ABSTRACT

We develop a simple model for studying the impact of monetary and fiscal policies
on aggregate demand, at the business cycle frequencies. We focus on two questions
principally. First, what are the key properties of the joint optimal simple rules governing
the conduct of the systematic components of monetary and fiscal policy? Second, following
Blanchard (1985) we construct an index of fiscal stance to disentangle the ‘expenditure’
and wealth effects of fiscal policy. ~We find that underpinning the so-called ‘Taylor
principle’ is a fiscal policy maker giving full force to automatic stabilizers. We also find
that the Mundellian assignment of policy instruments may have attractive properties.
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1. Introduction

Monetary economics has recently revived its interest in the analysis of interest rate
rules for the conduct of monetary policy (Clarida, Gali and Gertler 1999). At an
empirical level, interest rate rules have been shown to provide plausible characterizations
of actual monetary policy across a number of countries (Taylor 1999). Also, in theoretical
models with nominal rigidities and imperfect competition such rules can contribute
in important ways to ensuring macroeconomic stability (Woodford 2000). But much
influential analysis of optimal monetary policy has proceeded without considering the
fiscal arm of macroeconomic policy. In this paper, we therefore explore macroeconomic
policy within the context of joint plans for monetary and fiscal policy. Specifically, we
examine the characteristics of the optimal simple rules for the interest rate and the fiscal
surplus as they would be set by one representative policymaker.’

It is clear that monetary policy has been emphasized as the senior partner in the search
for optimal stabilization rules. In particular, there is now a vast literature on desirable
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simple rules for the conduct of monetary policy.5 The ‘Taylor Rule’ is an important
example of such an optimal simple rule:

Ry =R +a(m — ") + By — y;)- (1.1)

R; denotes the period nominal interest rate, which is the instrument of monetary policy,
Ry is a measure of the equilibrium nominal interest rate and comprises the natural real
rate and the inflation target, (m; — 7*) measures the deviation of current inflation, 7,
from target, 7*, and (y; — y;) is the deviation of output, y;, from target, y;. In addition,
it will generally be the case that a > 1, and 0 < § < 1. The first parametric restriction
is known as the Taylor principle (Woodford, 1999), and the second would typically see /3
somewhat closer to zero than unity. Indeed some economists have argued that 3 should
be identically zero at all dates and in all states (e.g., Christiano and Gust, 1999).

It is of course highly doubtful that the Taylor rule literally describes what monetary
policy-makers actually do. Central bankers collect and model huge amounts of data ahead
of interest rate decisions. Indeed, it is arguably the case that the feedback variables
in (1.1) are not accurately observed contemporaneously with the interest rate decision.
Nevertheless, over the recent past, and across a number of countries, the Taylor rule does
seem to capture much of the variation in the actual interest rate. The implication seems
to be that what the Taylor rule captures is ‘good’ monetary policy.” And it is this ability
to summarize good monetary policy that has led to many researchers incorporating such
rules in quantitative general equilibrium business cycle models.

However, there have been few attempts to analyze analogous rules jointly for both
monetary and fiscal policy. Of course, it would hardly be accurate to suggest that the
interaction of monetary and fiscal policy has not received much attention. On the one
hand, there is a large literature following the concerns raised in Sargent and Wallace
(1981). That literature focuses on the results of game theoretic interactions that may arise
if monetary and fiscal authorities play a ‘game of chicken’ with the public finances. More
recently, there has been the debate surrounding fiscal theories of the price-level.® Finally,
there is also a growing literature pursuing the Ramsey-inspired approach to monetary and
fiscal policy (see, for example, Lucas and Stokey, 1983, and more recently Khan, King
and Wolman, 2000).

On the other hand, however, the role that the automatic fiscal stabilizers — the
systematic component of fiscal policy — might play in smoothing the business cycle has
received significantly less attention from quantitative theorists. The lack of attention
is surprising partly because there would seem to be widespread agreement that the
automatic stabilizers provide a useful role in smoothing the effects of the business cycle,
e.g., Eichenbaum (1997) and Blanchard (2000) and also because of on-going debate on

6See, for example, Taylor (1999).

"See, for example, the comments and discussion in King (1999).

8See for example Woodford (2000) and McCallum (2001) for opposing views on the resulting
implications for nominal determinacy.



policy initiatives that would seek to limit fluctuations in the per period fiscal deficit. For
example, in the USA there is continuing discussion about a Balanced Budget Amendment
and in Europe the Pact for Stability and Growth is a clear attempt to impose some form
of upper bound on fiscal deficits”?. So, if the automatic stabilizers provide a quantitatively
significant channel for stabilizing aggregate demand,!’ the key question is: ‘How much
variation in the deficit is desirable?’.

Taylor (1999b) has recently suggested that in the US the cyclical component of fiscal
policy can be well captured by a simple rule analogous to his rule for monetary policy:

se = 8"+ (Y —y;)- (1.2)

Here s; denotes the surplus-GDP ratio, s* is a measure of the trend level of that magnitude,
and v = 0.5. Taylor (op. cit.) argues that permitting this systematic component of fiscal
policy to operate stabilizes the economic cycle, and that discretionary changes in fiscal
policy over and above these automatic responses are, in general, undesirable.

In this paper we analyze rules of the form of (1.1) and (1.2) jointly. To do so,
we shall construct a model in which both monetary and fiscal policy have leverage
over aggregate demand and ask what are the joint optimal rules for stabilizing the
economy. In particular, we shall adopt a criterion function for the policymaker of the
form, L = L[(m—7*), (y:—v;), -..], and investigate the constellation of parameters in rules
analogous to (1.1) and (1.2) such that (o, 8,v) = argmin L = L[(7m; — 7*), (y: —y; ), ...]. In
our model monetary policy operates principally via the standard channel of setting short-
term real interest rates and thereby tilting the planned path of agents’ consumption.
Fiscal policy operates via two channels: (i) wealth effects from outstanding government
debt, and (ii) the aggregate effect of government expenditure. We shall assume that
all government expenditure is financed out of lump-sum taxation. This is partly for
simplification, but also because the stabilizers themselves are often lump sum in nature.
In addition, it means that the only reason Ricardian Equivalence fails in our model is
because of the probability of death assumption, and hence we can assess the impact of
the wealth effect of outstanding bonds.

The paper is laid out as follows. In the next section we set out the model and
discuss the construction of our aggregate equations. In section 3 we establish our simple
rules for the conduct of monetary and fiscal policy. The rule for fiscal policy enables the
government to issue debt, raising some modelling issues pertaining to the class of fiscal
regime under investigation, and hence equilibrium selection. In section 4 we discuss these
issues and show how we limit ourselves to a class of Ricardian fiscal policies (in the sense
of Woodford, 2000). In section 5 we discuss the algorithm for solving the model for the
optimized coefficients on our monetary-fiscal rules. Section 6 provides the results of our
simulations for alternative versions of our simple rules, and what happens if one arm of

9Eichengreen and Wyplosz (1998) is an interesting discussion of these issues.
19 And there is evidence that this is indeed the case, see Auerbach and Feenberg (2000) Taylor (1999b),
Cohen and Follette (2000) and Blanchard (2000).



policy behaves in a non-optimal manner. In section 7 we construct an index of fiscal
stance (in the manner of Blanchard, 1985) and investigate the quantitative significance
of the wealth effect associated with outstanding government debt. Section 8 offers some
conclusions and suggests some directions for future research.

2. The Model

2.1. The Representative Agent

The model is constructed around the perpetual youth set up of Yaari (1965) and Blanchard
(1985). Following Cardia (1991) and Chadha and Nolan (2001, 2002b) we convert the
model into a discrete-time framework!''. We assume that there are a large number of
identical agents in each cohort, and we assume that the size of each cohort dies away
through time. The utility function for a representative agent, j, is given by,

V—i L) (L tEU Cﬂ'%ij' (2.1)
O_tzo 1+5 l‘l—)\ 0 t?Pt7t . :

Here 6 is the subjective discount rate and A\ the time-invariant probability of death.

This means that the expected remaining lifetime of any agent is equal to A™', hence
the reason why the model is dubbed the ‘perpetual youth’ model. The utility function
is assumed to be concave and separable in its arguments, C, consumption, M/P, real
money balances, where M is nominal money balances and P is the economy-wide price-
level and L is leisure, which is equal to 1 — N. We normalize available time to unity and
so N is interpretable as labor effort. In practice we shall assume log-separability, that
is, U() = [log C! +log (%ﬁj) +log(1 — N/ )] as this facilitates the construction of our
aggregate equations. The representative agent maximizes expected utility subject to a
sequence of per period flow constraints:

‘ ‘ , . ‘ BJ
(1+AM],+ (1 +NB_, +W,NJ +1I, - T, > P,C] + M} + - +tz‘ : (2.2)
t

. 1 .
where, P,C] = [ pi(z)c](z)dz, and where (2.2) holds for all ¢ > 0, and in each state of
0

nature, M? | and B’ given. Let z index goods in the economy. Then, we have that ¢/ (z)
denotes the representative agent’s consumption of good (z). In addition, W, denotes the
nominal wage, II; denotes profits remitted from firms where each agent receives a pooled
dividend, T; denotes lump sum taxes, which are constant across cohorts, and i; is the
economy-wide one-period nominal interest rate. The evolution of financial wealth, F, is
given by

" Teith and Wren-Lewis (2000) develop a continuous time version of a closely related model.



Fl=1+MNM ,+1+NB_,, (2.3)

where B; denotes the nominal stock of bonds held over at the end of period

t — 1. The sequence of equations (2.2) together with the transversality condition,
T-1 .

limy_oo (HL/\)TEO 'Ho(l + itﬂ)_lVV;rT — 0 help ensure that the agent’s optimization
‘]:

problem is well behaved. We note that this latter condition is weighted by the probability

of death. Consumption is defined over the Dixit-Stiglitz aggregator function,

_6_
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= / d(2)dz| (2.4)
0
with the aggregate price-level derived accordingly as:

_1
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P = / p(2)0dz| (2.5)

0

2.2. Optimality conditions

Let {1, },~, be a (state-dependent) temporal sequence of Lagrange multipliers. At each
date and in each state the following equations, (2.6)—(2.9), are amongst requirements for
an interior optimum:

1\ 1 (2.6)
1+x) BC, M '
1 \'1 1 I
(m) T (m) (L+ N Bty = (1+—>\> e (2.7)
1 \" 1
. 1
pe=(1+i)(1+A) 175 ) Pten (2.9)

Using equations (2.6) and (2.9) in (2.7) uncovers the money demand relation:

M, 1+,
-E_a<. ). (2.10)
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(2.6) and (2.9) imply the consumption Euler equation:
“"pe,. (2.11)

The labor supply function results from (2.6) and (2.8):

-1
t

The probability of death does not appear to ‘distort’ the optimality conditions (other than
the transversality condition). The reason for this is straightforward. We are here following
the assumptions made by Blanchard (1985) to the effect that insurance companies pay
premiums to savers in return for their wealth in the event of death. This wealth is
then returned lump-sum to the currently alive. Consequently, the market interest rate
incorporates this ‘premium’, which just offsets the probability of death uplift in the agent’s
discounting of future utility.

2.3. The Representative Firm

We assume that there are a large number of infinitely-lived monopolistically competitive
firms, who use only labor in the production of their differentiated good.!? Each period
these firms receive a symmetric productivity shock. So for firm ¢ the production function
is given by

}/:Z,t - AtNgt, (213)

where 0 < a < 1, and A; is the productivity innovation. The firm hires labor in
competitive markets and following Blanchard (1985) we assume that all agents are equally
productive. Consequently, the real wage, W;/F;, is the same across all cohorts, and is
given by,

— =Wy = OéAtNi?t_l. (214)

We further assume that firms face Calvo-type restrictions in setting prices but that firms
meet demand whether or not they have been able to change prices that period. The
demand for the ** product is given by

(i) = (%f)) A (2.15)

where Y;? denotes aggregate demand, the sum of private expenditure and government
expenditure. In the model we develop there will be an effect directly from government

2Tncorporating capital into the current set-up poses few problems. However, we are partly concerned
to uncover the quantitative significance of outstanding bonds on private consumption and including a
private or public capital stock would make that task somewhat more difficult.
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expenditure and indirectly via the stock of outstanding net bonds. The latter effect as
we demonstrate below is captured in the measure of private consumption demand. A
cost-minimizing firm required to meet current demand will hire labor according to the
following optimality condition,

Wi = At(8}ﬁ7t/3Ni’t), (216)

where A; measures real marginal cost. Total per-period profits then are given by
v (DY (DY
1, (i) = pe(7) VP— A | == Y©. (2.17)
P, B

As regards price setting behavior we follow Calvo (1983) and many subsequent analysts
(e.g., Yun 1996, Woodford 1997, King and Wolman 1996) and assume that firms which set
prices in period t face a probability, a (0 < o < 1) of having to live with the same decision

next period. More generally, we assume that a firm which sets its price this period faces
the probability o® of having to charge the same price in k—periods time. The optimal
price, p,, is given by:'3
5 - 0> ro(aB )V B Pl Y e Aek)
t o) a 0— :
(0 —1) Zk:o(aﬂ,)kEt(/“Lt-&-ka-&-le;C—li-k)

Here pf,, is a measure of aggregate marginal utility, and 3 = 5/(1 + A)~L. The optimal

(2.18)

price is determined by a constant mark up, and the discounted stream of current and
expected real marginal cost and demand conditions in which that price may obtain.
2.4. Aggregation

We turn first to the aggregate analogs to equations (2.10)—(2.12). We note that the size
of the cohort born each period is given by

(73) (7))

As a result of this, the size of the cohort decreases monotonically with time, and the sum

of all currently alive cohorts is equal to unity. That is,
v NG
—_— — =1. 2.1
&5 2 () 219

This makes aggregating the model, for the most part, straightforward. In particular, for
any variable z¢ (which denotes aggregate z) it follows that,

. A t 1 t—s

—00

I3The details of this problem are well understood, and we leave them to an appendix, available upon
request.



For any variable z; the reader should note that we actually mean z,, i.e., the variable
x pertaining to cohort s at time ¢. (s therefore denotes the time period in which the cohort
came into existence.) Let us pass this aggregator through the money demand equation:

Ao 1\ /M, 1+i) A <« 1\
1+/\S; (1+>\> (?t)_( i >1+AZ<1+A) G

—0o0 S§=—00

However, given our definition of an aggregate variable, this means simply that

() - (59)

Again, consider the labor supply function. Since the real wage is constant across

cohorts we have that:

A t 1 t—s I/Vt -1 A t 1 t—s
1+AS_Z (1+A> Nt_l_(ﬁ) 1+>\s_Z (1+A> G

—00 —00

Or more simply,

N} =1-C; (ﬁ) . (2.21)
Aggregate consumption is given by
EiP1Cipa = (1 +14) BRP.Cy — ANOEFi . (2.22)

This last expression is, of course, identical to (2.11) in the event that A = 0 at each date
and in each state of nature. The derivation of (2.22) is straightforward, but somewhat
laborious so we have relegated it to the Appendix.

Given our assumption of infinitely lived firms, aggregation here is more
straightforward. Dropping the ¢ index, equation (2.13) describes aggregate output, (2.14)
describes the marginal product of labor, whilst the evolution of the aggregate price-level
is given by a weighted average of this period’s optimal price (common to all firms) and
last period’s aggregate price level:

~1-6
P=[1-a)p, +aP 00, (2.23)

3. Monetary and Fiscal Policy

We turn now to consider the aggregate policy rules in place. We shall consider
the policymaker as setting the per period interest rate and net taxes-the systematic
components of policy— in order to stabilize both output and inflation. That is, we are
envisaging policy rules of the following sort:

Z.t == ¢(}/;fa7rt7it—1)7 (31)



and
T, = ¢(Gt, T, YBt—1>7 (3~2)

where 7; is the nominal interest rate set in period ¢, Y; is real aggregate output, 7, is the
inflation rate in period ¢, and 7T; are the period lump sum taxes. Following much of the
recent literature, we model monetary policy as control over the short-term (one-period)
nominal interest rate. In the presence of (some) sticky prices that implies some leverage
over interest sensitive endogenous variables. In our model that means essentially private
consumption, although there are other effects too.!* While the monetary rule is fairly
standard the rule for tax needs some explanation. We take the process for government
expenditure as exogenous. We shall assume that the fiscal authority sets taxes in response
to the level of contemporaneous government expenditure, that seigniorage is returned
lump-sum to the private sector, and crucially that taxes respond to the level of debt
outstanding at the start of the period. The parameter v indicates the proportion of debt
that is retired each period. This ability of the government to issue debt raises some
modelling issues, as the recent debate concerning the fiscal theory of the price-level has
emphasized, and we shall briefly discuss these in the next section.

4. The Government Budget

We shall assume that the government follows a Ricardian fiscal policy. That is, regardless
of the sequences of the model’s other endogenous variables, the government intends to
ensure that its present value budget constraint is met identically at each date and in
each state of nature. In our set up the government need not run a balanced budget each
period, and hence may be issuing or retiring debt. We constrain fiscal policy however to
be working systematically to retire outstanding debt. This raises the issue, therefore, as
to whether our debt retirement program is sufficiently robust. In particular, consider the
public sector budget constraint at time ¢,

B,
(1+4y)

=B 1+ PGy —T;) — (M — My_y). (4.1)

Further, consider the following parameterization of the process governing taxes,

M, — M,_ B;_
(M, “)ﬂ 1 (4.2)

Ti=xt——p 2

Together these two equations imply that real debt, b;, will evolve in the following manner,

by
1 —+ 7y

= (1 =b1+ (1= x)G, (4.3)

For example, the real interest rate influences the net wealth of outstanding bonds. This channel
appears to be of second order importance.



where r; is the real interest rate. Hence if we define (1 — x,)G; as the per period deficit,
D;, then at some point, ¢t = T, in the future this implies that

T s—1

bt—i—T T+1 1 T—
Et = (1 — ’y) + bt,1 + Et D EE— (1 — ’7) SDt+5. (44)
ot +7) 2
For policy to be Ricardian we require that Et%, tends to zero as a result of fiscal
j=0\tTTt+j

actions and regardless of the sequence of prices and interest rates that we see. AsT — oo,
the first term on the right hand side does indeed tend to zero. The second magnitude
measures the present discounted sequence of net debt issue looking forward from time
t. Even in our simple set-up it is fairly difficult to say anything too precise about the
required size of this parameter!®. Very loosely speaking, for policy to be Ricardian we
require that v eventually becomes and remains sufficiently large across states of nature.
We investigated this issue numerically and found that v = 0.06 is a lower bound on this
value. For values less than this, the model generated multiple solution paths, some of

which were consistent with fiscally determined price-levels/inflation rates (as in Woodford,
1996).

5. Parameterization of Model

We briefly outline the key baseline parameter values that we adopt for the calibration of
the model developed in section 2 and 3.

Table 1: Calibration parameters for quarterly model

Symbol Value  Description

A 0.00357 Expected life remaining: 70 years

r 0.0125  Real interest rate

I} 0.95 Subjective discount factor

o 0.053 Subjective discount rate

vy 0.06 Rate of debt retirement

5 0.6 Steady-state consumption-output ratio
- 0.1 Steady-state money-wealth ratio

K 0.5 Phillips curve slope

= 0.7 Steady-state wealth-consumption ratio

The model is calibrated at a quarterly frequency using more or less standard parameter
values. We assume that ) is determined as a result of the representative agent expecting to
live to 70. The discount factor, (3, is set at 0.95. As noted above, numerical investigations
led us to set the debt retirement rate, v, to 0.06. We further assume that the steady state

15Tn a deterministic environment, one can make more analytical headway. See Chadha and Nolan
(2002¢).
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consumption:income ratio, ¢/y, is equal to 0.6, while the steady state money:wealth ratio,
m/w, was chosen to be 0.1. Roughly speaking the average size of the UK debt-to-GDP
ratio over the post-war period has been some 40%, although it has been falling for much of
that period, one or two episodes of notable increases apart. Together with our assumption
for ¢/y, implies that the steady-state wealth:income ratio for this simple model economy is
0.7. Naturally, that number is required to parameterize our consumption Euler equation.

Specifying the nature of the stochastic forces driving the economy has less precedent
in the empirical literature, although important results are emerging (see, for example,
Blanchard and Perotti, 1999, Burnside, Eichenbaum and Fisher, 200, Edelberg,
Eichenbaum and Fisher, 1998 and Finn, 1998). Let a;, f;, and h; denote the log detrended
processes for productivity, fiscal and monetary innovations, respectively. We then assume
they can be described adequately for our purposes as follows,

ag Pa 0 0 at—1 Ty
Je | =10 pp O Jir |+ 9 |
hy 0 0 Pq hi—q aqt

where z;, g;, and ¢; are the shocks respectively to productivity, fiscal and monetary
innovations. We adopted an agnostic strategy for setting the covariation structure of
the forcing variables. First we estimated Solow residuals, Taylor Rules and Fiscal rule
equations on US and UK data and found little difference in the standard errors of the
respective equations.!® Similarly Cardia (1991) found that the standard deviation of
shocks to the monetary and fiscal processes were of similar magnitude in the US data,
whilst in the German data the standard deviations of fiscal and productivity shocks were
of a similar size. In practice, then, we decided simply to set o, = 0y = 04 = 0.01. As a
point of reference, a standard result in the one-sector RBC literature is that the standard
deviation of a quarterly productivity innovation is about 0.007-0.008. We experimented
by re-ordering the shocks, making in turn monetary and then fiscal shocks more volatile.
This had very little effect on our results.

In terms of the persistence parameters we chose the following: p, = 0.9, p, = 0.9,
and p, = 0. Again, the literature on RBC models leads us to expect persistence in
productivity innovations. Similarly, the literature on fiscal shocks also seems to indicate
that these are persistent. Again, we experimented with differing degrees of persistence
and our findings seem largely robust to quite large variations in these parameters. Our
assumption that monetary shocks are not persistent reflects a common modelling choice
that monetary shocks persist largely due to interest rate smoothing, the observed tendency

16The US dataset runs from 1955:1 to 2000:4: we use the Federal Funds rate as the policy instrument in
the Taylor Rule; annual inflation is measured as the four quarter percentage change in the All-Ttems CPI;
GDP in 1995 constant prices is detrended by a quadratic time trend and the Federal Government surplus
or deficit is given as a proportion of GDP. For the UK: we use the base rate as the policy instrument;
annual inflation is measured as the four quarter percentage change in the RPI; GDP in 1995 constant
prices is detrended by a quadratic time trend and the Public Sector Cash Requirement is given as a
proportion of GDP, after being seasonally adjusted by X12.
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for lagged interest rates to predict current interest rates. The parameter constellation
and covariation structure of the forcing process are used in conjunction with the model
developed to: (i) assess the responses of the aggregate economy to shocks in the forcing
variables, and (ii) establish the optimal values of the choice variables in the stabilization
policy rules.'”

6. Simple Rules for Fiscal and Monetary Policy

The model developed in the previous sections can be solved for the equilibrium evolution
of aggregate wealth, consumption, money holdings, labor supply, inflation, the short
term nominal interest rate, the level of taxation, government interest-bearing debt and
aggregate output. We outline the solution procedure by first noting that the model
requires the following equations, converted into aggregate form as required: (2.3), (2.18),
(2.20), (2.21), (2.22), (3.1) and (3.2), (4.1), together with an equation describing the
aggregate economy-wide resource constraint. The feedback coefficients in the policy
rules, equations (3.1) and (3.2), are left unspecified and we solve for these adopting a
quadratic criterion for the policymaker, following Williams (1999) and Dennis (2001)!8.
In practice that means we need to calculate, for a given stochastic structure for the
economy’s driving processes, the asymptotic variance-covariance matrix for the economy’s
endogenous variables. We first linearize the model around its non-stochastic steady
state. Then we make an initial guess about the optimal policy parameters, given the
other parametric assumptions we have made, and verify that the model admits a unique
stable rational expectations equilibrium under this parameter constellation. Once we have
established the existence of such an equilibrium, we are able to calculate the loss function
of the policymaker. We then iterate on this calculation for alternate selections of policy
rule parameter values, and compare losses, and continue in this way until a minimum for
the loss function is located.

More specifically, the linearized model developed in sections 2 and 3 can be represented
in compact form with all variables in percentage deviation from the steady state as

AEtyt+1 = Byt + C.ft Vit > 0. (61)

y; is a vector of endogenous variables comprising both predetermined and non-
predetermined variables including policy rules for the nominal interest rate and taxes.

17See Chadha and Nolan (2002e) for an analysis of the stability conditions for this model.

8We augment the King and Watson (1997) code to perform what is, in effect, a grid search over
the policy parameters such that the policymakers loss function is minimised. Alternative code has been
written by Richard Dennis (2001) to solve for optimal simple rules under rational expectations This latter
algorithm, however, requires something close to what we call the B matrix in (6.1) to be non-singular.
For larger models that is often inconvenient since some manual system reduction is then required. Our
code requires neither A nor B to be singular. The King and Watson (1997) reduction algorithm can deal
with singular A matrices whilst our method of calculating the model’s asymptotic variance-coviariance
matrix does not require the inversion of B at any step along the way. Dennis’ (2001) code however can
also be used to solve for the case when precommitment is not feasible.
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x; 18 a vector of exogenous variables and A, B and C' are matrices of fixed, time-invariant
coefficients. F; is the expectations operator conditional on information available at time
t. King and Watson (1998) demonstrate that if a solution to (6.1) exists and is unique
then we may write such a solution in state-space form as follows:

Y = H8t7
St = MSt_1+G6t, (62)

where the s; matrix includes the state variables of the model (predetermined variables
along with exogenous state variables), e; is a vector of shocks to the state variables and
II, M and G are coefficient matrices. The y, matrix has also been augmented to include
the model’s exogenous state variables. Let npd denote the number of predetermined
variables, nz the number of exogenous state variables and let nnpd denote the number
of non-predetermined variables. The dimensions of our system are as follows: ¥, is
[(nnpd + npd + nx) X 1], s; is [(npd + nx) x 1], I is [(nnpd + npd + nz) x (npd + nx)|, M
is [(npd + nx) X (npd 4+ nx)|, and G is [(npd + nx) x (npd + nx)]. We can use equations
(6.2) to calculate the asymptotic variance-covariance matrix for the model’s endogenous
variables.!? To proceed, iterate on the second set of equations. Since there are a sufficient
number of stable roots, we have

St — GZMjet_] (63)

J=0

Using this result in the first set of equations in (6.2) we find that

o0
y=> ®Me j, (6.4)
=0
where ® = IIG is [(nnpd + npd + nz) x (npd + nx)]. As the stochastic shocks to the
economy are assumed to be covariance stationary, it then follows that we may write,

==Y eMQMIY, (6.5)

J=0

where a prime denotes a transpose and = e;e}.2 Using the relevant entries from the ¥
matrix finally allows us to evaluate the policymaker’s loss function.

Our problem, then, is to find the set of parameter values I' = (QSZ‘, by ¢5£, ¢§, o™, pf ),
where the superscript m refers to the linearized interest rate rule, (3.1), the superscript f
refers to the linearized fiscal rule, (3.2), and where p refers to the degree of autocorrelation
in the two rules, such that the following welfare loss function is minimized:

19The interested reader should consult Hansen and Sargent (1998) for further details.
20To derive (6.5) we have used the result that for any two conformable matrices A and B, (AB) = B'A’.
Note also that since our shocks are serially uncorrelated, we have that etegfj =0 Vj>0.
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E{Jr}=F {th ﬁtLt (y; T) + 5TLT (yr; F)} . (6.6)

The policymaker’s period loss function, L, is given by

L= alzﬂ -+ OéQEy + C¥3Ei, (67)

where Y, denotes the asymptotic variance of the annualized value of x, given I'.2!

7. Results

We know from a vast amount of work that has taken place in recent years that a Taylor
rule does well in the type of model we have developed above. Although we are not aware
of an estimated Blanchard-Yaari model for which the performance of a Taylor rule has
been evaluated, our aggregate equations are for the most part similar to the standard
representative agent set-up, and so we presume that something like a Taylor rule remains
a desirable rule for monetary policy. As important, we also know that something like a
Taylor rule tracks real-world policy rates fairly closely, so that if our model is to track
data on monetary policy choices it needs to generate a Taylor-like rule. What we also ask
of our model, in terms of equation 3.2, is what are the optimal weights in the fiscal rule?
Recall from the literature on Taylor rules (see, for example, Woodford, 1999) that
a weight of greater than unity on contemporaneous inflation and a weight close to zero
on contemporaneous output has desirable stabilizing properties (see also Christiano and
Gust, 1999). Our results for optimality of this simple Taylor rule are given in Table 2.

Table 2: The Simple Taylor Rule

Interest rate rule Fiscal rule
Ty — T 1.15 Ty — 7" 0
o 0.06 wo—y LT
R,y 0.25 D, 0.57

The numbers reported in this table correspond to the optimized coefficients associated
with the arguments (indicated to the left) in the reaction functions. In all of the simulation
results reported we have constrained fiscal policy not to react to the inflation deviation
from target. We see, then, that the Taylor principle is respected in our optimized rule,
yielding an impact coefficient on inflation deviations of 1.15, and an eventual (long-run)
feedback on inflation of just over 1.5: in fact, Taylor (1993) himself suggested a value of 1.5.
Note also that, at the optimum, there is a weak contemporaneous feedback from output

2 Following Battini et al. (2001) we assume that a3 = az = 1, and az = 0.25.
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(0.06). Interest rates are autocorrelated, although to a degree that appears somewhat less
than one might expect. Turning to the deficit rule, we see that the deficit reacts robustly
to the output gap. The surplus:GDP ratio responds contemporaneously to the output
gap with a coefficient of 0.75 (somewhat higher than Taylor’s recommendation), and is
more highly autocorrelated than the nominal interest rate.

Figures 9.1-9.4 illustrate the fit of the optimized rules with data from the US and the
UK. The familiar charts of the Taylor Rule tracking actual policy rates in 9.1 and 9.3 are
now augmented by fiscal rules. The simulated optimal simple rules provide a reasonable
visual fit to the data (which are described in footnote 10 above). We are reluctant to
claim too much for these simulated rules, as our model is clearly very parsimonious.
For example, the simple rules result in fairly robust fiscal responses which are apparent
towards the start of the sample period. In a sense, however, these two sets of charts make
clear what we think is a key message of this paper: good monetary policy is predicated on
good fiscal policy (and vice versa). Our set up allows us to be clear, within the confines
of our model, what “good” fiscal policy looks like.

7.1. Impulse Responses

Before assessing a number of different policy scenarios, we discuss the impulse responses of
output, interest rates, the fiscal balance and inflation to 1% shocks in each of the forcing
variables given the optimized coefficients reported in Table 2. From the plots of these
responses, a picture emerges of monetary and fiscal policy working as a complementary
sequence of choices.

7.1.1. Productivity shock

Figures 9.5-9.8 outline the response of this economy to a symmetric persistent shock to
productive capacity. Naturally, output responds positively and with a high degree of
persistence to a productivity shock. Inflation mirrors the response, as falling marginal
costs put downward pressure on firms’ prices, by falling below baseline for 7 quarters.
The optimal policy response involves the nominal interest rate falling below base, while
the fiscal surplus rises. Nominal interest rates are cut in order to stabilize falling inflation
and lump-sum taxation tempers aggregate demand.

7.1.2. Monetary shock

Figures 9.9-9.11 outline the response of the economy to innovations in the economy’s
interest rate rule. Output remains below its steady-state level for some 10 quarters,
although it is within 0.1% of base after only 3 quarters. Output falls because a monetary
policy shock increases real rates. Fiscal policy responds to this monetary tightening by
running a (persistent) deficit. The maximal response is in the first period where the deficit
increases by 0.8%, which is some 0.2% greater than the fall in output. Inflation responds
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quickly to the monetary shock, falling by just under 0.5% in the first period and returns
more than half way to base by period 2.

7.1.3. Fiscal shock

Figures 9.12-9.14 depict the response of output, nominal interest rates and inflation to
fiscal policy shocks. The fiscal impact on output operates via government expenditure
and bonds and is explored explicitly in section 8 where we construct a measure of the
fiscal stance. The increase in output and inflation caused by the impact on aggregate
demand leads to a persistent but small rise in nominal interest rates. The effects of
government expenditure are analyzed in Baxter and King (1993). Briefly, a rise in
government expenditure on final goods results in a rise in labor supply which boosts
aggregate output (despite pushing down on aggregate consumption).

7.2. Policy Simulations

In this subsection we discuss five policy experiments that flow naturally from the optimal
simple rules we have already characterized. We solve for these rules using the method
outlined in section 6. However, here we exogenously restrict the parameter space, I’
allowing us to explore further the interactions between joint (constrained) optimal plans
for monetary and fiscal policy.

7.2.1. Mundellian Assignment

First, we compare the optimized rule presented in Table 2 to that which would be implied
by the implementation of Mundell’s (1971) suggestion to assign policy tools where he
claimed they had the greatest efficacy i.e., monetary policy to inflation and fiscal policy
to output. Table 3 shows the optimal weights for such a rule are very close to the rule
optimized in Table 2. We find that the long run coefficients are ¢." = 1.3 and ¢5 = 3.3.
In our set up, the Mundellian assignment results in systematic policy very close to that
described in Table 2.

Table 3: Mundell Assignment Rule

Interest rate rule (IRR) Fiscal rule (FR)
Ty — " 1.07 Ty — " -
Yt — Yr - Yt — Yr 1.14
Ry 0.19 D, 0.65

So the interesting supplementary question is what happens if one arm of policy
‘misbehaves’ or is constrained, perhaps by political forces, to behave in a sub-optimal
way - at least as defined by our criterion.
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7.2.2. ¢) =0

Let us suppose that fiscal policy, in the first instance, is constrained not to respond to
output at all. Table 4 shows the resulting implications for the monetary rule.

Table 4: Taylor Rule Implications of Fiscal Deficit Smoothing

Interest rate rule Fiscal rule
m—n* 483 3.55 154 1.01 = —7* -
y—y; 080 055 0.19 019 y—vy; -

R., 025 03 05 08 D, 0.9

Here we have constrained fiscal policy merely to follow an autocorrelated process.
When fiscal policy does not react to output, qbg = 0, we find that the long run coefficient
on inflation in the interest rate rule moves sharply up at the optimum. The long-run
coefficient on inflation, ¢ is found to be over 5, regardless of the extent of interest rate
smoothing (which we have constrained to take the values in Table 4). We note that should
the policy maker wish to limit her dynamic response to inflation in the region of 1 — 1.5,
then in the presence of a passive fiscal stance, significant interest rate smoothing should
be employed i.e. the lagged coefficient on interest rates should be above 0.5. In short,
a passive fiscal policy shifts the burden of stabilization entirely onto monetary policy,
causing that arm of policy to be somewhat more active than the Taylor principle might
suggest.

7.2.3. ¢/ <0
Table 5: Taylor Rule Implications of Procyclical Deficit Smoothing
Interest rate rule Fiscal rule
T — 7" 6.17 10.46 19.35 49.36 mw, — 7" -
Yo —yp 1.13 208 407 1077 y,—vy; ¢!
R, 025 025 025 025 Dy, 0.8

Fiscal Rule ¢/ -0.05 -0.10 -0.15 -0.20

Table 5 considers further implications for the monetary policy rule when fiscal policy
is set procyclically rather than counter-cyclically. The first point to note is that for high
long run negative feedback from the output gap, i.e., qﬁgj > (.8, the system quickly becomes
unstable. But if we allow for small negative feedback we find that the weights on both
output and, in particular, inflation rise considerably in order to attain an optimum. This
result implies that, to some limited extent, monetary policy can substitute for poorly
designed fiscal policy by becoming significantly more aggressive.
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7.24. ¢ — 1
Table 6: Fiscal Policy Implications of Threshold Taylor Observance

IRR FR IRR FR IRR FR IRR FR IRR FR
m—7m" 0.5 - 0.5 - 0.9 - 0.9 - 0.8 -
vw—y; 05 169 01 172 01 168 01 219 01 227

p 05 068 05 065 05 061 02 044 0.2 047

Table 6 considers the implications for fiscal policy as the long run coefficient on inflation
in the interest rate rule tends to one.?> The first two sets of results (columns 2-5) show
that if the IRR maintains a long run coefficient on inflation of at least one, ¢" > 1,
optimal fiscal policy will alter little. The next three sets of results vary the long run
response of the IRR to inflation, from ¢ = 1.8,1.1 and 1.0. We see that as the IRR
response to inflation tends towards one, and given that the output response is small, the
optimal FR responds to output more powerfully. This means that fiscal policy can, to
some extent, act as a substitute for weak IRR responses to inflation but the policy losses
at each of these optima suggest that this strategy is somewhat unattractive.

7.2.5. Inflation Nutter
Table 7: Fiscal Policy Implications of the ‘Inflation Nutter’

IRR FR IRR FR IRR FR

T —7F 4.5 - 3.5 - 2.0 -
vw—y;, 01 3.06 01 303 0.1 257
p 02 044 02 047 0.2 0.52

Our final illustration in Table 7 shows the implications for fiscal policy from a monetary
policy-maker who places a high weight on inflation stabilization. The Table shows that
active monetary policy in this case engenders similarly active fiscal policy in order to
reach the optimum. This means that aggressive monetary policy will be complemented
by a similar fiscal policy in order to stabilize the economy optimally: aggression breeds
aggression. The high weight on inflation in the monetary rule results in a volatile real
interest rate, in turn generating a volatile path for consumption and hence output.
Consequently this elicits a robust response from fiscal policy.

The simulations in this section have shown that (i) the Mundellian assignment strategy
may have a number of attractive properties; (ii) passive fiscal policy, at the optimum, may
provide a further rationale for aggressive monetary policy which itself may be engendered

22The columns headed IRR refer to Interest Rate Rule and those headed FDR refer to the Fiscal Deficit

Rule. For IRR go to the Lh.s. column for a key and for FDR go to the r.h.s. for a key.
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by interest rate smoothing; (iii) near breaching of the Taylor principle, in terms of the unit
response of interest rates to inflation, will stimulate active fiscal policy at an optimum; and
(iv) that aggressive monetary policy will again engender active fiscal policy. In each case
understanding optimal monetary policy requires a characterization of the concomitant
fiscal policy choices, where output stabilization seems to lie very much within the correct
scope of fiscal rather than monetary policy.

In the next section, we investigate in more detail the routes by which fiscal policy
stabilizes output in our economy. In particular, we turn to the quantitative importance
of the wealth effect associated with bonds outstanding to inquire whether this makes a
significant difference to the optimal simple rules.

8. The Impact of Fiscal Policy

8.1. The index of fiscal stance

As the work of Baxter and King (1993) and Aiyagari, Christiano and Eichenbaum (1993)
makes clear, government expenditure can influence the level of aggregate demand in
a flexible price competitive macroeconomic environment, even when bonds are not net
wealth. Indeed, the behavior of the model economies analyzed in those papers indicates
that fiscal policy has multiplier effects on output which rise in the persistence of the
shock to expenditure. In our sticky-price environment, fiscal variables influence the level
of aggregate demand, Y = C; + G}, at time ¢ via a number of channels. Here we follow
Blanchard (1985) and construct an index of fiscal stance. Let IF'S denote the ‘index
of fiscal stance’: that is, those components of aggregate demand (both injections and
withdrawals) due to fiscal policy that contribute to demand this period. So using our
expression for the aggregate consumption function (see the appendix), we find that the
index may be written as,

1+X-0 Sl 1 1 \*?
IFS, = — E 1
S G 1+ tZtJUO{<1+rt+j) (1+A> G (8.1)
RERSY:

TS

b 1+Et§:ﬁ{(1+m;) <141FA)H “ _TS)}

s=t j=0

which is equivalent to equation (28) in Blanchard (1985). The first line is the effect of
government expenditure on aggregate demand when it is financed out of contemporaneous
taxation. The second line is the effect of financing via debt issue and represents the wealth
effect of bonds. To see this distinction more clearly, recall that the government’s present-
value budget is

b 1——Etiﬁ{<1+rtﬂ)(G’S—TS)}, (8.2)

s=t j=0
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where we have partialled out the seigniorage term. Hence the index may now be written

as,
7S, = - AP e ST Ly
L t;ﬂ){(l—i-?’prj)(l‘*—)\) GS} (8.3)
1+A-5

1+

8.2. Wealth Effect of Bonds

The wealth effect impacting on aggregate consumption dynamics in equation (2.22) is
filtered by a parameter that represents the steady-state ratio of wealth to consumption,
<, multiplied by the probability of death, A\. From our discussion of the IF'S, in the
previous sub-section, we note that if A = 0 then the second line in (8.3) is identically
zero across all dates and states and bonds are not net wealth. For A # 0, and b, ;1 > 0,
outstanding bonds will tend to boost aggregate demand. In this section we therefore
examine the impact on the optimal rule of allowing the probability of death to increase.
In the following tables A = 0.003 implies expected remaining life is 70 years, A = 0.005
implies a horizon of 50 years and A = 0.007 implies a 35 year horizon.

Table 8: The Simple Taylor Rule for alternative A

Interest rate rule Fiscal rule
A 0.003 0.005 0.007 0.003 0.005 0.007
T — 7 1.1502 1.1496 1.1487 m — 7* 0 0 0
Yy —y;  0.0604 0.0592 0.0574 y, —vy; 1.7524 1.7524 1.7524
Ry 0.2495 0.2489 0.2481 D;_4 0.5726 0.5730 0.5734

Table 9: Mundell Assignment Rule for alternative A

Interest rate rule Fiscal rule
A= 0.003 0.005 0.007 0.003 0.005 0.007
T, — ™ 1.0708 1.0721 1.0739 m — 7 0 0 0
Ye — Y 0 0 0 ye — vy 1.1363 1.1471 1.1634
R4 0.1893 0.1919 0.1903 D,y 0.6492 0.6483 0.6471

Tables 8 and 9 show that halving life expectancy makes very little difference to the
optimal weights. This is so both for the rule used in Table 2 (which corresponds to Table
8), or for the Mundellian assignment in Table 3 (corresponding to Table 9). Recall that
Ricardian Equivalence fails in this set-up solely because of the overlapping generations
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structure of the model, since not all of the currently alive can expect to live sufficiently
long to face the obligations of current debt creation. These results therefore tell us that
the magnitude of the wealth effect does not play a crucial role in explaining the optimal
degree of fiscal stabilization: the optimal weights in the fiscal rule reflect primarily the
effect of government expenditure financed out of contemporaneous expenditure.

9. Conclusions

We develop, calibrate and simulate a micro-founded model in which prices are rigid and
firms produce differentiated goods. Fiscal policy acts to influence aggregate demand by
influencing current expenditure. Monetary policy regulates inflation by setting the price
of intertemporal trade. At the policy optimum, we find a robust case for the policymaker
observing the Taylor principle in conjunction with letting automatic stabilizers induce a
non-zero fiscal balance through the economic cycle.

We show that neglect of the role of automatic stabilizers in designing optimal policy
will have significant implications for optimal monetary policy. For example, we show that
‘passive’ fiscal policy necessitates large (i.e. ¢ > 5) long run responses to inflation in
the interest rate rule. Also we indicate how aggressive monetary policy may result in an
aggressive set of fiscal plans. The recent literature on monetary policy rules (e.g., Clarida,
Gali and Gertler, 1999) has implicitly assumed the ‘correct’ fiscal policy will be followed.
In this paper we have developed a model that allows is to say what form that fiscal policy
takes. Our brief comparison of actual and ‘optimal’ policy suggests some insight has been
gained, despite the simplicity of our model.

In future work, we will seek to extend the fiscal environment in two directions. First,
we shall incorporate distortionary taxation. Recent work by Auerbach and Feenberg
(2000) suggests that this will be an important channel through which the systematic
effects of fiscal policy operate. That will also constitute an additional and likely more
important channel through which Ricardian Equivalence will fail. Second, we aim to
incorporate ‘useful” government expenditure, perhaps via influencing the marginal return
to private investment, and a distinction between government employment and government
purchases. As Finn (1998) demonstrates, this latter distinction is of crucial importance,
as they have offsetting impacts on ouput. Future work might also consider more rigorously
the implications of non-collusive behavior between the monetary and fiscal policy makers.
In this regard, an interesting application might be the implications of such behaviour to
regions within a monetary union.

Finally, we noted at the start of this paper that Taylor Rules for monetary policy
were unlikely to describe literally what monetary policymakers actually do. Similarly,
the simple fiscal rules that we have constructed, although providing an interesting ‘back-
of-the envelope’ calculation of the magnitude of deficits and surpluses that one might
want to occur in actual economies, tell us little about the micro-structure of the tax and
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benefits system. For example, different fiscal micro-structures are likely to be consistent
with a given degree of variation in the aggregate surplus:GDP ratio at the business cycle
frequencies. Investigating these issues is also likely to be an interesting avenue for future
research.
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9.1. Appendix: Aggregate consumption dynamics

In this appendix we derive equation (2.22) in the main text. We cannot simply pass
the aggregator function through equation (2.11). In the standard representative agent
framework the Euler equation captures aggregate consumption dynamics by construction.
In other words, if we use the standard Euler equation and the present value budget
constraint, in the infinite-lived representative agent set up, we find that aggregating across
all consumers one ends up back at the simple Euler equation as an equation that also
represents aggregate consumption-savings behavior. That equivalence between individual
and aggregate behavior vis a vis consumption does not obtain in our set up. To see this,
iterate on the consumption Euler equation and use the present value budget constraint
to find that,

oo s—1 s—t
1 1
E PS s —
tZ_:H<1+zt+]) <1+A) ¢
oo s—1 s—t .
1 1
F,+FE N+, —T, — ——M.
o tzn{(lﬂm) <1+A> {WS TR TR, ]}

s=t j=0

where F; = (1+ A)M;_1 + (1+\)B;_1. That is, we assume that on death financial wealth
is transferred via “insurance companies” as windfall dividends to currently alive agents.
Our assumption of log separability means that the left hand-side of the above expression

an be written as 7 +A ﬁPtCt, so that we have
s—t
e s () ()
o= 20 g g ) ) S e
1+)\ s=t j=0 |:WN+H TS 1+1M:|

which is the solved out consumption function for a given agent of a currently alive cohort.
We now want to calculate aggregate P, 1Cyr1 — P,Cy. First we economize on some
notation, rewriting (9.1) as

wen S () () o)

s=t j=0

PC ="

9.2)

where U = 1J1ri)\ ,and Oy = W N, + 1l — T, — ’z M. We shall also avoid carrying
around expectations operators. We construct P, 1C; 1 — P,C} in two steps. First we derive
an expression for the evolution of aggregate ‘human’ wealth, ©,, and then we calculate
an analogous expression for aggregate financial wealth. The sum of these two expressions
delivers aggregate consumption dynamics. First, then, we look to the change in aggregate

‘human’ wealth, which will have the same form, given our assumptions, as individual
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human wealth. Hence, we have that,

Fip1 4+ 6 + (1+u+1> (1+A) O 2+

1 1 1 \2
(1+it+1> <1+it+2) (m) O3+ ..

F,+06,+ L L O + L L ! 2@ +
G TR AU TEDY i ST S R DY A

Collecting terms we see that

—O: + (1 N <1iz‘t> (1%\)) Or1+
(1 B (“i’t) (LA)> (1+i1t+1> (14%,\) Ot 12 "

(- () () () () ()

This expression can, with a little rearrangement, be rewritten as

ot uai);ﬁ:u [Z H{(lﬂtﬂ) (1iA>S_(t+l) @S}

t+1 j=0

- v

v

(9.3)

We now calculate an expression for W [Fi; — Fi]. First we recall that we now need
to work with aggregate financial wealth. Since in the aggregate there can be no windfall
gains, we now define F' as follows

F,=M,_1+ Bi_1.
Using this in the flow budget constraint we find after some manipulation that

Fi

U

F,+ RCy + — 0.

Therefore the change in wealth may be written as,

v Fii+0,— PG,
[1 +4 t t+1 t— Lt t:|
and combining this with expression (9.3) we get that

(AN (A 4ie) — 1 \s—(t+1)
Pt+10t+1 — PtCt =V @t + (14+N) (1+4¢) [ Z H {<1+zt+]> (H_A> @s}]

=t+1 5=0
+=F .+ 0, — PG
(9.4)

1+z

However, we already know that

o) 1 s—(t+1)
vl I () () e

s=t+1 j=0

P15+1Ct+1 =

Y
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so we can re-write (9.4) as

1+-M1+4)—1[P.C
P1Coy — PC =T —@t+( a +)§)(1 ;)m [ “I\P AR —Ft+1H

it
L+

+‘I’[ E+1+@t_BCt]~

And straightforward simplification results equation (2.22):

EiP1Ciy = (1 4+14) BP.C, — NQEFy 4.
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Optimal Taylor Rule and Federal Funds Rate: US 1990-2000
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Figure 9.1:

Optimal Fiscal Rule and Fiscal Surplus: US 1990-2000
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Figure 9.2: US Stabilization Policy: Actual (dotted) and Optimal (solid)
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Optimal Taylor Rule and Base Rate: UK 1990-2000
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Figure 9.3:

Optimal Fiscal Rule and Budget Surplus: UK 1990-2000
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Figure 9.4: UK Stabilization Policy: Actual (dotted) and Optimal (solid)
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Figure 9.5:

nominal interest in response to productivity shock
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Surplus in response to productivity shock
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Figure 9.7:

Inflation in response to productivity shock
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output in response to monetary shock
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Figure 9.9:

Surplus in response to monetary shock
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Figure 9.10:
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Figure 9.11:

output in response to fiscal shock
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Figure 9.13:

Inflation in response to fiscal shock
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Figure 9.14:
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