Econometric Issues in the
Analysis of Contagion

Hashem Pesaran and Andreas Pick

January 2004

CWPE 0402

Not to be quoted without permission



Econometric Issues in the Analysis of Contagion*

M. Hashem Pesaran
University of Southern California & University of Cambridge

Andreas Pick
University of Cambridge

November 2003

Abstract

This paper presents a canonical, econometric model of contagion
and investigates the conditions under which contagion can be distin-
guished from inter-dependence. In a two-country (market) set up it
is shown that for a range of fundamentals the solution is not unique,
and for sufficiently large values of the contagion coefficients it has in-
teresting bifurcation properties with bimodal density functions. The
extension of the model to herding behaviour is also briefly discussed.
To identify contagion effects in the presence of inter-dependencies the
equations for the individual markets or countries must contain coun-
try (market) specific forcing variables. This sheds doubt on the general
validity of the correlation based tests of contagions recently proposed
in the literature which do not involve any country (market) specific
fundamentals. Finally, we show that ignoring inter-dependence can in-
troduce an upward bias in the estimate of the contagion coefficient, and
using Monte Carlo experiments we further show that this bias could
be substantial.
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1 Introduction

Recent episodes of financial crises suggest that they appear in clusters. In
the EMS crises in 1992 two countries were forced to leave the exchange
rate mechanism and a number of other countries suffered from speculative
attacks. In 1994 a number of countries were affected in what came to be
known as the “Tequila” crisis. During the Asian crisis in 1997, several Asian
economies were struck by severe crises. These episodes have led economists
to suggest that financial crises are contagious, that they spread from the
originating country to other countries, and that an understanding of the
reasons for contagion is essential for forming appropriate economic policies.

The theoretical literature considers a number of reasons for financial
crises to appear in clusters. Masson (1999) identifies three categories under
which the different theories can be subsumed. First, the theory of “mon-
soonal effects” suggests that financial crises appear to be contagious because
the underlying macroeconomic causes are correlated. Second, financial crises
may be transmitted between countries via “spill-overs”: a crisis affects an-
other country through external links such as trade. A devaluation in one
country exerts pressure on the country’s trading partners to devalue. Fi-
nally, the theory of “pure contagion” holds that the market jumps from a
“good” to a “bad” equilibrium. The jump could be caused by a reversal in
a long-standing information cascade. A financial crisis in one country could
be considered a signal that, for example, a certain type of economic devel-
opment strategy is unsustainable. Investors would withdraw their money
from countries with apparently similar development strategies and cause a
cluster of financial crises.

The first two cases, monsoonal effects and spill-overs, are examples of
inter-dependence. Crises resulting from inter-dependence should be largely
predictable using macroeconomic fundamentals. If the inter-dependence
during non-crises periods is known, the effect of a financial crisis in one
country on the likelihood of a crisis in another country can be evaluated.
The third case, jumps between equilibria, is what we refer to as contagion in
this paper: a largely unpredictable, higher correlation during crises times.
This definition of contagion means that a crisis in one country increases
the likelihood of a crisis in another country over and above what would be
implied by the inter-dependence that prevails between these countries in
non-crises times. This definition corresponds to that given by Forbes and
Rigobon (2001, 2002).

There are important implications of the distinction between contagion
and inter-dependence. Investors need to take a different kind of risk into
account for their portfolio choices if markets have a higher correlation after
negative shocks. If negative shocks have a much higher correlation across
countries than in tranquil times, diversification of portfolios across countries
might be less useful than anticipated before a negative shock.



Economic policy-makers need to be aware of the source of contagion
when they are evaluating possible policy responses to a crisis. If the cause
of a crisis is a random jump between equilibria, i. e. contagion, international
institutional lending to prevent contagion could be a highly effective response
as it might return the market to the “good” equilibrium. If, in contrast, a
crisis spreads to other countries because their fundamentals are correlated
or there are spill-overs affecting the economic fundamentals, international
institutional lending cannot prevent the crisis unless it is large enough to
change the fundamentals.

There is a large body of empirical research regarding the source of conta-
gion of financial crises, recently reviewed by Dornbusch, Park, and Claessen
(2000), Pericoli and Sbracia (2002), and Dungey, Fry, Gonzalez-Hermosillo
and Martin (2003). The empirical literature on contagion of currency crises
has been largely based on the literature on the macroeconomic causes of
currency crises. Using a panel data set, Eichengreen, Rose, and Wyplosz
(ERW) (1996) used a pooled probit model to explain a binary indicator of
currency crises by a set of macroeconomic variables and a dummy variable
for contagion. They found that a crisis elsewhere raises the likelihood of a
currency crises by about 8% and interpreted this finding as an indication
of contagion. Similar studies have also been carried out by Esquivel and
Larrain (1998), Kruger, Osakwe, and Page (1998), Stone and Weeks (2001),
and Kumar, Moorthy, and Perraudin (2002).

Another set of papers examines contagion of financial markets by test-
ing for higher correlation between markets during crises times (King and
Wadhwani (1990), Boyer, Gibson, and Loretan (1999), Loretan and Eng-
lish (2000), Forbes and Rigobon (2002) and Corsetti, Pericoli and Sbracia
(2002)). Favero and Giavazzi (2002) found significant contagion dummies in
their analysis of interest rate spreads in the ERM. Bae, Karolyi and Stulz
(2003) test whether the number of contemporaneous extreme stock market
returns across a number of markets in a given region can be explained by
three common factors, and find that the average exchange rate in the re-
gion, the average interest rate in the region, and the conditional volatility
of a regional stock market index are significant.

In this paper we propose a canonical model of contagion and provide a
solution in the two country (asset) set up. For a range of fundamentals the
solution is not unique and for sufficiently large values of the contagion coeffi-
cients has interesting bifurcation properties with bimodal density functions.
We briefly discuss extensions of this model to cover herding behaviour.

The problem of identification and estimation of the contagion coeffi-
cients are discussed and shown to be an example of the general problem
of inference in the non-linear simultaneous equation models. To identify
contagion effects in the presence of inter-dependencies the equations for the
individual markets or countries must contain country (market) specific forc-
ing variables. Therefore, pure correlation-based tests for contagion cannot



be valid. Country specific fundamentals are needed to distinguish contagion
from inter-dependence. The correlation based tests of contagions recently
proposed in the literature attempts to overcome the identification problem
by assuming that the crises periods can be identified (or known a priori),
and that such episodes are sufficiently prolonged and contiguous so that
cross-country (market) correlations during crisis and non-crisis periods can
be consistently estimated and compared. These are strong assumptions that
are unlikely to hold in practice and their implementation tend to be subject
to the sample selection bias. Such correlation analyses, by being ex post in
nature, are also not very helpful if the focus of the analysis is to develop an
early warning system for policy use.

Finally, we show that ignoring the endogeneity of the contagion indicator
and/or inter-dependence of the error terms can introduce an upward bias in
the estimate of the contagion coefficient, and using Monte Carlo experiments
we further show that this bias could be substantial. Our simulations also
suggest that the contagion coeflicient of 0.54 obtained from pooled probit
estimation of ERW’s model could be due to neglected inter-dependencies
rather than contagion.

2 A Canonical Model of Contagion: A Two Coun-
try Framework

Consider the following relations

Y1 = 812 + o x1 + B 1(yar — c2094-1) + U (1)
Yor = 052; + ahxo + Bol(y1e — c101,4—1) + uas, (2)
where y;; is a performance indicator for country ¢ = 1,2, t = 1,...,T,

u1; and wuo; are serially uncorrelated errors with zero means, conditional
variances Uil,t—l and U?ﬂ,t—l and a non-zero correlation coefficient p.! The
regressors, X;¢, are k; X 1 country-specific observed factors assumed to be pre-
determined and distributed independently of wj; for all ¢ and j. Country-
specific dynamics can be allowed for by including v;:—1,¥i¢—2,... In X.
z; is an s X 1 vector of pre-determined observed common factors, such as
international oil prices, or other common features. I(A) is an indicator
function that takes the value of unity if A > 0 and zero otherwise

07, = Var (yit | Q1) ,

,_; is the information available at time ¢t — 1.2

'In the analysis of the solution properties of y1; and ya: it is relatively easy to allow
for possible time variations in p. But such a generalisation could obscure the properties
of the correlation between y1: and yat. As it is shown below Corr(yit,y2:) could be time
varying even if p is fixed.

*Note that in general Uiiyt,l #* ait,l.



Examples of performance indicators include stock market returns used
by Forbes and Rigobon (2002) and Corsetti, Pericoli and Sbracia (2002), and
the index of “exchange market pressure” employed by Eichengreen, Rose and
Wylosz (1996) which is a weighted average of exchange rate depreciation,
interest rate differential and international reserves ratios. We are assuming
that y;; is defined in such a way that a crisis is associated with extreme
positive values of y;;, and ¢; > 0.

In this set up inter-dependence is captured through non-zero values of p,
and is distinguished from contagion effects characterised by non-zero values

of ;.

e It is assumed that contagion takes place only at times of crises, whilst
inter-dependence is the result of normal market interactions.?

e Country 7 is said to be in crisis if the performance index, y;; rises above
a threshold value c;.

e Contagion is said to occur if a crisis in country 2 increases the probabil-
ity of a crisis in country 1 over and above the usual market interactions,
and vice versa.

e To test for contagion we first need to establish conditions under which
the contagion coefficients, 3; can be identified. Once such conditions
are met, a test of contagion in country ¢ can be carried out by testing
B; = 0 against the one-sided alternatives, 3, > 0.

The above framework can be readily generalised to deal with both ex-
tremes simultaneously,

yit = 0;z¢ + X + By Lyt — cjuoji—1) + Bitl(—yjt — ¢jnoji—1) + wit,

for i = 1,2, where 3;;; and (3,;, now refer to contagion effects on the upper
and the lower tails and c;jyo;:—1 and ¢jroj—1 are the associated thresholds
with ¢jy > 0 and ¢;jz, > 0. It is clear that only one of the indicators can be
triggered at a time. In this note we shall focus on the relatively simple case
where (3,7, = 0, but we conjecture that our approach and arguments can be
readily extended to the more general case.

3Such phenomena are also frequently encountered in physics and have been studied
extensively in the literature on bifurcation and chaos. For example, in the Rayleigh-
Bénard convection, heat from the surface of the earth conducts its way to the top of the
atmosphere until the rate of heat generation at the surface of the earth gets too high.
At this point heat conduction breaks down. The atmosphere develops pairs of convection
cells, one rotating left and the other rotating right.



3 Solution and the Possibility of Multiple Equilib-
ria

Setting
Wit = 5;Zt + aﬁ;Xit + Ui,

we re-write (1) and (2) as

Y1t = wig + B11(yar — 2), (3)
yor = war + Bol(y1r — 1), (4)

where to simplify the notations and without loss of generality we abstract
from the (possibly) time varying nature of the thresholds.

This is a system of non-linear and non-differentiable simultaneous equa-
tions and has a simple unique solution when either 3; or 3, is zero. For
example, suppose that 35 = 0. Then the solution is given by

Y1t = wig + B11(yar — 2), (5)
Yot = Wat. (6)

When neither of the contagion coefficients is zero the equation system
(3) and (4) can be equivalently written as

Yie = Wi + 1(Yay), (7)
Yor = War + 1(Y14), (8)

where N W — o
}/;‘t — yltﬁi Z’ Wlt — ’Ltﬁi (4 (9)

To solve this simplified system we shall consider the following five mutually
and exclusive regions in the (Wi, Wa:) plane (see also Figure 1):

Region A: Wy >0

Region B: —1 < Wy, < 0 and Wiy > 0,
Region C: Wy < —1

Region D: —1 < Wy <0 and Wy < —1

Region E: —1 < Wy <0and -1 < Wy <0

It is now easily verified that in regions A and B, the solution for Yi; is

unique and is given by
Y =1+ Wy, (10)



Figure 1: Regions of Wy and Wo,
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and, similarly, in regions C' and D the solution is unique and is given by

//\\\

However, in region E the solution is not unique. For example, for Wy, =
—1/2, and Wy = —1/3, there are two possible solutions for Y; = (Y1, Yat)'

given by
o_ [ —1/2 b 1/2
Yt—<_1/3) andYt—<2/3>.

Using the index d; to designate the choice of the solution when —1 < W;; < 0
we have

}/;(dt) =diWi + (1 — dt)(l + I/Vit)a for 7 = 1,2, (12)

where the “favourable” solution occurs if d; = 1, and the “unfavourable”
solution occurs if d¢ = 0. Notice that in the present set up the crisis (un-
favourable outcome) is associated with the upper tail (large positive val-
ues). It is clear from Equation (12) that the distribution of Yj(d;) is a
mean mixture of distributions with d; as the selection parameter. Hence,
d; ~ Bernoulli(7), where 7 is the probability of W;; being chosen in the
mixture.

This is an interesting example where non-uniqueness arises only if the
fundamentals (as measured by W;;) for both countries (markets) are favourable
but weak (in relation to the threshold values). This appears similar to the



notion of weak fundamentals used by Sachs, Tornell and Velasco (1996).
This result also raises the possibility of policy intervention for ensuring that
the “favourable” solution is in fact selected. It is also reasonable to ex-
pect that the correlation of Y1; and Yo; would be higher if the unfavourable
solution is chosen as compared to the favourable one. Simulation results
reported below bear this out.

Collecting the various components of the solution given by (10) to (12)
we have

Yie = (1+Wi)I(Wa) (Region A)
+ (1 + Wlt) I(—Wgt) I(l + Wgt) I(Wlt) (Region B)
+Wi I(—1 — Way) (Region C)
AW T (—~Way) I(1 + Way) I(—1 — Wy,)  (Region D)
+Y73(de) T(=Way) I(1 + Way) (Region E)
X I(=Wr) I(1 + Wyy)

and by symmetry

Yor = (1+ W) I (W)
+(1+ Way) I(=Wyy) 1(1 4+ W) I(Woy)
W T(—1 — Why) (14)
+Wor T(—Wig) I(1 4+ Wig) I(—1 — Way)
+You(di) T(—W1g) T(1 4+ Wig) I(—=Way) I(1 + Way).

In terms of the original variables we obtain
Vi = B; Yy + i, for i =1,2. (15)

It is important that the above solution is valid even if y;; 1, y;;—2, are
included amongst of the individual-specific regressors, x;;. This feature con-
siderably enhance the relevance of the model to the analysis of financial
markets that show a mild degree of short term over-shooting.

It is clear that y1+ and y9; will be correlated even if wy; and woy are inde-
pendently distributed, i.e. for values of 3; > 0, Corr(y1¢,y2t) > 0 even when
Corr(wi¢, wat) = 0. For example, consider the simple case where G, = 0 and
B > 0 of Equations (5) and (6) and wy¢, wa are independently distributed.
In this case

Cov(yie, yat) = By [1 — Falcat) [ {E (war — car | war > car) — E (war — )},
and
B1[1 — Fa(cae) | {E (war — cor | war > cor) — E (war — car)}
/ Var(way) { Var(wny) + G3Fs(ez) [1 — Fa(ea)]}

Corr(y1t, yor) =

)



where Fa(z) is the cumulative distribution function of wg. In the extreme
value literature, E (wa; — cot | war > ca¢) is known as the mean excess func-
tion of wy, see for example Embrechts, Kliippelberg and Mikosch (1997).
This result provide support for the hypothesis that the degree of the de-
pendence of y1; and yo; is an increasing function of the degree of the fat-
tailedness of the way; process. For wy ~ N(0, 1),

B1[1 — D(co) | {E (war | war > car)}
1+ B(ca) [1 - B(ca)

Corr(yit, Yot) = >0, for B; >0, coy > 0.

4 Some Numerical Results

Suppose that ¢; = 1.64 (that corresponds to the upper 95% tail of the
standard normal), let §; = 85 = 3, and

(o) =05 7))

Using these parameters we can sample the dependent variables and investi-
gate their properties for different values of the contagion coefficient 3. The
results reported below are based on 30,000 sampled values of y; and yo;.

Table 1 reports the moments of y1; and the correlation of y1; and yo
under the assumption that only one of the mixture distributions is visited,
note however that due to the symmetry of the model the reported moments
also apply to yo:. On the left side of the table the results for 7 = 1 are
reported and on the right side the results for ™ = 0.

Table 1: Moments of the distribution of y;
Wzl(dtzl) =20 (dtZO)
16} g1 o(y1) Kurt Corr g1 o(y1) Kurt Corr
p=20
0.5 0.028 1.00 0.08 0.120 0.030 1.01 0.07 0.127
1.0 0.063 1.05 0.43 0.238 0.107 1.11 0.15 0.319
2.0 0.161 1.24 1.96 0.457 0.863 1.69 -1.13 0.706
p=0.5
0.5 0.0656 1.48 0.06 0.602 0.071 149 0.03 0.606
1.0 0.154 1.61 0.15 0.677 0.212 1.66 -0.15 0.697
2.0 0369 1.94 0.19 0.767 0.907 2.18 -1.05 0.816

“Kurt” denotes Kurtosis-3 of the distribution of y1: and “Corr” the correlation

between y1: and y2;.

Rather than choosing only one part of the mixture in (15) one can also
consider intermediate cases where both parts of the mixture are visited.
Below we set m = 0.5 by sampling d; = I(s;) where s; is the realisation of



a random variable characterising the nature of the policy intervention. In a
purely random case where s; ~ N(0, 1) one obtains very pronounced bimodal
distributions for ;. A clear polar separation of solutions emerge when f is
large, as can be seen in Figures 2-3 for 8 = 2 and p = 0.8. More dramatic
pictures can be obtained for larger values of § as in Figure 4 and 5. These
parameter values are chosen for illustrative purposes and we do not expect
to observe such extreme phenomena in practice. For small values of § the
polarisation is very slight and cannot be revealed by visual inspection. This
can be seen in Figures 6 and 7, which display the results for 3 = 0.5 and
p = 0.5.

10
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Figure 2: Scatter plot of y; on yo (8 =2, p=0.8, 7 = 0.5)
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Figure 3: Histogram and normal curve for y; (=2, p=0.8, 7 =0.5)
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Figure 4: Scatter plot of yjon y2 (6= 3.5, p=0.8, 7 = 0.5)
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Figure 5: Histogram and normal curve for y; (6 = 3.5, p = 0.8, 7 = 0.5)
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5 Herding and Contagion

The literature on herding places important emphasis on the discounting of
private (or individual-specific) information at times of crisis. Combining a
herding effect with contagion the system of equations (1) and (2) can be
generalised as

Y1t = 812¢ + o x1t [1 — o1 1(yar — cao2-1)] + B11(y2r — c202,4—-1) + ua,
yor = 8524 + abhXar [1 — @ol(y1e — c101,0-1)] + Bol(yie — c1o1,4-1) + uat,

where ¢; can be viewed as a herding coefficient if the individual-specific
variables x1; and xg; are independently distributed. It would be reasonable
to expect that 1 > ¢, > 0, so that herding has a discounting, non-perverse
effect on private information. In the case where x1; and xo; are correlated,
the “herding factors”, —¢I(y;: — ¢joj¢—1) i,j = 1,2, must be applied to
the non-correlated components of xy; and xo;. Under this set up private
information is discounted only in crisis periods. Dynamics can be introduced
in the model by allowing x;; to contain lagged values, y; t—1, ¥it—2, - - ..
The model might also be written as

Yir = 05z¢ + Xy + [B; — 0;00%i] W(yje — ¢joj 1) + iy, for i,j = 1,2,

and solved/analysed as before by treating (; in the previous set up as a
time varying coefficient, 3; = 0; — ¢;ax;. In the case where x1; and
Xg9¢ are independently distributed it is easy to show that the covariance of
y1¢ and yo¢ does not increase as a result of herding, so long as contagion
effects are not operating (3; = 0). In fact herding (as defined here) reduces
correlations as it raises volatilities without increasing covariances. This is
in contrast to the case of contagion which is generally associated with a rise
in correlations. Therefore, there is some potential in joint consideration of
herding and contagion. But a detailed discussion would be beyond the scope
of the present paper.

6 Identification and Estimation of the Contagion
Coefficients

The system of equations (1) and (2) represent a two-equation non-linear
simultaneous equation model which has been studied extensively in the
econometric literature as summarised by Amemiya (1985), for example.
The above equation systems whilst non-linear in the endogenous variables,
vt = (Y1, y2¢)’, are linear in the parameters for known threshold values, ¢;
and cy. This somewhat simplifies the identification and estimation problems.
In what follows we focus on this relatively simple case by assuming that ¢q
and cz are known and that the variances o;;—1 are time invariant and can

14



be absorbed in ¢;. The non-uniqueness of the solution is not by itself an
impediment to identification and/or consistent estimation of the unknown
parameters. However, efficient estimation of the parameters, for example by
the maximum likelihood method, requires that the solutions (13) and (14)
are augmented with an additional process that specifies the distribution of
dy, the solution indicator. As in the case of simultaneous equation models,
it is possible to consistently estimate the parameters of a single equation in
a system without necessarily having to fully specify the system of equations.
An additional equation for d;, is not essential for the consistent estimation
of the contagion coefficients [3;, for example. But the identification problem
becomes much more complicated and poses new challenges if the focus of the
analysis is also on the identification of the d; process itself. The resolution
of this problem poses new challenges and is beyond the scope of the present
paper. Hence, our focus will be on identification and consistent estimation
of the contagion coefficients.

6.1 Inconsistency of the OLS Estimators

Consider the Ordinary Least Squares (OLS) regressions of y;; on z:, X,
I(yjt — ¢j), for ¢,5 = 1,2 and for simplicity suppose that the two equa-
tions only contain one country-specific regressor each and assume that these
regressors (z14,2) are strictly exogenous and stationary, distributed inde-
pendently of the errors, uy; and uo; :

yit = arwig + Bl(yar — c2) + uie, (16)
Yot = ooy + Bol(y1e — 1) + oy, (17)

2
(o Yoo [ () (o “ei )]
Uy 0 PO U102 g

Suppose also that probability of crisis occurring in either of the two countries
are neither zero nor unity, namely?

where

T
Tt Zl(yﬁ —¢j) — m;, where 1 > 7; > 0. (18)
t=1

4This is not a primitive assumption and is made here for convenience. The crisis
probabilities, 7;, 7 = 1,2 depend in a complicated manner on the parameters of the
model and the probability distribution functions of the forcing variables, z;;, and the
disturbances, uj:, for j = 1,2. These probabilities can be computed numerically using the
solutions given by (13) and (14).

15



We also have

T
Ty 4k — 02;>0, (19)
t=1
T
T wjuy — 0, fori,j=1,2. (20)
t=1

The OLS estimator of 3, is given by

By = ((1'21\/11(12)_1 d5Myyi,

Where d2 = (I(ygl—CQ), I(yQQ—CQ), e ,I(yQT—CQ)),, M1 = IT—Xl(Xllxl)_lxll,
x1 = (®11, 212, ..., 217)’, and y1 = (y11, %12, -- - 17) . But
2
d 7L T — )
T (dyM;dsy) =T} Zl(y% —c2) — —
1 ~~T )
t=1 T > i1 x%t

and T—! (d,M;dz) tends to a non-zero constant, weg > 0. This is easily
seen in the simple case where z1; = 1 for all ¢. In this case 71 (d5M;d2)
converges to m2(1 — m2) > 0. Hence

plim <7d’21\;1u1>
plim (B1> =B + ==

T—o0 w22
where uy = (u11, 12, ..., u1r). Also under our assumptions (see in partic-
ular (19) and (20))
plim (déxl) plim (X/lul)
plim (—déMlul) = plim ( ,2‘11) _ T—oo T Jroae N T
oo T T—oo \ I’ 03
= Efuid(y2t — c2)],

and

pim (3,) = p, + Bl =),
T—o0 w22

In general, E [u11(yor — ¢2)] # 0, and the OLS estimator of 3; is inconsistent.
The sign and the magnitude of the inconsistency of 31 depends on (5 and
p. The OLS estimator of 3, is consistent only if 39 = p = 0, namely if the
contagion model is recursive (trinagular) and there are no interdependencies
through the errors. To see this consider the relatively simple case where
B9 = 0, and note that under normally distributed errors we have

g
Ut = p (U—M> Ut + Vg, (21)

u2

16



where ug; and vy are independently distributed. Note also that v, is distrib-
uted independently of x1; and xo; and has a zero mean. In this case
Euid(y2e — c2)] = E[ured(cara + uge — c2)]

Oy
= p (—1> E [ugil(aomar + vzt — c2)] + E [vil(aowar + uz — c2)] -

Ou2

Since v, is distributed independently of x9; and wuot, then conditional on o
and uot

E [vll(aoar + ugr — c2) |uge, xar ] = I(aawar + ugr — c2)E (vg |ugt, 21 ) = 0,

and

g
E[u1d(yar — c2)] = p <U—u;> E [ugl(aozor + ugt — ¢2)] .

The following lemma shows that when p > 0, and 8, = 0, then Eluo(yar —
c2)] > 0, and [, will be a consistent estimator of 3; if and only if p = 0.
The direction of the bias is upward when p > 0, and downward if p < 0.

Lemma 1 Suppose B, =0, and conditional on xa¢, ug is normally distrib-
uted, then E [ugil(yar — c2)] > 0 if p > 0.

Proof. Under 3y = 0, uatl(yor — c2) = ugl(aowar +ugr —c2) = u3,, where

P if ug > co — anwyy,
2t 0 otherwise.

Conditional on xg, noting that by assumption x9;, and ug; are independently
distributed we have,

E (uy; |x2t) = Pr(uge > ca — axar |vor )E (uat|ugr > c2 — aowar , x2t) .

But
c;g—agwgt
O'qu) ( w2 )
E (ugt|ugt > co — agway, wor) = :
Pr(th > Cg — (a9, $2t)
and hence

E (uy |zat) = 0wz (

Co — a9t
)
Ou2

Since ¢ (%ﬁm“) > 0 for all values of x9;, we also have:

E (u3) = Efugl(y2: — c2)] > 0.
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Consider now the general case where p > 0 and (35 > 0, and note that
in this case (using (21)) we have

Oul

E[ultl(y2t—02)]=ﬂ< )E[u2t1<th>1+E[eltI<th>J, (22)

Ou2

where Ya; is given by the solution (14), which takes either the value of Wa; or
1+ Wo;. The probability of whether the solution is Wa; or 14+ W depends,
in a complicated manner, on the probability of Wy; and Wy, falling in the
regions A,B,C, D, and E, and the probability of a particular solution being
selected if Wy, and Wy fall in region E. In the Appendix we give results from
Monte Carlo experiments, which show that the expectation is positive for a
wide range of values of 3, 85, a1, g, and p. Therefore, unless 55 = p = 0,
the OLS estimator of 3; will be inconsistent. The large sample bias will be
upward when p > 0 and 3; > 0.

6.2 Consistent Estimation of the Contagion Coefficients

Consistent estimation of 3, can be achieved by instrumental variable tech-
niques assuming there exists pre-determined variables specific to country ¢
that are correlated with I(y;; — ¢;) and uncorrelated with the errors w;;.

If there are no country-specific regressors, namely if a; = g = 0, the
contagion coefficients, [3;, are not identified. In this case

yie = 8124 + B11(yar — c2) + uiy,
Y2 = 052 + Bol(y1e — c1) + uat,

and the observed common drivers, z;, cannot be used as instruments for
the crisis indicators. In this case pooling of the country equations will not
help either, even if the slope homogeneity assumption is imposed (namely if
01 =02, and 3, = 52)'

If, however, country (market) specific regressors exist, i.e. a; # 0, i =
1,2, the following instrumental variables estimator can be used. Suppose
that ¢; and ¢y are known and the observations y;, wy = (2}, x};,x5,), t =
1,2,...,T are given and that the following conditions are met.

0 ]
/
-1 WtWy p
Zt }T L5 Yowws
where X, is a (non-stochastic) positive definite matrix.

(i) Let hy = (2}, x);, Iyt — ¢2))’, and hoy = (2, x5, I(y1r — ¢1))’, and

T
> i1 Wth;:,t p
— 7 — Qq,

where Q; ¢ = 1,2 are full column rank matrices and the convergence
to Q; is uniform.
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Then the IV estimator of 8; = (8}, &, 3;), defined by
5 As-10.) a1
b= (QELQ) QEola

where

T / T !
A D1 Wiy, o _ WiW
Qi: Z7azww:Zt L t:

fl' — Zg—‘:]_ WiYit
T )

T ! T
is consistent for 0; as T — oo.

The validity of these conditions need to be checked in the case of the
particular model under consideration. For example, suppose the model of
interest is given by (16) and (17), and that the conditions (18) to (20) hold,
and 7! Z?:l rorx1; tends to a finite limit as 7" — oo. Let

lim T-1 Zle Jf%t 71 Zle xltl(ygt — 02) v
iy -15T -1 T = Vi.
T )y warre T 30 wal(yar — c2)

T—o00

Then «; and 3, can be identified if V; has a full rank. This rank condition
can be investigated using the solutions (13) and (14). Although, the exact
form of V7 depends on the way the indeterminacy of the solution is resolved
in periods where —1 < Wy = (i + uy — ¢;)/8; < 0, for i = 1,2, it
would nevertheless be possible to check if V7 is full rank without a full
specification of the d; process. For example, it suffices to postulate that
d; follows a general Bernoulli process with a probability that varies with
the state variables, x;, ¢ = 1,2. In the case where x;; and u; are strictly
stationary, in view of (13) and (14), it follows that y;, ¢ = 1,2 are also
strictly stationary, and

T

T Zﬂ?ltl(ym —c9) B Ez1d(yar — c2)],
=1
T

! Z$2t1(y2t —cg) B Ezal(yar — c2)] -
=1

These results, in conjunction with the solution (13) and (14) allow us to
establish the rank of V; without an exact knowledge of the d; process.

7 Correlation Based Tests of Contagion

In a number of papers by Boyer, Gibson, and Loretan (1999), Loretan and
English (2000), Forbes and Rigobon (2002) and Corsetti, Pericoli and Sbra-
cia (2002) attempts have been made to identify contagion effects from pair-
wise correlation of stock market returns by testing whether correlation is
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significantly higher during crises times compared to normal periods. The
main difference between the studies is in how the correlation coefficient is
adjusted for the higher volatility in crises periods. The studies require a pri-
ori specification of the crises periods. The data employed are daily return
observations and do not consider global or country-specific variables in their
analysis.

In terms of our set up the basic model underlying this approach can be
written as (following the approach of Corsetti et al.)

yir = a1 + B11(y2r — car) + uis,
yor = g + Bol(y1r — c1e) + uot,

where ¢; is gleaned from the data, and the inter-dependence across the two
countries is characterised using the single factor specification

wit = y; ft + €it, (23)

where f; is the unobserved common factor, and €, ¢ = 1, 2 are idiosyncratic
shocks:

fe ~id(0,1),
git ~ iid(0,07).

ft and e are also assumed to be independently distributed. For the two-
country set up the single factor model is algebraically equivalent to assuming
u1; and wug are correlated with the correlation coefficient
_ Y172

Vol +9ivVes +73

Under this set up there exist no valid instruments with which to identify
the contagion coefficient from the inter-dependence coefficient p. The iden-
tification problem is overcome in this literature by assuming that the crises
periods are known a priori, and are sufficiently prolonged and continuous
so that correlation of y; and ys; during crisis and non-crisis periods can be
consistently estimated and compared.

Therefore, this approach is problematic on three counts.

p

1. The endogeneity problem discussed in the previous section is circum-
vented by separating crises periods from non-crises periods. Since crisis
periods are identified ex post, after passing through the observations,
the endogeneity bias is re-introduced, however, in form of a sample
selection bias.

2. Multi-country, multi-assets (markets) generalisations of the correla-
tion/covariance approach will require existence of much longer peri-
ods of continuous crisis for the estimation and testing strategy to be
meaningful. Such data sets are unlikely to exist since by their very
nature crisis periods are relatively short.
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3. The analysis can not be used in forecasting and is of limited scope in
a structural understanding of the crises and the factors behind their
occurrence.

8 Contagion in a Multi-Country Setting

Consider now a sample of N countries observed over the periodt =1,2,...,T,
some or all of which could be subject to a crisis at least at some times over
the sample period. A generalisation of (1) and (2) to the case of N > 2 can
be written as

N
Yir = 0;z¢ + QX + f; Zwijl(yjt —¢joji—1) +ui, i =1,2..., N,
j=1

where the weights w;; > 0 are such that Z;Vﬂ wi; = 1, and wy = 0, for
all . The theoretical literature on contagion can often be cast in terms
of this general formulation. For example, Allen and Gale (2000) consider a
theoretical model of financial contagion where bank failures spread from one
region to another under different market structures. They set N = 4 and
consider three types of market structures, namely “complete”, “incomplete”,
and “disconnected incomplete”. In terms of our set up these correspond to

different weighting schemes as defined by the following patterns

0 1/3 1/3 1/3

om0 s s
WComplete_(le)_ 1/3 1/3 0 1/3 ’

1/3 1/3 1/3 0

Wlncomplete = (wij):

o o O
o O O
O O = O
o= O O

and

01 00
1 0 0O
WDisconnected = (ww): 0 0 0 1

0010

Notice also that the incomplete structures pre-suppose the existence of cer-
tain ordering of the regions, although no particular ordering of the regions
is required under the complete market structure. Under the disconnected
incomplete structure the N = 4 problem reduces to two separate N = 2
problems and their solutions do not pose any new difficulties. The incom-
plete market pattern can be reduced to the following generalisation of (7)
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and (8)

Yie = Wi +1(Yay),
Yor = Way +1(Y3

Y3 = Wap + 1(Yar
Yy = Wy +1(Y1e),

9

)
);
)
)

where as before

! /
vy, — Vit —Ci%it1 0;Z¢ + QX + Uit — Ci03 41
it — ) it —

B B

The solution in this case can be obtained along similar lines followed for the
simple case of N = 2, although at the expense of much greater details. As
before there will also be multiple solutions. For example, in the case where
Wi = 0, two solutions are possible, namely Y,# = 0 and Yfg = 1. A complete
characterisation of the solutions for all possible values of W;; will be beyond
the scope of the present paper.

However, some interesting results can be obtained under the complete
market structure. In this case (for a general N) we have

L i=1,2,3,4. (24)

N
Zj:l,j;éi I(yje — ¢5)
N -1

yit:o/xit—i—ﬁ( )—F’th—i-sit,i:l,?...,N, (25)

where for simplicity we have omitted the common observed effects (z),
assumed all the coefficients are homogeneous and have charachterised the
inter-dependence of the errors using the single factor structure given by (23).
Define the crisis indicator ki = I(yit — ¢;). Then,

Rit,

N
Zj:l,j;éil(yjt ) _ N Ry — 1
N -1 N -1 N -1
where 7y = N1 Zfil Ki. Averaging (25) over t = 1,2,...,T, we have®
Ut = o/'Xy_1 + BRy + 7 fi + &

Using this result in (25) to eliminate the unobserved common effect, f; , we
have

N 1
Yit = &'Xit + 3 [(m) Rt — 57— 1&%] + (Ut — &'%y — BRe — &) + €t

i=1,2...,N.

®See Pesaran (2002) for a general discussion of the analysis of cross-sectional depen-
dence in large panels.
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Hence _
_ - Rit — Kt —
Yit — G = & (Xt — %) — 3 <ﬁ) + (it — &)-

In the case where N is sufficiently large, the second term converges to zero
and (B cannot be identified, although a consistent estimator of a can be
obtained from an OLS regression of y;; — 4 on (x; — X¢). Allowing for
parameter heterogeneity does not resolve this problem. For N fixed as T —
00, the condition for identification of § is similar to the two-country case
discussed in Section 6 above.

9 Panel Estimates of Contagion

Eichengreen, Rose and Wyplosz (1996, 1997), Esquivel and Larrain (1998),
Kruger, Osakwe and Page (1998), Kumar, Moorthy and Perraudin (2002)
and Stone and Weeks (2001) attempt to estimate and test for contagion
effects using panel data. The econometric approach taken in these papers is
based on binary choice models with linear index functions

Yit = qoi + &'xip +e, fori=1,2,...,N, t=1,2,...,T, (26)

where y;; is a latent variable observed qualitatively through a univariate
binary response indicator, k;; = I(yi:), the currency crisis indicator. x; is a
k x 1 vector of observed macroeconomic and political variables, o is a k x 1
vector of unknown coefficients and € is an idiosyncratic error assumed to
be serially uncorrelated for each 4, and iid normal distributed across ¢ with
mean zero, a unit variance. Except for the paper by Esquivel and Larrain
(1998), who use a random effects probit model, the literature assumes that
ap; = Q.

Contagion is addressed by including a dummy variable, C;;, in model (26),

yit = ap; + BCit + &%t + €3t

where
N

Cit =1 Z Rjt | - (27)
=1

Under this formulation the crisis indicator, C;, takes the value of unity if
any one of the NV — 1 remaining countries find themselves in a crisis state.
This formulation is quite similar to that discussed above and is subject to
similar identification and estimation issues. Due to the non-linear nature
of this formulation, in order to assess the impact of the endogeneity on the
parameter estimates in the probit model of (26) we conduct a Monte Carlo
experiment using the data of Eichengreen et al. (1996). Details of the data
are given in the Appendix 12.
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9.1 Experimental Design

The Monte Carlo experiments are based on the following data generating
process (DGP):
Yir = ao + o/'xq; + ug,

where ¢ = 1,2,..., N ,t=1,2,..., T, r=1,2,..., R, r refers to the repli-
cation number in the Monte Carlo experiments, R is the total number of
replications, a is a k x 1 vector of parameters, x}, is a k x 1 vector of simu-
lated exogenous variables. Under this DGP, 8 = 0 and all other coefficients
are assumed to be identical across i.

The estimation of ag and a under a probit specification only makes use
of k], = I(y},) and, hence, without loss of generality the variance of the error
term, i, may be set equal to unity. To allow for correlation across the
errors of different cross section units we adopt the following standardised

one-factor structure , ,
r o_ ’Y’Lf t + Eit

Ui =
V1+77

where «; is a scalar, f{' ~ iidN(0,1), and €], ~ iidN(0,1). Under these
assumptions we have E(ul,) = 0 and Var(u],) = 1. The pairwise correlation
coefficient of the errors is given by

ViV .
V492 (1 443)

Regarding values of g}, > 0 as crisis, in all our experiments we fix ag such
that the fraction of observations, 7, with 3}, > 0 is non-zero but relatively
small, namely m = 5%. For this purpose, assuming that the regressors are
normally distributed we have a/'x;; +u; ~ iidN(0, 1 + a’>, ) and therefore

Corr (u;ft, ugt) =

Pr(yj; > 0) =Pr (/x4 uj; > —ag) =1 - @ (——ao) =

Vi+ oY, a
Hence, we set
ap=—(1+ 0/2]9004)1/2 11— ). (28)

This is an important choice in the Monte Carlo experiment because the
contagion dummy becomes a vector of ones if the proportion of crises periods
is too high and then the right hand side variables are perfectly collinear as
they contain an intercept and the contagion dummy. On the other hand,
data sets without crises are meaningless for the concept of contagion and
the estimation of a probit model is not possible.

For each replication a contagion dummy, Cj;, is constructed as

N

T __ 'S
i =1 E Kjt

j=1i#i
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For the probit estimation only the binary indicator x, = I(y},) is observed.
The probability of k7, = 1 is modelled as

Pr(kl, = 1) = ®(ap + BCL + a'x}),
and for the linear OLS regression the assumed model is
Yir = o + BC + &'x5 + €y,

where ef, ~ iid(0,02). The parameters of the probit model (in particular the
contagion coefficient, 3) are computed by the maximum likelihood method.
In a first set of Monte Carlo experiments, we generate xj, ~ iid(0, X,)
for two values of k, namely £ = 1 and k = 2. We fix ¥, implicitly by
generating the regressors with the following common factor structure

= e a0,

where ¢, ~ 1idN(0,1), and h] ~ iidN(0,1). To ensure that the regres-
sors are distributed independently of the errors, h] and f; are taken to be
independent draws. Finally, without loss of generality we set a = ¢, a
k x 1 vector of ones. Note that under ¢; = 0, ¥, = Iy, and using (28)
we have o9 = 1.96 (v/1+ k) for 7 = 0.025, and a9 = 1.64 (/1 + k) for
m = 0.05. In the case where ¢; > 0, 3, will have typical off diagonal
clements 04 = ¢;0;/(\/1 + ¢;1/1+ ¢;), and ag follows from (28).

Note that, while we appreciate that parameter heterogeneity may be
important in applications, we abstract from it in the Monte Carlo experiment
for simplicity. Intercept heterogeneity could be introduced via a random
effects probit model or a conditional logit model, see Hsiao (2003).

In a second set of Monte Carlo experiments the exogenous regressors of
Eichengreen et al. (1996, ERW) are used and taken as given across all the
replications. Under the null of no contagion (3 is set equal to zero and the
other parameters, (ay, @), are set equal to the estimates of the pooled probit
model computed using the ERW data. These estimates are given in Table
2.
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Table 2: Probit model with ERW data

variable (&, &)  [t|-value
Intercept (&) -1.886  10.751
Capital controls -0.134 0.717
Government victory  -0.060 1.141
Government loss -0.332 0.787
Credit growth 0.016 1.880
Inflation 0.065 3.584
Output growth 0.020 0.732

Employment growth 0.043 1.007
Unemployment rate 0.073 3.010
Budget position 0.042 2.042
Current account -0.024 1.072

Total number of observations = 645

Hence, a vector y” is generated as
T . Al T
Yir = Qo + Q' Xit + Uy

The specification of the error term and the estimation are as in the case of
artificial data.

9.2 Results of the Monte Carlo Experiments
9.2.1 Results for the Simulated Regressors

Tables 3-8 give the results for the Monte Carlo experiments with artificially
generated regressors. Tables 3 and 4 report the results for £k = 1, Tables 5
and 6 for k = 2 with orthogonal regressors, and Tables 7 and 8, report the
results for £ = 2 where the regressors are correlated with ¢; = 0.5, Vi. The
first of each pair of tables uses only a discretised dependent variable and
estimates a probit model, while the second uses the continuous dependent
variable and estimates the model by OLS.

It can be seen that throughout all experiments the bias increases with
the size of the correlation of the error term across ¢. For small and even
medium sample sizes the estimate of 3 is quite imprecise in the probit model
even under v = 0. However, the OLS estimates of the contagion effects (3)
under error inter-dependence (p = 72/(1 + %) # 0) is positive in all the
experiments, confirming the upward bias derived theoretically in the context
of our simple two-country canonical model.

The last panel of each table gives the rejection probability for the hy-
pothesis of no contagion, i.e. # = 0. It can be seen that the rejection
probability rises as inter-dependence increases. With v = 1, that is with
error correlation 0.5, N = 100 and T = 100 the hypothesis of no contagion
is always rejected in all models. However, even mild inter-dependence leads
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to high rejection rates. In the OLS estimation with £ = 1, v = 0.4, which
implies correlation of 0.14, and N =T = 50 the hypothesis of no contagion
is rejected in 97.3% of cases. It can also be seen that the probit model has
poor size, over-rejecting the null in all cases.

A further interesting result is that even for homogeneous  the precision
of the estimates does not improve equally with increasing N and T'. It is clear
that for all the experiments the root mean square errors are systematically
lower with T larger than N for a given value of the product N x T'. For
example in Table 3, for v = 1, the RMSE is 1.192 for T' = 50, N = 100,
and 1.055 for T" = 100, N = 50. The intuition behind this is the way the
contagion variable is constructed, which means that the information contents
of increasing N and T are not the same. Recall that the contagion variable
is 1 for all 7 if there are at least two crises in the period, and hence the effect
of increasing N will be limited.

9.2.2 Results Based on the ERW Regressors

The pooled OLS and pooled probit results for this case are summarised in
Table 9. Both sets of results clearly show an upward bias in the estimates
of the contagion coefficient for non-zero values of v, with the bias increasing
steadily with «. The bias could be substantial even for moderate degrees of
cross dependence. For example, for v = 0.4 (which corresponds to a pairwise
cross correlation coefficient of around 0.14) the pooled panel estimate of 3
is 0.27 as compared to its true value of zero. This result holds both under
homogeneous and heterogeneous s, and estimation procedures.

The null hypothesis of 3 = 0 is also rejected well in excess of the nominal
5% level for all non-zero values of v. The pooled probit estimates also
exhibit a substantial degree of over-rejection (12.3% as compared to 5%)
even under v = 0. The degree of over-rejection of the pooled OLS estimates
(7.2%) is much less pronounced, although still significantly different from
5% considering that the experiments are based on 2000 replications.

In view of these results it is reasonable to conclude that the estimate
of the contagion coefficient of 0.54 that one obtains from pooled probit
estimation using the ERW data could be wholly or partly due to neglected
inter-dependencies of the equation errors across different countries.

10 Conclusion

In this paper we have developed a canonical model of contagion. Using
this model, we have considered the issue of identification and consistent
estimation of contagion coefficients. We show that in the presence of er-
ror inter-dependencies contagion effects cannot be consistently estimated
without country-specific fundamentals. This clearly highlights some of the
pitfalls that surround the empirical studies of currency crises and financial
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contagions that are extant in the literature. Correlation analysis that looks
for significant shifts in correlation coefficients across the crisis and tranquil
periods are usually based on high frequency data (daily or weekly) for which
there are no observations on country specific fundamentals. In the case of
such data sets identification of contagion is achieved by making strong a
priori assumptions concerning sample splits into “crisis” and “no-crisis” pe-
riods. Invariably, this also involves the identification of the source country
in which the crisis is purported to have begun.

Multi-country panel analyses of the type carried out by ERW do con-
tain country specific fundamentals and could in principle be used to shed
light on the issue of contagion versus inter-dependence. However, panel
data studies are typically carried out assuming that contagion indices are
exogenous and that errors across countries/markets are independently dis-
tributed, and as we have shown this could introduce a substantial upward
bias in the estimates of the contagion coefficients. A simultaneous estima-
tion of inter-dependence and contagion effects are required. The canonical
model presented in this paper could be viewed as a first step towards such
an objective.

11 Appendix: Simulation of E[uy!(y;; — ¢1)]

Table A reports the simulated values of E [ugI(y1: — ¢1)] using ZtT:1 [ugel(y1 — c1)] /T
with 7" = 2,000, 000. The data are generated from the reduced form of the

model given by Equations (13) and (14) with £ = 1, x4, uy ~ iid N(0, 1),

Pr(d; = 1) = 0.50, and ¢; = 1.64. It can be seen that only for p = 3 = 0 the
simulated value is zero. Similar results are also obtained for other choices

of the solution indicator, d;, namely d; = 0, or d; = 1.
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Table A: Simulated Values of Zle [ugel(y1e — )] /T

p B o
—4 —1 0 1 4
—0.99 —4 —0.095 —0.143 —0.103 —0.142  —0.096
-1 —-0.092 —0.143 —0.103 —0.142  —0.092
0 —0.089 —0.142 —0.103 —0.143  —0.088
1 —0.082 —0.140 —0.103 —0.140  —0.083
4 —0.054 —0.037 —0.024 —0.039  —0.053
—0.50 —4 —0.056 —0.077 —0.052 —0.077  —0.056
-1 —0.050 —0.075 —0.052 —0.075  —0.050
0 —0.045 —0.072 —0.052 —0.072  —0.044
1 —0.036 —0.051 —0.040 —0.051  —0.037
4 —0.011 0.030 0.023 0031  —0.011
0.00 —4 —0.018 —0.017 —0.005 —0.017  —0.017
—1 —0.007 —0.010 —0.004 —0.010  —0.008
0 0.000 0.000 —0.000 0.000  —0.000
1 0.008 0.040 0.045  0.041 0.008
4 0032 0.08  0.060  0.090 0.032
0.50 —4  0.022 0035 0026 0.035 0.021
—1 0036 0.053 0.036  0.052 0.036
0 0045 0.072 0.052 0.072 0.045
1 0055 0128 0135 0128 0.055
4 0075 0.134 0082 0.134 0.074
0.99 —4 0060 0078 0010 0.078 0.060
—1 0078 0112  0.047  0.112 0.079
0 0.08  0.142 0.103  0.142 0.089
1 0099 0208 0213  0.207 0.099
4 0114 0.165 0.070  0.166 0.115

The results are from data generated according to Equations (13)
and (14),with k = 1, 2, us ~ iidN(0,1), Pr (d;= 1) = 0.5, ¢;= 1.64,
and T = 2,000, 000.

12 Data Appendix

The data set used by Eichengreen et al. (1996, 1997) is available on the
internet at

http://haas.berkeley.edu/~arose/RecRes.htm
along with a Stata log file. The description of the data is identical in Eichen-
green et al. (1996, pp. 477-478) and (1997, pp. 23-25).

According to Eichengreen et al. (1997, p. 23) “[t]he data set is quarterly,
spanning 1959 through 1993 for twenty industrial countries.” The countries
are the USA, UK, Austria, Belgium, Denmark, France, Italy, Netherlands,
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Norway, Sweden, Switzerland, Canada, Japan, Finland, Greece, Ireland,
Portugal, Spain, Australia and Germany as the centre country. “Most of
the variables are transformed into differential percentage changes by taking
differences between domestic and German annualised fourth-differences of
natural logarithms and multiplying by a hundred.” (Eichengreen et al. 1997,
p. 23).

The variables are: Total non-gold international reserves (IMF IFS line
11d), exchange rate with US dollar (rf), money market rates (60b) or where
unavailable discount rates (60), exports and imports (70 and 71), the current
account (80) and the central governments budget position (80) both as per-
centages of nominal GDP (99a), long term bond yields (61), nominal stock
market index (62), domestic credit (32), M1 (34), M2 (35 + M1), CPI (64),
real GDP (99a.r), and relative unit labour cost (reu). Further from the
OECD’s Main Economic Indicators employment and unemployment, and
Eichengreen et al. construct “indicators of government electoral victories
and defeats, using Keesing’s Record of World Events and the World Banks’
Political Handbook of the World.” (Eichengreen et al. 1997, p. 24)

Eichengreen et al. use the following definition of the exchange-rate mar-
ket pressure index

EMPit = )q%Aeit -+ /\Q%A(Tit — TGt) — Ag(%Afit — %AfGt), (29)

where e;; is the exchange rate to the US Dollar, r;; the interest rate, and
fit the international reserves of country i. Subscript G indicates variables
for Germany, which is taken as the center country. FEichengreen et al.
(1997, pp.23-24) say that they “weight the components so as to equalize
the volatility of the three components”. This is accomplished by setting
i = 1/0;, where o; is the standard deviation of component i. For this data
set o1 = 0.243, 09 = 0.037, and o3 = 0.0047.
The crisis index is the calculated as

o 1 EMPy > pgyp + 1.50EMP
Yit =1 0 otherwise

where pgysp is the mean and o gyp is the standard deviation of the exchange
rate market pressure index.

The credit growth, the inflation rate, the output growth and the current
account are calculated as

dxi = 100 % In(xs /xi—a) — In(zae/TG1—4), (30)

where x; is the variable for country ¢ and Germany, G. The relative unem-
ployment rate is dx;; = xs — xge. The relative budget position is defined
as dbyy = bit/yit — bat/yat, where by is the nominal government budget of
country 4, y; is the GDP of country ¢ and Germany, G. The dummies for

30



capital controls, government electoral victory and government electoral loss
are not transformed. The other variables mentioned above are not used.

“To avoid counting the same crisis more than once, we exclude the
later observation(s) when two (or more) crises occur in successive quar-
ters.” (Eichengreen et al. 1997, p.22) Country by country excluding time
periods with missing data results in 645 observations for 17 countries with
56 crises observations. The countries are the USA, the UK, Austria, Bel-
gium, Denmark, France, Germany, Italy, the Netherlands, Norway, Canada,
Japan, Finland, Greece, Ireland, Portugal, Spain, and Australia.
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Table 9: Bias, RMSE, Size and Power for the Coefficient of a Spurious
Contagion Index (ERW Data)

Probit OLS
v Bias RMSE [t > ] Bias RMSE [t > ]
homogeneous v; =y
0 —-0.012  0.245 0.123 -0.005 0.095 0.072
0.2 0.074  0.245 0.215 0.079  0.128  0.297
0.4 0.270  0.362 0.518 0.278  0.300  0.902
0.6 0.521  0.580  0.849 0.506  0.522  0.999
0.8 0.773  0.818 0.981 0.713  0.725  1.000
1 0.995 1.034 0.996 0.884  0.894  1.000

heterogeneous ~y; ~ U(%’y, %'y)
0.2 0.069  0.247  0.212 0.079  0.127  0.289
04 0.282  0.375 0.535 0.276  0.300  0.887
0.6 0.528  0.588  0.858 0.492  0.510  0.996
0.8 0.774  0.822 0.977 0.696  0.711  1.000
1 0.998  1.042  0.996 0.863  0.875  1.000

Data are generated from v}, = a’x;; + €}, where x;; are the data
of ERW and « the respective probit estimates of the parameters.
€£t = ’Y{ft’r + u:t: where ’er ~ U(%’Ya g’Y), ftrauzt ~ iid N(O: 1) The
probit estimations use a discretised dependent variable, 7y = I(yi;),
and the OLS estimations the continuous dependent variable, y;;. For
the estimations, a spurious contagion dummy was added and the
common factor was ignored. The results in the table are for the
contagion coefficient, ,é . Reported are the bias of the coefficient of the
contagion coefficient, i.e. Zle(ﬁ(’) — B8°)/R, the root mean square
error, (Ele(,é(r) — B8°)2/R)Y/?, where the true value 3° = 0 in the
DGPandr =1,2,..., R with R = 2000 is the number of replications.
Finally, the one-sided rejection probability denoted [t > c] is reported,
which is defined as the probability that the ¢-value is larger than the
95% critical value (1.645), where the rejection probability under v = 0
is the size and under 7 # 0 the power.
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