density of states of GaN corresponding to the valence band. Electron density maps of the
valence electrons for several energy windows as discussed in the text are also shown. Maps are plotted on the
{1120} planes.
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Corresponding PDOSes together with electron density maps representing spatial dis-

tribution of valence electrons in various energy windows are shown in Fig. 7.6 for AlN

and in Fig. 7.7 for GaN.

N 2s states make up a band at about −15.5 eV to −12.5 eV in AlN (Fig. 7.6). A very

small contribution of Al 3s and 3p states is present in this range as well. However, the

interaction is too weak to contribute significantly to bonding. This is also illustrated in

the corresponding energy density map where contours on the N sites remain almost

perfectly circular (corresponding to the spherical symmetry of the s states). On the

contrary, in the case of the higher energy windows at −6.0 eV to −3.8 eV (N 2p–Al 3s

interaction) and −3.8 eV to 0 eV (N 2p–Al 3p interaction), an accumulation of charge in

between two neighbouring atoms is observed.

A similar analysis for GaN unveils that N 2s participate in bonding in GaN by interact-

ing with Ga 3d states (Fig. 7.7). This bond has been discussed by Dudešek et al. (1998);

the present results are in good agreement with their results. Deepest in the energy (the

window from −16.5 eV to −14.8 eV) lie bonding N 2s–Ga 3d states. These are followed

by non-bonding Ga 3d states between −13.5 eV and −12.5 eV. The N 2p states form-

ing the peak seen in PDOS in this energy window do not interact strongly with Ga 3d

states and thus does not contribute to bonding. The next energy window at −13.5 eV

to −11.0 eV corresponds to N 2s–Ga 3d anti-bonding states as suggested by Dudešek

et al. (1998). The different distribution of electrons in the bonding and anti-bonding

states is clearly demonstrated by the electron density maps in Fig. 7.7. The structure

of the top of valence band of GaN is similar to that of AlN apart from a much more

complex structure of the electron density on the Ga sites in the energy window from

−3.8 eV to 0 eV. The PDOS shows that in this region are present both Ga 4p and 3d

states possibly suggesting some form of pd hybridisation as discussed by Mizoguchi

et al. (2003).

Differences in electron density distribution in AlN, GaN and InN are presented in

Fig. 7.8 where difference maps between the crystal valence electron density and the

superimposed atomic valence densities are shown. Red regions correspond to the

electron accumulation in a crystal with respect to the atomic electron distribution while

blue regions correspond to the electron depletion in a crystal. In white regions, no elec-

tron redistribution occurs. Electron accumulation between two neighbouring atomic

sites can be clearly observed in all three cases (AlN, GaN and InN) reflecting the cova-

lent character of the bonds. At the same time, electrons accumulate closer to the N than

to the group III element sites suggesting also a partly ionic character of the bonds. The

complex shape of Ga orbitals results in a directionally better interaction than in AlN.
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Figure 7.8 : Difference maps of AlN, GaN and InN on two different planes. The difference maps show variations
between the crystal and the superimposed atomic valence electron densities
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The difference maps also show that InN has very similar behaviour to GaN (show-

ing the same differences from AlN). This is consistent with the predicted similarities

between GaN and InN, such as previously shown for PDOS or N K-edge.

To conclude this section, the most striking difference between AlN on the one hand

and GaN and InN on the other hand is the presence of the valence d states in GaN and

InN which interact with the N 2s states. As a consequence, more electrons contribute

to the bonds in GaN and InN than in AlN; the bonding in GaN and InN is also more

directional than in AlN.

7.3.5 Directionally resolved N K-edge ELNES of AlN

An improved relativistic model for ELNES simulations has been implemented in the

recent version of the Telnes program (Telnes.2). This brings the possibility of calculat-

ing correctly the directionally resolved ELNES, e.g. ELNES depending on the mutual

orientation of a single-crystal sample and the electron beam direction. If changes of

major features in the spectra with different electron beam–sample misorientations are

big enough, one would, in principle, be able to use ELNES for determining the crystal

orientation of a sample.

Fig. 7.9 shows N K-edge ELNES spectra of AlN corresponding to three different sam-

ples: m-plane and a-plane (cross-sectional) samples (i.e. with the incident electron

beam oriented along the hexagonal m-axis (〈1100〉 direction) and a-axis (〈1120〉 direc-

tion), respectively, and a c-plane (plan view) sample with the electron beam along the

〈0001〉 direction. Corresponding directionally averaged ELNES spectra are also given

in Fig. 7.9. All spectra were calculated from the AlN full core hole using constant

broadening. It is worth noting that here are discussed the total ELNES spectra as they

would be obtained for different sample-to-beam orientations. The decomposition of

the signal into the “parallel” and “perpendicular” components (Schattschneider et al.,

2001) corresponding to pz and px + py states, respectively, for the c-plane samples was

done by Radtke et al. (2003) for AlN.

The variations between individual spectra are not big, however a closer inspection

reveals some differences. There are significant variations between the orientation re-

solved spectra for the small collection semi-angle β = 1.0 mrad: the second peak is

significantly higher than the two others for the m-plane sample; a difference in intensi-

ties of the second and third peak is notably smaller for the c-plane sample than for the

other two samples. On the contrary, for β = 2.5 mrad all three directionally resolved

spectra are the same as the directionally averaged one. This suggests that β = 2.5 mrad
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Figure 7.9 : N K-edge ELNES spectra of AlN calculated for the full core hole case:
three different mutual orientations of the single crystal sample and the electron beam
direction and directionally averaged spectra are shown for the collection semi-angle
a) β = 1.0 mrad, b) β = 2.5 mrad, and c) β = 4.7 mrad.

is very close to the so called magic angle defined by Jouffrey et al. (2004), for which the

anisotropy disappears.

For incident electrons with energy E0 = 200 keV and energy losses around E ≈ 400 eV

the characteristic scattering angle is θE ≈ E/2E0 ≈ 1 mrad. Jouffrey et al. (2004) cal-

culated theoretically the magic angle to be 1.46θE for 200 keV (≈ 1.5 mrad in this case);

the experimental work done by Daniels et al. (2003) showed that the magic angle is

around 2θE (≈ 2 mrad in this case). These values are in good agreement with the value

β = 2.5 mrad for which no variations with the mutual beam-to-sample orientation in

the simulated ELNES spectra are observed.

Lazar et al. (2004) estimated theoretically (by comparing orientation resolved and un-

resolved ELNES) that β = 4.7 mrad can be taken as a good approximation to the magic

angle for the N K-edge and 200 keV beam energy. Looking at the presented results

slight anisotropy is observed for those conditions (see Fig. 7.9c). The first peak has a

different shape for the a-plane sample; the first peak is the most intense one in the case
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of the a-plane sample unlike for the other orientations. This corresponds to a lower

value of the magic angle as was discussed in the previous paragraphs.

7.4 Summary of the chapter

Nitrogen K-edge electron energy loss near edge structures of AlN, GaN and InN were

studied in detail in this chapter. In particular, N K-edge spectra corresponding to

the ground states (0 e), partial (0.1–0.9 e) and full core hole (1 e) calculations were per-

formed. By comparing them with several available experimental spectra from the liter-

ature was concluded that the best agreement is obtained for a core hole charge of about

0.6–0.7 e for AlN, about 0.4–0.5 e for GaN and about 0.4 e for InN. As all these values

lie close to a core hole charge of 0.5 e and since the changes in the range 0.4–0.6 e are

not big in either of the studied cases, a core hole charge of 0.5 e will be used in the next

chapter for studies of ternary alloys.

The variations in N K-edge shape with core hole charge were traced to rearrangement

of the final p states of nitrogen. Generally speaking, they move towards lower energies

with increasing core hole charge. This effect was ascribed to a weaker shielding effect

in the presence of a core hole (i.e. in the absence of a (fraction of a) core electron) which

results in stronger bonding of the unoccupied states to the core. The discussion of

ground state valence and unoccupied PDOSs of AlN, GaN and InN revealed a strong

coupling between the s states of group III elements and the N p. Since the distribution

of the s states of group III elements is different for Al, Ga and In (but similar for Ga

and In due to the presence of d electrons), the N K-edge ELNES varies accordingly.



Chapter 8

ELNES of ternary alloys

8.1 Special quasi-random structures

The crucial question when dealing with ab initio calculations of alloys is how to arrange

atoms within the periodically repeated supercell. Obviously, if the supercell contains

N atom sites which can be occupied by atoms of either type A or type B, only the

compositions x = m/N can be obtained, 0 ≤ m ≤ N and m is an integer. The problem

is which m of the N sites to populate with atoms A.

Early works approached the problem of alloys by developing the virtual crystal ap-

proximation (VCA) (Nordheim, 1931) and the site-coherent potential approximation (SCPA)

(Soven, 1967; Velický et al., 1968). These are so-called non-structural theories since they

approach alloys by “average occupation” of atom sites. They have been applied to a

wide variety of alloys and are able to capture effects with symmetry-preserving uni-

form volume changes. However, the principal simplification in these methods lies in

the association of the average alloy properties with those of “effective atoms” on sites,

bonds etc. A longer discussion was given by Lymperakis (2005) and Wei et al. (1990)

and references cited therein.

On the contrary, structural theories consider the actual configuration of atoms in the

structure. For a binary (or pseudo-binary1) alloy with N sites, there are in total 2N pos-

sible configurations (including those which are equivalent due to crystal symmetry).

A measurable property of the alloy, for example the total energy E, is then the average

over the ensemble of all these configurations

E = 〈E〉 = ∑
σ∈Ωm

ρ(σ)E(σ) . (8.1)

1Strictly speaking, as a binary alloy is called AxB1−x, as a pseudobinary is called AxB1−xC=

(AC)x(BC)1−x. Within the context of this text, pseudobinary alloys are called ternary alloys.

121
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Here, ρ(σ) denotes the probability of finding the configuration σ in the ensemble and

Ωm is the subset of all possible configurations containing these with a fixed compo-

sition given by m. Although this is in principle a solution to the “alloy problem”, it

still constitutes a major obstacle: it is not possible to probe all 2N configurations2 . Wei

et al. (1990) described a methodology which justifies utilisation of only a very few spe-

cially designed structures (special quasi-random structures, SQS) which closely resemble

a random alloy with a given composition x.

This chapter first describes in detail the process of identification of SQS for wurtzite

structures. These are subsequently used for calculation of the ELNES of III-nitride

ternary alloys.

8.1.1 Cluster expansion method

When trying to find a finite structure mimicking an infinite random alloy, artificial cor-

relations beyond some distance, due to the periodic nature of the calculations, are in-

troduced. However, many physical properties, for example projected density of states,

depend strongly on the local environment. Therefore, the selection process of SQS is

driven by the principle of a close reproduction of the structural correlation functions

(defined below) of a random alloy for the first few nearest neighbour shells around

a given site. In what follows, only a short introduction is given; more details can be

found, for example, in the paper by Wei et al. (1990).

Each property E(σ) of a configuration σ is discretised into figures (k, m). A figure is

defined by the number k of atoms located on its vertices (k = 1 for sites themselves,

k = 2 for pairs of atoms, etc.) and the order m of neighbour distances separating them

(m = 1 for the nearest neighbours, m = 2 for the second nearest neighbours, etc.). The

number of figures per site equivalent due to crystal symmetry is denoted by D(k,m).

Each site i is assigned a “spin” variable Ŝi having a value 1 if the site i is occupied by

the atom A, and −1 if it is occupied by the atom B. Defining as Π(k,m)(l, σ) a product

of the spin variables corresponding to a figure (k, m) located at an atom site l in a

configuration σ, the lattice average over all locations l becomes

Π(k,m)(σ) =
1

ND(k,m)
∑

l

Π(k,m)(l, σ) . (8.2)

Π(k,m)(σ) is called the structural correlation coefficient (SCC). Sanchez et al. (1984) proved

that {Π(k,m)(l, σ)} provides a complete set of orthogonal functions. This allows ex-

pressing a property E(σ) as

2For example, the ensemble size for 2 × 2 × 2 supercell with 2 atoms in the unit cell is 65 536 which

is far beyond any practical utilisation.
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E(σ) = N ∑
(k,m)

D(k,m)Π(k,m)(σ)ǫ(k,m) (8.3)

where ǫ(k,m) denotes the contribution of the figure (k, m) to the physical property E.

Note, that ǫ(k,m) does not depend on the figure position l. The ensemble average over

all configurations σ now becomes

〈E〉 = N ∑
(k,m)

D(k,m)〈Π(k,m)〉(σ)ǫ(k,m) . (8.4)

Wei et al. (1990) showed that Eq. 8.3 is fairly rapidly convergent and thus that a very

good approximation to an exact value given by Eq. 8.4 can be obtained by taking only a

few configurations σ. In particular, in what follows only a single structure is considered

which mimics best the random alloy. For a perfectly random binary alloy it can be

easily shown that

Π
R
(k,m) = 〈ΠR

(k,m)〉 = (2x − 1)k . (8.5)

Let Dm denote the number of neighbour sites in the mth shell. Then in a random binary

alloy of composition AxB1−x, the number of atoms of opposite type in the mth shell is

given by

OR
m = 2Dmx(1 − x) . (8.6)

In what follows, figures up to the 4th shell are checked for all possible configurations

in a 2 × 2 × 2 wurtzite supercell. Those corresponding best with a random alloy of the

same composition in terms of both, SCC (Eq. 8.5) and the numbers of neighbours of

opposite type (Eq. 8.6) are chosen for the subsequent studies.

8.1.2 SQS of 2×××2×××2 supercell of wurtzite material

As the topology of figures depends only on the geometrical configuration of atoms

within the unit cell they may change with changing composition x: big changes in

configuration of atoms may cause changes in the nearest-neighbour relations (some

atoms are no longer the nearest neighbours whereas some others become the nearest

neighbours of a given atom) which would lead to different figures. Fortunately, the c/a

ratio of neither AlGaN, InGaN, nor AlInN changes that much with composition x to be

able to cause changes in nearest-neighbour relations (i.e. the nearest-neighbour shells



8.1 Special quasi-random structures 124

up to the fourth order remain unchanged with x). Therefore, the estimated figures are

independent on composition x in the studied alloys.

The 2 × 2 × 2 supercell of wurtzite III-N structures is considered in the following. The

binary and pseudo-binary alloys are treated in the same way within the cluster expan-

sion theory. Therefore, the evaluation of figures is simplified by omitting the nitrogen

atoms. The figures are described using numbered atom sites as shown in Fig. 8.1.

Atoms in dark red colour correspond to the actual atoms in the supercell, the pink

ones are their periodic expansion.
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Figure 8.1 : Numbered atom sites in a 2× 2× 2 supercell of the wurtzite III-N structure.

(1,0) figures

This figure corresponds to single atom sites (the figure consists of only one vertex).

Therefore, the average value of SCC is

Π(1,0)(σ) =
1 × (number of Al atoms) + (−1) × (number of Ga atoms)

total number of atoms in the supercell
. (8.7)

(2,1) figures

This figure includes pairs of atom sites in the nearest neighbour distance. All inequiv-

alent pairs contributing to this figure are listed in Table 8.1.

Each of these pairs corresponds to two identical figures (each time located on a differ-

ent atom). Because SCC is an average value over all pairs and each pair has the same



8.1 Special quasi-random structures 125

{1, 6} {1, 7} {1, 8} {1, 14} {1, 15} {1, 16} {2, 5} {2, 7} {2, 8} {2, 13}
{2, 15} {2, 16} {3, 5} {3, 6} {3, 8} {3, 13} {3, 14} {3, 16} {4, 5} {4, 6}
{4, 7} {4, 13} {4, 14} {4, 15} {5, 10} {5, 11} {5, 12} {6, 9} {6, 11} {6, 12}
{7, 9} {7, 10} {7, 12} {8, 9} {8, 10} {8, 11} {9, 14} {9, 15} {9, 16} {10, 13}
{10, 15} {10, 16} {11, 13} {11, 14} {11, 16} {12, 13} {12, 14} {12, 15}

Table 8.1 : All inequivalent pairs contributing to the (2, 1) figure.

weight, the formula for SCC of this figure is

Π(2,1)(σ) =
1

48 ∑
{i,j}∈Table 8.1

ŜiŜj . (8.8)

As each atom site under consideration has six nearest neighbours, the degeneracy co-

efficient is D(2,1) = 6.

(2,2) figure

Pairs of atoms corresponding to this figure are separated by the second nearest neigh-

bour distance. These are the nearest atoms within the (0001) planes. Similarly to the

case of the (2, 1) figure, the SCC is given by

Π(2,2)(σ) =
1

24 ∑
{i,j}∈Table 8.2

ŜiŜj (8.9)

where all inequivalent pairs are listed in Table 8.2. Due to the periodic boundary con-

ditions in the (0001) planes imposed by the 2 × 2 × 2 supercell, each pair in Table 8.2

corresponds to four placements of this figure: two at each of the two vertices. Each

atom site has six second nearest neighbours and thus D(2,2) = 6.

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {5, 6} {5, 7}
{5, 8} {6, 7} {6, 8} {7, 8} {9, 10} {9, 11} {9, 12} {10, 11}
{10, 12} {11, 12} {13, 14} {13, 15} {13, 16} {14, 15} {14, 16} {15, 16}

Table 8.2 : All inequivalent pairs contributing to the (2, 2) figure.

(2,3) figure

The neighbours in the third nearest neighbour shell are atoms in the (0001) planes im-

mediately above and below the (0001) plane containing the atom under consideration.

Due to the periodicity and size of the supercell, all three sites in the upper plane are of
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the same kind. The same holds for the atoms in the bottom plane. Thus, each pair in

Table 8.3 represents in fact six different placements of this figure: three for each of the

two vertices. It follows the degeneracy coefficient in this case is D(2,3) = 6. The SCC

corresponding to this figure is given by

Π(2,3)(σ) =
1

16 ∑
{i,j}∈Table 8.3

ŜiŜj . (8.10)

{1, 5} {1, 13} {2, 6} {2, 14} {3, 7} {3, 15} {4, 8} {4, 16}
{5, 9} {6, 10} {7, 11} {8, 12} {9, 13} {10, 14} {11, 15} {12, 16}

Table 8.3 : All inequivalent pairs contributing to the (2, 3) figure.

(2,4) figure

The fourth nearest neighbours are the atoms straight above and below the considered

atom site, i.e. in the 〈0001〉 direction. Again, due to the periodicity imposed by the

size of the supercell, both sites are occupied by the same atom. Therefore, each of the

pairs listed in Table 8.4 represents four placements of this figure: two for each of the

two vertices. The SCC corresponding to this figure is

Π(2,4)(σ) =
1

8 ∑
{i,j}∈Table 8.4

ŜiŜj (8.11)

and the degeneracy is D(2,4) = 2.

{1, 9} {2, 10} {3, 11} {4, 12} {5, 13} {6, 14} {7, 15} {8, 16}

Table 8.4 : All inequivalent pairs contributing to the (2, 4) figure.

(3,1) figure

There are no such figures. Atoms in the nearest neighbour distance are the closest

neighbours lying in two adjacent (0001) planes. Assume {α, β} is such a pair of atom

sites. The nearest neighbour γ to β is either in the same plane as α, in which case the

distance between α and γ is at least the second nearest neighbour distance, or lies in

the other adjacent (0001) plane to the plane containing β. In that case, the distance

between α and γ is at least two (0001) inter-planar distances, i.e. at least the fourth

nearest neighbour distance.
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(3,2) figure

There are three different figures with atom sites separated up to second neighbour dis-

tance as shown in Fig. 8.2. The second configuration (Fig. 8.2b) is not possible to obtain,

though. It follows from the discussion of the figure (2, 2) that atom sites in the second

nearest neighbour distance lie in the same (0001) plane whereas those separated by the

first nearest neighbour distance lie in two different, adjacent (0001) planes. Figure 8.2b

implies that α lies in the same (0001) plane as β which is in the same (0001) plane as

γ. However, γ and α are in two different adjacent (0001) planes, which contradicts the

earlier statement.

a) b) c)

Figure 8.2 : Three theoretically possible (3, 2) figures. However, only the a) and c)
configurations are realisable for wurtzite materials.

The figure (3, 2)a (see Fig. 8.2a) consists of two atoms being in the same (0001) plane

and the third one being their common nearest neighbour lying in the adjacent (0001)

plane. All inequivalent triplets of atomic sites corresponding to this figure are listed in

Table 8.5. Each of the triplets corresponds to three different placements of this figure:

each time located at one of its vertices. The degeneracy coefficient is Da
(3,2)

= 18.

{1, 7, 8} {1, 6, 7} {1, 6, 8} {1, 14, 15} {1, 14, 16} {1, 15, 16} {1, 2, 8} {1, 4, 6}
{1, 3, 6} {1, 2, 16} {1, 4, 14} {1, 3, 14} {1, 2, 7} {1, 4, 7} {1, 3, 8} {1, 2, 15}
{1, 4, 15} {1, 3, 16} {2, 5, 7} {2, 5, 8} {2, 7, 8} {2, 13, 15} {2, 13, 16} {2, 15, 16}
{2, 3, 5} {2, 4, 5} {2, 3, 13} {2, 4, 13} {2, 3, 8} {2, 4, 7} {2, 3, 16} {2, 4, 15}
{3, 5, 6} {3, 5, 8} {3, 6, 8} {3, 13, 14} {3, 13, 16} {3, 14, 16} {3, 4, 6} {3, 4, 5}
{3, 4, 14} {3, 4, 13} {4, 5, 6} {4, 5, 7} {4, 6, 7} {4, 13, 14} {4, 13, 15} {4, 14, 15}
{5, 10, 11} {5, 10, 12} {5, 11, 12} {5, 6, 11} {5, 8, 11} {5, 7, 12} {5, 6, 12} {5, 8, 10}
{5, 7, 10} {6, 9, 12} {6, 9, 11} {6, 11, 12} {6, 7, 12} {6, 8, 11} {6, 7, 9} {6, 8, 9}
{7, 9, 10} {7, 9, 12} {7, 10, 12} {7, 8, 9} {7, 8, 10} {8, 9, 10} {8, 9, 11} {8, 10, 11}
{9, 14, 15} {9, 14, 16} {9, 15, 16} {9, 10, 16} {9, 12, 14} {6, 11, 14} {9, 10, 15} {9, 12, 15}
{9, 11, 16} {10, 13, 15} {10, 13, 16} {10, 15, 16} {10, 11, 13} {10, 12, 13} {10, 11, 16} {10, 12, 15}
{11, 13, 14} {11, 13, 16} {11, 14, 16} {11, 12, 14} {11, 12, 13} {12, 13, 14} {12, 13, 15} {12, 14, 16}

Table 8.5 : All inequivalent triples contributing to the (3, 2)a subfigure.
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{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {5, 6, 7} {5, 6, 8} {5, 7, 8} {6, 7, 8}
{9, 10, 11} {9, 10, 12} {9, 11, 12} {10, 11, 12} {13, 14, 15} {13, 14, 16} {13, 15, 16} {14, 15, 16}

Table 8.6 : All inequivalent triplets contributing to the (3, 2)b subfigure.

Three atom sites lying in the same (0001) plane forming the smallest possible equilat-

eral triangle correspond to the figure (3, 2)b depicted in Fig. 8.2c. Each atom site is a

vertex belonging to six triangles; due to the periodicity and the size of the supercell,

each triplet of vertices from Table 8.6 corresponds to six such triangles: two for each of

its three vertices. The degeneracy for this subfigure is Db
(3,2)

= 6. The SCC correspond-

ing to this figure is given by

Π(2,3)(σ) =
1

96 + 2 × 16



 ∑
{i,j,k}∈Table 8.5

ŜiŜjŜk + 2 ∑
{i,j,k}∈Table 8.6

ŜiŜjŜk



 . (8.12)

(3,3) figure

There are six topologically inequivalent subfigures, all shown in Fig. 8.3. Neverthe-

less, only one of them can be realised in the wurtzite structures. The argument, why

none of the subfigures in Fig. 8.3a, 8.3d and 8.3f can exist, is exactly the same as the

one used for the figure (3, 1). The non-existence of the subfigure in Fig. 8.3c can be

proved in the same way as for subfigure in Fig. 8.2b. Lastly, each position of any near-

est neighbour atom pair within the (0001) plane (i.e. atoms within the second nearest

neighbour distance) have different nearest neighbours within the third nearest neigh-

bour distance. Therefore, neither the subfigure Fig. 8.2e exists. The only remaining

subfigure contributing to the (3, 3) figure is thus the one in Fig. 8.3b.

a) b) c)

e) f)d)

Figure 8.3 : Six theoretically possible (3, 3) figures: only one of them is realisable.
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Due to the periodicity in the (0001) planes imposed by the 2 × 2 × 2 supercell, each of

the triplets listed in Table 8.7 corresponds to 6 placements of this figure: for each of the

three vertices. The total degeneracy of this figure is D(3,3) = 36 and the corresponding

SCC is

Π(3,3)(σ) =
1

96 ∑
{i,j,k}∈Table 8.7

ŜiŜjŜk . (8.13)

{1, 2, 5} {1, 4, 5} {1, 2, 13} {1, 4, 13} {1, 2, 6} {1, 4, 8} {1, 2, 14} {1, 4, 16}
{1, 3, 5} {1, 3, 13} {1, 3, 7} {1, 3, 15} {2, 4, 6} {2, 4, 14} {2, 3, 6} {2, 3, 14}
{2, 4, 8} {2, 4, 16} {2, 3, 7} {2, 3, 15} {3, 4, 7} {3, 4, 15} {3, 4, 8} {3, 4, 16}
{1, 8, 5} {1, 7, 5} {1, 6, 5} {1, 16, 13} {1, 15, 13} {1, 14, 13} {2, 5, 6} {2, 6, 8}
{2, 6, 7} {2, 13, 14} {2, 14, 16} {2, 14, 15} {3, 7, 8} {3, 5, 7} {3, 6, 7} {3, 15, 16}
{3, 13, 15} {3, 14, 15} {4, 6, 8} {4, 7, 8} {4, 5, 8} {4, 14, 16} {4, 15, 16} {4, 13, 16}
{5, 6, 9} {5, 7, 9} {5, 8, 9} {5, 6, 10} {5, 7, 11} {5, 8, 12} {5, 9, 10} {5, 9, 12}
{5, 9, 11} {6, 7, 11} {6, 7, 10} {6, 8, 10} {6, 8, 12} {6, 9, 10} {6, 10, 11} {6, 10, 12}
{7, 8, 11} {7, 8, 12} {7, 10, 11} {7, 11, 12} {7, 9, 11} {8, 11, 12} {8, 9, 12} {8, 10, 12}
{9, 10, 13} {9, 10, 14} {9, 11, 13} {9, 11, 15} {9, 12, 13} {9, 12, 16} {9, 13, 16} {9, 13, 14}
{9, 13, 15} {10, 11, 14} {10, 11, 15} {10, 12, 14} {10, 12, 16} {10, 13, 14} {10, 14, 15} {10, 14, 16}
{11, 12, 15} {11, 12, 16} {11, 14, 15} {11, 16, 15} {11, 13, 15} {12, 15, 16} {12, 13, 16} {12, 14, 16}

Table 8.7 : All inequivalent triplets contributing to the (3, 3) figure.

(4,1) figure

This does not exist for similar reasons that the figure (3, 1) does not exist: if three ver-

tices cannot be fit into the wurtzite structure in such a way that all distances between

them are the nearest neighbour distances, there is no way of adding one more atom

site into the consideration and to fulfil the same requirement.

(4,2) figure
(0001) plane

Figure 8.4 : The pyramid constitut-
ing the (4, 2) figure.

The fact that the figures (3, 1) and (3, 2)b have

no real meaning for wurtzite structures re-

duces the number of possibilities for the (4, 2)

figures significantly. In fact, the only remain-

ing possibility is a pyramid with base in the

(0001) plane and an apex in an adjacent (0001)
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plane as shown in Fig. 8.4. Each of the groups listed in Table 8.8 corresponds exactly to

four placements of this figure, each time located on different apexes. The degeneracy

of this figure is D(4,2) = 8 and the SCC is given by

Π(4,2)(σ) =
1

32 ∑
{i,j,k,l}∈Table 8.8

ŜiŜjŜkŜl . (8.14)

{1, 6, 7, 8} {1, 14, 15, 16} {2, 5, 7, 8} {2, 13, 15, 16} {3, 5, 6, 8} {3, 13, 14, 16}
{4, 5, 6, 7} {4, 13, 14, 15} {9, 6, 7, 8} {9, 14, 15, 16} {10, 5, 7, 8} {10, 13, 15, 16}
{11, 5, 6, 8} {11, 13, 14, 16} {12, 5, 6, 7} {12, 13, 14, 15} {5, 2, 3, 4} {6, 1, 3, 4}
{7, 1, 2, 4} {8, 1, 2, 3} {5, 10, 11, 12} {6, 9, 11, 12} {7, 9, 10, 12} {8, 9, 10, 11}
{13, 2, 3, 4} {14, 1, 3, 4} {15, 1, 2, 4} {16, 1, 2, 3} {13, 10, 11, 12} {14, 9, 11, 12}
{15, 9, 10, 12} {16, 9, 10, 11}

Table 8.8 : All inequivalent groups of four sites contributing to the (4, 2) figure.

8.1.3 Chosen configurations for ternary III-N alloys

All relevant configurations for each composition x were investigated. The set of SCC

corresponding to the figures discussed above was evaluated for each configuration.

These were subsequently compared with those of the random alloy of the same com-

position and the best matching structures were selected3. At the same time, average

numbers of nearest neighbours of opposite type in the first four nearest neighbour

shells were calculated and compared with the prediction (Eq. 8.6) for the random al-

loys3. It is worth noting that in this case all structures with the SCC best matching

those of the random alloy for a given composition x, have the same set of the numbers

of nearest neighbours. One representative for each composition was selected from the

set of the best matching structures (which are in terms of the used model equivalent).

The selected SQS for various compositions are listed in Table 8.9.

8.2 Nitrogen K-edge ELNES of III-nitride alloys

8.2.1 Computational details

Wien2k code (Blaha et al., 2000) was used to calculate the ground state and excited (core

hole) charge densities of III-nitride alloys within the framework of the density func-

tional theory (Hohenberg and Kohn, 1964; Kohn and Sham, 1965). The computational

3Detailed values are given in Appendix. See Table C.1 and C.2.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x = 0.0000 Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga

x = 0.0625 Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Al

x = 0.1250 Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Al Ga Ga Al Ga

x = 0.1875 Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Ga Al Ga Ga Al Al

x = 0.2500 Ga Ga Ga Ga Ga Ga Ga Al Ga Ga Al Al Ga Al Ga Ga

x = 0.3125 Ga Ga Ga Ga Ga Ga Ga Al Ga Ga Al Al Ga Al Ga Al

x = 0.3750 Ga Ga Ga Ga Ga Ga Al Al Ga Al Ga Al Ga Al Al Ga

x = 0.4375 Ga Ga Ga Al Ga Ga Al Ga Ga Ga Al Al Al Al Ga Al

x = 0.5000 Ga Ga Ga Al Ga Ga Al Ga Ga Al Al Al Al Ga Al Al

x = 0.6250 Ga Ga Ga Al Ga Al Al Al Al Ga Al Al Al Al Ga Al

x = 0.6875 Ga Ga Al Al Ga Al Ga Al Ga Al Al Al Al Al Al Al

x = 0.7500 Ga Ga Al Al Ga Al Al Al Al Al Al Al Al Al Ga Al

x = 0.8125 Ga Ga Al Al Ga Al Al Al Al Al Al Al Al Al Al Al

x = 0.8750 Ga Al Al Al Al Ga Al Al Al Al Al Al Al Al Al Al

x = 0.9375 Ga Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al

x = 1.0000 Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al Al

Table 8.9 : Selected quasi-random structures best matching the SCC and number of
opposite type neighbours to the random alloy. Numbers represent atom sites in the
2 × 2 × 2 supercell as shown in Fig. 8.1.

parameters were the same as those for binary compounds summarised in section 7.2:

GGA approximation to the exchange-correlation potential parametrised by Perdew

et al. (1996), l-expansion up to lmax = 10, MTS radii from Table 7.1 and unit cell param-

eters obtained using Vegard’s law with the boundary values corresponding to those

binary compounds given in Table 7.1. As the cut-off parameter was used RMTKmax = 5

based on a similar test as discussed in section 7.2. The number of k-points in the whole

first Brillouin zone was 250 which corresponds approximately to the same density of

k-points as 4 000 k-points in the case of the unit cell.

The theoretical ELNES in this chapter were calculated employing parameters corre-

sponding to the experimental conditions (Cherns, 2007): electron beam energy 200 keV,

convergence semi-angle of 4.7 mrad, collection semi-angle of 0.2 mrad. A value of

0.4 eV was used for spectrometer broadening of the calculated spectra. All spectra

are directionally averaged.
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8.2.2 Ground state evolution of the N K-edge

ELNES is highly sensitive to the local environment of a particular atom on which the

energy loss takes place. In the simple cases of AlN, GaN and InN, all nitrogen atoms

have exactly the same local neighbourhood (i.e. they are equivalent) and thus the N

K-edge ELNES is unique. A different situation occurs with alloys: the local environ-

ment differs from nitrogen to nitrogen. Therefore, ELNES N K-edge spectra were cal-

culated for all individual atoms in the supercell and the final spectrum was obtained

by averaging them. Apart from the x = 0.125 and x = 0.875 supercells, all nitrogen

atoms in the supercells are inequivalent and thus their contribution to the final spectra

is the same. In the cases of x = 0.125 and x = 0.875, there are four pairs of equivalent

atoms. Each of the spectra corresponding to these pairs was thus counted twice into

the final averaged spectrum.

a) Al0.625Ga0.375N
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Figure 8.5 : N K-edge ELNES for a) Al0.625Ga0.375N and b) Al0.125Ga0.875N. The spectra
were calculated for all non-equivalent atoms in the supercell and were subsequently
averaged.
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Examples of N K-edge ELNES are shown in Fig. 8.5a for x = 0.625 and in Fig. 8.5b

for x = 0.125. Strong variations between graphs for different atoms can be observed

which justifies the need for explicit calculation of all of them in order to obtain the final

spectrum. The labels in Fig. 8.5 emphasise the fact the curves correspond to different

N atoms (labelled 1 to 12 or 16) which make up half of the total number of inequivalent

atoms in a supercell (24 or 32).

Figure 8.6 shows the evolution of the N K-edge of AlxGa1−xN, InxGa1−xN and

AlxIn1−xN as obtained from the ground state calculations. It was concluded in the

previous chapter (section 7.3.1) that GaN and InN behave very similarly in terms of

the N K-edge. This is confirmed also in Fig. 8.6c with the evolution of the N K-edge of

InxGa1−xN alloy. The central peak at about 6–8 eV above the top of valence band (in

these calculations) dominates for all values x. The most significant variation thus is a

diminution of the “shoulder” on the high energy side of this peak, as x varies from 0

to 1.

A qualitatively different behaviour can be observed for AlxGa1−xN and AlxIn1−xN

(Figs 8.6a and 8.6b): in both cases a transition from a single peak spectrum for x = 0

to a triple peak spectrum for x = 1 is observed. The reasons for this were discussed

in section 7.3.3. Yet another observation is that the energy onset moves significantly

towards lower energies with increasing (average) atomic number Z. This effect is most

profound in the case of AlInN (Fig. 8.6b).
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Figure 8.6 : Evolution of N K-edge ELNES for a) AlxGa1−xN, b) AlxIn1−xN, and
c) InxGa1−xN as obtained from the ground state calculations.
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8.2.3 Core hole calculations of the N K-edge

Figure 8.7 shows the evolution of AlxGa1−xN, AlxIn1−xN and InxGa1−xN N K-edge

as calculated using the 0.5 e partial core hole. The binary compounds of pure AlN and

GaN were calculated with different cut-off energies Emax (for searching the eigenvalues

of the Hamiltonian, see section 5.2) and thus the “tail” region from about 20 eV above

top of valence band is not present. Lower Emax speeds up calculations but, in turn it

limits the range for ELNES calculations.

Similar trends to those discussed for the ground state calculation in section 8.2.2 can be

observed. The transition from a single central peak to a triple peak character spectrum

in the case of AlGaN (Fig. 8.7a) and AlInN (Fig. 8.7b) takes place only at a quite high Al

fraction, at about x ≈ 0.75. On the other hand, the single peak character persists with

only small changes up to x ≈ 0.5. N K-edge evolution of InGaN (Fig. 8.7c) becomes

even less interesting than in the ground state case as the high energy shoulder at the

GaN end is partly transferred into the central peak as a consequence of the presence of

a core hole (see discussion in section 7.3.2).
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Figure 8.7 : Evolution of N K-edge ELNES for a) AlxGa1−xN, b) AlxIn1−xN, and
c) InxGa1−xN as obtained from the partial core hole (0.5 e) calculations.

Figure 8.8 shows evolution of ELNES N K-edge of wurtzite AlxGa1−xN for different

aluminium fractions x using the ground state, partial (0.5 e) and full core hole calcula-

tions. Two experimental data sets (Cherns, 2007; Holec et al., 2008a) from two different

microscopes are also shown for comparison. Better agreement of the calculated with

experimental spectra is obtained for the Cambridge data set (Cherns, 2007) which was
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Figure 8.8 : Simulated and experimental evolution of N K-edge ELNES of AlxGa1−xN:
a) ground state, b) partial core-hole, c) full core-hole calculation and experimental data
obtained at d) Delft (Holec et al., 2008a) and e) Cambridge (Cherns, 2007).

obtained on a microscope with a lower energy resolution. This somewhat surprising

result is probably due to the fact that the theoretical spectra were calculated using the

acquisition parameters of the Cambridge experimental setup. As was demonstrated in

section 7.3.5, directionally resolved ELNES present small but important variations in

spectra with high energy resolution. Thus, better agreement of theory with spectra of

Holec et al. (2008a) with energy resolution as good as 0.1 eV is expected for the direc-

tionally resolved ELNES calculations and the actual parameters corresponding from

the experiment.
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8.2.4 Dependence of ELNES on the local nitrogen atom environ ment

The supercell representing the Al0.5Ga0.5N structure is shown in Fig. 8.9. By focus-

ing on the four nearest neighbours of each nitrogen atom it can be observed that in

this supercell there are several different variants of possible neighbourhoods. These

are schematically shown in Fig. 8.10 and can be divided into subsets according to the

number of Ga and Al atoms. Further, they are subdivided according to the bond along

the c-axis; all the other three bonds are equivalent. Five groups containing in total eight

subgroups are listed in Table 8.10.

4 Al 3 Al, 1 Ga 2 Al, 2 Ga 1 Al, 3 Ga 4 Ga

N5(21) N3(19) N1(17) N4(20) N15(31)

N7(23) N12(28) N9(25)

N10(26) N14(30) N13(29)

N16(32) N2(18) N6(22)

N8(24)

N11(27)

Table 8.10 : Different nitrogen atom environments grouped by their similarity.

Fig. 8.11 shows N K-edge ELNES for Al0.5Ga0.5N as resulting from the ground state,

partial core hole (0.5 e) and full core hole calculation. The ELNES spectra were cal-

culated for various nitrogen atoms and were subsequently grouped according to the

above discussed division of nitrogen atoms (see Table 8.10). Notice that in all these

cases, the spectra corresponding to nitrogen atoms from one group are very similar

despite the fact that the overall variation of ELNES for different nitrogen atoms is sig-

nificant. This corresponds well with the fact that ELNES depends strongly on the local

environment, and also justifies the use of SQSs with “only” 32 atoms. The small varia-

tions in spectra from within one group may be ascribed to the influence of more distant

atoms.

8.3 Summary and conclusions

The concept of the special quasi-random structures as described by Wei et al. (1990)

was employed to select 2 × 2 × 2 supercells containing 32 atoms to represent wurtzite

structures of various compositions. These were subsequently used for the calculation
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Figure 8.9 : A 2 × 2 × 2 supercell representing Al0.5Ga0.5N.
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Figure 8.10 : Local environments of 16 nitrogen atoms in 2 × 2 × 2 supercell of
Al0.5Ga0.5N.
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Figure 8.11 : Dependence of the shape of N K-edge ELNES of Al0.5Ga0.5N on the local
nitrogen atom’s environment. The bottom curve corresponds to the nitrogen atom
surrounded with 4 Al, whereas the second curve from top corresponds to the nitrogen
atom surrounded with 4 Ga atoms. The top curve is the final N K-edge ELNES as
obtained by averaging. Graphs correspond to the a) ground state, b) partial core-hole,
and c) full core-hole calculations.

of ELNES N K-edge evolution of AlxGa1−xN, AlxIn1−xN, and InxGa1−xN ternary al-

loys. The used methodology proved to be able to reasonably reproduce experimental

results. Some discrepancies between theory and experiment were found in the case of

experimental data with a better energy resolution. These were primarily ascribed to

using the directionally averaged ELNES calculation together with a higher broadening

parameter which smeared some of the fine features seen in experimental spectra with

the high energy resolution.

All the present calculations were done for unrelaxed structures due to limited comput-

ing resources. This is an obvious drawback of the present work – the electronic struc-

ture, PDOS and thus ELNES is expected to change a bit after the relaxation. However,

this effect is not large as the parameters used for the supercell geometries are results

of other theoretical calculations published in the literature which included relaxation.

More discussion on this topic is given in the next chapter.

The calculations were done employing GGA. It is known that GGA, and DFT in gen-

eral, gives wrong predictions for the band gap by several eVs. As a consequence, edge

onsets are not accurate and are expected to be wrong by about 6 eV for the N K-edge
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(Muller, 2006). This is, for example, seen in Fig. 8.7c where the edge onset for x = 1

is cut off. Muller (2006) showed that much better agreement (within ≈ 1.5 eV) can

be obtained for spin-polarised calculations. Apart from the standard DFT, some re-

cently developed techniques such as perturbation GW method or time dependent DFT

are expected to give better results as they implicitly work with excited states. Their

utilisation goes beyond the scope of the current work. However, it would certainly be

interesting to apply them to the methodology described here and to investigate what

improvement could be achieved.



Chapter 9

Strain effects on ELNES and the band

gap of AlGaN ternary alloys

9.1 Introduction

Due to different lattice constants of AlN and GaN compounds, the hetero-epitaxy of

AlN/AlxGa1−xN/GaN leads to either strained (unrelaxed) layers, fully relaxed lay-

ers or most often partially relaxed layers (the latter two being defective). As a conse-

quence, thin epilayers with varying Al fraction are often under either tensile or com-

pressive strain (depending on a particular sample/device design).

Electron energy loss near edge structure (ELNES), described in chapter 6, is known to

reflect the electronic structure of materials. As discussed there, the fine structure of the

ELNES edge is given by the projected density of states (PDOS). Therefore, the PDOS

can be used as an approximation to the corresponding ELNES fine structure.

Keast et al. (2003) reported on an experimental and theoretical study of strain effects

in the N K-edge of ELNES in InGaN alloys. In particular, they concluded that strain

enhances the effects of N K-edge evolution due to changing the In fraction. In addi-

tion, the edge onset was observed to shift towards lower energies with respect to the

central peak due to strain. Several papers reporting in detail on both experimental and

theoretical ELNES of the N K-edge in AlN, GaN and/or AlGaN have been published

(Radtke et al., 2003, 2004; Mizoguchi et al., 2003, 2004; Gao et al., 2004; Holec et al.,

2008a). However, none of these works mentions the effect of strain which is almost

certainly present in the experimental epitaxial samples.

In this chapter first principle calculations of AlN, GaN and their ternary alloy AlGaN

are reported on. Strain effects on the projected density of states for several deformation

modes are investigated aiming to predict the actual influence on the N K-edge. The

140
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conclusions are subsequently confirmed by calculations of the actual ELNES in some

special cases. In the end is discussed how the band gap depends on the strain state in

the material. The following results were obtained in collaboration with the Max-Planck

Institut für Eisenforschung in Düsseldorf, Germany.

9.2 Methodology

9.2.1 Calculation details

The calculations were carried out using the density functional theory as implemented

in the plane wave pseudopotential code S/PHI/nX (Boeck et al., 2003). Troullier-Martin

pseudopotentials (Troullier and Martins, 1991) with the plane-wave cutoff of 70 Ry

were used. The parametrisation of Perdew et al. (1996) to the generalised gradient ap-

proximation (GGA) was utilised for the exchange-correlation scheme. An equivalent

of 6× 6× 2 Monkhorst-Pack k-point sampling (Monkhorst and Pack, 1976) for the unit

cell was applied. All structures were optimised by a state-by-state conjugate gradient

minimisation scheme developed by Payne et al. (1992). The energy convergence factor

was set to 10−9 Hartree and the mixing method of Pulay (1980) was used for the charge

density mixing. The full relaxation of the lattice parameters and internal coordinates

was ensured for all the structures.

Binary and ternary alloys were described as 1 × 1× 1 and 2× 2 × 1 supercells, respec-

tively. In order to mimic a random structure within a finite-size supercell with pe-

riodic boundary conditions, the theory of special quasi-random structures (SQS) was

employed (Wei et al., 1990). Specifically, the SQS for Al0.5Ga0.5N was adopted after

Lymperakis (2005). The specific configurations of the Al0.25Ga0.75N and Al0.75Ga0.25N

SQSs were derived using the same approach and are visualised in Fig. 9.1.

PDOS was calculated for all atoms and for all s, p and d angular components, although

only p-PDOS is discussed here. The number of empty states was 30. The energy range

Ga

Al

N

a) b) c)

Figure 9.1 : Configurations of atoms in SQS of ternary alloys: a) Al0.25Ga0.75N
b) Al0.5Ga0.5N c) Al0.75Ga0.25N.
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used in our calculations was from 0 eV to 30 eV sampled with 3 000 points. The top of

the valence band after the self-consistent calculations of charge density was ≈1–5 eV.

Therefore, the chosen range guarantees coverage of the unoccupied states up to 20 eV,

which is the most interesting range for ELNES. The 2.5 Bohr cut-off radius as radial

localisation and 0.01 Bohr smearing factor was used. The Gaussian broadening was

0.05 eV.

All band gaps in the section 9.3.3 were evaluated at the Γ-point.

The all electron full potential Wien2k code (Blaha et al., 2000) was used for the calcu-

lations of actual ELNES spectra of binary alloys. The GGA-PBE parametrisation with

up to 4 000 k-points in the unit cell was used. A 2 × 2 × 2 supercell was utilised for the

core hole calculations.

9.2.2 Deformation modes

The ground state wurtzite structures were optimised by the multiple step process.

First, the lattice constant a, the ratio c/a and the internal parameter u were optimised.

The ideal c/a ratio (
√

8/3) and the parameter u = 3/8 were assumed for the initial

geometry. The equilibrium volume was determined by variation of the a and c param-

eters. The optimal value of parameter u was guaranteed by the full relaxation of the

atomic coordinates during each calculation.

Several deformation modes were simulated in order to determine a response of the

PDOS spectra to the strain in structures. These were the uni-axial strain along the c-

direction, bi-axial strain in the c-plane, deformation with keeping the unit cell volume

V0 constant, and the bi-axial stress case with σzz = 0. They are shown schematically in

Fig. 9.2 and the ranges for deformations are given in Table 9.1. The first two uni-axial

deformation modes are difficult to realise experimentally, however they are useful for

a) b) c) d)εzz

εxx εxx
εxx

εzz

σzz=0GPa

εzz

Figure 9.2 : Deformation modes investigated in this paper: a) uni-axial strain along
the c-direction, b) bi-axial strain in the c-plane, c) deformation with constant unit cell
volume V0, and d) bi-axial stress with σzz = 0.
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understanding the more complex and more realistic deformation modes. The different

deformations were controlled by variation of corresponding lattice parameters. The

absolute strain values about 0.01 correspond approximately to unrelaxed Al0.5Ga0.5N

on either GaN or AlN and thus are perfectly realistic.

a) b) c) d)

a = const. ↔ a ↔ a ↔ a

l c c = const. l c l c (relaxed)

ǫmin
xx 0.000 −0.012 −0.012 −0.012

ǫmax
xx 0.000 0.012 0.012 0.012

ǫmin
zz −0.023 0.000 −0.023 −0.006

ǫmax
zz 0.024 0.000 0.024 0.007

σmin
xx [GPa] −8.75 −2.18 −6.45 −8.14

σmax
xx [GPa] 8.57 2.30 6.40 7.97

σmin
zz [GPa] −2.26 −8.00 −5.79 0.00

σmax
zz [GPa] 2.21 8.47 6.21 0.00

Table 9.1 : Ranges of strains and stresses used in the present calculations. a) Uni-
axial strain along the c-direction, b) bi-axial strain in the c-plane, c) deformation with
constant unit cell volume V0, and d) bi-axial stress with σzz = 0.

9.3 Discussion of results

9.3.1 Projected density of states

The site and symmetry projected density of unoccupied states (PDOS) up to 15–20 eV

above the top of the valence band was calculated for all four deformation modes and

five Al fractions. Since the PDOS is highly sensitive to the local atom environment, it

varies for different N sites in the alloy. The electron loss process can take place on all

of these atoms with the same probability. As a consequence, the PDOSs were averaged

over all N atoms in order to obtain one representative spectrum for the bulk material.

Figure 9.3 shows N p-PDOS of unstrained GaN and AlN, and of AlN compressively

strained to ǫxx = −0.012 in the mode with constant unit cell volume. Dotted lines rep-

resent spectra with a small broadening parameter of 0.05 eV. Although many features

can be observed in the spectrum as well as the overall triple peak (AlN) and single

central peak (GaN) shape, it is very hard to extract any trends between them. A much

clearer picture of the main features is obtained for a bigger broadening of 1.0 eV (solid
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Figure 9.3 : Calculated N p-PDOS of a) relaxed GaN, b) relaxed AlN, and c) strained
AlN (see text for more details) using broadening of 0.05 eV (dotted lines) and 1.0 eV
(solid lines).

lines). As such shapes are much closer to what can be obtained experimentally, the rest

of this study focuses on the broadened spectra.

The evolution of unoccupied N p-states with aluminium fraction is shown in Fig. 9.4.

The structures were deformed using the constant unit cell volume mode in which the

tensile strain in the c-plane is coupled with the compressive strain along the c-direction

and vice versa. On the Al rich side (Fig. 9.4a and 9.4b) it is clearly observed that when

going from tension (ǫxx > 0) to compression (ǫxx < 0) in the c-plane (i) the first (at

about 6 eV) and third (at about 11–12 eV) peak sharpen and, (ii) at the same time the

second peak (at about 9–10 eV) diminishes. On the other hand, inspection of the Ga

rich side (Fig. 9.4e) reveals only very small strain induced variations in the spectrum

shape.

Figure 9.5 shows responses of the unoccupied N p-states of AlN to various deformation

modes. The uni-axial stain along the c-axis and the bi-axial strain in the c-plane are

depicted in Fig. 9.5a and 9.5b. It follows that the response is much more pronounced

in the case of the deformation along the c-direction than in the bi-axial strain case.
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Figure 9.4 : Unoccupied broadened N p-PDOS of AlxGa1−xN for a) x = 1, b) x = 0.75,
c) x = 0.5, d) x = 0.25, and e) x = 0 corresponding to the deformation mode with
constant unit cell volume.
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Figure 9.5 : Effect of various strain/stress modes on the unoccupied broadened N p-
PDOS of AlN: a) uni-axial strain along the c-direction (a was kept constant), b) bi-axial
strain in the c-plane (c was kept constant), c) deformation with unit cell volume kept
constant, and d) bi-axial stress in the c-plane with σzz = 0 GPa.

Fig. 9.5c corresponding to the deformation mode with constant unit cell volume reveals

the same behaviour as the uni-axial strain case. It can be concluded therefore, that in

this case, it is the deformation along the c-axis which is responsible for the spectral

changes. The last graph in Fig. 9.5d shows the PDOS redistribution in the bi-axial

stress state. In this case, the spectrum varies only slightly which is consistent with only

very small deformations along the c-axis (see Table 9.1).
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Apart from the changing peak shapes, systematic shifts of the peak positions are also

predicted. Table 9.2 lists energies and their differences for the main three peaks of AlN

in all the four deformation modes. In the uni-axial and bi-axial strain deformation

modes, the energy difference between the first and the second peak changes only very

little. The same holds also for the energy difference between the second and third peak

in the case of the bi-axial strain. In contrast, a shift as big as 0.7 eV over the chosen

strain range is obtained in the case of uni-axial deformation. The trends of these two

modes add up for the deformation with constant unit cell volume. Since the uni-axial

and bi-axial strain deformations act against each other (e.g. tensile strain along the

c-axis requires compressive strain in the c-plane), the distance of the second and third

peak varies only about 0.6 eV. At the same time, a pronounced effect on the distance

between the first and second peak is obtained. Finally, in the case of the bi-axial stress

deformation, the peak positions remain practically invariant.

ǫxx ǫzz E1 E2 E3 E2 − E1 E3 − E2 E3 − E1

[eV] [eV] [eV] [eV] [eV] [eV]

0.000 0.021 6.5 9.7 11.6 3.2 1.9 5.1

a = const. 0.000 0.000 6.6 9.8 12.0 3.2 2.2 5.4

0.000 −0.020 6.8 9.8 12.4 3.0 2.6 5.6

−0.010 0.000 6.8 10.0 12.3 3.2 2.3 5.5

c = const. 0.000 0.000 6.7 9.8 12.0 3.1 2.2 5.3

0.010 0.000 6.6 9.6 11.8 3.0 2.2 5.2

−0.010 0.021 6.6 9.9 11.8 3.3 1.9 5.2

V = const. 0.000 0.000 6.6 9.8 12.0 3.2 2.2 5.4

0.010 −0.020 6.7 9.6 12.1 2.9 2.5 5.4

−0.010 0.006 6.7 9.9 12.1 3.2 2.2 5.4

bi-axial stress 0.000 0.000 6.6 9.8 12.0 3.2 2.2 5.4

0.010 −0.005 6.6 9.6 11.9 3.0 2.3 5.3

Table 9.2 : Energies and relative distances between the first three peaks in N p-PDOS
in different deformation modes.

Lawniczak-Jablonska et al. (2000) and Radtke et al. (2004) showed that the π∗ anti-

bonding orbital corresponding to the N pz-PDOS and orientated along the c-axis con-

tributes mainly to the first and third peak of corresponding N K-edge ELNES, whereas

the in-plane σ∗ orbitals contribute to all three peaks. This is consistent with the above

described behaviour of the p-PDOS. Deformations along the c-axis are expected to in-

fluence mainly the pz states (the π∗ orbital), i.e. to change the intensity of the first and
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third peak. As a consequence, the relative intensities of the three peaks are expected to

change. On the other hand, deformations within the c-plane would affect mainly the

px + py states (σ∗ orbitals). Therefore, all three peaks would change in more or less the

same way, i.e. the relative intensities are not expected to vary significantly.

The above described observations have several implications. (i) The second peak in

the AlN triplet seems to be highly sensitive to strain along the c direction. (ii) Since the

physically most relevant strain/stress state for polar (Al,Ga)N material, the bi-axial

stress σxx = σyy 6= 0 GPa with σzz = 0 GPa, shows only a very weak dependence on

the actual strain, the experimental N K-edge of AlN is expected to be practically strain-

independent. The same behaviour was predicted for all studied alloys with different

Al fraction (not shown here). (iii) When switching from polar to non- and semi-polar

material, which are currently of a great experimental interest, the actual strain-induced

changes are expected to emerge due to different (and much more pronounced) defor-

mations along the c-axis.

9.3.2 Nitrogen K-edge ELNES

In order to confirm the conclusions drawn for N p-PDOS, the N K-edge ELNES spectra

for several special cases were calculated using the Wien2k code. The correlation be-

tween the PDOS and ELNES is shown in Fig. 9.6 for AlN and GaN. In these cases, the
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Figure 9.6 : Comparison of broadened unoccupied p-PDOS of nitrogen with N K-edge
ELNES: a) AlN and b) GaN.
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ELNES spectra correspond to ground state calculations (zero core hole), and thus are

compatible with the pseudopotential based PDOSs. The same features and the same

trends including sharpening the peaks, peak position shifts and relative peak intensity

changes are observed. Therefore, conclusions from the previous section are expected

to hold for N K-edge ELNES.

A series of N K-edge ELNES spectra for AlN and GaN under bi-axial stress with

σzz = 0 GPa was calculated. A core hole charge of 0.5 e was used for the calcula-

tions employing 2 × 2 × 2 supercells. The predictions for ELNES behaviour based on

p-PDOS are qualitative. Since the variations in p-PDOS in the case of the bi-axial stress

were only very small, it was concluded in the previous section that ELNES would not

be sensitive to strain in this deformation mode. However, the precise calculations of

ELNES do reveal some slight variations which, in principle, should be possible to ob-

serve experimentally.

The results of the calculations are shown in Fig. 9.7. The most pronounced variation

over the range of calculated deformations is the shift of the peak at about 25–30 eV,

highlighted by arrows in the figure. Unfortunately, the pseudopotential calculations

of p-PDOS did not cover this peak due to computational limitations. In both cases,

AlN and GaN, it can be observed the this peak shifts more than 2 eV when changing

from tensile ≈ 0.02 to compressive ≈ −0.02 strain. There is also a slight shift of the

edge onset energy for both materials. This is consistent with experimental observations

and theoretical results of Keast et al. (2003). The main three-peak structure of AlN

widens with increasing tensile strain. On the contrary, the second shoulder at about

13–14 eV appears in the GaN spectrum when changing from compression to tension in

the c-plane.

9.3.3 Band gap of strained AlGaN

AlN, GaN and their ternary alloy are direct band gap semiconductors (Shan et al.,

1999). Therefore, energy gaps between the top of the valence band and the bottom of

the conduction band at the Γ-point were calculated. The resulting values as functions

of the in-plane strain ǫxx in the bi-axial stress deformation mode are plotted in Fig. 9.8a.

The absolute values of band gap are underestimated by 1–2 eV when compared with

the experimental values. It can be observed that the band gaps are largest for com-

pressive strains in the c-plane and gradually decrease with ǫxx, changing through the

unstrained state to tension. The variations are as big as 0.2 eV and are largest for AlN,

decreasing slightly with decreasing Al fraction. The strains used in the present calcu-

lations correspond roughly to −8 GPa < σxx < 7 GPa.
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Figure 9.7 : Calculated strain-induced variations of the N K-edge ELNES: a) AlN and
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Figure 9.8 : a) Calculated band gap of AlxGa1−xN ternary alloy under bi-axial stress
with σzz = 0 GPa. b) Band gap of AlN in two different deformation modes (see text
for more details).

Shan et al. (1999) reported on the experimental determination of the band gap of the

ternary AlxGa1−xN alloy as a function of applied hydrostatic pressure. They observed

variations of about 0.2–0.3 eV for the range of applied hydrostatic pressures 0–9 GPa.

At the same time, the largest variations were observed in the sample with the largest

Al fraction. Although their deformation mode is different from the bi-axial stress used

in the present study, the results are in very good agreement.

Lastly, the band gap as a function of the in-plane strain ǫxx is plotted in Fig. 9.8b for

two different deformation modes, with the constant unit cell volume and for the bi-

axial stress with σzz = 0 GPa. In the bi-axial stress case, the dependence is linear

although the slope changes at about ǫxx = 0.005. The range of band gap values for

the constant volume deformation mode is practically the same, however the quality of

the dependence changes. The band gap increases when going from the compressively

strained structure to the unstrained structure, reaches a maximum value for slightly

tensile strain of about 0.003, and then decreases again. This result indicates that the

band gap is very sensitive to the actual type of the strain/stress state in the material.
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9.4 Conclusions

This chapter reports on first principle calculations of strained ternary AlxGa1−xN al-

loys employing pseudopotential and all-electron full-potential methods. In particu-

lar, the relationship between the broadened unoccupied N p-PDOS and the N K-edge

ELNES was studied. The following main conclusions were drawn:

• The second peak at just below 10 eV above the top of the valence band is highly

sensitive to deformations along the c-axis.

• The energy difference between the second and third peak varies with strain: it

increases when going from compressive to tensile strain. The variations are more

sensitive to deformation along the c-axis than to the strain in the c-plane.

• Only very small variations in the broadened N p-PDOS in the bi-axial stress mode

were observed. As a consequence, the N K-edge is expected to be mostly strain-

invariant in c-plane AlGaN structures in a bi-axial stress state. However, precise

calculations of theoretical N K-edge ELNES revealed some fine trends depending

on the applied strain.

• Strain-induced shape variations of the N K-edge ELNES are expected for the non-

and semi-polar material.

• The calculations also showed significant variations of the band gap, which

strongly depend on the actual strain state in the material.



Chapter 10

Conclusions and future work

10.1 Summary of results

This thesis presents an overview of theoretical materials modelling on two different

scales. The first part contains results of the general theory of dislocations in elastic con-

tinuum applied to wurtzite III-nitride material with a subsequent utilisation in studies

of dislocation behaviour in heterostructures. The second part deals with ab initio calcu-

lation of electronic properties of binary and ternary III-N compounds with respect to

the modelling of the electron energy loss near edge structures.

A summary of anisotropic theory of dislocations, as derived within the linear theory

of elasticity, was given in chapter 2. The derived formulae were used for investigation

of how geometrical properties of straight dislocations in an infinite medium differ in

hexagonal materials with respect to isotropic media. It was shown that the often used

argument “the screw-type dislocation has lower energy than the mixed- and edge-type

dislocations” does not hold in the case of wurtzite GaN. The second study focused on

an estimate of the energetically optimal dislocation line directions near a free surface of

a finite crystal. Here, the hexagonal theory predicts that the dislocation line along the

[0001] direction possesses the lowest energy configuration regardless of the dislocation

type which is in contrast to the isotropic theory where the (a + c)-type dislocations are

predicted to be inclined from the the [0001] direction.

In chapter 3, the equilibrium critical thickness for generation of misfit dislocations

of AlGaN/GaN and InGaN/GaN systems was calculated using the energy balance

model. This model was corrected for the hexagonal symmetry of wurtzite III-nitrides.

The best agreement with experimental data was obtained when the dislocation core

energy was included. The dislocation core energy had been taken from published

atomistic studies. This connection of continuum and atomistic level modelling was
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done here for the first time for III-nitrides and proved to be an important improvement

towards agreement of the predicted with the experimental results.

A 2D model for predicting the threading dislocation density reduction during the

growth of GaN was presented in chapter 4. The main purpose of the study was to

estimate qualitatively the influence of islands on the TDD reduction, and to investi-

gate trends linked to various parameters (such a geometry) of the proposed model.

A good qualitative agreement with experiments was obtained. Therefore it is believed

that the model as it stands, whilst highly simplified, is capable of qualitative predictions

of various trends.

Chapter 7 presented a systematic study of nitrogen K-edge electron energy loss near

edge structures of AlN, GaN and InN. The concept of the core hole was employed in

these studies. It was noted that the core hole is an appropriate approach to the approx-

imation of the excited state of a material using ground state density functional theory.

A comparison with several available experimental spectra from the literature revealed

that the best agreement is obtained for a core hole charge of about 0.6–0.7 e for AlN,

about 0.4–0.5 e for GaN and about 0.4 e for InN. The variations in N K-edge shape

with core hole charge were traced to rearrangement of the final p states of nitrogen.

Generally speaking, they move towards lower energies with increasing core hole

charge. This effect was ascribed to a weaker shielding effect in the presence of a core

hole (i.e. in the absence of a (fraction of a) core electron). Differences in bonding in

terms of the valence change density and the overlap of valence states of AlN, GaN,

and InN were discussed as well.

The concept of special quasi-random structures (SQS) was employed in chapter 8 to se-

lect 2× 2× 2 supercells containing 32 atoms to represent wurtzite structures of various

compositions. Although the SQS method is not new, a description of the supercells

for utilisation with the wurtzite III-nitrides is missing in the literature. These were

subsequently used for the calculation of ELNES N K-edge evolution of AlxGa1−xN,

AlxIn1−xN, and InxGa1−xN ternary alloys. The methodology employed proved to be

able to reasonably reproduce experimental results. A strong dependence on the near-

est neighbourhood of nitrogen atoms was found which we suggest justifies the use

of 2 × 2 × 2 supercells which are often regarded as too small for the core hole/alloy

calculations.

In the last chapter with results, chapter 9, first principle calculations of strained ternary

AlxGa1−xN alloys were reported. A study combining the advantages of the fast pseu-

dopotential methods (which are, however, unable to address the core electron prop-

erties) and the expensive all electron calculation was used. The relationship between
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the broadened unoccupied N p-PDOS and the N K-edge ELNES was studied for four

deformation modes (two uni-axial modes, a bi-axial mode and a mode with constant

volume). It was concluded that for the realistic values of bi-axial strain/stress the N

K-edge of AlGaN structures is influenced only very little. However, other deformation

modes predict much stronger dependence of ELNES on the actual strain state and thus

strain-induced shape variations of the N K-edge ELNES are predicted for the non- and

semi-polar material. The calculations also showed significant variations of the band

gap, which strongly depend on the actual strain state in the material.

10.2 Proposed future work

This work covers a wide range of problems. As a consequence, it leaves a long “to do”

list. In this section are suggested some directions of possible future studies based on

the conclusions of this work.

The critical thickness calculations are of a great interest for experimentalists. In order

to improve the current models (not only for III-nitrides), it would be interesting to ac-

count for the dislocation generation mechanism(s) and thus to provide a theory which

goes beyond the equilibrium critical thickness as presented here. Other interesting im-

provements would include the free surface (modification of the dislocation stress field)

and would address the differences in the material properties of substrates and epilay-

ers. However, the wide scatter of experimental data suggests that an important role is

played by the actual growth technique which goes beyond the theory of dislocations.

Another possible direction would be to try to incorporate into the model other defects

such as the V-pits.

The modelling of threading dislocation density reduction as described here was only

a small step towards a model capable of quantitative predictions. Future work may

include further studies on the effects of different parameters of the model as well as

new geometries (including different facets, different growth rates of the facets). In ad-

dition, using the knowledge gained with the 2D model, an importance advance can be

achieved by extending this model to 3D. Another significant improvement toward re-

alism would be to consider the actual dislocation–dislocation interactions. This would

involve calculation of dislocation stress fields and, in fact, employing some methods of

dislocation dynamics. Such work would involve a major effort in the development and

employment of new analytical and numerical methods and significant optimisation of

the code used for simulations. However, a model capable of quantitative predictions is

expected as an outcome.
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In the present calculations of ELNES, all the structures were unrelaxed due to limited

computing resources. This is an obvious drawback of the present work – the electronic

structure, PDOS and thus ELNES is expected to change after the relaxation. Therefore,

it would be interesting to see how much the III-nitrides properties actually change

after the relaxation is performed. It worth noting that the structures (the lattice and u

parameters) used here were taken from published studies in which the structures had

been optimised. As a consequence, no significant deviations are expected, certainly

not for the greatly broadened ELNES spectra. More interesting work could be done

with the strained effects. Band structures of the deformed materials should be studied

to reveal differences in electronic properties (e.g. if the band gap stays direct with the

deformation). Additionally, similar studies may be applied to other materials of inter-

est, namely InGaN and AlInN. Another possible improvement is to employ methods

such as GGA+U for more precise studies of the electronic structure.

With the steadily increasing computational power available it may become possible in

the near future to combine knowledge of the dislocation theory with ab initio calcula-

tions to study (electronic) properties of dislocations.



Appendix A

Convergence tests of the Wien2k

calculations

Convergence results of AlN and GaN calculations using the Wien2k code with respect

to the number of k-points and RMTKmax (as described in section 7.2).
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Figure A.1 : Dependence of the total density of states on the number of k-points and
RMTKmax for the ground state of a) AlN and b) GaN.
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a) AlN
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b) GaN
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Figure A.2 : Dependence of the N K-edge ELNES on the number of k-points and
RMTKmax for the ground state of a) AlN and b) GaN.



Appendix B

Features of the experimental N K-edge

ELNES of AlN and GaN

The following two tables provide data from the analysis of the experimental N K-edge

ELNES spectra of AlN and GaN as described in section 7.3.1. The data are graphically

visualised in Figs. 7.2 and 7.3.
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I1

[a.u.]

I2

[a.u.]

I3

[a.u.]
I1/I2 I3/I2

I1

[eV]

I2

[eV]

I3

[eV]

I2 − I1

[eV]

I3 − I1

[eV]

I3 − I1

I2 − I1

0 e 2.55 4.70 3.80 0.543 0.809 5.54 7.95 9.49 2.41 3.95 1.640

0.1 e 2.71 4.71 3.71 0.575 0.787 5.45 7.76 9.30 2.31 3.86 1.667

0.2 e 2.91 4.71 3.51 0.618 0.745 5.45 7.66 9.30 2.22 3.86 1.739

0.3 e 3.12 4.72 3.42 0.661 0.724 5.40 7.52 9.30 2.12 3.90 1.841

0.4 e 3.37 4.72 3.27 0.714 0.693 5.35 7.33 9.30 1.98 3.95 2.000

0.5 e 3.58 4.68 3.08 0.765 0.658 5.30 7.13 9.25 1.83 3.95 2.158

0.6 e 3.78 4.73 2.98 0.799 0.630 5.30 6.99 9.20 1.69 3.90 2.314

0.7 e 4.19 4.74 2.79 0.884 0.588 5.06 6.80 9.11 1.73 4.05 2.333

0.8 e 4.64 4.74 2.64 0.979 0.557 4.77 6.55 9.11 1.78 4.34 2.432

0.9 e 4.70 4.68 2.45 1.004 0.523 4.92 6.41 9.06 1.49 4.14 2.774

1 e 4.70 4.35 2.25 1.080 0.517 4.67 6.31 8.96 1.64 4.29 2.618

Radtke et al. (2004) 1.75 2.15 1.55 0.814 0.721 401.50 403.25 405.00 1.75 3.50 2.000

Lazar et al. (2004) 2.25 3.55 1.95 0.634 0.549 5.00 7.37 10.00 2.37 5.00 2.110

Delft 1.65 2.50 1.35 0.660 0.540 405.65 408.00 410.17 2.35 4.52 1.926

Cambridge 2.75 3.40 2.55 0.809 0.750 405.00 407.84 410.54 2.84 5.54 1.952

Table B.1 : Comparison of peak positions, relative positions, intensities and relative intensities of the GaN
N K-edge calculated for various core hole charges with the experimental observation.
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I1

[a.u.]

I2

[a.u.]

I3

[a.u.]
I1/I2 I3/I2

I1

[eV]

I2

[eV]

I3

[eV]

I2 − I1

[eV]

I3 − I1

[eV]

I3 − I1

I2 − I1

0 e 0.81 1.07 1.34 0.756 1.252 6.55 9.90 11.95 3.35 5.40 1.612

0.1 e 0.42 0.54 0.66 0.780 1.220 6.50 9.80 11.85 3.30 5.35 1.621

0.2 e 0.44 0.55 0.64 0.802 1.161 6.40 9.70 11.70 3.30 5.30 1.606

0.3 e 0.47 0.56 0.62 0.832 1.113 6.35 9.65 11.60 3.30 5.25 1.591

0.4 e 0.49 0.56 0.60 0.871 1.072 6.30 9.55 11.45 3.25 5.15 1.585

0.5 e 0.51 0.57 0.58 0.909 1.029 6.20 9.30 11.35 3.10 5.15 1.661

0.6 e 0.54 0.58 0.56 0.929 0.975 6.15 9.20 11.15 3.05 5.00 1.639

0.7 e 0.56 0.58 0.53 0.975 0.923 6.10 9.00 11.00 2.90 4.90 1.690

0.8 e 0.58 0.56 0.49 1.039 0.873 6.00 8.80 10.85 2.80 4.85 1.732

0.9 e 0.62 0.56 0.47 1.096 0.828 5.85 8.60 10.65 2.75 4.80 1.745

1 e 0.64 0.56 0.45 1.134 0.802 5.75 8.45 10.45 2.70 4.70 1.741

Radtke et al. (2004) 2.15 2.15 2.35 1.000 1.093 405.00 408.10 410.80 3.10 5.80 1.871

Delft 2.55 2.45 2.30 1.041 0.939 405.00 407.65 409.90 2.65 4.90 1.849

Cambridge 2.85 3.00 3.10 0.950 1.033 405.00 407.94 410.00 2.94 5.00 1.700

Table B.2 : Comparison of peak positions, relative positions, intensities and relative intensities of the AlN
N K-edge calculated for various core hole charges with the experimental observation.



Appendix C

Structural correlation coefficients of the

special quasi-random structures

Summary of structural correlation coefficients for various compositions x as obtained

for the random alloy and for the best matching special quasi-random structures. The

second table presents average numbers of opposite type atoms in several nearest neigh-

bour distance as calculated for an ideal random alloy and for the selected special quasi-

random structure. The methodology was described in section 8.1.3.
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Π(1,0) Π(2,1) Π(2,2) Π(2,3) Π(2,4) Π(3,2) Π(3,3) Π(4,2)

x = 0.0 RA −1.000 1.000 1.000 1.000 1.000 −1.000 −1.000 1.000

SQS −1.000 1.000 1.000 1.000 1.000 −1.000 −1.000 1.000

x = 0.0625 RA −0.875 0.766 0.766 0.766 0.766 −0.670 −0.670 0.586

SQS −0.875 0.750 0.750 0.750 0.750 −0.625 −0.625 0.500

x = 0.125 RA −0.750 0.563 0.563 0.563 0.563 −0.422 −0.422 0.316

SQS −0.750 0.583 0.500 0.500 0.500 −0.375 −0.333 0.250

x = 0.1875 RA −0.625 0.391 0.391 0.391 0.391 −0.244 −0.244 0.153

SQS −0.625 0.333 0.417 0.500 0.250 −0.250 −0.292 0.250

x = 0.25 RA −0.500 0.250 0.250 0.250 0.250 −0.125 −0.125 0.063

SQS −0.500 0.250 0.167 0.250 0.000 −0.063 −0.083 0.000

x = 0.3125 RA −0.375 0.141 0.141 0.141 0.141 −0.053 −0.053 0.020

SQS −0.375 0.083 0.083 0.250 0.250 0.000 −0.042 0.000

x = 0.375 RA −0.250 0.063 0.063 0.063 0.063 −0.016 −0.016 0.004

SQS −0.250 0.000 0.000 0.000 0.000 0.000 −0.083 0.000

x = 0.4375 RA −0.125 0.016 0.016 0.063 0.016 −0.002 −0.002 0.000

SQS −0.125 0.000 −0.083 0.000 −0.250 0.063 −0.042 0.000

x = 0.5 RA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SQS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

x = 0.5625 RA 0.125 0.016 0.016 0.016 0.016 0.002 0.002 0.000

SQS 0.125 0.000 −0.083 0.000 −0.025 −0.063 0.042 0.000

x = 0.625 RA 0.250 0.063 0.063 0.063 0.063 0.016 0.016 0.004

SQS 0.250 0.000 0.000 0.000 0.000 0.000 −0.083 0.000

x = 0.6875 RA 0.375 0.141 0.141 0.141 0.141 0.053 0.053 0.020

SQS 0.375 0.083 0.083 0.250 0.250 0.000 0.042 0.000

x = 0.75 RA 0.500 0.250 0.250 0.250 0.250 0.125 0.125 0.063

SQS 0.500 0.250 0.167 0.250 0.000 0.063 0.083 0.000

x = 0.8125 RA 0.625 0.391 0.391 0.391 0.391 0.244 0.244 0.153

SQS 0.625 0.333 0.417 0.500 0.250 0.250 0.292 0.250

x = 0.875 RA 0.750 0.563 0.563 0.563 0.563 0.423 0.423 0.316

SQS 0.750 0.583 0.500 0.500 0.500 0.375 0.333 0.250

x = 0.9375 RA 0.875 0.766 0.766 0.766 0.766 0.670 0.670 0.586

SQS 0.875 0.750 0.750 0.750 0.750 0.625 0.625 0.500

x = 1.0 RA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SQS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table C.1 : Structural correlation coefficients of the first eight non-zero figures for
various compositions x as obtained for the random alloy (RA) and for the best match-
ing special quasi-random structures (SQS).
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nn nn2 nn3 nn4

x = 0.0 RA 0.000 0.000 0.000 0.000

SQS 0.00 ± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

x = 0.0625 RA 0.703 0.703 0.703 0.234

SQS 0.75 ± 1.48 0.75± 1.61 0.75± 1.73 0.25± 0.68

x = 0.125 RA 1.313 1.313 1.313 0.438

SQS 1.25 ± 1.53 1.50± 2.00 1.50± 2.19 0.50± 0.89

x = 0.1875 RA 1.828 1.828 1.828 0.609

SQS 2.00 ± 1.75 1.75± 2.05 1.50± 1.90 0.75± 1.00

x = 0.25 RA 2.250 2.250 2.250 0.750

SQS 2.25 ± 1.44 2.50± 2.00 2.25± 2.05 1.00± 1.03

x = 0.3125 RA 2.578 2.578 2.578 0.859

SQS 2.75 ± 1.39 2.75± 1.91 2.25± 2.32 0.75± 1.00

x = 0.375 RA 2.813 2.813 2.813 0.938

SQS 3.00 ± 1.26 3.00± 1.79 3.00± 2.19 1.00± 1.03

x = 0.4375 RA 2.953 2.953 2.953 0.984

SQS 3.00 ± 0.82 3.25± 1.61 3.00± 1.90 1.25± 1.00

x = 0.5 RA 3.000 3.000 3.000 1.000

SQS 3.00 ± 0.73 3.00± 1.79 3.00± 2.19 1.00± 1.03

x = 0.5625 RA 2.953 2.953 2.953 0.984

SQS 3.00 ± 0.82 3.25± 1.61 3.00± 1.90 1.25± 1.00

x = 0.625 RA 2.813 2.813 2.813 0.938

SQS 3.00 ± 1.26 3.00± 1.79 3.00± 2.19 1.00± 1.03

x = 0.6875 RA 2.578 2.578 2.578 0.859

SQS 2.75 ± 1.39 2.75± 1.91 2.25± 2.32 0.75± 1.00

x = 0.75 RA 2.250 2.250 2.250 0.750

SQS 2.25 ± 1.44 2.50± 2.00 2.25± 2.05 1.00± 1.03

x = 0.8125 RA 1.828 1.828 1.828 0.609

SQS 2.00 ± 1.75 1.75± 2.05 1.50± 1.90 0.75± 1.00

x = 0.875 RA 1.313 1.313 1.313 0.438

SQS 1.25 ± 1.53 1.50± 2.00 1.50± 2.19 0.50± 0.89

x = 0.9375 RA 0.703 0.703 0.703 0.234

SQS 0.75 ± 1.48 0.75± 1.61 0.75± 1.73 0.25± 0.68

x = 1.0 RA 0.000 0.000 0.000 0.000

SQS 0.00 ± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

Table C.2 : Average numbers of opposite type atoms in the nearest neighbour distance
(nn), second nearest neighbour distance (nn2), third nearest neighbour distance (nn3)
and fourth nearest neighbour distance (nn4) in random alloy (RA) and special quasi-
random structure (SQS) that best matches random alloy for a given composition.
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