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Abstract

In this thesis, we study several combinatorial problems in which we aim to
find upper or lower bounds on a certain quantity relating to graphs. The first
problem is in Ramsey theory, while the others are in extremal graph theory.

In Chapter 2, which is joint work with Vojtěch Dvořák, we consider the
Ramsey number R(Fn) of the fan graph Fn, a graph consisting of n triangles
which all share a common vertex. Chen, Yu and Zhao showed that 9

2
n− 5 ≤

R(Fn) ≤ 11
2
n + 6. We build on the techniques that they used to prove the

upper bound of 11
2
n+ 6, and adopt a more detailed approach to examining the

structure of the graph. This allows us to improve the upper bound to 31
6
n+ 15.

In Chapter 3, we work on a problem in graph colouring. Petruševski and
Škrekovski recently introduced the concept of odd colouring, and the odd
chromatic number of a graph, which is the smallest number of colours in an odd
colouring of that graph. They showed that planar graphs have odd chromatic
number at most 9, and this bound was improved to 8 by Petr and Portier. We
consider the odd chromatic number of toroidal graphs, which are graphs that
embed into a torus. By using the discharging method, along with detailed
analysis of a remaining special case, we show that toroidal graphs have odd
chromatic number at most 9.

In Chapter 4, which is joint work with Victor Souza, we consider a problem
in the hypercube graph Qn. Huang showed that every induced subgraph of the
hypercube with 2n−1 + 1 vertices has maximum degree at least ⌈

√
n⌉, which

resolved a major open problem in computer science known as the Sensitivity
Conjecture. Huang asked whether analogous results could be obtained for larger
induced subgraphs. For induced subgraphs of Qn with p2n vertices, we find a
simple lower bound that holds for all p, and substantially improve this bound in
the range 1

2
< p < 2

3
by analysing the local structure of the graph. We also find

constructions of subgraphs achieving the simple lower bound asymptotically
when p = 1− 1

r
.
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Chapter 1

Introduction

This thesis consists of four chapters, including this introduction. Each of the
remaining chapters is devoted to a different combinatorial problem involving
graphs. In Chapter 2 we demonstrate an improved bound for a problem in
graph Ramsey theory. In Chapter 3 we prove a bound for a graph colouring
problem on the torus. In Chapter 4 we investigate induced subgraphs of the
hypercube graph with small maximum degree.

1.1 Ramsey numbers of fans

Chapter 2 is joint work with Vojtěch Dvořák and is adapted from [31].
Let G and H be graphs. The Ramsey number R(G,H) is the smallest

positive integer N such that if we colour the edges of KN , the complete graph
on N vertices, with two colours, the colouring must contain a copy of G in the
first colour or a copy of H in the second colour. When G and H are the same
graph, we simply denote this as R(G).

Ramsey [69] proved in 1930 that R(Kn) exists for all n. This result became
known as Ramsey’s theorem, and it immediately implies the existence of
R(G,H) for all graphs G and H. Erdős and Szekeres [34] proved in 1935 that
R(Kn) is at most (4− o(1))n. Despite considerable efforts over almost 90 years,
only improvements to the o(1) term were made until Campos, Griffiths, Morris
and Sahasrabudhe [19] recently proved that R(Kn) ≤ (4− c)n for an effective
constant c and sufficiently large n. In 1947, Erdős [32] used the probabilistic
method to find a lower bound of the form (

√
2 + o(1))n, and the best known

lower bound is still of this form.
In Chapter 2, we are instead concerned with the Ramsey numbers of fans.

The fan graph Fn is a graph consisting of n copies of K3 which all have a single
vertex in common. Ramsey numbers of fans were first investigated by Li and
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Rousseau [56] in 1996; they showed that 4n+ 1 ≤ R(Fn) ≤ 8n− 2. The lower
and upper bounds were both improved over the following decades, and in 2021
Chen, Yu and Zhao [24] proved that 9

2
n− 5 ≤ R(Fn) ≤ 11

2
n+ 6.

In Chapter 2, by building on the techniques of Chen, Yu and Zhao [24], we
improve the upper bound on R(Fn) from 11

2
n + 6 to 31

6
n + 15. Our general

approach is as follows. We call the two colours black and white, and assume
that we have a graph G on at least

⌈
31
6
n+ 15

⌉
vertices with no Fn in either

colour. We find the vertex v with the most edges of a single colour, which
is black without loss of generality, and examine the subgraph induced by the
vertices joined to v by black edges. This subgraph cannot contain a white Fn

or a black matching of n edges, and we prove that it must instead contain a
large clique A of one colour or the other.

We use the existence of the clique A to prove that G contains further cliques
in the other colour which are related to A in a suitable way. We then use the
relationships between the cliques to find a monochromatic copy of Fn, which is
a contradiction. There are several different cases, of varying degrees of difficulty,
depending on the number of vertices joined to v by black edges, as well as other
factors specific to the graph in question.

1.2 Odd colourings on the torus

Chapter 3 is adapted from [61].
In 1976, Appel and Haken, assisted by Koch [5, 6], proved the celebrated

Four-Colour Theorem, which states that all planar graphs G admit a proper
vertex-colouring with at most 4 colours.

The ideas behind Appel and Haken’s proof built on the work of many
previous researchers. They found a large set of configurations which is both
unavoidable, meaning that every planar graph contains a configuration in the
set, and reducible, meaning that any graph which contains a configuration in
the set can be reduced to a smaller graph in such a way that if the smaller
graph has a proper 4-colouring then so does the original graph. The reducibility
of the set was proved by computer, but the unavoidability was shown by hand
using a technique called the method of discharging, invented by Heesch [49], in
which charge is distributed across the vertices and faces of a graph and then
redistributed according to a set of rules.

Instead of allowing all proper colourings, we can impose some conditions
on which colourings are allowed. For example, Petruševski and Škrekovski
[68] recently introduced the concept of odd colouring. An odd colouring of
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a graph G is a proper colouring of V (G) with the property that, for every
non-isolated vertex v of G, there is some colour that appears an odd number of
times in the neighbourhood of v. The smallest number k such that G admits
an odd colouring using k colours is called the odd chromatic number of G and
denoted χo(G). Petruševski and Škrekovski [68] used the discharging method
to prove that every planar graph G satisfies χo(G) ≤ 9, and Petr and Portier
[67] improved this bound to 8.

In Chapter 3, we will consider odd colourings of graphs that embed into
the torus; these graphs are called toroidal graphs. It is straightforward to show
using Euler’s formula that the minimum degree of any toroidal graph is at
most 6. The discharging rules used by Petruševski and Škrekovski [68] and by
Petr and Portier [67] do not allow us to obtain any useful results about odd
colourings of toroidal graphs, so we use a new set of discharging rules to show
that if G is a minimal toroidal graph with χo(G) > 9 then the minimum degree
of G cannot be 5 or less. It follows that δ(G) = 6.

Toroidal graphs with δ(G) = 6 were fully classified by Altshuler [4] in 1973.
We use this classification to show that all toroidal graphs with δ(G) = 6 admit
an odd colouring with at most 9 colours and therefore cannot be a mimimal
toroidal graph with χo(G) > 9. This implies that all toroidal graphs have
odd chromatic number at most 9. Note that at least 7 colours are sometimes
required, since K7 can be embedded in the torus.

Our proof also shows that every graph that embeds into the real projective
plane has odd chromatic number at most 9.

1.3 Induced subgraphs of the hypercube

Chapter 4 is based on joint work with Victor Souza.
The hypercube graph Qn has vertex set {0, 1}n, with two vertices being

adjacent if and only if they differ in exactly one coordinate. The independence
number of Qn is clearly 2n−1 = 1

2
|Qn|. In 1988, Chung, Füredi, Graham and

Seymour [26] showed that for every n there is an induced subgraph of Qn with
2n−1 + 1 vertices, one more than the independence number, and maximum
degree ⌈

√
n⌉.

In 1992, Gotsman and Linial [42] showed that if Chung, Füredi, Graham
and Seymour’s upper bound of ⌈

√
n⌉ was tight, then it would have major

consequences in theoretical computer science. More specifically, a certain
measure of the complexity of a Boolean function, the sensitivity, would be
polynomially related to many other measures of complexity, such as the degree
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of the function as a real polynomial. The question of whether such a polynomial
relation exists was an important open problem in computer science and became
known as the Sensitivity Conjecture.

In 2019, Huang [51] used a beautiful spectral argument to show that Chung,
Füredi, Graham and Seymour’s upper bound of ⌈

√
n⌉ is indeed tight, proving the

Sensitivity Conjecture. Huang asked whether the smallest possible maximum
degree could be determined for induced subgraphs of Qn of other sizes.

In Chapter 4, we take the first steps towards resolving Huang’s problem.
We consider induced subgraphs of Qn of size p2n where p is fixed and 1

2
< p < 1.

We begin by showing that the maximum degree must be at least 2p−1
p

n using a
double-counting argument. We then use Hamming codes to construct induced
subgraphs for which this lower bound is tight: these exist when p = 1 − 1

2r

and n is a multiple of 2r − 1. We show that for other values of n we can still
obtain a maximum degree that is asymptotically equal to 2p−1

p
n. Next, we find

constructions based on partitions of the infinite grid Zd, which allow the bound
2p−1
p

n to be attained asymptotically (though in a slightly weaker sense than
for the Hamming code construction) when p is of the form 1− 1

r
.

The remainder of the chapter is devoted to proving that the lower bound
of 2p−1

p
n is not tight when 1

2
< p < 2

3
, and finding a better lower bound for

this range of p. In fact, we find several lower bounds, each better than the
last, by employing more and more complicated counting arguments on small
configurations of vertices. Our final lower bound, which we believe is almost
certainly not tight, does not have a simple closed-form expression and must be
calculated with a computer.



Chapter 2

Ramsey numbers of fans

2.1 Introduction

This chapter is joint work with Vojtěch Dvořák, adapted from [31].
In 1930, Ramsey [69] proved the fundamental result that for every n, there

exists N such that if we colour the edges of the complete graph KN in two
colours, then the colouring must contain a monochromatic copy of Kn. We
denote the smallest N with this property by R(n) or R(Kn). This result became
known as Ramsey’s theorem, and the numbers R(n) as Ramsey numbers. For
a general graph G, the Ramsey number R(G) is the smallest N such that
every colouring of the edges of KN with two colours contains a monochromatic
copy of G. More generally, for two graphs G and H, we write R(G,H) for the
smallest N such that every 2-colouring of the edges of KN contains either a
copy of G in the first colour or a copy of H in the second colour. Ramsey’s
theorem immediately implies that R(G,H) exists for all graphs G and H.

The study of Ramsey numbers began in earnest in 1935 with the work
of Erdős and Szekeres [34], who found the first non-trivial upper bounds
for R(Km, Kn), including the bound R(Kn) ≤ (1 + o(1))4n−1/

√
πn for the

diagonal case. In 1947, Erdős [32] famously proved a lower bound of the form
R(Kn) ≥ (

√
2 + o(1))n using the probabilistic method. Ever since, the problem

of improving the bounds on R(Kn) has received more attention than almost
any other problem in combinatorics. Nonetheless, the lower bound has resisted
virtually all attempts to improve it, and the upper bound of Erdős and Szekeres
remained the best known for over 50 years until Thomason [81] improved it by
a polynomial factor using quasirandomness in 1988. Conlon [27], extending the
techniques of Thomason, made a superpolynomial improvement in 2009, and
recently Sah [77] built on the methods of Thomason and Conlon to obtain a
further superpolynomial improvement. However, these bounds are all still of the
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form (4− o(1))n. Very recently, Campos, Griffiths, Morris and Sahasrabudhe
[19] made a remarkable breakthrough by improving the upper bound by an
exponential factor: they proved that R(Kn) ≤ (4− c)n for an effective constant
c and sufficiently large n.

More progress has been made in the off-diagonal case R(Km, Kn) when m

is small. In 1980, Ajtai, Komlós and Szemerédi [2, 3] proved that R(K3, Kn) =

O(n2/ log n), and Kim [53] showed in 1995 that this is the correct order of
magnitude. The constants have since been improved in each case: Shearer [78]
proved in 1983 that R(K3, Kn) < (1 + o(1))n2/ log n, and the lower bound of
R(K3, Kn) > (1

4
− o(1))n2/ log n was obtained independently using the triangle-

free process by Fiz Pontiveros, Griffiths and Morris [39] in 2020, and by Bohman
and Keevash [11] in 2021. For m = 4, a breakthrough was made very recently
by Mattheus and Verstraete [60], who proved that R(K4, Kn) = Ω(n3/ log4 n).
This is within a polylogarithmic factor of the best known upper bound of
(1 + o(1))(n3/ log2 n), due to Li, Rousseau and Zang [57].

Around 1970, Ramsey numbers began to be investigated for classes of graphs
other than complete graphs, and in the following years many results in this
area were published. For example, the exact values for R(Cm, Cn), the Ramsey
number of two cycles, were found in a series of papers in the early 1970s, by
Chartrand and Schuster [22], Bondy and Erdős [14], Rosta [73, 74], and Faudree
and Schelp [37]. Many more results in graph Ramsey theory from this period
are given in a contemporary survey by Burr [17].

Burr, Erdős and Spencer [18] showed in 1975 that R(mK3, nK3) = 3m+2n

for m ≥ n,m ≥ 2, where mK3 is the union of m disjoint copies of K3. In
particular, R(nK3) = 5n, except for n = 1 where we have R(K3) = 6. Instead
of taking the copies of K3 to be disjoint, we could join them together. The
book Bn is formed by n triangles which all share an edge. In 1978, Rousseau
and Sheehan [75] showed that R(Bm, Bn) ≤ 2(m+ n+1) for all m,n such that
2(m+ n) + 1 ≥ 1

3
(n−m)2, and therefore R(Bn) ≤ 4n+ 2. They also showed

that this bound on R(Bn) is tight when 4n+ 1 is a prime power. Combined
with known bounds on gaps between primes (e.g. [7, 50]), this implies that
R(Bn) = (4− o(1))n. More generally, a graph formed from n copies of Kk+1

which share a common Kk is also called a book and denoted B
(k)
n , so Bn = B

(2)
n .

Conlon [28] and Conlon, Fox and Wigderson [29] recently generalised Rousseau
and Sheehan’s result by proving that R(B

(k)
n ) = (2k + ok(1))n. Note that the

word “book” is used in several other ways in the graph theory literature, for
example to mean a graph consisting of 4-cycles sharing a common edge.

After nK3 and Bn, it is natural to consider a graph consisting of n copies of
K3 which all have a single vertex in common. This graph is called the fan Fn.
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Bn Fn

It is also sometimes referred to as the friendship graph; this name originates
from a result of Erdős, Rényi and Sós [33], who proved that the Fn are the
only finite graphs on more than one vertex with the property that every two
vertices have exactly one common neighbour. The graph Fn has 2n+1 vertices:
one vertex v, called the centre of the fan, and 2n other vertices v1, . . . , v2n such
that for i = 1, . . . , n, vv2i−1v2i is a triangle. Each of the n edges v2i−1v2i is
called a blade of the fan. In this chapter we will be concerned with the Ramsey
numbers of fans.

While the Ramsey numbers of nK3 and Bn were studied in the 1970s, it
appears that Ramsey numbers related to Fn were not investigated until 1996,
when Li and Rousseau [56] proved that R(F1, Fn) = 4n + 1 for n ≥ 2 (note
that F1 = K3), and that 4n+ 1 ≤ R(Fm, Fn) ≤ 4(m+ n)− 2 for m ≥ 1 and
n ≥ 2, implying the initial bounds 4n+1 ≤ R(Fn) ≤ 8n− 2. The next advance
was made in 2009 by Lin and Li [58], who showed that R(F2, Fn) = 4n + 1

for n ≥ 2, and that R(Fm, Fn) ≤ 4m + 2n for m ≥ n ≥ 2, implying that
R(Fn) ≤ 6n for n ≥ 2. Shortly afterwards, Lin, Li and Dong [59] showed that
R(Fm, Fn) = 4n+1 if n is sufficiently large in terms of m, and Zhang, Broersma
and Chen [87] later quantified this by proving that R(Fm, Fn) = 4n + 1 for
n ≥ max{m2 − 1

2
m, 11

2
m+ 4}. They also showed that R(Fm, Fn) ≥ 4n+ 2 for

m ≤ n < 1
2
m(m− 1), slightly improving the lower bound for R(Fn).

Prior to our result, the best upper and lower bounds for R(Fn) were due to
Chen, Yu and Zhao [24], who made a significant advance in 2021 by showing
that 9

2
n − 5 ≤ R(Fn) ≤ 11

2
n + 6. They noted that their lower bound implies

R(Bn) < R(Fn) for n ≥ 15. This, together with the observation that

|V (Bn)| < |V (Fn)| < |V (nK3)|,

led them to believe that

R(Bn) ≤ R(Fn) ≤ R(nK3)

should hold for sufficiently large n, but they were unable to show that R(Fn) ≤
R(nK3) = 5n.
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As our main result, we make a further improvement to the upper bound,
decreasing it from 5.5n to about 5.167n.

Theorem 2.1.1. For every n ≥ 1, we have

R(Fn) ≤ 31
6
n+ 15.

We are almost certain that 31
6
n is not the true asymptotic magnitude of

R(Fn), and hence we make no attempts to optimise the additive constant in
the expression above.

Our approach builds on the ideas of Chen, Yu and Zhao [24]: we aim to find
large monochromatic cliques in the graph and then “cover” them in a suitable
way. The first crucial new idea in this chapter is that of controlling the degrees
of vertices in each colour: for that, we use Lemma 2.2.4. The proof of this
lemma is essentially analogous to the proof of a key lemma of Chen, Yu and
Zhao, but using this more general version turns out to be very beneficial. In
fact, using the techniques of Chen, Yu and Zhao, this lemma alone can be used
to obtain R(Fn) ≤ 16

3
n+O(1).

To go further, we must also introduce a different, more global approach in
the later parts of the proof: assuming that the graph contains no Fn of either
colour, we find several large, suitably related monochromatic cliques and exploit
these relations to construct a monochromatic Fn, giving a contradiction.

The rest of the chapter is organised as follows. In Section 2.2, we introduce
our notation and state several basic results and lemmas that we will use. In
Section 2.3, we give a short, non-technical overview of our proof. In Section
2.4, we go through the technical details of the proof. Finally, in Section 2.5, we
briefly outline further directions of research.

2.2 Preliminaries and notation

We use standard graph theoretic notation throughout. For a simple graph G,
we denote its vertex set by V (G) and its edge set by E(G). For A ⊂ V (G), we
write G[A] for the induced subgraph on A, and we denote V (G) \ A by A. On
the other hand, for a graph H, we will write H to mean the complement of H.

For v ∈ V (G), we write N(v) = {w ∈ V (G) | vw ∈ E(G)}. More generally,
for S ⊂ V (G), we use N(S) to mean

⋃
v∈S N(v).

Throughout, instead of a 2-colouring, we will consider a graph G on⌊
31
6
n+ 15

⌋
vertices in the usual graph-theoretic sense, and we show that we

can always find Fn inside G or G. This will be done by contradiction: assume
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from now on that neither G nor G contains Fn. We will examine G more and
more thoroughly until we are able to reach the desired contradiction.

As the role of the colours is interchangeable, we will often refer to non-edges
as white edges and to edges as black edges. We also sometimes refer to an
independent set of vertices as a white clique and to a clique in the usual sense as
a black clique. Accordingly, we write NW (v) = {w ∈ V (G) \ {v} | vw /∈ E(G)}
for the white neighbourhood of v, and similarly NW (S) =

⋃
v∈S NW (v) for

S ⊂ V (G). If G contains a copy of some graph H, we will sometimes say that
G contains a white H. In diagrams, black and white edges will be represented
by solid and dashed lines respectively.

For a graph H, denote the size of the largest matching of H by ν(H), and
the number of odd sized components of H by q(H). Let us recall the following
deficient forms of the fundamental theorems of Hall and Tutte (see, e.g., [12]).

Theorem 2.2.1 (Hall). Let H be a bipartite graph on parts X and Y . For
any non-negative integer d, ν(H) ≥ |X| − d if and only if |N(S)| ≥ |S| − d for
every S ⊂ X.

Theorem 2.2.2 (Tutte). Let H be a graph of order N . For any non-negative
integer d, ν(H) ≥ N−d

2
if and only if q(H − S) ≤ |S|+ d for every S ⊂ V (H).

The value |S| − |N(S)| is known as the deficiency of S. For a matching M

from X to Y , we will also refer to |X| − |M | as the deficiency of M , where |M |
is the number of edges in M . Theorem 2.2.1 therefore states that there exists
a matching from X to Y of deficiency at most d if and only if every S ⊂ X

has deficiency at most d.
Note that one can trivially extend one direction of Theorem 2.2.1 to non-

integer values as follows.

Corollary 2.2.3. Let H be a bipartite graph on parts X and Y . For any
non-negative real number r, if ν(H) < |X|−r, then there exists a subset S ⊂ X

with |N(S)| < |S| − r.

Proof. If r is an integer, the result follows immediately from Theorem 2.2.1.
If r is not an integer, as ν(H) < |X| − r, we also have ν(H) < |X| − ⌊r⌋.

Theorem 2.2.1 then guarantees that there exists a subset S ⊂ X with |N(S)| <
|S| − ⌊r⌋. But as |N(S)| is an integer and r is not an integer, this implies

|N(S)| ≤ |S| − ⌊r⌋ − 1 < |S| − r,

as required.
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Chen, Yu and Zhao [24, Lemma 1.2] showed that for any integers m,n,N

with N = 4n+m+
⌊
6n
m

⌋
+ 1, and any graph H on N vertices, there is a copy

of Fn or Km inside H or H. By applying their argument more generally, we
obtain the following result, which we will use throughout our proof.

Lemma 2.2.4. Let H be a graph on 3n − c + 4 vertices, where 0 < c < 5
8
n,

such that H does not contain nK2 and H does not contain Fn. Then there is a
copy of K2n−2c in H or H.

Proof. If |H| ≥ 3n, then by the result of Lin and Li [58] that R(nK2, Fn) = 3n,
there is a copy of nK2 in H or a copy of Fn in H. We can therefore assume
that |H| ≤ 3n− 1.

If ν(H) ≥ n then H contains nK2, so we have ν(H) ≤ n − 1. Theorem
2.2.2 with d = n− c+ 4 now implies that there exists S ⊂ V (H) with

q(H − S) ≥ |S|+ d+ 1 = |S|+ n− c+ 5.

Denote the components of H − S by C1, . . . , Cl, where C1 has minimal size
among the components. If l ≥ 2n− 2c, then H contains a copy of K2n−2c, with
one vertex in each Ci. So we may assume that l ≤ 2n− 2c− 1. We also have
that

l ≥ q(H − S) ≥ |S|+ n− c+ 5.

Since C1 has minimal size, we have that

|C1| ≤
|H| − |S|

l
≤ 3n− 1

n− c+ 5
<

3n

n− c
< 8,

where the final inequality follows from c < 5
8
n. Writing C for

⋃l
i=2 Ci, we now

have

|C| = |H| − |S| − |C1| ≥ 3n− c+ 4− (l − n+ c− 5)− 8 = 4n− 2c− l + 1.

Since l ≤ 2n− 2c− 1, this implies that |C| ≥ 2n+ 2.
Now, for every i, 1 ≤ i ≤ l, pick a vertex vi in Ci, and let T = {v2, . . . , vl}.

Writing C ′ for C \ T , we claim that C ′ contains a copy of K2n−2c or a white
matching of at least n− l+2 edges. Indeed, suppose that such a matching does
not exist. Then removing a white matching of maximal size from C ′ leaves a
black clique consisting of at least (4n−2c−l+1)−(l−1)−2(n−l+1) = 2n−2c

vertices, as claimed.
If C ′ contains a K2n−2c then we are done, so suppose instead that it contains

a white matching M of at least n− l + 2 edges. We claim that C contains a
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v2

C2

v3C3

v4

C4

v5

C5

v6 C6

v7

C7

v1

C1

∈ M

∈ M ′

∈ M ′′

Fig. 2.1: Construction of a white fan with centre v1

white matching of at least n edges, producing a copy of Fn in H with centre
v1, which is a contradiction.

Denote C ′ \ V (M) by X. Every vertex w ∈ X is joined by white edges to
the l − 2 vertices of T that are not in the same component as w. This allows
us to greedily construct a white matching M ′ between T and X with at least
min{l − 2, |X|} edges. If |M ′| ≥ l − 2, then

|M ∪M ′| ≥ (n− l + 2) + (l − 2) = n,

so M ∪M ′ is the desired white matching. If instead |M ′| = |X|, then every
vertex of C ′ is contained in M ∪M ′. The vertices of T form a white clique,
so we can pair up all but at most one of the vertices of V (T ) \ V (M ′) into a
white matching M ′′. Combining this matching with M ∪M ′, we obtain a white
matching in C with at least |C|−1 vertices. But |C| ≥ 2n+2, so M ∪M ′∪M ′′

contains at least n edges, as claimed.

Note that there is nothing special about the bound c < 5
8
n in the statement

of Lemma 2.2.4. For any fixed ϵ > 0, we could prove a version of the lemma for
0 < c < (1− ϵ)n and graphs on 3n− c+ k vertices, where the additive constant
k is dependent on ϵ.
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Next we shall prove a simple lemma.

Lemma 2.2.5. Let H be a graph on 2k vertices. Suppose that V (H) is the
disjoint union of A and B, each of size k, where H[A] is a clique and H[B] is
an empty graph. Then there is a copy of F⌈ 3

4
k−2⌉ in H or H.

Proof. The role of the colours is interchangeable, so without loss of generality,
we have

D = max
v∈A

|N(v) ∩B| ≥ max
w∈B

|N(w) ∩ A|.

Moreover, clearly D ≥ k
2
. Let z ∈ A be such that |N(z) ∩B| = D.

If there is a matching of deficiency at most D− k
2

from N(z)∩B to A \ {z},
then H contains a black fan with centre z using at least D − (D − k

2
) = k

2

vertices of B and at least k− 2 vertices of A \ {z} (note that we cannot replace
k − 2 with k − 1 here because we do not know the parity of k). As this is at
least

⌈
3
2
k − 2

⌉
non-central vertices in total, we know H contains F⌈ 3

4
k−2⌉ with

centre z.

z

u

A B

N(U) ∩ A

A \N(U)

N(z) ∩B

U

Fig. 2.2: Construction of a white fan with centre u

So assume no such matching exists. Then, by Corollary 2.2.3, there exists
U ⊂ N(z) ∩B with

|N(U) ∩ A| = |N(U) ∩ (A \ {z})|+ 1 < |U | − (D − k
2
) + 1.

Now, as D = maxv∈A |N(v) ∩ B| ≥ maxw∈B |N(w) ∩ A|, and as U is non-
empty, we may pick a vertex u ∈ U , for which we have

|N(U) ∩ A| ≥ |N(u) ∩ A| ≥ k −D.
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Hence we get

|U | > |N(U) ∩ A|+ (D − k
2
)− 1 ≥ (k −D) + (D − k

2
)− 1 ≥ k

2
− 1.

Since
D ≥ |U | > |N(U) ∩ A|+D − k

2
− 1,

we also get |N(U) ∩ A| < k
2
+ 1, and hence |A \N(U)| > k

2
− 1. The bounds

on the sizes of U and A \N(U), combined with the observation that there are
no edges between these two sets, now guarantee a white fan centred at u, with
at least k

2
− 3

2
non-central vertices in A \N(U) and at least k − 2 non-central

vertices in B \ {u}. This fan contains at least
⌈
3
2
k − 7

2

⌉
non-central vertices in

total, so H contains F⌈ 3
4
k−2⌉.

Suppose that G does not contain a copy of Fn, and suppose that G has a
clique A such that |A| > n and every vertex of A has degree more than 2n in
G. Let v be a vertex of A with degree d(v). We now construct sets S(v,A)

and C(v,A), in a slightly more general way than Chen, Yu and Zhao [24].
Let M be a maximal matching in G[N(v) \ A], and let M ′ be a matching

of largest size between the independent set N(v) \ (A ∪ V (M)) and A \ {v}.
Write m and m′ for the number of edges in M and M ′ respectively. The edges
of M and M ′ form the blades of a fan centred at v, and we can pair up all but
at most one of the remaining vertices of A \ {v} into additional blades. We
must therefore have 2m+m′ + |A| − 2 ≤ 2n− 2, so m′ ≤ 2n− |A| − 2m.

Note that

|N(v) \ (A ∪ V (M))| = d(v) + 1− |A| − 2m,

so M ′ has deficiency at least d(v) + 1− 2n. Theorem 2.2.1 now implies that
there exists a set S(v, A) ⊂ N(v) \ (A ∪ V (M)) with

|S(v, A)| ≥ |N(S(v,A)) ∩ (A \ {v})|+ d(v) + 1− 2n,

that is,
|S(v, A)| ≥ |N(S(v,A)) ∩ A|+ d(v)− 2n.

Moreover, we can insist that S(v, A) has minimal size among all the sets
satisfying the inequality above. If there are multiple possible choices of S(v,A),
we choose one arbitrarily. Note that since S(v, A) is contained in N(v) \ (A ∪
V (M)) and M is a maximal matching, S(v, A) is an independent set. For
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convenience, we write C(v, A) = N(S(v, A)) ∩ A, so we have

|S(v,A)| ≥ |C(v,A)|+ d(v)− 2n.

v
A N(v) \ AS(v, A)

V (M)C(v, A)

Fig. 2.3: Construction of S(v,A) and C(v, A)

We can apply the same argument when A is a white clique. In this case, we
consider white edges instead of edges, white degree instead of degree, and so
on. We still denote the resulting sets by S(v,A) and C(v, A); it will be clear
from the context whether we are working with white or black edges.

Note the following property, which follows directly from the fact that
|S(v, A)| ≤ d(v)+1−|A|, combined with the inequality above relating |S(v, A)|
and |C(v,A)|:

Observation 2.2.6. We have |C(v, A)| ≤ 2n+ 1− |A|.

We need the notion of coverability (again analogous to a concept introduced
by Chen, Yu and Zhao [24]).

Definition 2.2.7. Let A be a monochromatic clique such that n < |A| < 2n+1.
For t ≥ 1, we say A is t-coverable if t is the smallest integer for which there
exists a sequence v1, . . . , vt of vertices of A with the following properties:

•
⋃

i C(vi, A) = A.

• For i = 2, . . . , t, we have vi /∈
⋃

j<iC(vj, A).

• For i = 1, . . . , t, we have

|C(vi, A) \
⋃
j<i

C(vj, A)| ≥ |C(z, A) \
⋃
j<i

C(vj, A)|

for any vertex z of A with z /∈
⋃

j<iC(vj, A).
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So, for example, A is 2-coverable if there exist v1, v2 ∈ A where |C(v1, A)|
is maximal over all |C(v, A)|, and v2 is such that v2 /∈ C(v1, A) and C(v1, A) ∪
C(v2, A) = A. It is clear from the definition that t must exist.

v1

v2

v3

A

C(v1, A)

C(v2, A) \ C(v1, A)

C(v3, A) \ (C(v1, A) ∪ C(v2, A))

S(v1, A)

S(v2, A)

S(v3, A)

Fig. 2.4: Example where A is 3-coverable

Note the following simple properties.

Observation 2.2.8. We have that:

• For any j1 < j2,

|C(vj1 , A) \
⋃
i<j1

C(vi, A)| ≥ |C(vj2 , A) \
⋃
i<j1

C(vi, A)|.

• For any j1 ̸= j2, the sets S(vj1 , A) and S(vj2 , A) are disjoint.

• If |A| > k−1
k
(2n+ 1) and A is t-coverable, then t ≥ k.

The final point above follows from Observation 2.2.6, and implies that no
clique satisfying the conditions of Definition 2.2.7 is 1-coverable.
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2.3 Overview of the rest of the proof

The rest of the proof is quite technical, so we first summarise the general
strategy. There are five cases.

Call a monochromatic clique A big if |A| ≥ 7
6
n+ 5 and call it significant if

|A| ≥ n+ 1.
In subsections 2.4.1 and 2.4.2, we handle the easier cases when either some

vertex has very unbalanced degrees (that is, a much larger degree in one colour
than the other) or a significant clique of either colour is t-coverable for some
t ≥ 4. Lemma 2.2.4 and the strategy of Chen, Yu and Zhao [24] suffice to
tackle these cases.

The next three cases, where no vertices have very unbalanced degrees and
all significant cliques are 2-coverable or 3-coverable, form the heart of the proof.

In subsection 2.4.3, there is still a vertex with slightly unbalanced degrees,
forcing the existence of a very large (and in particular big) 3-coverable clique,
and in subsection 2.4.4, the degrees are balanced but we assume there is some
big 3-coverable clique. The proofs of these cases follow a very similar argument.
Both times, we start with the clique A (black without loss of generality) and
its 3-covering v1, v2, v3. We then argue that there must be a large black clique
T disjoint from A in NW (v3) which satisfies certain properties: otherwise, we
would find a white Fn centred at v3. Then we take any z ∈ T and argue that
S(v1, A)∪S(v2, A) must contain a large white clique C with at least one vertex
in each of S(v1, A) and S(v2, A); else we would find a black Fn centred at z.
Finally, we conclude that there must be a white Fn centred at some a ∈ C.

In subsection 2.4.5, we consider the final case where all vertices have balanced
degrees and every big clique is 2-coverable. We start by using Lemma 2.2.4
to find two significant cliques A and B of the same colour, without loss of
generality black, with A moreover being big. We consider a 2-covering v1, v2 of
A and a 2- or 3-covering {wi} of B. We then show there must exist i such that
S(v1, A) and S(wi, B) intersect. Finally we fix some a in this intersection and
find a white Fn centred at it.

2.4 Proof of Theorem 2.1.1

Now we prove Theorem 2.1.1. Let G be a graph with at least
⌊
31
6
n+ 15

⌋
vertices, and suppose for contradiction that neither G nor G contains a copy of
Fn. Throughout, denote

d = max
{
max

v
|N(v)|,max

w
|NW (w)|

}
.
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That is, d is the larger one of the maximum degree and non-degree in our graph
G.

As discussed in Section 2.3, we consider five separate cases.

2.4.1 d ≥ 11
4
n + 5

If d > 3n, contradiction follows immediately from the result of Lin and Li [58]
that R(nK2, Fn) = 3n: consider the neighbourhood of a vertex of degree d in
some colour.

If 11
4
n + 5 ≤ d ≤ 3n, by applying Lemma 2.2.4 to the neighbourhood

of a vertex of degree d in some colour, we find that our graph contains a
monochromatic clique A with size at least 2d − 4n − 8. We assume without
loss of generality that A is a black clique. Since 2d− 4n− 8 > 3

2
n+1, we know

by Observation 2.2.8 that this clique is t-coverable for some t ≥ 4.
Now vt is the centre of a white fan with blades in the sets S(vi, A) for

i = 1, . . . , t− 1. The fan contains all but at most one vertex in each S(vi, A),
so the total number of vertices in the fan is is at least

|S(v1, A)|+ . . .+ |S(vt−1, A)| − (t− 1) + 1.

Since for i = 1, . . . , t− 1, we have

|S(vi, A)| ≥ |C(vi, A)|+ d(vi)− 2n

≥ |C(vi, A)|+ (31
6
n+ 13− d)− 2n

≥ |C(vi, A)|+ 19
6
n− d+ 13,

and
∑t−1

i=1 |C(vi, A)| ≥ t−1
t
|A| ≥ 3

4
|A| by Observation 2.2.8, the number of

vertices in this fan is at least 3
4
|A|+ (t− 1)(19

6
n− d+ 12) + 1.

By our earlier observations that |A| ≥ 2d− 4n− 8 and d ≤ 3n, it follows
that

3
4
|A|+ (t− 1)(19

6
n− d+ 12) + 1 ≥ 13

2
n− 3

2
d+ 31 ≥ 2n+ 31.

Hence the fan has more than n blades and contradiction follows.

2.4.2 d < 11
4
n+5 and some significant clique is t-coverable

for some t ≥ 4

Call this significant clique A, and recall |A| ≥ n+ 1. We assume without loss
of generality that A is a black clique.
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Again, vt is the centre of a white fan containing all but at most one vertex in
each S(vi, A) for i = 1, . . . , t− 1. The number of vertices in the fan is therefore
at least

|S(v1, A)|+ . . .+ |S(vt−1, A)| − (t− 1) + 1.

Since

|S(vi, A)| ≥ |C(vi, A)|+ d(vi)− 2n

≥ |C(vi, A)|+ (31
6
n+ 13− d)− 2n

≥ |C(vi, A)|+ 5
12
n+ 8

for i = 1, . . . , t− 1, and
∑t−1

i=1 |C(vi, A)| ≥ t−1
t
|A| ≥ 3

4
|A| by Observation 2.2.8,

the number of vertices in this fan is at least

3
4
|A|+ (t− 1)( 5

12
n+ 7) + 1 ≥ 2n+ 22.

The contradiction follows.

2.4.3 8
3
n + 6 ≤ d < 11

4
n + 5 and every significant clique

is 2- or 3-coverable

By applying Lemma 2.2.4 to the neighbourhood of a vertex of degree d in some
colour, there exists a monochromatic clique A such that |A| ≥ 4

3
n+ 4, which is

black without loss of generality. By Observation 2.2.8, A is not 2-coverable, so
as it is significant it must be 3-coverable. Let v1, v2, v3 be its 3-covering. Note
also that Observation 2.2.8 tells us that |A| < 3

2
n+ 1.

Claim 2.4.1. The degrees of v1, v2, v3 are all at least 5
2
n+ 5.

Proof. Assume not and suppose that some vi has degree less than 5
2
n+5. Then

it has white degree at least 8
3
n + 8. Now by Lemma 2.2.4, NW (vi) contains

a clique of size at least 4
3
n+ 8 in some colour; call this clique B. But if B is

white, then by Lemma 2.2.5 applied to A and B, there is a copy of Fn in G or
G, a contradiction. Hence the clique is black. But now A and B are disjoint,
and each of the white cliques S(v1, A), S(v2, A), S(v3, A) is disjoint from A

and contains at most one vertex from B. Moreover S(v1, A), S(v2, A), S(v3, A)
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are mutually disjoint sets too by Observation 2.2.8. So we have

|G| ≥ |A|+ |B|+
∑
i

|S(vi, A)| − 3

≥ |A|+ |B|+
∑
i

(|C(vi, A)|+ d(vi)− 2n)− 3

≥ |A|+ |B|+
∑
i

|C(vi, A)|+ 3(31
6
n+ 13− d− 2n)− 3

≥ |A|+ |B|+ |A|+ 3( 5
12
n+ 7)− 3

> 31
6
n+ 15,

which is a contradiction.

So we in fact have |S(vi, A)| ≥ |C(vi, A)|+ 1
2
n+5. Next we show two simple

results that will be useful later.

Claim 2.4.2. We have 1
3
|A| ≤ |C(v1, A)| ≤ 2

3
n and |C(v2, A)| ≥ 1

2
|A \

C(v1, A)| ≥ 1
3
n.

Proof. This follows immediately from Observations 2.2.6 and 2.2.8.

Claim 2.4.3. We have |S(v1, A)|+ |S(v2, A)| > 17
9
n+ 10.

Proof. Using Observation 2.2.8 and Claim 2.4.1, we have

|S(v1, A)|+ |S(v2, A)| ≥ |C(v1, A)|+ |C(v2, A)|+ 2(1
2
n+ 5)

≥ 2
3
|A|+ n+ 10 > 17

9
n+ 10

as required.

Now we get to the heart of the argument.

Claim 2.4.4. There exists a black clique T in NW (v3) \ (S(v1, A) ∪ S(v2, A))

such that |T | > |NT |+ 5
12
n+ 6, where NT = NW (T ) ∩ (S(v1, A) ∪ S(v2, A)).

Proof. Set T ′ = NW (v3) \ (S(v1, A) ∪ S(v2, A)). We form a white fan centred
at v3, and we show that if there is no black clique T ⊂ T ′ such that |T | >
|NT |+ 5

12
n+6 then this fan has at least n blades, which is a contradiction. Let

M be a maximal white matching within T ′, and add blades consisting of the
edges of M . Next, take a maximal white matching M ′ from the black clique
T ′ \ V (M) to S(v1, A)∪ S(v2, A) and add blades consisting of M ′. Finally, add
all but at most one of the remaining vertices of S(vi, A) for i = 1, 2 by pairing
them up together within each set.
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v1

v2

v3

V (M)

A

S(v1, A)

S(v2, A)

T ′

M ′

Fig. 2.5: Construction of a white fan with centre v3 in Claim 2.4.4. Only the
blades of the fan are shown.

Note that we have |NW (v3)| ≥ 31
6
n+ 13− (11

4
n+ 5) = 29

12
n+ 8. The blades

of our fan contain all of the vertices of NW (v3) except for T ′ \ (V (M)∪ V (M ′))

and at most two vertices of S(v1, A) ∪ S(v2, A). But |T ′ \ (V (M) ∪ V (M ′))| is
the deficiency of M ′, and this is at most 5

12
n + 6 by Theorem 2.2.1 and our

assumption that there is no black clique T ⊂ T ′ with |T | > |NT |+ 5
12
n+6. This

implies that the blades of the fan contain at least 29
12
n+ 8− ( 5

12
n+ 6)− 2 = 2n

vertices, producing the desired contradiction.

Now denote by C the largest white clique that can be obtained as follows:
start with S(v1, A) ∪ S(v2, A), remove a set U consisting of |NT | arbitrary
vertices, and then remove a maximal black matching between S(v1, A) \ U and
S(v2, A) \ U .

Claim 2.4.5. We have |C| ≥ |S(v1, A)|+ |S(v2, A)| − |NT | − 2n+ 2|T | − 6.

Proof. Assume that instead |C| < |S(v1, A)|+ |S(v2, A)|− |NT |− 2n+2|T |− 6.
Pick any z ∈ T , and form a black Fn centred at z as follows. First note that a
maximal matching between S(v1, A) \NT and S(v2, A) \NT must contain at
least n+ 3− |T | edges, else the remaining vertices of S(v1, A) ∪ S(v2, A) form
a white clique C ′ larger than C which also satisfies our assumptions. We can
therefore take a matching M between S(v1, A) \ NT and S(v2, A) \ NT with
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v1

v2

v3

z

A

S(v1, A)

S(v2, A)M ′

T

M

Fig. 2.6: Construction of a black fan with centre z. Only the blades of the fan
are shown.

exactly n + 3 − |T | edges and add it to our fan. After this, add a maximal
matching M ′ between T and (S(v1, A)∪S(v2, A))\(NT ∪V (M)). If M ′ consists
of fewer than |T | − 3 edges, then we have

|(S(v1, A) ∪ S(v2, A)) \ (NT ∪ V (M))| ≤ |T | − 4,

and therefore, by Claim 2.4.4,

|S(v1, A)|+ |S(v2, A)| ≤ |T | − 4 + |NT |+ 2(n+ 3− |T |)
= 2n+ 2− (|T | − |NT |)
< 2n+ 2− ( 5

12
n+ 6) = 19

12
n− 4.

But this is impossible, since by Claim 2.4.3 we know that |S(v1, A)| +
|S(v2, A)| > 17

9
n+ 10. So M ′ has at least |T | − 3 edges, and we have found a

fan Fn, which is a contradiction.

Consider the vertices erased from S(vi, A) for i = 1, 2 when we obtain C.
We erase all vertices of U ∩ S(vi, A), of which there are at most |U | = |NT |,
together with half the vertices of the maximal matching between S(v1, A) \ U
and S(v2, A)\U . By Claim 2.4.5, we erase at most |NT |+2n+6−2|T | vertices
from S(v1, A) ∪ S(v2, A), so the maximal matching has at most 2n+ 6− 2|T |
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vertices. We therefore erase at most |NT |+ n+ 3− |T | vertices from each of
S(v1, A) and S(v2, A).

Recall that Claim 2.4.1 implies that |S(vi, A)| ≥ |C(vi, A)|+ 1
2
n+ 5. Com-

bined with Claims 2.4.2 and 2.4.4, this gives

|S(v1, A)|, |S(v2, A)| ≥ 5
6
n+ 5 > 7

12
n+ 5 > |NT |+ n+ 3− |T |.

The white clique C therefore contains a vertex a1 ∈ S(v1, A) and a vertex
a2 ∈ S(v2, A).

v1

v2

v3

a1

a2

A

S(v1, A)

S(v2, A)

C ∩ S(v1, A)

C ∩ S(v2, A)

Fig. 2.7: Set-up for construction of a white fan centred at a1 or a2

Note that by Claims 2.4.3, 2.4.4 and 2.4.5, we have

|C| ≥ |S(v1, A)|+ |S(v2, A)| − |NT | − 2n+ 2|T | − 6

> 17
9
n+ 10 + 2(|T | − |NT |)− 2n− 6

> 13
18
n+ 16.

Consequently, we must have |C ∩ S(v2, A)| > 1
6
n or |C ∩ S(v1, A)| > 5

9
n+ 16.

We treat these cases separately.
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First, assume that |C ∩ S(v2, A)| > 1
6
n. We will construct a white fan

centred at a1 and show that it has at least n blades. We begin by claiming that

|S(v1, A)| > |A \ C(v1, A)| = |A| − |C(v1, A)|.

Indeed this holds, since by Claim 2.4.2 we have

|S(v1, A)| − |A|+ |C(v1, A)| = (|S(v1, A)| − |C(v1, A)|) + 2|C(v1, A)| − |A|
≥ 1

2
n+ 5 + 2

3
|A| − |A|

> 1
2
n+ 5− 1

3
(3
2
n+ 1) > 0.

So up to at most two vertices, we can use all the vertices of S(v1, A), A \
C(v1, A) and C ∩ S(v2, A) in our fan, by first taking blades with a vertex in
S(v1, A) and the other in A \C(v1, A), and then pairing up all but at most one
of the remaining vertices in S(v1, A) and all but at most one of the vertices in
C ∩ S(v2, A). But now the number of vertices in the fan is at least

|S(v1, A)|+ |A \ C(v1, A)|+ |C ∩ S(v2, A)| − 2

= |A|+ (|S(v1, A)| − |C(v1, A)|) + |C ∩ S(v2, A)| − 2

> 4
3
n+ 4 + 1

2
n+ 5 + 1

6
n− 2 = 2n+ 7,

so our fan has at least n blades, which is a contradiction.
Next consider the case |C ∩ S(v2, A)| ≤ 1

6
n, |C ∩ S(v1, A)| > 5

9
n + 16. If

|S(v2, A)| ≥ |A \ C(v2, A)|, we can finish the argument as above and obtain a
fan with at least n blades, now with a2 as the centre: the number of vertices in
the fan is at least

|S(v2, A)|+ |A \ C(v2, A)|+ |C ∩ S(v1, A)| − 2

= |A|+ (|S(v2, A)| − |C(v2, A)|) + |C ∩ S(v1, A)| − 2

> 4
3
n+ 4 + 1

2
n+ 5 + 5

9
n+ 16− 2 > 43

18
n.

So assume |S(v2, A)| < |A \ C(v2, A)|. We construct a white fan centred
at a2 and show that it has at least n blades. First add |S(v2, A)| − 1 blades
with one vertex in S(v2, A) and one in A \C(v2, A), and then pair up all but at
most one vertex of C ∩ S(v1, A). Using Claim 2.4.2, we find that the number
of vertices in the fan is at least

2(|S(v2, A)| − 1) + |C ∩ S(v1, A)| − 1 > 2(|C(v2, A)|+ 1
2
n+ 4) + 5

9
n+ 15

≥ 5
3
n+ 8 + 5

9
n+ 15 > 20

9
n,
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which is a contradiction. Thus we have shown that if 8
3
n+6 ≤ d < 11

4
n+5 and

every significant clique is 2- or 3-coverable, then G contains a monochromatic
Fn.

2.4.4 d < 8
3
n + 6 and there is a 3-coverable big clique

By assumption, there exists a monochromatic (without loss of generality black)
clique A such that 7

6
n+5 ≤ |A| < 3

2
n+1 and A is 3-coverable, with 3-covering

v1, v2, v3. As before, the upper bound on |A| comes from Observation 2.2.8.
Note that v1, v2, v3 all have black degree at least 5

2
n + 7. So we have

|S(vi, A)| ≥ |C(vi, A)|+ 1
2
n+ 7.

As in the previous subsection, we begin by proving some simple results.

Claim 2.4.6. The following inequalities hold:

• 1
3
|A| ≤ |C(v1, A)| ≤ 5

6
n.

• |C(v2, A)| ≥ 1
2
|A \ C(v1, A)| ≥ 1

6
n.

• |C(v3, A) \ (C(v1, A) ∪ C(v2, A))| ≥ 1
6
n.

Proof. The first two results follow immediately by Observations 2.2.6 and 2.2.8.
If we did not have |C(v3, A) \ (C(v1, A) ∪ C(v2, A))| ≥ 1

6
n, we would have

|S(v1, A)|+ |S(v2, A)| ≥ |C(v1, A)|+ |C(v2, A)|+ 2(1
2
n+ 7)

≥ n+ 4 + n+ 14 > 2n+ 2

and hence we would have a white Fn centred at v3 with blades inside S(v1, A)

and S(v2, A). But that is a contradiction.

Claim 2.4.7. |S(v1, A)|+ |S(v2, A)| > 16
9
n+ 16.

Proof. Using Observation 2.2.8, we have

|S(v1, A)|+ |S(v2, A)| ≥ |C(v1, A)|+ |C(v2, A)|+ 2(1
2
n+ 7)

≥ 2
3
|A|+ n+ 14 > 16

9
n+ 16

as required.

Now we get to the key parts of the argument. The next two claims are
analogous to Claims 2.4.4 and 2.4.5.

Claim 2.4.8. There exists a black clique T in NW (v3) \ (S(v1, A) ∪ S(v2, A))

such that |T | > |NT |+ 1
2
n+ 5, where NT = NW (T ) ∩ (S(v1, A) ∪ S(v2, A)).
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Proof. We proceed as in the proof of Claim 2.4.4. Let T ′ = NW (v3)\(S(v1, A)∪
S(v2, A)), and assume that there is no black clique T ⊂ T ′ with |T | > |NT |+
1
2
n + 5. We form a white fan centred at v3 and show that it has at least n

blades, giving a contradiction. Begin by adding blades consisting of the edges
of a maximal white matching M within T ′. Next, add the edges of a maximal
white matching M ′ from the black clique T ′ \V (M) to S(v1, A)∪S(v2, A), and
finally add all but one of the vertices within each of S(v1, A) and S(v2, A) by
pairing them up within each set.

We have that |NW (v3)| ≥ 31
6
n+ 13− (8

3
n+ 6) = 5

2
n+ 7. The blades of our

fan contain all the vertices of NW (v3) except for T ′ \ (V (M) ∪ V (M ′)) and at
most two vertices of S(v1, A) ∪ S(v2, A). Since there is no black clique T ⊂ T ′

with |T | > |NT |+ 1
2
n+5, Theorem 2.2.1 implies that M ′ has deficiency at most

1
2
n+5. But the deficiency of M ′ is |T ′ \ (V (M)∪ V (M ′))|, so the blades of the

fan contain at least 5
2
n+ 7− (1

2
n+ 5)− 2 = 2n vertices, a contradiction.

Now denote by C the largest white clique that can be obtained as follows.
Start with S(v1, A)∪S(v2, A). Then remove a set U consisting of |NT | vertices.
Finally, remove a maximal black matching between S(v1, A)\U and S(v2, A)\U .

Claim 2.4.9. We have |C| ≥ |S(v1, A)|+ |S(v2, A)| − |NT | − 2n+ 2|T | − 6.

Proof. As in the proof of Claim 2.4.5, we suppose that |C| < |S(v1, A)| +
|S(v2, A)|−|NT |−2n+2|T |−6 and construct a black fan centred at an arbitrary
z ∈ T . We first take a matching from S(v1, A)\NT to S(v2, A)\NT with exactly
n+3− |T | edges, which must exist since otherwise S(v1, A)∪S(v2, A) contains
a white clique larger than C satisfying the same conditions as C. We then add
a maximal matching M ′ between T and (S(v1, A) ∪ S(v2, A)) \ (NT ∪ V (M)).
If M ′ has fewer than |T | − 3 edges, then we have

|(S(v1, A) ∪ S(v2, A)) \ (NT ∪ V (M))| ≤ |T | − 4,

and now Claim 2.4.8 implies that

|S(v1, A)|+ |S(v2, A)| ≤ |T | − 4 + |NT |+ 2(n+ 3− |T |)
= 2n+ 2− (|T | − |NT |)
< 3

2
n− 3.

But Claim 2.4.7 tells us that |S(v1, A)| + |S(v2, A)| > 16
9
n + 16, so M ′ must

have at least |T | − 3 edges, and we have a black Fn centred at z, which is a
contradiction.
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Recall that in the previous subsection, Claim 2.4.5 implied that when
obtaining C we erased at most |NT |+n− 3− |T | vertices from each of S(v1, A)
and S(v2, A). The same is true in this case, using Claim 2.4.9 in place of Claim
2.4.5. The argument is identical word-for-word, so we will not repeat it here.

Recall that |S(vi, A)| ≥ |C(vi, A)|+ 1
2
n+7. Together with Claims 2.4.6 and

2.4.8, this implies that

|S(v1, A)|, |S(v2, A)| ≥ 2
3
n+ 7 > 1

2
n > |NT |+ n+ 3− |T |.

The white clique C therefore contains a vertex a1 ∈ S(v1, A) and a vertex
a2 ∈ S(v2, A).

Note that by Claims 2.4.7, 2.4.8 and 2.4.9, we have

|C| ≥ |S(v1, A)|+ |S(v2, A)| − |NT | − 2n+ 2|T | − 6

> 16
9
n+ 16 + 2(|T | − |NT |)− 2n− 6

> 7
9
n+ 20.

So we must have |C ∩S(v2, A)| > 1
3
n or |C ∩S(v1, A)| > 4

9
n+20. We treat the

two cases separately.
First, assume |C ∩ S(v2, A)| > 1

3
n. We will construct a white fan centred at

a1 and show that it has at least n blades. We claim that

|S(v1, A)| > |A \ C(v1, A)| = |A| − |C(v1, A)|.

Indeed this holds, since by Claim 2.4.6 we have

|S(v1, A)| − |A|+ |C(v1, A)| = (|S(v1, A)| − |C(v1, A)|) + 2|C(v1, A)| − |A|
≥ 1

2
n+ 7 + 2

3
|A| − |A|

> 1
2
n+ 7− 1

3
(3
2
n+ 1) > 0.

So up to at most two vertices, we can use all the vertices of S(v1, A), A \
C(v1, A) and C ∩ S(v2, A) in our fan, by first taking blades with one vertex in
S(v1, A) and the other in A \C(v1, A), and then pairing up all but at most one
of the remaining vertices in S(v1, A) and all but at most one of the vertices in
C ∩ S(v2, A). But

|S(v1, A)|+ |A \ C(v1, A)|+ |C ∩ S(v2, A)| − 2

= |A|+ (|S(v1, A)| − |C(v1, A)|) + |C ∩ S(v2, A)| − 2

> 7
6
n+ 5 + 1

2
n+ 7 + 1

3
n− 2 = 2n+ 10,
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and so our fan has at least n blades, which is a contradiction.
Next consider the case |C ∩ S(v1, A)| > 4

9
n+ 20 and |C ∩ S(v2, A)| ≤ 1

3
n.

Here we consider two subcases.
If |C(v2, A)| ≥ 5

18
n, we construct a white fan centred at a2 and show that it

has at least n blades. First form as many blades as possible with one vertex in
S(v2, A) and the other in A \ C(v2, A), and then pair up all but at most one
of the vertices in C ∩ S(v1, A). If |S(v2, A)| > |A \ C(v2, A)|, then we can also
pair up all but at most one of the remaining vertices in S(v2, A), and we get
a contradiction as in the previous case, but with v1 and v2 interchanged: the
number of vertices in the fan is at least

|S(v2, A)|+ |A \ C(v2, A)|+ |C ∩ S(v1, A)| − 1

= |A|+ (|S(v2, A)| − |C(v2, A)|) + |C ∩ S(v1, A)| − 2

> 7
6
n+ 5 + 1

2
n+ 7 + 4

9
n+ 20− 2 > 19

9
n.

If instead |S(v2, A)| ≤ |A \ C(v2, A)|, then our white fan has at least

2(|S(v2, A)| − 1) + |C ∩ S(v1, A)| − 1

≥ 2|C(v2, A)|+ 2(1
2
n+ 7)− 2 + 4

9
n+ 19

≥ 5
9
n+ n+ 14 + 4

9
n+ 17 = 2n+ 31

vertices, so once again it has at least n blades and we reach a contradiction.
If |C(v2, A)| < 5

18
n, it follows by Observation 2.2.8 that

|C(v3, A) \ (C(v1, A) ∪ C(v2, A))| < 5
18
n.

Hence |C(v1, A) ∪ C(v2, A)| ≥ 8
9
n, and then Claims 2.4.8 and 2.4.9 give

|C| ≥ |S(v1, A)|+ |S(v2, A)| − |NT | − 2n+ 2|T | − 6

≥ |C(v1, A)|+ |C(v2, A)|+ 2(1
2
n+ 7) + 2(|T | − |NT |)− 2n− 6

≥ 8
9
n+ n+ 14 + 2(1

2
n+ 5)− 2n− 6 = 8

9
n+ 18.

So as |C ∩ S(v2, A)| ≤ 1
3
n, we have |C ∩ S(v1, A)| ≥ 5

9
n+ 18.

Now we form a white fan and show that it has at least n blades. Once
again, we pick a2 as the centre. Recall that by Claim 2.4.6,

|C(v3, A) \ (C(v1, A) ∪ C(v2, A))| ≥ 1
6
n.
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a2

A

S(v1, A)

S(v2, A)

C ∩ S(v1, A)

C(v2, A)

C(v3, A) \ (C(v1, A) ∪ C(v2, A))

Fig. 2.8: Construction of a white fan centred at a2 when |C(v2, A)| < 5
18
n.

Only the blades of the fan are shown.

First form
⌊
1
6
n
⌋

blades by pairing up vertices of C ∩ S(v1, A) and C(v3, A) \
(C(v1, A) ∪ C(v2, A)). Next, pair all but at most one of the remaining vertices
of C ∩ S(v1, A) with each other into blades, and then form as many blades as
possible with one vertex in S(v2, A) and the other in A \ C(v2, A). If some
vertices of S(v2, A) remain, pair all of those except at most one with each other
into blades. This means our fan either contains all but at most two vertices of
S(v2, A), A \ C(v2, A), C ∩ S(v1, A), in which case we reach a contradiction as
before, or by Claim 2.4.6 it contains at least

1
6
n− 1 + |C ∩ S(v1, A)| − 1 + 2(|S(v2, A)| − 1)

≥ 1
6
n+ 5

9
n+ 16 + 2|C(v2, A)|+ 2(1

2
n+ 7)− 2

≥ 13
18
n+ 28 + 2(1

6
n) > 19

18
n

vertices, once again giving the desired contradiction. Therefore if d < 8
3
n+ 6

and G contains a 3-coverable big clique, then G contains a monochromatic Fn.
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2.4.5 d < 8
3
n + 6 and every big clique is 2-coverable

We now come to the final case. We start by proving a simple but important
claim.

Claim 2.4.10. There exist two disjoint cliques A and B of the same colour
such that 4

3
n+ 1 > |A| ≥ |B| ≥ n+ 1 and |A|+ |B| =

⌊
7
3
n+ 18

⌋
.

Proof. First, note that by applying Lemma 2.2.4 to the neighbourhood of a
vertex of degree d in some colour, there is a monochromatic clique C of order at
least 2d− 4n− 8 in G. Since 2d ≥ |V (G)|− 1 ≥ 31

6
n+13, this clique must have

size at least 7
6
n+ 5. Hence C is big, and so by our assumption it is 2-coverable.

Let S(u1, C), S(u2, C) be a 2-covering of C. We have

|S(u1, C)|+ |S(u2, C)| ≥ |C|+ d(u1) + d(u2)− 4n

≥ 2d− 8n− 8 + 2(31
6
n+ 13− d) = 7

3
n+ 18.

We may assume that |S(u1, C)| ≥ |S(u2, C)|. We can now clearly pick
cliques A ⊂ S(u1, C) and B ⊂ S(u2, C), of the opposite colour to C, with
|A| ≥ |B| and |A|+ |B| =

⌊
7
3
n+ 18

⌋
. Since S(u1, C) and S(u2, C) are disjoint,

so are A and B. Note that A is a big clique, so it is 2-coverable. By Observation
2.2.8, we must have |A| < 4

3
n+ 1. The result then follows.

Without loss of generality, assume A and B are black cliques. Note that B
need not be big, but it is significant, so by assumption it is not t-coverable for
any t ≥ 4. Hence B is either 2-coverable or 3-coverable.

Now let v1, v2 be the covering of A, and let w1, w2 (and possibly also w3)
be the covering of B.

Claim 2.4.11. There exists i such that S(wi, B) ∩ S(v1, A) ̸= ∅.

Proof. Assume not. Then all the sets S(wi, B) as well as S(v1, A) are disjoint
independent sets. A and B are disjoint cliques, and hence each of these can
share at most one vertex with each of the independent sets. So G has at least

|A|+ |B|+ |S(v1, A)|+
∑
i

|S(wi, B)| − 8

vertices. But now

|S(v1, A)| ≥ |C(v1, A)|+ d(v1)− 2n

≥ 1
2
|A|+ 31

6
n+ 13− d− 2n

≥ 1
2
|A|+ 1

2
n+ 7.
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Similarly, we obtain

|S(wi, B)| ≥ |C(wi, B)|+ 1
2
n+ 7

for each i, and therefore∑
i

|S(wi, B)| ≥ |B|+ 2(1
2
n+ 7).

Putting these together,

|A|+ |B|+ |S(v1, A)|+
∑
i

|S(wi, B)| − 8

≥ 3
2
(|A|+ |B|) + 1

2
|B|+ 3

2
n+ 13 ≥ 11

2
n+ 39 > |V (G)|

which is a contradiction.

We now fix S(wi, B) such that S(wi, B)∩S(v1, A) ̸= ∅, and let a ∈ S(v1, A)∩
S(wi, B). We will consider two cases, namely |B \ C(wi, B)| ≥ 1

3
n and |B \

C(wi, B)| < 1
3
n. In each case, we will construct a white fan centred at a and

show that it has at least n blades. We will need a simple claim.

Claim 2.4.12. The following inequalities hold:

• |S(wi, B)| ≥ 1
2
n+ 7.

• |S(v1, A)| ≥ |A \ C(v1, A)|+ 1
2
n+ 7.

• |S(v1, A)|+ |A \ C(v1, A)| ≥ 5
3
n+ 15.

Proof. For the first inequality, we showed in the proof of Claim 2.4.11 that

|S(wi, B)| ≥ |C(wi, B)|+ 1
2
n+ 7 ≥ 1

2
n+ 7.

We also showed that |S(v1, A)| ≥ |C(v1, A)|+ 1
2
n+ 7 using the same argument.

Observation 2.2.8 gives that |C(v1, A)| ≥ 1
2
|A|, implying the second inequality.

For the final inequality, note that |A| ≥ 1
2

⌊
7
3
n+ 18

⌋
≥ 7

6
n+ 8, giving

|S(v1, A)|+ |A \ C(v1, A)| = |S(v1, A)| − |C(v1, A)|+ |A|
≥ 1

2
n+ 7 + 7

6
n+ 8 = 5

3
n+ 15.

First, assume that |B \ C(wi, B)| ≥ 1
3
n. We start by picking

⌊
1
3
n
⌋

blades
with a vertex in S(wi, B) and the other in B \ C(wi, B); by Claim 2.4.12, this
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can be done. Including a, we have used at most 1
3
n+ 1 vertices of S(v1, A), so

Claim 2.4.12 tells us that there are still more than |A \ C(v1, A)| vertices in
S(v1, A) that we have not yet added to the fan. We can therefore keep adding
blades with a vertex in S(v1, A) and the other in A \ C(v1, A) until we run
out of vertices in A \ C(v1, A). Finally, we pair all the remaining vertices of
S(v1, A) into blades, except possibly one vertex.

The fan now contains all the vertices of A \C(v1, A), all but at most one of
the vertices of S(v1, A), and

⌊
1
3
n
⌋

vertices of B \C(wi, B). We have counted at
most one vertex twice, since A is disjoint from S(v1, A) and B, and B shares
at most one vertex with S(v1, A). Thus, by Claim 2.4.12, we have used a total
of at least

|S(v1, A)|+ |A \ C(v1, A)|+ 1
3
n− 3 ≥ 5

3
n+ 15 + 1

3
n− 3 = 2n+ 12

vertices. So our fan has at least n blades and we have reached a contradiction.

a

A B
C(v1, A) C(wi, B)

S(v1, A) S(wi, B)

Fig. 2.9: Construction of a white fan centred at a when |B \ C(wi, B)| < 1
3
n.

Only the blades of the fan are shown. Potential single-vertex intersections
A ∩ S(wi, B) and B ∩ S(v1, A) are not shown.

Next, assume that instead |B \ C(wi, B)| < 1
3
n. Note that as S(v1, A) ∩

S(wi, B) is a white clique, it must have fewer than 4
3
n+ 1 vertices, or else by

Observation 2.2.8 it would not be 2-coverable, contradicting our assumption
about big cliques. Since S(v1, A) and S(wi, B) intersect each of B and A in at
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most one vertex, we have

|S(v1, A) ∪ S(wi, B)|+ |A \ C(v1, A)|+ |B \ C(wi, B)|
≥ |S(v1, A)|+ |S(wi, B)| − |S(v1, A) ∩ S(wi, B)|+ |A|+ |B|

− |C(v1, A)| − |C(wi, B)| − 2

≥ 2(1
2
n+ 7) + 7

3
n+ 17− (4

3
n+ 1)− 2 = 2n+ 28.

Thus if we can show we can find a white fan centred at a using all but at
most two of the vertices in

S(v1, A) ∪ S(wi, B) ∪ (A \ C(v1, A)) ∪ (B \ C(wi, B)),

then it has at least n blades and we are done.
We start by creating blades with one vertex in B \ C(wi, B) and the other

in S(wi, B). We eventually run out of vertices in B \ C(wi, B), as

|B \ C(wi, B)| < 1
3
n < 1

2
n+ 7 ≤ |S(wi, B)|,

using Claim 2.4.12 for the last inequality. Next, we create blades with one
vertex in S(v1, A) and the other in A \ C(v1, A). Since we know that

|S(v1, A)| ≥ |A \ C(v1, A)|+ 1
2
n+ 7

by Claim 2.4.12, and we used at most 1
3
n+1 vertices of S(v1, A) in the previous

step, we will run out of vertices in A \ C(v1, A) first. Finally, we can use all
but at most one of the remaining vertices in S(v1, A) by pairing them up, and
we can use all but at most one of the remaining vertices in S(wi, B) \ S(v1, A)
by pairing them up. The result follows, finishing the proof of Theorem 2.1.1.

2.5 Conclusion

In this chapter, through controlling the degrees of the vertices as well as taking a
more global approach, we have reduced the bound on R(Fn) from (5+ 1

2
)n+O(1)

to (5 + 1
6
)n+O(1). This is still far from the lower bound of 9

2
n+O(1), which

we suspect is much closer to the correct magnitude.
We expect that with some more care the methods in our proof could likely

be improved to give an upper bound of (5 + δ)n + O(1) for some δ < 1
6
,

but we encounter more obstacles as we approach 5n. For example, our proof
repeatedly makes use of monochromatic cliques of order significantly larger
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than n. However, in a graph of order 5n+O(1) in which every vertex has degree
around 5

2
n and there is no monochromatic Fn, Lemma 2.2.4 only guarantees

the existence of a clique of order n + O(1). It therefore seems unlikely that
present methods could bring the upper bound close to 9

2
n, or even verify the

conjecture of Chen, Yu and Zhao [24] that r(Fn) ≤ R(nK3) = 5n.





Chapter 3

Odd colourings on the torus

3.1 Introduction

The subject of graph colouring originates with the statement of the Four-Colour
Problem by Guthrie in 1852: can every map on the plane be coloured with four
colours in such a way that no two neighbouring regions share the same colour?
This problem was a major focus of research in combinatorics for a century,
beginning in earnest with Cayley’s article in 1879 [21] and Kempe’s claimed
proof [52] later the same year. Kempe’s proof contained an error which was
discovered only in 1890 by Heawood [48]; however, as Heawood noted, Kempe’s
argument did show that five colours suffice.

Kempe observed (although not using modern terminology) that the problem
of colouring a map is equivalent to finding a proper colouring of a graph G,
namely a colouring of the vertices of G such that adjacent vertices have different
colours. This graph is formed by placing a vertex in every face and joining
two vertices if the corresponding faces are adjacent. Maps drawn on the plane
correspond to planar graphs. The smallest number of colours in any proper
colouring of G is the chromatic number of G, denoted χ(G), so the Four-Colour
Problem corresponds to asking whether every planar graph G has χ(G) ≤ 4.

In modern language, Kempe’s general approach is as follows. He considers a
minimal planar graph G with χ(G) ≥ 5 and finds a set of configurations that is
unavoidable, meaning that one of these configurations must appear somewhere
in any planar graph. We will purposefully keep the definition of “configuration”
vague, but it should be thought of as a particular arrangement of vertices, some
of which have their degrees specified. Kempe attempts to show that his set
of unavoidable configurations is also reducible: this means that any graph H

containing such a configuration can be reduced to a graph with fewer vertices
or edges, which by induction we can assume to be 4-colourable, in such a way
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that the 4-colouring can be extended to a 4-colouring of H. The existence of a
set that is both unavoidable and reducible then immediately implies that no
such minimal counterexample can exist, and so χ(G) ≤ 4 for all planar G.

While Kempe’s proof was flawed, the ideas behind it proved to be useful.
Other approaches towards solving the Four-Colour Problem were tried: for
example, Birkhoff [9] attempted to use algebraic methods, inventing the chro-
matic polynomial. However, constructing a set of configurations that is both
unavoidable and reducible was ultimately the more successful method.

Through the 20th century, more and more sets of configurations in the plane
were found to be either unavoidable or reducible. Much of the early work on
reducibility was done by Birkhoff [10], and his work was extended by Franklin
[40] in 1922. In general, proving that a configuration is reducible requires
showing that it can be reduced no matter how the neighbours of the vertices
in the configuration are coloured. The number of possible colourings of these
vertices quickly becomes very large and difficult for a human to check.

Kempe gave the first non-trivial example of an unavoidable set when he
showed that any planar graph must contain a vertex of degree at most 5. Cayley
[21] noted that we can add edges to any planar graph until all faces are triangles;
it therefore suffices to prove that all such triangulated graphs are 4-colourable,
since adding edges cannot reduce the chromatic number of a graph. We can
thus consider sets that are unavoidable in triangulated graphs: finding such a
set that consists only of reducible configurations would prove that χ(G) ≤ 4 for
all triangulated graphs and therefore for all planar graphs. The first advance
on unavoidable sets was made in 1904 by Wernicke [85], who proved that any
triangulated graph contains a vertex of degree less than 5 or a vertex of degree
5 that is adjacent to a vertex of degree 5 or 6. Further progress was made by
Franklin [40] and Lebesgue [55], but these ideas were not sufficient to solve the
problem.

The most important breakthrough was made by Heesch, who developed a
much more powerful technique for finding unavoidable sets which would become
known as the method of discharging. Heesch published his work in 1969 [49]
but had been working on it for the previous 20 years. We will discuss the
method of discharging in more detail in Section 3.2 and use it in Section 3.4.
Finally, Appel and Haken, assisted by Koch [5, 6], proved that χ(G) ≤ 4 for
all planar graphs G, using a very complex discharging argument. The proof
was announced in 1976 and published the following year. The unavoidable set
contained 1936 configurations, and a computer was required to prove that these
were all reducible. The Four-Colour Problem therefore became the Four-Colour
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Theorem. See Wilson’s book [86] for further background, more details on the
techniques used in the proof, and other results on graph colouring.

The Four-Colour Problem can be modified by imposing constraints on the
colouring. For example, we can insist that the colours of the vertices in the
neighbourhood of each vertex satisfy some condition. One such constraint was
recently introduced by Petruševski and Škrekovski [68]: a proper odd vertex-
colouring of a simple graph G, often referred to as an odd colouring for short,
is a proper colouring c of V (G) with the property that, for every non-isolated
vertex v of G, there exists a colour i such that |c−1(i) ∩N(v)| is odd: in other
words, for every v, there is some colour that appears an odd number of times
in the neighbourhood of v. The odd chromatic number of a graph G, denoted
χo(G), is the smallest number k such that G admits an odd colouring using k

colours.
Odd colouring on graphs is a special case of a more general notion of odd

colouring for hypergraphs, introduced by Cheilaris, Keszegh and Pálvölgyi [23]
in 2013. An odd colouring of a hypergraph H is a colouring of the vertices of
H such that for every edge e, some colour appears an odd number of times in
the vertices of e. Note that the notion of odd colouring for a graph G does
not arise from setting H = G; instead, H has the same vertex set as G, but
the edges of H are the edges of G (forcing the colouring to be proper) and the
neighbourhoods of the vertices of G. Now odd colourings of H as a hypergraph
correspond directly to odd colourings of G as a graph.

Cheilaris, Keszegh and Pálvölgyi used odd colourings to find lower bounds for
conflict-free colourings of hypergraphs; a conflict-free colouring of a hypergraph
H is a colouring of the vertices of H such that for every edge e, some colour
appears exactly once in the vertices of e. Conflict-free colourings are of interest
in modelling frequency assignments on cellular networks: see, for example,
[35, 79]. Conflict-free colourings can be defined for graphs, analogously to
odd colourings: a proper colouring of a graph G is conflict-free if, for every
vertex v, some colour appears exactly once in its neighbourhood. Clearly any
conflict-free colouring is an odd colouring.

Note that while we trivially have χo(G) ≥ χ(G), there is no upper bound for
χo(G) in terms of χ(G). To see this, fix an integer n ≥ 2 and consider a bipartite
graph H with vertex classes X = {x1, . . . , xn} and Y = {yi,j : 1 ≤ i < j ≤ n},
and edges yi,j ∼ xi and yi,j ∼ xj for each i, j. Clearly χ(H) = 2, but for each i

and j, xi and xj must have different colours, since otherwise no colour appears
an odd number of times in N(yi,j). Hence χo(H) ≥ n+ 1.

One way in which odd colouring differs fundamentally from standard graph
colouring is that a proper subgraph of G can have a larger odd chromatic
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number than G itself. For example, the star K1,3 has odd chromatic number 2,
but its proper subgraph K1,2 has odd chromatic number 3.

Just as for proper colourings, we can ask for the minimum number of colours
required to properly odd-colour every planar graph. It is easily seen that 4

colours will no longer suffice: the cycle C5 requires 5 colours. Petruševski and
Škrekovski [68] used the discharging method to prove that every planar graph
G satisfies χo(G) ≤ 9, and conjectured that in fact χo(G) ≤ 5 for all planar
graphs, which would be best possible. Caro, Petruševski and Škrekovski [20]
then used a result of Aashtab, Akbari, Ghanbari and Shidani [1], derived from
the Four-Colour Theorem, to prove that χo(G) ≤ 8 if G is a connected planar
graph that has even order or contains a vertex of degree 2 or any odd degree.
Petr and Portier [67] used the discharging method to cover the remaining cases,
proving that χo(G) ≤ 8 for all planar graphs G. Fabrici, Lužar, Rindošová and
Soták [36] gave an independent proof of the same bound; in fact they proved
the more general result that every planar graph has a conflict-free colouring
with at most 8 colours.

A major difference between the original Four-Colour Problem and the equiv-
alent problem for odd colourings is that we cannot only work with triangulated
graphs, because adding edges can decrease the odd chromatic number of a
graph.

Another way in which the Four-Colour Problem can be modified is by
considering graphs embedded in surfaces other than the plane. We will use the
word “surface” to refer to compact surfaces with no boundary. The classification
theorem for such surfaces was first proved rigorously by Brahana [15] although
it had been stated previously multiple times without full justification. This
classification is as follows:

• Tg, the torus with g holes, g ≥ 0. These are orientable surfaces. Note
that T0 is the sphere and T1 is the standard torus.

• Sg, a sphere with g discs cut out, g ≥ 1, and a cross-cap added in place
of each disc. In other words, every point on the boundary of each disc is
identified with the point opposite it. These are non-orientable surfaces.
S1 is the real projective plane and S2 is the Klein bottle.

Here g is the genus of the surface.
Note that the plane can be turned into a sphere by the addition of a

single point, so for our purposes the plane and the sphere are the same.
Considering chromatic numbers of graphs on other compact surfaces is therefore
a generalisation of the Four-Colour Problem. We can define the chromatic
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number of a surface S, χ(S), to be the maximum of the chromatic numbers of
all graphs that embed into S. It is not immediately clear why such a maximum
should exist, but Heawood [48] proved that

χ(S) ≤
⌊
7 +

√
49− 24E

2

⌋
for surfaces other than the sphere, where E is the Euler characteristic of the
surface, equal to 2 − 2g for orientable surfaces and 2 − g for non-orientable
surfaces.

Heawood’s bound gives that χ(T ) ≤ 7 for the torus T , and Heawood also
found an embedding of the complete graph K7 in the torus, proving that
χ(T ) = 7. In fact, Heawood’s bound is exact for all surfaces except the Klein
bottle, which has Heawood bound 7 but chromatic number 6. This was proved
across many papers by different authors, finishing with Ringel and Youngs [72]
in 1968.

In this chapter, we will consider odd colourings of graphs that can be
embedded into a torus; we call these graphs toroidal graphs. Since K7 embeds
in the torus, at least 7 colours are sometimes required to odd-colour a toroidal
graph. We will demonstrate an upper bound on χo(G) for toroidal graphs:

Theorem 3.1.1. Let G be a toroidal graph. Then χo(G) ≤ 9.

This implies that the maximum possible value of χo(G) for toroidal graphs
must be 7, 8 or 9.

Our proof mainly builds on the discharging techniques used by Petruševski
and Škrekovski [68] in their proof that χo(G) ≤ 9 for planar graphs. Our
application of the discharging method is rather more sensitive and leaves a
special case that must be dealt with separately.

We begin with an overview of the discharging method in Section 3.2. In
Section 3.3, we make some preliminary observations. We apply the discharging
method in Section 3.4. We then tackle the remaining special case in Section
3.5. In Section 3.6, we discuss the implications of our result and opportunities
for further research.

3.2 Overview of the discharging method

Before we embark on the proof of Theorem 3.1.1, we will give an introduction
to the method of discharging in a simpler setting. Following Wilson’s book
[86], we will use it to give a proof of the following result, which was mentioned
in the previous section:
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Theorem 3.2.1 (Wernicke [85]). Let G be a triangulated planar graph. Then
either G contains a vertex of degree at most 4, or G contains a vertex of degree
5 that is adjacent to a vertex of degree 5 or 6.

Let the number of vertices, edges and faces of a graph G be V , E and F

respectively. The set of faces of G, which we call F (G), includes the exterior,
infinite face (note that if we draw the graph on the sphere, this face is just like
all the others). Euler’s formula states that, for a connected planar graph G, we
have

V − E + F = 2.

Euler’s formula is essential for almost all colouring results for planar graphs,
because it implies that every planar graph contains a vertex of degree at
most 5. We begin by noting that every face of G has at least 3 edges, so by
double-counting we obtain 3F ≤ 2E. This implies that

V − 1
3
E ≥ 2,

and so ∑
v∈G

d(v) = 2E ≤ 6V − 12.

It immediately follows that some v has d(v) ≤ 5.
The idea behind the discharging method is that we assign “charge” to the

vertices (and possibly faces) of a graph G according to their degrees (and
possibly sizes) in such a way that the total charge across the whole graph
is negative. We then redistribute the charge between the vertices and faces
according to some set of rules which preserve charge. The aim is to find some
set S of configurations such that if none of those configurations is present in G,
then after the redistribution of charge, every vertex and face has non-negative
charge. This is a contradiction, since the total charge is negative and charge is
conserved by the rules. Hence S is an unavoidable set.

We will now prove Theorem 3.2.1 using the discharging method.

Proof of Theorem 3.2.1. We begin by assigning charge d(v)− 6 to every vertex
v ∈ G. The total charge is now∑

v∈G

d(v)− 6V ≤ −12,

by Euler’s formula as above.
We use a single discharging rule: every vertex of degree at least 7 sends

charge 1
5

to each of its neighbours of degree 5.
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If G has a vertex of degree at most 4, then we are done, so as G is planar
we can assume it has minimum degree 5. The vertices of degree 5 begin with
charge −1. If a vertex of degree 5 has a neighbour of degree 5 or 6 then we are
done, so we may assume that if v ∈ G has degree 5 then every neighbour of v
has degree at least 7. By the discharging rule, v then receives charge 1

5
from

each of its 5 neighbours and finishes with charge 0. The vertices of degree 6

begin with charge 0 and are unaffected by the discharging rule, so they also
finish with charge 0.

We are left with the vertices of degree at least 7. Let w be such a vertex,
and suppose d(w) = d ≥ 7. We consider the neighbours of w in the order in
which they appear around w. If two neighbours of w appear consecutively in
order around w, then they must be adjacent, because G is a triangulated graph.
Since we can assume no two vertices of degree 5 are adjacent, it follows that at
most half of the neighbours of w have degree 5. The vertex w therefore finishes
with charge at least

(d− 6)− 1
2
d
(
1
5

)
= 9

10
d− 6 ≥ 63

10
− 6 > 0.

Hence every vertex of G ends with charge at least 0. But this is a contradiction,
since G began with total charge −12 across all vertices, and charge is conserved.
Theorem 3.2.1 follows.

In general we will assign charge to the faces of the graph as well as the
vertices. We need to define the size of a face f , which we will denote d(f).
Note that the boundary of f is not necessarily a cycle: for example, it could
consist of a cycle together with some vertices of degree 1 in the interior of the
cycle, each joined to a vertex in the cycle. We must therefore take care with the
definition of d(f). Consider the boundary of f as a closed walk. We define d(f)

to be the number of vertices appearing in this walk, counting with multiplicity;
when f is a cycle, this is of course equal to the number of vertices of f .

There are several standard ways in which charge may be assigned to the
vertices and faces of a planar graph such that the total charge is a negative
constant. One way is to assign charge d(v)− 6 to each vertex, as we did for the
proof of Theorem 3.2.1, and charge 2d(f)− 6 to each face. The total charge
across all the vertices and faces of G is now∑

v∈G

(d(v)− 6) +
∑

f∈F (G)

(2d(f)− 6) = 2E − 6V + 4E − 6F

= −6(V − E + F ) = −12,
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by noting that summing d(f) over all faces of the graph counts every edge
exactly twice, and then applying Euler’s formula. This is the distribution of
initial charges that was used by Petruševski and Škrekovski [68] in their proof
that χo(G) ≤ 9 for planar graphs, and by Petr and Portier [67] in improving
this upper bound to 8. It is also the distribution that we will use, but the fact
that we are working with toroidal graphs rather than planar graphs will cause
difficulties, because the total charge turns out to be 0 rather than negative.
This will be discussed further in Section 3.4.

3.3 Outline of the proof and preliminaries

For convenience, we will refer to a proper odd colouring with at most 9 colours
as a nice colouring. From now on, we assume that there exists a toroidal graph
which does not have a nice colouring, and G = (V,E) will always denote a
minimal such graph. Clearly G is connected.

In our proof, we will often be faced with a situation where we have a
colouring c of G \ {v}, and we would like to find a colour that we can use at v
to extend c to a nice colouring of G. There are two reasons why we might not
be able to use a particular colour at v. Firstly, for each w ∈ N(v), we cannot
use c(w) at v, since the resulting colouring would not be proper. We refer to
such colours as forbidden at v by properness. Secondly, for each w ∈ N(v),
there can be at most one colour b(w) such that using b(w) at v would result
in each colour being used an even number of times in N(w). We refer to such
colours as forbidden at v by oddness. There are therefore at most 2d(v) colours
forbidden at v in total.

We will say that a colouring is proper at v if v is coloured differently from all
its neighbours, and odd at v to mean that some colour appears an odd number
of times in N(v). We will also use this terminology for partial colourings as
long as they are defined at all the vertices of N(v). Note that if v has odd
degree, then any colouring is automatically odd at v.

For a graph G on a surface S with Euler characteristic x, we have a version
of Euler’s formula:

V − E + F ≥ x.

The torus has Euler characteristic 0, so for any toroidal graph we have

V − E + F ≥ 0.
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Equality holds if and only if every face of G is homeomorphic to a disk (see
[63], Chapter 3). Note that, unlike for planar graphs, G being connected is not
sufficient for equality to hold.

As for planar graphs, we have 3F ≤ 2E by double-counting. It follows that
V ≥ 1

3
E, and so ∑

v∈G

d(v) = 2E ≤ 6V,

so δ(G) ≤ 6. In order for equality to hold, G must be 6-regular and every face
of G must have 3 edges. In addition, equality must hold in Euler’s formula, so
every face of G must be homeomorphic to a disk. Therefore δ(G) = 6 iff G

is 6-regular and all its faces are triangles, in other words, iff G is a 6-regular
triangulation of the torus.

In fact, for our minimal G, we must have δ(G) ≥ 5. This was proved by
Petruševski and Škrekovski [68] in the context of planar graphs, but still holds
for toroidal graphs. For completeness, we reproduce their proof here.

Claim 3.3.1. G has minimum degree δ(G) ≥ 5.

Proof. Suppose that G contains a vertex v of degree 1 or 3. Let c be a nice
colouring of G \ {v}, which exists by minimality. We would like to extend c

to a nice colouring of G. There are now at most 3 colours forbidden at v by
properness and at most 3 forbidden by oddness, so there is some colour left
over that can be used at v. Since v has odd degree, the resulting colouring is
odd at v and therefore nice, which is a contradiction.

Now suppose instead that G contains a vertex v of degree 2 or 4. Let w

be an arbitrary neighbour of v, and let G′ be the graph constructed from G

by removing v and then joining w to every vertex in NG(v) to which it is
not already adjacent. The graph G′ is toroidal, and so by minimality it has
a nice colouring c. Now we return to G and colour the vertices of G \ {v}
according to c. There are at most 4 colours forbidden at v by properness and
4 forbidden by oddness, leaving a colour that can be used at v. Since c is a
proper colouring of G′, the colour c(w) appears exactly once in N(v), so the
resulting colouring is odd at v. We therefore have a nice colouring of G, which
is again a contradiction.

The rest of the proof will be structured as follows. In Section 3.4, we use
the discharging method and the minimality of G to show that G cannot contain
a vertex of degree 5. This leaves the case where G is a 6-regular triangulation.
In Section 3.5, we use the classification of 6-regular triangulations of the torus
by Altshuler [4] to show that every such triangulation admits a nice colouring,
finishing the proof.
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As is standard, we will refer to a vertex of degree d as a d-vertex, and a
vertex of degree at least d as a d+-vertex. We would like to define d(f) as we
did for planar graphs, but in a toroidal graph the boundary of a face f need
not be connected. However, it can still be considered as a disjoint union of
closed walks, and we define d(f) to be the total number of vertices appearing
in this union of walks, counting with multiplicity. We call a face of size k a
k-face, and a face of size at least k a k+-face.

3.4 Application of the discharging method

In this section, we will deal with the case δ(G) = 5. We will use the fact that
the torus is locally homeomorphic to the plane, and therefore we will draw
subgraphs of G as if they were on the plane, although this may not always
faithfully represent the embedding in the torus. However, the order of the edges
around each vertex will be unambiguous and represented correctly.

Throughout the proof, there will be some occasions on which two vertices
that are given different names could in fact be the same, or where two named
vertices which are not defined to be adjacent could in fact be adjacent. However,
this will never affect our arguments.

First, we will need a simple observation made by Petruševski and Škrekovski
[68].

Claim 3.4.1. Suppose v ∈ G is a 5-vertex. Then v has at most one neighbour
of odd degree.

Proof. Suppose that v has two neighbours x and y of odd degree. Let c be a
nice colouring of G \ {v}; we would like to extend c to v. There are at most
5 colours forbidden at v by properness, and since x and y have odd degree,
they cannot forbid colours at v by oddness, so there are at most 3 colours
forbidden by oddness. This means there is a colour left over that can be used
at v, and since v has odd degree, the resulting colouring is nice, which is a
contradiction.

We will now introduce our discharging rules. We begin by assigning to every
vertex v ∈ G a charge d(v) − 6 and to every face f a charge 2d(f) − 6. For
planar graphs, Euler’s formula would now give total charge −12 as discussed
before, but for our toroidal G we only obtain that the total charge across all
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vertices and faces of the graph is at most 0:∑
v∈G

(d(v)− 6) +
∑

f∈F (G)

(2d(f)− 6) = 2E − 6V + 4E − 6F

= −6(V − E + F ) = 0.

The discharging rules used by Petruševski and Škrekovski [68] are not
sufficient when the total charge is 0, so we will need our own set of rules, which
are as follows. If a vertex appears with multiplicity greater than 1 in the closed
walk around the boundary of a face, we consider each appearance to be a
separate vertex when applying the rules.

(R1) Every 5+-face sends charge 1.1 to each incident 5-vertex.

(R2) Every 4-face sends charge 1 to each incident 5-vertex, unless its incident
vertices are, in order, two adjacent 5-vertices and two adjacent 6+-vertices,
in which case it sends charge 3

4
to each 5-vertex.

(R3) If u and v are 6+-vertices on a 4+-face f that are adjacent along an edge
of f and also both incident to a 3-face uvw, and w is a 5-vertex, then f

sends charge 1
2

to w.

(R4) Suppose v is a 7+-vertex with at least one neighbouring 5-vertex. Let a
block be a maximal set of 5-vertices in N(v) that appear consecutively
in order around v. Now v distributes its charge evenly between the
blocks, and within each block the charge is distributed evenly between
the vertices. For example, an 8-vertex with 4 neighbouring 5-vertices in
blocks of size 2, 1 and 1 sends charge 2

3
to each vertex in a block of size

1, and 1
3

to each of the vertices in the block of size 2.

Claim 3.4.2. After discharging, all faces and 6+-vertices have non-negative
charge.

Proof. The only way in which a vertex can lose charge is by (R4), and by
definition no vertex can end with negative charge after the application of this
rule. Therefore a vertex can only end with negative charge if it began with
negative charge, and by Claim 3.3.1, this is only the case for 5-vertices.

We now turn to faces. When considering the total charge given out by a
face f , we can imagine the charge 1

2
distributed by (R3) as being split into two

1
4

charges, one given to u and one to v. Each 6+-vertex incident to f is on at
most two edges for which (R3) applies. Therefore f gives out charge at most 1

2

for each incident 6+-vertex, and at most 1.1 for each incident 5-vertex.
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Fig. 3.1: Examples of the discharging rules. The numbers next to vertices
indicate their degrees, and the arrows indicate movement of charge.

If f is a 7+-face, then the initial charge 2d(f)− 6 is greater than 1.1d(f),
so trivially f must finish with non-negative charge. If f is a 6-face, then it
has initial charge 6, but it cannot have more than four incident 5-vertices:
otherwise, one 5-vertex would be adjacent to two others, contradicting Claim
3.4.1. Note that this is still true even if the boundary of f consists of two
disjoint 3-cycles. Therefore, by (R1) and (R3), f gives out charge at most
4.4 + 1 < 6, so it finishes with positive charge.

If f is a 5-face, then it has initial charge 4, and by Claim 3.4.1 it has at
most three incident 5-vertices. If it has exactly three, then the two remaining
vertices are not adjacent on f and therefore (R3) does not apply; thus f gives
out charge at most 3.3. If instead f has at most two incident 5-vertices, then it
gives out charge at most 2.2 + 3

2
< 4, so in either case f finishes with positive

charge.
If f is a 4-face, then it begins with charge 2 and has at most two incident

5-vertices by Claim 3.4.1. First suppose f has exactly two 5-vertices. If they
are adjacent, then (R2) implies that they each receive charge 3

4
. The remaining
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two vertices of f are 6+-vertices, so the greatest additional charge that f can
give out is 1

2
, by (R3). Thus f gives out charge at most 2, as required. If

instead the two 5-vertices are not adjacent, then they each receive charge 1 by
(R2), but (R3) does not apply and so f again gives out total charge 2.

Now consider the case where f is a 4-face with exactly one incident 5-vertex.
This vertex receives charge 1, and (R3) applies to at most two edges of f , so it
gives out total charge at most 2. If instead every vertex of f is a 6+-vertex,
then it gives out charge at most 1

2
for each vertex, so once again the total

charge given out is at most 2.
Finally, if f is a 3-face then it begins with charge 0 but cannot give out

charge, so we are done.

Our graph G begins with total charge at most 0 and the rules preserve
charge, so if G has minimum degree 5, Claim 3.4.2 implies that some 5-vertex
must finish with charge at most 0. If instead δ(G) = 6, then as noted earlier,
G is a 6-regular triangulation, and thus every vertex and face start and end
with charge 0. The discharging method therefore does not help when δ(G) = 6,
and we will have to treat this case separately.

For the remainder of this section, we will restrict ourselves to the case where
δ(G) = 5. Let v be a 5-vertex that has charge at most 0 after the discharging
process: in other words, v receives total charge at most 1 during discharging
(recall that v cannot give out charge). Let the neighbours of v be v1, v2, v3, v4
and v5 in anticlockwise order.

Claim 3.4.3. There are five distinct faces around v.

Proof. If v is not in 5 distinct faces, then some face f appears twice around v.
This face clearly must be a 4+-face. By the discharging rules, f sends charge
at least 3

4
to v for each appearance of v on the boundary of f , so f sends total

charge at least 3
2

to v, a contradiction.

We will make use the following lemma to eliminate the cases in the remainder
of the proof.

Lemma 3.4.4. Suppose that the edges v1v2, v2v3 and v3v4 are all present in G,
and that v2 and v3 are 6-vertices with a common neighbour x ̸= v. Let c be a
nice colouring of G \ {v} in which c(v1), c(v2), c(v3) and c(v4) are all distinct.
Then v2 and v3 do not forbid two distinct colours at v by oddness unless at least
one is already forbidden by properness.
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v

v5

v4

v3v2

v1

x

Fig. 3.2: The setting of Lemma 3.4.4. All edges from v, v2 and v3 are shown.

Proof. Suppose that a colouring c exists as above, and let c(vi) = i for i =

1, 2, 3, 4. Suppose further that v2 and v3 forbid colours 2′ and 3′ respectively
at v by oddness, where 2′ ̸= 3′ and 2′, 3′ /∈ {1, 2, 3, 4}. Now the colours of the
neighbours of v2 in G \ {v} must be 1, 1, 3, 3, 2′ in some order. In particular,
c(x) ∈ {1, 3, 2′}. Similarly, consideration of the colours around v3 shows that
c(x) ∈ {2, 4, 3′}. But now there is no possible colour for x and we have a
contradiction.

We will need one more structural lemma.

Lemma 3.4.5. G does not contain two adjacent 5-vertices which have two
common neighbours.

u v

x

y

w1

w2

z1

z2

Fig. 3.3: The setting of Lemma 3.4.5. All edges from u and v are shown.

Proof. Suppose to the contrary that u and v are adjacent 5-vertices with
common neighbours x and y. Let the two remaining neighbours of u be w1

and w2, and let the two remaining neighbours of v be z1 and z2. Note that we
could have some wi = zj.

Consider the graph G′ = G/{u, v} formed by contracting the edge uv to
form a single vertex {u, v}. By the minimality of G, this graph has a nice
colouring, which we will call c. We will use c to colour the vertices of G\{u, v},
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and show that we can always choose colours at u and v to produce an odd
colouring of G. Note that any colouring of G will be odd at u and v, since they
both have odd degree.

Suppose that we colour u with c({u, v}). The resulting partial colouring
is both proper and odd at each wi that is not the same as some zj, since
c is an odd colouring of G′. Note that u has degree 5 so cannot forbid a
colour at v by oddness. For every remaining neighbour t of v, let b(t) be
the colour that t forbids at v by oddness, if it exists. There are at most 5

colours forbidden at v by properness, and at most 4 forbidden by oddness.
Therefore there is always a colour available at v to produce an odd colouring of
G unless the 9 colours c({u, v}), c(x), c(y), c(z1), c(z2), b(x), b(y), b(z1), b(z2) all
exist and are all distinct. Similarly, we could colour v with c({u, v}) instead
of u, and define b as above; there is no ambiguity in the definitions of b(x)
and b(y) since the neighbourhoods of x and y have the same multisets of
colours in each case. This partial colouring extends to an odd colouring of G
unless c({u, v}), c(x), c(y), c(w1), c(w2), b(x), b(y), b(w1), b(w2) exist and are all
distinct.

Suppose that the two sets of 9 colours above are indeed distinct. Now we
assign the colour b(x) to u and b(y) to v. This results in a proper colouring of
G by distinctness. This colouring is odd at each wi and zj , also by distinctness.
Finally, c({u, v}) and b(y) each appear an even number of times in NG′(x), since
they are distinct from each other and from b(x). They therefore appear an odd
number of times in NG(x). Similarly, c({u, v}) and b(x) appear an odd number
of times in N(y). Thus G has a nice colouring, which is a contradiction.

Proposition 3.4.6. The five faces around v are all 3-faces.

Proof. First note that, by (R1), a 5-face would send charge greater than 1 to v,
which is impossible. As noted previously, a 4-face sends charge at least 3

4
, so v

can be incident to at most one 4-face. Let the 4-face be v5vv1w. Now Lemma
3.4.5 implies that v2, v3 and v4 are all 6+-vertices.

v

v5

v4

v3v2

v1

w

Fig. 3.4: v and its surrounding faces
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Let c be a nice colouring of G \ {v}, which must exist by the minimality of
G. We now divide into 3 cases.

1. v has a neighbouring 5-vertex.

2. All the neighbours of v are 6+-vertices, and |c(N(v))| = 4.

3. All the neighbours of v are 6+-vertices, and |c(N(v))| = 5.

Note that we must have |c(N(v))| ≥ 4, otherwise there would be at most
8 colours forbidden at v and we could extend c to a nice colouring of G.
Henceforth, if the edge vivi+1 is present, we will refer to the face adjacent to
vvivi+1 along vivi+1 as the external face along vivi+1.

Case 1: v has a neighbouring 5-vertex.
By Claim 3.4.1, v1 and v5 cannot both be 5-vertices, so without loss of generality,
v1 is a 5-vertex and v5 is a 6+-vertex. Now v1 does not forbid a colour at v by
oddness, so we must have |c(N(v))| = 5, otherwise there would be at most 8
colours forbidden at v.

Note that a vertex of degree d ≥ 7 can have at most
⌊
d
2

⌋
neighbouring

blocks in the terminology of (R4). Since the total charge given out is d − 6,
this implies that a 7-vertex gives out charge at least 1

3
to every block, and an

8+-vertex gives out charge at least 1
2
.

If either v3 or v4 is a 7+-vertex, then by (R4) it sends charge at least 1
3

to v,
since v is a singleton block. This is a contradiction because v already receives
charge at least 3

4
from the 4-face. Hence v3 and v4 are both 6-vertices.

By (R3), the external face along v3v4 cannot be a 4+-face, otherwise it
would send charge 1

2
to v. Hence it is a 3-face, and so v3 and v4 have a common

neighbour that is not v. Now we can apply Lemma 3.4.4 to v2, v3, v4, v5, which
implies that v3 and v4 cannot forbid distinct colours at v by oddness that are
not already in c(N(v)). Hence at most 8 colours are forbidden at v and we can
extend c to v. This completes Case 1.

Case 2: All the neighbours of v are 6+-vertices, and |c(N(v))| = 4.
Since v does not have a neighbouring 5-vertex, the 4-face vv1wv5 gives charge
1 to v by (R2), so v cannot receive any further charge.

The external faces along v1v2, v2v3, v3v4 and v4v5 must all be 3-faces,
otherwise they would give charge 1

2
to v by (R3). Denote the common neighbour

of v2 and v3 on this external 3-face by x, and the corresponding common
neighbour of v3 and v4 by y.

All the neighbours of v must be 6-vertices, since any neighbouring 7+-vertex
would send some charge to v by (R4). Lemma 3.4.4 now applies to either
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{v1, v2, v3, v4} or {v2, v3, v4, v5}, giving a contradiction, unless c(v2) = c(v4).
Let c(vi) = i for i = 1, 2, 3, 5.

v

v5

v4

v3v2

v1

w

x

y

Fig. 3.5: The setting of Case 2. All edges from v, v2, v3 and v4 are shown.

Consider the colours in N(v2) \ {v}. v2 must forbid a colour 2′ /∈ {1, 2, 3, 5}
at v by oddness, so the vertices of N(v2) \ {v} must have colours 1, 1, 3, 3, 2′ in
some order. Hence c(x) ∈ {1, 2′}. Similarly c(y) ∈ {5, 4′}, where 4′ is defined
analogously to 2′.

But now N(v3) \ {v} has two vertices of colour 3 as well as one of colour 1

or 2′ and one of colour 5 or 4′. There is therefore no way for v3 to forbid a new
colour 3′ at v by oddness, and so there are at most 8 colours forbidden at v.
This completes Case 2.

Case 3: All the neighbours of v are 6+-vertices, and |c(N(v))| = 5.
First, note that as in Case 2, the face vv1wv5 sends charge 1 to v, so it cannot
receive any further charge.

The external faces along v1v2, v2v3, v3v4 and v4v5 must all be 3-faces, as in
Case 2. For i = 1, 2, 3, 4, let xi be the common neighbour of vi and vi+1 on
this external 3-face. Let c(vi) = i, and let the colour that vi forbids at v by
oddness be i′, if it exists.

Once again, all the neighbours of v are 6-vertices, since any 7+-vertex would
send charge to v.

Lemma 3.4.4 applies to both {v1, v2, v3, v4} and {v2, v3, v4, v5}, and there
must be at least 4 colours forbidden by oddness at v. Thus the only possibility
is that these are 1′, 2′, 4′, 5′, while v3 does not forbid a colour by oddness at v

that is not already forbidden in some other way.
The colours of the vertices of N(v2) \ {v} must be 1, 1, 3, 3, 2′, and so

c(x2) ∈ {1, 2′}. Similarly c(x3) ∈ {5, 4′}. Let c′ be the restriction of c to
G \ {v, v2}. We will extend c′ to a nice colouring of G.

First, assign colour 2 to v. This produces a proper partial colouring that is
odd at v4 and v5. The colouring is also odd at v2, because c(v2) = 2 and so
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v

v5

v4

v3v2

v1

w

x1

x2

x3

x4

Fig. 3.6: The setting of Case 3. All edges from v and each vi are shown.

no neighbour of v2 other than v can have colour 2. In addition, the colours
2, 4, c(x2), c(x3) are all distinct and all already used in N(v3), so v3 cannot
forbid a colour at v2 by oddness. Therefore there are at most 8 colours forbidden
at v2: the 4 colours of its neighbours (1, 2, 3, 2′), and at most 4 colours forbidden
by oddness, since neither v nor v3 forbids a colour by oddness. Hence there
is a colour left over that we can use to colour v2. This finishes the proof of
Proposition 3.4.6.

We now know that all the faces around v are 3-faces. Lemma 3.4.5 therefore
implies that all the vi are 6+-vertices. As before, let c be a nice colouring of
G \ {v}. Once again, we must have |c(N(v))| ≥ 4, so we first rule out the case
|c(N(v))| = 4.

Proposition 3.4.7. We have |c(N(v))| = 5.

Proof. Suppose that |c(N(v))| = 4. Without loss of generality, we have c(vi) = i

for i = 1, 2, 3, 5 and c(v4) = 2. Since all 9 colours must be forbidden at v by
either properness or oddness, every vi forbids a colour by oddness, which we
call i′ as before. Thus every vi has even degree.

By Lemma 3.4.4, if v1 and v2 are both 6-vertices and the external face
along v1v2 is a 3-face, then one of v1 and v2 does not forbid a distinct colour
by oddness, which is a contradiction. Hence either the external face along v1v2

is a 4+-face, giving charge 1
2

to v by (R3), or one of v1 and v2 is an 8+-vertex,
giving charge at least 1

2
to v by (R4). Similarly, either the external face along

v4v5 is a 4+-face or one of v4 and v5 is an 8+-vertex. Together these give a
total charge of at least 1 to v. This implies that v cannot receive any further
charge: in particular, the external faces along v2v3 and v3v4 are 3-faces, and v3

has degree 6. Let x be the common neighbour of v2 and v3 on this external
face, and let y be the corresponding common neighbour of v3 and v4.
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v

v5

v4

v3v2

v1

x

y

Fig. 3.7: The case |c(N(v))| = 4. All edges from v and v3 are shown.

Suppose first that v2 and v4 are both 6-vertices. Then the colours in
N(v2) \ {v} are 1, 1, 3, 3, 2′ in some order, so c(x) ∈ {1, 2′}. Similarly c(y) ∈
{5, 4′}. But now v3 cannot forbid a new colour 3′ by oddness. So at least one
of v2 and v4 must be an 8+-vertex. Without loss of generality it is v2.

Note that v2 must send charge exactly 1
2

to v, since otherwise v would
receive total charge greater than 1. The only way this can happen is if v2
has degree exactly 8 and the neighbours of v2 are alternately 5-vertices and
6+-vertices. This implies that x is a 5-vertex.

Now consider the restriction c′ of c to G \ {v, v3}. We will extend this to a
nice colouring of G. First we assign the colour 3 to v. This produces a proper
partial colouring that is odd at v1 and v5; it is also odd at v3, because v must
be the only neighbour of v3 with colour 3. Since v3 forbids a colour by oddness
at v in the colouring c, we must have |c(N(v3) \ {v})| ≤ 3, and hence after
colouring v we have used at most 4 colours in N(v3). In addition, v and x both
have odd degree, so there at most 4 colours forbidden by oddness at v3. There
is therefore a colour left over to use at v3, and we are done.

We are now ready to finish the proof for the case δ(G) = 5. Let c be a nice
colouring of G \ {v}. Since we know |c(N(v))| = 5, the vi must together forbid
the remaining 4 colours by oddness. Therefore, without loss of generality, we
have that for i = 1, 2, 4, 5, vi forbids a colour i′ /∈ {1, 2, 3, 4, 5}, where all the i′

are distinct. This implies that all the vi except possibly v3 have even degree.
If the external face along v5v1 is a 3-face and v1 and v5 are both 6-vertices,

then Lemma 3.4.4 applied to {v4, v5, v1, v2} gives a contradiction, since 1′ and
5′ are distinct from each other and all the other colours. Therefore either the
external face along v5v1 is a 4+-face, or one of v1 and v5 is an 8+-vertex. In
either case, charge at least 1

2
is sent to v.
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We can similarly apply Lemma 3.4.4 to {v3, v4, v5, v1} and {v5, v1, v2, v3}.
This shows that either the external face along v4v5 is a 4+-face or one of v4 and
v5 is an 8+-vertex, and that either the external face along v1v2 is a 4+-face or
one of v1 and v2 is an 8+-vertex.

In particular, if both v1 and v5 are 6-vertices, then this implies that each
of the edges v1v2 and v4v5 must either have an external 4+-face or contain
an 8+-vertex. Together, these send charge at least 1 to v, implying that the
external face along v1v5 cannot be a 4+-face. But this is a contradiction, since
we have just shown that if v1 and v5 are both 6-vertices then the external face
along v5v1 is a 4+-face. Hence at least one of v1 and v5 is an 8+-vertex.

Suppose without loss of generality that v1 is an 8+-vertex. We still require
that either the external face along v4v5 is a 4+-face or one of v4 and v5 is an
8+-vertex. In either case, v receives total charge at least 1. As in the proof of
Proposition 3.4.7, in order for the total charge to be exactly 1, we must have
that v1 has degree exactly 8, v2 is a 6-vertex, and the external face along v1v2

is a 3-face. Let x be the common neighbour of v1 and v2 on this face. Again, as
in the proof of Proposition 3.4.7, the neighbours of v1 must alternate between
5-vertices and 6+-vertices, so x has degree 5.

v

v5

v4

v3v2

v1

x

Fig. 3.8: The case |c(N(v))| = 5, where v1 is an 8-vertex without loss of
generality. All edges from v, v1 and v2 are shown.

Now we restrict c to a colouring c′ of G \ {v, v2}, and extend this to a nice
colouring of G. First we assign colour 2 to v. This produces a proper partial
colouring which is odd at v4 and v5. The vertices of N(v2) \ {v} have colours
1, 1, 3, 3, 2′, so after colouring v, we have that v is the only neighbour of v2 with
colour 2, and hence the colouring is odd at v2. In addition, there are 4 colours
forbidden at v2 by properness, and since v and x have odd degree, there are at
most 4 colours forbidden by oddness. Hence there is a colour left over, which
we use to colour v2. This completes the proof for the case δ(G) = 5.
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3.5 The case δ(G) = 6

We are now left with the case δ(G) = 6, which, as discussed earlier, corresponds
to the case where G is a 6-regular triangulation of the torus. Such triangulations
were classified by Altshuler [4]. We will use the notation of Balachandran and
Sankarnarayanan [8]. For m,n ≥ 1 and 0 ≤ t < n, we define the graph
H = T (m,n, t) on vertex set V (H) = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} as follows:

• (i, j) ∼ (i, j + 1) for all i, j,

• (i, j) ∼ (i+ 1, j), (i+ 1, j − 1) for 1 ≤ i < m and all j,

• (m, j) ∼ (1, j − t), (1, j − t− 1) for all j.

The addition in the second coordinate is modulo n above and throughout this
section.

In other words, we begin with a grid graph of dimensions (m+ 1)× (n+ 1)

and triangulate it. We then identify the top and bottom rows, and we identify
the leftmost and rightmost columns with a shift of t vertices.

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

(2,1)

(2,1)

(3,1)

(3,1)

(4,1)

(4,1)
(1,1)

(1,3)

(1,4)

(1,5)

(1,6)

(1,1)

(1,2)

(1,3)

Fig. 3.9: A diagram of T (4, 6, 4). The first row and column are shown twice.

Note that two graphs T (m,n, t) and T (m′, n′, t′) with different parameters
can be isomorphic, and that this construction does not always produce a simple
graph, although we are only concerned with the cases where it does.

Theorem 3.5.1 (Altshuler). Every 6-regular triangulation of the torus is
isomorphic to T (m,n, t) for some m,n, t.

To finish the proof of Theorem 3.1.1, it therefore suffices to prove that
every T (m,n, t) that is a simple graph admits an odd colouring with at most
9 colours. We do not claim that this is optimal; indeed, we believe that with
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more care it should be possible to show that 7 colours will always suffice. We
will consider three cases: m ≥ 3, m = 2 and m = 1. Note that we must have
n ≥ 3, or T (m,n, t) would not be simple.

We will find it useful to partition the 9 available colours into three classes
C1 = {1, 2, 3}, C2 = {4, 5, 6}, C3 = {7, 8, 9}. In diagrams, the colours of C1

will be represented by three shades of red, with 1 being darkest and 3 lightest.
Similarly, C2 will be represented by three shades of blue, and C3 by three
shades of green.

The case m ≥ 3

We begin by using only one colour class in each column: in column i we will use
the class Cr where r ≡ i (mod 3), unless m ≡ 1 (mod 3), in which case we will
use C2 in column m. This ensures that the same class of colours is not used
in two neighbouring columns. We call a column bad if its two neighbouring
columns use the same class; otherwise it is good. If m ≡ 0 (mod 3) then there
are no bad columns. If m ≡ 1 (mod 3) then columns 1 and m− 1 are bad, and
if m ≡ 2 (mod 3) then columns 1 and m are bad.

Next, we apply the same construction within each column: we colour (i, j)

with the colour s in the correct class that satisfies s ≡ j (mod 3), unless
n ≡ 1 (mod 3), in which case we use the colour with s ≡ 2 (mod 3) at (i, n).
We call the resulting colouring c; note that this initial colouring does not depend
on the value of t. Again, we call a row bad if its two neighbouring rows use the
same set of colours; otherwise it is good. The same classification of bad rows
applies as for bad columns, according to the value of n modulo 3.

This construction clearly produces a proper colouring, since n ≥ 3. In
addition, for any vertex (i, j) with i ≠ m that is not in a bad column, the
colours of (i+ 1, j) and (i+ 1, j − 1) appear exactly once in its neighbourhood.
For i = m, the same is true for the colours of (1, j − t) and (1, j − t − 1) if
column m is good. If (i, j) is in a bad column but not in a bad row, then the
colours of (i, j + 1) and (i, j − 1) appear exactly once in its neighbourhood.
Therefore the only vertices at which the colouring c may not be odd are those
that are both in a bad column and a bad row. These only exist if neither m

nor n is 0 (mod 3), and in that case there are exactly 4 of them. We call these
bad vertices.

First consider the case where m and n are both 1 (mod 3). Columns 1 and
m− 1 and rows 1 and n− 1 are bad. Now, for each bad vertex v = (i, j), its
neighbour w = (i+1, j − 1) is in a good column. Therefore the two neighbours
of w in column i+ 2 use colours from the one class that is not used at v or w.
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Hence there is one colour in this class that does not appear in c(N(w)), and we
now recolour w with that colour. We do this for all four bad vertices, creating
a new colouring c′. Let S be the set consisting of the four recoloured vertices.
By construction, c′ is a proper colouring, since none of the four vertices of S
are adjacent.

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

(1,7)

(1,3)

(1,4)

(1,5)

(1,6)

(1,7)

(1,1)

(1,2)

(1,3)(1,1)

(2,1)

(2,1)

(3,1)

(3,1)

(4,1)

(4,1)

(5,1)

(5,1)

(6,1)

(6,1)

(7,1)

(7,1)

Fig. 3.10: The case m ≡ 1 (mod 3), n ≡ 1 (mod 3), illustrated by T (7, 7, 5).
The vertices of S are circled.

We now need to check that c′ is an odd colouring. First, observe that c is
odd at any vertex that has no neighbours in S, and therefore c′ is also odd at
all such vertices. Note that in c, every vertex has an even number of neighbours
in each colour class Ci. Therefore any vertex v that is adjacent to exactly one
vertex of S has an odd number of neighbours in some colour class, and so some
colour in this class must appear an odd number of times in N(v). Hence c′ is
odd at v.

There is no vertex adjacent to more than two vertices in S, so we are left
to consider vertices with exactly two neighbours in S. There are two types of
such vertices. First, there are vertices v in bad columns with one neighbour
in S in each adjacent column. But then v has exactly three neighbours in its
own colour class in c′, so c′ is odd at v. Secondly, there are vertices v = (i, j)

in good columns where both (i, j + 1) and (i, j − 1) are in S. But in this case
column i− 1 is bad, and the two neighbours of v in this column have distinct
colours, each of which only appears once in N(v). Thus c′ is an odd colouring.

Next we have the case m ≡ 1 (mod 3), n ≡ 2 (mod 3). The bad rows are
rows 1 and n, so u = (2, n) is adjacent to the two bad vertices in column 1 and
w = (m,n) is adjacent to the two bad vertices in column m− 1. We recolour
each of these vertices similarly to the previous case: we assign colour 9 to u
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since 9 /∈ c(N(u)), and recolour w with whichever colour in C1 does not appear
in c(N(w)). This produces a proper colouring c′. The proof that c′ is an odd
colouring proceeds just as in the n ≡ 1 (mod 3) case, though it is simpler since
only a vertex in a bad column can be adjacent to both u and w.

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,3)

(1,4)

(1,5)

(1,1)

(1,2)

(1,3)(1,1)

(2,1)

(2,1)

(3,1)

(3,1)

(4,1)

(4,1)

(5,1)

(5,1)

(6,1)

(6,1)

(7,1)

(7,1)

Fig. 3.11: The case m ≡ 1 (mod 3), n ≡ 2 (mod 3), illustrated by T (7, 5, 3).
The two recoloured vertices u and w are circled; u is on the left.

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

(1,7)

(1,3)

(1,4)

(1,5)

(1,6)

(1,7)

(1,1)

(1,2)

(1,3)(1,1)

(2,1)

(2,1)

(3,1)

(3,1)

(4,1)

(4,1)

(5,1)

(5,1)

Fig. 3.12: The case m ≡ 2 (mod 3), n ≡ 1 (mod 3), illustrated by T (5, 7, 5).
The vertices of S are circled.

We now move on to m ≡ 2 (mod 3), with bad columns 1 and m. Suppose
that n ≡ 1 (mod 3), so that rows 1 and n − 1 are bad. We recolour vertices
as follows: c′((2, n)) = c′((m − 1, 2)) = 7, c′((2, n − 2)) = c′((m − 1, n)) = 9.
Elsewhere c′ = c. Let the set of recoloured vertices be S. This creates a proper
colouring, and the proof that c′ is odd runs the same as in the previous cases,
but with one additional detail: if m = 5 then it is possible for a vertex v in
column 3, which is good, to have two neighbours in S, one in column 2 and
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one in column 4. However, in this case, v has exactly one neighbour in colour
class C1 and one in class C2, so c′ is odd at v.

Finally, we have the case m ≡ 2 (mod 3), n ≡ 2 (mod 3). Now rows 1 and
n are bad. We recolour c′((2, n)) = c′((m − 1, 1)) = 9 and otherwise leave c

unchanged. Once again, c′ is proper, and the proof that it is odd is the same
as in the previous case. This completes the proof that T (m,n, t) has a nice
colouring for m ≥ 3.

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,3)

(1,4)

(1,5)

(1,1)

(1,2)

(1,3)(1,1)

(2,1)

(2,1)

(3,1)

(3,1)

(5,1)

(5,1)

(4,1)

(4,1)

Fig. 3.13: The case m ≡ 2 (mod 3), n ≡ 2 (mod 3), illustrated by T (5, 5, 3).
The two recoloured vertices are circled; note that (4, 1) is shown twice.

The case m = 2

We begin by colouring the vertices as in the m ≥ 3 case: we use colours {1, 2, 3}
for column 1 and {4, 5, 6} for column 2, and (i, j) is assigned the colour in
the corresponding class that is equivalent to j (mod 3), unless n ≡ 1 (mod 3)

in which case (1, n) and (2, n) receive colours 2 and 5 respectively. Let this
colouring be c.

In the terminology of the m ≥ 3 case, both columns are bad and there are
at most two bad rows. If bad rows exist, then we can choose two good vertices
u and w such that every bad vertex is adjacent to at least one of u and w. We
then recolour by using colours 7 and 8 at u and w respectively to create a new
colouring c′. This colouring is trivially proper. It is also odd, since c is odd
at every vertex that is not adjacent to u or w, and for every vertex that is
adjacent to u or w, either 7 or 8 appears exactly once in its neighbourhood in
c′.
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(1,1)

(1,3)

(1,4)

(1,5)

(1,2)

(1,1)

(2,1)

(2,1)

(1,1)

(1,3)

(1,4)

(1,2)

(1,4)

(1,5)

Fig. 3.14: T (2, 5, 2) coloured as above. The two recoloured vertices are circled;
note that (1, 2) is shown twice.

The case m = 1

Let H = T (1, n, t). We will refer to vertex (1, j) as just j for simplicity. Thus
j is adjacent to j ± 1, j ± t and j ± (t+ 1), working modulo n. We can now
see that T (1, n, t) is isomorphic to T (1, n, n− (t+ 1)), and so t < n

2
without

loss of generality. Let r =
⌈
n
t

⌉
, so that by the above we have r ≥ 3. Note also

that t ≥ 2, otherwise the graph T (1, n, t) would not be simple.

1

2

3

4

5

6 7

8

9

10

11

12
13

Fig. 3.15: The graph T (1, 13, 4). Edges j ∼ (j ± 4) are shown in red and edges
j ∼ (j ± 5) in blue.

Now we partition the vertices of T (1, n, t) into intervals. For 1 ≤ k ≤
⌊
n
t

⌋
,

let Ik = {j : (k−1)t+1 ≤ j ≤ kt} so that Ik has length t. If n is not a multiple
of t, then we let Ir = {j : kt + 1 ≤ j ≤ n} consist of the remaining vertices.
There are r intervals in total.
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As in the case m ≥ 3, we split the colours into classes C1 = {1, 2, 3},
C2 = {4, 5, 6} and C3 = {7, 8, 9}. For each Ci we now define the set of vertices
Si at which Ci will be used.

• If r ≡ 0 (mod 3), then Si =
⋃

k≡i (mod 3) Ik.

• If r ≡ 1 (mod 3), then the Si are defined as for the 0 (mod 3) case except
that Ir is part of S2 instead of S1.

• If r ≡ 2 (mod 3), then the Si are defined as for the 0 (mod 3) case except
that Ir−1 is part of S2 and Ir is part of S3.

I1

I2

I3

I4S1

S2

S3

S2

r ≡ 1 (mod 3)

I1

I2
I3

I4

I5
S1

S2

S3

S2

S3

r ≡ 2 (mod 3)

I1

I2

I3
I4

I5

I6
S1

S2

S3

S1

S2

S3

r ≡ 0 (mod 3)

Fig. 3.16: The partition of T (1, n, t) into intervals Ii and subsets Si. As in
Fig. 3.15, the graph is depicted as a circle.

We now consider the induced graphs H[Si]. The construction above ensures
that the only edges between two vertices in the same interval are edges of the
form {j, j + 1}. In addition, the only edges between two distinct intervals in
the same Si are edges of the form {kt, (k + 1)t + 1} between the last vertex
of one interval and the first vertex of another. This means that the induced
graphs H[Si] are unions of disjoint paths, with the exception of the case r = 4,
when H[S2] is a cycle. A path clearly has a proper odd 3-colouring, so if r ̸= 4

we can use the colours of Ci to colour the vertices of each Si such that a proper
odd colouring is induced on H[Si]. This produces a nice colouring of H.

We are left with the case r = 4, where 3t + 1 ≤ n ≤ 4t. We begin by
colouring the vertices of S1 and S3 using C1 and C3 respectively as in the
previous case. Recall that S2 consists of the union of I2 = {j : t+ 1 ≤ j ≤ 2t}
and I4 = {j : 3t+ 1 ≤ j ≤ n}. We properly 3-colour the cycle H[S2] and apply
the resulting colouring in H, giving no regard to oddness for the time being.

For t+ 2 ≤ j ≤ 2t, vertex j is adjacent to exactly two vertices in I1, and
these are adjacent to each other and thus receive different colours from C1.
The colouring is therefore odd at j for t+ 2 ≤ j ≤ 2t. Since t ≥ 2, the same



62 Odd colourings on the torus

argument can be applied to vertex t + 1 and interval I3, showing that the
colouring is odd at j = t+ 1 and therefore at every vertex in I2.

1

2

3

4

5

6 7

8

9

10

11

12
13

S1

S2

S3

Fig. 3.17: T (1, 13, 4) coloured as below. Edges within the same Si are shown
in black and edges between different Si in grey.

If n ≥ 3t + 2, we can repeat this argument to show that the colouring is
odd at every vertex of I4, and therefore we have found a nice colouring of H. If
instead n = 3t+ 1 then the argument breaks down at vertex 3t+ 1. However,
we know that the cycle H[S2] can be properly 3-coloured in such a way that
there are at most two vertices at which the colouring is not odd: indeed we
made heavy use of the necessary constructions in the case m ≥ 3. Clearly we
can ensure that vertex 3t+ 1 is not one of these vertices. Thus the colouring of
H[S2] is odd at 3t+ 1, and so the resulting colouring of H is also odd at 3t+ 1

and therefore at every vertex of S2. Since we still only used colours from Ci in
each Si, the colouring is also odd at all vertices of S1 and S3. This completes
the proof of Theorem 3.1.1.

3.6 Conclusion

First, we note that the proof of Theorem 3.1.1 also works for the real projective
plane. Since the projective plane has Euler characteristic 1, Euler’s formula
tells us that any graph G on the projective plane has δ(G) ≤ 5, and that the
total charge over all vertices and faces of G in the discharging process is at
most −6. Thus the discharging method alone suffices, and there is no special
case such as the one dealt with in Section 3.5. We did not use any other
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properties of the torus that do not also hold for the real projective plane: like
the torus, the projective plane is locally homeomorphic to the Euclidean plane,
and orientation did not matter anywhere in our discharging proof. We therefore
have the following result.

Theorem 3.6.1. Let G be a simple graph that embeds in the real projective
plane. Then G has a proper odd colouring with at most 9 colours.

For a surface S, let χo(S) denote the maximum value of χo(G) over all
simple graphs that can be embedded in S. We have therefore shown that for
the torus T ,

7 ≤ χo(T ) ≤ 9.

We believe that in fact 7 colours will always suffice.

Conjecture 3.6.2. Let G be a toroidal graph. Then χo(G) ≤ 7.

Our main result that χo(T ) ≤ 9 was later obtained independently by Tian
and Yin [84], who also used the discharging method but with a different set of
rules. In addition, they showed, again using discharging, that if G is a toroidal
graph without 3-cycles (in other words, with girth at least 4) then χo(G) ≤ 7

[82], and that if G is a toroidal graph without two 3-cycles sharing a common
edge then χo(G) ≤ 8 [83].

Improving the upper bound beyond 9 will likely require a new approach.
Recall that the two proofs that 8 colours suffice for planar graphs, by Petr and
Portier [67] and Fabrici, Lužar, Rindošová and Soták [36], both use the Four
Colour Theorem: in fact, the bound of 8 arises specifically as twice the bound
of 4 for ordinary proper colourings.

The same methods applied to the torus would only produce an upper bound
of 14 colours for odd colourings. Indeed, we obtain a bound of χo(S) ≤ 2χ(S)

for a general surface S. Any improvement on this bound would be of interest.
In particular, it is natural to ask the following:

Question 3.6.3. Does χ(S) = χo(S) for every surface other than the plane?

It seems very plausible that the answer is yes, but proving this appears to
be completely out of reach with current methods.





Chapter 4

Induced subgraphs of the
hypercube with small maximum
degree

4.1 Introduction

This chapter is based on joint work with Victor Souza.
The hypercube graph Qn has vertex set {0, 1}n, with two vertices being

adjacent if and only if they differ in exactly one coordinate. Equivalently,
the vertices can be considered as the subsets of [n] = {1, 2, . . . , n}, with two
vertices adjacent if and only if their symmetric difference has size 1. Qn is the
Cartesian product of n copies of P2.

Hypercube graphs have been widely studied: see, for example, the survey
of Harary, Hayes and Wu [44]. Many of the basic properties are relatively
simple to determine due to the structure of the graph; one that is related to
the problem considered in this chapter is the independence number, which
is clearly equal to 2n−1 = 1

2
|Qn|. Nevertheless, there are a great number of

intriguing questions that can be asked about Qn, some of which have been a
focus of research for decades. For example, Ruskey and Savage [76] asked in
1993 whether, for all n ≥ 2, every matching in Qn extends to a Hamiltonian
cycle. This problem remains open, although some progress has been made: for
instance, Fink [38] showed in 2007 that every perfect matching in Qn extends
to a Hamiltonian cycle, proving a conjecture of Kreweras [54].

Subgraphs of Qn are interesting objects of study in their own right. One
such subgraph is the middle levels graph, which is the subgraph of Q2n+1

consisting only of the subsets of [2n+ 1] of size n and n+ 1. Havel [47] and
Buck and Wiedemann [16] conjectured in the 1980s that the middle levels graph
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is Hamiltonian. This became known as the middle levels conjecture, and it was
proved by Mütze [64] in 2016.

Another problem on subgraphs of Qn, more closely related to the one we
consider in this chapter, is that of determining their largest eigenvalue λ1;
recall that the largest eigenvalue of a graph G is always at least the average
degree and at most the maximum degree. In 2012, Fink (communicated by
Bollobás, Lee and Letzter [13]) asked how large λ1 could be for a subgraph of
Qn with exactly m vertices. Bollobás, Lee and Letzter [13] showed that for
fixed i, the Hamming ball H i

n of radius i, which is the graph induced by all
subsets of [n] with size at most i, gives the maximum possible value of λ1 over
all induced subgraphs of Qn of its size when n is sufficiently large. In addition,
they showed that Hamming balls of radius o(n) give λ1 within a factor 1 + o(1)

of the maximum, but the problem remains open for larger radii. Hamming
balls also appear as extremal examples in a much older result: in 1966, Harper
[45, 46] proved that H i

n has the smallest vertex-boundary of all subsets of Qn of
size |H i

n|. The vertex-boundary of S ⊂ V (Qn) is the set of vertices of Qn \ S
which are adjacent to at least one vertex in S.

Subsets of Qn can be considered as Boolean functions from {0, 1}n to {0, 1},
and so the hypercube graph is closely linked to various problems in theoretical
computer science, and indeed some results originally stated in a computer-
scientific setting have interpretations in the hypercube. In 1988, inspired by
some of these results, Chung, Füredi, Graham and Seymour [26] considered
the following question: if G is an induced subgraph of Qn with more than 2n−1

vertices, at least how large must ∆(G), the maximum degree of G, be? They
proved that it must be at least 1

2
log n− 1

2
log log n+ 1

2
, and found a construction

that produces, for every n, an induced subgraph of Qn with 2n−1 + 1 vertices
and maximum degree ⌈

√
n⌉.

The construction of Chung, Füredi, Graham and Seymour is as follows. We
associate the vertices of Qn with subsets of [n]. First, we partition [n] into k

intervals I1, . . . , Ik, where
∣∣k−√

n
∣∣ < 1 and

∣∣|Ii|−√
n
∣∣ < 1 for each i; it is easy

to see that this is always possible. Next, let S be the subset of Qn consisting of
all even-sized sets that contain some Ii, 1 ≤ i ≤ k, along with all odd-sized sets
that do not contain any Ii. It is clear that the maximum degree of Qn[S], the
subgraph of Qn induced by S, is equal to max{k, |I1|, . . . , |Ik|} = ⌈

√
n⌉. The

same is true for the maximum degree of Qn[S
c]. Chung, Füredi, Graham and

Seymour showed that |S| = 2n−1 + (−1)n+k+1, and so either S or Sc is a set
of size exactly 2n−1 + 1 that induces a subgraph of Qn with maximum degree
⌈
√
n⌉.
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In 1992, Gotsman and Linial [42] demonstrated an equivalence between
Chung, Füredi, Graham and Seymour’s problem on the hypercube and concepts
from computer science. More specifically, they showed that lower bounds on
the maximum degree of induced subgraphs of Qn with more than 2n−1 vertices
imply upper bounds on the degree of a Boolean function (as a real polynomial)
in terms of a measure called the sensitivity. For x ∈ {0, 1}n, denote by xi the
point derived from x by flipping the i-th coordinate. For a Boolean function
f : {0, 1}n → {0, 1} and x ∈ {0, 1}n, the local sensitivity of f at x, denoted
s(f, x), is the number of i such that f(xi) ̸= f(x). The sensitivity of f , denoted
s(f), is the maximum of s(f, x) over all x.

As Gotsman and Linial observed, their result implied that if Chung, Füredi,
Graham and Seymour’s upper bound of ⌈

√
n⌉ was tight, then the sensitivity

would be polynomially related to many other measures of complexity of a
Boolean function, including the degree. Soon afterwards, Nisan and Szegedy
[66] asked explicitly whether such a polynomial relation existed; this problem
became known as the Sensitivity Conjecture and was one of the major open
problems in computer science.

Despite the importance of the problem, progress towards the Sensitivity
Conjecture was slow. This made it all the more remarkable when Huang [51]
resolved Chung, Füredi, Graham and Seymour’s hypercube problem in 2019
with a short and beautiful spectral argument, thereby proving the Sensitivity
Conjecture:

Theorem 4.1.1 (Huang). Let G be an induced subgraph of the hypercube Qn

with at least 2n−1 + 1 vertices. Then ∆(G) ≥
√
n, and the inequality is tight

when n is a perfect square.

Huang defined g(n, k) as the smallest m such that every induced subgraph
of Qn with m vertices has maximum degree at least k. Theorem 4.1.1 states
that g(k2, k) = 2k

2−1+1, and Huang asked whether g(n, k) could be determined
asymptotically in other cases. Equivalently, given m as a function of n, we would
like to find the smallest possible value of ∆(G) among all induced subgraphs G
of Qn with m vertices.

In this chapter, we take some steps towards resolving this problem for
induced subgraphs whose size is a constant proportion of the hypercube: in
other words, |G| = p2n for constant p ∈ (1

2
, 1). In Section 4.2, we demonstrate

a simple lower bound of 2p−1
p

n for the maximum degree, which holds in a more
general setting. In Section 4.3, we use Hamming codes to show that this lower
bound is tight for some values of n when p is of the form 1− 1

2r
. In Section 4.4

we examine what happens as n goes to infinity, and show that when p = 1− 1
2r
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the lower bound of 2p−1
p

n is asymptotically tight for all n as n → ∞. In Section
4.5 we find constructions that show the bound of 2p−1

p
n is also asymptotically

tight, in a slightly weaker sense, for all p of the form 1− 1
r
. In Section 4.6, we

find a better lower bound than 2p−1
p

n for the minimum degree of an induced
subgraph when 1

2
< p < 2

3
. Finally, in Section 4.7, we discuss some of the many

avenues for future research on this problem and others closely related to it.

4.2 Induced subgraphs of regular graphs

Let G be a graph. As usual, we denote the sets of vertices and edges of G by
V (G) and E(G) respectively. If S ⊆ V (G), then G[S] denotes the subgraph of
G induced by S. For subsets S, S ′ ⊂ V (G), let e(S) be the number of edges in
G[S], and let e(S, S ′) be the number of edges that have one endpoint in S and
the other in S ′. The degree of a vertex v ∈ V (G) is denoted d(v). We write
dS(v) for the number of neighbours of v in the set S.

Our first proposition gives a lower bound for the maximum degree of an
induced subgraph of a regular graph.

Proposition 4.2.1. Let G be a k-regular graph and S ⊂ V (G) be a set with
|S| = p|G| and e(Sc) = γe(G) where p, γ ∈ [0, 1]. Then the maximum degree of
G[S] satisfies

∆(G[S]) ≥
(
2p− 1 + γ

p

)
k.

Moreover, we have equality if and only if G[S] is regular.

Proof. First, note that

e(G) = e(S) + e(S, Sc) + e(Sc) = 1
2
k|G|.

Furthermore,∑
v∈Sc

d(v) = e(S, Sc) + 2e(Sc) = k|Sc| = (1− p)k|G|.

Combining these two observations, we get

e(S) = e(G)− e(S, Sc)− e(Sc)

= e(G) + e(Sc) + (p− 1)k|G| = (p− 1
2
+ 1

2
γ)k|G|. (4.1)
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On the other hand, we can bound e(S) from above using the maximum degree
within G[S]:

e(S) =
1

2

∑
v∈S

dS(v) ≤
p|G|
2

∆(G[S]). (4.2)

Finally, relations (4.1) and (4.2) imply that

∆(G[S]) ≥
(
2p− 1 + γ

p

)
k,

as desired.
In order for equality to hold, we need equality in (4.2), so dS(v) = ∆(G[S])

for every v ∈ S; in other words, G[S] must be regular.

It will not always be possible to have control on e(Sc), so we state a corollary
of Proposition 4.2.1.

Corollary 4.2.2. Let G be a k-regular graph and S ⊆ V (G) be a set with
|S| = p|G| where 1

2
≤ p ≤ 1. Then the maximum degree in G[S] satisfies

∆(G[S]) ≥
(
2p− 1

p

)
k.

Moreover, we have equality if and only if G[S] is regular and Sc is an independent
set.

Note that if instead p < 1
2
, then there is no non-trivial lower bound for

∆(G[S]), since the independence number of the hypercube graph Qn is 1
2
|Qn|.

For convenience, we will state the application of Corollary 4.2.2 to Qn as a
further corollary.

Corollary 4.2.3. Let S be a subset of V (Qn) with |S| = p2n. Then the
maximum degree of Qn[S] satisfies

∆(Qn[S]) ≥
(
2p− 1

p

)
n.

Equality holds if and only if Qn[S] is regular and Sc is an independent set.

This result gives us an initial lower bound for ∆(Qn[S]) in terms of p. We
are interested in the minimum possible value of ∆(Qn[S]) among all S ⊂ V (Qn)

with |S| = p2n, and so we make the following definition:

∆n(p) = min
S⊂V (Qn)
|S|=p2n

∆(Qn[S]).
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Note that ∆n(p) is only defined if p is of the form m
2r

where m is an integer.
We will extend the definition to all 0 ≤ p ≤ 1 in Section 4.4.

Since we would like to investigate the behaviour of ∆n(p) as n → ∞, we
will also define

Dn(p) =
∆n(p)

n
.

With this notation, Corollary 4.2.3 states that for all n and p for which it is
defined, we have

Dn(p) ≥
2p− 1

p
,

which is non-trivial for 1
2
< p < 1.

4.3 Binary codes and precise constructions

We call a subset C ⊂ V (Qn) of the hypercube a binary code. We identify the
vertices of the hypercube with the finite-dimensional vector space Fn

2 , which
we endow with its canonical basis e1, . . . , en. A binary linear code is a linear
subspace C ⊆ Fn

2 . A code C ⊆ Fn
2 is said to be perfect 1-error-correcting if for

every x ∈ C there is no i ∈ [n] such that x+ ei ∈ C, and for each x ∈ Fn
2 \ C,

there is precisely one i ∈ [n] such that x + ei ∈ C. The name comes from
coding theory. If a message consists of blocks of n binary digits corresponding
to elements x ∈ C, then a single transmission error in a block can be detected
and corrected.

We define the Hamming distance between two points x, y ∈ Fn
2 to be

d(x, y) = |{i ∈ [n] : xi ̸= yi}| = |x△y|.

A perfect binary 1-error-correcting code partitions the hypercube into closed
balls of radius 1: if we define B1(x) = {y ∈ Fn

2 : d(x, y) ≤ 1}, then

Fn
2 =

∐
x∈C

B1(x).

Since each B1(x) has size n+ 1, we must have n+ 1 | 2n, which implies that
n = 2r − 1 for some r ≥ 1. Hamming [43] showed that such codes do exist for
every r. These are the Hamming codes, which are linear codes Cr ⊆ F2r−1

2 with
dimCr = 2r − r − 1.

To construct such codes, let n = 2r−1 and observe that there are n nonzero
elements in Fr

2. Let Hr be an r × n matrix with all columns distinct and
nonzero; in other words, every nonzero vector in Fr

2 appears exactly once as a
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column of Hr. Now we define

Cr = {x ∈ Fn
2 : Hrx = 0}.

Clearly Hr has rank r, so rank-nullity gives dimCr = n− r = 2r − r − 1. To
see that Cr is perfect 1-error-correcting, first suppose that there is some x ∈ Cr

and i ∈ [n] such that x+ ei ∈ Cr, so

0 = Hr(x+ ei) = Hrei.

This is absurd, as all the columns of Hr are non-zero.
If there exists x /∈ Cr and distinct i and j such that x+ei = y and x+ej = z

are both in Cr, then we have y + ei = z + ej. But then Hrei = Hrej, which is
also absurd as all the columns of Hr are distinct. This implies that the balls
B1(x) for x ∈ Cr are all disjoint. It remains to show that their union is Fr

2.
We know that |B1(x)| = n+ 1 = 2r for each x. Since dimCr = 2r − r − 1,

we have |Cr| = 22
r−r−1. But now, because the balls are disjoint, the union of all

the B1(x) for x ∈ Cr has size |Cr||Bx| = 22
r−r−12r = 22

r−1 = 2n, so the balls
perfectly pack Fn

2 , as desired.
Note that Cr is an independent set, and that every vertex x /∈ Cr has exactly

1 neighbour in Cr and therefore exactly n−1 neighbours in Cr
c. In other words,

if we set S = Cr
c ⊂ V (Qn), then Qn[S] is regular and Sc is independent. We

therefore have the following:

Observation 4.3.1. Let n = 2r − 1, where r ≥ 1 is an integer, and let
S ⊂ V (Qn) be the complement of the Hamming code Cr. Then S achieves
equality in Corollary 4.2.3, with p = 1− 1

2r
.

The next lemma will allow us to extend this construction to higher values
of n while keeping p constant.

Lemma 4.3.2. Let S be a subset of V (Qn) with |S| = p2n and ∆(Qn[S]) = qn.
Then for every integer k ≥ 1 there exists a subset S(k) ⊂ V (Qkn) with |S(k)| =
p2kn and ∆(Qkn[S

(k)]) = qkn. Furthermore, if Sc is independent then so is
S(k)c.

Proof. We identify Qn with Fn
2 as before. We define

S(k) =
{
(x1, . . . , xk) ∈ (Fn

2 )
k : x1 + · · ·+ xk ∈ S

}
.
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This is a subset of Fkn
2 , and we have

|S(k)|
2kn

=
|S|
2n

= p,

so |S(k)| = p2kn.
Let x ∈ S(k), with x = (x1, . . . , xk) as an element of (Fn

2 )
k. Let x =

x1 + · · ·+ xk, so that by the definition above we have x ∈ S. Now consider a
neighbour x+ ei of x, where ei is a basis vector in Fkn

2 . We have i = un+ v

for some 0 ≤ u ≤ k − 1 and 1 ≤ v ≤ n. The vector ei is then of the form
(0, . . . , ev, . . . , 0) in (Fn

2 )
k, where ev, a basis vector in Fn

2 , is in the (u + 1)-th
position.

We now have that x+ ei ∈ S(k) if and only if x+ ev ∈ S. There are dS(x)

values of v for which this holds, and k values of i corresponding to each v.
Therefore x has precisely kdS(x) neighbours in S(k). Note that the mapping
from x to x is surjective onto Fn

2 , so taking the maximum over all x ∈ S(k), we
obtain that

∆(Qkn[S
(k)]) = qkn

as desired.
Now suppose that Sc is independent. To see that S(k)c is also independent,

suppose that we have x ∈ S(k)c and i = un+ v such that x+ ei ∈ S(k)c. Then
x and x+ ev are both in Sc, which is a contradiction.

This lemma gives us some more cases where equality can be achieved in
Corollary 4.2.3.

Corollary 4.3.3. Let n = k(2r − 1), where k, r ≥ 1 are integers, and let
p = 1− 1

2r
. Then there exists S ⊂ V (Qn) with |S| = p2n and ∆(Qn[S]) =

2p−1
p

n.

Proof. Apply Lemma 4.3.2 to the construction in Observation 4.3.1.

While the construction in Corollary 4.3.3 may be new, we would not be
surprised if it is already known in the context of error-correcting codes.

4.4 Behaviour in the limit

In the previous section, we have shown that the lower bound of Dn(p) =
2p−1
p

can be achieved when p = 1− 1
2r

and n is of the form k(2r − 1). It is natural,
then, to ask how Dn(p) behaves for the same value of p when n is not a multiple
of 2r− 1. In particular, we would like to know whether a limit exists as n → ∞,
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not just in the case p = 1 − 1
2r

but for general values of p. The following
proposition tells us that it does.

Proposition 4.4.1. Let p be a rational of the form b
2r

for some integers b, r ≥ 0,
so that Dn(p) is defined for n ≥ r. Then

Dn(p) → inf
n≥r

Dn(p)

as n → ∞.

Proof. Let a = infn≥r Dn(p). It suffices to show that for every ϵ > 0 there
exists N such that Dn(p) < a+ ϵ for all n ≥ N .

By the definition of a, there exists some m such that Dm(p) < a+ ϵ
2
. In other

words, there exists S ⊂ Qm such that |S| = p2m and ∆(Qm[S]) < (a + ϵ
2
)m.

Now, by Lemma 4.3.2, for every k ≥ 1 there exists S(k) ⊂ Qkm with |S(k)| =
p2km and ∆(Qkm[S

(k)]) < (a+ ϵ
2
)km.

Now consider a general value of n. Let us write n = km − r for some
integers q and 0 ≤ r ≤ m − 1. The hypercube Qkm can be partitioned into
2r subcubes isomorphic to Qn, each corresponding to a particular choice of
the first r coordinates. Let Q′ be one of these subcubes, and consider the set
S ′ = S(k) ∩Q′. Since |S(k)| = p|Qkm|, we can choose Q′ such that |S ′| ≥ p|Q′|.
For any vertex x ∈ S ′, we clearly have dS′(x) ≤ dS(k)(x). Therefore

∆(Q′[S ′]) ≤ ∆(Qkm[S
(k)]) <

(
a+

ϵ

2

)
km.

Identifying Q′ with Qn, we now have S ′ ⊂ V (Qn) with

∆(Qn[S
′]) <

(
a+

ϵ

2

)
km =

(
a+

ϵ

2

)
(n+ r)

=
(
a+

ϵ

2
+

r

n

(
a+

ϵ

2

))
n.

If
n ≥ 2m

ϵ

(
a+

ϵ

2

)
,

then we have
r

n

(
a+

ϵ

2

)
<

m

n

(
a+

ϵ

2

)
≤ ϵ

2
,

and therefore
∆(Qn[S

′]) < (a+ ϵ)n.

We know that |S ′| ≥ p2n, so we can remove vertices from S ′ to get S ′′ ⊂ V (Qn)

with |S ′′| = p2n and
∆(Qn[S

′′]) < (a+ ϵ)n.
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Therefore Dn(p) < a+ ϵ for large enough n, and so Dn(p) → a as n → ∞, as
claimed.

For a rational p of the form m
2r

, we can now define

D(p) = lim
n→∞

Dn(p).

Corollary 4.2.3 implies that

D(p) ≥ 2p− 1

p
,

and together with Corollary 4.3.3 and Proposition 4.4.1 this tells us that for
p = 1− 1

2r
, we have

D(p) =
2p− 1

p
= 1− 1

2r − 1
.

We would like to extend the definition of D(p) to all p ∈ [0, 1]. For p not of
the form m

2r
, we will define

D(p) = lim
q→p+

D(q) = lim
n→∞

 1

n
min

S⊂V (Qn)
|S|≥p2n

∆(Qn[S])

 ,

where the limit on the left is taken over q of the form m
2r

. The function D(q) is
clearly increasing, so the limit on the left exists.

That the limit on the right exists and is equal to the limit on the left can be
seen as follows. The minimum on the right is always attained by a set S of size
⌈p2n⌉, and for any q > p this is smaller than q2n for large enough n. Therefore,
for every q > p of the form m

2r
, the quantity inside the limit on the right is

bounded above by Dn(q) for large enough n, and so the limit itself, if it exists,
is bounded above by D(q). But for any given n, the quantity inside the limit is
bounded below by D(⌈p2n⌉/2n), which is at least limq→p+ D(q). This implies
that the limit on the right exists and is equal to limq→p+ D(q), as desired.

Note that we clearly still have

D(p) ≥ 2p− 1

p

by Corollary 4.2.3.
As we will see in Section 4.5, for p = 1− 1

r
it turns out to be possible to

control ∆(Qn[Sn]) for certain sets Sn such that |Sn|/2n → p as n → ∞, but
p2n − |Sn| grows without bound. This allows us to bound D(q) above for all
q < p, but it does not tell us anything about D(p) itself. It will therefore be
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useful for us to make another definition: we will set

D−(p) = lim
q→p−

D(q).

As before, the limit above exists since D(q) is increasing. In addition, we still
have the bound from Corollary 4.2.3:

D−(p) ≥ 2p− 1

p
.

Note that knowing D−(p) does not give us any information about the
behaviour of

min
S⊂V (Qn)

|S|=(p−o(1))2n

∆(Qn[S]).

In particular, it does not say anything about how small ∆(Qn[S]) can be for
sets S of size ⌊p2n⌋ or sets whose size is within a constant of p2n.

4.5 Tilings of Zm and asymptotic constructions

In this section, we will prove the following result.

Theorem 4.5.1. Let p = 1− 1
r
, where r ≥ 2 is an integer. Then

D−(p) =
2p− 1

p
= 1− 1

r − 1
.

To do this, we will construct induced subgraphs of Qn of size (p− o(1))2n

which have maximum degree
(

2p−1
p

+ o(1)
)
n, so that in some sense equality

in Corollary 4.2.3 holds asymptotically for p = 1− 1
r
.

We will make use of Chernoff’s standard concentration inequality for bino-
mial random variables [25]: see, for instance, Mitzenmacher and Upfal [62] for
the simple form given here.

Proposition 4.5.2 (Chernoff bound). Let X ∼Bin(n, 1
2
). Then

P
(∣∣∣X − n

2

∣∣∣ ≥ t
)
≤ 2 exp

(
−2t2

3n

)
.

We will construct our induced subgraphs of Qn from various tilings of Zm.
We consider the usual graph structure on Zm, where two vertices are connected
by an edge when they differ only in one coordinate and exactly by one. Also,
we denote by ei the standard basis on Zm. We say that T ⊆ Zm is a k-covering
t-tiling if all of the following hold:
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1. T is an independent set in Zm,

2. every vertex v ∈ Zm \ T has exactly k neighbours in T ,

3. there are t distinct translations T (i) of T such that Zm = T (1) ∪ · · · ∪ T (t)

is a partition.

Next, we construct some families of tilings.

Proposition 4.5.3. For each m ≥ 1, there is a 1-covering (2m+ 1)-tiling of
Zm and a 2-covering (m+ 1)-tiling of Zm.

Proof. We will show that the following sets are such tilings:

Tm = {(y1, . . . , ym) ∈ Zm : y1 + 2y2 + · · ·+mym ≡ 0 (mod 2m+ 1)} ,
T ′
m = {(y1, . . . , ym) ∈ Zm : y1 + 2y2 + · · ·+mym ≡ 0 (mod m+ 1)} .

First, these sets are indeed independent, since changing any coordinate by
one breaks the congruence condition.

Consider x = (x1, . . . , xm) ∈ Zm \ Tm. We have

x1 + 2x2 + · · ·+mxm ≡ k (mod 2m+ 1)

for some k ∈ {±1,±2, . . . ,±m}. Suppose k = ±i. Then x has precisely one
neighbour in Tm, namely x∓ ei. It is also clear that the translations Tm + ke1

are all distinct and disjoint for 0 ≤ k ≤ 2m and that they cover Zm: indeed,
they correspond to the sets

{(y1, . . . , ym) ∈ Zm : y1 + 2y2 + · · ·+mym ≡ k (mod 2m+ 1)} .

Hence Tm is a 1-covering (2m+ 1)-tiling of Zm.
Now consider x = (x1, . . . , xm) ∈ Zm \ T ′

m. We have

x1 + 2x2 + · · ·+mxm ≡ k (mod m+ 1)

for some k ∈ {1, 2, . . . ,m}. Then x has precisely two neighbours in T ′
m, namely

x− ek and x+ em+1−k. Again, the translations T ′
m + ke1 are all distinct and

disjoint for 0 ≤ k ≤ m, and furthermore, they cover Zm. Therefore T ′
m is a

2-covering (m+ 1)-tiling of Zm.

The 1-covering (2m + 1)-tiling Tm has been discovered previously in a
different context: it was used by Golomb and Welch [41] to construct error-
correcting codes in the Lee metric. We believe that the 2-covering (m+1)-tiling
T ′
m is new.
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Fig. 4.1: Two tilings of Z2: the 1-covering 5-tiling T2 and the 2-covering
3-tiling T ′

2

Theorem 4.5.4. Suppose that there exists a k-covering t-tiling of Zm. Then
for every n there is a subset S ⊂ V (Qn) with |S| =

(
1− 1

t
−O

(
1
n

))
2n and

∆(Qn[S]) =

(
1− k

2m
+O

(√
log n

n

))
n.

Proof. We identify the vertices of Qn with P([n]). Divide the ground set [n]

into m subsets I1, . . . , Im with sizes as equal as possible, that is, with |Ii| =
⌊

n
m

⌋
or
⌊

n
m

⌋
+ 1 for every i. The profile of a vertex x ∈ Qn is defined by

v(x) = (|x ∩ I1|, . . . , |x ∩ Im|) ∈ Zm.

First, observe that if x and y are adjacent in Qn, then v(x) and v(y) are
adjacent in Zm. For a neighbour y of x, we have v(y) = v(x) + ei if and only if
y = x ∪ j for some j ∈ Ii \ x, and v(y) = v(x)− ei if and only if y = x \ j for
some j ∈ x∩ Ii. Therefore x has |Ii| − |x∩ Ii| neighbours with v(y) = v(x) + ei

and |x ∩ Ii| neighbours with v(y) = v(x)− ei.
In order to control the degrees, we would like to ensure that for each of

the 2m choices of ±ei, the number of neighbours of x with profile v(x)± ei is
roughly the same. To do so, we restrict Qn to vertices where v(x) is typical.
Indeed, let ci =

√
3
2
|Ii| log n and define the set

Bn =
{
x ∈ Qn :

∣∣|x ∩ Ii| − 1
2
|Ii|
∣∣ ≤ ci for all i ∈ [m]

}
.

Let x ∈ Qn be chosen uniformly at random. Then Bn consists of all the
vertices in Qn such that |x ∩ Ii| is close to its expected value for every i. We
can use the Chernoff bound (Proposition 4.5.2) to give a lower bound for |Bn|.
Indeed, note that for each i ∈ [m], |x ∩ Ii| is a Bin

(
|Ii|, 12

)
random variable,
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and they are all independent. Hence,

|Bn
c|

2n
= P

(
∃i ∈ [m] :

∣∣|x ∩ Ii| − 1
2
|Ii|
∣∣ > ci

)
≤
∑
i∈[m]

P
(∣∣|x ∩ Ii| − 1

2
|Ii|
∣∣ ≥ ci

)
≤ 2

∑
i∈[m]

exp

(
−2c2i
3|Ii|

)
≤ 2m

n
.

Therefore, we have

|Bn| ≥
(
1−O

(
1

n

))
2n.

Given a vertex x ∈ Bn and u ∈ Zm, denote by du(x) the number of vertices
y ∈ Qn that are neighbours of x with v(y) = v(x) + u. Hence du(x) = 0 unless
u = ±ei for some i ∈ [m], and in this case we have the bounds

d+ei(x) = |Ii| − |x ∩ Ii| ≥
1

2
|Ii| − ci ≥

n

2m
−O

(√
n log n

)
,

d−ei(x) = |x ∩ Ii| ≥
1

2
|Ii| − ci ≥

n

2m
−O

(√
n log n

)
.

Now let T be a k-covering t-tiling of Zm with translates T (1), . . . , T (t) that
partition Zm. For each i ∈ [t], define

Si =
{
x ∈ Bn : v(x) /∈ T (i)

}
.

We then have ∑
i∈[t]

|Si| = (t− 1)|Bn|,

and so we can choose j ∈ [t] so that S = Sj satisfies

|S| = |Sj| ≥
(
1− 1

t

)
|Bn| ≥

(
1− 1

t
−O

(
1

n

))
2n.

We now need to check that the maximum degree of Qn[S] is not too large.
For x ∈ S, we have v(x) /∈ T (j), and since T (j) is a k-covering t-tiling, there
are exactly k neighbours of v(x) in T (j), say v(x) + u1, . . . , v(x) + uk, where
u1, . . . , uk ∈ {±e1, . . . ,±em} ⊂ Zm. It follows that all vertices y ∈ Qn with
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v(y) = v(x) + ui are not in S. Therefore we have

dS(x) ≤ n−
∑
i∈[k]

dui
(x) ≤ n− kn

2m
+O

(√
n log n

)
,

where we use our earlier bounds on d±ei(x). In other words, we have

∆(Qn[S]) ≤

(
1− k

2m
+O

(√
log n

n

))
n,

as we wanted.

We note that in the construction above, most vertices x ∈ S do not have
any neighbours outside Bn. This allows us to bound dS(x) from below as well
as from above using the same argument as in the proof of Theorem 4.5.4: for
such an x we have∣∣∣∣dS(x)− (1− k

2m

)
n

∣∣∣∣ = O
(√

n log n
)
.

However, it is possible for a vertex x ∈ S to have many neighbours outside Bn.
In the worst case,

∣∣|x ∩ Ii| − 1
2
|Ii|
∣∣ = ⌊ci⌋ for every i ∈ [m], and around half of

the neighbours of x are not in Bn. As a result, the minimum degree of Qn[S]

is much smaller than the maximum degree, and we obtain the following lower
bound:

δ(Qn[S]) ≥ (m− k)
( n

2m
+O

(√
n log n

))
=

(
m− k

2m
+O

(√
log n

n

))
n.

We can now finish the proof of Theorem 4.5.1, establishing that equality
holds in Corollary 4.2.3 in an asymptotic sense for p = 1− 1

r
.

Proof of Theorem 4.5.1. Let p = 1 − 1
r
. Proposition 4.5.3 tells us that there

exists a 2-covering r-tiling T ′
r−1 of Zr−1. Now, by Theorem 4.5.4, there exists

S ⊂ V (Qn) with

|S| =
(
1− 1

r
−O

(
1

n

))
2n

and

∆(Qn[S]) =

(
1− 1

r − 1
+O

(√
log n

n

))
n.
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Taking n → ∞, we see that for every ϵ > 0, D(p− ϵ) ≤ 1− 1
r−1

. Hence

D−
(
1− 1

r

)
= 1− 1

r − 1

as claimed.

Note that we have not used the 1-covering (2m+ 1)-tiling Tm of Zm con-
structed in Proposition 4.5.3. However, the constructions from Tm and T ′

2m are
essentially the same. Recall that

T ′
2m =

{
(y1, . . . , y2m) ∈ Z2m : y1 + 2y2 + · · ·+ 2my2m ≡ 0 (mod 2m+ 1)

}
.

As a subset of V (Z2m), this is clearly isomorphic to{
(y1, . . . , y2m) ∈ Z2m : y1 + 2y2 + · · ·+mym

− (m+ 1)ym+1 − · · · − 2my2m ≡ 0 (mod 2m+ 1)
}

=
{
(y1, . . . , y2m) ∈ Z2m : (y1 + y2m) + 2(y2 + y2m−1)

+ · · ·+m(ym + ym+1) ≡ 0 (mod 2m+ 1)
}
.

Call this set T ′′
2m. Now construct sets S from Tm and S ′ from T ′′

2m as in
Theorem 4.5.4. Let [n] be divided into subsets I1, . . . , Im when constructing
S, and I ′1, . . . , I

′
2m when constructing S ′. Call the resulting profile functions v

and v′ respectively. Now if we choose the subsets so that Ii = I ′i ∪ I ′2m+1−i for
each i ∈ [m], then for x ∈ Qn we have v(x) ∈ Tm if and only if v′(x) ∈ T ′

2m.
This does not mean that S and S ′ are identical, as they could arise from

different translates of Tm and T ′′
2m, and the two sets Bn are not the same.

However, the overall structure of S and S ′, and the environment around a
typical vertex, are very similar.

Thus, while the 1-covering tilings are not strictly necessary for our proof,
they give a slightly simpler description of the set S when p is of the form 1− 1

r

with r odd. For example, when p = 2
3
, S is simply{

x ∈ Qn : |x| ̸≡ i (mod 3) and |x− 1
2
n| ≤

√
3
2
n log n

}
for some i ∈ {0, 1, 2}.
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4.6 Better lower bounds

In this section, we will show that for 1
2
< p < 2

3
, we have

D(p) >
2p− 1

p
,

that is, equality cannot hold in Corollary 4.2.3 for these values of p. By
examining the structure of S in increasing detail, we will obtain a series of
successively better lower bounds for D(p) when 1

2
< p < 2

3
. We begin with the

simplest of these bounds.

Proposition 4.6.1. Let 1
2
< p < 2

3
. Then

D(p) ≥
√

2p− 1

2p
.

Remark. Note that √
2p− 1

2p
>

2p− 1

p

precisely when 1
2
< p < 2

3
, so Proposition 4.6.1 improves on the lower bound in

Corollary 4.2.3 for this range of p. The bound is still valid for p > 2
3
, but does

not give any new information there.

Proof of Proposition 4.6.1. It suffices to prove the proposition for p of the form
m
2r

. Let S ⊂ V (Qn) with |S| = p2n where 1
2
< p < 2

3
. Let ∆(Qn[S]) = qn. For

convenience, for u ∈ S, we denote dS(u)
n

by δu, so that δu ≤ q for all u ∈ S.
Fix a vertex v ∈ S. Let C be the set of vertices of Qn at distance exactly 2

from v, that is, the vertices that differ from v in 2 coordinates. Each w ∈ C

has exactly 2 common neighbours with v. We partition C into three subsets
C1, C2, C3 as follows:

• w ∈ C1 if both common neighbours of v and w are in S,

• w ∈ C2 if v and w have one common neighbour in S and one in Sc,

• w ∈ C3 if both common neighbours of v and w are in Sc.

Each vertex in N(v) ∩ S has at most qn − 1 neighbours in S apart from v.
Therefore at most dS(v)(qn− 1) vertices of C2 are in S. Hence

|C2 ∩ Sc| ≥ dS(v)(n− dS(v))− dS(v)(qn− 1)

= dS(v)((1− q)n− dS(v) + 1)

= δvn((1− q − δv)n+ 1).
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Note that this already implies that q > 2p−1
p

. Indeed, if not, then δv ≤ q < 1
2
,

and so |C2 ∩ Sc| > 0 as long as we choose a vertex v with dS(v) > 0. But now
every vertex in C2 ∩ Sc has a neighbour in N(v)∩ Sc, so e(Sc) > 0. Thus Sc is
not an independent set, so equality cannot hold in Corollary 4.2.3.

Each vertex in C2 ∩ Sc has exactly one neighbour in N(v) ∩ Sc. For each
edge e = xy within Sc, there are at most 2(n − 2) choices of v for which e

can be found in this way, namely the neighbours of x and y that are in S. By
double-counting, we therefore have

e(Sc) ≥ 1

2n

∑
v∈S

δvn((1− q − δv)n+ 1)

≥ 1

2

∑
v∈S

δvn(1− q)− n

2

∑
v∈S

δ2v

= (1− q)e(S)− n

2

∑
v∈S

δ2v

From the proof of Proposition 4.2.1, we have that

e(S) + e(S, Sc) + e(Sc) = n2n−1

and
e(S, Sc) + 2e(Sc) = (1− p)n2n.

Combining these, we obtain

e(S)− e(Sc) = (2p− 1)n2n−1, (4.3)

and so
e(S) ≥ (2p− 1)n2n−1 + (1− q)e(S)− n

2

∑
v∈S

δ2v .

Therefore

qe(S) ≥ (2p− 1)n2n−1 − n

2

∑
v∈S

δ2v

q

2

∑
v∈S

dS(v) ≥ (2p− 1)n2n−1 − n

2

∑
v∈S

δ2v∑
v∈S

δv(q + δv) ≥ (2p− 1)2n.

But δv ≤ q for all v ∈ S, so∑
v∈S

δv(q + δv) ≤ 2q2p2n.
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It follows that

q ≥
√

2p− 1

2p
,

which implies the desired result.

For the remainder of this section, we will often be concerned with the
number of subgraphs H ⊂ V (Qn) isomorphic to some fixed graph F , some of
whose vertices have been marked, such that the isomorphism between H and
F sends the vertices of H ∩ S to the marked vertices of F . We will represent
this number of subgraphs with a small diagram depicting the graph F with
the marked vertices in black and the unmarked vertices in white.

For example, we may wish to consider the number of subgraphs of Qn

isomorphic to C4 ≡ Q2 which contain exactly 2 vertices of S in the configuration
where these 2 vertices are adjacent. This number is denoted by the symbol .

By carefully counting configurations of 3 and 4 vertices such as the one
above, we will prove the following result.

Proposition 4.6.2. Let 1
2
< p < 2

3
. Then

D(p) ≥
1− 2p+

√
(2p− 1)(1− p)

2− 3p
.

Proof. As in the previous proposition, we may assume p is of the form m
2r

. Let
S ⊂ V (Qn) be such that |S| = p2n with 1

2
< p < 2

3
, and let ∆(Qn[S]) = qn.

We have that
e(Sc) =

1

2

∑
v∈Sc

dSc(v).

Also, we have

=
1

2

∑
v∈Sc

dSc(v)(dSc(v)− 1) =
1

2

∑
v∈Sc

dSc(v)2 − e(Sc)

≥ 2

(1− p)2n
e(Sc)2 − e(Sc)

by the Cauchy-Schwarz inequality.
Consider an edge in Sc. It is part of n − 1 different copies of Q2, so

by considering the possible arrangements of vertices of S in such a Q2 and
double-counting, we obtain that

e(Sc) =
1

n− 1
( + 2 + 4 ) . (4.4)
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Every copy of P3 in Qn is contained within exactly one copy of Q2, so we
have that

= + 4 ,

and hence

e(Sc) ≥ 1

n− 1
( + )

≥ 1

n− 1

(
+

2

(1− p)2n
e(Sc)2 − e(Sc)

)
,

with equality in the first line if and only if = 0. Rearranging, we find that

e(Sc) ≥ 1

n

(
+

2

(1− p)2n
e(Sc)2

)
.

We would now like to find an expression for . First, note that

= 2 + 2 .

We also have that
= + 4 . (4.5)

Combining these, we obtain that

= 1
2

− ≥ 1
2

− , (4.6)

with equality if and only if = 0. We therefore have

≥ 1

2

∑
v∈S

dS(v)(n− dS(v))−
1

2

∑
v∈S

dS(v)(dS(v)− 1)

=
∑
v∈S

dS(v)

(
1

2
(n+ 1)− dS(v)

)
= (n+ 1)e(S)−

∑
v∈S

dS(v)
2, (4.7)

giving

e(Sc) ≥ 1

n

(
(n+ 1)e(S)−

∑
v∈S

dS(v)
2 +

2

(1− p)2n
e(Sc)2

)
.
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Recall from (4.3) that e(S)− e(Sc) = (2p− 1)n2n−1. Substituting this in
and rearranging, we obtain(

2(2p− 1)

1− p
− 1

n

)
e(S)

≥ 2

(1− p)n2n
e(S)2 − 1

n

∑
v∈S

dS(v)
2 +

p(2p− 1)n2n−1

1− p
.

This would be a quadratic inequality in e(S) were it not for the presence of the
term 1

n

∑
v∈S dS(v)

2. We would like to bound this term from above, but it could
get quite large if the values of dS(v) are far from being equal. Fortunately, this
forces the maximum degree of Qn[S] to be large, which is what we are aiming
to prove.

By the Cauchy-Schwarz inequality, we have

p2n
∑
v∈S

dS(v)
2 ≥

(∑
v∈S

dS(v)

)2

,

with equality if and only if all the dS(v) are equal (to qn). Let

p2n
∑
v∈S

dS(v)
2 = η

(∑
v∈S

dS(v)

)2

= 4ηe(S)2,

so that η ≥ 1 with equality if and only if all the degrees are equal. η is a
measure of how far Qn[S] is from being regular. We now have(∑

v∈S

dS(v)

)2

=
p2n

η

∑
v∈S

dS(v)
2 ≤ pqn2n

η

∑
v∈S

dS(v),

and so
q ≥ η

pn2n

∑
v∈S

dS(v). (4.8)

In other words, if 1
n

∑
v∈S dS(v)

2 is large, then there is a corresponding gain in
the lower bound for q compared to what is given by (4.2).

Our inequality in e(S) becomes(
4η

pn2n
− 2

(1− p)n2n

)
e(S)2 +

(
2(2p− 1)

1− p
− 1

n

)
e(S)

− p(2p− 1)n2n−1

1− p
≥ 0.
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Changing variables to x = e(S)
n2n−1 for convenience, we have

(2η(1− p)− p)x2 + (2p(2p− 1)− o(1))x− p2(2p− 1) ≥ 0. (4.9)

The x2 coefficient is positive since η ≥ 1 and p > 1
2
, and the constant coefficient

is negative. Hence the quadratic on the left-hand side has two roots, one
positive and one negative, and x must be at least the positive root.

The change of variables applied to (4.8) gives

q ≥ ηx

p
.

We will now show that the right-hand side is minimised when η = 1, producing
a lower bound for q.

Let x0 be the positive root of (4.9), considered as a function of η. By
implicit differentiation, we obtain that

2(1− p)

(
2ηx0

dx0

dη
+ x0

2

)
− 2px0

dx0

dη
+ (2p(2p− 1)− o(1))

dx0

dη
= 0,

and so
dx0

dη
=

−2(1− p)x0
2

4(1− p)ηx0 − 2px0 + 2p(2p− 1)− o(1)
.

Therefore

d(ηx0)

dη
= x0 + η

dx0

dη
= x0

(
2(1− p)ηx0 − 2px0 + 2p(2p− 1)− o(1)

4(1− p)ηx0 − 2px0 + 2p(2p− 1)− o(1)

)
. (4.10)

But

2(1− p)ηx0 − 2px0 + 2p(2p− 1) ≥ 2(1− p)x0 − 2px0 + 2p(2p− 1)

= 2(2p− 1)(p− x0),

and
x0 ≤ x =

e(S)

n2n−1
=

1

n2n

∑
v∈S

dS(v) ≤
1

n2n
np2n = p,

so as p > 1
2
, the numerator on the right-hand side of (4.10) is positive for all

sufficiently large n. Since x0 is positive, the denominator is also positive, and
therefore ηx0 is an increasing function of η for η ≥ 1. In other words,

q ≥ ηx

p
≥ ηx0

p
≥ x0(1)

p
.
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All that is left is to find the value of x0(1). Substituting η = 1 into (4.9)
and solving, we find that

x0(1) =
−p(2p− 1) + p

√
(2p− 1)(1− p)

2− 3p
− o(1),

and hence

q ≥
1− 2p+

√
(2p− 1)(1− p)

2− 3p
− o(1).

Taking the limit as n → ∞ gives the desired result.

Remark. As we would hope, the lower bound on D(p) obtained in Proposition
4.6.2 is strictly better than that in Proposition 4.6.1.

In the rest of this chapter, we will improve the lower bound on D(p) further
by examining configurations of vertices in copies of Q3 rather than Q2. The
technique is generally the same as that used to prove Proposition 4.6.2, but more
involved, and the resulting bound does not have a simple closed-form expression.
As usual, we assume p is of the form m

2r
and consider a set S ⊂ V (Qn) with

|S| = p2n, 1
2
< p < 2

3
. Let ∆(Qn[S]) = qn as before.

Recall from (4.4) that

e(Sc) =
1

n− 1
( + 2 + 4 ) .

Combining this with (4.5) and (4.6), we find that

e(Sc) =
1

n− 1

(
1

2
− + + + 4

)
. (4.11)

We would like to bound + 4 from below. In order to do this, we
will consider the possible arrangements of vertices of S in subgraphs of Qn

isomorphic to Q3. Every copy of K1,3 in Qn is contained within exactly one
copy of Q3. Therefore, by considering the configurations that contain and
double-counting, we obtain that

= + 4 + 2 + + 3

+ 3 + 4 + 2 + 6 + 3 . (4.12)

Note that all of the configurations that contain also contain at least one
copy of or :
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Config. # # # Config. # # #

1 1 1 3 3 0

4 0 1 4 2 0

2 2 0 2 4 0

1 1 0 6 6 0

3 2 0 3 3 0

Recall that our aim is to bound + 4 from below. Each Q2 in Qn is
contained in n− 2 copies of Q3, so we have

(n− 2) ( + 4 ) = 5 + 4 + 2 + + 2

+ 3 + 2 + 4 + 6 + 3 .

Comparing the coefficients in the above and (4.12), it follows that

(n− 2) ( + 4 ) ≥ 1

2
,

with equality if and only if = 0 and every Q3 that contains or is of

the form . This is because is the configuration for which

# + 4#

#

is smallest.
However, this is an extremely strong condition, since every copy of is

in n − 2 copies of Q3 and all of these must be of the form . But now
the vertex in S in our cycle is adjacent to n − 2 other vertices in S, so
qn ≥ n− 2. Indeed, for any Q2 of the form , at most qn of the n− 2 copies
of Q3 containing it can be of the form . The same is true for , which
is the next best configuration for us in terms of minimising + 4 as it has
the next smallest value of (# + 4# ) /# after . Hence the best
we can hope for is that, for every copy of , qn of the copies of Q3 containing
it are of the form , and the other n− 2− qn are configurations for which

# + 4#

#
= 1.
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For some r ≤ q, we therefore have

4 + 3 ≤ 2rn ( + 4 )

and

+ 4 + 2 + + 3 + 2 + 6 + 3

≤ ((1− r)n− 2) ( + 4 ) .

Combining these, we have

((1 + q)n− 2) ( + 4 ) ≥ ((1 + r)n− 2) ( + 4 ) ≥ .

Having obtained a bound on + 4 , we would like to extend this to a
bound on + + 4 . We have that

(1 + q)n ( + + 4 ) ≥ + (1 + q)n , (4.13)

so we will consider the right-hand side above in more detail. From now on, we
will ignore the o(1) terms that frequently appear, as they will vanish when we
take the limit as n → ∞, and therefore they do not affect the eventual lower
bound on D(p). We have already done so by ignoring the −2 in (1 + q)n− 2

above.
We have

+ (1 + q)n =
∑
v∈Sc

(
dSc(v)

2

)
((1 + q)n+ dS(v))

=
1

2

∑
v∈Sc

dSc(v)2((2 + q)n− dSc(v)).

Writing dSc(v) = βvn, this becomes

+ (1 + q)n =
1

2
n3
∑
v∈Sc

β2
v(2 + q − βv). (4.14)

Claim 4.6.3. Let β = 1
|Sc|
∑

v∈Sc βv. Then

∑
v∈Sc

β2
v(2 + q − βv) ≥ |Sc|β2(2 + q − β).

Proof. For every v ∈ Sc, we have 0 ≤ βv ≤ 1. Therefore if f(x) = x2(2 + q− x)

were convex for 0 ≤ x ≤ 1, then we would immediately be done by Jensen’s
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inequality. However, the second derivative of f(x) is 2(2 + q)− 6x, which is
negative for x > 2+q

3
, so we cannot apply Jensen’s inequality straight away.

Let 0 < x0 < 1 be such that the tangent to the curve y = f(x) at (x0, f(x0))

passes through (1, f(1)) = (1, 1+ q). We will define a new function f̄ as follows:

f̄(x) =

f(x) 0 ≤ x ≤ x0

x−x0

1−x0
f(1) + 1−x

1−x0
f(x0) x0 < x ≤ 1

0 1
0

1 + q

x

y

y = f̄(x)
y = f(x)

In other words, y = f̄(x) is the aforementioned tangent for x0 < x ≤ 1.
This ensures that f̄ is continuous and convex for 0 ≤ x ≤ 1. Furthermore,
f(x) ≥ f̄(x) for all 0 ≤ x ≤ 1. Now Jensen’s inequality applies, giving∑

v∈Sc

β2
v(2 + q − βv) ≥

∑
v∈Sc

f̄(βv) ≥ |Sc|f̄(β).

It remains to show that β ≤ x0, since then f̄(β) = β2(2 + q − β), giving the
desired result. First we will find x0. We have that f ′(x0)(1−x0) = f(1)−f(x0),
so

(1− x0)(2(2 + q)x0 − 3x2
0) = 1 + q − (2 + q)x2

0 + x3
0.

The right-hand side also has a factor of 1− x0; indeed, there is a double root
at 1. Factorising and rearranging, we find that (1− x0)

2(2x0 − (1 + q)) = 0,
and so x0 =

1+q
2

.
Finally, note that

β =
1

(1− p)n2n

∑
v∈Sc

dSc(v) =
2e(Sc)

(1− p)n2n
=

e(S)− (2p− 1)n2n−1

(1− p)n2n−1
.
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Since e(S) ≤ pqn2n−1, it suffices to show that

pq − 2p+ 1

1− p
≤ 1 + q

2
.

But this simplifies to 2pq − 4p + 2 ≤ 1 − p + q − pq, which is equivalent to
(3p− 1)(1− q) ≥ 0, so the Claim is proved.

We can now apply Claim 4.6.3 to (4.14), which tells us that

+ (1 + q)n ≥ 1

2
n3|Sc|β2(2 + q − β)

=
1

2
n3(1− p)2n

(
2e(Sc)

(1− p)n2n

)2(
2 + q − 2e(Sc)

(1− p)n2n

)
=

2(2 + q)n

(1− p)2n
e(Sc)2 − 4

(1− p)222n
e(Sc)3.

Substituting into (4.13) and then into (4.11) tells us that e(Sc) is at least

1

n− 1

(
1

2
− +

2(2 + q)

(1− p)(1 + q)2n
e(Sc)2 − 4

(1− p)2(1 + q)n22n
e(Sc)3

)
.

1
2

− is an expression that we encountered previously in the proof of
Proposition 4.6.2. Recall from (4.7) that it is equal to (n+1)e(S)−

∑
v∈S dS(v)

2.
As before, we define η such that

p2n
∑
v∈S

dS(v)
2 = η

(∑
v∈S

dS(v)

)2

= 4ηe(S)2,

so that η ≥ 1 by the Cauchy-Schwarz inequality; since we are ignoring error
terms, equality holds if and only if the dS(v) are close to all being equal in
some asymptotic sense. Once again, we have that

q ≥ η

pn2n

∑
v∈S

dS(v).

Returning to the main inequality, we now have

e(Sc) ≥ 1

n− 1

(
(n+ 1)e(S)− 4η

p2n
e(S)2 +

2(2 + q)

(1− p)(1 + q)2n
e(Sc)2

− 4

(1− p)2(1 + q)n22n
e(Sc)3

)
.
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Substituting in e(Sc) = e(S) − (2p − 1)n2n−1 from (4.3), and ignoring o(1)

terms, gives

ne(S)− (2p− 1)n22n−1 ≥ − 4

(1− p)2(1 + q)n22n
e(S)3

+

(
− 4η

p2n
+

2(2 + q)

(1− p)(1 + q)2n
+

6(2p− 1)

(1− p)2(1 + q)2n

)
e(S)2

−
(
2(2 + q)(2p− 1)n

(1− p)(1 + q)
+

3(2p− 1)2n

(1− p)2(1 + q)
− n

)
e(S)

+
(2 + q)(2p− 1)2n22n−1

(1− p)(1 + q)
+

(2p− 1)3n22n−1

(1− p)2(1 + q)
.

Setting x = e(S)
n2n−1 , as in the proof of Proposition 4.6.2, yields the following

cubic inequality:

1

(1− p)2(1 + q)
x3 +

(
2η

p
− 2 + q

(1− p)(1 + q)
− 3(2p− 1)

(1− p)2(1 + q)

)
x2

+

(
2(2 + q)(2p− 1)

(1− p)(1 + q)
+

3(2p− 1)2

(1− p)2(1 + q)

)
x

− (2 + q)(2p− 1)2

(1− p)(1 + q)
− (2p− 1)3

(1− p)2(1 + q)
− 2p+ 1 ≥ 0. (4.15)

Call the left-hand side h(x). Since the leading coefficient is positive and the
constant coefficient is negative, h(x) has at least one positive root. Considering
h′(x) as a function of x, p and q, we can show that it is at least 0 on the
boundaries of the region in R3 defined by x ≥ 0, 1

2
≤ p ≤ 2

3
and 0 ≤ q ≤ 1

2
;

moreover, it can be proved that there is no stationary point inside this region.
(Note that since D−(2

3
) = 1

2
, we may assume that q ≤ 1

2
.) These calculations

are tedious and unenlightening, and are therefore omitted. Since h′(x) → ∞ as
x → ∞ whatever the values of p, q and η, it follows that h′(x) ≥ 0 for x ≥ 0.
Therefore h(x) has exactly one positive root, which we will call x0, and x ≥ x0

holds.
Again following the proof of Proposition 4.6.2, we know that

q ≥ ηx

p
≥ ηx0

p
.

But x0 depends on q: indeed, we have

x0(η, q) ≤
pq

η
.
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It follows that h(pq
η
) ≥ 0. Making this substitution into (4.15) and rearranging

gives a cubic inequality in q:(
p3

(1− p)2η3
− p2

(1− p)η2
+

2p

η

)
q3

+

(
− 2p2

(1− p)η2
+

2p2

(1− p)η
− 3p2(2p− 1)

(1− p)2

)
q2

+

(
p(2p− 1)(2p+ 1)

(1− p)2η
− p(2p− 1)

1− p

)
q − (2p− 1)p2

(1− p)2
≥ 0.

Let the left-hand side be gp,η(q). The constant coefficient is negative, and the
leading coefficient is

p3

(1− p)2η3
− p2

(1− p)η2
+

2p

η
>

p3

(1− p)2η3
− 2p2

(1− p)η2
+

p

η

=
p

η

(
p

(1− p)η
− 1

)2

≥ 0.

Hence gp,η(q) has at least one positive root. Define qp,η to be the smallest such
root. Then we have the following lower bound for q:

q ≥ min
η≥1

qp,η.

There does not appear to be a simple closed-form expression, but the bound
can be calculated and plotted using a computer. One might expect that
the minimum of qp,η is always attained when η = 1, corresponding to Qn[S]

being asymptotically close to regular; in this case the cubic formula gives a
complicated closed-form expression for qp,η. However, we rather surprisingly
find that for 0.5 < p < 0.519026..., the minimum is attained when η > 1.
We believe that this is just a limitation of the method, and that the actual
induced subgraph of size p2n with the smallest maximum degree will always be
asymptotically close to regular.

We now have four lower bounds for D(p) in the range 1
2
< p < 2

3
, each an

improvement on the one before. Let the original lower bound of 2p−1
p

from
Corollary 4.2.3 be denoted D0(p), the bounds from Propositions 4.6.1 and
4.6.2 be denoted D1(p) and D2(p) respectively, and the new lower bound of
minη≥1 qp,η be denoted D3(p). Figure 4.2 shows these bounds in the range
1
2
≤ p ≤ 1. The values for which D0(p) is asymptotically tight, that is, for

which D0(p) = D−(p), are marked up to p = 1− 1
20

.
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Note in particular how quickly the bound D3(p) rises for p just above 1
2
.

For example, an induced subgraph of Qn with 0.501 · 2n vertices must contain
a vertex of degree greater than 0.1n when n is sufficiently large.

1
2

2
3

3
4

4
5

1
0

1
2

2
3

3
4

1

p

y

y = D0(p)
y = D1(p)
y = D2(p)
y = D3(p)

Fig. 4.2: The lower bounds for D(p)

4.7 Conclusion and open problems

We have shown that D(p) displays more complex behaviour than one might
expect. There are at least two different regimes: one for 1

2
< p < 2

3
and

another for 2
3
< p < 1. (One could count D(p) = 0 for p < 1

2
as being a third

regime.) At p = 2
3
, the boundary between these regimes, D(p) is not smooth.

However, there is much still to learn about this function. First of all, the
lower bound D3(p), which was derived from careful examination of the possible
configurations of vertices of S in copies of Q3, is almost certainly not tight.
It seems likely that the same techniques could be applied to configurations
within copies of Q4, Q5 and ever larger subcubes to produce increasingly better
lower bounds on D(p) for 1

2
< p < 2

3
. However, the calculations would increase

rapidly in difficulty and complexity as the number of possible configurations
grows.

Ideally one would aim to completely characterise D(p) for all p, but there
are some interesting questions about its behaviour that could be easier to
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resolve. Since the lower bound of 2p−1
p

from Corollary 4.2.3 is not tight for
1
2
< p < 2

3
, it is natural to wonder whether the same is true for 2

3
< p < 3

4

and so on. One is reminded of the results of Razborov [70], Nikiforov [65] and
Reiher [71] on the smallest possible density of cliques in a graph with a given
edge density: in those cases, a certain lower bound can only be achieved when
the edge density is of the form 1− 1

r
.

Question 4.7.1. Is the bound

D−(p) ≥ 2p− 1

p

tight for any values of p that are not of the form 1− 1
r

for integer r?

We know that D(p) is not smooth as a function of p in the range 1
2
≤ p ≤ 1.

The following question is therefore a natural one to consider:

Question 4.7.2. Is D(p) continuous for 1
2
≤ p ≤ 1?

For p = 1− 1
2r

and n = k(2r−1), Corollary 4.3.3 tells us that there exists an
induced subgraph of Qn with p2n vertices and maximum degree exactly 2p−1

p
n,

matching the lower bound from Corollary 4.2.3. By analogy with Huang’s
result [51] for induced subgraphs of Qn with 2n−1 + 1 vertices, the following
problem may be of interest.

Question 4.7.3. Let n = k(2r − 1) and p = 1 − 1
2r

. Suppose that G is an
induced subgraph of Qn with p2n +1 vertices. How small can ∆(G)− 2p−1

p
n be?

We could also consider the problem of finding the smallest possible maximum
degree of an induced subgraph of a given size for families of regular graphs
other than the hypercube. Recall from Corollary 4.2.2 that we have a lower
bound of 2p−1

p
k for a general k-regular graph. Consider, for example, the cycle

Cn, a 2-regular graph. We have

min
S⊂V (Cn)
|S|≥m

∆(Cn[S]) =


0, 0 ≤ m ≤

⌊
n
2

⌋
1,

⌊
1
2
n
⌋
< m ≤

⌊
2
3
n
⌋

2,
⌊
2
3
n
⌋
< m ≤ n.

For m ≥ 1
2
n, this exactly matches the lower bound obtained from Corollary

4.2.2, which after taking the ceiling function is
⌈
4− 2n

m

⌉
. For m < 1

2
n, the

trivial lower bound of 0 is tight.
However, for some families of regular graphs, the lower bound from Corollary

4.2.2 is far from the truth. For example, an induced subgraph of Kn with m
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vertices has maximum degree m − 1, but Corollary 4.2.2 only gives a lower
bound of (2− n

m
)(n− 1), which is smaller when m < n.

The hypercube Qn is the Cartesian product of n copies of P2, and so it may
be interesting to consider maximum degrees of induced subgraphs for families
of regular graphs constructed in a similar way. Two such families that can be
seen as generalisations of the hypercube are the Cartesian products of cycles,
Cn

k , and the Cartesian products of complete graphs, Kn
k , which are known as

Hamming graphs.
The generalisation to Kn

k of Chung, Füredi, Graham and Seymour’s problem
on the cube [26], namely the problem of determining the smallest possible
maximum degree of an induced subgraph of Kn

k with kn−1 + 1 = α(Kn
k ) + 1

vertices, has been studied in recent years. Dong [30] extended Chung, Füredi,
Graham and Seymour’s construction to show that a maximum degree of ⌈

√
n⌉

is possible for all k. Tandya [80] then solved the problem completely by showing
that the Hamming graphs for k ≥ 3 do not behave like the hypercube: for
all k ≥ 3 and all n, there exists an induced subgraph of Kn

k with kn−1 + 1

vertices and maximum degree 1. It would be of interest to determine whether
the Hamming graphs continue to display different behaviour from Qn when
larger induced subgraphs are considered.



References

[1] A. Aashtab, S. Akbari, M. Ghanbari, and A. Shidani. “Vertex partitioning
of graphs into odd induced subgraphs”. Discuss. Math. Graph Theory 43
(2023), 385–399.

[2] M. Ajtai, J. Komlós, and E. Szemerédi. “A dense infinite Sidon sequence”.
European J. Combin. 2.1 (1981), 1–11.

[3] M. Ajtai, J. Komlós, and E. Szemerédi. “A note on Ramsey numbers”. J.
Combin. Theory Ser. A 29.3 (1980), 354–360.

[4] A. Altshuler. “Construction and enumeration of regular maps on the
torus”. Discrete Math. 4 (1973), 201–217.

[5] K. Appel and W. Haken. “Every planar map is four colorable, Part I:
discharging”. Illinois J. Math. 21.3 (1977), 429–490.

[6] K. Appel, W. Haken, and J. Koch. “Every planar map is four colorable,
Part II: reducibility”. Illinois J. Math. 21.3 (1977), 491–567.

[7] R. C. Baker, G. Harman, and J. Pintz. “The difference between consecutive
primes, II”. Proc. Lond. Math. Soc. 83.3 (2001), 532–562.

[8] N. Balachandran and B. Sankarnarayanan. “The choice number versus
the chromatic number for graphs embeddable on orientable surfaces”.
Electron. J. Comb. 28 (2021), #P4.50.

[9] G. D. Birkhoff. “A determinant formula for the number of ways of coloring
a map”. Ann. of Math. 14.1 (1912-13), 42–46.

[10] G. D. Birkhoff. “The reducibility of maps”. Amer. J. Math. 35.2 (1913),
115–128.

[11] T. Bohman and P. Keevash. “Dynamic concentration of the triangle-free
process”. Random Structures Algorithms 58.2 (2021), 177–380.

[12] B. Bollobás. Modern Graph Theory. Springer, 1998.
[13] B. Bollobás, J. Lee, and S. Letzter. “Eigenvalues of subgraphs of the

cube”. European J. Combin. 70 (2018), 125–148.
[14] J. A. Bondy and P. Erdős. “Ramsey numbers for cycles in graphs”. J.

Combin. Theory Ser. B 14.1 (1973), 46–54.
[15] H. R. Brahana. “Systems of circuits on two-dimensional manifolds”. Ann.

of Math. 23.2 (1921), 144–168.
[16] M. Buck and D. Wiedemann. “Gray codes with restricted density”. Dis-

crete Math. 48.2-3 (1984), 163–171.
[17] S. A. Burr. “Generalized Ramsey theory for graphs – a survey”. In:

Graphs and Combinatorics. Ed. by R. Bari and F. Harary. Lecture Notes
in Mathematics, vol. 406. Springer, 1974.



98 References

[18] S. A. Burr, P. Erdős, and J. Spencer. “Ramsey theorems for multiple
copies of graphs”. Trans. Amer. Math. Soc. 209 (1975), 87–99.

[19] M. Campos, S. Griffiths, R. Morris, and J. Sahasrabudhe. “An exponential
improvement for diagonal Ramsey”. arXiv:2303.09521.

[20] Y. Caro, M. Petruševski, and R. Škrekovski. “Remarks on odd colorings
of graphs”. Discrete Appl. Math. 321 (2022), 392–401.

[21] A. Cayley. “On the colouring of maps”. Proc. R. Geogr. Soc. 1.4 (1879),
259–261.

[22] G. Chartrand and S. Schuster. “On the existence of specified cycles in
complementary graphs”. Bull. Amer. Math. Soc. 77.6 (1971), 995–998.

[23] P. Cheilaris, B. Keszegh, and D. Pálvölgyi. “Unique-Maximum and
Conflict-Free Coloring for Hypergraphs and Tree Graphs”. SIAM J. Dis-
crete Math. 27.4 (2013), 1775–1787.

[24] G. Chen, X. Yu, and Y. Zhao. “Improved bounds on the Ramsey number
of fans”. European J. Combin. 96 (2021), 103347.

[25] H. Chernoff. “A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations”. Ann. Math. Stat. 23.4 (1952), 493–507.

[26] F. Chung, Z. Füredi, R. Graham, and P. Seymour. “On induced subgraphs
of the cube”. J. Combin. Theory Ser. A 49.1 (1988), 180–187.

[27] D. Conlon. “A new upper bound for diagonal Ramsey numbers”. Ann. of
Math. 170.2 (2009), 941–960.

[28] D. Conlon. “The Ramsey number of books”. Adv. Combin. (2019), Paper
no. 3.

[29] D. Conlon, J. Fox, and Y. Wigderson. “Ramsey numbers of books and
quasirandomness”. Combinatorica 42.3 (2022), 309–363.

[30] D. Dong. “On induced subgraphs of the Hamming graph”. J. Graph
Theory 96.1 (2021), 160–166.

[31] V. Dvořák and H. Metrebian. “A new upper bound for the Ramsey number
of fans”. European J. Combin. 110 (2023), 103680.

[32] P. Erdős. “Some remarks on the theory of graphs”. Bull. Amer. Math.
Soc. 53.4 (1947), 292–294.

[33] P. Erdős, A. Rényi, and V. T. Sós. “On a problem of graph theory”. Studia
Sci. Math. Hungar. 1 (1966), 215–235.

[34] P. Erdős and G. Szekeres. “A combinatorial problem in geometry”. Compos.
Math. 2 (1935), 463–470.

[35] G. Even, Z. Lotker, D. Ron, and S. Smorodinsky. “Conflict-free colorings
of simple geometric regions with applications to frequency assignment in
cellular networks”. SIAM J. Comput. 33.1 (2003), 94–136.

[36] I. Fabrici, B. Lužar, S. Rindošová, and R. Soták. “Proper conflict-free
and unique-maximum colorings of planar graphs with respect to neigh-
borhoods”. Discrete Appl. Math. 324 (2023), 80–92.

[37] R. J. Faudree and R. H. Schelp. “All Ramsey numbers for cycles in graphs”.
Discrete Math. 8.4 (1974), 313–329.



References 99

[38] J. Fink. “Perfect matchings extend to Hamilton cycles in hypercubes”. J.
Combin. Theory Ser. B 97.6 (2007), 1074–1076.

[39] G. Fiz Pontiveros, S. Griffiths, and R. Morris. “The triangle-free process
and the Ramsey number R(3, k)”. Mem. Amer. Math. Soc. 263 (2020),
no. 1274.

[40] P. Franklin. “The four colour problem”. Amer. J. Math. 44.3 (1922),
225–236.

[41] S. Golomb and L. Welch. “Perfect codes in the Lee metric and the packing
of polyominoes”. SIAM J. Appl. Math. 18.2 (1970), 302–317.

[42] C. Gotsman and N. Linial. “The equivalence of two problems on the cube”.
J. Combin. Theory Ser. A 61.1 (1992), 142–146.

[43] R. W. Hamming. “Error detecting and error correcting codes”. Bell Syst.
Tech. J. 29.2 (1950), 147–160.

[44] F. Harary, J. P. Hayes, and H. Wu. “A survey of the theory of hypercube
graphs”. Comput. Math. Appl. 15.4 (1988), 277–289.

[45] L. H. Harper. “Optimal assignments of numbers to vertices”. J. Soc. Ind.
Appl. Math. 12.1 (1964), 131–135.

[46] L. H. Harper. “Optimal numberings and isoperimetric problems on graphs”.
J. Combin. Theory 1.3 (1966), 385–393.

[47] I. Havel. “Semipaths in directed cubes”. In: Graphs and other combina-
torial topics. Ed. by M. Fiedler. Teubner-Texte zur Mathematik 59.
Teubner, 1983.

[48] P. J. Heawood. “Map-colour theorem”. Q. J. Math. 24 (1890), 332–338.
[49] H. Heesch. Untersuchungen zum Vierfarbenproblem. German. Biblio-

graphisches Institut, 1969.
[50] G. Hoheisel. “Primzahlprobleme in der Analysis”. German. Sitz. Preuss.

Akad. Wiss. 33 (1930), 580–588.
[51] H. Huang. “Induced subgraphs of hypercubes and a proof of the sensitivity

conjecture”. Ann. of Math. 190.3 (2019), 949–955.
[52] A. B. Kempe. “On the geographical problem of the four colours”. Amer.

J. Math. 2.3 (1879), 193–200.
[53] J. H. Kim. “The Ramsey number R(3, t) has order of magnitude t2/ log t”.

Random Structures Algorithms 7.3 (1995), 173–207.
[54] G. Kreweras. “Matchings and Hamiltonian cycles on hypercubes”. Bull.

Inst. Combin. Appl. 16 (1996), 87–91.
[55] H. Lebesgue. “Quelques conséquences simples de la formule d’Euler”.

French. J. Math. Pures Appl. (9) 19 (1940), 27–43.
[56] Y. Li and C. C. Rousseau. “Fan-complete graph Ramsey numbers”. J.

Graph Theory 23.4 (1996), 413–420.
[57] Y. Li, C. C. Rousseau, and W. Zang. “Asymptotic upper bounds for

Ramsey functions”. Graphs Combin. 17 (2001), 123–128.
[58] Q. Lin and Y. Li. “On Ramsey numbers of fans”. Discrete Appl. Math.

157.1 (2009), 191–194.



100 References

[59] Q. Lin, Y. Li, and L. Dong. “Ramsey goodness and generalized stars”.
European J. Combin. 31.5 (2010), 1228–1234.

[60] S. Mattheus and J. Verstraete. “The asymptotics of r(4, t)”. arXiv:2306.
04007.

[61] H. Metrebian. “Odd colouring on the torus”. arXiv:2205.04398.
[62] M. Mitzenmacher and E. Upfal. Probability and Computing. Cambridge

University Press, 2005.
[63] B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins Uni-

versity Press, 2001.
[64] T. Mütze. “Proof of the middle levels conjecture”. Proc. Lond. Math. Soc.

112.4 (2016), 677–713.
[65] V. Nikiforov. “The number of cliques in graphs of given order and size”.

Trans. Amer. Math. Soc. 363.3 (2011), 1599–1618.
[66] N. Nisan and M. Szegedy. “On the degree of Boolean functions as real

polynomials”. Comput. Complexity 4 (1994), 301–313.
[67] J. Petr and J. Portier. “The odd chromatic number of a planar graph is

at most 8”. Graphs Combin. 39 (2023), article 28.

[68] M. Petruševski and R. Škrekovski. “Colorings with neighborhood parity
condition”. Discrete Appl. Math. 321 (2022), 385–391.

[69] F. P. Ramsey. “On a problem of formal logic”. Proc. Lond. Math. Soc.
30.1 (1930), 264–286.

[70] A. A. Razborov. “On the minimal density of triangles in graphs”. Combin.
Probab. Comput. 17.4 (2008), 603–618.

[71] C. Reiher. “The clique density theorem”. Ann. of Math. 184.3 (2016),
683–707.

[72] G. Ringel and J. W. T. Youngs. “Solution of the Heawood map-coloring
problem”. Proc. Natl. Acad. Sci. USA 60.2 (1968), 438–445.

[73] V. Rosta. “On a Ramsey-type problem of J. A. Bondy and P. Erdős. I”.
J. Combin. Theory Ser. B 15.1 (1973), 94–104.

[74] V. Rosta. “On a Ramsey-type problem of J. A. Bondy and P. Erdős. II”.
J. Combin. Theory Ser. B 15.1 (1973), 105–120.

[75] C. C. Rousseau and J. Sheehan. “On Ramsey numbers for books”. J.
Graph Theory 2.1 (1978), 77–87.

[76] F. Ruskey and C. D. Savage. “Hamilton cycles that extend transposition
matchings in Cayley graphs of Sn”. SIAM J. Discrete Math. 6.1 (1993),
152–166.

[77] A. Sah. “Diagonal Ramsey via effective quasirandomness”. Duke Math. J.
172.3 (2023), 545–567.

[78] J. B. Shearer. “A note on the independence number of triangle-free graphs”.
Discrete Math. 46.1 (1983), 83–87.

[79] S. Smorodinsky. “Conflict-free coloring and its applications”. In: Geometry
– Intuitive, Discrete and Convex. Ed. by I. Bárány, K. J. Böröczky, G. F.
Tóth, and J. Pach. Bolyai Society Mathematical Studies, vol. 24. Springer,
2013.



References 101

[80] V. Tandya. “An induced subgraph of the Hamming graph with maximum
degree 1”. J. Graph Theory 101.2 (2022), 311–317.

[81] A. Thomason. “An upper bound for some Ramsey numbers”. J. Graph
Theory 12.4 (1988), 509–517.

[82] F. Tian and Y. Yin. “Every toroidal graph without 3-cycles is odd 7-
colorable”. arXiv:2206.06052.

[83] F. Tian and Y. Yin. “Every toroidal graphs without adjacent triangles is
odd 8-colorable”. arXiv:2206.07629.

[84] F. Tian and Y. Yin. “The odd chromatic number of a toroidal graph is
at most 9”. Inform. Process. Lett. 182 (2023), 106384.

[85] P. Wernicke. “Über den kartographischen Vierfarbensatz”. German. Math.
Ann. 58 (1904), 413–426.

[86] R. A. Wilson. Graphs, Colourings and the Four-colour Theorem. Oxford
University Press, 2002.

[87] Y. Zhang, H. Broersma, and Y. Chen. “A note on Ramsey numbers for
fans”. Bull. Aust. Math. Soc. 92.1 (2015), 19–23.


	Table of contents
	1 Introduction
	1.1 Ramsey numbers of fans
	1.2 Odd colourings on the torus
	1.3 Induced subgraphs of the hypercube

	2 Ramsey numbers of fans
	2.1 Introduction
	2.2 Preliminaries and notation
	2.3 Overview of the rest of the proof
	2.4 Proof of Theorem 2.1.1
	2.5 Conclusion

	3 Odd colourings on the torus
	3.1 Introduction
	3.2 Overview of the discharging method
	3.3 Outline of the proof and preliminaries
	3.4 Application of the discharging method
	3.5 The case (G) = 6
	3.6 Conclusion

	4 Induced subgraphs of the hypercube with small maximum degree
	4.1 Introduction
	4.2 Induced subgraphs of regular graphs
	4.3 Binary codes and precise constructions
	4.4 Behaviour in the limit
	4.5 Tilings of Zm and asymptotic constructions
	4.6 Better lower bounds
	4.7 Conclusion and open problems

	References

