
COPD = chronic obstructive pulmonary disease; FEV1 = forced expiratory volume in 1 s; GSTs = glutathione S1-transferases; GSTA = glutathione
S1-transferase alpha; GSTM = glutathione S1-transferase mu; GSTP = glutathione S1-transferase pi; IL-6 = interleukin-6; TNF-α = tumour
necrosis factor α.

Available online http://respiratory-research.com/content/2/1/020

Introduction
Chronic obstructive pulmonary disease (COPD) is defined
as airflow obstruction that does not change appreciably
over a period of several months [1]. It is a syndrome com-
posed of chronic bronchitis, small airways disease (bron-
chiolitis) and emphysema, which vary in proportion
between affected individuals. COPD is a major cause of
global morbidity and mortality, and affected 44 million
people in 1990. Indeed, 14 million people suffer from
COPD in the United States alone, where this condition
resulted in nearly 92 thousand deaths in 1995 [2]. It is esti-
mated that 2.88 million people in the world will die from
COPD this year and the numbers are growing [3]. COPD
is becoming more prevalent amongst Western women and
is set to explode in developing countries such as India,
Mexico, Cuba, Egypt, South Africa and China [4]. Severe
α1-antitrypsin deficiency is the only proven genetic risk
factor for the development of COPD. Here we review the
evidence from human studies that other genetic determi-
nants are also important in the pathogenesis of this condi-
tion. Although genetic studies using animal models may be
very useful [5–7], they are beyond the scope of this review.

Environmental factors that predispose to
COPD
The major environmental risk factor for the development of
COPD is cigarette smoking. In non-smokers, the forced
expiratory volume in 1 s (FEV1) declines at a mean rate of
approximately 20–30 ml per year during adult life. In most
smokers, this mean rate of decline is increased to 30–45 ml
per year, but in the subset of cigarette smokers who are
susceptible to developing COPD the rate of decline is
80–100 ml per year. There is evidence of a dose–response
relationship between the severity of lung disease and the
pack-years of cigarettes smoked [8–11], but only 15% of
the variability in FEV1 is accounted for by smoking history. It
remains unclear whether susceptible smokers represent a
discrete subset of individuals, or if susceptibility to COPD is
a continuous trait. Postmortem studies of smokers have
demonstrated substantial variability in the severity of emphy-
sema, but most heavy smokers had at least some pathologi-
cal evidence of disease [12,13].

Other environmental factors have also been implicated in
the development of chronic irreversible airflow obstruction.
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There has been an association of COPD with environmen-
tal pollution since the great London smogs of the 1950s
[14]. Domestic and cooking fumes may also be important
risk factors, especially in regions where indoor wood
stoves are used with poor ventilation [15]. In certain cities
in China, non-smoker emphysema death rates are almost
100 times greater than those of the non-smoker in the
USA [4]. Exposure to dust in the coal and gold mining
industries, and to gas in cadmium mining, has been linked
to the development of airflow obstruction [16–18]. Expo-
sure to dust and gases by underground tunnel workers
has similarly been associated with respiratory symptoms
and COPD, as well as with an accelerated decline in
FEV1, compared to matched controls who worked above
ground [19]. COPD is more common in individuals of
lower socio-economic status [16] and has a poorer prog-
nosis when associated with low body-mass index [20] and
with bronchial hyper-reactivity [21,22]. There is also evi-
dence that previous viral infections predispose smokers to
COPD [23], and an increasing awareness that diet [24]
and factors involved during in utero [25,26] and adoles-
cent lung development [27] may be important for the sub-
sequent predisposition to obstructive lung disease. These
other environmental factors are likely to be much less
important than cigarette smoking, but they may interact
with smoking to increase the risk of COPD [28,29].

Familial clustering of COPD
The observation that only a minority of cigarette smokers
develop COPD suggests that additional factors contribute
to the impact of smoking on the development of chronic
airflow obstruction. The most important genetic factor in
the development of emphysema is the Z allele of α1-antit-
rypsin, which results in plasma levels of this protein that are
10–15% of that produced by the normal M allele [30]. The
levels are low because 85% of the synthesised mutant Z
α1-antitrypsin is retained as polymers within hepatocytes
[31,32]. Homozygotes for the Z allele (denoted PI Z) are
greatly predisposed to developing emphysema if they
smoke [33,34]. However, severe PI Z α1-antitrypsin defi-
ciency makes up only 1-2% of all cases of COPD and
there is considerable variability in FEV1 between current
and ex-smokers with the same PI Z genotype [35]. This
suggests that other coexisting genetic factors must predis-
pose to lung disease in PI Z individuals.

A logical follow-on from the association of α1-antitrypsin
deficiency with emphysema is an assessment of the risk of
COPD in heterozygotes who carry an abnormal Z allele
and a normal M allele. These individuals have plasma
α1-antitrypsin levels that are approximately 65% of normal.
A population-based study demonstrated that PI MZ
heterozygotes do not have a clearly increased risk of lung
damage [36]. However, if groups of patients are collected
who already have COPD, then the prevalence of PI MZ
individuals appears to be increased [37,38]. In addition, a

longitudinal study has demonstrated that among COPD
patients (most of whom were smokers), the PI MZ hetero-
zygotes have a more rapid decline in lung function [39].
These data suggest that either all PI MZ individuals are at
slightly increased risk for the development of COPD, or
that a subset of the PI MZ subjects are at substantially
increased risk of pulmonary damage if they smoke. An
alternative explanation is that the apparent increased risk
among PI MZ subjects reflects ascertainment bias and the
elevated rate of PI MZ subjects among COPD cases
reflects the influence of other, as yet unidentified, factors.

Several previous studies have suggested that genetic
factors other than α1-antitrypsin deficiency may be
involved in the susceptibility of cigarette smokers to
chronic airflow obstruction. These studies have demon-
strated a significantly higher prevalence of COPD
amongst relatives of index patients than amongst control
groups [40-42]. The findings have been confirmed
recently in a study of 44 patients with severe COPD (FEV1
< 40% predicted) aged 52 or less [43]. The prevalence of
airflow obstruction in smoking siblings was approximately
3-fold greater than in smoking control subjects.

Association studies
The clustering of COPD in families has resulted in the
recognition of a genetic component to this multifactorial
disease. There are increasing numbers of association
studies assessing candidate genes that may predispose
smokers to COPD (Table 1). These studies rely on the
comparison between a set of COPD patients and control
subjects. Ideally, the case and control populations are
matched for age, sex, smoking history and occupational
exposures to avoid confounding by non-genetic factors;
subjects who have severe α1-antitrypsin deficiency are
excluded. Matching should also include ethnicity and geo-
graphic origin in order to avoid the effects of population
stratification, which can provide false-positive evidence for
a causative genetic association [44]. However, case-
control studies are often complicated by small sample
sizes and the difficulty in matching for all known environ-
mental factors that predispose to COPD. Moreover,
researchers can only assess genes that have already been
described; novel genetic determinants can not be identi-
fied directly from the study of known candidate genes.
This candidate gene approach is relatively straightforward,
but the results are often difficult to interpret.

The first genetic association studies in the 1970s used
the small number of genetic polymorphisms that were then
known: largely blood group antigens [45]. Subsequently,
candidate genes thought to be involved in the pathophysi-
ology of COPD have been examined. For instance, poly-
morphisms in the proteins that protect the lungs against
proteolytic attack have been assessed. A polymorphism
that predisposed smokers to develop COPD (Taq-1
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G→A) [46] was detected by the restriction enzyme Taq-1
in the 3′ non-coding region of the α1-antitrypsin gene. The
Taq-1 (G→A) allele, conferring the absence of this Taq-1
site, was present in 18% of a population of emphysema
patients, but in only 5% of blood donor control subjects.
This association was confirmed by a second European
group [47]; further studies revealed that the polymorphism
was in a regulatory sequence, and that the Taq-1 (G→A)
allele reduced the production of α1-antitrypsin in response
to the inflammatory cytokine interleukin-6 (IL-6) [48]. Sub-
sequent studies by other groups refuted the association
with COPD [49,50]. Moreover, although the Taq-1 (G→A)
allele reduced the production of α1-antitrypsin in vitro [48],
it had no effect on the plasma level of α1-antitrypsin in vivo
or on the rise in levels of this protein during the inflamma-
tory response [51–53]. Thus the role of this polymorphism
in the pathogenesis of COPD remains unproven.

The logical follow-on from this work was the assessment of
mutations in another plasma proteinase inhibitor,
α1-antichymotrypsin, to explain the susceptibility of
smokers to COPD. No patients who are homozygotes for
α1-antichymotrypsin deficiency have ever been described,
but two point mutations that alter the amino acid sequence
(229Pro→Ala [54] and 55Leu→Pro [55]) in the α1-
antichymotrypsin gene have been associated with COPD.
The 55Leu→Pro point mutation causes a conformational
change within the protein [56], resulting in low circulating
levels of the inhibitor and its retention within hepatocytes.
The retention of this protein has been associated with

intracellular hepatic inclusions of α1-antichymotrypsin and
cirrhosis [54] analogous to that associated with α1-antit-
rypsin deficiency [31]. However, the association of these
two polymorphisms with COPD was not replicated in a
study of 168 COPD patients and 61 control subjects
[57]. Moreover, the mutations are uncommon, making it
unlikely that they are a frequent contributor to the patho-
genesis of COPD [50,57].

Two other plasma serine proteinase inhibitors, secretory
leukoprotease inhibitor and elafin, are also potential candi-
dates, as mutations in these genes may reduce the anti-
proteinase screen and predispose smokers to airflow
obstruction. No polymorphisms were detected in the
secretory leukoprotease inhibitor gene in 10 patients with
early onset irreversible airflow obstruction [58]. Moreover,
although polymorphisms have been described in the elafin
gene [59], they have not been assessed in patients with
COPD. Similarly, no polymorphisms have yet been
described in tissue inhibitor of metalloproteinase genes in
patients with COPD.

The cytokine tumour necrosis factor α (TNF-α) plays an
important role in the inflammatory response. Approximately
10% of the population have a polymorphism (G→A) at
position –308 in the 5′ promoter region of the gene. This
variant is known as tumour necrosis factor 2 and results in
a 2-fold increase in the plasma concentration of TNF-α fol-
lowing gene activation [60]. The –308 polymorphism was
found to be more prevalent in a group of Taiwanese
patients with COPD, when compared to controls matched
for age, sex and smoking who did not have airflow
obstruction [61]. It is plausible that smokers who have a
higher level of TNF-α in the bronchial mucosa have more
bronchitis and more airflow obstruction. However, these
findings have been refuted by others who have assessed
the association between this polymorphism and airflow
obstruction in Caucasian populations [62,63].

Each puff of a cigarette contains 1017 free radicals, which
can cause lung damage. Thus defects in the detoxification
of these reactive species may predispose smokers to
airflow obstruction and emphysema. Indeed the proportion
of patients with slow microsomal epoxide hydrolase activ-
ity was significantly higher in patients with COPD and
emphysema, when compared to healthy blood donor con-
trols [64]. The smoking history of the blood donor control
group was not recorded. These findings have been sup-
ported by Paré and colleagues, who have assessed a well-
characterised cohort of patients from the Lung Health
Study [65]. These patients were all smokers and had
spirometric signs of early COPD. They were followed up
for five years as part of a longitudinal study and then strati-
fied into two groups: those smokers whose lung function
showed a significant decline and those whose did not.
Association analysis demonstrated a significantly higher

Table 1

Candidate genes that have been associated with COPD in
case–control studies

PI MZ αα1-antitrypsin deficiency

Tumour necrosis factor αα

Microsomal epoxide hydrolase

Glutathione S1-transferase

Heme Oxygenase-1

Taq-1 polymorphism of α1-antitrypsin

Alpha1-antichymotrypsin

Vitamin D binding protein

ABO Blood Group

ABH Secretor Status

Cystic fibrosis transmembrane regulator

HLA

Cytochrome P450

For most of these loci, some studies have supported a significant
association while other studies have refuted the association.
Candidate genes for which there is the strongest supporting evidence
are shown in bold.



prevalence of the slow-detoxifying epoxide hydrolase in
those patients who showed a progressive decline in lung
function compared to those who did not. These findings
were not reproduced by another group who assessed the
polymorphism in a Korean population [66].

More recently, Yamada and colleagues reported an asso-
ciation between COPD and a short tandem repeat poly-
morphism in the heme oxygenase-1 gene promoter [67].
The protein that this gene encodes also plays an important
antioxidant role in the lung, and there is in vitro evidence
that the polymorphism in the gene promoter region
reduces the upregulation of heme oxygenase-1 in
response to reactive oxygen species in cigarette smoke.
Although the possibility that microsomal epoxide hydro-
lase and heme oxygenase-1 might be associated with
obstructive lung disease is biologically appealing, further
association studies are required in other well-charac-
terised COPD populations with matched control subjects
or, ideally, with family-based association study designs.

Finally, mutations in enzymes that generate protective
antioxidants have also been associated with the develop-
ment of COPD. The glutathione S1-transferases (GSTs) are
a family of enzymes that catalyse the conjugation of reduced
glutathione with various electrophilic compounds. They are
divided into the alpha (GSTA), mu (GSTM), pi (GSTP),
theta, sigma, and kappa subclasses [68]. A polymorphism
in exon 5 (Ile105) of GST P1 is located in the substrate
binding pocket and has considerable effects on catalytic
activity. It was significantly more common in men with irre-
versible airflow obstruction than in controls who were
current smokers, but who had no evidence of COPD [68]. 

What do candidate gene association studies
tell us about disease processes in COPD?
This complex picture is starting to show similarities to the
quagmire that bedevils the field of asthma genetics.
However, unlike asthma genetics, linkage studies in
COPD have not been performed to identify regions of the
genome likely to contain susceptibility genes, in which
association studies with candidate genes may be more
productive. The inconsistent results from case–control
association studies are likely to relate to differences
between study populations and the relatively small sizes of
the populations under consideration. In addition, failure to
account for population stratification differences between
cases and controls within a particular study, and failure to
correct adequately for the multiple comparisons involved
in studying multiple polymorphisms with multiple pheno-
types, is also likely to be problematic. However, several
messages can be drawn from the association studies that
have been undertaken to date. It is clear that many
researchers continue to focus on the well-established
hypotheses of lung damage: proteinase–anti-proteinase
and oxidant–antioxidant imbalance. At least some smokers

with a MZ α1-antitrypsin phenotype may be more likely to
develop COPD than smoking matched controls, but the
Taq-1 polymorphism in the 3’ non-coding region of the PI
locus has not been proven to confer an increased risk of
lung disease. Heterozygote deficiency of α1-antichy-
motrypsin is so uncommon that even if it is ultimately
shown to have a pathophysiological effect, it will con-
tribute to the development of airflow obstruction in only a
few smokers. There is growing evidence for the role of
antioxidant imbalance in the pathogenesis of airflow
obstruction, which is supported by association studies
between COPD and variants in epoxide hydrolase and
GSTs that detoxify free radicals and other tobacco prod-
ucts. Before these associations are generally accepted,
they must be subjected to scrutiny with further associa-
tion studies.

Genomic scans to identify genes that
predispose smokers to COPD
The association studies described above have all been
conducted with variants in known candidate genes. Clearly
our understanding of COPD would be revolutionised if a
new gene or genes could be discovered that explained the
predisposition of a minority of smokers to develop COPD.
An alternative approach to this problem is to detect novel
genes using linkage analysis in families of COPD patients,
using polymorphic markers throughout the genome. If a
marker segregates with COPD in affected relatives, then it
indicates that this marker is located near to one or more
genes that cause this disease. In order for this approach to
be successful, it requires a large number of well-charac-
terised affected relatives; either extended pedigrees or
nuclear families can be used.

One of our research groups (EKS) has been focusing on
linkage analysis of extended pedigrees of patients with
severe, early-onset COPD. A genome screen of 72
extended pedigrees (600 individuals) has been per-
formed by the National Heart, Lung, and Blood Institute
(NHLBI) Mammalian Genotyping Service; analysis of this
data is currently underway. However, the sample size is
modest and it is unclear how far generalisations can be
made from this population to older COPD subjects.

To study the genetics of COPD in subjects at ages more
typical for the development of this disease, a large
number of families will be required. The magnitude and
organisation of a network to recruit the thousands of
patients that are required for such studies is extremely
expensive. A pharmaceutical company (Glaxo-Wellcome)
has funded a consortium that spans 10 centres in seven
North American and European countries. The consortium,
which is led by the authors, involves collaboration
between universities and industry designed to recruit
nuclear families of COPD patients. This consortium has
started to recruit 3000 families in order to identify 1500
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affected sib pairs with COPD. The index cases
(probands) and their siblings are being screened with
respiratory questionnaires, spirometry and high resolution
chest CT scans. The collection of this data from 3000
patients with COPD and their siblings will provide unique
insights into the pathophysiology of airflow obstruction
and, most importantly, the genetics of this condition. The
search for new genes that predispose smokers to COPD
will be undertaken using linkage analysis of COPD with
genomic scan data from DNA-based polymorphisms
throughout the genome. Strong linkage between regions
of the genome and COPD-related phenotypes will iden-
tify locations on chromosomes that need to be assessed
in more detail. Clearly, the rapidly advancing project to
fully sequence the human genome will provide a ‘road
map’ of the genes in the regions of interest, thereby
rapidly accelerating the identification of genes that result
in COPD.

Benefits of cloning genes that predispose
smokers to COPD
Why have so many workers put so much effort and
resources into searching for genes that predispose to
COPD? There are several answers. The identification of
new genes would greatly improve our understanding of a
condition that has for 37 years rested largely on the obser-
vation that deficiency of a protective anti-proteinase (α1-
antitrypsin) is associated with emphysema. Novel genes
would allow the assessment of new mechanisms and
pathways in disease and provide new therapeutic oppor-
tunities. At-risk individuals could be identified by screening
and strongly advised to abstain from smoking and avoid
occupations where there are high loads of environmental
dusts. Finally, new genes may help to explain other dis-
eases. There is epidemiological evidence that COPD and
lung cancer share a common familial component other
than smoking [69,70]. The discovery of novel genes that
predispose to COPD may therefore have a major impact
on our understanding of the pathogenesis of cancer.

Conclusion
COPD is an enormous cause of global morbidity and
mortality that is becoming an even greater health problem
with the growing use of cigarettes around the world.
Mutations in the anti-proteinase and antioxidant screen
are currently the best candidates to explain part of the
genetic risk of COPD. However, new candidates need to
be assessed in order to improve our understanding of the
development of this disease. The recruitment of large
numbers of affected siblings with COPD will provide the
basis for whole genome scans to discover novel genes
that predispose smokers to airflow obstruction. This will
be greatly aided by the rapid completion of the human
genome project. Taken together, it is a very exciting time
for all those interested in the pathogenesis of this all too
common disabling condition.
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