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Abstract

Semiparametric Methods for Two Problems in Causal Inference
using Machine Learning

Harvey Carter Klyne

Scientific applications such as personalised (precision) medicine require statistical
guarantees on causal mechanisms, however in many settings only observational data with
complex underlying interactions are available. Recent advances in machine learning have
made it possible to model such systems, but their inherent biases and black-box nature
pose an inferential challenge. Semiparametric methods are able to nonetheless leverage
these powerful nonparametric regression procedures to provide valid statistical analysis
on interesting parametric components of the data generating process.

This thesis consists of three chapters. The first chapter summarises the semiparametric
and causal inference literatures, paying particular attention to doubly-robust methods and
conditional independence testing. In the second chapter, we explore the doubly-robust
estimation of the average partial effect — a generalisation of the linear coefficient in a
(partially) linear model and a local measure of causal effect. This framework involves
two plug-in nuisance function estimates, and trades their errors off against each other.
The first nuisance function is the conditional expectation function, whose estimate is
required to be differentiable. We propose convolving an arbitrary plug-in machine learning
regression — which need not be differentiable — with a Gaussian kernel, and demonstrate
that for a range of kernel bandwidths we can achieve the semiparametric efficiency bound
at no asymptotic cost to the regression mean-squared error. The second nuisance function
is the derivative of the log-density of the predictors, termed the score function. This
score function does not depend on the conditional distribution of the response given the
predictors. Score estimation is only well-studied in the univariate case. We propose using a
location-scale model to reduce the problem of multivariate score estimation to conditional
mean and variance estimation plus univariate score estimation. This enables the use of an
arbitrary machine learning regression. Simulations confirm the desirable properties of our



approaches, and code is made available in the R package drape (Doubly-Robust Average
Partial Effects) available from https://github.com/harveyklyne/drape.

In the third chapter, we consider testing for conditional independence of two discrete
random variables X and Y given a third continuous variable Z. Conditional independence
testing forms the basis for constraint-based causal structure learning, but it has been
shown that any test which controls size for all null distributions has no power against any
alternative. For this reason it is necessary to restrict the null space, and it is convenient
to do so in terms of the performance of machine learning methods. Previous works
have additionally made strong structural assumptions on both X and Y . A doubly-
robust approach which does not make such assumptions is to compute a generalised
covariance measure using an arbitrary machine learning method, reducing the test for
conditional correlation to testing whether an asymptotically Gaussian vector has mean
zero. This vector is often high-dimensional and naive tests suffer from a lack of power.
We propose greedily merging the labels of the underlying discrete variables so as to
maximise the observed conditional correlation. By doing so we uncover additional structure
in an adaptive fashion. Our test is calibrated using a novel double bootstrap. We
demonstrate an algorithm to perform this procedure in a computationally efficient manner.
Simulations confirm that we are able to improve power in high-dimensional settings with
low-dimensional structure, whilst maintaining the desired size control. Code is made
available in the R package catci (CATegorical Conditional Independence) available from
https://github.com/harveyklyne/catci.

vi

https://github.com/harveyklyne/drape
https://github.com/harveyklyne/catci


Acknowledgements

It is a great pleasure to be able to thank Rajen Shah for his generous and patient
supervision. Throughout these last few years Rajen has provided me with a wealth of
excellent ideas and conscientious feedback, and I am truly grateful to have had this
opportunity. Throughout my PhD — and especially during COVID — I have been
fortunate to have such wonderful friends to rely on, especially Elliot Klyne, Anton Rask
Lundborg, Joakim Andersen, Elliot Young, Ben Stokell, Alex Chamolly, Mohit Dhiman,
Elise French, Jamie Scott, Lukas Pin, Eric LeGresley, Liza Hadley, Eleanor Clifford, Hanna
Martin, Jonathan Hoare, Aureliane Pierret, Louisa Snape, Elise Chang, Pieter Durman,
Jordan Smith, and Miriam Hulley. Finally, I am grateful to my examiners Qingyuan Zhao
and Oliver Dukes for their thoughtful suggestions which have considerably improved this
work.





Contents

1 Introduction 1
1.1 Semiparametric statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Causal inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Average partial effect 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Our contributions and organisation of the chapter . . . . . . . . . 12
2.1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Doubly robust average partial effect estimator . . . . . . . . . . . . . . . 15
2.2.1 Uniform asymptotic properties . . . . . . . . . . . . . . . . . . . . 17

2.3 Resmoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Practical implementation . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Score estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Estimation for location–scale families . . . . . . . . . . . . . . . . 27
2.4.2 Estimation for location families . . . . . . . . . . . . . . . . . . . 30

2.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7 Proofs in Section 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7.1 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7.2 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7.3 Auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.8 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.8.1 Auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.9 Proofs relating to Section 2.4 . . . . . . . . . . . . . . . . . . . . . . . . 60
2.9.1 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.9.2 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.9.3 Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . 64



2.9.4 Auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.10 Auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.11 Additional points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.11.1 Linear score functions . . . . . . . . . . . . . . . . . . . . . . . . 81
2.11.2 Explicit estimators for numerical experiments . . . . . . . . . . . 83
2.11.3 Spline score estimation . . . . . . . . . . . . . . . . . . . . . . . . 85

3 Conditional independence testing with structured categorical data 89
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.1.1 Our contributions and organisation of the chapter . . . . . . . . . 91
3.1.2 Other related work . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2 Structured categorical conditional independence testing via greedy label
merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.2.1 Reduction to location testing . . . . . . . . . . . . . . . . . . . . 94
3.2.2 Greedy label merging . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.2.3 Bootstrap calibration . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.2.4 Conditional independence test and asymptotic properties . . . . . 100

3.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.5 Additional asymptotic results . . . . . . . . . . . . . . . . . . . . . . . . 106

3.5.1 Calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . 106
3.5.2 Gaussian location testing . . . . . . . . . . . . . . . . . . . . . . . 111

3.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.6.1 Fast greedy merging . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.6.2 Continuous version of calibration procedure . . . . . . . . . . . . 117
3.6.3 Generating multivariate Gaussian bootstraps . . . . . . . . . . . . 117

3.7 Proof of Theorem 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.7.1 Proof of Theorem 31 . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.7.2 Proof of Theorem 30 . . . . . . . . . . . . . . . . . . . . . . . . . 131

Bibliography 139

x



Chapter 1

Introduction

This thesis adds to the growing body of literature on semiparametric methods for causal
inference. In this introductory chapter we summarise the semiparametric and causal
inference literatures, paying particular attention to doubly-robust methods and conditional
independence testing. In so doing we motivate the themes developed in Chapters 2 and 3.

The following, much celebrated, quote is attributed to George Box.

All models are wrong, but some are useful.

Real world processes do not follow standard parametric models. Practitioners doing
inference based on such models must cross their fingers that the model is not so misspecified
as to completely invalidate the conclusions. In many present-day applications this hope is
hollow: the mechanisms concerned are very complex and standard parametric techniques
entirely fail. This is especially true in statistical problems arising from the field of causal
inference, where incorrect modelling assumptions can lead to heavy biases on the analysis.

Many scientific questions are — implicitly or explicitly — causal in nature. One may
ask what effect certain observed variables had on one another, or how an intervention
on one variable would have propagated to others. Such questions involve unobserved,
“counterfactual” variables, and so some causal model for how these out-of-distribution
variables operate is required. The underlying processes can be very complex, and non-
linearities and variable interactions are often much better handled by modern machine
learning methods such as tree ensembles than by classical statistical estimators. These
nonparametric regression procedures are individually challenging to analyse (“black-box”),
and — worse — the state-of-the-art moves so quickly that analytical insights for today’s
preferred methods are rendered useless tomorrow. Modern statistical frameworks should
therefore make as few assumptions on the underlying regression procedures as possible.
This is precisely the remit of semiparametric statistics — inference is done only on a finite-
dimensional parameter of interest, and less interesting infinite-dimensional components of
the model (“nuisance functions”) may be estimated however we like.
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Previous works have tended to propose specific estimators for the nuisance functions,
particularly those based on kernel smoothing (Nadaraya, 1964; Watson, 1964) and sparse
high-dimensional bases (Candes and Tao, 2007; Tibshirani, 1996). In this way the statisti-
cian provides the practitioner with a fully-formed estimation and inference procedure, and
the statistician is able to take advantage of additional properties of their chosen methods,
such as boundedness or smoothness properties. We take the view that the practitioner is
the expert on their data, and should be free to plug-in whatever nuisance estimators best
suit their needs. With this in mind, Chapters 2 and 3 are totally agnostic to the plug-in
estimators, asking only that they satisfy certain (weak) convergence rates. In the rest of
this introduction we further elucidate the development of semiparametric methods and
their application to causal inference.

1.1 Semiparametric statistics
Semiparametic statistics is interested in estimating and doing inference on a finite-
dimensional parameter of interest in the presence of nonparametric “nuisance” components.
By focussing on a parametric target we are often able to derive root-n consistent and
asymptotically normal estimators. The nonparametric component greatly enlarges the
model class, reducing the risks from model misspecification and enabling the use of flexible
machine learning procedures. In this section we have made use of work by van der Vaart
(1998, 2002) and Kennedy (2016).

Suppose we observe an independent, identically distributed (i.i.d.) sample (W1, . . . ,Wn)
taking values on some space W and distributed according to an unknown distribution P .
A statistical model is a collection of distributions P on W , which is assumed to contain
P . A parametric model is a model which can be indexed by a finite-dimensional vector
P = {Pθ : θ ∈ Θ}, and we are usually interested in estimating a sub-vector of the true
parameter ψ ⊆ θ. Typically we can estimate ψ ∈ Rd at the root-n rate.

Semiparametric models, on the other hand, are also indexed by one or more infinite-
dimensional parameters, called the nuisance functions. Even in this case, often we are
only interested in estimating part of the parametric component of the model. In this case
we can achieve the best of both worlds. Consider the following partially linear regression
model P for a random triple W = (Y,X,Z) taking values in W = R × Rd × Rp, which is
the set of distributions P which satisfy

Y = θT
PX + gP (Z) + εP , (1.1)

where θP ∈ Rd, gP : Rp → R is continuous, EP (εP | X,Z) = 0, EP

(
ε2

P

∣∣∣ X,Z) < ∞. We
are still able to estimate the parameter of interest θP at the root-n rate, despite the model
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containing the nonparametric nuisance functions gP and the distribution of εP . The price
we pay is an enlarged multiplicative constant in the asymptotic variance of our estimator.

For a class of distributions P containing the data-generating distribution P and a
functional ψ : P → Rd, no unbiased estimator of ψ(P ) can achieve variance smaller than
the so-called efficient lower bound. An estimator which achieves this bound is called
efficient. The idea of efficiency dates back to Fisher (1922, 1925). When P = {Pθ : θ ∈ Θ}
is a parametric family, this bound is given by the famous Cramér–Rao theorem (Cramér,
1946). In an abuse of notation, we write ψ(θ) = ψ(Pθ) and consider ψ : Θ → Rd.

Theorem 1 (Cramér–Rao). If θ 7→ Pθ is differentiable at θ with likelihood pθ and
Fisher information Iθ := Varθ

(
∂
∂θ

log pθ(W )
)
, and furthermore Tn = Tn(W1, . . . ,Wn) is an

unbiased estimator of ψ(θ) for a differentiable function ψ : R → R, then under regularity
conditions Varθ(

√
nTn) ≥ ψ′(θ)2/Iθ.

A semiparametric model contains a collection of parametric sub-models. The semi-
parametric efficiency bound is not smaller than the Cramér–Rao bound for any of these
parametric sub-models, so taking the supremum over these sub-models’ lower bounds
gives us a (potentially loose) variance lower bound. In fact it is often possible to achieve
a tight bound by considering straightforward classes of sub-models.

In Chapter 2 we consider the average partial effect (defined below), and we include
here a derivation of the semiparametric efficiency bound for this parameter, first shown
by Newey and Stoker (1993). What follows is not intended as a rigorous proof, but rather
to demonstrate the key idea of applying the Cramér–Rao theorem over a collection of
parametric sub-models.

Consider a random pair W = (Y,X) taking values in R2, and obeying the following
nonparametric model P. Under each P ∈ P, the random variables (Y,X) follow a joint
density pP with respect to Lebesgue, the regression function

fP (x) := EP [Y | X = x]

exists and is differentiable, and the marginal density of X is differentiable. The average
partial effect is defined as

θP := EP [f ′
P (X)]. (1.2)

The functions fP and pP satisfy the additional regularity conditions of Newey and Stoker
(1993), which we do not restate here.

In the semiparametric notation, we are seeking to do inference on the functional
ψ : P 7→ EP [f ′

P (X)] for P in the model P . Fix P ∈ P , and consider the one-dimensional
parametric sub-model {Pt} ⊂ P where Pt has joint density

pt(y, x) = [1 + tζ(y, x)][1 + tγ(x)]pP (y, x)

3



for some bounded, continuous functions ζ and γ which satisfy

EP [ζ(Y,X) | X] = 0; EP [γ(X)] = 0.

Note that P0 = P . Write

pt(y | x) = {1 + tζ(y, x)}pP (y | x);
pt(x) = {1 + tγ(x)}pP (x).

In order to apply Theorem 1 we need to know the Fisher information for the sub-model,
which is

EP

[{
∂t log pt(Y,X)|t=0

}2
]

= EP

[
{ζ(Y,X) + γ(X)}2

]
.

Write ξP = Y − fP (X), and let Et( · | X = x) and Et( · ) denote expectations with
respect to the densities pt( · | x) and pt( · ) respectively. Our target function is

ψ(t) = Et[∂xEt(Y | X)], (1.3)

from which we need to compute ψ′(0). By the definition of pt( · | x), and using EP [ξP |
X] = EP [ζ(Y,X) | X] = 0, we have that

Et(Y | X = x) = EP [Y {1 + tζ(Y,X)} | X = x]
= fP (x) + tEP [ξP ζ(Y,X) | X = x]. (1.4)

Equation (1.3) suggests that we next need to differentiate (1.4) with respect to x, but
this can be avoided using integration by parts in (1.3). Using the definition of pt( · ), and
under appropriate regularity conditions,

ψ(Pt) = EP [{1 + tγ(X)}∂xEt(Y | X)]

=
∫
R
pP (x){1 + tγ(x)}∂xEt(Y | X = x) dx

= −
∫
R
∂x

(
pP (x){1 + tγ(x)}

)
Et(Y | X = x) dx

= −EP

[
∂x

(
pP (X){1 + tγ(X)}

)
pP (X) Et(Y | X)

]
. (1.5)
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Plugging (1.4) in to (1.5), we have

ψ(Pt) = −EP

[
∂x

(
pP (X){1 + tγ(X)}

)
pP (X)

{
fP (X) + tEP

(
ξP ζ(Y,X) | X

)}]

= −EP

[
p′

P (X)
pP (X)fP (X)

]

− tEP

[
∂x{pP (X)γ(X)}

pP (X) fP (X) + p′
P (X)
pP (X)ξP ζ(Y,X)

]

− t2EP

[
∂x{pP (X)γ(X)}

pP (X) ξP ζ(Y,X)
]
. (1.6)

Recall that we are seeking to compute the quantity ψ′(0). Now equation (1.6) implies

ψ′(0) = −EP

[
∂x{pP (X)γ(X)}

pP (X) fP (X) + p′
P (X)
pP (X)ξP ζ(Y,X)

]
.

We do not wish to end up with terms involving γ′, so we perform integration-by-parts
once more on the first term. This yields

ψ′(0) = EP

[
f ′

P (X) − p′
P (X)
pP (X)ξP ζ(Y,X)

]
.

Using the definition of ξP and the conditions EP [ξP | X] = EP [ζ(Y,X) | X] = EP [γ(X)] =
0, we may re-write this as

ψ′(0) = EP

[{
f ′

P (X) − p′
P (X)
pP (X){Y − fP (X)} − C

}
{ζ(Y,X) + γ(X)}

]
,

for any constant C ∈ R. We will soon apply the Cauchy–Schwarz inequality to this
expectation, which is tight when

f ′
P (X) − p′

P (X)
pP (X){Y − fP (X)} − C = ζ(Y,X) + γ(X).

Since the right-hand side is mean-zero, we choose C = θP .
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By Theorem 1, the variance lower bound for an unbiased estimator of ψ(P ) = θP is at
least

ψ′(0)2

EP

[{
∂t log pt(Y,X)|t=0

}2
]

=

EP

[{
f ′

P (X) − p′
P (X)

pP (X){Y − fP (X)} − θP

}
{ζ(Y,X) + γ(X)}

]2

EP

[
{ζ(Y,X) + γ(X)}2

] .

Since we could have chosen any suitable functions ζ and γ, we take a supremum to obtain
the tightest bound. Indeed,

sup
ζ : EP [ζ(Y,X)|X=x]=0,

γ : EP [γ(X)]=0

EP

[{
f ′

P (X) − p′
P (X)

pP (X){Y − fP (X)} − θP

}
{ζ(Y,X) + γ(X)}

]2

EP

[
{ζ(Y,X) + γ(X)}2

]

= EP

{f ′
P (X) − p′

P (X)
pP (X){Y − fP (X)} − θP

}2
,

where we have applied a tight version of the Cauchy–Schwarz inequality, with ζ(y, x) =
p′

P (x)
pP (x){y − fP (x)} and γ(x) = f ′

P (x) − θP . This yields the variance lower bound

EP

{f ′
P (X) − p′

P (X)
pP (X){Y − fP (X)} − θP

}2
,

which is indeed that proved by Newey and Stoker (1993). The function (y, x) 7→ f ′
P (x) −

p′
P (x)

pP (x){y − fP (x)} − θP is called the efficient influence function (Kennedy, 2016; van der
Vaart, 1998, 2002).

Many functionals of interest may be defined in terms of a moment equation involving
the conditional mean function:

ψ(P ) = EP

[
m(fP , Y,X)

]
,

where m is a fixed, known functional. A naive estimation approach would be to estimate
fP by some f̂ , and then take the empirical average 1

n

∑n
i=1 m(f̂ , Yi, Xi) as an estimate of

ψ(P ). Such approaches would typically suffer from plug-in bias and fail to attain the
parametric rate of convergence. As well as poor estimation quality, this would also make
inference, that is, performing hypothesis tests or forming confidence intervals, particularly
problematic. More accurate results can be obtained by performing a one-step bias

6



correction, using additional information contained within the distribution of the predictor
X. Such estimators were originally developed to account for missing data, and proved
consistent if either a parametric model on the response mechanism or the missingness
mechanism were correctly specified, hence “doubly-robust” (Robins and Rotnitzky, 2001;
Robins et al., 2000; Scharfstein et al., 1999).

A modern perspective on doubly-robust procedures has become known as double
machine learning. Rather than hoping to correctly specify one of two parametric models,
users construct estimators based on two flexible machine learning methods and ask that
they both converge at slower than root-n rates. See the review article Kennedy (2022) for
further references.

1.2 Causal inference
Fisher (1958) famously argued that the observed association between smoking and cancer
could be explained by external factors, such as certain genes causing an increased likelihood
for both taking up smoking and getting cancer. He viewed the relationship between smoking
and cancer to be a mere correlation, not causation. There are various frameworks for
discussing causality, and each has their advocates and detractors.

So-called potential outcomes (or counterfactuals) represent hypothetical data points
which can not be observed. We will never know what would have been if the smokers
and non-smokers had each made different choices, or if they had been born with different
genes, but we can still think of these as random variables. Potential outcomes date back
to Neyman (1923) and were introduced for observational studies by Rubin (1974). The
first stage of estimating a causal parameter posed in terms of potential outcomes is to
check that it is well-defined in terms of the observed data alone. This identification step
is the reduction of a causal problem to an ordinary statistical problem, and often suggests
the form of estimators. Rothenhäusler and Yu (2020) give a causal interpretation of
the average partial effect — which is the focus of Chapter 2 — as the causal effect of
incrementing the predictors by an infinitesimal amount.

For systems of many variables it is often convenient to visualise causal effects as a
directed graph. Wright (1921) discusses causation in terms of paths along such graphs.
The counterfactual and graphical approaches to causal inference are unified via Single
World Intervention Graphs (Richardson and Robins, 2013). Under additional probabilistic
assumptions, one may attempt to learn some of the structure of an unknown causal graph
from observational data (Pearl, 2009). The most well-known procedure is the PC Algorithm
(Spirtes and Glymour, 1991; Spirtes et al., 1993), which works by testing for conditional
independence between various subsets of the variables. Conditional independence testing
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is also important for classical variable selection and significance testing, see for example
Lundborg et al. (2022).

Conditional independence testing is a hard problem. Shah and Peters (2020, Thm. 2)
prove that when Z has a continuous component, any test which controls the false rejection
rate against all null hypotheses cannot have power against any alternative. Given a
distribution for which there is conditional dependence between X and Y given Z and
a test which reject the null with probability strictly greater than some α > 0, one may
construct a null distribution which is sufficiently close so that the test also rejects it with
probability strictly greater than α. Since we cannot hope to control size over all null
distributions and have any useful power, it is therefore necessary to restrict the class of
null distributions under consideration. This is in contrast to unconditional independence
testing, where one may calibrate any testing procedure

ϕ
(
(X1, Y1), . . . , (Xn, Yn)

)
∈ R

using a permutation test, i.e. the empirical distribution of
{
ϕ
(
(Xσ(1), Y1), . . . , (Xσ(n), Yn)

)
: σ a permutation of {1, . . . , n}

}
.

See Berrett and Samworth (2019, 2021); Hoeffding (1948) for examples. The continuity
of Z is necessary for the argument of Shah and Peters (2020, Thm. 2). If Z takes only
finitely many values, then one may partition the data based on the value of Z and
perform unconditional independence tests on each subset. This sidesteps the hardness
issue, controlling size against all null distributions and having non-trivial power against
some alternatives. In Chapter 3 we consider conditional independence testing when X

and Y are discrete variables, and Z is arbitrary.
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Chapter 2

Average partial effect

2.1 Introduction
A common goal of practical data analysis is to quantify the effect that a particular pre-
dictor or set of predictors X has on a response Y , whilst accounting for the contribution
of a vector of other predictors Z. Single-parameter summaries are often desirable for
ease-of-interpretability, as demonstrated by the popularity of (partially) linear models.
Such models, however, may not adequately capture the conditional mean of the response,
potentially invalidating conclusions drawn. Indeed the successes of model-agnostic regres-
sion methods such as XGBoost (Chen and Guestrin, 2016), random forests (Breiman,
2001) and deep learning (Goodfellow et al., 2016) in machine learning competitions such
as those hosted by Kaggle (Bojer and Meldgaard, 2021) suggest that such models fitting
poorly is to be expected in many contemporary datasets of interest.

When X ∈ R is a continuous random variable and the conditional mean f(x, z) :=
E(Y |X = x, Z = z) is differentiable in the x-direction, a natural quantity of interest is
the average slope with respect to x. This is known as the average partial effect (or average
derivative), defined as

θ := E
[
∂

∂x
f(X,Z)

]
.

Historically, motivation for this estimand came from semiparametric single-index models,
i.e., where f(x, z) = G(βx+ γT z); the coefficient β is then proportional to θ. The average
partial effect also recovers the linear coefficient in a partially linear model

f(x, z) = θx+ g(z).

Thus the average partial effect may be thought of as a generalisation of the coefficient in a
partially linear model that appropriately measures the association of X and the response,
while controlling for Z, even when there may be complex interactions between X and
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Z present. Indeed, θ is also the average slope of the so-called partial dependence plot,
popular in the field of interpretable machine learning and often used in conjunction with
flexible regression methods that place no explicit restrictions on the form of regression
functions to be estimated (Friedman, 2001; Molnar, 2022; Zhao and Hastie, 2021).

Rothenhäusler and Yu (2020) provide a causal interpretation of the average partial
effect in the form of an average outcome change if the ‘treatment’ X of all subjects were
changed by an arbitrarily small quantity. More precisely, let us denote by Y (x) the
potential outcome (Rubin, 1974) were X to be assigned the value x. Then under so-called
weak ignorability, that is {Y (x) : x ∈ R} ⊥⊥ X |Z, overlap, i.e., p(x | z) > 0 where p(x | z)
is the conditional density of X given Z, and mild regularity conditions,

θ = lim
δ→0

1
δ
E{Y (X + δ) − Y (X)}.

In this sense, θ may be thought of as a continuous analogue of the well-studied average
treatment effect functional

E(Y (1) − Y (0)) = E{E(Y |Z,X = 1) − E(Y |Z,X = 0)} = E{f(1, Z) − f(0, Z)}

in the case where X is discrete, only taking values 0 or 1, and analogous assumptions as
above (Robins and Rotnitzky, 1995; Robins et al., 1994; Scharfstein et al., 1999).

While the average partial effect estimand is attractive from the perspective of in-
terpretability, estimating the derivative of a conditional mean function is challenging.
Regression estimators for f which have been trained to have good mean-squared prediction
error can produce arbitrarily bad derivative estimates, if they are capable of returning
these at all. For example, highly popular tree-based methods give piecewise constant
estimated regression functions and so clearly provide unusable estimates for the derivative
of f .

Moreover, even if the rate of convergence of the derivative estimates was comparable
to the mean-squared prediction error when estimating f nonparametrically, an estimator
of θ formed through their empirical average would typically suffer from plug-in bias and
fail to attain the parametric rate of convergence. As well as poor estimation quality, this
would also make inference, that is, performing hypothesis tests or forming confidence
intervals, particularly problematic. The rich theory of semiparametric statistics (Bickel
et al., 1993; Tsiatis, 2006) addresses the issue of such plug-in biases more generally, and
supports the construction of debiased estimators based on (efficient) influence functions.
This basic approach forms a cornerstone of what has become known as debiased machine
learning: a collection of methodologies involving user-chosen machine learning methods to
produce estimates of nuisance parameters that are used in the construction of estimators
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of functionals that enjoy parametric rates of convergence (see for example the review
article Kennedy (2022) and references therein).

Procedurally, this often involves modelling both the conditional expectation f and
a function of the joint distribution of the predictors (X,Z), with the bias of the overall
estimator controlled by a product of biases relating to each of these models (Rotnitzky
et al., 2021). For the average partial effect, as shown by Newey and Stoker (1993); Powell
et al. (1989), the predictor-based quantity to be estimated is the so-called score function
(sometimes termed the negative score function)

ρ(x, z) :=
∂

∂x
p(x | z)
p(x | z) = ∂

∂x
log p(x | z),

where p(x | z) is the (assumed differentiable) conditional density of X | {Z = z}. This has
been studied in the unconditional setting (i.e. without any Z present) using estimators
based on parametric families (Stoker, 1986), splines (Bera and Ng, 1995; Cox, 1985; Ng,
1994), and kernel smoothing methods (Härdle and Stoker, 1989; Li, 1996; Powell et al.,
1989; Stoker, 1990). Nonparametric estimation of the score function in the multivariate
setting however is particularly challenging owing to the complex nature of potential
interactions. Direct estimation through plugging in a kernel density estimate of the
joint density p(x, z) can be plagued by stability issues where the estimated density is
small. Recently Sriperumbudur et al. (2017) has considered an approach for multivariate
score estimation based on infinite-dimensional exponential families parametrised by a
reproducing kernel Hilbert space, and Chernozhukov et al. (2022b) has adapted deep
learning architectures and tree splitting criteria to develop neural network and random
forest-based approaches for estimating ρ.

One approach to tackling the challenges associated with estimating the derivative of
the regression function f and the score function ρ is to assume that f , its derivative, and
ρ are all sufficiently well-approximated by sparse linear combinations of basis functions
(Chernozhukov et al., 2022d; Rothenhäusler and Yu, 2020). Similarly to the case with the
debiased Lasso (Zhang and Zhang, 2014) where regression coefficients can be estimated
without placing explicit sparsity assumptions relating to the conditional distribution of X
given Z (see for example Shah and Bühlmann (2023)); in this case, fewer assumptions need
to be placed on the estimator of ρ (Chernozhukov et al. (2022d) Remark 4.1). A related
approach relies on ρ itself being well-approximated by a sparse linear combination of basis
functions; see Chernozhukov et al. (2022a); Chernozhukov et al. (2021); Chernozhukov et al.
(2022c,d, 2023b); Chernozhukov et al. (2020) for examples of both of these approaches.
Hirshberg and Wager (2021) assume that the regression estimation error lies within some
absolutely convex class of functions, and perform a convex optimisation to choose weights
that minimise the worst-case mean-squared error over this class. In practice, the class
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of functions may often be taken as sparse linear combinations of basis functions, and in
general it may not always be clear how such basis functions may be chosen. Hirshberg and
Wager (2020) and Wooldridge and Zhu (2020) consider parametric single index models for
the conditional expectation f ; this results in a helpful simplification of the problem in the
high-dimensional setting these works consider, but may appear overly restrictive in the
more moderate-dimensional settings we have in mind here. The difficulties of estimating
θ have led Vansteelandt and Dukes (2022) and Hines et al. (2021) to propose interesting
alternative estimands that aim to capture some notion of a conditional association of Y
and X, given Z, but whose estimation avoids the challenges of nonparametric multivariate
score estimation. Kennedy et al. (2017) instead estimate the whole curve x 7→ E[f(x, Z)]
using kernel smoothing, and Díaz and van der Laan (2012) consider a causal parameter
defined in terms of stochastic interventions on X.

2.1.1 Our contributions and organisation of the chapter

In this chapter we take a different approach, and develop new approaches for addressing
the two main challenges in estimating the average partial effect θ using a double machine
learning framework as outlined above, namely estimation of the derivative of the conditional
mean function f and the multivariate score ρ.

In Section 2.2 we first give a uniform asymptotic convergence result for such doubly
robust estimators of θ requiring user-chosen estimators for f and ρ. We argue that uniform
results as opposed to pointwise results are particularly important in nonparametric settings
such as those considered here, otherwise for any sample size n there may exist candidate
data generating mechanisms under which the asymptotic approximation error is not
negligible. Indeed, considering the problem of testing for a non-zero partial effect, one can
show that this is fundamentally hard: when Z is a continuous random variable, any test
must have power at most its size. This comes as a consequence of noting that the null
in question contains the null that X ⊥⊥ Y |Z, which is known to suffer from this form of
impossibility (Shah and Peters, 2020, Thm. 2). This intrinsic hardness means that any
non-trivial test must restrict the null further with the form of these additional conditions,
which would be revealed in a uniform result but may be absent in a pointwise analysis,
providing crucial guidance on the suitability of tests in different practical settings.

In our case, the conditions for our result involve required rates of convergence for
estimation of the conditional mean f , the score ρ and also a condition on the quality of
our implied estimate of the derivative of f . While estimation of conditional means is a
task statisticians are familiar with tackling using machine learning methods, for example,
the latter two remain challenging to achieve. In contrast to existing work, rather than
relying on well-chosen basis function expansions or developing bespoke estimation tools
we aim to leverage once again the predictive ability of modern machine learning methods,
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which have a proven track record of success in practice. A general limitation of the type of
semiparametric asymptotic theory we present in Section 2.2 is that the nuisance estimation
problem may be challenging in moderate dimensions with finite samples (Robins and
Ritov, 1997). This can be particularly problematic for certain Bayesian procedures in
some settings (Ritov et al., 2014; Robins and Ritov, 1997), although we make use of a
frequentist estimator here. In Section 2.5 we demonstrate that our proposed estimator
achieves good finite sample results even in challenging settings.

For derivative estimation, we propose a post-hoc kernel smoothing procedure applied to
the output of the chosen regression method for estimating f . In Section 2.3 we show that
under mild conditions, our resmoothing method achieves consistent derivative estimation
(in terms of mean-square error) at no asymptotic cost to estimation of f when comparing
to the convergence rate enjoyed by the original regression method. Importantly, we do
not require the use of a specific differentiable estimator f̂ or any explicit assumptions on
its complexity or stability properties. This contrasts in particular much of the literature
on estimation of the derivative of a regression function; see for example Dai et al. (2016)
and references therein, and also Da Rosa et al. (2008); Fonseca et al. (2018) for smoothing
approaches using sigmoid functions specific to tree-based estimators.

Turning to score estimation, we seek to reduce the problem of multivariate score
estimation to that of univariate score estimation, which as explained above, is better studied
and more tractable. In Section 2.4 we advocate modelling the conditional distribution of
X | Z as a location-scale model (see for example Kennedy et al. (2017, Sec. 5) who work
with this in an application requiring conditional density estimation),

X = m(Z) + σ(Z)ε,

where ε is mean-zero and independent of Z. Through estimating the conditional mean
m and σ via some m̂ and σ̂, one can form scaled residuals {X − m̂(Z)}/σ̂(Z) which
may be fed to a univariate score estimator. Theoretically, we consider settings where
ε is sub-Gaussian and σ is nonparametric, and also the case where ε is allowed to be
heavy-tailed and σ = 1 (i.e. a location only model where the errors X −m(Z) ⊥⊥ X). We
also demonstrate good numerical performance in heterogeneous, heavy-tailed settings.
Given how even the univariate score involves a division by a density, one concern might
be that any errors in estimating m and σ may propagate unfavourably to estimation of
the score. We show however that the estimation error for the multivariate ρ(x, z) may be
bounded by the sum of the estimation errors for the conditional mean m, the conditional
scale σ and the univariate score function for the residual ε alone. In this way we reduce
the problem of multivariate score estimation to univariate score estimation, plus regression
and heterogeneous scale estimation, all of which may be relatively more straightforward.
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Our results rely on proving a sub-Gaussianity property of Lipschitz score functions, which
may be of independent interest.

Numerical comparisons of our methodology to existing approaches are contained in
Section 2.5, where we demonstrate in particular that the coverage properties of confidence
intervals based on our estimator have favourable coverage over a range of settings, both
where our theoretical assumptions are met and where they are not satisfied. We conclude
with a discussion in Section 2.6. Proofs and additional results are relegated to later sections
in this chapter. We provide an implementation of our methods in the R package drape
(Doubly Robust Average Partial Effects) available from https://github.com/harveyklyne/
drape.

2.1.2 Notation

Let (Y,X,Z) be a random triple taking values in R×Rd × Z, where Z may be a mixture
of discrete and continuous space. In order to present results that are uniform over a
class of distributions P for (Y,X,Z), we will often subscript associated quantities by P .
For example when (Y,X,Z) ∼ P , we denote by PP ((Y,X,Z) ∈ A), the probability that
(Y,X,Z) lies in a (measurable) set A, and write fP (x, z) := EP (Y | X = x, Z = z) for the
conditional mean function.

Let P0 be the set of distributions P for (Y,X,Z) where both fP and the conditional
density of the predictors (with respect to the Lebesgue measure) pP (x | z) exist and are
differentiable over all of Rd, for almost every z ∈ Z.

Write ∇ for the d-dimensional differentiation operator with respect to the x, which
we replace with ′ if we are enforcing the case d = 1. For each P ∈ P0, define the
score function ρP (x, z) := ∇ log pP (x | z), where pP (x | z) is the conditional probability
density of X | {Z = z} according to P . Note that ρP exists for each P ∈ P0 and almost
every (X,Z), taking values in Rd. Denote by Φ the standard d-dimensional normal
cumulative distribution function (c.d.f.), and understand inequalities between vectors to
apply elementwise.

We will sometimes introduce standard Gaussian random variables W ∼ N(0, 1)
independent of (X,Z). Recall that a random variable X ∈ R is sub-Gaussian with
parameter σ if it satisfies E[exp(λX)] ≤ exp(λ2σ2/2) for all λ ∈ R. A vector V ∈ Rd is
sub-Gaussian with parameter σ if uTV is sub-Gaussian with parameter σ for any u ∈ Rd

satisfying ∥u∥2 = 1.
As in Lundborg et al. (2022), given a family of sequences of real-valued random variables

(WP,n)P ∈P,n∈N taking values in a finite-dimensional vector space and whose distributions
are determined by P ∈ P, we write WP,n = oP(1) if supP ∈P PP (|WP,n| > ϵ) → 0
for every ϵ > 0. Similarly, we write WP,n = OP(1) if, for any ϵ > 0, there exist
Mϵ, Nϵ > 0 such that supn≥Nϵ

supP ∈P PP (|WP,n| > Mϵ) < ϵ. Given a second family of
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sequences of random variables (VP,n)P ∈P,n∈N, we write WP,n = oP(VP,n) if there exists
RP,n with WP,n = VP,nRP,n and RP,n = oP(1); likewise, we write WP,n = OP(VP,n)
if WP,n = VP,nRP,n and RP,n = OP(1). If WP,n is vector or matrix-valued, we write
WP,n = oP(1) if ∥WP,n∥ = oP(1) for some norm, and similarly OP(1). By the equivalence
of norms for finite-dimensional vector spaces, if this holds for some norm then it holds for
all norms.

2.2 Doubly robust average partial effect estimator
We consider a nonparametric model

EP (Y | X,Z) =: fP (X,Z),

for a response Y ∈ R, continuous predictors of interest X ∈ Rd, and additional predictors
Z ∈ Z of arbitrary type. We assume that (Y,X,Z) ∼ P ∈ P0, and so the conditional
mean fP (x, z) and the conditional density pP (x | z) are differentiable with respect to x.
Our goal is to do inference on the average partial effect

θP := EP [∇fP (X,Z)].

Recall that the score function ρP plays an important role when considering estimation of
θP because it acts like the differentiation operator in the following sense; see also Newey
and Stoker (1993); Stoker (1986).

Proposition 2. Let the conditional density of the predictors pP (· | z) exist and be
differentiable in the jth coordinate xj for every x−j ∈ Rd−1 and z ∈ Z. Let g : Rd ×Z → R
similarly be differentiable with respect to xj and satisfy

EP |∇jg(X,Z) + ρP,j(X,Z)g(X,Z)| < ∞. (2.1)

Suppose for every (x−j, z) there exist sequences an → −∞, bn → ∞ such that

lim
n→∞

{g(bn, x−j, z)pP (bn, x−j | z) − g(an, x−j, z)pP (an, x−j | z)} = 0;

here with some abuse of notation, we write for example g(a, x−j, z) for

g(x1, . . . , xj−1, a, xj+1, . . . , xd, z).

Then
EP [∇jg(X,Z) + ρP,j(X,Z)g(X,Z)] = 0.
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Proposition 2, which follows from integration-by-parts, allows one to combine estimates
of fP and ρP to produce a doubly-robust estimator as we now explain. Suppose we have
some fixed function estimates (f̂ , ρ̂), for example computed using some independent
auxiliary data, and g := fP − f̂ obeys the conditions of Proposition 2. Then

EP

[
∇f̂(X,Z) − ρ̂(X,Z)

{
Y − f̂(X,Z)

}]
− θP

= EP

[{
ρP (X,Z) − ρ̂(X,Z)

}{
fP (X,Z) − f̂(X,Z)

}]
, (2.2)

which will be zero if either f̂ or ρ̂ equal fP or ρP respectively. Given independent,
identically distributed (i.i.d.) samples (yi, xi, zi) ∼ P for i = 1, . . . , n, this motivates an
average partial effect estimator of the form

1
n

n∑
i=1

∇f̂(xi, zi) − ρ̂(xi, zi)
{
yi − f̂(xi, zi)

}
.

From (2.2) and using the Cauchy–Schwarz inequality, we see that the squared-bias of such
an estimator is at worst the product of the mean-square error rates of the conditional
mean and score function estimates. A consequence of this (see Theorem 3 below) is
that the average partial effect estimate can achieve root-n consistency even when both
conditional mean and score function estimators converge at a slower rate. Such an
estimator is typically called doubly robust (Robins and Rotnitzky, 2001; Robins et al.,
2000; Scharfstein et al., 1999).

In practice, the function estimates f̂ and ρ̂ would not be fixed and must be computed
from the same data. For our theoretical analysis, it is helpful to have independence
between the function estimates and the data points on which they are evaluated. For this
reason we mimic the setting with auxiliary data by employing a sample-splitting scheme
known as cross-fitting (Chernozhukov et al., 2018; Schick, 1986), which works as follows.

Given a sequence of i.i.d. data sets {(yi, xi, zi) : i = 1, . . . , n}, define a K-fold
partition

(
I(n,k)

)
k=1,...,K

of {1, . . . , n} for some K fixed (in all our numerical experiments
we take K = 5). For simplicity of our exposition, we assume that n is a multiple of K
and each subset is of equal size n/K. Let the pair of function estimates

(
f̂ (n,k), ρ̂(n,k)

)
be

estimated using data

D(n,k) :=
{
(yi, xi, zi) : i ∈ {1, . . . , n} \ I(n,k)

}
.

The cross-fitted, doubly-robust estimator is

θ̂(n) := 1
n

K∑
k=1

∑
i∈I(n,k)

∇f̂ (n,k)(xi, zi) − ρ̂(n,k)(xi, zi)
{
yi − f̂ (n,k)(xi, zi)

}
, (2.3)
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with corresponding variance estimator

Σ̂(n) := 1
n

K∑
k=1

∑
i∈I(n,k)

[
∇f̂ (n,k)(xi, zi) − ρ̂(n,k)(xi, zi)

{
yi − f̂ (n,k)(xi, zi)

}
− θ̂(n)

]
[
∇f̂ (n,k)(xi, zi) − ρ̂(n,k)(xi, zi)

{
yi − f̂ (n,k)(xi, zi)

}
− θ̂(n)

]T

.

(2.4)

In the next section, we study the asymptotic behaviour of these estimators.

2.2.1 Uniform asymptotic properties

There has been a flurry of recent work (Chernozhukov et al., 2022a; Chernozhukov et al.,
2021; Chernozhukov et al., 2022b,c,d, 2023b; Chernozhukov et al., 2020) on doubly-robust
inference on a broad range of functionals of the conditional mean function, satisfying a
moment equation of the form

EP [Ψ(X,Z; fP )] = βP ,

for a known operator Ψ and unknown target parameter βP . This encompasses estimation
of θP by taking Ψ(x, z; ∆) = ∂x∆(x, z). The general theory in this line of work however
typically relies on a mean-squared continuity assumption of the form

EP

[
{Ψ(X,Z; ∆)}2

]
≤ C

{
EP

[
∆2(X,Z)

]}q
,

for some q > 0 and all ∆ ∈ F , where F contains the conditional mean estimation errors
fP − f̂ . This is a potentially strong assumption is our setting, which we wish to avoid.
We therefore give below a uniform asymptotic result relating to estimators θ̂(n) (2.3) and
Σ̂(n) (2.4), not claiming any substantial novelty (see, for example, Chernozhukov et al.
(2018, Thm. 5.1) for a similar theorem regarding the binary Average Treatment Effect,
and Chernozhukov et al. (2022d, Cor. 4.1) and Rothenhäusler and Yu (2020, Lem. 5) for
similar theorems with specific nuisance estimators), but so as to introduce the quantities
A

(n)
f , A(n)

ρ , E
(n)
f , E(n)

ρ which we will seek to bound in later sections. We stress that it is in
achieving these bounds in a model-agnostic way that our major contributions lie.

Recall that the optimal variance bound is equal to the variance of the efficient influence
function, which for the average partial effect in the nonparametric model P ∈ P0 is equal
to

ψP (y, x, z) := ∇fP (x, z) − ρP (x, z){y − fP (x, z)} − θP ,

provided that ΣP := EP

[
ψP (Y,X,Z)ψP (Y,X,Z)T

]
exists and is non-singular (Newey and

Stoker, 1993, Thm. 3.1). The theorem below shows that θ̂ achieves this variance bound
asymptotically.
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Theorem 3. Define the following sequences of random variables:

A
(n)
f := EP

[
{fP (X,Z) − f̂ (n,1)(X,Z)}2

∣∣∣ D(n,1)
]
,

A(n)
ρ := max

j=1,...,d
EP

[
{ρP,j(X,Z) − ρ̂

(n,1)
j (X,Z)}2

∣∣∣ D(n,1)
]
,

E
(n)
f := max

j=1,...,d
EP

([
∇jfP (X,Z) − ∇j f̂

(n,1)(X,Z)

+ ρP,j(X,Z){fP (X,Z) − f̂ (n,1)(X,Z)}
]2 ∣∣∣∣ D(n,1)

)
,

E(n)
ρ := max

j=1,...,d
EP

[
{ρP,j(X,Z) − ρ̂

(n,1)
j (X,Z)}2 VarP (Y | X,Z)

∣∣∣ D(n,1)
]
;

note that we have suppressed P -dependence in the quantities defined above. Let P ⊂ P0

and the chosen methods producing f̂ (n,1) and ρ̂(n,1) be such that all of the following hold.
The covariance matrix ΣP exists for every P ∈ P, with minimum eigenvalue at least
c1 > 0. Furthermore,

sup
P ∈P

EP

[
∥ψP (Y,X,Z)∥2+η

2

]
≤ c2

for some c2, η > 0. Finally, suppose the remainder terms defined above satisfy:

A
(n)
f = OP(1); A

(n)
f A(n)

ρ = oP(n−1); E
(n)
f = oP(1); E(n)

ρ = oP(1). (2.5)

Then the doubly robust average partial effect estimator (2.3) is root-n consistent, asymp-
totically Gaussian and efficient:

lim
n→∞

sup
P ∈P

sup
t∈Rd

∣∣∣∣PP

[√
n(ΣP )−1/2(θ̂(n) − θP ) ≤ t

]
− Φ(t)

∣∣∣∣ = 0,

and moreover the covariance estimate (2.4) satisfies Σ̂(n) = ΣP + oP(1), and one may
perform asymptotically valid inference (e.g. constructing confidence intervals) using

lim
n→∞

sup
P ∈P

sup
t∈Rd

∣∣∣∣PP

[√
n(Σ̂(n))−1/2(θ̂(n) − θP ) ≤ t

]
− Φ(t)

∣∣∣∣ = 0.

The assumptions on A(n)
f , A(n)

ρ and E(n)
ρ are relatively weak and standard; for example

they are satisfied if the conditional variance VarP (Y | X,Z) is bounded almost surely
and each of A(n)

f , A(n)
ρ converge at the nonparametric rate oP(n−1/2); see Section 2.4 for

our scheme on score estimation. For example, consider the case where Z = Rp and fP

is s > 0 Hölder smooth, i.e., writing m := ⌈s⌉ − 1, for every α := (α1, . . . , αd+p) with
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α1 + · · · + αd = m and αj ∈ Z≥0, the partial derivatives (assumed to exist) satisfy
∣∣∣∣∣ ∂αfP

∂α1x1 · · · ∂αdxd ∂αd+1z1 · · · ∂αd+pzp

(x, z) − ∂αfP

∂α1x1 · · · ∂αdxd ∂αd+1z1 · · · ∂αd+pzp

(x′, z′)
∣∣∣∣∣

≤C∥(x, z) − (x′, z′)∥s−m
2

for all P ∈ P and (x, z), (x′, z′) ∈ Rd+p. Then we can expect that A(n)
f = OP(n−2s/(2s+d+p))

for appropriately chosen regression procedures; see for example Györfi et al. (2002). Then
when s > (d+ p)/2, this is oP(n−1/2). Moreover, a faster rate for A(n)

f permits a slower
rate for A(n)

ρ and vice versa.
However assuming E(n)

f = oP(1) needs justification. In particular, while the result aims
to give guarantees for a version of θ̂ constructed using arbitrary user-chosen regression
function and score estimators f̂ (n,1) and ρ̂(n,1), in particular it requires f̂ (n,1) to be differ-
entiable in the x coordinates, which for example is not the case for popular tree-based
estimates of fP . In the next section, we address this issue by proposing a resmoothing
scheme to yield a suitable estimate of fP that can satisfy the requirements on A

(n)
f and

E
(n)
f simultaneously.

2.3 Resmoothing
In this section we propose doing derivative estimation via a kernel convolution applied to
an arbitrary initial regression function estimate. This is inspired by similar approaches for
edge detection in image analysis (Canny, 1986). We do this operation separately for each
dimension (x1, . . . , xd, d fixed) of interest, so without loss of generality in this section we
take the dimension of x to be d = 1 (so ∇(·) = (·)′). Motivated by Theorem 3, we seek a
class of differentiable regression procedures so that the errors

A
(n)
f := EP

[
{fP (X,Z) − f̂ (n,1)(X,Z)}2

∣∣∣ D(n,1)
]
,

E
(n)
f := EP

([
f ′

P (X,Z) − (f̂ (n,1))′(X,Z) + ρP (X,Z){fP (X,Z) − f̂ (n,1)(X,Z)}
]2 ∣∣∣∣ D(n,1)

)
,

satisfy
A

(n)
f = OP(n−α); E

(n)
f = oP(1),

for α > 0 as large as possible.
Consider regressing Y on (X,Z) using some favoured machine learning method,

whatever that may be. By training on D(n,k) we get a sequence of estimators f̃ (n,k) of
the conditional mean function fP (x, z) := E(Y | X = x, Z = z), which we expect to have
a good mean-squared error convergence rate but that are not necessarily differentiable
(or that their derivatives are hard to compute, or numerically unstable). Additional
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smoothness may be achieved by convolving f̃ (n,k) with a kernel, yielding readily computable
derivatives. Let K : R → R be a differentiable kernel function. The convolution yields a
new regression estimator

f̂ (n,k)(x, z) = {f̃ (n,k)(·, z) ∗Khn}(x) =
∫
R
f̃ (n,k)(u, z)Khn(x− u) du,

where Khn(t) = h−1
n K(h−1

n t) for a sequence of bandwidths hn > 0. Here we will use a
standard Gaussian kernel,

K(u) = 1√
2π

exp
(

− u2

2

)
,

but we do not expect the choice of kernel to be critical. In kernel smoothing, other
popular choices include the box kernel K(u) = 1

21{|u| ≤ 1}, the Epanechnikov kernel
K(u) = 3

4(1 − u2)1{|u| ≤ 1}, and the tricube kernel K(u) = 70
81(1 − |u|3)3

1{|u| ≤ 1}
(Wasserman, 2006), although these are not everywhere differentiable. The Gaussian kernel
is positive, symmetric, and satisfies K ′(u) = −uK(u), which makes it convenient for a
theoretical analysis.

We provide visual examples of resmoothing in Figure 2.1. In the left-hand plot we
apply our procedure to a smoothing spline regression f̃ , which is already capable of
returning derivative estimates. In the right-hand plot we instead use a random forest as
f̃ , which is piecewise constant and so not appropriate for derivative estimation. In both
cases our resmoothed estimator seems to capture the underlying smoothness of the true
regression function.

2.3.1 Theoretical results

Our goal in this section is to demonstrate that for some sequence of bandwidths hn and
a class of distributions P ⊂ P0 that will encode any additional assumptions we need to
make, we have relationships akin to

A
(n)
f = OP

(
EP

[{
fP (X,Z) − f̃ (n,1)(X,Z)

}2
∣∣∣∣ D(n,1)

])
and E

(n)
f = oP(1). (2.6)

This means that we can preserve the mean squared error properties of the original f̃ (n,1)

but also achieve the required converge to zero of the term E
(n)
f ; see Theorem 3. A result

of this flavour is given by the following theorem.

Theorem 4. Define the following random quantities

Ã
(n)
f := EP

[{
fP (X,Z) − f̃ (n,1)(X,Z)

}2
∣∣∣∣ D(n,1)

]
;

B̃
(n)
f :=

(
EP

[∣∣∣fP (X,Z) − f̃ (n,1)(X,Z)
∣∣∣2+η

∣∣∣∣ D(n,1)
]) 2

2+η

,
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Figure 2.1 Visual example of our resmoothing procedure applied to two orginal regression
functions (red lines), fitted to data from a smooth, univariate regression model (blue
lines). The resmoothed estimators (black lines) use bandwidth chosen by our data-driven
selection procedure (Algorithm 1). In the left-hand plot we have used a smoothing spline
for the original regression (stats package (R Core Team, 2021)), and in the right-hand
plot a random forest (grf package (Athey et al., 2019)) with 10 trees.
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where η > 0 is a uniform constant, and the randomness is over the training data set
D(n,1) ∼ P . Let P ⊂ P0 and the chosen regression method producing the fitted regression
function f̃ (n,1) be such that all of the following hold. The regression error of f̃ (n,1) is
bounded with high probability:

sup
x,z

∣∣∣fP (x, z) − f̃ (n,1)(x, z)
∣∣∣ = OP(1).

For each P ∈ P and almost every z ∈ Z the conditional density pP (· | z) is twice
continuously differentiable and

sup
P ∈P

sup
x,z

∣∣∣ρ′
P (x, z)

∣∣∣ < ∞. (2.7)

There exists a class of functions CP : R → R, P ∈ P such that supP ∈P EP

[
C2

P (Z)
]
< ∞

and
sup

x

∣∣∣f ′′
P (x, z)

∣∣∣ ≤ CP (z) (2.8)

for almost every z ∈ Z, for each P ∈ P.
If Ã(n)

f = OP
(
n−α

)
and B̃(n)

f = OP
(
n−β

)
for α, β > 0, then the choice hn = cn−γ for

any c > 0 and

γ ∈
[

max
(
α

4 ,
α− β

2

)
,
α

2

)
,

achieves A(n)
f = OP

(
n−α

)
and E(n)

f = OP
(
n2γ−α

)
= oP(1).

For an η > 0 that is small, one might expect that the squared L2+η error of the
initial estimator f̃ (n,1) given by B̃(n)

f is fairly close to the corresponding squared L2 error
Ã

(n)
f ; in this case we might expect the range of permissible γ to be the generous interval

[α/4, α/2), indicating that the particular choice of resmoothing bandwidth is not critical
asymptotically. That is, we have a large range of possible bandwidth sequences, whose
decay to zero varies in orders of magnitude, for which we have the desirable conclusion
that the associated smoothed estimator f̂ (n,1) enjoys A(n)

f = OP
(
n−α

)
as in the case of the

original f̃ (n,1), but crucially also E(n)
f = oP(1) as required by Theorem 3. The availability

of theoretical guarantees on modern machine learning methods is limited. When fP is in
a d−dimensional Hölder class with smoothness s > 0, various regression procedures can
achieve Ã(n)

f = OP(n−2s/(2s+d)) (Györfi et al., 2002) and deep neural networks can achieve
Ã

(n)
f = OP(n−s/(s+d)) (Farrell et al., 2021), up to logarithmic terms in n.

The additional assumptions required by the result are a Lipschitz property of the score
function (2.7) and a particular bound on the second derivative of the regression function
fP (2.8), both of which we consider to be relatively mild. As shown in Theorem 5, the

22



former condition implies a sub-Gaussianity property of the score function. The latter
condition satisfied if f ′′

P is uniformly bounded in that supP ∈P supx,z

∣∣∣f ′′
P (x, z)

∣∣∣ < ∞.
Comparing Theorem 4 to classical results on the Nadaraya–Watson kernel smoothing

estimator (Nadaraya, 1964; Watson, 1964), these typically require γ = 1/5 for optimal
mean-squared error (Wasserman (2006, Thm. 5.28)). We are able to allow a range of
bandwidths because we are plugging in regression estimators f̃ (n,k), rather than just
using the noisy observations Y . This means that we do not get the usual bias–variance
tradeoff in the bandwidth hn, with the leading terms in our mean-squared error being
Ã

(n)
f + h2

nB̃
(n)
f + h4

n, as opposed to (nhn)−1 + h4
n. The derivative of the Nadaraya–Watson

estimator can provide consistent estimates for γ ∈ (0, 1/3) (Collomb, 1979; Schuster
and Yakowitz, 1979), with kernel K being a Lipschitz probability density function. In
Theorem 4 we fix K to be the Gaussian kernel for analytical convenience, and leave
generalisations to future work.

With this result on the insensitivity of the bandwidth choice with respect to the
adherence to the conditions of Theorem 3 in hand, we now discuss a simple practical
scheme for choosing an appropriate bandwidth.

2.3.2 Practical implementation

There are two practical issues that require consideration. First, we must decide how to
compute the convolutions. Second, we discuss bandwidth selection for the kernel for
which we suggest a data-driven selection procedure, which picks the largest resmoothing
bandwidth achieving a cross-validation score within some specified tolerance of the original
regression.

Now for W ∼ N(0, 1) independent of (X,Z), we have

f̂ (n,k)(x, z) = E
[
f̃ (n,k)(x+ hW, z)

∣∣∣ D(n,k)
]
;

f̂ (n,k)′(x, z) = 1
h
E
[
Wf̃ (n,k)(x+ hW, z)

∣∣∣ D(n,k)
]
,

the latter expression following from differentiating under the integral sign; see Lemma 13
for a derivation. While this indicates it is possible to compute Gaussian expectations to
any degree of accuracy by Monte Carlo, the regression function f̃ (n,k) may be expensive
to evaluate too many times, and we have found that derivative estimates are sensitive to
sample moments deviating from their population values. These issues can be alleviated
by using antithetic variates, however we have found the simpler solution of grid-based
numerical integration (as is common in image processing (Canny, 1986)) to be very
effective. We require a deterministic set of pairs {(wj, qj) : j = 1, . . . , J} such that, for
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functions g,

E[g(W )] ≈
J∑

j=1
g(wj)qj.

We suggest taking the {wj} to be an odd number of equally spaced grid points covering
the first few standard deviations of W , and {qj} to be proportional to the corresponding
densities, such that ∑J

j=1 qj = 1. This ensures that the odd sample moments are exactly
zero and the leading even moments are close to their population versions. In particular
we suggest computing the resmoothed regression and derivative estimates as

f̂ (n,k)(x, z) =
J∑

j=1
f̃ (n,k)(x+ hwj, z)qj;

f̂ (n,k)′(x, z) = 1
h

J∑
j=1

wj f̃
(n,k)(x+ hwj, z)qj.

See Section 2.11.2 for further details. We do not expect the use of the Gaussian kernel to
be essential to resmoothing in general, however the derivative formulas here are based on
the property K ′(u) = −uK(u).

Recall that the goal of resmoothing is to yield a differentiable regression estimate
without sacrificing the good prediction properties of the first-stage regression. With this
intuition, we suggest choosing the largest bandwidth such that quality of the regression
estimate in terms of squared error, as measured by cross-validation score, does not
substantially decrease.

Specifically, the user first specifies a non-negative tolerance and a collection of positive
trial bandwidths, for instance an exponentially spaced grid up to the empirical standard
deviation of X. Next, we find the bandwidth hmin minimising the cross-validation error
across the given set of bandwidths including bandwidth 0 (corresponding to the original
regression function). Then, for each positive bandwidth at least as large as hmin, we
find the largest bandwidth h such that the corresponding cross-validation score CV(h)
exceeds CV(hmin) by no more than some tolerance times as estimate of the standard
deviation of the difference CV(h) − CV(hmin); if no such h exists, we pick the minimum
positive bandwidth. Given a sufficiently small minimum bandwidth, this latter case should
typically not occur.

The procedure is summarised in Algorithm 1 below. We suggest computing all the
required evaluations of f̃ (n,k) at once, since this only requires loading a model once per
fold. In all of our numerical experiments presented in Section 2.5 we used K = 5 and set
the tolerance to be 2 ≈ Φ−1(0.975), though the results were largely unchanged for a wide
range of tolerances.

24



Input: Data set D(n), number of folds K ∈ N, set of L positive potential
bandwidths H := {h1, . . . , hL}, tolerance tol ≥ 0 controlling the
permissible increase in regression error.

Output: Bandwidth ĥ ≥ 0.
Partition D(n) into K folds.
for each fold k = 1, . . . , K do

Train f̃ (n,k) on the out-of-fold data D(n,k).
For each i ∈ I(n,k), set erri(0) := {Yi − f̃ (n,k)(Xi, Zi)}2.
for each trial bandwidth h ∈ {h1, . . . , hL} do

for each in-fold data point (Xi, Zi), i ∈ I(n,k) do
Compute f̂ (n,k)(Xi, Zi) = ∑J

j=1 f̃
(n,k)(Xi + hwj, Zi)qj.

Set erri(h) := {Yi − f̂ (n,k)(Xi, Zi)}2

end
end

end
Writing h0 := 0, for each l = 1, . . . , L, set CV(hl) to be the mean of the
{erri(hl)}n

i=1.
Set hmin := argminhCV(h).
For each h ∈ H such that h ≥ hmin, set se(h) to be the empirical standard
deviation of {erri(hmin) − erri(h)}n

i=1 divided by
√
n.

Set ĥ to be the largest h ∈ H with h ≥ hmin such that
CV(h) ≤ CV(hmin) + tol × se(h), or set ĥ := min H if no such h exists.

Algorithm 1: Cross validation selection procedure for the resmoothing bandwidth.

2.4 Score estimation
In this section we consider the problem of constructing an estimator of the score function
ρP of a random variable X conditional on Z as required in the estimator θ̂(n) (2.3) of
the average partial effect θP ; however, score function estimation is also of independent
interest more broadly, for example in distributional testing, particularly for assessing tail
behaviour (Bera and Ng, 1995).

The multivariate score estimation problem that we seek to address has received less
attention than the simpler problem of score estimation on a single univariate random
variable; the latter may equivalently be expressed as the problem of estimating the ratio of
the derivative of a univariate density and the density itself. In Section 2.4.1, we propose a
location–scale model that then reduces our original problem to the latter, and in 2.4.2 by
strengthening our modelling assumption to a location-only model, we weaken requirements
on the tail behaviour of the errors.
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Note that

ρP,j(x, z) = ∇j log pP (x | z)
= ∇j log{pP (xj | x−j, z) pP (x−j | z)}
= ∇j log pP (xj | x−j, z).

Therefore each component of ρP may be estimated separately using the conditional
distribution of Xj given (X−j, Z). This means that we can consider each variable separately,
so for the rest of this section we assume that d = 1 without loss of generality.

Before we discuss location–scale families, we first present a theorem on the sub-
Gaussianity of Lipschitz score functions that is key to the results to follow and may be of
independent interest.

An interesting property of score functions is that their tail behaviour is “nicer” for
heavy-tailed random variables. If a distribution has Guassian tails, its score has linear
tails. If a distribution has exponential tails, the score function has constant tails. If a
distribution has polynomial tails, the score function tends to zero. This trade-off has a
useful consequence: that ρP (X,Z) can be sub-Gaussian even when X | Z is not. One
straightforward implication of this is that the moments of the score are bounded. More
importantly however, this shows for example that the expectation of the exponential
of the score is finite, this quantity being particularly useful for bounding the ratio of a
density and a version shifted by a given amount: see Lemma 26. As such, this shows
that while score estimation may appear to be highly delicate given that it involves the
derivative and inverse of a density, it does in fact enjoy a certain robustness. Estimation
of the score based on data corrupted by a perturbation, which in our case here would be
our estimates of the errors in the location–scale model, can still yield estimates whose
quality is somewhat comparable with those obtained using the original uncorrupted data,
as Theorems 6, 7 and 8 to follow indicate.

The result below, which is proved using repeated integration by parts, is stated for a
univariate (unconditional) score. However we note that when the conditional distribution
of X given Z satisfies the conditions of Theorem 5, the same conclusions hold conditionally
on Z.

Theorem 5. Let X be a univariate random variable with density p twice differentiable on
R and score function ρ satisfying supx∈R |ρ′(x)| ≤ C < ∞. Then for all positive integers
k,

E
[
ρ2k(X)

]
≤ Ck(2k − 1)!!,

where m!! denotes the double factorial of m, that is the product of all positive integers
up to m that have the same parity as m. Furthermore, the random variable ρ(X) is
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sub-Gaussian with parameter
√

2C. If additionally X is symmetrically distributed, then
the sub-Gaussian parameter may be reduced to

√
C.

The moment bound in Theorem 5 is tight when X is Gaussian. For X following a
logistic distribution, the true moment is E[ρ2k(X)] = Ck 2k

2k+1 .

2.4.1 Estimation for location–scale families

In this section, we consider a location–scale model for X on Z. Our goal is to reduce the
conditions of Theorem 3 to conditions based on regression, scale estimation and univariate
score estimation alone. The former two tasks are more familiar to analysts and amenable
to the full variety of flexible regression methods that are available.

We assume that we have access to an i.i.d. dataset D(n) := {(xi, zi) : i = 1, . . . , n} of
size n, with which to estimate the score. Let us write Pls for the class of location–scale
models of the form

X = mP (Z) + σP (Z)εP , (2.9)

where εP is mean-zero and independent of Z, both mP (Z) and σP (Z) are square-integrable,
and εP has a differentiable density on R. This enables us to reduce the problem of
estimating the score of X | Z to that of estimating the score function of the univariate
variable εP alone. Note that we have not assumed that εP has unit variance here, though
in practice a finite variance may be required in order to obtain a sufficiently good estimate
of σP .

We denote the density and score function (under P ) of the residual εP by pε and ρε

respectively. Using these we may write the conditional density and score function as

pP (x | z) = pε

(
x−mP (z)
σP (z)

)

ρP (x, z) = 1
σP (z) ρε

(
x−mP (z)
σP (z)

)
.

Given conditional mean and (non-negative) scale estimates m̂(n) and σ̂(n), trained on D(n),
define estimated residuals

ε̂(n) := X − m̂(n)(Z)
σ̂(n)(Z)

= σP (Z) εP +mP (Z) − m̂(n)(Z)
σ̂(n)(Z) .
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We will use the estimated residuals ε̂(n) to construct a (univariate) residual score estimator
ρ̂

(n)
ε̂ , also trained on D(n), which we combine into a final estimate of ρP (x, z):

ρ̂(n)(x, z) = 1
σ̂(n)(z) ρ̂

(n)
ε̂

(
x− m̂(n)(z)
σ̂(n)(z)

)
. (2.10)

While there are a variety of univariate score estimators available (see Section 2.1), these
will naturally have been studied in settings when supplied with i.i.d. data from the
distribution whose associated score we wish to estimate. Our setting here is rather
different in that we wish to apply such a technique to an estimated set of residuals. In
order to study how existing performance guarantees for score estimation may be translated
to our setting, we let pε̂ be the density of the distribution of ε̂(n), conditional on D(n),
and write ρε̂(ϵ) := p′

ε̂/pε̂ for the associated score function. With this, let us define the
following quantities, which are random over the sampling of D(n) ∼ P .

A(n)
ρ := EP

[{
ρP (X,Z) − ρ̂(n)(X,Z)

}2
∣∣∣∣ D(n)

]
,

A(n)
m := EP

{mP (Z) − m̂(n)(Z)
σP (Z)

}2
∣∣∣∣∣∣ D(n)

,
A(n)

σ := EP

{σP (Z) − σ̂(n)(Z)
σP (Z)

}2
∣∣∣∣∣∣ D(n)

,
A

(n)
ε̂ := EP

[{
ρε̂(ε̂(n)) − ρ̂

(n)
ε̂

(
ε̂(n)

)}2
∣∣∣∣ D(n)

]
.

The first quantity A(n)
ρ is what we ultimately seek to bound to satisfy the requirements of

Theorem 3. The final quantity A(n)
ε̂ is the sort of mean squared error we might expect to

have guarantees on: note that this is evaluated with respect to the distribution of ε̂(n),
from which we can access samples.

We will assume throughout that σP (z) is bounded away from zero for all z ∈ Z, so
A(n)

m and A(n)
σ may be bounded above by multiples of their counterparts unscaled by σP (Z).

The former versions however allow for the estimation of mP and σP to be poorer in regions
where σP is large. We also introduce the quantities

u(n)
σ (z) := σ̂(n)(z) − σP (z)

σP (z) ; u(n)
m (z) := m̂(n)(z) −mP (z)

σP (z) ,

which will feature in our conditions in the results to follow. Before considering the
case where ρε may be estimated nonparametrically, we first consider the case where the
distribution of εP is known.
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Known family

The simplest setting is where the distribution of εP , and hence the function ρε, is known.

Theorem 6. Let P ⊂ Pls be such that all of the following hold. Under each P ∈ P, the
location–scale model (2.9) holds with εP

d= ε fixed such that ∥ρε∥Lip < ∞ and E[ρ2
ε(ε)] < ∞.

The scale parameter σP is bounded away from zero,

inf
P ∈P

inf
z∈Z

σP (z) > 0,

and the ratio σP/σ̂
(n) and the regression error u(n)

m are bounded with high probability:

sup
z∈Z

σP (z)
σ̂(n)(z) = OP(1); sup

z∈Z

∣∣∣u(n)
m (z)

∣∣∣ = OP(1).

Set
ρ̂(n)(x, z) = 1

σ̂(n)(z) ρε

(
x− m̂(n)(z)
σ̂(n)(z)

)
.

Then
A(n)

ρ = OP
(
A(n)

m + A(n)
σ

)
.

We see that in this case, the error A(n)
ρ we seek to control is bounded by mean squared

errors in estimating mP and σP .

Sub-Gaussian family

We now consider the case where εP follows some unknown sub-Gaussian distribution and
ρε is Lipschitz. This for example encompasses the case where εP has a Gaussian mixture
distribution.

Theorem 7. Let P ⊂ Pls and uniform constants Cε, Cρ, Cσ, > 0 be such that all of
the following hold. Under each P ∈ P, the location–scale model (2.9) holds where εP

is sub-Gaussian with parameter at most Cε. Furthermore the density pε of εP is twice
differentiable on R, with

sup
ϵ∈R

|∂2
ϵ log pε(ϵ)| = sup

ϵ∈R
|ρ′

ε(ϵ)| ≤ Cρ,

and p′
ε and p′′

ε are both bounded. The scale parameter σP is bounded away from zero,

inf
P ∈P

inf
z∈Z

σP (z) > 0,
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and with high probability D(n) is such that the regression error u(n)
m and the scale error

u(n)
σ are bounded:

sup
z∈Z

∣∣∣u(n)
m (z)

∣∣∣ = OP(1); lim
n→∞

sup
P ∈P

PP

(
sup
z∈Z

∣∣∣u(n)
σ (z)

∣∣∣ > Cσ

)
= 0,

for some

Cσ < min
(

1, 1
18
√
CρCε

)
.

Then
A(n)

ρ = OP
(
A(n)

m + A(n)
σ + A

(n)
ε̂

)
.

We see that in addition to requiring that A(n)
m and A(n)

σ are well-controlled, the mean
squared error associated with the univariate score estimation problem A

(n)
ε̂ also features in

the upper bound. We also have a condition on supz

∣∣∣u(n)
σ (z)

∣∣∣ in Theorem 7 that is stronger
than supz

∣∣∣u(n)
σ (z)

∣∣∣ = OP(1), but weaker than supz

∣∣∣u(n)
σ (z)

∣∣∣ = oP(1).

2.4.2 Estimation for location families

Theorem 7 assumes that εP is sub-Gaussian, which we use to deal with the scale estimation
error u(n)

σ . If X only depends on Z through its location (i.e. σP is constant) then the
same proof approach works for heavy-tailed εP . Consider the location only model

X = mP (Z) + εP , (2.11)

where εP is independent of Z, mP (Z) is square-integrable, and εP has a differentiable
density on R. Compared to Section 2.4.1, we have assumed σP does not depend on Z,
and have relabelled σP εP 7→ εP . We fix σ̂(n)(z) = 1.

Theorem 8. Let P ⊂ Pls and uniform constant Cρ > 0 be such that all of the following
hold. Under each P ∈ P, the location model (2.11) holds. Furthermore the density pε of
εP is twice differentiable on R, with

sup
ϵ∈R

|∂2
ϵ log pε(ϵ)| = sup

ϵ∈R
|ρ′

ε(ϵ)| ≤ Cρ,

and p′
ε and p′′

ε are both bounded. With high probability D(n) is such that the regression
error u(n)

m is bounded
sup

z

∣∣∣u(n)
m (z)

∣∣∣ = OP(1).

Then
A(n)

ρ = OP
(
A(n)

m + A
(n)
ε̂

)
.
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As to be expected, compared to Theorem 7, here we have simply omitted the term
A(n)

σ in the upper bound on A(n)
ρ . Note that εP need not have any finite moments. For

instance, εP may follow a Cauchy distribution.

2.5 Numerical experiments
We demonstrate that confidence intervals derived from the cross-fitted, doubly robust
average partial effect estimator (2.3) and associated variance estimator (2.4) constructed
using the approaches of Sections 2.3 and 2.4 is able to maintain good coverage across
a range of settings. As competing methods, we consider a version of (2.3) using a
simple numerical difference for the derivative estimate (as suggested in Chernozhukov
et al. (2022d, §S5.2)) and a quadratic basis approach for score estimation (similar to
Rothenhäusler and Yu (2020)); the method of Rothenhäusler and Yu (2020); and the
doubly-robust partially linear regression (PLR) of Chernozhukov et al. (2018, §4.1).
Theorem 27 suggests that the basis approaches of Chernozhukov et al. (2022d, §2) and
Rothenhäusler and Yu (2020) are similar, and since the latter is easier to implement we
use this as a reasonable proxy for the approach of Chernozhukov et al. (2022d). While our
estimator may be used with any plug-in machine learning regression, here we make use
of gradient boosting for its good predictive power, perform scale estimation via decision
tree so that our estimates are bounded away from zero, and perform univariate score
estimation via a penalised smoothing spline (Cox, 1985; Ng, 1994, 2003), which has the
attractive property of smoothing towards a Gaussian in the sense of Cox (1985, Thm. 4).
The precise implementation details are given in Section 2.11.2. For a sanity check we also
include the ordinary least squares (OLS), which is expected to do very poorly in general.
Code to reproduce our experiments is contained in the R package drape available from
https://github.com/harveyklyne/drape.

2.5.1 Settings

In all cases we generate Y = fP (X,Z) + N(0, 1) using a known regression function fP

and predictor distribution (X,Z) ∼ P , so that we may compute the target parameter
θP = EP [f ′

P (X,Z)] to any degree of accuracy using Monte Carlo. The predictors (X,Z) ∈
R × Rp are either generated synthetically from a location–scale family or taken from a
real data set.
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Location–scale families

For these fully simulated settings, we fix n = 1000 and

Z ∼ N(0,Σ) ∈ R9 where Σjj = 1, Σjk = 0.5 for j ̸= k;
X = mP (Z) + σP (Z)εP ,

for the following choices of mP , σP , εP . We use two step functions for mP , σP : Z → R.

mP (z) = 1z1>0

σP (z) =


√

3
2 if z3 < 0;

1√
2 if z3 ≥ 0.

Note that EP

[
σ2

P (Z)
]

= 1. We use the following options for the noise εP .

εnorm = N(0, 1) (2.12)

εmix2 = N

(
± 1√

2
,
1
2

)
equiprobably; (2.13)

εmix3 = N

(
±

√
3√
2
,
1
3

)
equiprobably; (2.14)

εlog = Logistic
(

0,
√

3
π

)
; (2.15)

εt4 = 1√
2
t4. (2.16)

In all cases εP is independent of (X,Z), and has zero mean and unit variance. Since
σP is not constant, the heavy-tailed settings εlog, εt4 are not covered by the results in
Section 2.4. The score functions for these random variables are plotted in Figure 2.2.

401k dataset

To examine misspecification of the location–scale model for (X,Z), we import the 401k
data set from the DoubleML R package (Bach et al., 2021). We take X to be the income
feature, and Z to be age, education, family size, marriage, two-earner household, defined
benefit pension, individual retirement account, home ownership, and 401k availability,
giving p = 10. We make use of all the observations (n = 9915), and centre and scale the
predictors before generating the simulated response variables.

32



−4 −2 0 2 4

−
10

−
5

0
5

10

ε

sc
or

e 
 ρ

ε(ε
)

norm
mix2
mix3
log
t4

Figure 2.2 Score functions for the choices of distribution for εP in our numerical experiments.
All these distributions have mean zero and variance one. The pink line corresponds to
a standard Gaussian (2.12), the gold and green lines to Gaussian mixtures (2.13) and
(2.14), the blue line to the logistic distribution (2.15), and the purple line to the Student’s
t distribution with 4 degrees of freedom (2.16).

Simulated responses

For the choices of regression function fP , first define the following sinusoidal and sigmoidal
families of functions:

fsino(u; a) = exp(−u2/2) sin(au);
fsigm(u; s) = (1 + exp(−su))−1;

for u ∈ R, a, s > 0. We use the following choices for fP : R × Z → R, giving partially
linear, additive, and interaction settings:

fplm(x, z) = x+ fsigm(z2; s = 1) + fsino(z2; a = 1); (2.17)
fadd(x, z) = fsigm(x; s = 1) + fsino(x; a = 1) + fsino(z2; a = 3); (2.18)
fint(x, z) = fsigm(x; s = 3) + fsino(x; a = 3) + fsino(z2; a = 3) + x× z2. (2.19)

2.5.2 Results

We examine the coverage and median width of estimated confidence intervals for each of
the 5 methods in each of the 18 settings described. Figures 2.3, 2.4, and 2.5 show nominal
95% confidence intervals from each of 1000 repeated experiments. We find that our method
achieves at least 85% coverage in each of the 18 settings trialed. The numerical difference
and quadratic basis approach performs reasonably well, but tends to under cover and in
the worst case has coverage below 80%. As one would expect, the doubly-robust partially
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linear regression does very well when the partially linear model is correctly specified (2.17)
— achieving full coverage with narrow confidence intervals — but risks completely losing
coverage when the response is non-linear in X. Interestingly, the quadratic basis approach
of Rothenhäusler and Yu (2020) displayed a similar tendency. The ordinary least squares
approach did not achieve close to the specified coverage in any setting.

The coverage level measures the amount of bias in the estimator, and the median
confidence interval width is a measure of the variability. In additional results which we do
not include here, we find that our multivariate score estimation procedure reduces the
bias as compared to the high-dimensional basis approach, and our resmoothing reduces
the variance compared to numerical differencing. Taken together, our proposed estimator
performs well in all settings considered.

2.6 Discussion
The average partial effect is of interest in nonparametric regression settings, giving a
parametric summary of the effect of a predictor. In this work we have suggested a
framework to enable the use of arbitrary machine learning regression procedures when
doing inference on average partial effects. We propose kernel resmoothing of a first-stage
machine learning method to yield a new, differentiable regression estimate. Theorem 4
demonstrates the attractive properties of this approach for a range of kernel bandwidths.
We further advocate location-scale modelling for multivariate (conditional) score estimation,
which we prove reduces this challenging problem to the better studied, univariate case in
settings of interest (Theorems 6, 7, and 8). Our proofs rely on a novel result of independent
interest: that Lipschitz score functions yield sub-Gaussian random variables (Theorem 5).

We confirm that our methods work well in practice, including when our location-scale
modelling assumption is misspecified, with a numerical study in Section 2.5. We find
that our proposals for conditional mean and score estimation successfully reduce the
bias and variance of the resulting doubly-robust estimator, when compared to existing
procedures. Our method achieves the best coverage of all the estimators considered.
We hope that our method will see use in practical data applications, and we share an
implementation in the R package drape (Doubly-Robust Average Partial Effects) available
from https://github.com/harveyklyne/drape.
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Figure 2.3 Estimated confidence intervals from the partially linear model experiment
(2.17). The subplots correspond to different settings for predictor (X,Z) generation. The
different colours refer to the different methods. The red horizontal lines correspond to
the population level target parameter. The percentages above each subplot refer to the
achieved coverage (specified level 95%), and the decimals below give the median confidence
interval width. In the bottom left subplot — setting (2.16) — some of the confidence
intervals for the numerical difference and basis score approach extend substantially beyond
the plotting limits.
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Figure 2.4 Estimated confidence intervals from the additive model experiment (2.18). The
subplots correspond to different settings for predictor (X,Z) generation. The different
colours refer to the different methods. The red horizontal lines correspond to the population
level target parameter. The percentages above each subplot refer to the achieved coverage
(specified level 95%), and the decimals below give the median confidence interval width.
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Figure 2.5 Estimated confidence intervals from the interaction model experiment (2.19).
The subplots correspond to different settings for predictor (X,Z) generation. The different
colours refer to the different methods. The red horizontal lines correspond to the population
level target parameter. The percentages above each subplot refer to the achieved coverage
(specified level 95%), and the decimals below give the median confidence interval width.
In the bottom left subplot — setting (2.16) — some of the confidence intervals for the
numerical difference and basis score approach extend substantially beyond the plotting
limits.
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2.7 Proofs in Section 2.2

2.7.1 Proof of Proposition 2

Proof. Fix some (x−j, z) ∈ Rd−1 × Z where z has positive marginal density. By the
product rule,

∇j

(
g(x, z)pP (x | z)

)
= ∇jg(x, z)pP (x | z) + g(x, z)∇jpP (x | z)

= ∇jg(x, z)pP (x | z) + ρP,j(x, z)g(x, z)pP (x | z).

Therefore writing

qa,b(x, z) := {∇jg(x, z)pP (x | z) + ρP,j(x, z)g(x, z)pP (x | z)}1[a,b](xj),

for any −∞ < a < b < ∞ we have
∫ ∞

−∞
qa,b(x, z) dxj =

∫ b

a
∇j

(
g(x, z)pP (x | z)

)
dxj

= g(b, x−j, z)pP (b, x−j | z) − g(a, x−j, z)pP (a, x−j | z).

Note that
qa,b(x, z) ≤ |∇jg(x, z)pP (x | z) + ρP,j(x, z)g(x, z)pP (x | z)|

and ∫ ∞

−∞
|∇jg(x, z)pP (x | z) + ρP,j(x, z)g(x, z)pP (x | z)| dxj < ∞,

the final inequality coming from Fubini’s theorem and condition (2.1). Let sequences (an)
and (bn) be as in the statement of the theorem. By dominated convergence theorem∫ ∞

−∞
{∇jg(x, z)pP (x | z) + ρP,j(x, z)g(x, z)pP (x | z)} dxj = lim

n→∞

∫ ∞

−∞
qan,bn(x, z) dxj = 0.

As this hold for every (x−j, z) for which z has positive marginal density, integrating over
x−j and then taking a further expectation over Z proves the claim.

2.7.2 Proof of Theorem 3

Proof. In an abuse of notation, we refer to the quantities

A
(n,k)
f := EP

[
{fP (X,Z) − f̂ (n,1)(X,Z)}2

∣∣∣ D(n,1)
]
,
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for each fold k = 1, . . . , K. Each A
(n,k)
f satisfies the same probabilistic assumptions

as A
(n)
f = A

(n,1)
f due to the equal partitioning and i.i.d. data. Likewise we define

A(n,k)
ρ , E

(n,k)
f , E(n,k)

ρ .
To show the first conclusion we first highlight the term which converges to a standard

normal distribution, and then deal with the remainder. Note that the lower bound on the
minimum eigenvalue of ΣP corresponds to an upper bound on the maximal eigenvalue of
(ΣP )−1/2. Denote the random noise in Y as

ξP = Y − fP (X,Z);
ξP,i = yi − fP (xi, zi),

so that EP (ξP | X,Z) = 0.
With these preliminaries, we have

√
n(ΣP )−1/2

(
θ̂(n) − θP

)
= 1√

n

n∑
i=1

(ΣP )−1/2ψP (yi, xi, zi) + (ΣP )−1/2
K∑

k=1
R

(n,k)
P ,

where the uniform central limit theorem (Lemma 9) applies to the first term and

R
(n,k)
P := 1√

n

∑
i∈I(n,k)

{
∇f̂ (n,k)(xi, zi) − ρ̂(n,k)(xi, zi){yi − f̂ (n,k)(xi, zi)}

− ∇fP (xi, zi) + ρP (xi, zi)ξP,i

}
.

Note that, conditionally on D(n,k), each summand of R(n,k)
P is i.i.d. To show that R(n,k)

P =
oP(1), we fix some element j ∈ {1, . . . , d} and decompose

R
(n,k)
P,j = a(n,k) − b

(n,k)
f + b(n,k)

ρ , (2.20)

where

a(n,k) := 1√
n

∑
i∈I(n,k)

{ρP,j(xi, zi) − ρ̂
(n,k)
j (xi, zi)}{fP (xi, zi) − f̂ (n,k)(xi, zi)};

b
(n,k)
f := 1√

n

∑
i∈I(n,k)

[∇jfP (xi, zi) − ∇j f̂
(n,k)(xi, zi)

+ ρP,j(xi, zi){fP (xi, zi) − f̂ (n,k)(xi, zi)}];

b(n,k)
ρ := 1√

n

∑
i∈I(n,k)

{ρP,j(xi, zi) − ρ̂
(n,k)
j (xi, zi)}ξP,i.

We now show that each term is oP(1), so Lemma 11 yields the first conclusion.
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By the Cauchy–Schwarz inequality, we have

EP [|a(n,k)| | D(n,k)] ≤
√
nEP [|ρP,j(X,Z) − ρ̂

(n,k)
j (X,Z)||fP (X,Z) − f̂ (n,k)(X,Z)| | D(n,k)]

≤
√
nA

(n,k)
f A

(n,k)
ρ = oP(1),

so a(n,k) is oP(1) by Lemma 12. Note that each summand of b(n,k)
ρ is mean-zero conditionally

on X and Z. This means that

EP [(b(n,k)
ρ )2 | D(n,k)] = EP [{ρP,j(X,Z) − ρ̂

(n,k)
j (X,Z)}2EP (ξ2

P | X,Z) | D(n,k)]
≤ E(n,k)

ρ = oP(1).

Again using Lemma 12 we have that b(n,k)
ρ = oP(1).

We now apply a similar argument to b
(n,k)
f , using Proposition 2 to show that each

summand is mean zero. Given ϵ > 0, noting that both A
(n,k)
f and E

(n,k)
f are OP(1), we

have there exists M and N ∈ N such that for sequences of D(n,k)-measurable events ΩP,n

with PP (ΩP,n) ≥ 1 − ϵ, for all n ≥ N ,

EP

[∣∣∣fP (X,Z) − f̂ (n,k)(X,Z)
∣∣∣ ∣∣∣∣ D(n,k)

]
1ΩP,n

< M ;

(2.21)

EP

[∣∣∣∇jfP (X,Z) − ∇j f̂
(n,k)(X,Z) + ρP,j

{
fP (X,Z) − f̂ (n,k)(X,Z)

}∣∣∣ ∣∣∣∣ D(n,k)
]
1ΩP,n

< M.

(2.22)

Now fixing z, x−j (where x−j ∈ Rd−1), we have that the function
(
fP

(
(·, x−j), z

)
− f̂ (n,k)

(
(·, x−j), z

))
p
(
( · , x−j)

∣∣∣ z)
is continuous, where we understand (u, x−j) = (x1, . . . , xj−1, u, xj+1, . . . , xd) for u ∈ R.
We may therefore apply Lemma 24 to both

t 7→
(
fP

(
(t, x−j), z

)
− f̂ (n,k)

(
(t, x−j), z

))
p
(
(t, x−j)

∣∣∣ z)
t 7→

(
fP

(
(−t, x−j), z

)
− f̂ (n,k)

(
(−t, x−j), z

))
p
(
(−t, x−j)

∣∣∣ z).
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This, in combination with (2.21) implies that on ΩP,n and for each n ≥ N , there exist
D(n,k)-measurable sequences aP,m → −∞, bP,m → ∞ such that

lim
m→∞

{(
fP

(
(bP,m, x−j), z

)
− f̂ (n,k)

(
(bP,m, x−j), z

))
p
(
(bP,m, x−j)

∣∣∣ z)
−
(
fP

(
(aP,m, x−j), z

)
− f̂ (n,k)

(
(aP,m, x−j), z

))
p
(
(aP,m, x−j)

∣∣∣ z)} = 0. (2.23)

Equations (2.22 and 2.23) verify that we may apply Proposition 2 conditionally on D(n,k).
Therefore, for all n sufficiently large,

EP

[
∇jfP (X,Z) − ∇j f̂

(n,k)(X,Z) + ρP,j

{
fP (X,Z) − f̂ (n,k)(X,Z)

} ∣∣∣∣ D(n,k)
]
1ΩP,n

= 0

and hence

EP [(b(n,k)
f )2 | D(n,k)]1ΩP,n

= EP ([∇jfP (X,Z) − ∇j f̂
(n,k)(X,Z)

+ ρP,j(X,Z){fP (X,Z) − f̂ (n,k)(X,Z)}]2 | D(n,k))
≤ E

(n,k)
f .

Now

PP (b(n,k)
f > ϵ) ≤ PP (b(n,k)

f 1ΩP,n
> ϵ) + PP (Ωc

P,n) ≤ PP (b(n,k)
f 1ΩP,n

> ϵ) + ϵ.

Lemma 12 shows that the first term above converges to 0, uniformly in P , and so b(n,k)
f is

oP(1).
Turning now to the second conclusion, we aim to show that Σ̂(n) − ΣP = oP(1). We

introduce notation for the following random functions:

ψ̂(n,k)(y, x, z) := ∇f̂ (n,k)(x, z) − ρ̂(n,k)(x, z){y − f̂ (n,k)(x, z)} − θ̂(n).

We will focus on an individual element (Σ̂(n) − ΣP )l,m, 1 ≤ l,m ≤ d, and make use of
Lemma 10. We first check that

sup
P ∈P

EP

[∣∣∣ψP,l(Y,X,Z)ψP,m(Y,X,Z) − EP [ψP,l(Y,X,Z)ψP,m(Y,X,Z)]
∣∣∣1+η̃

]
≤ c̃,
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for some η̃, c̃ > 0. Indeed, due to the convexity of x 7→ |x|1+η̃,

EP

[∣∣∣ψP,l(Y,X,Z)ψP,m(Y,X,Z) − EP [ψP,l(Y,X,Z)ψP,m(Y,X,Z)]
∣∣∣1+η̃

]
≤ 2η̃

{
EP

[∣∣∣ψP,l(Y,X,Z)ψP,m(Y,X,Z)
∣∣∣1+η̃

]
+
∣∣∣∣EP [ψP,l(Y,X,Z)ψP,m(Y,X,Z)]

∣∣∣∣1+η̃}
≤ 21+η̃EP

[∣∣∣ψP,l(Y,X,Z)ψP,m(Y,X,Z)
∣∣∣1+η̃

]
≤ 21+η̃EP

[
∥ψP (Y,X,Z)∥2+2η̃

2

]
.

The first inequality is |(a+ b)/2|1+η̃ ≤ (|a|1+η̃ + |b|1+η̃)/2, the second is Jensen’s inequality,
and the final inequality is |ab| ≤ (a2 + b2)/2. Therefore the condition is satisfied for
η̃ = η/2, c̃ = 21+η/2c2.

We are now ready to decompose the covariance estimation error.

(Σ̂(n) − ΣP )l,m = 1
n

K∑
k=1

∑
i∈I(n,k)

ψ̂
(n,k)
l (yi, xi, zi)ψ̂(n,k)

m (yi, xi, zi)

− EP [ψP,l(Y,X,Z)ψP,m(Y,X,Z)]

= 1
n

n∑
i=1

[
ψP,l(yi, xi, zi)ψP,m(yi, xi, zi) − EP [ψP,l(Y,X,Z)ψP,m(Y,X,Z)]

]

+ 1
K

K∑
k=1

S
(n,k)
P ,

where the first term is oP(1) by Lemma 10 and

S
(n,k)
P := K

n

∑
i∈I(n,k)

[
ψ̂

(n,k)
l (yi, xi, zi)ψ̂(n,k)

m (yi, xi, zi) − ψP,l(yi, xi, zi)ψP,m(yi, xi, zi)
]
.

We show that S(n,k)
P = oP(1) using the following identity for a1, a2, b1, b2 ∈ R,

a1b1 − a2b2 = (a1 − a2)(b1 − b2) + a2(b1 − b2) + b2(a1 − a2),
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and then applying the Cauchy–Schwarz inequality to each term.

∣∣∣S(n,k)
P

∣∣∣ =
∣∣∣∣∣Kn ∑

i∈I(n,k)

ψ̂
(n,k)
l (yi, xi, zi)ψ̂(n,k)

m (yi, xi, zi) − ψP,l(yi, xi, zi)ψP,m(yi, xi, zi)
∣∣∣∣∣

≤
∣∣∣∣∣Kn ∑

i∈I(n,k)

{
ψ̂

(n,k)
l (yi, xi, zi) − ψP,l(yi, xi, zi)

}
{
ψ̂(n,k)

m (yi, xi, zi) − ψP,m(yi, xi, zi)
}∣∣∣∣∣

+
∣∣∣∣∣Kn ∑

i∈I(n,k)

{
ψ̂

(n,k)
l (yi, xi, zi) − ψP,l(yi, xi, zi)

}
ψP,m(yi, xi, zi)

∣∣∣∣∣
+
∣∣∣∣∣Kn ∑

i∈I(n,k)

{
ψ̂(n,k)

m (yi, xi, zi) − ψP,m(yi, xi, zi)
}
ψP,l(yi, xi, zi)

∣∣∣∣∣
≤
[
K

n

∑
i∈I(n,k)

{
ψ̂

(n,k)
l (yi, xi, zi) − ψP,l(yi, xi, zi)

}2
]1/2

[
K

n

∑
i∈I(n,k)

{
ψ̂(n,k)

m (yi, xi, zi) − ψP,m(yi, xi, zi)
}2
]1/2

+
[
K

n

∑
i∈I(n,k)

{
ψ̂

(n,k)
l (yi, xi, zi) − ψP,l(yi, xi, zi)

}2
]1/2

[
K

n

∑
i∈I(n,k)

ψP,m(yi, xi, zi)2

1/2

+
[
K

n

∑
i∈I(n,k)

{
ψ̂(n,k)

m (yi, xi, zi) − ψP,m(yi, xi, zi)
}2
]1/2

[
K

n

∑
i∈I(n,k)

ψP,l(yi, xi, zi)2
]1/2

.

Therefore it suffices to show that, for each l = 1, . . . , d,

T
(n,k)
P,1 := K

n

∑
i∈I(n,k)

ψP,l(yi, xi, zi)2 = OP(1);

T
(n,k)
P,2 := K

n

∑
i∈I(n,k)

{
ψ̂

(n,k)
l (yi, xi, zi) − ψP,l(yi, xi, zi)

}2
= oP(1).
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To this end, Lemma 10 gives T (n,k)
P,1 = (ΣP )(l,l) + oP(1). Moreover, similarly to equation

(2.20) and using the inequality (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2),

T
(n,k)
P,2 = K

n

∑
i∈I(n,k)

{
ψ̂

(n,k)
l (yi, xi, zi) − ψP,l(yi, xi, zi)

}2

= K

n

∑
i∈I(n,k)

[{
ρP,l(xi, zi) − ρ̂

(n,k)
l (xi, zi)

}{
fP (xi, zi) − f̂ (n,k)(xi, zi)

}

− ∇lfP (xi, zi) + ∇lf̂
(n,k)(xi, zi) − ρP,l(xi, zi)

{
fP (xi, zi) − f̂ (n,k)(xi, zi)

}
+
{
ρP,l(xi, zi) − ρ̂

(n,k)
l (xi, zi)

}
ξP,i − θ̂

(n)
l + θP,l

]2

≤ 4{ã(n,k) + b̃
(n,k)
f + b̃(n,k)

ρ + (θ̂(n)
l − θP,l)2},

where

ã(n,k) := K

n

∑
i∈I(n,k)

{
ρP,l(xi, zi) − ρ̂

(n,k)
l (xi, zi)

}2{
fP (xi, zi) − f̂ (n,k)(xi, zi)

}2
;

b̃
(n,k)
f := K

n

∑
i∈I(n,k)

[
∇lfP (xi, zi) − ∇lf̂

(n,k)(xi, zi)

+ ρP,l(xi, zi)
{
fP (xi, zi) − f̂ (n,k)(xi, zi)

} ]2
;

b̃(n,k)
ρ := K

n

∑
i∈I(n,k)

{
ρP,l(xi, zi) − ρ̂

(n,k)
l (xi, zi)

}2
ξ2

P,i.

Since n−1/2(θ̂(n) −θP ) is uniformly asympotically Gaussian, we have that (θ̂(n)
l −θP,l)2 =

OP(n−1). For ã(n,k), b̃(n,k)
f and b̃(n,k)

ρ we use Lemma 12, noting that conditionally on D(n,k)

each summand is i.i.d.
Using the identity ∑i aibi ≤ (∑i ai)(

∑
i bi) for positive sequences (ai) and (bi), we have

∣∣∣ã(n,k)
∣∣∣ ≤ n

K
ã(n,k)

ρ ã
(n,k)
f ,

for

ã(n,k)
ρ := K

n

∑
i∈I(n,k)

{
ρP,l(xi, zi) − ρ̂

(n,k)
l (xi, zi)

}2
;

ã
(n,k)
f := K

n

∑
i∈I(n,k)

{
fP (xi, zi) − f̂ (n,k)(xi, zi)

}2
.
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Finally,

EP

(∣∣∣ã(n,k)
f

∣∣∣ ∣∣∣∣ D(n,k)
)

= EP

[{
fP (X,Z) − f̂ (n,k)(X,Z)

}2
∣∣∣∣ D(n,k)

]
≤ A

(n,k)
f ;

EP

(∣∣∣ã(n,k)
ρ

∣∣∣ ∣∣∣∣ D(n,k)
)

= EP

[{
ρP,l(X,Z) − ρ̂

(n,k)
l (X,Z)

}2
∣∣∣∣ D(n,k)

]
≤ A(n,k)

ρ ;

EP

(∣∣∣b̃(n,k)
f

∣∣∣ ∣∣∣∣ D(n,k)
)

= EP

([
∇lfP (X,Z) − ∇lf̂

(n,k)(X,Z)

+ ρP,l(X,Z)
{
fP (X,Z) − f̂ (n,k)(X,Z)

}]2 ∣∣∣∣ D(n,k)
)

≤ E
(n,k)
f ;

EP

(∣∣∣b̃(n,k)
ρ

∣∣∣ ∣∣∣∣ D(n,k)
)

= EP

[{
ρP,l(X,Z) − ρ̂

(n,k)
l (X,Z)

}2
ξ2

P

∣∣∣∣ D(n,k)
]

≤ E(n,k)
ρ .

This suffices to show that T (n,k)
P,2 = oP(1), so Σ̂(n) − ΣP = oP(1).

It remains to show the final conclusion. By Lemma 11, it is enough to show that

(ΣP )−1/2(Σ̂(n))1/2 = I + oP(1).

We have that the maximal eigenvalue of (ΣP )−1/2 is uniformly bounded above, and further
that

(ΣP )−1/2(Σ̂(n))1/2 = (ΣP )−1/2
{
(Σ̂(n))1/2 − (ΣP )1/2 + (ΣP )1/2

}
= I + (ΣP )−1/2

{
(Σ̂(n))1/2 − (ΣP )1/2

}
.

Therefore it remains to check that

(Σ̂(n))1/2 = (ΣP )1/2 + oP(1).

By Horn and Johnson (1985, Eqn. (7.2.13)),
∥∥∥(Σ̂(n))1/2 − (ΣP )1/2

∥∥∥
2

≤
∥∥∥(ΣP )−1/2

∥∥∥
2
∥Σ̂(n) − ΣP ∥2

≤ c
−1/2
1 ∥Σ̂(n) − ΣP ∥2.

Hence (Σ̂(n))1/2 − (ΣP )1/2 = oP(1). This completes the proof.
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2.7.3 Auxiliary lemmas

Lemma 9 (Shah and Peters (2020, Supp. Lem. 18), vectorised). Let P be a family
of distributions for ζ ∈ Rd and suppose ζ1, ζ2, . . . are i.i.d. copies. For each n ∈ N, let
Sn = n−1/2∑n

i=1 ζi. Suppose that for all P ∈ P, we have EP (ζ) = 0, VarP (ζ) = I, and
EP (∥ζ∥2+η

2 ) ≤ c for some c, η > 0. Then we have that

lim
n→∞

sup
P ∈P

sup
t∈Rd

|PP (Sn ≤ t) − Φ(t)| = 0.

Proof. For each n, let Pn ∈ P satisfy

sup
P ∈P

sup
t∈Rd

|PP (Sn ≤ t) − Φ(t)| ≤ sup
t∈Rd

|PPn(Sn ≤ t) − Φ(t)| + n−1.

Let Yn,i be equal in distribution to n−1/2ζi under Pn. We check the conditions to ap-
ply van der Vaart (1998, Prop. 2.27). Indeed, Yn,1, . . . , Yn,n are i.i.d. for each n, and∑n

i=1 Var(Yn,i) = ∑n
i=1 n

−1VarPn(ζ) = I. Finally, for any ϵ > 0 we have

n∑
i=1

E
(
∥Yn,1∥2

21{∥Yn,i∥2>ϵ}
)

= EPn

(
∥ζ∥2

21{∥ζ∥2>
√

nϵ}

)
≤
[
EPn(∥ζ∥2+η

2 )
]2/(2+η)[

EPn

(
1

(2+η)/η

{∥ζ∥2>
√

nϵ}

)]η/(2+η)

≤ c2/(2+η)[PPn(∥ζ∥2 >
√
nϵ)]η/(2+η)

≤ c2/(2+η)[EPn(∥ζ∥2)/(
√
nϵ)]η/(2+η)

≤ cϵ−η/(2+η)n−η/(4+2η) → 0.

Here the first inequality is due to Hölder, the third due to Markov and the second and
fourth are applying the assumption EP (∥ζ∥2+η

2 ) ≤ c.

Lemma 10 (Shah and Peters (2020, Supp. Lem. 19)). Let P be a family of distributions
for ζ ∈ R and suppose ζ1, ζ2, . . . are i.i.d. copies. For each n ∈ N, let Sn = n−1∑n

i=1 ζi.
Suppose that for all P ∈ P, we have EP (ζ) = 0, and EP (|ζ|1+η) ≤ c for some c, η > 0.
Then we have that for all ϵ > 0,

lim
n→∞

sup
P ∈P

PP (|Sn| > ϵ) = 0.

Lemma 11. Let P be a family of distributions that determines the law of sequences
(Vn)n∈N and (Wn)n∈N of random vectors in Rd and (Mn)n∈N random matrices in Rd×d.
Suppose

lim
n→∞

sup
P ∈P

sup
t∈Rd

|PP (Vn ≤ t) − Φ(t)| = 0.

Then we have the following.
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(a) If Wn = oP(1) we have

lim
n→∞

sup
P ∈P

sup
t∈Rd

|PP (Vn +Wn ≤ t) − Φ(t)| = 0.

(b) If Mn = I + oP(1) we have

lim
n→∞

sup
P ∈P

sup
t∈Rd

|PP (M−1
n Vn ≤ t) − Φ(t)| = 0.

Proof. We first show that for any δ > 0, supt∈Rd |Φ(t+ δ) − Φ(t)| ≤ dδ. Indeed, letting
Z ∼ N(0, I) in Rd,

|Φ(t+ δ) − Φ(t)| = P(∩j{Zj ≤ tj + δ}) − P(∩j{Zj ≤ tj})
= P(∪j{Zj ∈ (tj, tj + δ]})
≤
∑

j

P(Zj ∈ (tj, tj + δ])

≤ dδ.

The final line follows because the univariate standard normal c.d.f. has Lipschitz constant
1/

√
2π < 1.

Now consider the setup of (a). Given ϵ > 0 let N be such that for all n ≥ N and for
all P ∈ P ,

sup
t∈Rd

|PP (Vn ≤ t) − Φ(t)| < ϵ/3 and PP [∥Wn∥∞ > ϵ/(3d)] < ϵ/3.

Then

PP (Vn +Wn ≤ t) − Φ(t) = PP (∩j{Vnj +Wnj ≤ tj}) − Φ(t)
≤ PP [(∩j{Vnj ≤ tj + ϵ/(3d)}) ∪ (∪j{Wnj < −ϵ/(3d)})] − Φ(t)
≤ P[Vn ≤ t+ ϵ/(3d)] + P[∥Wn∥∞ > ϵ/(3d)] − Φ(t)
< ϵ/3 + Φ[t+ ϵ/(3d)] − Φ(t) + ϵ/3 < ϵ,
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and

PP (Vn +Wn ≤ t) − Φ(t)
= 1 − Φ(t) − PP (∪j{Vnj +Wnj > tj})
≥ 1 − Φ(t) − PP [∪j({Vnj > tj − ϵ/(3d)} ∪ {Wnj > ϵ/(3d)})]
= 1 − Φ(t) − PP [(∪j{Vnj > tj − ϵ/(3d)}) ∪ {∥Wn∥∞ > ϵ/(3d)}]
≥ 1 − Φ(t) − PP (∪j{Vnj > tj − ϵ/(3d)}) − PP [∥Wn∥∞ > ϵ/(3d)]
> PP [Vn ≤ t− ϵ/(3d)] − Φ(t) − ϵ/3
> −ϵ/3 + Φ[t− ϵ/(3d)] − Φ(t) − ϵ/3 > −ϵ.

Thus for all n ≥ N and P ∈ P ,

sup
t∈Rd

|PP (Vn +Wn ≤ t) − Φ(t)| < ϵ.

To prove (b), it suffices to show that (M−1
n − I)Vn = oP(1) and then apply (a). We

have that Mn − I is oP(1), and so the sequence

∥Mn − I∥∞ := sup
x:∥x∥∞=1

∥(Mn − I)x∥∞ = oP(1).

By Golub and Van Loan (2013, Thm. 2.3.4), when ∥Mn −I∥∞ < 1, then Mn is nonsingular
and

∥M−1
n − I∥∞ ≤ ∥Mn − I∥∞

1 − ∥Mn − I∥∞
.

Now

sup
P ∈P

PP (∥M−1
n − I∥∞ > ϵ) ≤ sup

P ∈P
PP

(
∥Mn − I∥∞

1 − ∥Mn − I∥∞
> ϵ

)
= sup

P ∈P
PP (∥Mn − I∥∞ > ϵ/(1 + ϵ)) → 0,

so ∥M−1
n − I∥∞ is also oP(1).

Now we can show that the sequence ∥(M−1
n − I)Vn∥∞ is oP(1). Indeed given ϵ > 0, let

δ > 0 be such that Φ(ϵ/δ) > 1 − ϵ/3, and let N be such that for all n ≥ N and for all
P ∈ P ,

sup
t∈Rd

|PP (Vn ≤ t) − Φ(t)| < ϵ/3 and PP (∥M−1
n − I∥∞ > δ) < ϵ/3.
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Then

PP (∥(M−1
n − I)Vn∥∞ > ϵ) ≤ PP (∥M−1

n − I∥∞∥Vn∥∞ > ϵ)
≤ PP ({∥M−1

n − I∥∞ > δ} ∪ {∥Vn∥∞ > ϵ/δ})
≤ PP (∥M−1

n − I∥∞ > δ) + 1 − PP (Vn ≤ ϵ/δ)
< ϵ/3 + 1 − Φ(ϵ/δ) + ϵ/3 < ϵ.

This suffices to show that the sequence of random vectors (M−1
n − I)Vn is oP(1), so we

are done by (a).

Lemma 12. Let Xm and Ym be sequences of random vectors governed by laws in some
set P, let ∥ · ∥ be any norm and q ≥ 1.

(a) If EP (∥Xm∥q | Ym) = oP(1), then ∥Xm∥ = oP(1).

(b) If EP (∥Xm∥q | Ym) = OP(1), then ∥Xm∥ = OP(1).

Proof. In both cases we work with a bounded version of ∥Xm∥, and apply Markov’s
inequality.

Let EP (∥Xm∥q | Ym) = oP(1). Given ϵ > 0,

PP [∥Xm∥ > ϵ] = PP [∥Xm∥q > ϵq]
= PP [(∥Xm∥q ∧ 2ϵq) > ϵq]
≤ ϵ−qEP [∥Xm∥q ∧ 2ϵq]
= ϵ−qEP [EP (∥Xm∥q | Ym) ∧ 2ϵq].

Writing Wm = EP (∥Xm∥q | Ym) ∧ 2ϵq, we have that Wm = oP(1) and |Wm| ≤ 2ϵq almost
surely. Taking supremum over P and applying Shah and Peters (2020, Supp. Lem. 25)
(uniform bounded convergence), we have

sup
P ∈P

PP (∥Xm∥ > ϵ) ≤ ϵ−q sup
P ∈P

EP (Wm) → 0.

The second conclusion is similar. Let EP (∥Xm∥q | Ym) = OP(1). Given ϵ > 0 and for
M to be fixed later, we have

PP [∥Xm∥ > M ] = PP [∥Xm∥q > M q]
= PP [(∥Xm∥q ∧ 2M q) > M q]
≤ M−qEP [∥Xm∥q ∧ 2M q]
= M−qEP [EP (∥Xm∥q | Ym) ∧ 2M q].
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Now let Wm := EP (∥Xm∥q | Ym) ∧ 2M q. Note that for any M̃ > 0,

Wm = Wm1{EP (∥Xm∥q |Ym)≤M̃} +Wm1{EP (∥Xm∥q |Ym)>M̃}

≤ M̃ + 2M q
1{EP (∥Xm∥q |Ym)>M̃}

almost surely. Since EP (∥Xm∥q | Ym) = OP(1), we may choose M̃ so that

sup
m∈N

sup
P ∈P

PP [EP (∥Xm∥q | Ym) > M̃ ] < ϵ/3,

and then choose M > (3M̃/ϵ)1/q. Again applying Shah and Peters (2020, Supp. Lem. 25),
we have

sup
m∈N

sup
P ∈P

PP (∥Xm∥ > M) ≤ M−q sup
m∈N

sup
P ∈P

EP (Wm)

≤ M−q(M̃ + 2M qϵ/3)
< ϵ/3 + 2ϵ/3 = ϵ.

2.8 Proof of Theorem 4
Proof. Let

sup
P ∈P

sup
x,z

∣∣∣ρ′
P (x, z)

∣∣∣ =: C < ∞.

Using the inequality (a+ b)2 ≤ 2
(
a2 + b2

)
, we decompose the quantities of interest (2.6).

A
(n)
f = EP

([
fP (X,Z) − {fP (·, Z) ∗Kh}(X) (2.24)

+ {fP (·, Z) ∗Kh}(X) − f̂ (n,1)(X,Z)
]2 ∣∣∣∣ D(n,1)

)
≤ 2EP

(
[fP (X,Z) − {fP (·, Z) ∗Kh}(X)]2

)
+ 2EP

([
{fP (·, Z) ∗Kh}(X) −

{
f̃ (n,1)(·, Z) ∗Kh

}
(X)

]2 ∣∣∣∣ D(n,1)
)

= 2EP ([fP (X,Z) − {fP (·, Z) ∗Kh}(X)]2)

+ 2EP

([{
fP (·, Z) − f̃ (n,1)(·, Z)

}
∗Kh

]2
(X)

∣∣∣∣ D(n,1)
)

≤ 2EP

(
sup

x
[fP (x, Z) − {fP (·, Z) ∗Kh}(x)]2

)
+ 2EP

([{
fP (·, Z) − f̃ (n,1)(·, Z)

}
∗Kh

]2
(X)

∣∣∣∣ D(n,1)
)
. (2.25)
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Similarly,

E
(n)
f ≤ 2EP

[(
f ′

P (X,Z) − {fP (·, Z) ∗Kh}′(X)

+ ρP (X,Z)[fP (X,Z) − {fP (·, Z) ∗Kh}(X)]
)2
]

+ 2EP

[([{
fP (·, Z) − f̃ (n,1)(·, Z)

}
∗Kh

]′
(X)

+ ρP (X,Z)
[{
fP (·, Z) − f̃ (n,1)(·, Z)

}
∗Kh

]
(X)

)2
∣∣∣∣∣ D(n,1)

]

≤ 4EP

(
sup

x
[f ′

P (x, Z) − {fP (·, Z) ∗Kh}′(x)]2
)

+ 4EP

(
EP

[
ρ2

P (X,Z)
∣∣∣ Z] sup

x
[fP (x, Z) − {fP (·, Z) ∗Kh}(x)]2

)
+ 4EP

[[{
fP (·, Z) − f̃ (n,1)(·, Z)

}
∗Kh

]′2
(X)

∣∣∣∣∣ D(n,1)
]

+ 4EP

(
ρ2

P (X,Z)
[{
fP (·, Z) − f̃ (n,1)(·, Z)

}
∗Kh

]2
(X)

∣∣∣∣ D(n,1)
)
. (2.26)

By Theorem 5, EP

[
ρ2

P (X,Z)
∣∣∣ Z = z

]
is bounded by C for almost every z ∈ Z. We

wish to apply Lemma 13 to the quantities

fP (x, z) − {fP (·, z) ∗Kh}(x); f ′
P (x, z) − {fP (·, z) ∗Kh}′(x).

To this end, note that by a Taylor expansion

|fP (x+ hw, z)| ≤ |fP (x, z)| + h|w||f ′
P (x, z)| + CP (z)

2 w2h2. (2.27)

Since fP , f
′
P are real-valued, both |fP (x, z)| and |f ′

P (x, z)| are finite for any fixed x, z. The
conditions for Lemma 13 follow. Now we have that

∣∣∣{fP (·, z) ∗Kh}(x) − fP (x, z)
∣∣∣ =

∣∣∣E[fP (x+ hW, z) − fP (x, z)]
∣∣∣

≤
∣∣∣∣∣E
[
hWf ′

P (x, z) + h2W 2

2 sup
t∈R

∣∣∣f ′′
P (t, z)

∣∣∣]∣∣∣∣∣
≤ CP (z)

2 h2.

51



In the second line we have applied equation (2.27) and the third line E(W ) = 0, E
(
W 2

)
= 1.

Similarly,
∣∣∣{fP (·, z) ∗Kh}′(x) − f ′

P (x, z)
∣∣∣

=
∣∣∣∣∣1hE[WfP (x+ hW, z) − hf ′

P (x, z)]
∣∣∣∣∣

≤
∣∣∣∣∣1hE

[
WfP (x, z) + h

(
W 2 − 1

)
f ′

P (x, z) + h2|W 3|
2 sup

t∈R

∣∣∣f ′′
P (t, z)

∣∣∣]∣∣∣∣∣
≤

√
2CP (z)√
π

h,

noting that E
(
|W |3

)
= 2

√
2/π. The choice of h = cn−γ for any

γ ≥ α/4 (2.28)

yields the desired rates on the respective terms in equations (2.25, 2.26).
Write

∆P,n(x, z) := fP (x, z) − f̃ (n,1)(x, z).

It remains to demonstrate the following rates

EP

[
{∆P,n(·, Z) ∗Kh}2(X)

∣∣∣ D(n,1)
]

= OP
(
Ã

(n)
f

)
; (2.29)

EP

[
{∆P,n(·, Z) ∗Kh}′2(X)

∣∣∣ D(n,1)
]

= oP(1); (2.30)

EP

[
ρ2

P (X,Z){∆P,n(·, Z) ∗Kh}2(X)
∣∣∣ D(n,1)

]
= oP(1); (2.31)

which we do by proving bounds in terms of

EP

[
∆2

P,n(X,Z)
∣∣∣ D(n,1)

]
= Ã

(n)
f ;(

EP

[
|∆P,n(X,Z)|2+η

∣∣∣ D(n,1)
]) 2

2+η = B̃
(n)
f . (2.32)

We work on the event that ∆P,n is bounded, which happens with high probability by
assumption. This will enable us to use dominated convergence to exchange various limits
below. Recall that we are not assuming any smoothness of f̃ (n,1) or ∆P,n. Since we are
working under the event that ∆P,n is bounded over (x, z), we have that ∆P,n ∗ Kn is
bounded by the same bound as ∆P,n, and also due to Lemma 13 we have that (∆P,n ∗Kh)′

exists and is bounded. By assumption and Theorem 5 we have that ρ′
P (x, z) and all

moments of ρP (X,Z) are bounded.
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We first show that (2.31) follows from (2.29, 2.30). Due to the aforementioned bounds
and Lemma 23, we can apply Proposition 2 as follows.

EP

[
ρ2

P (X,Z){∆P,n(·, Z) ∗Kh}2(X)
∣∣∣ D(n,1)

]
= −EP

[
ρ′

P (X,Z){∆P,n(·, Z) ∗Kh}2(X)

+ 2ρP (X,Z){∆P,n(·, Z) ∗Kh}′(X){∆P,n(·, Z) ∗Kh}(X)
∣∣∣ D(n,1)

]
≤ sup

x,z
|ρ′

P (x, z)|EP

[
{∆P,n(·, Z) ∗Kh}2(X)

∣∣∣ D(n,1)
]

+ sup
x,z

|∆P,n(x, z)|
(
EP [ρ2

P (X,Z)]
)1/2(

EP

[
{∆P,n(·, Z) ∗Kh}′2(X)

∣∣∣ D(n,1)
])1/2

The second line is due to the Hölder and Cauchy–Schwarz inequalities. All the random
quantities above are integrable due to the stated bounds. It remains to show (2.29, 2.30).

We start with (2.29). By Lemma 13, conditional Jensen’s inequality, and Fubini’s
theorem,

EP

[
{∆P,n(·, Z) ∗Kh}2(X)

∣∣∣ D(n,1)
]

= EP

[
E{∆P,n(X + hW,Z) | X,Z,D(n,1)}2

∣∣∣ D(n,1)
]

≤ EP

[
E
{
∆2

P,n(X + hW,Z) | X,Z,D(n,1)
} ∣∣∣ D(n,1)

]
= E

[
EP

{
∆2

P,n(X + hW,Z)
∣∣∣ W,D(n,1)

} ∣∣∣ D(n,1)
]
.

Define a new function ϕP,n : R → R by ϕP,n(t) = EP

[
∆2

P,n(X + t, Z)
∣∣∣ D(n,1)

]
, so

ϕP,n(0) = Ã
(n)
f . We will show later in the proof that ϕP,n is twice differentiable, which we

assume to be true for now. By a Taylor expansion, for each fixed h > 0, w ∈ R we have

ϕP,n(hw) ≤ ϕP,n(0) + hwϕ′
P,n(0) + h2w2

2 sup
|t|≤h|w|

∣∣∣ϕ′′
P,n(t)

∣∣∣.
We will also show later that the remainder term is integrable with respect to the Gaussian
density. Taking expectations over W yields

E
[
ϕP,n(hW )

∣∣∣ D(n,1)
]

≤ ϕP,n(0) + hE(W )ϕ′
P,n(0) + h2

2

∫
R
w2K(w) sup

|t|≤h|w|

∣∣∣ϕ′′
P,n(t)

∣∣∣ dw
= ϕP,n(0) + h2

2

∫
R
w2K(w) sup

|t|≤h|w|

∣∣∣ϕ′′
P,n(t)

∣∣∣ dw. (2.33)

In the final line we have used E(W ) = 0.
Now considering the quantity (2.30), Lemma 13 implies that

{∆P,n(·, z) ∗Kh}′(x) = 1
h
E
[
W∆P,n(x+ hW, z)

∣∣∣ D(n,1)
]
.
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Similarly to above,

EP

(
[{∆P,n(·, Z) ∗Kh}′(X)]2

∣∣∣ D(n,1)
)

= h−2EP

[
E
{
W∆P,n(X + hW,Z)

∣∣∣ X,Z,D(n,1)}2
∣∣∣ D(n,1)

]
≤ h−2EP

[
E
{
W 2∆2

P,n(X + hW,Z)
∣∣∣ X,Z,D(n,1)

} ∣∣∣ D(n,1)
]

= h−2E
[
W 2EP

{
∆2

P,n(X + hW,Z)
∣∣∣ W,D(n,1)

} ∣∣∣ D(n,1)
]
.

Moreover,

h−2E
[
W 2ϕP,n(hW )

∣∣∣ D(n,1)
]

= h−2E
(
W 2

)
ϕP,n(0) + h−1E

(
W 3

)
ϕ′

P,n(0)

+ 1
2

∫
R
w4K(w) sup

|t|≤h|w|

∣∣∣ϕ′′
P,n(t)

∣∣∣ dw
= h−2ϕP,n(0) + 1

2

∫
R
w4K(w) sup

|t|≤h|w|

∣∣∣ϕ′′
P,n(t)

∣∣∣ dw. (2.34)

In the final line we have used E
(
W 2

)
= 1, E

(
W 3

)
= 0.

It remains to check that ϕP,n is twice differentiable and compute its derivatives. By a
change of variables u = x+ t,

ϕP,n(t) = EP

[
EP

{
∆2

P,n(X + t, Z)
∣∣∣ Z,D(n,1)

} ∣∣∣∣ D(n,1)
]

= EP

[ ∫
R

∆2
P,n(x+ t, Z)pP (x | Z) dx

∣∣∣∣∣ D(n,1)
]

= EP

[ ∫
R

∆2
P,n(u, Z)pP (u− t | Z) du

∣∣∣∣∣ D(n,1)
]
.

The conditional density pP is assumed twice differentiable, so the integrand is twice
differentiable with respect to t. The bound on ∆P,n and conclusion of Lemma 14 allow
us to interchange the differentiation and expectation operators using Aliprantis and
Burkinshaw (1990, Thm. 20.4). Differentiating ϕP,n twice gives

ϕ′′
P,n(t) = ∂2

t EP

[ ∫
R

∆2
P,n(u, Z)pP (u− t | Z) du

∣∣∣∣∣ D(n,1)
]

= EP

[ ∫
R

∆2
P,n(u, Z)p′′

P (u− t | Z) du
∣∣∣∣∣ D(n,1)

]
. (2.35)
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Note that

ρ′
P (x, z) =

(
p′

P (x | z)
pP (x | z)

)′

= p′′
P (x | z)
pP (x | z) −

(
p′

P (x | z)
pP (x | z)

)2

= p′′
P (x | z)
pP (x | z) − ρ2

P (x, z). (2.36)

Applying equation (2.36), the Lipschitz property of ρP , and Lemma 26 to the interior of
(2.35) yields∣∣∣∣∣

∫
R
∆2

P,n(u, z)p′′
P (u− t | z) du

∣∣∣∣∣
=
∣∣∣∣∣
∫
R

∆2
P,n(u, z)

{
ρ′

P (u− t, z) + ρ2
P (u− t, z)

}
pP (u− t | z) du

∣∣∣∣∣
=
∣∣∣∣∣
∫
R

∆2
P,n(u, z)

[
ρ′

P (u− t, z) + {ρP (u− t, z) − ρP (u, z) + ρP (u, z)}2
]

pP (u− t | z)
pP (u | z) pP (u | z) du

∣∣∣∣∣
≤
∫
R

∆2
P,n(u, z)

[
C + {C|t| + ρP (u, z)}2

]
exp

(
− tρP (u, z) + C

2 t
2
)
pP (u | z) du

≤
∫
R

∆2
P,n(u, z)

{
C + 2C2t2 + 2ρ2

P (u, z)
}

exp
(

− tρP (u, z) + C

2 t
2
)
pP (u | z) du

= EP

∆2
P,n(X, z)

{
C + 2C2t2 + 2ρ2

P (X, z)
}

exp
(

− tρP (X, z) + C

2 t
2
) ∣∣∣∣∣∣ Z = z,D(n,1)

.
The penultimate line uses (a + b)2 ≤ 2(a2 + b2). Plugging this in to (2.35) and using
Fubini’s theorem gives

∣∣∣ϕ′′
P,n(t)

∣∣∣ ≤ EP

∆2
P,n(X,Z)

{
C + 2C2t2 + 2ρ2

P (X,Z)
}

exp
(

− tρP (X,Z) + C

2 t
2
) ∣∣∣∣∣∣D(n,1)


=
(
C + 2C2t2

)
exp

(
C

2 t
2
)
EP

[
∆2

P,n(X,Z) exp
(

− tρP (X,Z)
) ∣∣∣∣D(n,1)

]

+ 2 exp
(
C

2 t
2
)
EP

[
∆2

P,n(X,Z)ρ2
P (X,Z) exp

(
− tρP (X,Z)

) ∣∣∣∣D(n,1)
]
. (2.37)
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We will use Hölder’s inequality to bound this in terms of (2.32). Pick q1 to be any integer
strictly larger than (2+η)/η, and set q2 so that 1/q1 +1/q2 = η/(2+η). Applying Hölder’s
inequality to (2.37) twice,

∣∣∣ϕ′′
P,n(t)

∣∣∣ ≤
(
C + 2C2t2

)
exp

(
C

2 t
2
)EP

[
exp

(
− 2 + η

η
tρP (X,Z)

)]
η

2+η

B̃
(n)
f

+ 2 exp
(
C

2 t
2
)EP

[
|ρP (X,Z)|

2(2+η)
η exp

(
− 2 + η

η
tρP (X,Z)

)]
η

2+η

B̃
(n)
f

≤ exp
(
C

2 t
2
)C + 2C2t2 + 2

(
EP

[
ρ2q1

P (X,Z)
]) 1

q1

EP

[
exp

(
− q2tρP (X,Z)

)] 1
q2

B̃
(n)
f .

We are now in a position to apply Theorem 5. Recalling the moment generating function
bound for sub-Gaussian random variables, we have

ϕ′′
P,n(t) ≤ exp

(
C

2 t
2
)C + 2C2t2 + 2

(
Cq1(2q1 − 1)!!

) 1
q1


(

exp
(
q2

2C
2t2
)) 1

q2
B̃

(n)
f

≤ c1
(
1 + t2

)
exp

(
c2t

2
)
B̃

(n)
f ,

for some constants c1, c2 > 0 depending on C and η but not on P or n.
Returning to equations (2.33, 2.34), we have

E
[
ϕP,n(hW )

∣∣∣ D(n,1)
]

≤ Ã
(n)
f + c1h

2B̃
(n)
f

∫
R
w2(1 + h2w2) exp(c2h

2w2)K(w) dw.

h−2E
[
W 2ϕP,n(hW )

∣∣∣ D(n,1)
]

≤ h−2Ã
(n)
f + c1h

2B̃
(n)
f

∫
R
w4(1 + h2w2) exp(c2h

2w2)K(w) dw.

For all 0 < h < 1
2√

c2
, the final integrals are bounded by a constant.

Hence the choice of h = cn−γ for any

(α− β)/2 ≤ γ < α/2

yields the desired rates on (2.29, 2.30). Combining this with (2.28) gives the final range

max{α/4, (α− β)/2} ≤ γ < α/2

to achieve the desired rates in (2.25, 2.26).
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2.8.1 Auxiliary lemmas

Lemma 13. Let W ∼ N(0, 1) be a standard Gaussian random variable independent of
(X,Z), and fix h > 0. Let g : R × Z → R be such that E|g(x+ hW, z)| < ∞ for all (x, z).
Then we have that for each z

{g(·, z) ∗Kh}(x) = E[g(x+ hW, z)]

is absolutely continuous in x, and for almost every x its derivative exists. If E
[
|g(x +

hW, z)|1+η
]
< ∞ for some η > 0 then the derivative is given by

{g(·, z) ∗Kh}′(x) = 1
h
E[Wg(x+ hW, z)].

Proof. Recall that the convolution operator is

{g(·, z) ∗Kh}(x) =
∫

R
g(u, z)Kh(x− u) du.

We check the conditions for interchanging differentiation and integration operators (Alipran-
tis and Burkinshaw, 1990, Thm. 20.4). The integrand g(u, z)Kh(x− u) is integrable in u

with respect to the Lebesgue measure for each (x, z), since

∫
R

|g(u, z)|Kh(x− u) du =
∫
R

|g(u, z)| 1
h
K

(
x− u

h

)
du

=
∫
R

|g(x+ hw, z)|K(−w) dw

=
∫
R

|g(x+ hw, z)|K(w) dw

= E[|g(x+ hW, z)|] < ∞.

Due to the smoothness of the Gaussian kernel, g(u, z)Kh(x− u) is absolutely continuous
in x for each (u, z). Furthermore it has x-derivative

g(u, z)K ′
h(x− u) = −g(u, z)

(
x− u

h2

)
Kh(x− u).

Fix x0 and V = [x0 − h, x0 + h]. It remains to find a Lebesgue integrable function
G : R → R such that ∣∣∣∣∣g(u, z)

(
x− u

h2

)
Kh(x− u)

∣∣∣∣∣ ≤ G(u)
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for all x ∈ V and u ∈ R. Now for any x ∈ V , u ∈ R,∣∣∣∣∣g(u, z)
(
x− u

h2

)
Kh(x− u)

∣∣∣∣∣
=
∣∣∣∣∣g(u, z)

(
x− x0 + x0 − u

h2

)
Kh(x− u)
Kh(x0 − u)Kh(x0 − u)

∣∣∣∣∣
= |g(u, z)|

∣∣∣∣∣x− x0 + x0 − u

h2

∣∣∣∣∣ exp
(

− (x− x0)2

2 − (x− x0)(x0 − u)
)
Kh(x0 − u)

≤ |g(u, z)|h+ |x0 − u|
h2 exp

(
− h2

2 + h|x0 − u|
)
Kh(x0 − u)

=: G(u).

Moreover, recalling the symmetry of K and using a change of variables w = (u− x0)/h,

∫
R
G(u) du = 1

h
exp

(
− h2

2

)∫
R

|g(x0 + hw, z)|(1 + |w|) exp
(
|w|h2

)
K(w) dw

We now apply Hölder’s inequality twice. Pick q1, q2 > 1 be such that 1/q1+1/q2 = η/(1+η).
Now,

∫
R
G(u) du ≤ 1

h
exp

(
− h2

2

)(
E
[
|g(x0 + hW, z)|1+η

]) 1
1+η

(∫
R
(1 + |w|)

1+η
η exp

(
1 + η

η
|w|h2

)
K(w) dw

) η
1+η

≤ 1
h

exp
(

− h2

2

)(
E
[
|g(x0 + hW, z)|1+η

]) 1
1+η

(
E
[
(1 + |W |)q1

]) 1
q1
(
E
[

exp
(
q2|w|h2

)]) 1
q2
.

We have that E
[
|g(x0 + hW, z)|1+η

]
is finite by assumption, E

[
(1 + |W |)q1

]
is a Gaussian

moment so is finite, and (E
[

exp
(
q2|w|h2

)]
is bounded in terms of the Gaussian moment

generating function. Hence G is Lebesgue integrable.
Finally we check the claimed identities. Using a change of variables u = x+ hw, and

recalling the symmetry of K, we have that

{g(·, z) ∗Kh}(x) =
∫
R
g(u, z) 1

h
K

(
x− u

h

)
du

=
∫
R
g(x+ hw, z)K(w) dw

= E[g(x+ hW, z)],
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and

{g(·, z) ∗Kh}′(x) =
∫
R
g(u, z)K ′

h(x− u) du

= − 1
h2

∫
R
g(u, z)

(
x− u

h

)
K

(
x− u

h

)
du

= 1
h

∫
R
g(x+ hw, z)wK(w) dw

= 1
h
E[Wg(x+ hW, z)].

Lemma 14. Let p be a twice differentiable density on R, with supx∈R |∂2
x log p(x)| =

supx∈R |ρ′(x)| ≤ C < ∞. Then for every t0 ∈ R there exists a neighbourhood V of t0 and
Lebesgue integrable function g such that

|p′(x− t)|, |p′′(x− t)| ≤ g(x)

for all x ∈ R and t ∈ V .

Proof. Fix t0 and V = [t0 − 1, t0 + 1]. We will make use of Lemma 26. Indeed for any
t ∈ V ,

|p′(x− t)| = |ρ(x− t)|p(x− t)

= |ρ(x− t) − ρ(x− t0) + ρ(x− t0)|
p(x− t)
p(x− t0)

p(x− t0)

≤
{
C|t− t0| + |ρ(x− t0)|

} p(x− t)
p(x− t0)

p(x− t0)

≤
{
C|t− t0| + |ρ(x− t0)|

}
exp

(
|t− t0| |ρ(x− t0)| + (t− t0)2C

2

)
p(x− t0)

≤
{
C + |ρ(x− t0)|

}
exp

(
|ρ(x− t0)| + C

2

)
p(x− t0).
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Similarly,

|p′′(x− t)| = |ρ′(x− t) + ρ2(x− t)|p(x− t)

≤
[
C + {ρ(x− t) − ρ(x− t0) + ρ(x− t0)}2

] p(x− t)
p(x− t0)

p(x− t0)

≤
[
C + 2C2(t− t0)2 + 2ρ2(x− t0)

] p(x− t)
p(x− t0)

p(x− t0)

≤
[
C + 2C2(t− t0)2 + 2ρ2(x− t0)

]
exp

(
|t− t0| |ρ(x− t0)| + (t− t0)2C

2

)
p(x− t0)

≤
[
C + 2C2 + 2ρ2(x− t0)

]
exp

(
|ρ(x− t0)| + C

2

)
p(x− t0).

In the third line we have used the inequality (a+ b)2 ≤ 2(a2 + b2).
Taking g to be the maximum of the two bounds, it suffices to check that the function

|ρ(x− t0)|k exp(|ρ(x− t0)|)p(x− t0) is Lebesgue integrable with respect to x for k = 0, 1, 2.
Using the change of variables y = x− t0 and the Cauchy–Schwarz inequality,∫

R
|ρ(x− t0)|k exp(|ρ(x− t0)|)p(x− t0) dx =

∫
R

|ρ(y)|k exp(|ρ(y)|)p(y) dx

= E
[
|ρ(X)|k exp(|ρ(X)|)

]
≤
(
E
[
ρ2k(X)

]) 1
2
(
E
[

exp(2|ρ(X)|)
]) 1

2
,

where X ∼ p. By Theorem 5,

E
[
ρ2k(X)

]
≤ Ck(2k − 1)!!

for k = 1, 2 and moreover ρ(X) is sub-Gaussian with parameter
√

2C, so

E
[

exp(2|ρ(X)|)
]

≤ E
[

exp(2ρ(X))
]

+ E
[

exp(−2ρ(X))
]

≤ 2 exp(4C).

This completes the proof.

2.9 Proofs relating to Section 2.4
Our proofs make use of the following representations of pε̂(ϵ) and ρε̂(ϵ). We first note that

εP = ε̂(n) + u(n)
σ (Z) ε̂(n) + u(n)

m (Z),
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where we recall

u(n)
σ (z) := σ̂(n)(z) − σP (z)

σP (z) ; u(n)
m (z) := m̂(n)(z) −mP (z)

σP (z) .

Recall that since we do not have access to samples of εP , only ε̂(n), our goal is to show
that the score functions of these two variables are similar. Conditionally on D(n), and
for each fixed ϵ ∈ R and z ∈ Z, the estimated residual ε̂(n) and covariates Z have joint
density

pε̂,Z(ϵ, z) = pε,Z

(
ϵ+ u(n)

σ (z)ϵ+ u(n)
m (z), z

)
= pε

(
ϵ+ u(n)

σ (z)ϵ+ u(n)
m (z)

)
pZ(z),

where the first equality is via a change-of-variables and the second is using the independence
of ε and Z. Integrating over z, we have that the marginal density of ε̂(n), conditionally on
D(n), is

pε̂(ϵ) = EP

[
pε

(
ϵ+ u(n)

σ (Z)ϵ+ u(n)
m (Z)

) ∣∣∣∣ D(n)
]
.

If p′
ϵ is bounded and E[|uσ(Z)| | D(n)] < ∞ then the estimated residual score function is

ρε̂(ϵ) = p′
ε̂(ϵ)
pε̂(ϵ)

=
EP

[{
1 + u(n)

σ (Z)
}
p′

ε

(
ϵ+ u(n)

σ (Z)ϵ+ u(n)
m (Z)

) ∣∣∣∣ D(n)
]

EP

[
pε

(
ϵ+ u

(n)
σ (Z)ϵ+ u

(n)
m (Z)

) ∣∣∣∣ D(n)
] ,

by differentiating under the integral sign (see, for example, Aliprantis and Burkinshaw
(1990, Thm. 20.4)).

2.9.1 Proof of Theorem 5

Proof. By Wainwright (2019, Thm. 2.6), the moment bound is sufficient to show sub-
Gaussianity. Note that when X is symmetrically distributed, its density p(·) is anti-
symmetric. Thus its score function ρ(·) is anti-symmetric, and so the random variable
ρ(X) is symmetrically distributed.

We prove the moment bound by induction. Suppose it is true for all 1 ≤ j < k for
some k ≥ 1. By the product rule,

(
ρ2k−1(x)p(x)

)′
= ρ2k−1(x)p′(x) + (2k − 1)ρ′(x)ρ2k−2(x)p(x)

= ρ2k(x)p(x) + (2k − 1)ρ′(x)ρ2k−2(x)p(x).
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Therefore for any −∞ < a < b < ∞ we have
∫ b

a
ρ2k(x)p(x) dx = ρ2k−1(b)p(b)−ρ2k−1(a)p(a)−(2k−1)

∫ b

a
ρ′(x)ρ2k−2(x)p(x) dx. (2.38)

We have that E[ρ2k−2(X)] < ∞ by the induction hypothesis if k ≥ 2 and trivially if
k = 1. By Lemma 25 we can choose sequences an → −∞, bn → ∞ such that

lim
n→∞

{
ρ2k−1(bn)p(bn) − ρ2k−1(an)p(an)

}
= 0.

By Hölder’s inequality, we have that∫
R

∣∣∣ρ′(x)ρ2k−2(x)p(x)
∣∣∣ dx ≤ C

∫
R
ρ2k−2(x)p(x) dx

≤

C
k(2k − 3)!! if k ≥ 2 by the induction hypothesis;

C if k = 1.

Therefore dominated convergence gives

lim
n→∞

∣∣∣∣∣(2k − 1)
∫ bn

an

ρ′(x)ρ2k−2(x)p(x) dx
∣∣∣∣∣ =

∣∣∣∣∣(2k − 1)
∫
R
ρ′(x)ρ2k−2(x)p(x) dx

∣∣∣∣∣
≤ Ck(2k − 1)!!.

Finally, we can assume without loss of generality that the sequences (an) and (bn) are
both monotone, for example by relabelling their monotone sub-sequences. Now, for each
x ∈ R the sequence 1[an,bn](x)ρ2k(x)p(x) is increasing in n. The monotone convergence
theorem thus gives

lim
n→∞

∫ bn

an

ρ2k(x)p(x) dx = E
[
ρ2k(X)

]
.

Taking the limit in equation (2.38) yields

E
[
ρ2k(X)

]
= lim

n→∞

∫ bn

an

ρ2k(x)p(x) dx

= lim
n→∞

{
ρ2k−1(bn)p(bn) − ρ2k−1(an)p(an)

− (2k − 1)
∫ bn

an

ρ′(x)ρ2k−2(x)p(x) dx
}

≤ Ck(2k − 1)!!,

as claimed.
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2.9.2 Proof of Theorem 6

Proof. Define

ρ̄
(n)
P (x, z) = 1

σP (z) ρε

(
x− m̂(n)(z)
σP (z)

)
.

Using the inequality (a+ b)2 ≤ 2(a2 + b2), we have

A(n)
ρ = EP

[{
ρP (X,Z) − ρ̄

(n)
P (X,Z) + ρ̄

(n)
P (X,Z) − ρ̂(n)(X,Z)

}2
∣∣∣∣ D(n)

]
≤ 2EP

[{
ρP (X,Z) − ρ̄

(n)
P (X,Z)

}2
∣∣∣∣ D(n)

]
+ 2EP

[{
ρ̄

(n)
P − ρ̂(n)(X,Z)

}2
∣∣∣∣ D(n)

]
.

The first term readily simplifies using Hölder’s inequality and the Lipschitz property of ρε.

EP

[{
ρP (X,Z)−ρ̄(n)

P (X,Z)
}2
∣∣∣∣ D(n)

]

= EP

 1
σ2

P (Z)

{
ρε

(
x−mP (z)
σP (z)

)
− ρε

(
x− m̂(n)(z)
σP (z)

)}2
∣∣∣∣∣∣ D(n)


≤
(

∥ρε∥Lip

infz σP (z)

)2

EP

[
u(n)2

m (Z)
∣∣∣ D(n)

]

=
(

∥ρε∥Lip

infz σP (z)

)2

A(n)
m .

We now expand the second term, working on the arbitrarily high-probability event
that D(n) is such that both σP (z)

σ̂(n)(z) and |u(n)
m (z)| are bounded, for all n sufficiently large.

EP

[{
ρ̄

(n)
P −ρ̂(n)(X,Z)

}2
∣∣∣∣ D(n)

]

= EP

{ 1
σP (Z) − 1

σ̂(n)(Z)

}2

ρ2
ε

(
x− m̂(n)(z)
σ̂(n)(z)

) ∣∣∣∣∣∣ D(n)


= EP

{ 1
σP (Z) − 1

σ̂(n)(Z)

}2

ρ2
ε

(
ε+ u(n)

m (Z)
) ∣∣∣∣∣∣ D(n)


= EP

 1
σ2

P (Z)

{
σ̂(n)(Z)
σP (Z)

}2

u(n)2
σ (Z)ρ2

ε

(
ε+ u(n)

m (Z)
) ∣∣∣∣∣∣ D(n)

.
Applying the Lipschitz property of ρε and using the inequality (a+ b)2 ≤ 2(a2 + b2),

ρ2
ε

(
ε+ u(n)

m (Z)
)

≤
(
|ρε(ε)| + ∥ρε∥Lip |u(n)

m (Z)|
)2

≤ 2ρ2
ε(ε) + 2∥ρε∥2

Lip u
(n)2
m (Z).
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Recalling that ε is independent of Z we deduce

EP

[{
ρ̄

(n)
P −ρ̂(n)(X,Z)

}2
∣∣∣∣ D(n)

]

≤ EP

 1
σ2

P (Z)

{
σ̂(n)(Z)
σP (Z)

}2

u(n)2
σ (Z)

{
2ρ2

ε(ε) + 2∥ρε∥2
Lip u

(n)2
m (Z)

} ∣∣∣∣∣∣ D(n)


≤ 1(

infz σ2
P (z)

)2

(
sup

z

σ̂(n)(z)
σP (z)

)2(
2EP

[
ρ2

ε(ε)
]

+ 2∥ρε∥2
Lip

(
sup

z
|u(n)

m |
)2
)

× EP

[
u(n)2

σ (Z)
∣∣∣ D(n)

]
= 1(

infz σ2
P (z)

)2

(
sup

z

σ̂(n)(z)
σP (z)

)2(
2EP

[
ρ2

ε(ε)
]

+ 2∥ρε∥2
Lip

(
sup

z
|u(n)

m |
)2
)
A(n)

σ .

This suffices to prove the claim.

2.9.3 Proof of Theorem 7

Proof. The assumptions on u(n)
m and u(n)

σ mean that for any ϵ > 0 we can find N,Cm, Cσ

such that for any n ≥ N , with uniform probability at least 1 − ϵ, the data D(n) is such
that

sup
z

∣∣∣u(n)
m (z)

∣∣∣ ≤ Cm; sup
z

∣∣∣u(n)
σ (z)

∣∣∣ ≤ Cσ. (2.39)

It suffices to show that under this event, we can find a uniform constant C (not depending
on P or n) such that

A(n)
ρ ≤ C

(
A(n)

m + A(n)
σ + A

(n)
ε̂

)
.

Fix P ∈ P and D(n) such that (2.39) holds. We decompose A(n)
ρ so as to consider the

various sources of error separately.

A(n)
ρ = EP

[{
ρP (X,Z) − ρ̂(n)(X,Z)

}2
∣∣∣∣ D(n)

]

= EP

{ 1
σP (Z)ρε(εP ) − 1

σ̂(n)(Z) ρ̂
(n)
ε̂

(
ε̂(n)

)}2
∣∣∣∣∣∣ D(n)


= EP

 1
σ̂(n)2(Z)

{(
σ̂(n)(Z)
σP (Z) − 1

)
ρε(εP ) + ρε(εP ) − ρ̂

(n)
ε̂

(
ε̂(n)

)}2
∣∣∣∣∣∣ D(n)


= EP

 1
σ̂(n)2(Z)

{
− u(n)

σ (Z)ρε(εP ) + ρε(εP ) − ρε̂(εP )

+ ρε̂(εP ) − ρε̂(ε̂(n)) + ρε̂(ε̂(n)) − ρ̂
(n)
ε̂

(
ε̂(n)

)}2
∣∣∣∣∣∣ D(n)

.
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Note that

1
σ̂(n)(z) = 1{

1 − u
(n)
σ (z)

}
σP (z)

≤ 1
1 − Cσ

1
infP ∈P infz∈Z σP (z) < ∞.

Applying Hölder’s inequality and (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2), we deduce

A(n)
ρ ≤ 4 1

(1 − Cσ)2
1(

infP ∈P infz∈Z σP (z)
)2

{
EP

[
u(n)2

σ (Z)ρ2
ε(εP )

∣∣∣ D(n)
]

+ EP

[{
ρε(εP ) − ρε̂(εP )

}2
∣∣∣∣ D(n)

]

+ EP

[{
ρε̂(εP ) − ρε̂(ε̂(n))

}2
∣∣∣∣ D(n)

]

+ EP

[{
ρε̂(ε̂(n)) − ρ̂

(n)
ε̂

(
ε̂(n)

)}2
∣∣∣∣ D(n)

]}
.

(2.40)

We consider the expectations in (2.40) separately. For the first term, the independence
of εP and Z and Theorem 5 imply

EP

[
u(n)2

σ (Z)ρ2
ε(εP )

∣∣∣ D(n)
]

= EP

[
ρ2

ε(εP )
]
A(n)

σ ≤ CρA
(n)
σ .

Lemma 15 applies to the second term. To apply Lemma 18 to the third term, we note
that (

EP (ε8
P )
) 1

8 ≤ (768C8
ε ) 1

8 < 3Cε

by Lemma 16. The fourth term is equal to A(n)
ε̂ by definition. This completes the proof.

2.9.4 Auxiliary lemmas

Lemma 15. Let P be such that pε is twice differentiable on R, with

sup
ϵ∈R

|∂2
ϵ log pε(ϵ)| = sup

ϵ∈R
|ρ′

ε(ϵ)| ≤ Cρ,

p′
ε is bounded, and εP is sub-Gaussian with parameter Cε. Further assume that D(n) is

such that supz∈Z |u(n)
m (z)| ≤ Cm and supz∈Z |u(n)

σ (z)| ≤ Cσ. If

√
CρCσCε ≤ 1

18
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then there exists a constant C, depending only on Cρ, Cm, Cσ, Cε, such that

EP

[{
ρε(εP ) − ρε̂(εP )

}2
∣∣∣∣ D(n)

]
≤ C

(
A(n)

m + A(n)
σ

)
.

Proof. For ease of notation, write Q(n) for the distribution of
(
u(n)

m (Z), u(n)
σ (Z)

)
condition-

ally on D(n), and let (Um, Uσ) ∼ Q(n). Therefore

A(n)
m = EQ(n)

(
U2

m

)
; A(n)

σ = EQ(n)

(
U2

σ

)
.

The conditions on pε and Uσ are sufficient to interchange differentiation and expectation
operators as follows (Aliprantis and Burkinshaw, 1990, Thm. 20.4).

ρε̂(ϵ) =
∂
∂ϵ
EQ(n)

[
pε(ϵ+ Uσϵ+ Um)

]
EQ(n)

[
pε(ϵ+ Uσϵ+ Um)

]
=

EQ(n)

[
(1 + Uσ)p′

ε(ϵ+ Uσϵ+ Um)
]

EQ(n)

[
pε(ϵ+ Uσϵ+ Um)

] .

We may decompose the approximation error as follows.

|ρε̂(ϵ) − ρε(ϵ)| =
∣∣∣∣∣EQ(n) [(1 + Uσ)p′

ε(ϵ+ Uσϵ+ Um)]
EQ(n) [pε(ϵ+ Uσϵ+ Um)] − ρε(ϵ)

∣∣∣∣∣
=
∣∣∣∣∣EQ(n) [(1 + Uσ){ρε(ϵ+ Uσϵ+ Um) − ρε(ϵ)} pε(ϵ+ Uσϵ+ Um)]

EQ(n) [pε(ϵ+ Uσϵ+ Um)]

+
EQ(n) [Uσ pε(ϵ+ Uσϵ+ Um)]
EQ(n) [pε(ϵ+ Uσϵ+ Um)] ρε(ϵ)

∣∣∣∣∣
≤ Cρ

EQ(n) [|(1 + Uσ)(Uσϵ+ Um)| pε(ϵ+ Uσϵ+ Um)]
EQ(n) [pε(ϵ+ Uσϵ+ Um)]

+
EQ(n) [|Uσ| pε(ϵ+ Uσϵ+ Um)]
EQ(n) [pε(ϵ+ Uσϵ+ Um)] |ρε(ϵ)|

≤
{
Cρ

(
EQ(n)

[
(1 + Uσ)2(Uσϵ+ Um)2

])1/2
+ |ρε(ϵ)|

(
EQ(n)

(
U2

σ

))1/2
}

·

(
EQ(n)

[
p2

ε(ϵ+ Uσϵ+ Um)
])1/2

EQ(n) [pε(ϵ+ Uσϵ+ Um)]
=: R1(ϵ)R2(ϵ).

The first inequality uses the Lipschitz property of ρε. The second applies the Cauchy–
Schwarz inequality.
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We will show that the first term in the product is dominated by EQ(n)

(
U2

σ

)
+EQ(n)

(
U2

m

)
,

and that the second term is bounded. Indeed,

R2
1(ϵ) ≤ 2C2

ρEQ(n)

[
(1 + Uσ)2(Uσϵ+ Um)2

]
+ 2ρ2

ε(ϵ)EQ(n)

(
U2

σ

)
≤ 2C2

ρ(1 + Cσ)2EQ(n)

[
(Uσϵ+ Um)2

]
+ 2ρ2

ε(ϵ)EQ(n)

(
U2

σ

)
≤ 4C2

ρ(1 + Cσ)2EQ(n)

(
U2

σ

)
ϵ2 + 4C2

ρ(1 + Cσ)2EQ(n)

(
U2

m

)
+ 2ρ2

ε(ϵ)EQ(n)

(
U2

σ

)
.

The first and third inequalities are (a + b)2 ≤ 2(a2 + b2), and the second is the almost
sure bound |Uσ| ≤ Cσ.

For any ϵ ∈ R such that pε(ϵ) > 0, and for any constant c1 > 0 (to be chosen later),

R2
2(ϵ) ≤

(sup|um|≤Cm , |uσ |≤Cσ
pε(ϵ+ uσϵ+ um)/pε(ϵ)

inf |um|≤Cm , |uσ |≤Cσ pε(ϵ+ uσϵ+ um)/pε(ϵ)

)2

≤ exp
{
4|Cm + Cσϵ| |ρε(ϵ)| + 2Cρ(Cm + Cσϵ)2

}
≤ exp

{
ρ2

ε(ϵ)
Cρc1

+ (4c1 + 2)Cρ(Cm + Cσϵ)2
}
.

The first line is a supremum bound for the ratio of expectations, the second is the
application of Lemma 26, and the third uses that for all c > 0,

0 ≤
(
a√
c

− 2
√
cb

)2

=⇒ 4ab = 2
(
a√
c

)
(2

√
cb) ≤ a2

c
+ 4cb2.

Using the above and Hölder’s inequality, we have that for any c2 > 0 (to be chosen
later),

EP

[{
ρε(εP )−ρε̂(εP )

}2
∣∣∣∣ D(n)

]
≤ EP

[
R2

1(εP )R2
2(εP )

∣∣∣ D(n)
]

≤
(
EP

[
R

2(1+c2)
c2

1 (εP )
∣∣∣∣∣ D(n)

]) c2
1+c2

(
EP

[
R

2(1+c2)
2 (εP )

∣∣∣ D(n)
]) 1

1+c2
.

By the triangle inequality (for the L(1+c2)/c2)(P ) norm),

(
EP

[
R

2(1+c2)
c2

1 (εP )
∣∣∣∣∣ D(n)

]) c2
1+c2

≤ 4C2
ρ(1 + Cσ)2EQ(n)

(
U2

σ

)(
EP

[
ε

2(1+c2)
c2

P

]) c2
1+c2

+ 4C2
ρ(1 + Cσ)2EQ(n)

(
U2

m

)
+ 2EQ(n)

(
U2

σ

)(
EP

[
ρ

2(1+c2)
c2

ε (εP )
]) c2

1+c2
.
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By Hölder’s inequality, for any c3 > 0 (to be chosen later),

EP

[
R

2(1+c2)
2 (εP )

∣∣∣ D(n)
]

≤ EP

[
exp

{
(1 + c2)ρ2

ε(εP )
Cρc1

+ (1 + c2)(4c1 + 2)Cρ(Cm + CσεP )2
}]

≤
(
EP

[
exp

{
(1 + c3)(1 + c2)ρ2

ε(εP )
Cρc1

}]) 1
1+c3

·
(
EP

[
exp

{
(1 + c3)(1 + c2)(4c1 + 2)Cρ(Cm + CσεP )2

c3

}]) c3
1+c3

≤
(
EP

[
exp

{
(1 + c3)(1 + c2)ρ2

ε(εP )
Cρc1

}]) 1
1+c3

·
(
EP

[
exp

{
2(1 + c3)(1 + c2)(4c1 + 2)Cρ(C2

m + C2
σε

2
P )

c3

}]) c3
1+c3

=:
EP

 exp

 λρρ
2
ε(εP )

2
(√

2Cρ

)2


 1

1+c3

exp
{
2(1 + c2)(4c1 + 2)CρC

2
m)
}

·
(
EP

[
exp

{
λεε

2
P

2C2
ε

}]) c3
1+c3

;

the final inequality uses (a + b)2 ≤ 2(a2 + b2) and the monotonicity of the exponential
function; and in the final equality the newly defined quantities are

λρ := 4(1 + c3)(1 + c2)
c1

,

λε := 4C2
ε (1 + c3)(1 + c2)(4c1 + 2)CρC

2
σ

c3
.

To apply Lemma 17, we must choose c1, c2, c3 > 0 such that both λρ, λε ∈ [0, 1). The
choice

(c1, c2, c3) =
(

9, 1
16 , 1

)

suffices for
λρ = 17

18 , λε ≤ 1 − 1
182 .
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Hence

EP

[{
ρε(εP ) − ρε̂(εP )

}2
∣∣∣∣ D(n)

]
≤

4C2
ρ(1 + Cσ)2EQ(n)

(
U2

σ

)(
EP

(
ε34

P

)) 1
17

+ 4C2
ρ(1 + Cσ)2EQ(n)

(
U2

m

)
+ 2EQ(n)

(
U2

σ

)(
EP

[
ρ34

ε (εP )
]) 1

17
}

·

EP

 exp

 λρρ
2
ε(εP )

2
(√

2Cρ

)2


 8

17

exp
(
76CρC

2
m

)

·
(
EP

[
exp

{
λεε

2
P

2C2
ε

}]) 8
17

.

Finally, by Theorem 5 and Lemmas 16 and 17 we have the bounds

(
EP

[
ρ34

ε (εP )
]) 1

17
≤ Cρ(33!!) 1

17 < 13Cρ;(
EP

(
ε34

P

)) 1
17

≤
(
34 · 217C34

ε Γ(17)
) 1

17 = 2C2
ε (34 · 16!) 1

17 < 15C2
ε ;EP

 exp

 λρρ
2
ε(εP )

2
(√

2Cρ

)2


 8

17

≤
(

1√
1 − λρ

) 8
17

< 4;

(
EP

[
exp

{
λεε

2
P

2C2
ε

}]) 8
17

≤
(

1√
1 − λε

) 8
17

< 2.

This gives the final bound

EP

[{
ρε(εP ) − ρε̂(εP )

}2
∣∣∣∣ D(n)

]
≤
{
480C2

ρ(1 + Cσ)2C2
ε + 208Cρ

}
exp

(
76CρC

2
m

)
EQ(n)

(
U2

σ

)
+ 32C2

ρ(1 + Cσ)2 exp
(
76CρC

2
m

)
EQ(n)

(
U2

m

)
=
{
480C2

ρ(1 + Cσ)2C2
ε + 208Cρ

}
exp

(
76CρC

2
m

)
A(n)

σ

+ 32C2
ρ(1 + Cσ)2 exp

(
76CρC

2
m

)
A(n)

m .

Lemma 16. Let X be mean-zero and sub-Gaussian with parameter σ > 0. Then for any
p > 0,

E
(
|X|p

)
≤ p2

p
2σpΓ

(
p

2

)
,
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where Γ(x) =
∫∞

0 ux−1 exp(−u) du is the gamma function.

Proof. By the Chernoff bound we have that

P(|X| > t) ≤ 2 exp
(

− t2

2σ2

)
.

We are now able to make use of the tail probability formula for expectation.

E
(
|X|p

)
=
∫ ∞

0
P
(
|X|p > s) ds

=
∫ ∞

0
P
(
|X| > s−p) ds

=
∫ ∞

0
ptp−1P

(
|X| > t) dt

≤
∫ ∞

0
ptp−12 exp

(
− t2

2σ2

)
dt

=
∫ ∞

0
σ2p(2σ2u)

p
2 −12 exp(−u) du

= p2
p
2σp

∫ ∞

0
u

p
2 −1 exp(−u) du.

The third line makes the substitution t = s−p, the fifth u = t2/2σ2. Recalling the definition
of the Gamma function, we are done.

Lemma 17 (Wainwright (2019) Thm. 2.6). Let X be mean-zero and sub-Gaussian with
parameter σ > 0. Then

E
[

exp
(
λX2

2σ2

)]
≤ 1√

1 − λ
for all λ ∈ [0, 1).

Lemma 18. Let P be such that pε is twice differentiable on R, with

sup
ϵ∈R

|∂2
ϵ log pε(ϵ)| = sup

ϵ∈R
|ρ′

ε(ϵ)| ≤ Cρ,

p′
ε and p′′

ε are both bounded, and
(
EP (ε8

P )
) 1

8 = Cε < ∞. Further assume that D(n) is such
that supz∈Z |u(n)

m (z)| ≤ Cm and supz∈Z |u(n)
σ (z)| ≤ Cσ for almost every z ∈ Z. Then there

exists a constant C, depending only on Cρ, Cm, Cσ, Cε, such that

EP

[{
ρε̂(εP ) − ρε̂(ε̂(n))

}2
∣∣∣∣ D(n)

]
≤ C

(
A(n)

m + A(n)
σ

)
.

Proof. For ease of notation, write Q(n) for the distribution of
(
u(n)

m (Z), u(n)
σ (Z)

)
condition-

ally on D(n), and let (Um, Uσ) ∼ Q(n). Therefore

A(n)
m = EQ(n)

(
U2

m

)
; A(n)

σ = EQ(n)

(
U2

σ

)
.
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The proof proceeds by first bounding the derivative of ρε̂. The conditions on pε and Uσ

are sufficient to interchange differentiation and expectation operators as follows (Aliprantis
and Burkinshaw, 1990, Thm. 20.4).

ρε̂(ϵ) =
∂
∂ϵ
EQ(n)

[
pε(ϵ+ Uσϵ+ Um)

]
EQ(n)

[
pε(ϵ+ Uσϵ+ Um)

]
=

EQ(n)

[
(1 + Uσ)p′

ε(ϵ+ Uσϵ+ Um)
]

EQ(n)

[
pε(ϵ+ Uσϵ+ Um)

] ,

and further,

ρ′
ε̂(ϵ) = ∂

∂ϵ

EQ(n)

[
(1 + Uσ)p′

ε(ϵ+ Uσϵ+ Um)
]

EQ(n)

[
pε(ϵ+ Uσϵ+ Um)

]
=

∂
∂ϵ
EQ(n)

[
(1 + Uσ)p′

ε(ϵ+ Uσϵ+ Um)
]

EQ(n)

[
pε(ϵ+ Uσϵ+ Um)

] − ρ2
ε̂(ϵ)

=
EQ(n)

[
(1 + Uσ)2p′′

ε(ϵ+ Uσϵ+ Um)
]

EQ(n)

[
pε(ϵ+ Uσϵ+ Um)

]

−

(
EQ(n)

[
(1 + Uσ)p′

ε(ϵ+ Uσϵ+ Um)
])2

(
EQ(n)

[
pε(ϵ+ Uσϵ+ Um)

])2

=
EQ(n)

[
(1 + Uσ)2

{
ρ′

ε(ϵ+ Uσϵ+ Um) + ρ2
ε(ϵ+ Uσϵ+ Um)

}
pε(ϵ+ Uσϵ+ Um)

]
EQ(n)

[
pε(ϵ+ Uσϵ+ Um)

]

−

(
EQ(n)

[
(1 + Uσ)ρε(ϵ+ Uσϵ+ Um)pε(ϵ+ Uσϵ+ Um)

])2

(
EQ(n)

[
pε(ϵ+ Uσϵ+ Um)

])2

In the third line we have made use of the identities

p′
ε(ϵ) = ρε(ϵ)pε(ϵ);
p′′

ε(ϵ) =
{
ρ′

ε(ϵ) + ρ2
ε(ϵ)

}
pε(ϵ).

We now apply both the triangle and Hölder inequalities to deduce
∣∣∣ρ′

ε̂(ϵ)
∣∣∣ ≤ sup

|um|≤Cm,|uσ |≤Cσ

(1 + uσ)2
{∣∣∣ρ′

ε(ϵ+ uσϵ+ um)
∣∣∣+ 2ρ2

ε(ϵ+ uσϵ+ um)
}

≤ (1 + Cσ)2

Cρ + 2 sup
|um|≤Cm,|uσ |≤Cσ

ρ2
ε(ϵ+ uσϵ+ um)

.
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Now we apply a Taylor expansion as follows.

EP

[{
ρε̂(εP ) − ρε̂(ε̂)

}2
∣∣∣∣ D(n)

]
= EP

(
EQ(n)

[{
ρε̂(εP ) − ρε̂(εP + UσεP + Um)

}2
∣∣∣∣ εP , D

(n)
] ∣∣∣∣ D(n)

)

≤ EP

EQ(n)

[
(UσεP + Um)2

∣∣∣ εP

]

·
{

sup
|um|≤Cm,|uσ |≤Cσ

ρ′
ε̂(εP + uσεP + um)

}2
∣∣∣∣∣∣ D(n)


≤ (1 + Cσ)2EP

EQ(n)

[
(UσεP + Um)2

∣∣∣ εP

]

·
{
Cρ + 2 sup

|ηm|≤2Cm+CσCm,|ησ |≤2Cσ+C2
σ

ρ2
ε(εP + ησεP + ηm)

}2
∣∣∣∣∣∣ D(n)


≤ 2(1 + Cσ)2EP

{EQ(n)

(
U2

σ

)
ε2

P + EQ(n)

(
U2

m

)}

·
{
Cρ + 2 sup

|ηm|≤2Cm+CσCm,|ησ |≤2Cσ+C2
σ

ρ2
ε(εP + ησεP + ηm)

}2
∣∣∣∣∣∣ D(n)


≤ 2(1 + Cσ)2

(
EP

[{
EQ(n)

(
U2

σ

)
ε2

P + EQ(n)

(
U2

m

)}2
∣∣∣∣∣ D(n)

]) 1
2

·

EP

{Cρ + 2 sup
|ηm|≤2Cm+CσCm,|ησ |≤2Cσ+C2

σ

ρ2
ε(εP + ησεP + ηm)

}4
 1

2

≤ 2(1 + Cσ)2
[
EQ(n)

(
U2

σ

){
EP

(
ε4

P

)} 1
2 + EQ(n)

(
U2

m

)]

·

EP

{Cρ + 2 sup
|ηm|≤2Cm+CσCm,|ησ |≤2Cσ+C2

σ

ρ2
ε(εP + ησεP + ηm)

}4
 1

2

≤ 2(1 + Cσ)2
[
EQ(n)

(
U2

σ

){
EP

(
ε4

P

)} 1
2 + EQ(n)

(
U2

m

)]

·
(
EP

[{
Cρ + 2

(
|ρε(εP )| + Cρ(2Cm + CσCm) + Cρ(2Cσ + C2

σ)εP

)2
}4
]) 1

2

≤ 2(1 + Cσ)2
[
EQ(n)

(
U2

σ

){
EP

(
ε4

P

)} 1
2 + EQ(n)

(
U2

m

)]
·
(
EP

[{
Cρ + 6ρ2

ε(εP ) + 6C2
ρ(2Cm + CσCm)2 + 6C2

ρ(2Cσ + C2
σ)2ε2

P

}4
]) 1

2

≤ 2(1 + Cσ)2
[
EQ(n)

(
U2

σ

){
EP

(
ε4

P

)} 1
2 + EQ(n)

(
U2

m

)]

·
(
Cρ + 6

(
EP

[
ρ8

ε(εP )
]) 1

4
+ 6C2

ρ(2Cm + CσCm)2 + 6C2
ρ(2Cσ + C2

σ)2
(
EP

[
ε8

P

]) 1
4
)2
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where we have made use of the triangle inequalities for L2(P ) and L4(P ), and also the
inequalities, {(a+ b)/2}2 ≤ (a2 + b2)/2 and {(a+ b+ c)/3}2 ≤ (a2 + b2 + c2)/3.

Finally, by Theorem 5 and the assumed eighth moment of εP , we have that

6
(
EP

[
ρ8

ε(εP )
]) 1

4
≤ 6 · 105 1

4Cρ < 20Cρ;{
EP

(
ε4

P

)} 1
2 ≤ {EP

(
ε8

P

)} 1
4 = C2

ε .

Hence

EP

[{
ρε̂(εP ) − ρε̂(ε̂)

}2
∣∣∣∣ D(n)

]
≤ 2(1 + Cσ)2C2

ρ

{
21 + Cρ(2 + Cσ)2(C2

m + C2
σC

2
ε )
}2

·
{

4C2
εEQ(n)

(
U2

σ

)
+ EQ(n)

(
U2

m

)}
.

Proof of Theorem 8

Proof. The assumption on u(n)
m means that for any ϵ > 0 we can find N,Cm such that for

any n ≥ N , with uniform probability at least 1 − ϵ, the data D(n) is such that

sup
z

∣∣∣u(n)
m (z)

∣∣∣ ≤ Cm. (2.41)

It suffices to show that under this event, we can find a uniform constant C (not depending
on P or n) such that

A(n)
ρ ≤ C

(
A(n)

m + A
(n)
ε̂

)
.

Fix P ∈ P and D(n) such that (2.41) holds. We decompose A(n)
ρ so as to consider the

various sources of error separately.

A(n)
ρ = EP

[{
ρε(εP ) − ρ̂

(n)
ε̂

(
ε̂(n)

)}2
∣∣∣∣ D(n)

]
= EP

[{
ρε(εP ) − ρε̂(εP ) + ρε̂(εP ) − ρε̂(ε̂(n)) + ρε̂(ε̂(n)) − ρ̂

(n)
ε̂

(
ε̂(n)

)}2
∣∣∣∣ D(n)

]
= 3EP

[{
ρε(εP ) − ρε̂(εP )

}2
∣∣∣∣ D(n)

]
+ 3EP

[{
ρε̂(εP ) − ρε̂(ε̂(n))

}2
∣∣∣∣ D(n)

]
+ 3EP

[{
ρε̂(ε̂(n)) − ρ̂

(n)
ε̂

(
ε̂(n)

)}2
∣∣∣∣ D(n)

]
, (2.42)

where the final inequality is (a+ b+ c)2 ≤ 3(a2 + b2 + c2).
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We consider the expectations in (2.42) separately. Lemma 19 applies to the first term.
Lemma 20 applies to the second term. The third term is equal to A(n)

ε̂ by definition. This
completes the proof.

Lemma 19. Let P be such that pε is twice differentiable on R, with

sup
ϵ∈R

|∂2
ϵ log pε(ϵ)| = sup

ϵ∈R
|ρ′

ε(ϵ)| ≤ Cρ

and p′
ε bounded. Further assume that D(n) is such that supz∈Z |u(n)

m (z)| ≤ Cm. Then there
exists a constant C, depending only on Cρ, Cm, such that

EP

[{
ρε(εP ) − ρε̂(εP )

}2
∣∣∣∣ D(n)

]
≤ CA(n)

m .

Proof. For ease of notation, write Q(n) for the distribution of u(n)
m (Z) conditionally on

D(n), and let U ∼ Q(n). Therefore

A(n)
m = EQ(n)

(
U2
)
.

The condition on pε is sufficient to interchange differentiation and expectation operators
as follows (Aliprantis and Burkinshaw, 1990, Thm. 20.4).

ρε̂(ϵ) =
∂
∂ϵ
EQ(n) [pε(ϵ+ U)]
EQ(n) [pε(ϵ+ U)]

=
EQ(n)

[
p′

ε(ϵ+ U)
]

EQ(n) [pε(ϵ+ U)] .

We may decompose the approximation error as follows.

|ρε̂(ϵ) − ρε(ϵ)| =
∣∣∣∣∣EQ(n)

[
p′

ε(ϵ+ U)
]

EQ(n) [pε(ϵ+ U)] − ρε(ϵ)
∣∣∣∣∣

=
∣∣∣∣∣EQ(n) [{ρε(ϵ+ U) − ρε(ϵ)} pε(ϵ+ U)]

EQ(n) [pε(ϵ+ U)]

∣∣∣∣∣
≤ Cρ

EQ(n) [|U |pε(ϵ+ U)]
EQ(n) [pε(ϵ+ U)]

≤ Cρ

(
EQ(n)

(
U2
))1/2

(
EQ(n)

[
p2

ε(ϵ+ U)
])1/2

EQ(n) [pε(ϵ+ U)]

=: Cρ

(
A(n)

m

)1/2
R(ϵ).
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The first inequality uses the Lipschitz property of ρε. The second applies the Cauchy–
Schwarz inequality.

Now, for every ϵ ∈ R with pε(ϵ) > 0,

R2(ϵ) ≤
(sup|u|≤Cm

pε(ϵ+ u)/pε(ϵ)
inf |u|≤Cm pε(ϵ+ u)/pε(ϵ)

)2

≤ exp
{
4Cm|ρε(ϵ)| + 2CρC

2
m

}
.

The first line is a supremum bound for the ratio of expectations, the second is the
application of Lemma 26. Since exp(|x|) ≤ exp(x) + exp(−x), this yields the bound

EP

[{
ρε(εP )−ρε̂(εP )

}2
∣∣∣∣ D(n)

]
≤ C2

ρ exp
(
2CρC

2
m

) (
EP [exp{4Cmρε(εP )}] + EP [exp{−4Cmρε(εP )}]

)
A(n)

m .

By Theorem 5, ρε(εP ) is sub-Gaussian with parameter
√

2Cρ, so for all λ ∈ R we have

EP [exp{λρε(εP )}] ≤ exp(λ2Cρ).

Thus
EP

[{
ρε(εP ) − ρε̂(εP )

}2
∣∣∣∣ D(n)

]
≤ 2C2

ρ exp(18CρC
2
m) A(n)

m .

Lemma 20. Let P be such that pε is twice differentiable on R, with

sup
ϵ∈R

|∂2
ϵ log pε(ϵ)| = sup

ϵ∈R
|ρ′

ε(ϵ)| ≤ Cρ,

and p′
ε and p′′

ε both bounded. Further assume that D(n) is such that supz∈Z |u(n)
m (z)| ≤ Cm

for almost every z ∈ Z. Then there exists a constant C, depending only on Cρ, Cm, such
that

EP

[{
ρε̂(εP ) − ρε̂(ε̂(n))

}2
∣∣∣∣ D(n)

]
≤ C

(
A(n)

m + A(n)
σ

)
.

Proof. For ease of notation, write Q(n) for the distribution of u(n)
m (Z) conditionally on

D(n), and let U ∼ Q(n). Therefore

A(n)
m = EQ(n)

(
U2
)
.

The proof proceeds by first bounding the derivative of ρε̂. The conditions on pε are
sufficient to interchange differentiation and expectation operators as follows (Aliprantis
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and Burkinshaw, 1990, Thm. 20.4).

ρε̂(ϵ) =
∂
∂ϵ
EQ(n) [pε(ϵ+ U)]
EQ(n) [pε(ϵ+ U)]

=
EQ(n)

[
p′

ε(ϵ+ U)
]

EQ(n) [pε(ϵ+ U)
] ,

and further,

ρ′
ε̂(ϵ) = ∂

∂ϵ

EQ(n)

[
p′

ε(ϵ+ U)
]

EQ(n) [pε(ϵ+ U)
]

=
∂
∂ϵ
EQ(n)

[
p′

ε(ϵ+ U)
]

EQ(n) [pε(ϵ+ U)] − ρ2
ε̂(ϵ)

=
EQ(n)

[
p′′

ε(ϵ+ U)
]

EQ(n) [pε(ϵ+ U)] −

(
EQ(n)

[
p′

ε(ϵ+ U)
])2

(
EQ(n)

[
pε(ϵ+ Uσϵ+ Um)

])2

=
EQ(n)

[{
ρ′

ε(ϵ+ U) + ρ2
ε(ϵ+ U)

}
pε(ϵ+ U)

]
EQ(n)

[
pε(ϵ+ U)

] −

(
EQ(n) [ρε(ϵ+ U)pε(ϵ+ U)]

)2

(
EQ(n) [pε(ϵ+ U)]

)2

In the third line we have made use of the identities

p′
ε(ϵ) = ρε(ϵ)pε(ϵ);
p′′

ε(ϵ) =
{
ρ′

ε(ϵ) + ρ2
ε(ϵ)

}
pε(ϵ).

We now apply both the triangle and Hölder inequalities to deduce
∣∣∣ρ′

ε̂(ϵ)
∣∣∣ ≤ sup

|u|≤Cm

{∣∣∣ρ′
ε(ϵ+ u)

∣∣∣+ 2ρ2
ε(ϵ+ u)

}
≤ Cρ + 2 sup

|u|≤Cm

ρ2
ε(ϵ+ u).
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Now we apply a Taylor expansion as follows, noting that εP is independent of U
conditionally on D(n).

EP

[{
ρε̂(εP ) − ρε̂(ε̂(n))

}2
∣∣∣∣ D(n)

]
= EP

(
EQ(n)

[
{ρε̂(εP ) − ρε̂(εP + U)}2

∣∣∣ εP , D
(n)
] ∣∣∣ D(n)

)
≤ EP

EQ(n)(U2)
{

sup
|u|≤Cm

ρ′
ε̂(εP + u)

}2
∣∣∣∣∣∣ D(n)


= A(n)

m EP

{ sup
|u|≤Cm

ρ′
ε̂(εP + u)

}2
∣∣∣∣∣∣ D(n)


≤ A(n)

m EP

{Cρ + 2 sup
|η|≤2Cm

ρ2
ε(εP + η)

}2
∣∣∣∣∣∣ D(n)


≤ A(n)

m EP

[{
Cρ + 2

(
|ρε(εP )| + 2CρCm

)2
}2
]

≤ A(n)
m EP

[{
Cρ + 4ρ2

ε(εP ) + 16C2
ρC

2
m

}2
]

≤ A(n)
m

(
3C2

ρ + 48EP

[
ρ4

ε(εP )
]

+ 768C4
ρC

4
m

)
,

where we have made use of the inequalities (a + b)2 ≤ 2(a2 + b2) and (a + b + c)2 ≤
3(a2 + b2 + c2). Finally, by Theorem 5, EP

[
ρ4

ε(εP )
]

≤ 4C2
ρ . Hence

EP

[{
ρε̂(εP ) − ρε̂(ε̂(n))

}2
∣∣∣∣ D(n)

]
≤ A(n)

m

(
147C2

ρ + 768C4
ρC

4
m

)
.

2.10 Auxiliary lemmas
Lemma 21. If p is a twice differentiable density function on R with score ρ defined
everywhere and supx∈R |ρ′(x)| ≤ C, then supx∈R p(x) ≤ 2

√
2C.

Proof. Suppose, for a contradiction, that supx∈R p(x) > 2
√

2C. Pick x0 < x′
1 such that

0 < p(x0) <
√

2C and p(x′
1) > 2

√
2C, and further that x′

1 is not the maximiser of p on
the interval [x0, x

′
1]. We set x1 to be the maximiser of p in (x0, x

′
1), and observe that

p(x1) =: M > 2
√

2C, p′(x1) = 0, and p′′(x1) < 0.
Now let x− = sup{x < x1 : p(x) ≤ M/2} > x0, the final inequality following from the

intermediate value theorem. Note that as

1 ≥
∫ x1

x−
p(x) dx ≥ M

2 (x1 − x−),
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x1 − x− ≤ 2/M . We also have that p(x1) − p(x−) ≥ M/2, so there must be a point
x̃ ∈ [x−, x1] where p′(x̃) ≥ M2/4. Now because p′(x1) = 0 there must also be a point
x∗ ∈ [x̃, x1] with p′′(x∗) ≤ −M3/8.

Finally we may employ the assumption on |ρ′| to bound p′′(x∗) from below. Noting
that p(x∗) ≤ M as x∗ ∈ [x0, x1], we have

−M3/8 ≥ p′′(x∗) = ρ′(x∗)p(x∗) + ρ2(x∗)p(x∗)
≥ ρ′(x∗)p(x∗) ≥ −CM.

Corollary 22. If p is a twice differentiable density function on R with score ρ defined
everywhere and supx∈R |ρ′(x)| ≤ C then infx∈R p

′′(x) ≥ −2
√

2C3/2.

Proof. This follows from Lemma 21 and p′′(x) = ρ′(x)p(x) + ρ2(x)p(x) ≥ ρ′(x)p(x).

Lemma 23. If p is a twice differentiable density function on R and supx∈R |ρ′(x)| ≤ C,
then p(x) → 0 as |x| → ∞.

Proof. Note first that by Lemma 21 we know that p(x) is uniformly bounded. Suppose
then, for contradiction, that lim sup|x|→∞ p(x) =: 2ϵ > 0. Then for any M ≥ 0 we can
find x0 with |x0| > M and p(x0) ≥ ϵ. We will show that the integral of p(x) over a finite
interval containing x0 is bounded below. This means that we can choose non-overlapping
intervals I1, . . . , IN such that

∫
R
p(x) dx ≥

N∑
n=1

∫
In

p(x) dx > 1,

a contradiction.
Since p′ is continuous, we have that |p′(x0)| < ∞. By Corollary 22, infx∈R p

′′(x) ≥
−2

√
2C3/2. Using a Taylor expansion, we can fit a negative quadratic beneath the curve

p at x0. Integrating this quadratic over the region where it is positive gives the bound.
Indeed,

p(x) ≥ p(x0) + (x− x0)p′(x0) −
√

2C3/2(x− x0)2

= p(x0) +

(
p′(x0)

)2

4
√

2C3/2
−

√
2C3/2

(
x− x0 − p′(x0)

2
√

2C3/2

)2

≥ ϵ−
√

2C3/2
(
x− x0 − p′(x0)

2
√

2C3/2

)2

=: f(x).
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The quadratic f(x) has roots

a := x0 + p′(x0)
2
√

2C3/2
−

√
ϵ

21/4C3/4 ;

b := x0 + p′(x0)
2
√

2C3/2
+

√
ϵ

21/4C3/4 .

Thus (a, b) is a finite interval containing x0 and

∫ b

a
p(x) dx ≥

∫ b

a
f(x) dx = 27/4ϵ3/2

3C3/4 .

Lemma 24. Let f : R → R be a continuous function. Then at least one of the following
holds.

(a) There exists a sequence an → ∞ such that f(an) → 0.

(b) There exists A ∈ R and ϵ > 0 such that f(x) > ϵ for all x ≥ A, and in particular∫∞
A f(x) dx = ∞.

(c) There exists A ∈ R and ϵ > 0 such that f(x) < −ϵ for all x ≥ A, and in particular∫∞
A (−f(x)) dx = ∞.

Proof. If lim infx→∞ f(x) > 0 then clearly (b) occurs while if lim supx→∞ f(x) < 0 then
(c) occurs. Thus we may assume that lim infx→∞ f(x) ≤ 0 ≤ lim supx→∞ f(x). If either of
these inequalities are equalities, then (a) occurs, so we may assume they are both strict.
However in this case, as {f(x) : x ≥ A} has infinitely many positive points and negative
points for all A ≥ 0, by the intermediate value theorem, we must have that (a) occurs.

Lemma 25. Let p be a twice differentiable density function on R with score ρ defined
everywhere, and let k a non-negative integer. If supx∈R |ρ′(x)| ≤ C and E[ρ2k(X)] < ∞,
then there exist sequences an → −∞ and bn → ∞ such that ρ2k+1(an)p(an) → 0 and
ρ2k+1(bn)p(bn) → 0.

Proof. Write f(x) = ρ2k+1(x)p(x). Since f is continuous, we may apply Lemma 24 to
both f and x 7→ f(−x) to conclude that either the statement of the lemma holds, or one
of the following hold for some B ∈ R and ϵ > 0:

(a) f(x) > ϵ for all x ≥ B,

(b) f(x) < −ϵ for all x ≥ B

or one of the above with x ≥ B replaced with x ≤ B. Let us suppose for a contradiction
that (a) occurs (the other cases are similar), so in particular∫ ∞

B
f(x) dx = ∞. (2.43)
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If k = 0, then
∫ ∞

B
f(x) dx =

∫ ∞

B
p′(x) dx = lim

b→∞

∫ b

B
p′(x) dx = lim

b→∞
p(b) − p(B);

here the penultimate equality follows from monotone convergence and the final equality
follows from the fundamental theorem of calculus. By Lemma 23 however, this is finite, a
contradiction. If instead k ≥ 1, then for any b ≥ B we have that

ρ2k(b)p(b) − ρ2k(B)p(B) =
∫ b

B
ρ2k(x)p′(x) dx+ 2k

∫ b

B
ρ′(x)ρ2k−1(x)p(x) dx.

=
∫ b

B
ρ2k+1(x)p(x) dx+ 2k

∫ b

B
ρ′(x)ρ2k−1(x)p(x) dx. (2.44)

We will take the limit as b → ∞. Since ρ2k(x)p(x) is non-negative and we have that
E[ρ2k(X)] < ∞, we can choose an increasing sequence bn → ∞ satisfying ρ2k(bn)p(bn) ≤ 1
for every n.

Note that for each n and for every x ∈ R, Hölder’s inequality gives
∣∣∣1[B,bn](x)ρ′(x)ρ2k−1(x)p(x)

∣∣∣ ≤ C|ρ(x)|2k−1p(x).

By Jensen’s inequality, E
[
|ρ(X)|2k−1

]
< ∞. Thus, by dominated convergence theorem,

lim
n→∞

2k
∫ bn

B
ρ′(x)ρ2k−1(x)p(x) dx = 2k

∫ ∞

B
ρ′(x)ρ2k−1(x)p(x) dx

≤ 2kC
∫ ∞

B
|ρ(x)|2k−1p(x) dx

≤ 2kC E
[
|ρ(X)|2k−1

]
< ∞.

Now (2.44) implies that
lim

n→∞

∫ bn

B
f(x) dx < ∞.

But we assumed that f(x) ≥ ϵ > 0 for all x ≥ B, so for each fixed x ∈ R the integrand
1[B,bn](x)f(x) is increasing as a function of n. Therefore monotone convergence implies
that ∫ ∞

B
f(x) dx < ∞,

contradicting (2.43).

Lemma 26. If p is a twice differentiable density on R with score ρ defined everywhere
such that supx∈R |ρ′(x)| ≤ C, then for any x, u ∈ R such that p(x) > 0,

exp
{
uρ(x) − u2

2 C
}

≤ p(x+ u)
p(x) ≤ exp

{
uρ(x) + u2

2 C
}
.
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Proof. The inequality is proved via a Taylor expansion on log p(x + u) around u = 0.
Indeed,

log p(x+ u) = log p(x) + uρ(x) + u2

2 ρ
′(η)

for some η ∈ [x− |u|, x+ |u|]. Rearranging and taking absolute values gives the bound∣∣∣∣∣ log
(
p(x+ u)
p(x)

)
− uρ(x)

∣∣∣∣∣ ≤ u2

2 C.

Since the exponential function is increasing, this suffices to prove the claim.

2.11 Additional points

2.11.1 Linear score functions

Some works have made the simplifying assumption that

ρP (x, z) = βT
P b(x, z) (2.45)

for some known basis b(x, z). This has some theoretical appeal, since any ρP can be rep-
resented in this way for some bases, and the score estimation problem is made parametric.
Practically, however, even with domain knowledge it can be hard to choose a good basis.
When (X,Z) are of moderate to large dimension, there are limited interactions that one
can practically allow — for instance a quadratic basis may be feasible, but a multivariate
kernel basis not. If the chosen basis contains the vector x, then it transpires that the
linearity assumption (2.45) is equivalent to assuming a certain conditional Gaussian
linear model for x given the other basis elements (see Theorem 27 below). This provides
additional insight into the method of Rothenhäusler and Yu (2020), which is based on the
debiased lasso (van de Geer et al., 2014; Zhang and Zhang, 2014).

Theorem 27. Let b(x, z) =
(
x, gT (x, z)

)T
∈ Rm for some g : R × Z → Rm−1 be such

that E
[
b(X,Z)b(X,Z)T

]
is positive definite, E

[
∥b(X,Z)∥2

2

]
< ∞, E|∂xb(X,Z)| < ∞, and

for almost every z ∈ Z we have that b(·, z) and ∂xb(·, z) are absolutely continuous and
lim|x|→∞ b(x, z)p(x | z) = 0. Define the linearly transformed basis functions

ḡ(x, z) := g(x, z) − x
(
E
[
∂xg(X,Z)

])
∈ Rm−1.

We have that ρ(x, z) = βT b(x, z) for some β ∈ Rm if and only if ρ(x, z) = ρ̃(x, ḡ(x, z)),
where ρ̃ is the score function corresponding to the related multivariate Gaussian linear
model:

(X, g) d=
(
X, ḡ(X,Z)

)
; X | g ∼ N

(
γTg, S).
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Here γ ∈ R(m−1) and S > 0 do not depend on (X, g).

Proof. First assume that X | g has the stated conditional distribution. Then

ρ̃(x, g) = ∂x log p̃(x | g)
= −S−1(x− γTg)

=
(
−S−1 S−1γ

)T

x
g

 ,
so indeed ρ̃(x, ḡ(x, z)) is in the linear span of {x, ḡ(x, z)}, and hence that of b(x, z).

Now let ρ(x, z) = βT b(x, z), and denote by βx and βg the first and last m−1 components
of β respectively. Define the transformed variables

b̄(x, z) :=
 x

ḡ(x, z)

 =
 1 01×(m−1)

−E
[
∂xg(X,Z)

]
I(m−1)×(m−1)

 b(x, z); (2.46)

β̄x := βx + βT
g E
[
∂xg(X,Z)

]
;

β̄ :=
β̄x

βg

 .
By the decomposition (2.46) we see that E

[
b̄(X,Z)b̄T (X,Z)

]
inherits the positive definite-

ness of E
[
b(X,Z)bT (X,Z)

]
. Then we have that

ρ(x, z) = β̄T b̄(x, z); E
[
∂xb̄

T (X,Z)
]

=
(
1 0(m−1)×1

)
.

The conditions on b mean that ρ satisfies the conditions of Cox (1985, Prop. 1)
conditionally on Z, so β̄ minimises

E
[
(β̄T b̄(X,Z))2 + 2∂xβ̄

T b̄(X,Z)
]

= β̄TE
[
b̄(X,Z)b̄T (X,Z)

]
β̄ + 2β̄T

(
E
[
∂xb̄

T (X,Z)
])T

.

Hence

E
[
b̄(X,Z)b̄T (X,Z)

]
β̄ +

 1
0(m−1)×1

 = 0.
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Using the Schur complement identity for the inverse, we find that β̄ takes the following
form:

β̄ = −

1
γ

S−1,

γ =
(
E
[
ḡ(X,Z)ḡT (X,Z)

])−1
E
[
ḡ(X,Z)XT

]
,

S = E
[{
X − γT ḡ(X,Z)

}
XT

]
.

Therefore we have that
ρ(x, z) = −S−1{x− γT ḡ(x, z)}.

Finally, note that γ ∈ Rm−1 satisfies

E
[{
X − γT ḡ(X,Z)

}
ḡT (X,Z)

]
= 0.

This implies both that γ minimises E
[
{X − γT ḡ(X,Z)}2

]
= S. This suffices to prove that

ρ(x, z) = −S−1{x− γT ḡ(x, z)} = ρ̃(x, ḡ(x, z)).

2.11.2 Explicit estimators for numerical experiments

In order reduce the computational burden, we pre-tune all hyperparameters on 1000
datasets, each of which we split into training and testing. This includes all gradient
boosting regression parameters, the various spline degrees of freedom and the Lasso tuning
parameters of the basis approaches.

Resmooth and spline

Let f̃ (n,k) and m̂(n,k) be gradient boosting regressions (xgboost package (Chen and
Guestrin, 2016)) of Y on (X,Z) and X on Z respectively, using the out-of-fold data D(n,k).
Further let σ̂(n,k) be the a decision tree (partykit package (Hothorn and Zeileis, 2015))
regression of the squared in-sample residuals of X on Z, and ρ̂

(n,k)
ε̂ be a univariate spline

score estimate (our implementation) using the scaled in-sample residuals.
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Let θ̂(n), Σ̂(n) be as in (2.3) where

f̂ (n,k)(x, z) =
J∑

j=1
f̃ (n,k)(x+ hwj, z)qj;

∇f̂ (n,k)(x, z) = 1
h

J∑
j=1

wj f̃
(n,k)(x+ hwj, z)qj;

ρ̂(n,k)(x, z) = 1
σ̂(n,k)(z) ρ̂

(n,k)
ε̂

(
x− m̂(n,k)(z)
σ̂(n,k)(z)

)
.

Here we approximate Gaussian expectations via numerical integration, using a determinis-
tic set of pairs (wj, qj) such that, for functions g,

E[g(W )] ≈
J∑

j=1
g(wj)qj.

We have used J = 101, {wj} to be an evenly spaced grid on [−5, 5], and qj to be
proportional to the standard normal density at wj, scaled so that ∑J

j=1 qj = 1.
We took the set of bandwidths H in Algorithm 1 to be

exp(−5)
2
√

3
σ̂X ,

exp(−4.8)
2
√

3
σ̂X , . . . ,

exp(2)
2
√

3
σ̂X ,

where σ̂X denotes the empirical standard deviation of the X-variable.

Difference and basis

We form an estimator as in (2.3). Let f̃ (n,k) be a gradient boosting regression (xgboost
package (Chen and Guestrin, 2016)) of Y on (X,Z) using the out-of-fold data D(n,k). Set
basis b to the quadratic basis for (X,Z) ∈ Rp, omitting the X term:

b(x, z) = (1, x2, xz1, . . . , xzp−1, z1, z
2
1 , z1z2, . . . , z1zp−1, z2, z

2
2 , z2z3, . . . , . . . , zp−1, z

2
p−1).

Let β̂(n,k) be the lasso coefficient (glmnet package) when regressing X on b(X,Z) using
D(n,k), and σ̂(n,k) be the in-sample variance estimate, computed using the product of X
and the X on Z residuals.
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Let θ̂(n), Σ̂(n) be as in (2.3) where

f̂ (n,k)(x, z) = f̃ (n,k)(x, z);

∇f̂ (n,k)(x, z) =
f̃ (n,k)

(
x+ D

2 , z
)

− f̃ (n,k)
(
x− D

2 , z
)

D
;

ρ̂(n,k)(x, z) = − 1(
σ̂(n,k)

)2

(
xi − b(xi, zi)T β̂(n,k)

)
.

Here D is set to one quarter of the (population) marginal standard deviation of X.

Partially linear regression

We consider a doubly-robust partially linear regression as in Chernozhukov et al. (2018,
§4.1), implemented in the DoubleML R package (Bach et al., 2021). The partially linear
regression makes the simplifying assumption that EP (Y | X,Z) = θPX + gP (Z). When
this relationship is misspecified, procedures which minimise the sum of squares target the
quantity

θ∗
P = EP [CovP {X,EP (Y | X,Z) | Z}]

EP [VarP (X | Z)]
(Vansteelandt and Dukes, 2022); this does not equal the average partial effect θP =
EP [f ′

P (X,Z)] in general.
The nuisance functions gP and EP (X | Z) may be modelled via plug-in machine

learning, so again we use gradient boosting (xgboost package (Chen and Guestrin, 2016)).
Hyperparameter pre-tuning for gP estimation is done by regressing Y − θPX on Z. Here
we have used θP instead of the unknown θ∗

P for convenience, but we do not expect this to
be critical.

Rothenhäusler and Yu (2020)

The estimator of Rothenhäusler and Yu (2020) is based on the debiased lasso (van de
Geer et al., 2014; Zhang and Zhang, 2014). As they recommend, we use a quadratic basis
for Z ∈ Rp−1,

b(z) = (1, z1, z
2
1 , z1z2, . . . , z1zp−1, z2, z

2
2 , z2z3, . . . , . . . , zp−1, z

2
p−1).

We perform the lasso regressions using glmnet (Friedman et al., 2010).

2.11.3 Spline score estimation

We use the univariate estimator of Cox (1985), which we implemented according to Ng
(1994, 2003). Let X1, . . . , Xn be univariate random variables, which we are treating as an
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i.i.d. sample. For our application to multivariate score estimation these are the in-sample
residuals.

Theorem 28 (Ng (1994, 2003)). Assume that X1 < X2 < . . . < Xn. Define

h := (X2 −X1, . . . , Xn −Xn−1) ∈ Rn−1

wih :=
(
w1

h1
, . . . ,

wn−2

hn−2
,
wn−1 + wn

hn−1

)
∈ Rn−1

wh :=
(
w1h1, . . . , wn−2hn−2,

(
wn−1 − wn

2

)
hn−1

)
∈ Rn−1

a :=
(
(wih, 0) − (0, wih)

)
∈ Rn

c :=
(
wh[−(n− 1)] + 2wh[−1]

3

)
∈ Rn−2

R :=



2
3(h1 + h2) h2

3 0 · · · · · · 0
h2
3

2
3(h2 + h3) h3

3
. . . ...

0 h3
3

. . . . . . . . . ...
. . .

. . . . . . . . . hn−3
3 0

. . .
. . . hn−3

3
2
3(hn−3 + hn−2) hn−2

3
0 · · · · · · 0 hn−2

3
2
3(hn−2 + hn−1)


∈ R(n−2)×(n−2)

Q :=



1
h1

0 · · · · · · · · · 0
−
(

1
h1

+ 1
h2

)
1

h2

. . . ...
1

h2
−
(

1
h2

+ 1
h3

) . . . . . . ...

0 1
h3

. . . . . . . . . ...
... . . . . . . . . . 1

hn−3
0

... . . . . . . −
(

1
hn−3

+ 1
hn−2

)
1

hn−2
... . . . 1

hn−2
−
(

1
hn−2

+ 1
hn−2

)
0 · · · · · · · · · 0 1

hn−1


∈ Rn×(n−2)

Y :=
{
diag

(
1
w1
, . . . ,

1
wn

)}(
a+QR−1c

)
∈ Rn.

Then the minimiser of the spline score objective function (Cox, 1985),

J(ρ) := 1∑n
i=1 wi

n∑
i=1

wi

{
ρ(Xi)2 + 2ρ′(Xi)

}
+ λ

∫
R
ρ′′(x)2 dx,
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is also the minimiser of the classical smoothing spline objective function

J̃(f) := 1∑n
i=1 wi

n∑
i=1

wi{Yi − f(Xi)}2 + λ
∫
R
f ′′(x)2 dx,

for which implementations exist.

Note that in scaling, Y ∼ 1/h. This creates numerical problems when n is large, and
hence h is small. Our solution is to group nearby data points and use the weightings
introduced here.
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Chapter 3

Conditional independence testing
with structured categorical data

3.1 Introduction
Categorical data are common across quantitative fields, arising naturally from clinical
diagnoses and treatment actions, opinion surveys, and census style personal information.
Conditional independence testing is important for modern data analysis, with applications
to significance testing and causal structure learning. Conditional independence testing
between categorical variables can be challenging when there are a large number of
categories, as some combinations may be infrequent in the data. Having said this,
categorical variables of interest often possess additional structure, such as occupations
being implicitly arranged by sector, and ordinal responses to Likert-style opinion surveys.
This domain knowledge can be used to borrow strength between related categories, such
as by combining some categories into larger groups. In this work we propose a novel test
for conditional independence testing between categorical variables X and Y given a third
variable Z of arbitrary type. Our procedure makes use of the structure of X and Y to
adaptively increase power whilst maintaining valid size.

Conditional independence testing is a hard problem. Shah and Peters (2020) prove
that when Z has a continuous component, any test for conditional independence between
X and Y given Z which holds size against all null hypotheses cannot have power against
any alternative. This means that it is necessary to restrict the class of null distributions
under consideration, and this may be done conveniently in terms of the convergence rates
of machine learning estimation procedures. The starting point for our test is a categorical
version of the Generalised Covariance Measure (GCM) of Shah and Peters (2020). Ankan
and Textor (2022) motivate the use of the GCM for categorical conditional independence
testing due to its of simplicity, symmetry (we reject X ⊥⊥ Y | Z if and only if we reject
Y ⊥⊥ X | Z), computational efficiency, calibration guarantees, and power over diverse
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alternatives. Let X and Y take values in some finite sets {1, . . . , dX} and {1, . . . , dY }
respectively, and allow Z to range over some set Z ⊆ Rp. We reduce the problem of
testing conditional independence X ⊥⊥ Y | Z to testing whether the vector
(
EP

[
CovP (1{X = j},1{Y = k} | Z)

]
: j ∈ {1, . . . , dX}, k ∈ {1, . . . , dY }

)
∈ RdXdY

(3.1)
is zero. Tests based on estimating (3.1) have power against a wide range of alternatives,
but do not make use of the structure of the categorical variables X and Y .

For ordinal X and Y , Li and Shepherd (2010) consider several tests of conditional
independence based on parametric estimates of the conditional distributions of X | Z
and Y | Z. Their tests compare various summary statistics of the independence null
P(X = j, Y = k | Z) = P(X = j | Z)P(Y = k | Z) to the observed data distribution,
in such a way that they utilise the ordinal structure. Ankan and Textor (2022) extend
this work to more general propensity estimators, and advocate testing for conditional
covariance between a certain transformation of (X,Z) and (Y, Z) (Li and Shepherd, 2010,
2012). Their method does not have power against all alternatives with (3.1) non-zero,
for instance when the distribution of Y | (X,Z) is symmetric. Liu et al. (2021) view
ordinal X and Y as discretisations of some unobserved continuous latent variables. If the
function linking these follows a parametric model, they are able to estimate and sample
from the latent distributions for each of X and Y . This reduces the problem to univariate
continuous conditional independence testing, but it may be unclear how to choose this
parametric model practically.

We instead consider testing for conditional independence using various partitions of
the labels of X and Y . As a motivating example, suppose we collect 1000 responses to a
survey data where the variable X represents which of 30 common jobs — divided into 5
sectors — is closest to that of the respondent, Y represents their agreement with a certain
statement on a scale of 1–10, and Z contains some other factors. Suppose that there is
a conditional dependence between employment sectors and agreement strength, given
Z, but it is weak enough that tests based on estimating (3.1), which is 300-dimensional,
do not have sufficient power to reject the null. It may be that most of the conditional
dependence information is captured at a coarser level of sectors and disagreement / neutral
/ agreement with the statement. In this case a test using an estimate of the following
lower dimensional summary statistic could have more power:(
EP

[
CovP (1{X ∈ Al},1{Y ∈ Bm} | Z)

]
: l ∈ {1, . . . , |A|},m ∈ {1, . . . , |B|}

)
∈ R|A||B|,

(3.2)
where A :=

(
{jobs in lth sector} : l = 1, . . . , 5

)
is a partition of {1, . . . , 30} and

B :=
(
{1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10}

)
is a partition of {1, . . . , 10}, with |A||B| = 15. Our
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primary contribution is a test which chooses partitions A and B automatically based on
the data so as to adaptively increase its power.

We draw attention to two specific challenges that we face. First, the dimensionality
of the problem may cause difficulties when inverting estimated (co-)variances, which is
required by some existing methods (Ankan and Textor, 2022; Shah and Peters, 2020).
Second, adaptive label merging may result in double-dipping so standard asymptotics do
not apply. We perform calibration via a bootstrap procedure. An alternative would be to
use one portion of the sample to determine a promising partition, and then apply this to
the rest of the data and appeal to standard results (notwithstanding the concerns about
(co-)variance inversion).

3.1.1 Our contributions and organisation of the chapter

In Section 3.2.4 we introduce an adaptive test for conditional independence between
structured categorical variables X and Y , in the presence of an arbitrary variable Z
(Algorithm 4). Our test greedily searches for a partition of the labels which enhances the
test’s power, and is able to leverage structural knowledge of X and Y to restrict the search
space. Our test is calibrated using a novel bootstrap algorithm, and we prove that our
method controls size asymptotically under weak conditions (Theorem 29). In Section 3.3
we demonstrate empirically that our method controls size in finite-sample settings where
existing methods fail. We further demonstrate that our adaptive search procedure does
indeed improve power against a non-adaptive version of our method. We additionally show
that when the structural information is misspecified, we do not have substantially worse
power than the non-adaptive methods. We describe a fast implementation of our search
procedure in Section 6 (Algorithm 6). Code is shared in the R package catci (CATegorical
Conditional Independence) available from https://github.com/harveyklyne/catci.

3.1.2 Other related work

There has been substantial recent progress on conditional independence testing when all
of X, Y , and Z are continuous. Shah and Peters (2020) and Scheidegger et al. (2022)
estimate the conditional means, and test for correlation of the residuals. Zhou et al.
(2020), Petersen and Hansen (2021), Cai et al. (2022) estimate the conditional cumulative
distribution functions, and test for independence of the partial copulas. This may be
extended to ordinal X and Y using a continuous version of the cumulative distribution
function (Brockwell, 2007).

As noted in Shah and Peters (2020), when Z takes values in a finite set one may
test for conditional independence by dividing the data up depending on the value of Z,
and performing marginal independence tests between X and Y on each subset. Li and
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Shepherd (2010) discuss some methods when X and Y are ordinal. Alternative strategies
exist, with Marx and Vreeken (2019) instead estimating a Kullback-Leibler divergence
between the conditional independence null and alternative distributions (although they
do not formally calibrate this). When Z is continuous one option is to divide the state
space into strata, reducing to the finite case. These strata must be small enough so that
(X, Y ) within each strata have similar distributions conditional on Z, but such tests lose
power if there are too many strata. Calibration can also be problematic for the marginal
independence tests if some of the strata contain relatively few data points.

Bootstrap methods (Efron, 1979) have been used to calibrate a wide range of statistical
estimators and tests (Efron and Tibshirani, 1994), with early theoretical work including
Beran (1986); Bickel and Freedman (1981); Hall (1992); Romano (1988); Singh (1981).
Nonparametric bootstraps are known to be inconsistent in some nonregular problems,
e.g. Beran (1997); Samworth (2003); Shao (1994, 1996). Krinsky and Robb (1986)
motivate the use of parametric bootstaps to do inference on non-linear functionals of
asymptotically Gaussian random variables, for which the delta method (based on a linear
approximation) performs poorly, although they do not prove theory. Similarly our test
statistic asymptotically follows a piecewise-continuous transformation of a multivariate
Gaussian distribution, which allows us to perform valid inference via a parametric bootstrap.
There has been recent interest in doing bootstrap inference in high-dimensional regimes,
notably Chernozhukov et al. (2013). See Chernozhukov et al. (2023a) for a review of
high-dimensional bootstraps.

3.1.3 Notation

Let M(dX ,dY ) ⊂ RdXdY ×dXdY be the set of symmetric positive semidefinite matrices on
RdXdY ×dXdY . We understand inequalities between vectors to apply elementwise. For
notational convenience, we write X̃ and Ỹ for the one-hot encodings

X̃ :=
(
1{X = 1}, . . . ,1{X = dX}

)
∈ {0, 1}dX ;

Ỹ :=
(
1{Y = 1}, . . . ,1{Y = dY }

)
∈ {0, 1}dY .

Note that ∑dX
j=1 X̃j = ∑dY

k=1 Ỹk = 1 almost surely.
As in Lundborg et al. (2022), given a family of sequences of real-valued random variables

(WP,n)P ∈P,n∈N taking values in a finite-dimensional vector space and whose distributions
are determined by P ∈ P, we write WP,n = oP(1) if supP ∈P PP (|WP,n| > ϵ) → 0
for every ϵ > 0. Similarly, we write WP,n = OP(1) if, for any ϵ > 0, there exist
Mϵ, Nϵ > 0 such that supn≥Nϵ

supP ∈P PP (|WP,n| > Mϵ) < ϵ. Given a second family of
sequences of random variables (VP,n)P ∈P,n∈N, we write WP,n = oP(VP,n) if there exists
RP,n with WP,n = VP,nRP,n and RP,n = oP(1); likewise, we write WP,n = OP(VP,n)
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if WP,n = VP,nRP,n and RP,n = OP(1). If WP,n is vector or matrix-valued, we write
WP,n = oP(1) if ∥WP,n∥ = oP(1) for some norm, and similarly OP(1). By the equivalence
of norms for finite-dimensional vector spaces, if this holds for some norm then it holds for
all norms.

3.2 Structured categorical conditional independence
testing via greedy label merging

Our adaptive conditional independence test works as follows. We use the data (X, Y, Z)
to form an asymptotically Gaussian estimate T̂ of (3.1), and corresponding covariance
estimate Σ̂. This means that T̂ is mean-zero under the null X ⊥⊥ Y | Z. We pick a function
ϕ : ⋃∞

d=1 Rd × Rd×d → R which will be used to quantify deviation from centrality, with
larger outputs representing larger deviations from centrality of the input. A straightforward
approach would be to use some norm of T̂ , such as the Euclidean norm q : (t, σ) 7→ ∥t∥2.
These do not make use of the covariance estimate, so we expect the cumulative distribution
of some norm of T̂ to have better properties. Consideration must also be given to the
computational efficiency, in light of the stepwise procedure we describe next. We later
give our recommended choice in (3.9).

Taking T̂ , Σ̂, and ϕ we next define a sequence of partitions
(
A(1), B(1)

)
,
(
A(2), B(2)

)
, . . . ,

(
A(L), B(L)

)
of {1, . . . , dX} and {1, . . . , dY } respectively for some L ∈ N. We do this in a greedy stepwise
fashion, which we describe below. When there are no restrictions on the permissible
merges we keep merging sequentially until both sets of labels are partitioned in two,
leading to L = dX + dY − 3. Note that the partitioned generalised covariance (3.2) is a
linear transformation of the raw generalised covariance (3.1), and we write Π(A,B) for the
corresponding matrix. We take A(1) and B(1) to be the singleton partitions. At each step
s = 2, . . . , L, if |A(s)|, |B(s)| > 2 we take as candidates the partitions

(
A(s),

{
B(s)

m1 ∪B(s)
m2

}
∪
{
B(s)

m : m /∈ {m1,m2}
})

for 1 ≤ m1 < m2 ≤ |B(s)| and also
({
A

(s)
l1 ∪ A

(s)
l2

}
∪
{
A

(s)
l : l /∈ {l1, l2}

}
, B(s)

)

for 1 ≤ l1 < l2 ≤ |B(s)|. If |A(s)| or |B(s)| equals 2 we fix that partition (so only consider
merging the other), and if both partitions are of size 2 then we stop (L is assumed to be
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such that we stop after the Lth step, if at all). We set
(
A(s+1), B(s+1)

)
to be the candidate

which maximises the criterion

ϕ
(
Π(A,B)T̂ ,Π(A,B)Σ̂Π(A,B)T

)
.

In this way we have defined a mapping

q : (t, σ) 7→
(
ϕ
(

Π(A(s),B(s))t,Π(A(s),B(s))σΠ(A(s),B(s))T
)

: s = 1, . . . , L
)
,

where we understand that each
(
A(s), B(s)

)
is itself a function of (t, σ). Given struc-

tural information about X and Y we may choose to restrict the permissible choices for(
A(s), B(s)

)
, which we discuss in Section 3.2.2. Write M̂ := q

(
T̂ , Σ̂

)
∈ RL. We wish to

test each element of M̂ for significance against its own population distribution.
Treating Σ̂ as fixed, we introduce a centred Gaussian T : d= N

(
0, Σ̂

)
, and draw

independent copies of T to form a parametric bootstrap sample T (1), . . . , T (B). Suppose
the null X ⊥⊥ Y | Z is true. Under relatively weak conditions, the bootstrap samples should
have the same asymptotic distribution as the observed vector T̂ . Let M (b) := q

(
T (b), Σ̂

)
,

recalling that the sequence of partitions selected depends on the value of T (b), so needs
not be the same. Under weak assumptions the transformed sample {M (b)

l : b = 1, . . . , B}
should have the same asymptotic distribution as M̂l, for each l = 1, . . . , L. We set
F̂l to be the bootstrap empirical cumulative distribution function for M̂l, and take
Ĝ := maxl=1,...,L F̂l. At this point we could use a Bonferroni correction to calibrate the Ĝ,
considering 1 − F̂1, . . . , 1 − F̂L to be p-values from L separate tests. This can be overly
conservative, so instead we re-use the bootstrap sample to compute bootstrap versions
F

(b)
l and G(b), and compute the bootstrap p-value for Ĝ.

In the rest of this section we make precise our test (Algorithm 4), and prove that our p-
value has the appropriate distribution uniformly within a class of null distributions P ∈ P
(Theorem 29). We include additional results for our calibration procedure (Algorithm 3,
Theorem 30) and our centrality test (Algorithm 5, Theorem 31) in Section 3.5.

3.2.1 Reduction to location testing

Following the hardness result of Shah and Peters (2020), we restrict attention to distribu-
tions P for which we can estimate the conditional probabilities

fP,j(z) := PP (X = j | Z = z) = PP (X̃j = 1 | Z = z), j = 1, . . . , dX ;
gP,k(z) := PP (Y = k | Z = z) = PP (Ỹk = 1 | Z = z), k = 1, . . . , dY ,
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at some reasonable rates (Assumption 1). Since X and Y are discrete, P satisfies the null
hypothesis X ⊥⊥ Y | Z if and only if

PP (X = j, Y = k | Z = z) = fP,j(z)gP,k(z)

for almost every (j, k, z), i.e. CovP

(
X̃j, Ỹk | Z

)
is almost surely zero. Let µP ∈ RdXdY

have entries
µP,j,k := EP

[
CovP

(
X̃j, Ỹk | Z

)]
, (3.3)

where we have indexed dXdY dimensional space as

(1, 1), . . . , (1, dY ), (2, 1), . . . , (2, dY ), . . . , (dX , 1), . . . , (dX , dY ).

If P satisfies the null hypothesis X ⊥⊥ Y | Z we must have µP = 0. One may also consider
the weighted version EP

[
CovP

(
X̃j, Ỹk | Z

)
w(Z)

]
, for some w : Z → R. This equals zero

under the null for any choice of w, but can have power in settings where our method does
not (Scheidegger et al., 2022).

In our estimation of µP we make use of cross-fitting (Chernozhukov et al., 2018),
however sample splitting is not always necessary. Given a sequence of i.i.d. data sets

D(n) := {(Xi, Yi, Zi) : i = 1, . . . , n},

define an N -fold partition
(
I(n,r)

)
r=1,...,N

of {1, . . . , n} for some N fixed (practically we
take N = 5). For simplicity, we assume that n is a multiple of N and each subset is of equal
size n/N . Let the propensity score estimates

{
f̂

(n,r)
j , ĝ

(n,r)
k : j = 1, . . . , dX , k = 1, . . . , dY

}
be estimated using data

D(n,r) :=
{
(yi, xi, zi) : i ∈ {1, . . . , n} \ I(n,r)

}
.

We have found gradient boosting multinomial regressions (xgboost package (Chen and
Guestrin, 2016)) to do well in practice. For each data point define one-hot encodings

X̃ij := 1{Xi = j}, j = 1, . . . , dX ;
Ỹik := 1{Yi = k}, k = 1, . . . , dY .

The cross-fitted, doubly-robust generalised covariance estimate is T̂ (n) =
(
T̂

(n)
j,k

)
∈ RdXdY ,

where
T̂

(n)
j,k := 1

n

N∑
r=1

∑
i∈I(n,r)

{
X̃ij − f̂

(n,r)
j (Zi)

}{
Ỹik − ĝ

(n,r)
k (Zi)

}
, (3.4)
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with corresponding variance estimator Σ̂(n) =
(
Σ̂(n)

(j,k)(j′,k′)

)
∈ RdXdY ×dXdY ,

Σ̂(n)
(j,k)(j′,k′) := 1

n

N∑
r=1

∑
i∈I(n,r)

[{
X̃ij − f̂

(n,r)
j (Zi)

}{
Ỹik − ĝ

(n,r)
k (Zi)

}
− T̂

(n)
j,k

]
[{
X̃ij′ − f̂

(n,r)
j′ (Zi)

}{
Ỹik′ − ĝ

(n,r)
k′ (Zi)

}
− T̂

(n)
j′,k′

]
. (3.5)

Additionally, define ΣP ∈ RdXdY ×dXdY to be the population covariance matrix, which has
elements

ΣP,(j,k)(j′,k′) = CovP

[{
X̃j−fP,j(Z)

}{
Ỹk−gP,k(Z)

}
,
{
X̃j′−fP,j′(Z)

}{
Ỹk′−gP,k′(Z)

}]
. (3.6)

If P satisfies certain weak assumptions, then T̂ (n) converges in distribution to a Gaussian
vector with mean µP and covariance matrix ΣP , and additionally Σ̂(n) converges in
probability to ΣP .

Remark 3.2.1. Any other test statistic which is central under the null and has a consistent
covariance estimator may be used, such as the Generalised Covariance Measure (Shah
and Peters, 2020). We have found the additional normalisation step therein to sometimes
yield worse finite-sample properties (see Figure 3.1).

3.2.2 Greedy label merging

Let A = (A1, . . . , Ad′
X

) be a partition of {1, . . . , dX}, with |A| = d′
X ≤ dX , and let

(B1, . . . , Bd′
Y

) be a similar partition of {1, . . . , dY }. Consider the linear operation from
RdXdY → Rd′

Xd′
Y defined by

(
xj,k : j = 1, . . . , dX , k = 1, . . . , dY

)
7→

 ∑
j∈Al

∑
k∈Bm

xj,k : l = 1, . . . , d′
X , m = 1, . . . , d′

Y

,
which we have already seen in the discussion around (3.2). This transformation may be
represented using a matrix Π(A,B) ∈ {0, 1}d′

Xd′
Y ×dXdY defined by

Π(A,B)
(l,m)(j,k) = 1{j ∈ Al, k ∈ Bm}. (3.7)

Write

C(dX ,dY )(d′
X ,d′

Y ) :=
{
Π(A,B) : A a d′

X-partition of {1, . . . , dX},

B a d′
Y -partition of {1, . . . , dY }

}
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for the set of such transformation matrices, for d′
X , d

′
Y ≥ 2.

Recall that we use a sequence of nested partitions to test if a random vector has mean
zero at various scales. We select these partitions in a greedy fashion, maximising the
observed deviation from centrality at each stage. We incorporate structural knowledge
of X and Y by restricting the search space for possible merges, which improves both
power and run-time. If X is ordinal then we would only consider merging subsets of labels
j1 < j2 where j2 = j1 + 1. If the labels of X have some hierarchical structure, then we
consider the labels to be leaves on some tree. We only consider merges between siblings
at each stage. One may also wish to restrict the number of labels being merged, either
my fixing a maximum group size or a total number of merges. Denote the combined
structural assumptions on the labels of X and Y by an element S in a space S, which may
be anything. Our theoretical results do not depend on S, so are robust to misspecification.
Indeed, in Section 3.3 we consider misspecification of S, and find that our procedure still
performs well.

Remark 3.2.2. One may think of S as the set of all permissible partitions (A,B), which
takes values in a finite set.

We seek a measure of deviation from centrality amongst Gaussian vectors (we will
discuss calibrating this into a formal test later). One such is the chi-square cumulative
distribution function

(t, σ) 7→ P
(
χ2

rank(σ) ≤ tTσ+t
)
, (3.8)

where σ is a (non-zero) covariance matrix and σ+ denotes its generalised inverse. When
T ∼ N(0,Σ) for Σ positive semidefinite with rank r > 0, the random variable T T Σ+T is
equal in distribution to a chi-square distribution with r degrees of freedom, denoted χ2

r.
Equation (3.8) maps (T,Σ) to the probability that an independently sampled χ2

r variable
is less than or equal to the observed T T Σ+T , with larger probabilities being evidence that
the true mean of T is non-zero. Inverting estimated covariance matrices is numerically
both expensive and unstable, and the naive test based on (3.8) has very poor finite sample
properties (see Figure 3.1). We instead work with an approximation to (3.8) due to Box
(1954),

ϕ : (t, σ) 7→ P
(
g(σ)χ2

h(σ) ≤ ∥t∥2
2

)
, (3.9)

where g(σ) = tr(σ2)/tr(σ) and h(σ) = tr(σ)2/tr(σ2). This has additional attractive
properties from the perspective of our adaptive test, which enables a fast implementation
(see Section 3.6.1).

97



We understand ϕ as a function acting on vectors and non-zero covariance matrices of
arbitrary dimension,

ϕ :
⋃

dX ,dY ≥2
RdXdY ×

(
M(dX ,dY ) \ {0}

)
→ [0, 1].

In Algorithm 2 we detail our greedy merging query function, which we use to map(
T̂ (n), Σ̂(n)

)
to a vector of criteria M̂ (n) ∈ RL for some L ∈ N. When there are no

restrictions on the permissible merges we keep merging until dX = dY = 2, leading to
L = dX + dY − 3. The version we give here is not intended to be efficient, but rather to
make clear our desired output. See Algorithm 6 for our actual implementation.

Input: Statistic vector T ∈ RdXdY , covariance matrix Σ ∈ M(dX ,dY ), X-dimension
dX , Y -dimension dY , structural information S ∈ S.

Output: Vector of criteria M ∈ [0, 1]L, with larger values corresponding to larger
deviations from centrality.

Set M1 = ϕ(T,Σ).
while continuing merging is consistent with the structure S do

for potential pairs 1 ≤ j1 < j2 ≤ dX of X-labels to merge do
if merging (j1, j2) is consistent with the structure S then

Set A =
{
{1}, . . . , {j1 − 1}, {j1, j2}, . . . , {j2 − 1}, {j2 + 1}, . . . , {dX}

}
and B =

{
{1}, . . . , {dY }

}
;

Compute T (j1,j2)
X := Π(A,B)T and Σ(j1,j2)

X := Π(A,B)ΣΠ(A,B)T .
end

end
for potential pairs 1 ≤ k1 < k2 ≤ dY of Y -labels to merge do

if merging (k1, k2) is consistent with the structure S then
Set B =

{
{1}, . . . , {k1 − 1}, {k1, k2}, . . . , {k2 − 1}, {k2 + 1}, . . . , {dY }

}
and A =

{
{1}, . . . , {dX}

}
;

Compute T (k1,k2)
Y := Π(A,B)T and Σ(k1,k2)

Y := Π(A,B)ΣΠ(A,B)T .
end

end

Set Ml = max
{
ϕ
(
T

(j1,j2)
X ,Σ(j1,j2)

X

)
, ϕ
(
T

(k1,k2)
Y ,Σ(k1,k2)

Y

)
:

permitted (j1, j2) and (k1, k2)
}

;

Update (T,Σ) to be the maximising arguments;
Update dX , dY , and S to be consistent with the new partitions.

end
Algorithm 2: Greedy merging query function.
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3.2.3 Bootstrap calibration

In Section 3.2.2 we discuss transforming a vector with unknown mean into a sequence
of criteria, with larger elements representing deviations from centrality. It remains to
calibrate this into a formal test, which we do in a manner which simultaneously tests each
of the resulting criteria individually. We make use of a parametric bootstrap, which we
use twice to control for the multiple testing. In this way we do not lose as much power as,
say, a Bonferonni correction.

Given an observed random vector of criteria M̂ (n) and bootstrap versions M (1)
n , . . . ,

M (B)
n all in RL, we define a p-value in [0, 1] as follows. We first use the empirical bootstrap

sample to estimate the marginal cumulative distribution function F̂l, l = 1, . . . , L, of each
of the elements of M̂ (n). This tells us how extreme each of the observed criteria are (note
that the criteria need not have the same scaling). We then take the maximum of these as
our test statistic for the second stage, which we calibrate by reusing the original bootstrap
sample. Details are given in Algorithm 3. In practice, Algorithm 3 can have problems
when L is not small compared to B, in which case several of the G(b)

n take the same value
in {1/B, 2/B, . . . , 1}. There are various ways one could deal with ties. We suggest using
a continuous version of the empirical cumulative distribution function, see Algorithm 7.

Input: Test vector M̂ (n) ∈ RL, number of bootstrap samples B ∈ N, bootstrap
sample M (1)

n , . . . ,M (B)
n ∈ RL.

Output: P-value p ∈ [0, 1].
for l = 1, . . . , L do

Set F̂n,l = 1
B

∑B
b=1 1

{
M

(b)
n,l ≤ M̂

(n)
l

}
;

end
Set Ĝn = maxl=1,...,L F̂n,l.
for b′ = 1, . . . , B do

for l = 1, . . . , L do
Set F (b′)

n,l = 1
B

∑B
b=1 1

{
M

(b)
n,l ≤ M

(b′)
n,l

}
;

end
Set G(b′)

n = maxl=1,...,L F
(b′)
n,l .

end
Set p = 1 − 1

B

∑B
b=1 1

{
G(b)

n ≤ Ĝn

}
.

Algorithm 3: Bootstrap calibration. The first stage quantities F̂n,1, . . . , F̂n,L quantify
how extreme each of the observed criteria are. We take the maximum of these — Ĝn

— as our test statistic for the second stage, which we calibrate by reusing the empirical
bootstrap samples.
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3.2.4 Conditional independence test and asymptotic properties

We are now familiar with all the elements of our conditional independence test for
structured categorical X and Y given arbitrary Z. Our full procedure is Algorithm 4.
Theorem 29 provides a guarantee on the asymptotic validity of our test.

Input: Independent, identically distributed data
D(n) = {(Xi, Yi, Zi) : i = 1, . . . , n}, number of bootstrap samples B ∈ N,
structural information S ∈ S.

Output: P-value p ∈ [0, 1].
Set T̂ (n) as the cross-fitted, doubly-robust generalised covariance measure (3.4)
and Σ̂(n) as the corresponding covariance estimate (3.5).

Compute criterion M̂ (n) = q
(
T̂ (n), Σ̂(n), dX , dY ,S

)
, where q is the output of

Algorithm 2.
for b = 1, . . . , B do

Draw parametric bootstrap T (b)
n ∼ N

(
0, Σ̂n

)
, for example using Algorithm 8.

Compute bootstrap criterion M (b)
n = q

(
T (b)

n , Σ̂(n), dX , dY ,S
)
.

end
Set p = p

(
M̂ (n), B,M (1)

n , . . . ,M (B)
n

)
, where p is the output of Algorithm 3.

Algorithm 4: Our conditional independence test for structured categorical data.

We now introduce the assumptions we require for Theorem 29.

Assumption 1. Define the following sequences of random variables:

E
(n)
f := max

j=1,...,dX

EP

[
{fP,j(Z) − f̂

(n,1)
j (Z)}2

∣∣∣ D(n,1)
]
,

E(n)
g := max

k=1,...,dY

EP

[
{gP,k(Z) − ĝ

(n,1)
k (Z)}2

∣∣∣ D(n,1)
]
,

note that we have suppressed P -dependence in the quantities defined above. Let P be such
that all of the following hold. The covariance matrix ΣP defined in (3.6) exists for every
P ∈ P. The remainder terms defined above satisfy:

E
(n)
f = oP(1); E(n)

g = oP(1); E
(n)
f E(n)

g = oP(n−1). (3.10)

The assumptions on E
(n)
f and E(n)

g are relatively weak and standard; for example
they are satisfied if each of E(n)

f , E(n)
g converge at the nonparametric rate oP(n−1/2). For

example, consider the case where Z = Rp and each fP,j is s > 0 Hölder smooth, i.e.,
writing m := ⌈s⌉ − 1, for every α := (α1, . . . , αp) with α1 + · · · + αp = m and αj ∈ Z≥0,
the partial derivatives (assumed to exist) satisfy∣∣∣∣∣ ∂αfP,j

∂α1z1 · · · ∂αpzp

(z) − ∂αfP,j

∂α1z1 · · · ∂αpzp

(z′)
∣∣∣∣∣ ≤ C∥z − z′∥s−m

2
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for all P ∈ P and z, z′ ∈ Rp. Then we can expect that E(n)
f = OP(n−2s/(2s+p)) for

appropriately chosen regression procedures; see for example Györfi et al. (2002). Then
when s > p/2, this is oP(n−1/2). Moreover, a faster rate for E(n)

f permits a slower rate for
E(n)

g and vice versa.
Recall that ∑dX

j=1 X̃j = ∑dY
k=1 Ỹk = 1 almost surely. This implies that ker(Σ) ⊂ RdXdY

contains at least the (dX + dY − 1)-dimensional space spanned by

u
(j)
j′,k′ :=

1 if j′ = j;
0 otherwise;

(3.11)

v
(k)
j′,k′ :=

1 if k′ = k;
0 otherwise.

(3.12)

Write K(dX ,dY ) := span{u(j), v(k) : j = 1, . . . , dX , k = 1, . . . , dY } ⊂ RdXdY .

Assumption 2. For each P ∈ P, the population covariance matrix ΣP defined in (3.6) is
equal to some fixed Σ which satisfies ker(Σ) = K(dX ,dY ), i.e. the kernel of Σ is as small as
possible given the categorical nature of X and Y .

The kernel condition in Assumption 2 is equivalent to asking for the upper (dX −
1)(dY −1) block of the covariance matrix Σ to be positive definite, which is relatively weak
and standard. One may relax the assumption that Σ is fixed under stronger assumptions
on the other parts of our procedure, see Remark 3.5.1.

Theorem 29. Let P ⊂ {P : X ⊥⊥ Y | Z} be the class of null distributions satisfying
Assumptions 1 and 2. Let p : ({1, . . . , dX} × {1, . . . , dY } × Z)n × N × S → [0, 1] be the
output of Algorithm 4. Then the random variable p

(
D(n), B, S

)
is asymptotically uniformly

distributed, uniformly in the class P:

lim
n,B→∞

sup
P ∈P

sup
u∈[0,1]

∣∣∣∣PP

(
p
(
D(n), B,S

)
≤ u

)
− u

∣∣∣∣ = 0.

The result of Theorem 29 is independent of the structural information S. Practitioners
may choose any structure that they believe will improve the power of the test over their
data (see discussion in Section 3.2.2), without worrying if this is “correctly specified” in
any sense. Proving asymptotic power guarantees is beyond the scope of this chapter. In
order to derive the asymptotic properties of our test in Theorem 29 we make use of the
fact that the bootstrap samples are asymptotically equivalent to the test statistic. In
this way we avoid having to derive the probabilities of each possible sequence of label
merges, which would be tedious and depend on the structure S. This trick doesn’t apply

101



when considering objects with different limiting distributions, for instance when the null
hypothesis is violated. We instead demonstrate the power of our test through a numerical
study.

3.3 Numerical experiments
We demonstrate that our adaptive conditional independence test for structured categorical
data is able to control size and improve power in a wide range of settings, under both
hierarchical and ordinal assumptions. We additionally show that when the structural
assumptions are misspecified, our greedy approach does no worse than corresponding
non-adaptive approaches. We are primarily interested in our adaptive test Algorithm 4,
which uses the greedy merging query function Algorithm 2, and where we assume either a
hierarchical or ordinal structure on X and Y . We compare to two similar but non-adaptive
approaches, which fix L = 1 and set q : (t, σ) 7→ ∥t∥2 (Euclidean norm) and ∥t∥∞ (max
norm) respectively. Note that the Euclidean criterion is equivalent to the approximate
chi-square value q : (t, σ) 7→ ϕ(t, σ) as in (3.9) (i.e. our approach with search depth L = 1),
since the latter is a strictly increasing function of the former (for fixed σ). We additionally
compare to the multivariate Generalised Covariance Measure (mGCM) (Shah and Peters,
2020), and in the ordinal case also the conditional independence test of Ankan and Textor
(2022). While our test may be used with any plug-in machine learning multinomial
regressions, here we make use of gradient boosting for its good predictive power (xgboost
package (Chen and Guestrin, 2016)). The precise implementation details are given in
Section 3.6. For a sanity check we also include the chi-square test (3.8) — which is expected
to do poorly when the dimension is not very small with respect to the sample size — and a
linear multinomial regression of Y on X and Z, which is expected to do poorly in general.
Code to reproduce our experiments is made available in the R package catci (CATegorical
Conditional Independence) available from https://github.com/harveyklyne/catci.

In all cases we fix n = 1000 and dX = dY = 8. We draw Z ∼ N(0, S) ∈ R5, where
Sjj = 1, Sjk = 0.5 for j ̸= k, and then draw (X, Y ) conditionally on Z from a known
joint probability mass function. Define the following propensity functions p : R → [0, 1]8,
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satisfying ∑8
j=1 pj(z) = 1 for every z ∈ R:

p
(lin)
j (z) := 2j + 5 + (−4j + 18)w1(z)

112 ; (3.13)

p
(vee)
j (z) :=

−|2j − 9| + 10 +
(
2|2j − 9| − 8

)
w1(z)

48 ; (3.14)

p
(hat)
j (z) :=

21{3 ≤ j ≤ 6} + 1 +
(

− 41{3 ≤ j ≤ 6} + 2
)
w1(z)

16 ; (3.15)

p
(sig)
j (z) := Φ

c(sig)
j+1 − w1(z)

2

− Φ
c(sig)

j − w1(z)
2

; (3.16)

p
(sin)
j (z) := Φ

c(sin)
j+1 − w2(z)

2

− Φ
c(sin)

j − w2(z)
2

. (3.17)

Here, w1(z) := (1+exp(−3z))−1 and w2(z) := exp
(

−z2/2
)

sin(z) are weighting functions,
Φ is the standard Gaussian cumulative distribution function, and c(sig) and c(sin) are the
following vectors in (R ∪ {±∞})9:

c(sig) :=
(
−∞ −2.0 −1.0 0.0 0.5 1.0 2.0 3.0 +∞

)
;

c(sin) :=
(
−∞ −2.3 −1.2 −0.6 0.0 0.6 1.2 2.3 +∞

)
.

These propensity functions have been chosen so that all label probabilities are bounded
away from zero, and so as to vary in complexity in both z and j.

For the size control experiments, we draw X and Y given Z from the product of the
probability mass functions,

P(X = j, Y = k | Z = z) = p
(X)
j (z1)p(Y )

k (z2), (3.18)

for choices of p(X) and p(Y ) in (3.13–3.17). Note that the elements Z1 and Z2 — and hence
X and Y — are correlated, but that X and Y are conditionally independent given Z.

In Figure 3.1 we plot the empirical quantiles of the various tests’ p-values (through
1000 repeats) against those of the target uniform distribution. If the methods are well-
calibrated, we expect the corresponding plots to be linear. We find that our adaptive test
Algorithm 4 is correctly calibrated in all settings, as are the non-adaptive versions with
Euclidean and max norms query functions. We further find that the method of Ankan
and Textor (2022) is well-calibrated. As expected, the naive chi-square and multinormial
tests do not adequately control size. We were surprised that the mGCM also failed here,
particularly in light of Shah and Peters (2020, Thm. 9). The mGCM is equivalent to a
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Figure 3.1 Quantile–quantile plots of p-values produced by various methods under various
null settings, each with 1000 repeats. The p-values should be uniformly distributed
(dashed black lines), with 5% having values less than 0.05 (text percentages). The plots
labelled “tree” (red) and “ordinal” (orange) refer to our procedure (Algorithm 4) with
the structural information S on both X and Y corresponding to either a binary tree or
an ordinal structure. The plots labelled “euclid” (yellow) and “max” (green) refer to
our calibration procedure (Algorithm 3) applied to the Euclidean norm and max norm
criteria respectively, “Ankan and Textor” (turquoise) refers to the ordinal method of
Ankan and Textor (2022), “mGCM” (blue) refers to the method of Shah and Peters (2020),
“chi-square” (lilac) refers to the cumulative χ2 distribution function (3.8), “multinomial”
(pink) refers to one minus the observed significance of a linear multinomial regression of
Y on (X,Z).
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modified version of the “max” procedure, using the normalised statistics

T̂
(n)
j,k 7→

T̂
(n)
j,k√

Σ̂(n)
(j,k)(j,k)

; Σ̂(n)
(j,k)(j′,k′) 7→

Σ̂(n)
(j,k)(j′,k′)√

Σ̂(n)
(j,k)(j,k)Σ̂

(n)
(j′,k′)(j′,k′)

.

Whilst this does not involve estimating a full precision matrix, it is still inverting estimated
variances.

We next examine the power of the well-calibrated methods. We consider two cases
where X ⊥̸⊥ Y | Z, motivated by the hierarchical and ordinal data structures we have
discussed. We set

P(X = j, Y = k | Z = z) = p
(X)
j (z1)p(Y )

k (z2) + λdj,k, (3.19)

where λ > 0 controls the conditional dependence strength and d ∈ R8×8 is one of the
following options:

d(tree) :=



−1.1 −1.1 −0.9 −0.9 0.9 0.9 1.1 1.1
−1.1 −1.1 −0.9 −0.9 0.9 0.9 1.1 1.1
−0.9 −0.9 −1.1 −1.1 1.1 1.1 0.9 0.9
−0.9 −0.9 −1.1 −1.1 1.1 1.1 0.9 0.9

0.9 0.9 1.1 1.1 −1.1 −1.1 −0.9 −0.9
0.9 0.9 1.1 1.1 −1.1 −1.1 −0.9 −0.9
1.1 1.1 0.9 0.9 −0.9 −0.9 −1.1 −1.1
1.1 1.1 0.9 0.9 −0.9 −0.9 −1.1 −1.1



; (3.20)

d(step) :=



−1 −1 1 1 1 1 −1 −1
−1 −1 1 1 1 1 −1 −1
−1 −1 1 1 1 1 −1 −1
−1 −1 1 1 1 1 −1 −1

1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1



. (3.21)

Note that the rows and columns of each d sum to one, and we only consider values of the
strength parameter λ for which all of the propensity scores are strictly positive.

When examining the conditional dependence setting (3.20), we apply our greedy query
function (Algorithm 2) under a binary tree structural assumption on X and Y . Figure 3.2
demonstrates that our hierarchical-based adaptive search procedure significantly improves
power compared to the non-adaptive versions in all X and Y settings under consideration.
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Turning to setting (3.21), we make an ordinal structural assumption on X and Y in
Algorithm 5. Figure 3.3 demonstrates that our ordinal-based adaptive search procedure
improves power compared to the non-adaptive versions in all X and Y settings under
consideration. We find that the method of Ankan and Textor (2022) does not have power
in the ordinal setting (3.21).

Finally, we consider our procedure under complete misspecification of the structural
information S. We repeat the settings (3.20–3.21), but randomly permute the labels of X
and Y once the data is generated. We find that our adaptive procedure does not perform
substantially worse than any of the non-adaptive procedures, see Figures 3.4 and 3.5.

3.4 Discussion
Conditional independence testing is both interesting and challenging with categorical data.
Any conditional independence test must restrict the null space, which is convenient to
do through the convergence rates of machine learning methods. We suggest a test which
has power against a diverse range of alternatives and is able to make use of structural
information about the categorical variables (Algorithm 4). Our test efficiently searches
for a partition of the categorical labels which maximises its power, and is calibrated
using a single parametric bootstrap sample. We prove that our test asymptotically
controls size uniformly within a broad class of null distributions (Theorem 29). In
Section 3.3 we show that our test controls size in finite-sample settings where other
methods fail, and is more powerful than non-adaptive versions and existing methods.
We hope that our method will see use in practical data applications, and we share an
implementation in the R package catci (CATegorical Conditional Independence) available
from https://github.com/harveyklyne/catci.

3.5 Additional asymptotic results

3.5.1 Calibration procedure

In Section 3.2.4 we introduce Algorithm 3 for testing whether a random vector has any
significantly large entries, given a bootstrap sample. Such tests are of independent interest,
so we provide a more general result in Theorem 30. In this section, we allow M̂ (n) to be
any random vector in RL.

Write PB
n for the empirical distribution of the bootstrap samples M (b)

n , so for any
function w : RL → R we define

PB
n (w(M (b)

n ) ≤ x) := 1
B

B∑
b=1

1

{
w
(
M (b)

n

)
≤ t

}
,
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Figure 3.2 Plots of rejection rates at the 5% size level versus conditional dependence
strength λ, from 200 repeats. X and Y have the binary tree conditional dependence
structure (3.20), given Z. The plot labelled “tree” (red) refers to our procedure (Algo-
rithm 4) with the structural information S on both X and Y corresponding to a binary
tree structure. The plots labelled “euclid” (green) and “max” (blue) refer to our cali-
bration procedure (Algorithm 3) applied to the Euclidean norm and max norm criteria
respectively.
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Figure 3.3 Plots of rejection rates at the 5% size level versus conditional dependence
strength λ, from 200 repeats. X and Y have the step function conditional dependence
(3.21), given Z. The plot labelled “ordinal” (red) refers to our procedure (Algorithm 4)
with the structural information S on both X and Y corresponding to an ordinal structure.
The plots labelled “euclid” (gold) and “max” (blue) refer to our calibration procedure
(Algorithm 3) applied to the Euclidean norm and max norm criteria respectively, “Ankan
and Textor” (lilac) refers to the ordinal method of Ankan and Textor (2022).
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Figure 3.4 Plots of rejection rates at the 5% size level versus conditional dependence
strength λ, from 200 repeats. These settings are identical to those of Figure 3.2, but with
X and Y labels randomly permuted. The plot labelled “tree” (red) refers to our procedure
(Algorithm 4) with the structural information S on both X and Y corresponding to a
binary tree structure. The plots labelled “euclid” (green) and “max” (blue) refer to our
calibration procedure (Algorithm 3) applied to the Euclidean norm and max norm criteria
respectively.
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Figure 3.5 Plots of rejection rates at the 5% size level versus conditional dependence
strength λ, from 200 repeats. These settings are identical to those of Figure 3.3, but
with X and Y labels randomly permuted. The plot labelled “ordinal” (red) refers to our
procedure (Algorithm 4) with the structural information S on both X and Y corresponding
to an ordinal structure. The plots labelled “euclid” (gold) and “max” (blue) refer to our
calibration procedure (Algorithm 3) applied to the Euclidean norm and max norm criteria
respectively, “Ankan and Textor” (lilac) refers to the ordinal method of Ankan and Textor
(2022).
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for x ∈ R.

Assumption 3. For some class of laws P governing the data D(n), the vector of criteria
M̂ (n) converges uniformly in distribution to some random variable M , whose distribution
does not depend on P . That is, as n → ∞,

sup
P ∈P

sup
m∈RL

∣∣∣PP

(
M̂ (n) ≤ m

)
− P(M ≤ m)

∣∣∣ → 0.

Furthermore, for each l = 1, . . . , L the limiting marginal distribution function Fl(x) :=
P(Ml ≤ x) is continuous for x ∈ R.

Remark 3.5.1. One may prove a version of Theorem 30 which covers classes of dis-
tributions where the limiting random variable MP depends on the distribution P . Our
proof makes use of the continuous mapping theorem, and sufficient conditions exist under
stronger continuity assumptions (e.g. Kasy (2018)).

Assumption 4. The distribution function of the bootstrap vectors Fn,l(x) := PP

(
M

(b)
n,l ≤

x
∣∣∣ D(n)

)
, which is a random function determined by the data D(n), converges uniformly

in probability to Fl. That is, for each l = 1, . . . , L and ϵ > 0, as n → ∞ it holds that

sup
P ∈P

PP

(
sup
x∈R

∣∣∣Fn,l(x) − Fl(x)
∣∣∣ > ε

)
→ 0.

Additionally define G(m) := maxl=1,...,L Fl(ml) for m ∈ Rd and ψ(u) = P(G(M) ≤ u) for
u ∈ [0, 1]. As n → ∞,

sup
P ∈P

PP

(
sup

u∈[0,1]

∣∣∣∣PP

(
G
(
M (b)

n

)
≤ u

∣∣∣∣ D(n)
)

− ψ(u)
∣∣∣∣ > ϵ

)
→ 0.

Theorem 30. Under Assumptions 3 and 4, the output of Algorithm 3 converges uniformly
in probability to a uniform random variable on [0, 1]. Indeed, as n,B → ∞,

sup
P ∈P

sup
u∈[0,1]

∣∣∣∣PP

(
p
(
M̂ (n),M (1)

n , . . . ,M (B)
n

)
≤ u

)
− u

∣∣∣∣ → 0.

3.5.2 Gaussian location testing

In Section 3.2.4 we reduce the problem of conditional independence testing to testing
whether an asymptotically multivariate Gaussian vector has mean zero. Such tests are
of independent interest, so we provide a more general statement in Algorithm 5. Recall
that we are writing M(dX ,dY ) ⊂ RdXdY ×dXdY for the set of symmetric positive semidefinite
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matrices on RdXdY ×dXdY . In this section, we allow q to be any user-specified query function

q :
⋃

dX ,dY ≥2
RdXdY ×

(
M(dX ,dY ) \ {0}

)
→ [0, 1]L.

Input: T̂ (n), Σ̂(n), q, B
Output: P-value p ∈ [0, 1].
Compute criterion M̂ (n) = q

(
T̂ (n), Σ̂(n)

)
.

for b = 1, . . . , B do
Draw parametric bootstrap T (b)

n ∼ N
(
0, Σ̂n

)
, for example using Algorithm 8.

Compute bootstrap criterion M (b)
n = q

(
T (b)

n , Σ̂(n)
)
.

end
Set p = p

(
M̂ (n), B,M (1)

n , . . . ,M (B)
n

)
, where p is the output of Algorithm 3.

Algorithm 5: Testing whether an asymptotically Gaussian vector has mean zero
using query function q : Rd ×Rd×d → RL and our calibration procedure (Algorithm 3).

Our basic assumption is that T̂ (n) is asymptotically Gaussian and Σ̂(n) is consistent.
We seek conditions on the query function q : (T̂ (n), Σ̂(n)) 7→ M̂ (n) such that Assumptions
3 and 4 hold.

Assumption 5. For some class of laws P governing the data, the vector T̂ (n) converges
uniformly in distribution to a centred Gaussian with non-zero covariance matrix Σ ∈
M(dX ,dY ) which does not depend on P , and the estimated covariance matrix Σ̂(n) converges
uniformly in probability to Σ. That is, for any ϵ > 0 and as n → ∞,

sup
P ∈P

sup
t∈Rd

∣∣∣PP

(
T̂ (n) ≤ t

)
− P(T ≤ t)

∣∣∣ → 0; sup
P ∈P

PP

(∥∥∥Σ̂(n) − Σ
∥∥∥ > ϵ

)
→ 0,

where T d= N(0,Σ) and ∥ · ∥ is any norm on RdXdY ×dXdY .

Assumption 6. The query function q : RdXdY ×RdXdY ×dXdY → RL is continuous at every
point of a set T such that P

(
(T,Σ) ∈ T

)
= 1.

Define the following functions for x ∈ R, u ∈ [0, 1], and σ ∈ M(dX ,dY ) \ 0:

Fl(x;σ) = P
(
ql

(
N(0, σ), σ

)
≤ x

)
;

ψ(u;σ) = P
(
G
(
q
(
N(0, σ), σ

))
≤ u

)
,

recalling that G(m) = maxl=1,...,L Fl(ml) = maxl=1,...,L Fl(ml; Σ). Note that when σ is a
random variable, Fl(·;σ) and ψ(·;σ) are random functions (i.e. we take the cumulative
distribution functions conditional on σ).

Assumption 7. The functions Fl(·; Σ), l = 1, . . . , L are continuous.
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Theorem 31. Under Assumptions 5, 6, and 7, the output of Algorithm 5 converges
uniformly in probability to a uniform random variable on [0, 1]. Indeed, as n,B → ∞,

sup
P ∈P

sup
u∈[0,1]

∣∣∣∣PP

(
p
(
T̂ (n), Σ̂(n), q, B

)
≤ u

)
− u

∣∣∣∣ → 0.

3.6 Implementation
In order reduce the computational burden, we pre-tune all hyperparameters for the
experiments in Section 3.3 on 1000 datasets, each of which we split into training and
testing. This includes all gradient boosting regression parameters.

3.6.1 Fast greedy merging

Recall our criterion of interest (3.9), which takes input a vector t and matrix σ. Note that
it is sufficient to just know the summary quantities ∥t∥2

2, tr(σ), tr(σ2). We are therefore
interested in computing these quantities for the transformed vector Πt and matrix ΠσΠT

in an efficient manner. Note that tr(σ2) equals the sum of the squared elements of σ.
Recalling the stepwise greedy nature of Algorithm 2, consider merging two X-labels,

j1 < j2 (merging two Y -labels is similar). Then the corresponding transformation
Π ∈ C(dX ,dY )(dX−1,dY ) has elements

Π(l,m)(j,k) =


1{j = l, k = m} if l ∈ {1, . . . , j1 − 1, j1 + 1, . . . , j2 − 1};
1{j ∈ {j1, j2}, k = m} if l = j1;
1{j = l + 1, k = m} if l ∈ {j2, . . . , dX − 1}.
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It follows that, for each m,m′ ∈ {1, . . . , dY },

(Πt)l,m =


tl,m if l ∈ {1, . . . , j1 − 1, j1 + 1, . . . , j2 − 1};
tj1,m + tj2,m if l = j1;
tl+1,m if l ∈ {j2, . . . , dX − 1};

(3.22)

(
ΠσΠT

)
(l,m)(l′,m′)

=



σ(l,m)(l′,m′) if l, l′ ∈ {1, . . . , j1 − 1,
j1 + 1, . . . , j2 − 1};

σ(j1,m)(l′,m′) + σ(j2,m)(l′,m′) if l = j1,

l′ ∈ {1, . . . , j1 − 1,
j1 + 1, . . . , j2 − 1};

σ(l+1,m)(l′,m′) if l ∈ {j2, . . . , dX − 1},

l′ ∈ {1, . . . , j1 − 1,
j1 + 1, . . . , j2 − 1};

σ(l,m)(j1,m′) + σ(l,m)(j2,m′) if l ∈ {1, . . . , j1 − 1,
j1 + 1, . . . , j2 − 1},

l′ = j1;
σ(j1,m)(j1,m′) + σ(j2,m)(j1,m′)

+σ(j1,m)(j2,m′) + σ(j2,m)(j2,m′) if l = l′ = j1;
σ(l+1,m)(j1,m′) + σ(l+1,m)(j2,m′) if l ∈ {j2, . . . , dX − 1},

l′ = j1;
σ(l,m)(l′+1,m′) if l ∈ {1, . . . , j1 − 1,

j1 + 1, . . . , j2 − 1},

l′ ∈ {j2, . . . , dX − 1};
σ(j1,m)(l′+1,m′) + σ(j2,m)(l′+1,m′) if l = j1,

l′ ∈ {j2, . . . , dX − 1};
σ(l+1,m)(l′+1,m′) if l, l′ ∈ {j2, . . . , dX − 1}.

(3.23)
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Therefore the updated summary quantities are as follows.

∥Πt∥2
2 = ∥t∥2

2 + 2
dY∑

k=1
tj1,ktj2,k; (3.24)

tr
(
ΠσΠT

)
= tr(σ) + 2

dY∑
k=1

σ(j1,k)(j2,k) (3.25)

tr
[(

ΠσΠT
)2
]

= tr
(
σ2
)

+ 4
dY∑

k,m=1

dX∑
l=1

σ(j1,k)(l,m)σ(j2,k)(l,m) (3.26)

+ 2
dY∑

k,m=1
σ(j1,k)(j1,m)σ(j2,k)(j2,m)

+ 2
dY∑

k,m=1
σ(j1,k)(j2,m)σ(j2,k)(j1,m). (3.27)

We may use these equalities to greatly speed up Algorithm 2. In an abuse of notation,
write ϕ

(
∥t∥2

2, tr(σ), tr
(
σ2)

)
= ϕ(t, σ).
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Input: Statistic vector T ∈ RdXdY , covariance matrix Σ ∈ M(dX ,dY ), X-dimension
dX , Y -dimension dY , structural information S ∈ S, search depth L ∈ N.

Output: Vector of criteria M ∈ [0, 1]L, with larger values corresponding to larger
deviations from centrality.

Initialise norm-square ∥T∥2
2, trace tr(Σ), and trace of the squared covariance

tr
(
Σ2
)

= ∑dX
j,j′=1

∑dY
k,k′=1 Σ2

(j,k)(j′,k′);

Set M1 = ϕ
(

∥T∥2
2, tr(Σ), tr

(
Σ2
))

.

for l = 2, . . . , L do
for potential pairs 1 ≤ j1 < j2 ≤ dX of X-labels to merge do

if merging (j1, j2) is consistent with the structure S then
Compute ∥Π(A,B)T∥2

2 via (3.25), tr
(
Π(A,B)ΣΠ(A,B)T

)
via (3.26), and

tr
[(

Π(A,B)ΣΠ(A,B)T
)2
]

via (3.27);
Set
ϕ

(j1,j2)
X = ϕ

(
∥Π(A,B)T∥2

2, tr
(
Π(A,B)ΣΠ(A,B)T

)
, tr
[(

Π(A,B)ΣΠ(A,B)T
)2
])

.

end
end
for potential pairs 1 ≤ k1 < k2 ≤ dY of Y -labels to merge do

if merging (k1, k2) is consistent with the structure S then
Compute ∥Π(A,B)T∥2

2 analogously to (3.25), tr
(
Π(A,B)ΣΠ(A,B)T

)
analogously to (3.26), and tr

[(
Π(A,B)ΣΠ(A,B)T

)2
]

analogously to

(3.27);
Set
ϕ

(k1,k2)
Y = ϕ

(
∥Π(A,B)T∥2

2, tr
(
Π(A,B)ΣΠ(A,B)T

)
, tr
[(

Π(A,B)ΣΠ(A,B)T
)2
])

.

end
end

Set Ml = max
{
ϕ

(j1,j2)
X , ϕ

(k1,k2)
Y

)
: permitted (j1, j2) and (k1, k2)

}
;

For the maximising argument, update T as in (3.22) and Σ as in (3.23);
Update dX , dY , and S to be consistent with the new partitions.

end
Algorithm 6: Fast implementation of the greedy merging query function (Algo-
rithm 2).
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3.6.2 Continuous version of calibration procedure

Input: Test vector M̂ (n) ∈ RL, number of bootstrap samples B ∈ N, bootstrap
sample M (1)

n , . . . ,M (B)
n ∈ RL.

Output: P-value p ∈ [0, 1].
for l = 1, . . . , L do

Draw Ul ∼ Uniform[0, 1];
Set F̂n,l = 1

B

∑B
b=1 1

{
M

(b)
n,l < M̂

(n)
l

}
+ U

B

∑B
b=1 1

{
M

(b)
n,l = M̂

(n)
l

}
;

end
Set Ĝn = maxl=1,...,L F̂n,l.
for b′ = 1, . . . , B do

for l = 1, . . . , L do
Draw U

(b′)
l ∼ Uniform[0, 1];

Set F (b′)
n,l = 1

B

∑B
b=1 1

{
M

(b)
n,l < M

(b′)
n,l

}
+ U(b′)

B

∑B
b=1 1

{
M

(b)
n,l = M

(b′)
n,l

}
;

end
Set G(b′)

n = maxl=1,...,L F
(b′)
n,l .

end
Draw U ∼ Uniform[0, 1];
Set p = 1 − 1

B

∑B
b=1 1

{
G(b)

n < Ĝn

}
− U

B

∑B
b=1 1

{
G(b)

n = Ĝn

}
.

Algorithm 7: Continuous version of Algorithm 3, which we have found to have better
finite sample properties.

3.6.3 Generating multivariate Gaussian bootstraps
Input: Non-zero covariance matrix Σ ∈ Rd×d, number of samples B ∈ N to be

generated.
Output: Independent samples {T (b) : b = 1, . . . , B} drawn from N(0,Σ).
Compute the thin matrix square root Σ1/2 ∈ Rd×r of Σ, where r = rank(Σ) (we
use the chol function in base R).

Populate a matrix Z ∈ Rr×B with independent standard Gaussian draws.
Compute T0 = Σ1/2Z ∈ Rd×B.
for b = 1, . . . , B do

Set T (b) ∈ Rd to be the bth column of T0.
end

Algorithm 8: Procedure to generate samples from a multivariate Gaussian distribution
with mean zero and a specified covariance matrix.
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3.7 Proof of Theorem 29
For this section, we define

C∗ :=
⋃

2≤d′
X≤dX

⋃
2≤d′

Y ≤dY

C(dX ,dY )(d′
X ,d′

Y )

=
{
Π(A,B) : A a partition of {1, . . . , dX},

B a partition of {1, . . . , dY }, |A|, |B| ≥ 2
}
.

For each Π ∈ C∗, define a function ϕΠ : R≥0 → [0, 1] by

ϕΠ(x) := P
(
g
(
ΠΣΠT

)
χ2

h(ΠΣΠT ) ≤ x
)
,

where g(σ) = tr
(
σ2
)
/tr(σ) and h(σ) = tr(σ)2/tr

(
σ2
)
.

Proof. Algorithm 4 is equivalent to Algorithm 5 with statistic T̂ (n) as in (3.4), covariance
matrix Σ̂(n) as in (3.5), and query function (t, σ) 7→ q(t, σ, dX , dY ,S). Therefore it suffices
to prove that Assumptions 1 and 2 imply Assumptions 5, 6, and 7, and then make use of
Theorem 31. Indeed, Lemma 32 gives that Assumptions 1 and 2 imply Assumption 5,
Lemma 33 gives that Assumption 2 implies Assumption 6, and Lemma 37 gives that
Assumption 2 implies Assumption 7.

Lemma 32. Let P be a class of distributions satisfying Assumption 1. Then the vector
T̂ (n) defined in (3.4) converges uniformly in distribution to a Gaussian with mean µP

defined in (3.3) and variance ΣP defined in (3.6), and the estimated covariance matrix
Σ̂(n) defined in (3.5) converges uniformly in probability to ΣP .

Proof. In an abuse of notation, we refer to the quantities

E
(n,r)
f := max

j=1,...,dX

EP

[{
fP,j(Z) − f̂ (n,1)(Z)

}2
∣∣∣∣ D(n,1)

]
,

for each fold r = 1, . . . , N . Each E
(n,r)
f satisfies the same probabilistic assumptions as

E
(n)
f = E

(n,1)
f due to the equal partitioning and i.i.d. data. Likewise we define E(n,r)

g .
To show the first conclusion we first highlight the term which converges to a target

Gaussian distribution, and then deal with the remainder. Define the residuals εP ∈
[−1, 1]dX , ξP ∈ [−1, 1]dY as

εP,j = X̃j − fP,j(Z);
ξP,k = Ỹk − gP,k(Z),
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And similarly the sample equivalents εP,i and ξP,i. For every j, k we have

EP (εP,j | Z) = EP (ξP,k | Z) = 0;
EP (εP,jξP,k) = µP,j,k,

and also for every j′, k′ we have

CovP

(
εP,jξP,k, εP,j′ξP,k′

)
= ΣP (j,k)(j′,k′).

Now
√
n
(
T̂

(n)
j,k − µP,j,k

)
= 1√

n

n∑
i=1

{
εP,ijξP,ik − µj,k

}
+

N∑
r=1

R
(n,r)
P,j,k,

where the uniform central limit theorem (Lemma 9) applies to the first term and R(n,r)
P ∈

RdXdY has elements

R
(n,r)
P,j,k := 1√

n

∑
i∈I(n,r)

{
X̃ij − f̂

(n,r)
j (Zi)

}{
Ỹik − ĝ

(n,r)
k (Zi)

}
− εP,ijξP,ik.

Note that, conditionally on D(n,r), each summand of R(n,r)
P is i.i.d. To show that R(n,r)

P =
oP(1), we fix some elements j ∈ {1, . . . , dX}, k ∈ {1, . . . , dY } and decompose

R
(n,r)
P,j,k = a(n,r) + b

(n,r)
f + b(n,r)

g , (3.28)

where

a(n,r) := 1√
n

∑
i∈I(n,r)

{fP,j(Zi) − f̂
(n,r)
j (Zi)}{gP,k(Zi) − ĝ

(n,r)
k (Zi)};

b
(n,r)
f := 1√

n

∑
i∈I(n,r)

{fP,j(Zi) − f̂
(n,r)
j (Zi)}ξP,ik;

b(n,r)
g := 1√

n

∑
i∈I(n,r)

{gP,k(Zi) − ĝ
(n,r)
k (Zi)}εP,ij.

We now show that each term is oP(1), so Lemma 11 yields the first conclusion.
By the Cauchy–Schwarz inequality, we have

EP [|a(n,r)| | D(n,r)] ≤
√
nEP [|fP,j(Z) − f̂

(n,r)
j (Z)||gP,k(Z) − ĝ

(n,r)
k (Z)| | D(n,r)]

≤
√
nE

(n,r)
f E

(n,r)
g = oP(1),
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so a(n,r) is oP(1) by Lemma 12. Note that each summand of b(n,r)
f is mean-zero conditionally

on Z. This means that

EP [(b(n,r)
f )2 | D(n,r)] = EP [{fP,j(Z) − f̂

(n,r)
j (Z)}2ξ2

P,k | D(n,r)]
≤ E

(n,r)
f = oP(1),

where we have used a supremum bound for |ξP,k| ≤ 1. Again using Lemma 12 we have
that b(n,r)

f = oP(1). By an identical argument, we also have that b(n,r)
g = oP(1).

Turning now to the second conclusion, we aim to show that Σ̂(n) − ΣP = oP(1). We
introduce notation for the following random functions on {0, 1}dX × {0, 1}dY × Z:

ψ̂
(n,r)
j,k (x, y, z) :=

{
xj − f̂

(n,r)
j (z)

}{
ỹk − ĝ

(n,r)
k (z)

}
− T̂

(n)
j,k ,

and also the population version

ψP,j,k(x, y, z) :=
{
xj − fP,j(z)

}{
ỹk − gP,k(z)

}
− µP,j,k.

We will focus on an individual element (Σ̂(n) − ΣP )(j,k)(j′,k′),and make use of Lemma 10.
Note that the absolute value of ψP,j,k is at most 2.

We are now ready to decompose the covariance estimation error.

(Σ̂(n) − ΣP )(j,k)(j′,k′) = 1
n

N∑
r=1

∑
i∈I(n,r)

ψ̂
(n,r)
j,k (X̃i, Ỹi, Zi)ψ̂(n,r)

j′,k′ (X̃i, Ỹi, Zi)

− EP

[
ψP,j,k(X̃, Ỹ , Z)ψP,j′,k′(X̃, Ỹ , Z)

]

= 1
n

n∑
i=1

[
ψP,j,k(X̃i, Ỹi, Z)ψP,j′,k′(X̃i, Ỹi, Z)

− EP

[
ψP,j,k(X̃, Ỹ , Z)ψP,j′,k′(X̃, Ỹ , Z)

]]

+ 1
N

N∑
r=1

S
(n,r)
P ,

where the first term is oP(1) by Lemma 10 and

S
(n,r)
P := K

n

∑
i∈I(n,r)

[
ψ̂

(n,r)
j,k (X̃i, Ỹi, Zi)ψ̂(n,r)

j′,k′ (X̃i, Ỹi, Zi) − ψP,j,k(X̃i, Ỹi, Z)ψP,j′,k′(X̃i, Ỹi, Z)
]
.

We show that S(n,r)
P = oP(1) using the following identity for a1, a2, b1, b2 ∈ R,

a1b1 − a2b2 = (a1 − a2)(b1 − b2) + a2(b1 − b2) + b2(a1 − a2),
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and then applying the Cauchy–Schwarz inequality to each term.

∣∣∣S(n,r)
P

∣∣∣ =
∣∣∣∣∣Nn ∑

i∈I(n,r)

ψ̂
(n,r)
j,k (X̃i, Ỹi, Z)ψ̂(n,r)

j′,k′ (X̃i, Ỹi, Z) − ψP,j,k(X̃i, Ỹi, Z)ψP,j′,k′(X̃i, Ỹi, Z)
∣∣∣∣∣

≤
∣∣∣∣∣Nn ∑

i∈I(n,r)

{
ψ̂

(n,r)
j,k (X̃i, Ỹi, Z) − ψP,j,k(X̃i, Ỹi, Z)

}
{
ψ̂

(n,r)
j′,k′ (X̃i, Ỹi, Z) − ψP,j′,k′(X̃i, Ỹi, Z)

}∣∣∣∣∣
+
∣∣∣∣∣Nn ∑

i∈I(n,r)

{
ψ̂

(n,r)
j,k (X̃i, Ỹi, Z) − ψP,j,k(X̃i, Ỹi, Z)

}
ψP,j′,k′(X̃i, Ỹi, Z)

∣∣∣∣∣
+
∣∣∣∣∣Nn ∑

i∈I(n,r)

{
ψ̂

(n,r)
j′,k′ (X̃i, Ỹi, Z) − ψP,j′,k′(X̃i, Ỹi, Z)

}
ψP,j,k(X̃i, Ỹi, Z)

∣∣∣∣∣
≤
[
N

n

∑
i∈I(n,r)

{
ψ̂

(n,r)
j,k (X̃i, Ỹi, Z) − ψP,j,k(X̃i, Ỹi, Z)

}2
]1/2

·
[
N

n

∑
i∈I(n,r)

{
ψ̂

(n,r)
j′,k′ (X̃i, Ỹi, Z) − ψP,j′,k′(X̃i, Ỹi, Z)

}2
]1/2

+
[
N

n

∑
i∈I(n,r)

{
ψ̂

(n,r)
j,k (X̃i, Ỹi, Z) − ψP,j,k(X̃i, Ỹi, Z)

}2
]1/2

·
[
N

n

∑
i∈I(n,r)

ψP,j′,k′(X̃i, Ỹi, Z)2

1/2

+
[
N

n

∑
i∈I(n,r)

{
ψ̂

(n,r)
j′,k′ (X̃i, Ỹi, Z) − ψP,j′,k′(X̃i, Ỹi, Z)

}2
]1/2

·
[
N

n

∑
i∈I(n,r)

ψP,j,k(X̃i, Ỹi, Z)2
]1/2

.

Since |ψP,j,k|, |ψP,j′,k′| ≤ 2, it suffices to show that for each j = 1, . . . , dX , k = 1, . . . , dY

we have

N

n

∑
i∈I(n,r)

{
ψ̂

(n,r)
j,k (X̃i, Ỹi, Z) − ψP,j,k(X̃i, Ỹi, Z)

}2
= oP(1). (3.29)
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Similarly to equation (3.28) and using the inequality (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2),

N

n

∑
i∈I(n,r)

{
ψ̂

(n,r)
j,k (X̃i, Ỹi, Z) − ψP,j,k(X̃i, Ỹi, Z)

}2

= N

n

∑
i∈I(n,r)

[
{fP,j(Zi) − f̂

(n,r)
j (Zi)}{gP,k(Zi) − ĝ

(n,r)
k (Zi)}

+ {fP,j(Zi) − f̂
(n,r)
j (Zi)}ξP,ik

+ {gP,k(Zi) − ĝ
(n,r)
k (Zi)}εP,ij − T

(n)
j,k + µP,j,k)2

]2

≤ 4{ã(n,r) + b̃
(n,r)
f + b̃(n,r)

g + (T̂ (n)
j,k − µP,j,k)2},

where

ã(n,r) := N

n

∑
i∈I(n,r)

{fP,j(Zi) − f̂
(n,r)
j (Zi)}{gP,k(Zi) − ĝ

(n,r)
k (Zi)};

b̃
(n,r)
f := N

n

∑
i∈I(n,r)

{fP,j(Zi) − f̂
(n,r)
j (Zi)}ξP,ik;

b̃(n,r)
g := N

n

∑
i∈I(n,r)

{gP,k(Zi) − ĝ
(n,r)
k (Zi)}εP,ij.

Since n−1/2(T (n)
j,k − µP,j,k) is uniformly asympotically Gaussian, we have that (T (n)

j,k −
µP,j,k)2 = OP(n−1). For ã(n,r), b̃(n,r)

f and b̃(n,r)
ρ we use Lemma 12, noting that conditionally

on D(n,r) each summand is i.i.d.
Using the identity ∑i aibi ≤ (∑i ai)(

∑
i bi) for positive sequences (ai) and (bi), we have

∣∣∣ã(n,r)
∣∣∣ ≤ n

K
ã

(n,r)
f ã(n,r)

g ,

for

ã(n,r)
ρ := N

n

∑
i∈I(n,r)

{fP,j(Zi) − f̂
(n,r)
j (Zi)}2;

ã
(n,r)
f := K

n

∑
i∈I(n,r)

{gP,k(Zi) − ĝ
(n,r)
k (Zi)}2.
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Finally, since each |εP,ij|, |ξP,ik| ≤ 1,

EP

(∣∣∣b̃(n,r)
f

∣∣∣ ∣∣∣∣ D(n,r)
)

≤ EP

(∣∣∣ã(n,r)
f

∣∣∣ ∣∣∣∣ D(n,r)
)

= EP

[{
fP,j(Z) − f̂

(n,r)
j (Z)

}2
∣∣∣∣ D(n,r)

]
≤ E

(n,r)
f ;

EP

(∣∣∣b̃(n,r)
g

∣∣∣ ∣∣∣∣ D(n,r)
)

≤ EP

(∣∣∣ã(n,r)
g

∣∣∣ ∣∣∣∣ D(n,r)
)

= EP

[{
gP,k(Z) − ĝ

(n,r)
k (Z)

}2
∣∣∣∣ D(n,r)

]
≤ E(n,r)

g .

This suffices to show (3.29), so Σ̂(n) − ΣP = oP(1).

Lemma 33. Let q : RdXdY × RdXdY ×dXdY be the function computed by Algorithm 2, for
any fixed S ∈ S. Then Assumption 2 implies Assumption 6, i.e. if ker(Σ) = K(dX ,dY ) then
the pair (T,Σ) falls in the continuity set of q almost surely, for T ∼ N(0,Σ).

Proof. The function ϕ is continuous, since σ 7→ tr(σ) and σ 7→ tr(σ2) are continuous (and
positive), and so is

(t, g, h) 7→ P
(
gχ2

h ≤ ∥t∥2
2

)
= 1

2h/2Γ(h/2)

∫ ∥t∥2
2/g

−∞
xh/2−1e−x/2dx.

Any merging of labels results in a linear transformation of the vector T . For any fixed
transformation Π ∈ C∗, the function

(t, σ) 7→ ϕ
(
Πt,ΠσΠT

)
is continuous. At each stage, we are choosing a transformation Π = Π(T,Σ) as a function
of the data. Discontinuities in the map q can only occur at points where we might choose
an alternative transformation. We make this precise as follows. Let D ⊂ Rd be the set of
discontinuities of q(·,Σ). Then,

D ⊆
{
t : arg max

Π∈C∗

{
ϕΠ
(
∥Πt∥2

2

)}
non-unique

}

⊆
⋃

Π ̸=Π′∈C∗

{
t : ϕΠ

(
∥Πt∥2

2

)
= ϕΠ′

(
∥Π′t∥2

2

)}
.

Hence, a union bound gives

P(T ∈ D) ≤
∑

Π̸=Π′∈C∗

P
(
ϕΠ
(
∥ΠT∥2

2

)
= ϕΠ′

(
∥Π′T∥2

2

))
.

This is a finite sum, so it suffices to show that for arbitrary Π ̸= Π′ ∈ C∗,

P
(
ϕΠ
(
∥ΠT∥2

2

)
= ϕΠ′

(
∥Π′T∥2

2

))
= 0.
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By relabelling Π ↔ Π′ and X ↔ Y if necessary, we may assume that Π = Π(A,B) and
Π′ = Π(A′,B′) with A ̸= A′ and |A| ≥ |A′|. The random vectors (ΠT,Π′T ) are jointly
Guassian with zero mean and known variance, so we may compute the distribution of ΠT
conditionally on Π′T . Indeed,

ΠT |
{
Π′T = x

}
∼ N

(
µΠ|Π′(x),ΣΠ|Π′

)
,

where µΠ|Π′(x) = ΠΣΠ′T
(
Π′ΣΠ′T

)+
x and ΣΠ|Π′ = ΠΣΠT − ΠΣΠ′T

(
Π′ΣΠ′T

)+
Π′ΣΠT is

the generalised Schur complement, which is non-zero by Lemma 35. By Lemma 34 we
have that ΠΣΠT ̸= 0, and so the function ϕΠ is a bijection from R≥0 to [0, 1). Therefore
we have the following.

P
(
ϕΠ
(
∥ΠT∥2

2

)
= ϕΠ′

(
∥Π′T∥2

2

) ∣∣∣∣ Π′T = x
)

= P
(

∥ΠT∥2
2 = ϕ−1

Π

(
ϕΠ′

(
∥x∥2

2

)) ∣∣∣∣ Π′T = x
)
.

(3.30)
Since ΣΠ|Π′ ̸= 0 the conditional random variable ∥ΠT∥2

2 |
{
Π′T = x

}
is continuously

distributed (Lemma 36), and so the right hand side of (3.30) is identically zero for any
x ∈ R|A′||B′|.

Lemma 34. Let Σ ∈ RdXdY ×dXdY have ker(Σ) = K(dX ,dY ). For all Π ∈ C∗, we have
ΠΣΠT ̸= 0.

Proof. We have that Π = Π(A,B) for some partitions A of {1, . . . , dX} and B of {1, . . . , dX}.
Let d′

X = |A| and d′
Y = |B|, so we have d′

X , d
′
Y ≥ 2. Recall that

Π(l,m)(j,k) =

1 if j ∈ Al, k ∈ Bm;
0 otherwise.

Define ẽ(l,m) ∈ Rd′
Xd′

Y , l ∈ {1, . . . d′
X},m ∈ {1, . . . , d′

Y }, by

ẽ
(l,m)
l′,m′ =

1 if l′ = l,m′ = m;
0 otherwise.

Further define e(Al,Bm) ∈ RdXdY , l ∈ {1, . . . d′
X},m ∈ {1, . . . , d′

Y } by

e
(Al,Bm)
j,k =

1 if j ∈ Al, k ∈ Bm;
0 otherwise.

Then ΠT ẽ(l,m) = e(Al,Bm). We will show that e(Al,Bm) /∈ K(dX ,dY ). This gives that

ẽ(l,m)T ΠΣΠT ẽ(l,m) = e(Al,Bm)T Σe(Al,Bm) ̸= 0,
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and so ΠΣΠT ̸= 0.
Suppose, for a contradiction, that e(Al,Bm) ∈ K(dX ,dY ). Since d′

X , d
′
Y ≥ 2 we may pick

j1 ∈ Al, j2 /∈ Al, k1 ∈ Bm, k2 /∈ Bm. Therefore

e
(Al,Bm)
j1,k1 = 1;
e

(Al,Bm)
j2,k1 = 0;
e

(Al,Bm)
j1,k2 = 0;
e

(Al,Bm)
j2,k2 = 0.

Recalling the definitions ((3.11)–3.12), consider the set
{
u(j) : j ̸= j1

}
∪
{
v(k) : k = 1, . . . , dY

}
.

This forms a basis for K(dX ,dY ), so we may write

e(Al,Bm) =
dX∑
j=1

αju
(j) +

dY∑
k=1

βkv
(k),

for some α ∈ RdX with αj1 = 0, and for some β ∈ RdY . Note that for each j, k we have
u

(j′)
j,k = 0 unless j′ = j, and similarly v(k′)

j,k = 0 unless k′ = k. First, αj1 = 0 and e(Al,Bm)
j1,k1 = 1

imply that βk1 = 1. Second, e(Al,Bm)
j2,k1 = 0 implies that αj2 = −1. Third, e(Al,Bm)

j2,k2 = 0
implies that βk2 = 1. But then we must have that e(Al,Bm)

j1,k2 = 1, a contradiction.

Lemma 35. Let Σ ∈ RdXdY ×dXdY have ker(Σ) = K(dX ,dY ). Let A,A′ be partitions of
{1, . . . , dX} and B,B′ partitions of {1, . . . , dY } such that A ̸= A′, |A| ≥ |A′|, and all of
|A|, |A′|, |B|, |B′| ≥ 2. Define Π = Π(A,B) and Π′ = Π(A′,B′). Then

ΣΠ|Π′ := ΠΣΠT − ΠΣΠ′T
(
Π′ΣΠ′T

)+
Π′ΣΠT ̸= 0.

Proof. Suppose for contradiction that ΣΠ|Π′ = 0. We will show that
(

Π − ΠΣΠ′T
(
Π′ΣΠ′T

)+
Π′
)

Σ1/2 = 0, (3.31)

and then demonstrate a vector y ∈ RdXdY in the image of Σ such that Π′y = 0 and Πy ̸= 0.
Thus there exists a vector x ∈ RdXdY such that Σx = y and(

Π − ΠΣΠ′T
(
Π′ΣΠ′T

)+
Π′
)

Σ1/2Σ1/2x = Πy − ΠΣΠ′T
(
Π′ΣΠ′T

)+
Π′y = Πy ̸= 0,

a contradiction.
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To see (3.31), write C := ΠΣ1/2 and D := Π′Σ1/2. Then

0 = ΣΠ|Π′ = C
(
I −DT

(
DDT

)+
D
)
C.

The matrix I −DT
(
DDT

)+
D is symmetric and idempotent, so

C
(
I −DT

(
DDT

)+
D
)(
I −DT

(
DDT

)+
D
)T

CT = 0,

which in turn implies that

C
(
I −DT

(
DDT

)+
D
)

= 0.

This is precisely (3.31).
To construct y in the image of Σ, we first show that we can relabel the elements of

A,A′, B,B′ so that the sets A1 ∩ A′
1, A2 ∩ A′

1, B1 ∩ B′
1, and B2 ∩ B′

2 are all non-empty.
Indeed, since A and A′ are partitions each j = 1, . . . , dX is in some intersection Al ∩A′

l′ . If
it were to hold that Al ⊇ A′

l′ in each case, then we would have either |A| < |A′| or A = A′.
Therefore there must be some l, l′ such that Al ∩A′

l′ is not empty and Al does not contain
A′

l′ . Pick j′ ∈ AC
l ∩ A′

l′ , which must itself be contained in some Am for m ̸= l. Relabel
Al ↔ A1, Am ↔ A2, A′

l′ ↔ A′
1. Similarly, each k = 1, . . . , dY is in some intersection

Bm ∩B′
m′ . If any of the BC

m ∩B′C
m′ are non-empty pick k′ ∈ BC

m ∩B′C
m′ , which must itself

be contained in some Bl ∩ B′
l′ . Relabel Bm ↔ B1, Bl ↔ B2, B′

m′ ↔ B′
1, B′

l′ ↔ B′
2. If

instead every BC
m ∩B′C

m′ is empty, it must be that |B| = |B′| = 2 with B = B′.
Now pick j1, j2, k1, k2 from each of A1 ∩A′

1, A2 ∩A′
1, B1 ∩B′

1, and B2 ∩B′
2 respectively.

Consider the vector y ∈ RdXdY defined by

yj,k =


1 if (j, k) ∈ {(j1, k1), (j2, k2)};
−1 if (j, k) ∈ {(j1, k2), (j2, k1)};
0 otherwise.

Since Σ is symmetric, the image space of Σ is the orthogonal complement of the kernel.
Recalling the definitions (3.11–3.12), we have that yTu(j) = yTv(k) for all j, k, so y is in
the image of Σ. Furthermore,

(
Π′y

)
1,1

= yj1,k1 + yj2,k1 = 0;(
Π′y

)
1,2

= yj1,k2 + yj2,k2 = 0,
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so Π′y = 0. Finally, we have that (Πy)1,1 = yj1,k1 = 1, so Πy ≠ 0. This completes the
proof.

Lemma 36. Let T ∼ N(0,Σ) for Σ ∈ M(dX ,dY ). If Σ ̸= 0, then ∥T∥2
2 has a continuous

cumulative distribution function.

Proof. If Σ ̸= 0 then Σ possesses strictly positive eigenvalues λ1, . . . , λr for 1 ≤ r =
rank(Σ) ≤ d. The random variable ∥T∥2

2 is a weighted sum of chi-squares,

∥T∥2
2

d=
r∑

j=1
λjZ

2
j ,

where Zj ∼ N(0, 1) are independent. This follows a continuous distribution on R≥0.

Lemma 37. Let q : RdXdY × RdXdY ×dXdY → RL be the output of Algorithm 2 for any
fixed S ∈ S. Then Assumption 2 implies Assumption 7, i.e. if ker(Σ) = K(dX ,dY ) then the
functions Fl(·; Σ) := P

(
ql

(
N(0,Σ),Σ

)
≤ x

)
are continuous, for l = 1, . . . , L.

Proof. This follows from Lemma 38. Indeed, let Πl be the transformation selected at
the lth stage of Algorithm 2 on input (t,Σ,S). Then ql(T,Σ) equals precisely ϕ̃(T ) in
equation (3.32) with the choice of map

t 7→ Πl(t) . . .Π1(t).

Lemma 38. In an abuse of notation let Π : t 7→ Π(t) be any map from Rd
XdY to C∗. Write

ϕ̃(t) := ϕΠ(t)
(
∥Π(t)t∥2

2

)
= ϕ

(
Π(t)t,Π(t)ΣΠ(t)T

)
. (3.32)

If ker(Σ) = K(dX ,dY ) then the random variable ϕ̃(T ), where T ∼ N(0,Σ), has continuous
cumulative density function.

Proof. Given ϵ > 0, we will choose δ > 0 such that all x, x′ ∈ [0, 1] with |x−x′| < δ satisfy
∣∣∣P(ϕ̃(T ) ≤ x

)
− P

(
ϕ̃(T ) ≤ x′

)∣∣∣ < ϵ. (3.33)

Indeed, let 0 ≤ x′ < x ≤ 1. Now,

∣∣∣P(ϕ̃(T ) ≤ x
)

− P
(
ϕ̃(T ) ≤ x′

)∣∣∣ = P
(
x′ < ϕΠ(T )

(
∥Π(T )T∥2

2

)
≤ x

)

≤ P
( ⋃

Π∈C∗

{
x′ < ϕΠ

(
∥ΠT∥2

2

)
≤ x

})

≤
∑

Π∈C∗

∣∣∣∣P(ϕΠ
(
∥ΠT∥2

2

)
≤ x

)
− P

(
ϕΠ
(
∥ΠT∥2

2

)
≤ x′

)∣∣∣∣.
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In the final line we have used a union bound. Lemma 39 gives that each ϕΠ
(
∥ΠT∥2

2

)
has

continuous cumulative distribution function. Since the set C∗ is finite, we can choose δ > 0
such that for all |x− x′| < δ,

max
Π∈C∗

∣∣∣∣P(ϕΠ
(
∥ΠT∥2

2

)
≤ x

)
− P

(
ϕΠ
(
∥ΠT∥2

2

)
≤ x′

)∣∣∣∣ < ϵ

|C∗|
.

This suffices to prove (3.33).

Lemma 39. Let ker(Σ) = K(dX ,dY ). Then for all Π ∈ C∗, the random variable ϕΠ
(
∥ΠT∥2

2

)
has continuous cumulative density function, where T ∼ N(0,Σ).

Proof. By Lemma 34, ΠΣΠT is non-zero. This means that ϕΠ is continuous and strictly
increasing. Hence ϕ−1

Π exists and is continuous. Now, for x ∈ (0, 1),

P
(
ϕΠ
(
∥ΠT∥2

2

)
≤ x

)
= P

(
∥ΠT∥2

2 ≤ ϕ−1
Π (x)

)
= GΠ

(
ϕ−1

Π (x)
)
,

where GΠ is the cumulative density function of the random variable ∥TΠ∥2
2. Since ΠΣΠT

is non-zero and symmetric positive semi-definite, Lemma 36 gives that GΠ is continuous.
Therefore the cumulative distribution function

x 7→ P
(
ϕΠ
(
∥ΠT∥2

2

)
≤ x

)
= GΠ

(
ϕ−1

Π (x)
)

is a composition of continuous functions, and so is continuous.

3.7.1 Proof of Theorem 31

Proof. We verify the conditions of Theorem 30 for the transformed variables M̂ (n) :=
q
(
T̂ (n), Σ̂(n)

)
and M := q(T,Σ). Indeed, we may apply the continuous mapping theorem

along arbitrary sequences Pn ∈ P (van der Vaart (1998, Thm. 2.3), Kasy (2018, Thm. 1))
to show that Assumptions 5 and 6 imply

lim
n→∞

sup
P ∈P

sup
m∈RL

∣∣∣PP

(
M̂ (n) ≤ m

)
− P(M ≤ m)

∣∣∣ = 0.

Assumption 7 gives the remaining condition for Assumption 3.
It remains to check Assumption 4, which we will show follows from Assumptions 6 and 7.

We wish to apply Lemma 40 to each of the following classes of cumulative distribution
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functions:

Fl(x;σ) := P
(
ql

(
N(0, σ), σ

)
≤ x

)
, l = 1, . . . , L;

ψ(u;σ) := P
[
G
(
ql

(
N(0, σ), σ

))
≤ u

]
.

We have that Fl(·; Σ) and ψ(·; Σ) are continuous by Assumption 7 and Lemma 41, so we
need to check that the functions Fl and ψ satisfy (3.34). Since Σ̂(n) tends uniformly in
probability to Σ it suffices to check that Fl(x; ·) and ψ(u; ·) are continuous at Σ, again by
the continuous mapping theorem along arbitrary sequences Pn ∈ P (van der Vaart (1998,
Thm. 2.3), Kasy (2018, Thm. 1)).

First, fix x ∈ R and consider Fl(x; ·) for some l ∈ {1, . . . , L}. Let Z be a standard
Gaussian random variable in Rd. We have that, for any δ0 > 0,

Fl(x;σ) = P
(
q
(
σ1/2Z, σ

)
≤ x

)
= P

(
q
(
σ1/2Z, σ

)
− q

(
Σ1/2Z,Σ

)
+ q

(
Σ1/2Z,Σ

)
≤ x

)
≤ P

(∣∣∣q(σ1/2Z, σ
)

− q
(
Σ1/2Z,Σ

)∣∣∣ > δ0

)
+ P

(
q
(
Σ1/2Z,Σ

)
≤ x+ δ0

)
= P

(∣∣∣q(σ1/2Z, σ
)

− q
(
Σ1/2Z,Σ

)∣∣∣ > δ0

)
+ Fl(x+ δ0; Σ),

where the third line follows from a union bound. Similarly,

Fl(x;σ) = 1 − P
(
q
(
σ1/2Z, σ

)
− q

(
Σ1/2Z,Σ

)
+ q

(
Σ1/2Z,Σ

)
> x

)
≥ 1 − P

(∣∣∣q(σ1/2Z, σ
)

− q
(
Σ1/2Z,Σ

)∣∣∣ > δ0

)
− P

(
q
(
Σ1/2Z,Σ

)
> x− δ0

)
= −P

(∣∣∣q(σ1/2Z, σ
)

− q
(
Σ1/2Z,Σ

)∣∣∣ > δ0

)
+ Fl(x− δ0; Σ).

Thus

|Fl(x;σ) − Fl(x; Σ)| ≤ P
(∣∣∣ql

(
σ1/2Z, σ

)
− ql

(
Σ1/2Z,Σ

)∣∣∣ > δ0

)
+ sup

x′∈[x−δ0,x+δ0]
|Fl(x′; Σ) − Fl(x; Σ)|

Given ϵ > 0, we wish to show that there exists δ > 0 such that ∥σ − Σ∥ < δ implies
|Fl(x;σ) − Fl(x; Σ)| < ϵ. Since Fl(·; Σ) is continuous, we may choose δ0 sufficiently small
so that

sup
x′∈[x−δ0,x+δ0]

|Fl(x′; Σ) − Fl(x; Σ)| < ϵ

2 .
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We will now show that for δ > 0 sufficiently small and all σ ∈ M(dX ,dY ) such that
∥σ − Σ∥ < δ,

P
(∣∣∣ql

(
σ1/2Z, σ

)
− ql

(
Σ1/2Z,Σ

)∣∣∣ > δ0

)
<
ϵ

2 .

By Assumption 6, the random vector (Σ1/2Z,Σ) takes values on the continuity set of the
function ql with probability one. Therefore there exist δ1, δ2 > 0 such that

∥t1 − t2∥2 < δ1, ∥σ1 − σ2∥ < δ2 =⇒ |ql(t1, σ1) − ql(t2, σ2)| < δ0.

We will choose δ ≤ δ2, so it suffices to show that, for δ > 0 sufficiently small,

∥σ − Σ∥ < δ =⇒ P
(∥∥∥σ1/2Z − Σ1/2Z

∥∥∥
2
> δ1

)
<
ϵ

2 .

Pick ϵ1 > 0 sufficiently small so that P
(
∥Z
∥∥∥

2
> δ1/ϵ1

)
< ϵ

2 . Since the operation of taking
the (principal) square root of a positive semidefinite matrix is continuous, there exists
δ3 > 0 such that

∥σ − Σ∥F < δ3 =⇒
∥∥∥σ1/2 − Σ1/2

∥∥∥
F
< ϵ1.

Finally, by the equivalence of norms on finite dimensional vector spaces, there exists a
c > 0 depending only on the choice of matrix norm ∥ · ∥ such that ∥σ − Σ∥F ≤ c∥σ − Σ∥.
Pick δ = δ3/c > 0. We have that

∥σ − Σ∥ < δ =⇒ ∥σ − Σ∥F < δ3

=⇒
∥∥∥σ1/2 − Σ1/2

∥∥∥
F
< ϵ1

=⇒ P
(∥∥∥σ1/2 − Σ1/2

∥∥∥
F

∥Z∥2 > δ1

)
<
ϵ

2
=⇒ P

(∥∥∥σ1/2Z − Σ1/2Z
∥∥∥

2
> δ1

)
<
ϵ

2 .

Therefore Fl satisfies (3.34). It remains to show that ψ satisfies (3.34). Since the
functions Fl(·; Σ) are continuous, the function (t, σ) 7→ G(q(t, σ)) satisfies Assumption 6
in place of q. Recall that we have already showed that ψ is continuous. Therefore an
identical proof to above — with Fl replaced by ψ and ql(·, ·) replaced by G(q(·, ·)) — yields
the result, and Assumption 4 is verified.

Lemma 40. Let F (·;σ) : R → [0, 1] be a class of cumulative density functions indexed by
σ, and let Σ̂(n) and Σ be such that F (·; Σ) is continuous and for each x ∈ R and ϵ > 0,

lim
n→∞

sup
P ∈P

PP

(∣∣∣F(x; Σ̂(n)
)

− F (x; Σ)
∣∣∣ > ϵ

)
= 0. (3.34)
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Then for any ϵ > 0,

lim
n→∞

sup
P ∈P

PP

(
sup
x∈R

∣∣∣F(x; Σ̂(n)
)

− F (x; Σ)
∣∣∣ > ϵ

)
= 0.

Proof. The proof is similar to that of van der Vaart (1998, Lem. 2.11). Fix K ∈ N such
that 1/K < ϵ/2. By the continuity of F (·; Σ), there exist points −∞ = x0 < x1 < . . . <

xK = ∞ with F (xi; Σ) = i/K. By monotonicity, for xi−1 ≤ x ≤ xi,

F
(
x; Σ̂(n)

)
− F (x; Σ) ≤ F

(
xi; Σ̂(n)

)
− F (xi−1; Σ) = F

(
xi; Σ̂(n)

)
− F (xi; Σ) + 1/K

F
(
x; Σ̂(n)

)
− F (x; Σ) ≥ F

(
xi−1; Σ̂(n)

)
− F (xi; Σ) = F

(
xi−1; Σ̂(n)

)
− F (xi−1; Σ) − 1/K.

Therefore

sup
x∈R

∣∣∣F(x; Σ̂(n)
)

− F (x; Σ)
∣∣∣ ≤ max

i=1,...,K

∣∣∣F(xi; Σ̂(n)
)

− F (xi; Σ)
∣∣∣+ ϵ/2.

Now making use of a union bound,

sup
P ∈P

PP

(
sup
x∈R

∣∣∣F(x; Σ̂(n)
)

− F (x; Σ)
∣∣∣ > ϵ

)

≤ sup
P ∈P

PP

(
max

i=1,...,K

∣∣∣F(xi; Σ̂(n)
)

− F (xi; Σ)
∣∣∣ > ϵ/2

)

= sup
P ∈P

PP

( ⋃
i=1,...,K

{∣∣∣F(xi; Σ̂(n)
)

− F (xi; Σ)
∣∣∣ > ϵ/2

})

≤
K∑

i=1
sup
P ∈P

PP

(∣∣∣F(xi; Σ̂(n)
)

− F (xi; Σ)
∣∣∣ > ϵ/2

)
,

which tends to zero as n → ∞.

3.7.2 Proof of Theorem 30

Proof. We first introduce some notation. Recall that we write PB
n for the empirical law of

the bootstrap samples M (b)
n . For x ∈ R, m ∈ RL, and u ∈ [0, 1] let

Fl(x) := P(Ml ≤ x); G(m) := max
l=1,...,L

Fl(ml); ψ(u) := P(G(M) ≤ u);

F̂B
n,l(x) := PB

n (M (b)
n,l ≤ x); ĜB

n (m) := max
l=1,...,L

F̂B
n,l(ml); ψ̂B

n (u) := PB
n (ĜB

n (M (b)
n ) ≤ u).

In Algorithm 3, we have that p = 1 − ψ̂B
n (ĜB

n (M̂ (n))). Therefore it suffices to show that

lim
n,B→∞

sup
P ∈P

sup
u∈[0,1]

∣∣∣∣PP

(
ψ̂B

n

(
ĜB

n

(
M̂ (n)

))
≤ u

)
− u

∣∣∣∣ = 0. (3.35)
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We will make use of the fact that

sup
u∈[0,1]

∣∣∣P(ψ(G(M)) ≤ u
)

− u
∣∣∣ = 0, (3.36)

which is immediate from the definition of ψ.
Given ϵ > 0, we fix some P ∈ P and u ∈ [0, 1]. Decompose (3.35) as follows.

PP

(
ψ̂B

n

(
ĜB

n

(
M̂ (n)

))
≤ u

)
− u

= PP

(
ψ̂B

n

(
ĜB

n

(
M̂ (n)

))
− ψ

(
G
(
M̂ (n)

))
+ ψ

(
G
(
M̂ (n)

))
≤ u

)
− u

≤ PP

(
ψ
(
G
(
M̂ (n)

))
≤ u+ ϵ/3

)
− u

+ PP

(∣∣∣ψ̂B
n

(
ĜB

n

(
M̂ (n)

))
− ψ

(
G
(
M̂ (n)

))∣∣∣ > ϵ/3
)

= P
(
ψ(G(M)) ≤ u+ ϵ/3

)
− u

+ PP

(
ψ
(
G
(
M̂ (n)

))
≤ u+ ϵ/3

)
− P

(
ψ(G(M)) ≤ u+ ϵ/3

)
+ PP

(∣∣∣ψ̂B
n

(
ĜB

n

(
M̂ (n)

))
− ψ

(
G
(
M̂ (n)

))∣∣∣ > ϵ/3
)

≤ ϵ/3

+ sup
u′∈[0,1]

∣∣∣∣P(ψ(G(M̂ (n)
))

≤ u′
)

− P
(
ψ(G(M)) ≤ u′

)∣∣∣∣
+ PP

(
sup

m∈RL

∣∣∣∣ψ̂B
n

(
ĜB

n (m)
)

− ψ(G(m))
∣∣∣∣ > ϵ/3

)
.

The second line makes use of a union bound, and the final line applies (3.36). We may
produce a similar lower bound, so taking the supremum over P and u we achieve the
following.

sup
P ∈P

sup
u∈[0,1]

∣∣∣∣PP

(
ψ̂B

n

(
ĜB

n

(
M̂ (n)

))
≤ u

)
− u

∣∣∣∣ ≤ ϵ/3

+ sup
P ∈P

sup
u∈[0,1]

∣∣∣∣PP

(
ψ
(
G
(
M̂ (n)

))
≤ u

)
− P

(
ψ(G(M)) ≤ u

)∣∣∣∣ (3.37)

+ sup
P ∈P

PP

(
sup

m∈RL

∣∣∣ψ̂B
n

(
ĜB

n (m)
)

− ψ(G(m))
∣∣∣ > ϵ/3

)
. (3.38)

Assumption 3 and Lemma 41 give that ψ ◦ G is continuous, so ψ
(
G
(
M̂ (n)

))
converges

uniformly in distribution to ψ(G(M)) by Assumption 3 and the continuous mapping
theorem along arbitrary sequences Pn ∈ P (van der Vaart (1998, Thm. 2.3), Kasy (2018,
Thm. 1)). Therefore the quantity (3.37) is at most ϵ/3 for all n sufficiently large. It
remains to show that for all n and B sufficiently large, the quantity (3.38) is at most ϵ/3.
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We further decompose the bootstrap approximation error in (3.38) as follows. Again
fixing P ∈ P ,

sup
m∈RL

∣∣∣ψ̂B
n

(
ĜB

n (m)
)

− ψ(G(m))
∣∣∣

= sup
m∈RL

∣∣∣ψ̂B
n

(
ĜB

n (m)
)

− ψ
(
ĜB

n (m)
)

+ ψ
(
ĜB

n (m)
)

− ψ(G(m))
∣∣∣

≤ sup
u∈[0,1]

∣∣∣ψ̂B
n (u) − ψ(u)

∣∣∣+ sup
m∈RL

∣∣∣ψ(ĜB
n (m)

)
− ψ(G(m))

∣∣∣
≤ sup

u∈[0,1]

∣∣∣ψ̂B
n (u) − ψ(u)

∣∣∣+ L sup
m∈RL

∣∣∣ĜB
n (m) −G(m)

∣∣∣.
In the final line we have applied Lemma 41. Let η ∈ (0, 1) be chosen later. We utilise a
union bound in order to apply Lemma 42. Indeed,

sup
P ∈P

PP

(
sup

m∈RL

∣∣∣ψ̂B
n

(
ĜB

n (m)
)

− ψ(G(m))
∣∣∣ > ϵ/3

)

≤ sup
P ∈P

PP

(
sup

u∈[0,1]

∣∣∣ψ̂B
n (u) − ψ(u)

∣∣∣ > ηϵ

3

)

+ sup
P ∈P

PP

(
sup

m∈RL

∣∣∣ĜB
n (m) −G(m)

∣∣∣ > (1 − η)ϵ
3L

)

≤ 2(L+ 1) exp
{

− Bη2ϵ2

18(1 + L)2

}
+ 2L exp

{
− B(1 − η)2ϵ2

18L2

}
.

The choice η = (1+L)/(1+2L) gives the following bound. For all B ∈ N and n sufficiently
large,

sup
P ∈P

PP

(
sup

m∈RL

∣∣∣ψ̂B
n

(
ĜB

n (m)
)

− ψ(G(m))
∣∣∣ > ϵ/3

)

≤ 2(2L+ 1) exp
{

− Bϵ2

18(1 + 2L)2

}
. (3.39)

For B sufficiently large, the quantity (3.39) is at most ϵ/3.
We deduce that for all n,B sufficiently large,

sup
P ∈P

sup
u∈[0,1]

∣∣∣∣PP

(
ψ̂B

n

(
ĜB

n

(
M̂ (n)

))
≤ u

)
− u

∣∣∣∣ ≤ ϵ.

This completes the proof.

Lemma 41. Let M be a random vector in RL with continuously distributed marginals,
i.e. the marginal cumulative density functions Fl(x) = P(Ml ≤ x) are continuous on R.
Then the function

ψ(u) := P
(

max
l=1,...,L

Fl(Ml) ≤ u

)
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is Lipschitz continuous on [0, 1] with ∥ψ∥Lip ≤ L.

Proof. Let 0 ≤ a < b ≤ 1. We apply a union bound to deal with the maximum over
l = 1, . . . , L as follows.

|ψ(b) − ψ(a)| = P
(
a < max

l=1,...,L
Fl(Ml) ≤ b

)

≤ P
( ⋃

l=1,...,L

{a < Fl(Ml) ≤ b}
)

≤
L∑

l=1
P(a < Fl(Ml) ≤ b).

Since M has continuous marginals, the random vector (F1(M1), . . . , FL(ML)) has uniformly
distributed marginals. Therefore, for each l = 1, . . . , L,

P(a < Fl(Ml) ≤ b) ≤ |b− a|.

This completes the proof.

Lemma 42. Let G,ψ, ĜB
n , ψ̂

B
n be defined as in the proof of Theorem 30, and let Assump-

tion 4 hold. Given ϵ > 0 and B ∈ N, there exists NB ∈ N such that for all n ≥ NB,

sup
P ∈P

PP

(
sup

m∈RL

∣∣∣ĜB
n (m) −G(m)

∣∣∣ > ϵ

)
≤ 3L exp

{
− Bϵ2

2

}
; (3.40)

sup
P ∈P

PP

(
sup

u∈[0,1]

∣∣∣ψ̂B
n (u) − ψ(u)

∣∣∣ > ϵ

)
≤ 3(L+ 1) exp

{
− Bϵ2

2(1 + L)2

}
. (3.41)

Proof. Let Pn be the population law of the bootstrap samples M (b)
n conditionally on the

data, so M (b)
n are independent draws from Pn for b = 1, . . . , B. Define the following

functions based on Pn. For x ∈ R and m ∈ RL, let

Fn,l(x) := Pn(M (b)
n,l ≤ x); Gn(m) := max

l=1,...,L
Fn,l(ml).
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We begin with the first claim (3.40), decomposing the error as follows.

sup
P ∈P

PP

(
sup

m∈RL

∣∣∣ĜB
n (m) −G(m)

∣∣∣ > ϵ

)

= sup
P ∈P

PP

(
sup

m∈RL

∣∣∣ĜB
n (m) −Gn(m) +Gn(m) −G(m)

∣∣∣ > ϵ

)

≤ sup
P ∈P

PP

(
sup

m∈RL

∣∣∣ĜB
n (m) −Gn(m)

∣∣∣ > ϵ/2
)

+ sup
P ∈P

PP

(
sup

m∈RL

∣∣∣Gn(m) −G(m)
∣∣∣ > ϵ/2

)

≤
L∑

l=1
sup
P ∈P

PP

(
sup
x∈R

∣∣∣F̂B
n,l(x) − Fn,l(x)

∣∣∣ > ϵ/2
)

(3.42)

+
L∑

l=1
sup
P ∈P

PP

(
sup
x∈R

∣∣∣Fn,l(x) − Fl(x)
∣∣∣ > ϵ/2

)
. (3.43)

Here, the second and third lines are both union bounds. The quantity (3.42) is bounded
using the Dvoretzky–Kiefer–Wolfowitz inequality (Dvoretzky et al., 1956; Massart, 1990),
which gives

sup
P ∈P

PP

(
sup
x∈R

∣∣∣F̂B
n,l(x) − Fn,l(x)

∣∣∣ > ϵ/2
)

≤ 2 exp
(

− Bϵ2

2

)
.

The quantity (3.43) is handled using Assumption 4. We may choose NB such that for all
n ≥ NB and l = 1, . . . , L,

sup
P ∈P

PP

(
sup
x∈R

∣∣∣Fn,l(x) − Fl(x)
∣∣∣ > ϵ/2

)
≤ exp

(
− Bϵ2

2

)
.

Combining these bounds suffices to prove (3.40).
We now turn to the second claim (3.41). Fix P ∈ P and u ∈ [0, 1]. Let ϵ̃ > 0 be

chosen later. By a union bound and the triangle inequality,

ψB
n (u) = PB

n

(
ĜB

n

(
M (b)

n

)
≤ u

)
= PB

n

(
ĜB

n

(
M (b)

n

)
−G

(
M (b)

n

)
+G

(
M (b)

n

)
≤ u

)
≤ PB

n

(
G
(
M (b)

n

)
≤ u+ ϵ̃

)
+ 1

{
sup

m∈RL

∣∣∣ĜB
n (m) −G(m)

∣∣∣ > ϵ̃

}

≤ ψ(u+ ϵ̃) + sup
u∈[0,1]

∣∣∣∣PB
n

(
G
(
M (b)

n

)
≤ u

)
− ψ(u)

∣∣∣∣+ 1

{
sup

m∈Rd

∣∣∣ĜB
n (m) −G(m)

∣∣∣ > ϵ̃

}
.
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We may produce a similar lower bound. Next, we use the Lipschitz continuity of ψ
(Lemma 41) and take the supremum over u. Indeed,

sup
u∈[0,1]

∣∣∣ψ̂B
n (u) − ψP (u)

∣∣∣ ≤ Lϵ̃+ sup
u∈[0,1]

∣∣∣∣PB
n

(
G
(
M (b)

n

)
≤ u

)
− ψ(u)

∣∣∣∣
+ 1

{
sup

m∈Rd

∣∣∣ĜB
n (m) −G(m)

∣∣∣ > ϵ̃

}
.

Pick ϵ̃ = ϵ/(1 + L). Now applying a union bound,

sup
P ∈P

PP

(
sup

u∈[0,1]

∣∣∣ψ̂B
n (u) − ψ(u)

∣∣∣ > ϵ

)

≤ sup
P ∈P

PP

(
sup

u∈[0,1]

∣∣∣∣PB
n

(
G
(
M (b)

n

)
≤ u

)
− ψ(u)

∣∣∣∣+ 1

{
sup

m∈RL

∣∣∣ĜB
n (m) −G(m)

∣∣∣ > ϵ̃

}
> ϵ̃

)

≤ sup
P ∈P

PP

(
sup

u∈[0,1]

∣∣∣∣PB
n

(
G
(
M (b)

n

)
≤ u

)
− ψ(u)

∣∣∣∣ > ϵ̃

)
(3.44)

+ sup
P ∈P

PP

(
sup

m∈RL

∣∣∣ĜB
n (m) −G(m)

∣∣∣ > ϵ̃

)
. (3.45)

We have already shown that the quantity (3.45) satisfies (3.40). Turning to (3.44),

sup
P ∈P

PP

(
sup

u∈[0,1]

∣∣∣∣PB
n

(
G
(
M (b)

n

)
≤ u

)
− ψ(u)

∣∣∣∣ > ϵ̃

)

= sup
P ∈P

PP

(
sup

u∈[0,1]

∣∣∣∣PB
n

(
G
(
M (b)

n

)
≤ u

)
− Pn

(
G
(
M (b)

n

)
≤ u

)

+ Pn

(
G
(
M (b)

n

)
≤ u

)
− ψ(u)

∣∣∣∣ > ϵ̃

)

≤ sup
P ∈P

PP

(
sup

u∈[0,1]

∣∣∣∣PB
n

(
G
(
M (b)

n

)
≤ u

)
− Pn

(
G
(
M (b)

n

)
≤ u

)∣∣∣∣ > ϵ̃/2
)

(3.46)

+ sup
P ∈P

PP

(
sup

u∈[0,1]

∣∣∣∣Pn

(
G
(
M (b)

n

)
≤ u

)
− ψ(u)

∣∣∣∣ > ϵ̃/2
)
. (3.47)

The quantity (3.46) is bounded using the Dvoretzky–Kiefer–Wolfowitz inequality (Dvoret-
zky et al., 1956; Massart, 1990), which gives

sup
P ∈P

PP

(
sup

u∈[0,1]

∣∣∣∣PB
n

(
G
(
M (b)

n

)
≤ u

)
− Pn

(
G
(
M (b)

n

)
≤ u

)∣∣∣∣ > ϵ̃/2
)

≤ 2 exp
(

− Bϵ̃2

2

)
.
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The quantity (3.47) is handled using Assumption 4. We may choose NB such that for all
n ≥ NB and l = 1, . . . , L,

sup
P ∈P

PP

(
sup

u∈[0,1]

∣∣∣∣Pn

(
G
(
M (b)

n

)
≤ u

)
− ψ(u)

∣∣∣∣ > ϵ̃/2
)

≤ exp
(

− Bϵ̃2

2

)
.

Combining these bounds suffices to prove

sup
P ∈P

PP

(
sup

u∈[0,1]

∣∣∣∣PB
n

(
G
(
M (b)

n

)
≤ u

)
− ψ(u)

∣∣∣∣ > ϵ̃

)
≤ 3 exp

(
− Bϵ̃2

2

)
,

and so
sup
P ∈P

PP

(
sup

u∈[0,1]

∣∣∣ψ̂B
n (u) − ψ(u)

∣∣∣ > ϵ

)
≤ 3(L+ 1) exp

(
− Bϵ̃2

2

)
.

This is precisely the claimed bound (3.41).
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