Abstract

Bayesian statistical methods are naturally oriented towards pooling in a rigorous way
information coming from separate sources. It has been suggested that both historica and
implied volatilities convey information about future volatility. However, typically in the
literature implied and return volatility series are fed separately into models to provide rival
forecasts of volatility or options prices. We develop aforma Bayesian framework where we
can merge the backward looking information as represented in historical daily return data
with the forward looking information as represented in implied volatilities of reported options
prices. We apply our theory in forecasting (in- and out- of sample) the prices of FTSE 100
European Index options. We find that for forecasting option prices out of sample (i.e. one-day
ahead) our Bayesian estimators outperform standard forecasts that use implied or historical
volatilities. For explaining the observed market prices of options we find, as expected, no
evidence to suggest that standard procedures that use implied volatility estimates are
redundant.
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1. INTRODUCTION

The purpose of this paper is to propose a Bayesian approach for forecasting (in- and out-
of sample) the prices of European options. In the classical Black-Scholes (1973) framework
and its subsequent extensions, this basically requires estimating ex-ante the volatility of
financial asset returns. As Engle and Mustafa (1992) suggest there are two approaches
available to the analyst undertaking this task:

i) The direct one, although backward looking in nature, is to use high frequency historical
data on the behaviour of asset prices to either calculate some statistic, such as the standard
deviation of returns, or explicitly estimate the stochastic process of volatility via maximum
likelihood or other methods. The former usualy applies when a constant volatility option
pricing model is used, while the latter is more relevant for a (discrete-time) stochastic
volatility option pricing model.

ii) Theindirect one, first introduced by Latane and Rendleman (1976), is forward looking
in nature, and uses the market prices of traded options together with an option pricing model
(e.g. the Black-Scholes) to infer expectations about future volatility. This is done by
exploiting the monotonicity of the option price with respect to volatility to invert the option
pricing formula in terms of the volatility parameter. It is the so-called implied volatility
approach, which has proved very popular amongst market practitioners but has also helped
uncover the limitations of the Black-Scholes model.

Indeed it is now widely recognised that the Black-Scholes constant volatility assumption
Is no longer sufficient to capture modern market (i.e. post 1987 crash) phenomena (see for
example Rubinstein (1994) for a discussion of the observed pattern of implied volatilities
known as the "smile" effect). Although there has been a lot of work done in modifying the
specification of volatility to make it a stochastic process there has not yet been a model of
stochastic volatility that enjoys the popularity of Black-Scholes. This is partly due to the
many challenges that arise under stochastic volatility. First of all, volatility is a "hidden"
process and therefore the process parameters are hard to estimate in a continuous framework
with only discrete observations. Moreover stochastic volatility introduces a new source of
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randomness that cannot be hedged and typically induces market incompleteness.! Thisin turn
implies that there is not a unique, arbitrage free, price for a contingent clam and further
assumptions about investors preferences need to be made to restore market compl eteness.

There are many widely cited papers on stochastic volatility option pricing. Just to name a
few: Scott (1987), Wiggins (1987), Hull and White (1987), Stein and Stein (1991), Heston
(1993) Hobson and Rogers (2000) address the issue in a continuous time framework, while
Satchell and Timmermann (1993), Duan (1995)%, Heston and Nandi (2000) attack the problem
in discrete time. Very briefly, the former class of papers model the volatility process as a
diffusion while the latter model volatility as a GARCH process. Interestingly since the work
of Nelson (e.g. Nelson (1990)) there has been a lot of theoretical interest in the convergence
of discrete-time heteroskedastic volatility models to continuous time stochastic volatility
models particularly since the former present the comparative advantage of ease of estimation
of the process parameters.

Due to the difficulties associated with the empirical application of stochastic volatility
models (on top of the aforementioned they often lead to intractable results or require
cumbersome numerical analysis and lengthy simulations), financial practitioners, in as much
as they announce what they do, seem to use GARCH to predict volatility but use the
traditional Black-Scholes coupled with GARCH to price the option. This hybrid procedure,
whilst lacking theoretical rigor, can be partialy justified by the arguments of Amin and
Jarrow (1991), and by the empirical results of Baillie and Bollerdev (1992), Duan (1995),
Engle and Mustafa (1992), and Satchell and Timmermann (1993). In this sort of framework,
Noh, Engle, and Kane (1994) assess the effectiveness of ARCH models for pricing options.
Their study compares predictions of S&P 500 index options prices from GARCH with
predictions of the same options prices from forecasting implied volatility. They suggest that
both methods can effectively forecast prices well enough to profit by trading if transaction
costs are not too high. However they also claim that volatilities incorporated in option prices
do not fully utilise historical information and that GARCH volatility forecasts could add
value.

Another ad hoc procedure often used by practitioners to deal with the (implied) volatility
smile and term structure is to regress the past Black-Scholes implied volatility of an option to
its strike prices and maturities. This estimated relationship then serves as the basis for
calibrating the future implied volatilities for options with different strikes and maturities.
Harvey and Whaley (1992) use time-series regressions of option implied volatilities to
forecast the one-day-ahead volatility of S&P 100 index options. They reect the null
hypothesis that volatility changes are unpredictable on a daily basis. However, after
accounting for transaction costs, a trading strategy based upon out-of-sample volatility
forecasts does not generate abnormal returns. Day and Lewis (1992) introduce implied

! An exception occurs if one (unrealistically) assumes that the volatility process is either uncorrelated with the
underlying (this in effect implies a market price of volatility risk equal to zero) or consider a model where the
volatility and the underlying processes are perfectly correlated. (see for example Hull and White (1987) for a
discussion).

2 Recently Duan and Zhang (2001) used the GARCH option pricing model of Duan (1995) to forecast in- and
out-of-sample the prices of Hang Seng Index options and concluded that it outperforms the Black-Scholes model
even after allowing for a smile/smirk adjustment.



volatilities into a GARCH and EGARCH model and find that they have some explanatory
power for predicting variance in most models, but that in no case are they adequate for
predicting implied volatilities.

One sub-class of stochastic volatility models that enjoys popularity is the class of what
Rebonato (1999) calls "restricted stochastic volatility models’ or otherwise commonly known
as "deterministic (level-dependent) volatility models’. These models describe the stochastic
evolution of the state variable by means of a volatility term that is a deterministic function of
the stochastic underlying stock price.? (see for example Cox and Ross (1976)). The advantage
of these models is that they preserve market completeness since the (stochastic) volatility
functionally depends on the underlying. Assuming a "restricted stochastic volatility model”,
Dupire (1994), Rubinstein (1994) and Derman and Kani (1998) provide tree based algorithms
to extract from observed option prices of different strikes and maturities a volatility function
that is capable of fitting the cross section of option prices (i.e. reproducing the smile).
However, Dumas, Fleming and Whaley (1998) test the predictive and hedging performance of
these models and find that it is no better than an ad hoc procedure that merely smoothes
Black-Scholes implied volatilities across exercise prices and times to expiration. This is
interpreted as evidence that more complex (than the constant) volatility specifications overfit
the observed structure of option prices.

Turning now to the application of Bayesian methods in the valuation of options, Karolyi
(1993) utilises prior information extracted from the cross sectional patterns in the return
volatilities for groups of stocks sorted either by size or financial leverage or trading volume,
together with the sample information, to derive the posterior density of the variance. He
reports improved prediction accuracy for estimates of option prices calculated using the
Bayesian volatility estimates relative to those computed using implied volatility, standard
historical volatility, or even the actual ex-post volatility that occurred during each option's
life. More recently Bauwens and Lubrano (2000) show how option prices can be evaluated
from a Bayesian viewpoint using a GARCH model for the dynamics of the volatility of the
underlying asset. Their methodology delivers (via a numerical agorithm) the predictive
distribution of the payoff function of the underlying. The authors suggest that this predictive
distribution can be utilised by market participants to compare the Bayesian predictions to
realised market prices or to other predictions. Our paper differs from Bauwens and Lubrano’s
in that we follow the log-normal Black-Scholes structure (which alows us to derive the
posterior distribution of the option price in analytic form) whilst they follow a GARCH
discrete-time structure similar to the one suggested in Duan (1995) or more recently in Hafner
and Herwartz (1999).

In particular, the contribution of this paper is twofold:

1) Bayesian statistical methods are naturally oriented towards pooling in a rigorous way
information coming from separate sources. It has been suggested that both historical and

% Or in other words, the volatility of the underlying o should only exhibit the stochastic behaviour allowed by
the functional dependence on the stock price S. Therefore under a restricted volatility model the underlying
processisgiven by: dS(t) = u(S,t)dt +o(S,t)dW, . This equation describes the most general set-up that goes
beyond the case of a purely deterministic (time-dependent) volatility, and still alows risk-neutral valuation
without introducing other hedging instruments apart from the underlying itself.
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implied volatilities convey information about future volatility. However, typically in the
literature implied and return volatilities series are fed separately into models to provide rival
forecasts of volatility or options prices.* We develop aformal Bayesian framework where we
can merge the backward looking information as represented in historical daily return data
with the forward looking information as represented in implied volatilities of reported options
prices. In a recent paper (Darsinos and Satchell (2001)) we have derived the prior and
posterior densities of the Black-Scholes option price. In this paper we extend our previous
analysis from a modelling context to a forecasting context by deriving the predictive density
of the Black-Scholes option price. We also apply our theory in forecasting the prices of FTSE
100 European Index options.

ii) Option prices are substantially influenced by the volatility of underlying asset prices as
well as the price itself. The mgority of existing theories of (out-of-sample) option price
forecasting (e.g. Noh, Engle, and Kane (1994), Harvey and Whaley (1992)) use only the
implied volatility or historical volatility (e.g. GARCH) to forecast option prices while keeping
the price of the underlying fixed. That is, the closing price of the underlying today is used as a
forecast of tomorrow’s value. In our Bayesian framework we treat both the underlying and its
volatility as random variables and the predictive density introduced in this paper implicitly
incorporates randomness in both price and volatility. Regarding the stochastic or non-
stationary character of volatility, we are able by the very nature of our approach to introduce
this parameter in a probabilistic rather than deterministic way. Bayesian statistics treat the
parameters of distributions of random variables as random variables themselves and assign to
them probability distributions. This adds an important element of flexibility to our method.”

The organisation of the paper is as follows. In section 2 we outline the classical
distributional assumptions behind the Black-Scholes model and its estimation. In section 3 we
work towards establishing a Bayesian option pricing framework and extend our previous
work (Darsinos and Satchell (2001)) from a modelling context to a forecasting context. The
posterior and predictive densities of the Black-Scholes option price are derived. Section 4
deals with the empirical implementation of our model. We test the predictive performance of
our Bayesian distributions when applied to the market of FTSE 100 European index options.
Concluding remarks follow in section 5.

* For an exception see however Day and Lewis (1992). There the authors add the implied volatility as an
exogenous variable to GARCH-type models to examine the incremental information content of implied
volatilities.

® Indeed as noted by Bauwens and Lubrano (2000) the predictive method, which incorporates an additional
source of uncertainty, is a better alternative to using a marginal measure to be plugged in the Black-Scholes
formula which can be very dangerous, particularly at times of near nonstationarity.
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2. A CLASSICAL FRAMEWORK FOR OPTION PRICING

We start with the classical Black-Scholes assumption that the stock price P, follows a
Geometric Brownian Motion. This then implies the following formulafor the stock price:

2.1) R =R exp«u—%aZ)t + W)

where W, is a standard Brownian motion (W, =0), P, isthe initial price a time O, i is the

instantaneous mean and ¢? the instantaneous variance. The Black-Scholes option price for a
European call option isthen given by

(2.2 C, =Cgs(R,0) =R®(d;) - Kexp(-r7)®(d,),

log(P. /K) + (1 +;az)r
where d, = ,
1 O'\/?

_ 1 ¢ y?
and q:(z)—EJ’exp(—?)dy

d,=d, —oJr

K isthe exercise price at the expiry date T, r is the risk-free rate of interest, and 7 =T -t the
time to maturity. Note that the only unobservable parameter entering the valuation formula

(2.2) is the variance parameter o?. The next step in the valuation problem is therefore to
estimate o2.

2.1. Historical Information (Sample I nformation)

The classical minimum-variance unbiased estimator of o for t observations of (daily)
continuously compounded returns is then given by the sample variance

s? = Z::l(xi -X)?/(t -1) where X is the log-return between two consecutive time intervals (i.e.

x; =log(P, /P;_;)) and X is the sample mean return (i.e. x=(1/t)ztj:lxj ). It is well known

that the statistic (t -1)s?/o? has ay?(chi-square) distribution with t-1 degrees of freedom®.
From this we can obtain the probability density function of the sample variance (or the
likelihood function of the true variance). It is given by:

(t-D)

1 E (SZ)T_
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t-1., , = ol
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L( ) denotesalikelihood function.

®The probability density function of avariable zthat is distributed chi-squared with t-1 degrees of freedom is
1 ((t-1)/2)-1
z

iven by f =
g y 1@ r((t-1)/2)2072

exp(-z/2) .



Since we want to work with standard deviations rather than variances we transform
equation (2.3) to represent the distribution of the sample standard deviation:
1.5 g2 _(t-Ds?

)2 exp( a
rd-Hott 20

).

(2.4) fs\oty=2(" 3

Note that here and throughout we will use f( ) to denote probability density functions
generaly and not one specific probability density. The argument of f( ) as well as the

context in which it is used will identify the particular probability density being considered.
Also from equation (2.1) we have that the stock price P, is lognormally distributed. Its

probability density function is given by:

i) - e= T 7

(25) (P \,0,0)= epr— -
Pv2to [ 20t 0

H H

Note that for notational simplicity we will ignore dependenceon P, .

3. ABAYESIAN FRAMEWORK FOR OPTION PRICING

In the classical Black-Scholes framework the drift and diffusion parameters are regarded
as constants. In a Bayesian framework these parameters are introduced in a probabilistic
rather than deterministic way and are treated as random variables. We should therefore
identify probability distributions for the drift and diffusion parameters. In identifying these
distributions we follow standard Bayesian methodology as presented in Raiffa and Schlaifer
(1961), Zellner (1971) and more recently in Hamilton (1994), and Bauwens, Lubrano and
Richard (1999).

3.1 Drift Information (Non-Infor mative Prior)

Following Darsinos and Satchell (2001) we have that the conditional probability density
function of the expected rate of return y isgiven by:

__ At t(u-m)?
(3.1 f(y\a,t,m)—\/gmexp% oo E

where mis a hyperparameter.

In calculating m we intend to use the "empirical" Bayes approach. That is we estimate the
hyperparameter from the sample information (1,2,...,t). This can be viewed as incorporating a
non-informative prior for the expected rate of return of the underlying. Alternatively one
could use prior sample information or information in the form of analysts forecasts.



3.2 Implied Volatility Information (Informative Prior)

As a source of prior information we use the implied volatilities or the at-the-money
implied volatilities of reported option prices. We assume that the variance has an Inverted-

Gammea-1 distribution with prior parameters (t's'?/2,t'/2).

trSIZ

t
' ' rSIZ ) 20—2
(3.2) f(az\sZ,t):E2 g v !

Transforming the above equation to represent the probability density of volatility we have:

t:SIZ
>)

v exp(-
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Note that s' represents the implied volatility estimate, and t' the weight attached to it.
For example the analyst might use a month of implied volatility data and calculate s' as the
sample mean of this data (alternatively s’ can represent a composite measure of implied
volatilities). The weight she attaches to s' can then be for example a month (t'=30).
However this may not necessarily be the case and the analyst can use any weight she feels
appropriate. To illustrate consider the example where she uses the previous day’s implied
volatility estimate as prior information. Here if she chooses t'=1 (i.e. 1 day) the prior
(implied volatility) information will be absorbed by the sample information since if we
assume that she used one month (say t = 30 days) of daily historical returns to estimate the
sample standard deviation s the weight attached to the sample information will be t-1 =29 (1
degree of freedom is lost in estimating s) while the weight attached to the implied volatility
information will be just 1. To sum up, if one believes strongly about the prior information she
can use as much weight as she feels it merits. This can be a powerful tool in the hand of the
analyst since different point (or interval) estimates can be obtained using different weights.
Bayesian methods are in away both a science and an art!

3.3 The Posterior Density of the Black-Scholes Option Price

In contrast to classical analysis where the main piece of output is a point estimate,
Bayesian analysis produces as its main piece of output the so-called posterior density. This
posterior density can then be combined with aloss or utility function to allow a decision to be
made on the basis of minimising expected loss or maximising expected utility. For example,
for positive definite quadratic loss functions the mean of the posterior distribution is an

" Remark: when the distributions are conditional on any prior parameters (i.e. S',t' and m) and on t (it is not

unreasonable to assume that the sample size is known before the sample is drawn) we will refer to these
distributions as prior or unconditional .



optimal point estimate. If the loss is proportional to the absolute value of the difference
between the true and the estimated values, the median is chosen, while a zero loss for a
correct estimate and a constant loss for an incorrect estimate leads to the choice of the mode.
We now illustrate how we can derive the posterior density of the Black-Scholes option
price by using equations (2.2 - 2.5) and (3.1 - 3.3) above. Note that we will use only symbolic
notation. The analytical formulae for al the densities involved in the calculations are
exhibited for reference in the Appendix. For their derivations however, see Darsinos and
Satchell (2001). i) Since the option price as an unconditional random variable depends both
on the underlying and its volatility, let us first obtain the posterior density of price and
volatility. Then the posterior density of the option price follows after (ii) applying a non-
linear transformation and (iii) dividing by the conditiona (on the sample and prior
information) density of the asset price.
i) We start from the densities of the drift (i.e. equation (3.1)) and of volatility (i.e
equation (3.3)). Then thejoint density of drift and volatility is given by:
(3.9 f(u,o\t,s,t',m=f(u\o,s,t',mf@\s,t',(m) 8
Now using equation (3.4) and the distribution of the underlying (i.e. equation (2.5)) we get:
(3.5 f(R,uo\t,s',t',m=f(uo\t,s,t',mf(R\yo,t (s)t) m)
Integrating out the drift rate we get the "prior" density of price and volatility (see aso
Footnote 6):
(3.6) f(P,o\t,s,t',m) :wa f(P, 1,0\, S, t', mau

Then applying Bayes rule the posterior density of price and volatility is given by:

f(R,o\t,s,t',mf(s\(R),o,tl(s) (1), (m))

(3.7 f(R.o\st,s,t\m= f(s\t,s,t',(m))

_ f(R,o,s\t,s,t',m)
f(s\t,s',t',(m))

Observe that the numerator of the above equation (i.e. f(R,o,s\t,s,t',m)) is readily

obtained by multiplying equations (3.6) and (2.4), while the denominator (i.e.
f(s\t,s,t',(m))) isderived from the following calculations:

Multiplying equation (3.2) with equation (2.3) we get:

f(s?,02\t,52,t") = f(o?\(t),s'2,t)f(s?\o?,t,(s?),(t)
Then

f(s2\t,,t) :f f(s?,02\1,52,t)302.

8 Observe that in the density of volatility f(o\s,t',(m)), (m) appears in parenthesis. Here and below when a

parameter is exhibited in parenthesis we take this to mean that it does not actually appear in the analytic formula
for that specific density but for coherence of the argument we include it in the symbolic notation.
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Finally
(3.8) f(s\t,s,t',(m) =2sf (s* \t,s'%,t").

I1) Having obtained the posterior density f (P,,o\s,t,s',t',m) and remembering that
C, =Cgs(R,,0) (defined in (2.2)) we now apply the non-linear transformation:

R =R
0=C(C)=Ca(R.C) = C=Ces(R.0)

We invert the Black-Scholes option pricing formulain terms of ¢ for fixed P,, thus obtaining
o asafunction of C, and R,. Thisisthe so-caled implied volatility of the option price and

there is known to be a unique (one-to-one) inverse function from the monotonicity of the
option price as a function of volatility. Note however that there is no analytic expression

(with the exception of an at-the-money option) for o =Czi(R,C,) and it will have to be

evaluated numerically using a Newton-Raphson iterative procedure.
Applying the transformation we get

(3.9 f(R,C \st,s,t,m=1f(R,0=Cg(R,C)\st,s,t',mJ|

where Jis the Jacobian of the non-linear transformation and is given by:
1 _|oR/oR  oR/do| _acC,
dC, /0P, dC,/d0] a0

=Vega
3 €9

. Cab(R.C)’TH

Eln(

0 Ke o) 2 0
where Vega = ¢ - PAT.

E Cab (R, CONT % t

@(...) = @'(...) denotes the standard normal probability density function.

iii) Finally to obtain the posterior density of the Black-Scholes option price we divide the
joint density of price and option price (i.e. equation (3.9)) with the conditional (on the sample
information) density of the underlying price:

f(R,C, \st,s,t',m)

3.10 f(C.\P,st,s,t',m=
(310 (CAR ) f(P \st,s,t',m)

From Darsinos and Satchell (2001) the analytic expression for the posterior density of the
Black-Scholes option price is given by:

vt
4

Eg(t’ s'?+(t-1s’ )t+(|n(P/P) mt)? H
C

9]
f(C,\R,st,s,t',m=

t'+t

Kt+t%\/2(t' s'? "‘('[‘1)32)'[+(|rl(F;)—mt)2 %%(pt t)t’+t+1( ) 2

2



t's'? +(t-1s? L In(R /Ry) —mt
2Cg5(R,C,)? 4

x exp(~ )

1 P\ 21 2y412
apﬁm[ln(a) (M= Ces (R, COI E

where K., (..) represents the modified Bessel function of the second kind of order (t' +t)/2.

2

Although seemingly complicated the above density is in fact very simple and fully
operational. We subject it to an immediate numerical test to verify that it is a proper density.
We are able to confirm that it does integrate to one.’

A number of different point or interval estimators can be obtained from the above
density. As a point estimator the most popular is probably the mean of the posterior density
which is optimal under square error loss. However as aready mentioned above the median
and the mode can also prove useful point estimators. The derived density is also idea for
guantile estimation and Value-at-Risk (VaR) calculations. Darsinos and Satchell (2001) show
that the posterior probability distribution for a long call option generally exhibits excess
kurtosis and is positively skewed. In particular for an at-the money option the distribution is
close to normal, however as we move progressively out- or in- the money the distribution of
the option price exhibits an increasingly thinner left tail than the normal distribution. The VaR
for an asset or portfolio of assetsis criticaly dependent on the left tail of their distributions. If
for example one assumes that the distribution of along call option is normal (s)he will tend to
calculate a VaR that is higher than the true VaR. Similarly for a short call the calculated VaR
will be too low.

3.4 The Predictive Density of the Black-Scholes Option Price

We now extend the work of Darsinos and Satchell (2001) from a modelling context to a
forecasting context. On many occasions given our sample information, we are interested in
making inferences about other observations that are still unobserved, one part of the problem
of prediction. In the Bayesian approach the probability density function for the as yet
unobserved observations given our sample information can be obtained and is known in the
Bayesian literature as the predictive density.

In our case, given our sample information (R, s), (note that s is computed from R,...R,),

we are interested in making inferences about future option values C; =C(R;,o) for some T >
t. To obtain the predictive density of the option price we proceed as follows. In equation (3.7)

® Just to report a set of trial values that we used (in daily format):
t'=30, $=0.010174, t =30, s=0.0076, m=0.0005, R = 3157, R, = 3148, K =3025, r =0.00022, 7 =18.

For a detailed discussion on the numerical evaluation of the posterior density see Darsinos and Satchell (2001),
p. 16-18. Here it suffices to report that Cgi(R,C,) isan n-dimensional vector of implied volatilities: we evaluate

Cgi(R.C) for i=1...,n spanning (with the desired degree of accuracy) the whole range of values of C,, thus
generating an n-dimensional vector of implied volatilities.
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above we have shown how to derive the posterior density of price and volatility given the
sample and prior information. In analytic form it is given by:

( : 12 +(t 1)Sz)t'+2t—1

5 ] 12

f(Pt’O-\POlS!t!S’!t’lm): 2 [ t'{tﬂ_ exp%#%
JaprttTh o 20

xexp% 0 ) E

Without loss of generality we can rewrite this as the joint distribution of the yet
unobserved underlying price P, and of volatility, given the sample (i.e.R,,s) and prior
information:

(3.12)

2 t'+t-1

( r 12 +(t l)S ) !

S 5 [ 12

f(Pr,o\R,sT,t,s\t',m= < t'+t-1 t’]+-t+1 ap%%%
\/n(T — )P ( 2 ) o o

xexp%T[ () - (m= 2 0T -0l E

Our next step is to derive the joint distribution of the unobserved option price at time T
and of the future stock price. Again remembering that C; =Cgs(P,0), take

f(R,0\R,sT,t,s,t',m) and consider the transformation:

P =P
0=Ce(Cr) =Ca(Fr.Cr)

with Jacobian:
. _|oP /0P 0P /do Eln(K _r(F:T(T t»)+[C'1(F’TVC P - (T -t)
1/ =aCTT/6FIT OCTTIOU:(A% as(Pr,Cr )W gam
Then
(3.12)

f(P,C; \PLsT.ts t,m=f(P.o=C(P.Cr)\ RS T LS m}J |

Finally, to obtain the predictive density of the option price we require a single integration:

(3.13)
f(C; \R,s T,t,s,t',m) :J'f(PT,CT \R,s,T,t,8,t', maP;
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2 t'+t-1

(t's’2 +(t-1s ) 2

= 2 X
AT =or (-

: ts® +(t-Ds® _ 1 Py o tien 2\ _ 112
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0

In this case as well we are able to confirm that this is a proper density. Regarding the
numerical evaluation procedure that could be applied for the calculation of the predictive

density see again Darsinos and Satchell (2001). Here it suffices to note that C.3(P;,C;) isa
nxm matrix of implied volatilities. (We evaluate Cge(R,C;) for i=1..n and j=1..m
spanning the whole range of attainable values of B, and C;, thus generating a nxm matrix
of implied volatilities).

The estimation of both the posterior (i.e. equation (3.10)) and predictive (i.e. equation
(3.13) distributions is relatively ssimple. Both densities can be evaluated solely on the basis of
observables. Estimation of the parameters of the distributions requires only historical data on
the underlying and reported option price data. In the forthcoming section we illustrate how the
derived densities can be used for explaining and forecasting the market prices of FTSE 100
Index European call options.

12



4. EMPIRICAL IMPLEMENTATION

We aim to forecast call option prices both in- and out- of sample. This effectively means
that in the former case we will use the posterior density of section (3.3) to explain the
observed market prices of call options and compare the precision of the Bayesian estimates
with some benchmark forecasts that use historical or implied volatility. In the latter case we
aim to forecast the prices of call option prices one day in the future using the predictive
density of section (3.4) above.

We use daily data from the London International Financial Futures and Options
Exchange (LIFFE) for the period from September 1992 to December 2000. Our data concern
FTSE 100 Index European call option contracts. The data record for each contract contains
the price of the underlying, the exercise price, the expiration date, the settlement price, the
trading volume, the corresponding implied volatility and the at-the-money implied volatility.
To proxy for the risk-free rate, the rate on a T-bill of comparable maturity is used. Note that
the underlying on the European contract is the price of the corresponding index future. One
slight modification that therefore has to be made is that instead of the Black-Scholes model of
equation (2.2) we will use Black’s (1976) model for options on futures:

(4.1) C, =e " [F®(d;) - Ka(d,)],

log(F, /K) +0?r/2
o
F, represents the corresponding future’s price.

We are aware that on data where there is little or no volume, the exchange uses
artificially generated prices based on a system called Autoquote, which effectively uses
Black’s formula. To minimise such an effect we limit our range of investigation to option
maturities ranging from one week to seven weeks. For maturities within this range there is
always a reasonable volume of trading. Similarly since for each contract we have a variety of
exercise prices we keep the contracts where the option was at some stage during the period of
investigation close to the money. Our remaining data represent a variety of options out-of-, at-
and in-the-money with maturities varying from one week to seven weeks.

where d, = and d, =d, ~oT.

4.1 In-Sample Forecasting

This section assesses the extent to which the Bayesian call option value estimators
improve upon standard classical procedures in describing actual market prices of call options.
By standard procedures we mean forecasts based on Black’s model for options on futures (i.e.
equation (4.1)). We use five different estimates of volatility to be plugged into Black’s model
and thus provide five benchmark estimates of the price of the option today. In particular as an
estimate of volatility we use (i) the sample standard deviation from daily returns over the 15
days preceding the date of each option price reported (ii) the sample standard deviation from
daily returns over the 30 days preceding the date of each option price reported, (iii) the mean
from implied volatilities over the 15 days preceding the date of each option price reported,
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(iv) the mean from implied volatilities over the 30 days preceding the date of each option
price reported, and (V) the previous days’ implied volatility value.

For the Bayesian estimators we take the mean of the posterior distribution as a point
estimate. This is optimal under quadratic loss. We use four different Bayesian estimates.
These are distinct in the sense that we use two different estimation horizons when estimating
the parameters of the distribution (i.e. t,st’,s',m). In particular two estimates are derived
using a 15-day estimation horizon and the other two using a 30-day estimation horizon. This
effectively means that in the former case t and t' are both equal to 15 (i.e. we use 15 days of
prior and sample information) while in the latter case they are equal to 30 (i.e. we use 30 days
of prior and sample information). The parameter s is estimated as the sample standard
deviation from daily returns over the 15 and 30 days respectively preceding the date of each
option price reported. The parameter mis estimated as the mean of daily returns over the last
15 and 30 days respectively preceding each reported option price.

The two estimates that belong to the same estimation horizon are in turn distinct since we
either use the implied volatility or the at-the-money implied volatility to estimate s'. Hence
s' is estimated as the mean of implied volatilities or the mean of at-the-money implied
volatilities over the specified time horizon preceding the reported option price.

We measure overall fit to market data in terms of Mean Mispricing Error (MME). The

Mispricing Error (ME) of each estimate is computed by (C, -C,)/C, where C, is the
market call option price andC, is the estimated Bayesian or other (benchmark) option value.
Then the Mean Mispricing Error (MME) is given by:

(4.2) MME = (1/ N)ZiN:l(éit -c,)/C, .

We also assess the Relative Mispricing Error (RME) of the option price estimates with respect
to the time to maturity of the option and the degree to which the option is in- or out- of the
money (moneyness). Thisis done by averaging the Mispricing Error (ME) within the different
subgroups. Note that the "moneyness’ of an option is measured as (F, / K) -1 where F, isthe

underlying FTSE 100 index future price and K the exercise price of the option. Hence a
negative value indicates an out-of-the money option and a positive value an in-the-money
option.

We use four randomly/arbitrarily selected European FTSE 100 index call option
contracts. Namely these are the June 1998, March 1999, September 2000 and December 2000
contracts. The moneyness of options in these contracts ranged from 5% out of the money to
8% in the money. The maturities considered were 1 - 7 weeks. Table 1 summarises our
results.
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TABLE1

I) Mean Mispricing Error (MME) of Bayesian and Other Call Option Price Estimates

Mean Mispricing Error (MME)

Benchmark Models:

Historical Volatility (15-Days) 0.114
Historical Volatility (30-Days) 0.108
Implied Vol. (15-Day moving average) 0.060
Implied Vol. (30-Day moving average) 0.066
Implied Vol. (Previous Day) 0.042
15-Day Estimation Horizon

Bayesian (Implied V. - Hist. V.) 0.050
Bayesian (A-T-M Implied V. - Hist. V.) 0.060
30-Day Estimation Horizon

Bayesian (Implied V. - Hist. V.) 0.053
Bayesian (A-T-M Implied V. - Hist. V.) 0.072

I1) Relative Mispricing Errors of Bayesian and Other Call Option Price Estimates with Different Timesto

Maturity
Time to maturity: 1-week  2-weeks  3-weeks  4-weeks  7-weeks
Benchmark Models:
Historical Volatility (15-Days) 0.088 0.028 0.122 0.218 0.112
Historical Volatility (30-Days) 0.135 0.093 0.097 0.073 0.140
Implied Vol. (15-Day moving average) 0.108 0.057 0.026 0.081 0.030
Implied Vol. (30-Day moving average) 0.063 0.076 0.031 0.115 0.043
Implied Vol. (Previous Day) 0.098 0.028 0.026 0.027 0.032
15-Day Estimation Horizon
Bayesian (Implied V. - Hist. V.) 0.092 0.008 0.054 0.040 0.055
Bayesian (A-T-M Implied V. - Hist. V.) 0.111 0.023 0.061 0.040 0.065
30-Day Estimation Horizon
Bayesian (Implied V. - Hist. V.) 0.074 0.049 0.026 0.051 0.067
Bayesian (A-T-M Implied V. - Hist. V.) 0.089 0.046 0.025 0.054 0.072
[11) Relative Mispricing Errors of Bayesian and Other Call Option Price Estimates with Different Degrees of
Moneyness
Moneyness (M) 5%<M<-2%  -2%<M<0% 0%<M<3%  3%<M<8%
Benchmark Models:
Historical Volatility (15-Days) 0.116 0.124 0.169 0.048
Historical Volatility (30-Days) 0.253 0.086 0.112 0.049
Implied Vol. (15-Day moving average) 0.188 0.063 0.041 0.016
Implied Vol. (30-Day moving average) 0.116 0.068 0.081 0.023
Implied Vol. (Previous Day) 0.139 0.050 0.021 0.008
15-Day Estimation Horizon
Bayesian (Implied V. - Hist. V.) 0.121 0.050 0.049 0.015
Bayesian (A-T-M Implied V - Hist. V) 0.161 0.051 0.054 0.019
30-Day Estimation Horizon
Bayesian (Implied V. - Hist. V.) 0.145 0.052 0.048 0.013
Bayesian (A-T-M Implied V - Hist. V) 0.156 0.053 0.050 0.018
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Even before this exercise was undertaken the evidence was overwhelming that implied
volatilities fit option prices much better than historical volatilities. Our results from Table 1
confirm the aforementioned statement. The Mean Mispricing Error (MME) for the historical
volatility estimates ranged between 10.8% and 11.4% against a range of 4.2% and 6.6% for
the implied volatility estimates. The estimate that used the reported implied volatility value of
the previous day to be plugged into Black’s model outperformed all other estimates with a
MME of 4.2%. The performance of our Bayesian estimates paralleled that of the implied
volatility estimates with MME ranging between 5.0% -7.2%. However we cannot claim that
the Bayesian method is superior in explaining the observed market prices of FTSE 100
European call options. We might have achieved better results had we used the previous day’s
reported implied volatility as prior information rather than the sample mean over the 15 or 30
days preceding the date of each reported option price. After all
it turned out that the previous day’s implied volatility conveyed enough information to
outperform the other estimates.’® Other potential approaches that might have yielded better
results could include using solely implied volatilities as a source of prior and sample
information.

4.2 Out-of-Sample For ecasting

Implied volatilities by definition perform very well in explaining the observed market
prices of options. For example analysts or even exchanges often calculate implied volatilities
from actively traded options on a certain stock and use them to calculate the price of a less
actively traded option on the same stock. The evidence however is not clear whether implied
volatilities can on their own provide adequate forecasts of future volatility or indeed option
prices.

Hence we now turn to the more interesting exercise of forecasting the prices of options
one-day ahead. For this exercise we assume that there are five agents, each following a
particular forecasting method to predict the price of the FTSE 100 Index European call of
tomorrow. In particular Agents 1, 2, and 3 use Black’s (1976) model for options on futures. As
an estimate of volatility to be plugged into the model: Agent 1 uses the sample standard
deviation from daily returns over the 30 days preceding the date of each option price being
reported. Agent 2 uses the mean of the implied volatilities over the 30 days preceding the date
of each option price reported. Agent 3 uses today’s reported implied volatility value. As a
forecast for tomorrow’s value for the underlying al three agents use today’s price. The
approach of Agent 3 is quite popular amongst market practitioners. Gemmill and Saflekos
(2000) estimate the implied distribution for stock index optionsin London as a mixture of two
lognormals and find that this method is somewhat better that the Black-Scholes (one-
lognormal) approach at predicting out-of-sample option prices. However according to the
authors an ad-hoc model in which today’s implied volatilities are applied to tomorrow’s
options does even better.

19 Using the previous day’s implied volatility as prior information requires taking into account our discussion in
the last paragraph of section (3.2).
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Agents 4 and 5 use the Bayesian predictive density of section (3.4). They use the sample
standard deviation from daily returns over the 30 days preceding the date of each option price
reported to estimate the sample parameter s of the distribution. However, to estimate the prior
parameter s of the distribution Agent 4 uses the mean of the implied volatilities over the 30
days preceding the date of each option price reported while Agent 5 uses the mean of the at-
the-money implied volatilities over the 30 days preceding the date of each option price
reported. Finally the parameter m is estimated by both agents as the mean of daily returns
over the last 30 days preceding each reported option price. As a point estimate of the option
price the agents take the mean of the predictive distribution.

We use 12 randomly selected European FTSE 100 Index call option contracts. Namely
these are the September 1992, June 1993, December 1994, December 1995, December 1996,
June 1997, June 1998, December 1998, March 1999, June 1999, September 2000 and
December 2000 contracts. Then for each contract we fix eight dates for which we want to
forecast the price of the option. Specifically we obtain forecasts for the value of the option 1
week, 2 weeks, 18 days, 3 weeks, 25 days, 4 weeks, 30 days, and 7 weeks before maturity.
This effectively means that (for each contract) each agent applies his forecasting rule 8 days,
15 days, 19 days, 22 days, 26 days, 29 days, 31 days, and 50 days respectively before
maturity. Note here that the above dates were pre-specified arbitrarily/randomly.

In this exercise we measure overall forecasting performance in terms of the Mean
Forecasting Error (MFE):

(4.3) MFE = (1/ N)zi’\il(éi(tﬂ) -G (t+1) )/ C, (t+1) *

We also report the Relative Forecasting Error (RFE) of the option price forecasts with respect
to the time to maturity of the options. Our results are exhibited in Table 2.
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TABLE 2

1) 1- Day Ahead Mean Forecast Error of Bayesian and Other Call Option Price Estimates

Mean Forecast Error (MFE)

Benchmark Models:

Agent 1: (Historical Volatility - 30 days) 0.231
Agent 2: (Implied Volatility - 30 days) 0.225
Agent 3: (Today’s Implied Volatility) 0.220
30-Day Estimation Horizon

Agent 4: (Bayesian - Implied V - Hist V) 0.196
Agent 5: (Bayesian - A-T-M |V - Hist V) 0.198

I1) 1- Day Ahead Relative Forecast Error (RFE) of Bayesian and Other Call Option Price Estimates with
Different Timesto Maturity

Time to maturity: 1-week 2-weeks 18-days 3-weeks
Benchmark Models:

Agent 1: (Historical Volatility - 30 days) 0.311 0.370 0.228 0.209
Agent 2: (Implied Volatility - 30 days) 0.406 0.351 0.257 0.167
Agent 3: (Today’s Implied Volatility) 0.443 0.340 0.195 0.186
30-Day Estimation Horizon

Agent 4: (Bayesian - Implied V - Hist V) 0.197 0.323 0.256 0.173
Agent 5: (Bayesian - A-T-M IV - Hist V) 0.194 0.321 0.258 0.174
Time to maturity: 25-days 4-weeks 30-days 7-weeks
Benchmark Models:

Agent 1: (Historical Volatility - 30 days) 0.197 0.094 0.208 0.234
Agent 2: (Implied Volatility - 30 days) 0.140 0.133 0.193 0.155
Agent 3: (Today’s Implied Volatility) 0.161 0.095 0.169 0.168
30-Day Estimation Horizon

Agent 4: (Bayesian - Implied V - Hist V) 0.154 0.124 0.167 0.173
Agent 5: (Bayesian - A-T-M IV - Hist V) 0.156 0.138 0.162 0.180

This time the performance gap between the estimates that use either implied or historical
volatilities is significantly reduced. Agent 1 who uses the historical volatility estimate still
produces the poorest forecasts (with an MFE of 23.1%) closely followed by Agents 2 and 3
who use the two implied volatility forecasts (with an MFE of 22.5% for Agent 2 and 22.0%
for Agent 3). Agents 4 and 5 who use the Bayesian predictive density forecasts outperform all
others with the lowest MFE, at 19.6% and 19.8% respectively. In terms of the Relative
Forecast Error (RFE) we observe that the Bayesian forecasts dramatically outperform all other
forecasts for close-to- maturity options (i.e. 1 week) and generally are as good as, or better,
than the benchmark models.

To assess further the performance of the five agents we now devise the following simple
trading rule.** As mentioned above, during the sample period (September 1992 to December
2000), at the pre-specified dates, each agent applies his forecasting rule to get aforecast of the

™ Our trading rule is similar in spirit to Noh, Engle, and Kane (1994).
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FTSE 100 Index call option price of tomorrow. If the option price forecast is greater than the
market price of the option today, the call option is bought. If the option price forecast is less
than the market option price today, the call option is sold. Note however that we apply a
filtering strategy where each agent trades only when the price change is expected to exceed
2% of today’s price: i.e.

(4-4) (éi(t+l) - Cit )/Cit >2%

The positions of the traders last only a day. Thus every trader is forced to close his
position tomorrow. Hence for a long position the trader sells the option at tomorrow’s
settlement price. For a short position the trader buys the option at tomorrow’s settlement price.

Each agent is given £100 to invest each time. When a call option is sold we allow the
agent to invest the proceeds plus £100 in a risk free asset. Also if the forecasting rule indicates
that no trade should take place, the sum of £100 is invested in a risk free asset. For simplicity
we assume that the rate on the risk free asset is zero.

Thus, the rate of return (RT) (per trade) on buying call options is computed as:

100
(4-5) RT :C_(Ct+1 _Ct)

t
The rate of return (RT) on selling call options is computed as:

(4.6) RT =1(:¥°(—(Ct+l -C)

t
The above rates however are without taking into account transaction costs. We need to
incorporate this. Hence we assume that the transaction costs (per trade) incurred by the agent
amount to 3% of the amount invested. Hence the net rate of return (NRT) from the trading of
options is computed by:

4.7) NRT =RT -100* 3% =RT -3

Noh, Engle and Kane (1994) assume that the transaction cost for trading a straddle (i.e. a call
and a put option) is $0.25 per straddle. Inspired from that we also calculate an alternative net
rate of return were we assume that the cost of trading a call option is £0.50.

(4.8) NRT = RT -1+ 9,50

t

Discussions with option traders suggest that our transaction costs are not accurate, as they do
not capture the huge spreads and extreme illiquidity that can occur in these markets. Thus our
trading profits should be seen as a measure of economic worth and not necessarily as an
attainable amount of money.

We can now compare the performance of the agents with different forecasting algorithms.
In Table 3 we report the mean return of each agent per trade (or day).
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TABLE 3

Mean Daily Rate of Return (or Mean Per Trade Rate of Return) from Trading FTSE 100 Index European Call

Options.

Mean SD t-Ratio
Before Transaction Costs
Agent 1 (Historical Volatility) 1.4% 29.0 0.46
Agent 2 (Implied Volatility) 2.3% 19.8 111
Agent 3 (Today’s Implied Volatility) 0.4% 255 0.15
Agent 4 (Bayesian) 6.6% 25.0 252
Agent 5 (Bayesian A-T-M) 6.2% 26.7 2.22
3% Transaction Costs
Agent 1 (Historical Volatility) -1.5% 29.0 0.49
Agent 2 (Implied Volatility) 0.4% 19.8 0.19
Agent 3 (Today’s Implied Volatility) -1.4% 255 0.52
Agent 4 (Bayesian) 4.6% 24.7 1.78
Agent 5 (Bayesian A-T-M) 3.9% 26.5 1.40
£0.50 per call option Transaction Costs
Agent 1 (Historical Volatility) 0.4% 28.2 0.14
Agent 2 (Implied Volatility) 1.7% 19.6 0.83
Agent 3 (Today’s Implied Volatility) -0.4% 26.2 0.15
Agent 4 (Bayesian) 5.8% 242 2.29
Agent 5 (Bayesian A-T-M) 5.4% 26.0 1.98

Table 3 shows the daily rate of return from trading call options before and after
transaction costs. It is clear that Agents 4 and 5 outperform the others with average daily rates
of return between 4.6% and 6.2% and 3.9% and 6.2% respectively depending on the
transaction costs incurred. It should be noted though that the profits of all agents are far from
certain since the corresponding standard deviations range from 19.6 to 29. However t-ratios
higher than 2 indicate that profits from the Bayesian forecasting method are significantly
greater than zero.™? This argument is supported by Table 4, which shows the cumulative rate
of return of the 5 agents.

TABLE 4

Cumulative Returns from Call option Trading

Before Transaction Costs 3% Transaction Costs £0.50 Per Call Option

Transaction Costs

Agent 1 128.4% -138.6% 39.9%
Agent 2 212.2% 38.2% 156.2%
Agent 3 38.8% -123.2% -33.7%
Agent 4 603.1% 417.1% 531.7%
Agent 5 567.5% 354.5% 490.7%

Note that Table 4 is for comparative purposes among the different performances of the agents and is not
representative for assessing the return of each method over the 8-year period.

12 Since rates of return from call trading are assumed to be independent, the t-ratio is computed as a ratio of
mean to standard deviation divided by the square root of the number of observations.
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What is striking from Tables 3 & 4 is not the absolute performance of the agents, which
as aready mentioned may not necessarily represent rea returns, but their comparative
performance. Indeed Agents 4 & 5 outperform comfortably the agents that use the standard
routines. Noh, Engle and Kane (1994) perform a similar study. They feed an asset’s return
series into a GARCH model to obtain a forecast of volatility to be plugged into the Black—
Scholes model. They compare this method against forecasts obtained from implied volatility
regressions that are also to be plugged into the Black-Scholes model. They assess the
performance of these two volatility prediction models for S&P 500 index options over the
April 1986 to December 1991 period. They find that the average daily rate of return from
trading near-the-money straddles (before transaction costs) is 1.36% for the GARCH
forecasting method and 0.44% for the Implied Volatility forecasting method. The standard
deviations that they obtain are also quite large (in the range of 10 — 12). Although because of
the large standard deviations we cannot really be sure, observe that what we find in Table 3 is
not that dissimilarAgent 1 who uses historical returns delivers (before transaction costs) a
mean return of 1.4% anigents 2 and 3 who use Implied Volatilities deliver 2.3% and 0.4%
respectively.

Finally in Table 5 we report the percentage of times where the forecast of each agent
resulted in a profit being made, a no-trade situation, or a loss being made.

TABLE S5

Percentage of times where the forecast of each agent resulted in a profit being made, a no-trade situation, or a
loss being made.

Profit No Trade Loss
Agent 1: (Historical Volatility - 30 days) 52.7% 4.4% 42.9%
Agent 2: (Implied Volatility - 30 days) 34.0% 37.4% 28.6%
Agent 3: (Today’s Implied Volatility) 30.8% 41.7% 27.5%
Agent 4: (Bayesian - Implied Vol.) 46.2% 34.1% 19.7%
Agent 5: (Bayesian - A-T-M Implied V.) 49.5% 24.2% 26.3%

In this case as weRAgents 4 and 5 outperform the others. They make a profit 70% and 65%
respectively of the times thdyade. (The loss-making times being of course the remaining
percentage). AlthoughAgent 1 in absolute terms makes a profit more times than every other
agent (i.e. 52.7%), in real terms her profit rises to only 55% of the times she trades. Finally
Agents 2 and 3 make a profit 54% and 53% of the times they trade.

5. CONCLUSION

It has been suggested that both historical and implied volatilities convey information
about future volatility. In this paper we have developed a formal Bayesian framework to
simultaneously exploit the information content of historical data as represented in moving
averages of daily squared returns with the information content of options prices as represented
in moving averages of reported implied volatilities. To this end, we have derived the posterior
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and predictive distributions of the Black Scholes option price. We have used the FTSE 100
Index European options market to compare our model’s forecasting performance with
standard models that use historical or implied volatility forecasts. All such benchmark
forecasts are plugged into Black’s (1976) model.

Our approach gives a modest outperformance relative to the usual volatility schemes
when measured in terms of MFE (Mean Forecasting Error), and RFE (Relative Forecasting
Error). However, when we assess our model in economic terms, i.e. in terms of the profit to a
trading strategy based on our forecasts versus the other benchmark forecasts, we find quite
substantial outperformance. We do not claim guaranteed excess risk adjusted returns for
practitioners who might wish to follow our strategy. We recognise that option markets tend to
have high and varying transaction costs and high illiquidity at unpredictable times which
makes real-time back-testing extremely difficult. Our results should be interpreted as an
aternative measure of forecasting performance. With such an interpretation our results
indicate a clear superiority over the other methods.

We have not experimented a great deal with different weighting schemes for the prior and
sample information, which given our results might deserve more attention. For example a
useful extension might be to attach weights according to the forecasting performance that
each source of information has. Likewise we have only used the simplest of time series
models (i.e. moving average) to capture time-variation in historical and implied volatilities.
The sole reason for doing so was for higher theoretical consistency with our benchmark
option-pricing model (i.e. the Black-Scholes). Although we did not pursue this point, we
could have just as easily merged EWMA (exponentialy weighted moving average) or
GARCH volatility estimates with the implied volatility information. Given the success of
GARCH when compared with other time-series models in capturing time-varying risk and the
wealth of information about price risk contained in options the combination of the two might
have produced even better results. This would however lead us to the Duan (1995) GARCH
option-pricing framework and to the Bauwens and Lubrano (2000) Bayesian GARCH
approach. We leave such an analysis for future research.
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6. APPENDI X

Analytic Formulae for the Densities Required in Deriving the Posterior Density of the
Black-Scholes Option Price:

Equation (3.4):

f(u,o\t,s',t',m=,|—

(tr 12/2)'['/2 1 exp r 12 +t(,[1 m)
m T2 o'

20°

Equation (3.5):

1 (tr 12/2)t'/2 1

f(R,uo\t,s,t',m ;
('[:LI ) 7ﬂ r(t’/Z) 0_t+3

ot

H t's'? 1 P
X eXp- —— — In(—L) + — — t]? +t%(u - m)2 .
i ZJZtE (o) + 5t )+ = m)

Equation (3.6):
L 1 (tr 12 /2)t'/2 1 %t:SIZ E
f(R,o\t,s,t',m= - — EXp - [I (—) (m— oHt)?
‘ Jip T(t'/2) o' 202
Equation (3.7):

t's'2 + (t—=1)s? i
( ( ) )(ttl)/2

vy 1 2 1
f(H!U\S!t'S't'm)_\/EPt r(t’+t—l) a.t'+t+l
2
ts2+(t-Ds®> 1
e S G (- Jo"
Equation (3.8):
'/2 t—1 -
2 H's' t-1— s
f(s\t,s,t',(m) = % ()2 prom
s tHE2 0 20 st eops)
2
Equation (3.9):

,, "+t-1
! 2 4 (t - 1)s2)t :
9] 2 t's'? + (t —1)s?

pdf (P,,C, \ s,t,s',t',m) = - - o XP(——— )
o Japrd L1 Cas(R,CH* ché(Pt,ct)
2
1 P 1 __
X ex —In—t—m——ClP,C 212
p@mm’qﬁ[ ()~ (m-5CAR.CHN H

23



Denominator of Equation (3.10):
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