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the Large Hadron Collider

Teng Jian Khoo

In its first three years of operation, the Large Hadron Collider

at CERN has already proved its worth as a discovery machine and

reinvigorated the prospects for discovering new dynamics beyond the

Standard Model. This thesis presents a range of experimental methods

devised for discovery of supersymmetry, one of the most important

extensions of the Standard Model being tested at the LHC.

The first chapter discusses the concepts behind a set of transverse

mass-bound variables, and explores connections between these variables

and others in the literature. Not only are these variables important

tools for mass measurement, should sparticles be seen at the LHC, they

are also critical components of experimental searches. Accordingly, their

performance has been compared in both mass measurement and search

contexts, and the results are reported here.

This is followed by the details of a search for hadronically-decaying

squarks and gluinos, carried out on 4.7 fb−1 of data collected at 7 TeV in

2011 by the ATLAS detector. The search strategy is described, focusing

on the implementation of a background estimation method using photon

events to determine the background contamination due to invisible Z

boson decays. The results of the search are then presented. Stringent

limits are set on the production of squarks and gluinos in a variety of

model scenarios.
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4 Introduction

“ Fifty-five crystal spheres geared to God’s crankshaft is my idea of a

satisfying universe. I can’t think of anything more trivial than the speed

of light. Quarks, quasars – big bangs, black holes – who gives a —? How

did you people con us out of all that status? All that money? And why

are you so pleased with yourselves? ”

— Bernard Nightingale

This thesis describes methods for discovering and characterising new physics at the

Large Hadron Collider (LHC). Specifically, it covers the execution and results of a

search for supersymmetry (SUSY) using the ATLAS detector, and also investigates

techniques for measuring the masses of supersymmetric particles that serve double duty

as discriminating variables in the search.

Why is such an endeavour of interest? Though perhaps not the most convincing

answer, the most honest is simply because it might be there. In July 2012, the LHC

experiments ATLAS and CMS reported the discovery of a new particle that closely

resembles the Higgs boson of the Standard Model (SM)[1, 2]. If the identity of this

particle is verified, the SM will be notionally “complete”, in that all its canonical

fundamental fields will have been discovered. As a description of the universe, however,

the SM is inadequate. It has flaws that justify belief in “beyond the Standard Model”

(BSM) physics that may be discoverable at the TeV scale.

Experimental particle physicists have a mandate to test the theoretical orthodoxy of

the Standard Model (SM) to its limits. It is artificial to distinguish between measuring

properties of the SM and searching for new physics. Hence, the question as to why search

for new physics may be replaced with the question of where best to search, which in turn

may be answered by imagining what new physics may be present.

Posing this question begs another: what observables can be used to identify new

physics at the LHC, and how might they be measured? We first answer this practical

question, discussing the instruments that can be used to probe the SM to such a fine

degree, specifically the ATLAS detector. The description will focus less on the technical

specifications of the apparatus, prioritising the achievable performance and defining

objects and observables that can be measured. We will then turn to a brief account of

the Standard Model, in order to find inspiration for a concrete model of new physics in

the form of supersymmetry and its signatures at a hadron collider such as the LHC.
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1.1 The ATLAS detector – our big, friendly giant

In the twenty-first century, the manipulation of matter on an atomic level (the nanometre

scale, 10−9 m) has become increasingly commonplace. The frontiers of particle physics,

however, lie at scales twice as far removed from everyday experience. To probe the

attometre scale (10−18 m, roughly the de Broglie wavelength of a 1 TeV parton), it has

been necessary to construct immense machines, evoking the image if not quite the spirit

of nani gigantum humeris insidentes [4].

1.1.1 The Large Hadron Collider

To access interactions at unprobed scales, CERN’s 27 km circumference LHC collides

protons at multi-TeV energies. As of 2012, the LHC has achieved proton energies of

4 TeV, and peak luminosities of 3.6×1033 cm−2 s−1, with a collision frequency of 20 MHz.

After a shutdown in 2013-2014, the design energy and luminosity of 7 TeV per proton at

1034 cm−2 s−1 will be reached. Both considerably exceed the achievements of the previous

most powerful accelerator, Fermilab’s recently closed Tevatron.

The original specifications of the LHC (1034 cm−2 s−1 luminosity at 40 MHz) implied

an average of 25 interactions per bunch crossing. In 2012 operation, the LHC has instead

operated with a bunch spacing of 50 ns, twice the eventual target, but compensated the

reduced collision frequency with a larger bunch current. Such high bunch currents have

raised the mean number of interactions per crossing to 35, implying major challenges

for detector experiments. However, they have allowed the accumulation of data at an

expedited rate.

Four major detectors reside at the LHC interaction points, depicted in Figure 1.1:

LHCb, CMS, ALICE and the largest, ATLAS.

1.1.2 Detector overview

ATLAS (A Toroidal LHC ApparatuS) is a general-purpose detector located at Point 1 on

the LHC ring [5]. The detector has full azimuthal coverage of the nominal interaction point

up to a pseudorapidity |η| = |− ln tan(θ/2) | < 4.9, the polar angle θ being measured

from the beam axis, which defines the z-axis of the coordinate system. Silicon and

transition radiation detectors provide precision tracking in the central region of |η| < 2.5.
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(a) Aerial view of CERN and the LHC

(b) Layout of the LHC experiments

Figure 1.1: The geography of the Large Hadron Collider. [3]
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A superconducting solenoid provides a field strength of 2T in the tracking region, while

toroidal magnets supply field strengths of 0.5T and 1T to the muon detector barrel and

endcaps respectively.

Coordinate system

ATLAS uses a coordinate system with its origin at the nominal interaction point. Its

z-axis is defined by the beamline, while the x- and y-axes point radially inwards and

vertically upwards from the LHC ring, respectively. The detector is defined to have

two sides, A and C, corresponding to positive and negative z. The polar angle θ

measured from the beamline defines the pseudorapidity η, which approximates the

rapidity y = 1/2 ln[(E + pz)(E − pz)] for massive objects (with equality for m = 0). The

azimuthal angle φ is measured in the transverse (x-y) plane. Separations between objects

typically involve the distance measure ∆R =
√

∆η2 + ∆φ2.

Figure 1.2 illustrates the structure of ATLAS, which is built from multiple subdetectors

that are described below.

Figure 1.2: The structure of the ATLAS detector. [3]
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Inner detector and tracking

Closest to the interaction point are the three components of the Inner Detector (ID),

which provide precise position and momentum measurements of charged particle tracks.

A schematic of the ID is shown in Figure 1.3. A synopsis of the inner subdetectors is as

follows:

1. Pixel detector: Three concentric barrel layers and six end-cap discs provide the

highest precision close to the interaction point, using silicon pixels with an R−φ×z
size of 50× 400 µm2, and achieving resolutions of 10 µm× 115 µm. Each charged

particle track typically crosses three pixel sensors.

2. Semi-conductor tracker (SCT): Silicon strip sensors are paired at a stereo angle

of 40 mrad to form modules, which are composed into four barrels and eighteen

end-cap discs. The 80 µm strip pitch allows a resolution of 17 µm in R − φ, and

580 µm in z (R) for the barrel (endcap) modules. Eight SCT hits are generated by

the typical particle track.

3. Transition radiation tracker (TRT): Polyimide straw tubes filled with a Xe-CO2-O2

gas mixture with a 4 mm diameter provide a large number of R− φ measurements

for each track (36 on average), but are limited to |η| < 2, and do not provide z

information (beyond the sign relative to η = 0). The intrinsic straw resolution

is improved to 130 µm per straw by drift-time measurements. Discrimination

between low-threshold and high-threshold hits from transition radiation photons

adds discrimination power to the identification of electrons with energies between

0.5 GeV and 150 GeV.

Calorimetry

Outside the ID are the electromagnetic (EM) calorimeters, which are sampling calorime-

ters with lead absorbers and a liquid argon (LAr) medium. These are surrounded by

hadronic calorimeters comprising tile scintillators in the region |η| < 1.7 and the LAr

hadronic endcap calorimeter (HEC) from 1.5 < |η| < 3.2. The copper/LAr HEC overlaps

with a forward calorimeter (FCal) covering 3.1 < |η| < 4.9. The depth of the calorimeters

is > 22 radiation lengths for electromagnetic showers, and approximately 10 interaction

lengths for hadronic showers, providing excellent shower containment, and restricting

punch-through into the muon systems.
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Figure 1.3: The inner detector provides tracking of charged particles close to the interaction
point. [3]

Multiple active layers of calorimetry allow measurements of the longitudinal shower

development, crucial for identification of electrons and photons. The EM calorimeter

possesses three main layers, with characteristics as follows:

1. Fine η-segmentation with a granularity of ∆η = 0.0031, sufficient to resolve photon

pairs from π0 decays;

2. Projective η − φ segmentation providing a granularity of ∆η ×∆φ = 0.025× 0.025,

and depth sufficient to capture 80% of the EM shower;

3. Granularity of ∆η ×∆φ = 0.050× 0.025.

This structure is slightly modified in the transition region between the barrel and end-cap,

with two samplings in each section. An additional low-granularity presampler layer inside

the barrel cryostat allows corrections to the shower energy from particles showering prior

to reaching the main calorimeter.

The hadronic barrel is likewise segmented in three layers, with ∆η ×∆φ = 0.1× 0.1

cells in the first and second samplings, while the third sampling cells have size ∆η×∆φ =

0.2 × 0.1. In the HEC, which possesses four longitudinal segments, the cell size is

∆η ×∆φ = 0.1× 0.1 for |η| < 2.5, and ∆η ×∆φ = 0.2× 0.2 further forward. Finally,

the FCal plugs are built of one copper/LAr EM module and two tungsten/LAr hadronic

modules, with varying granularity.
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The intrinsic energy resolution of the calorimeters is modelled by the equation:

σ(E)

E
=

a√
E
⊕ b, (1.1)

the sum in quadrature of a stochastic term a/
√
E due to fluctuations in shower develop-

ment and a constant term b resulting from inhomogeneities in the detector [6]. In test

beam studies, the values of the coefficients a and b were determined to be approximately

10%/GeV
1/2 and 0.17% for electrons in the EM calorimeter, while for charged pions in

the barrel of the hadronic calorimeter, they were ∼ 56%/GeV
1/2 and 5.5% respectively [5].

Apart from the intrinsic resolution above of the calorimeter architecture, an additional

noise term proportional to 1/E arises due to electronic noise in the readout systems.

Muon Spectrometer

The outermost components of ATLAS are the muon spectrometer (MS) barrel and

endcaps, covering the pseudorapidity range of 1.05 < |η| < 2.7. Precision tracking in the

MS is accomplished using the following technologies:

1. Monitored drift tubes (MDTs) in three-to-eight-layer chambers cover the central

region (|η| < 2.7), with 35 µm average resolutions (per chamber) in the bending

plane (z), permitting momentum measurements accurate to 10% for TeV tracks.

2. Cathode-strip chambers (CSCs) complement the MDT as the innermost layer in

the forward region (2.0 < |η| < 2.7), motivated by the higher incidence at larger

pseudorapidities. In the bending plane (R− z), these have a 40 µm resolution, while

the resolution in the transverse plane (R− φ) is 5 mm.

To allow the capacity for triggering on muons, two additional subsystems are employed:

1. Resistive plate chambers (RPCs) are used within |η| < 1.05, and are capable of

measuring positions within 10 mm with a response time of 1.5 ns.

2. Thin gap chambers (TGCs) provide forward muon trigger capability out to |η| < 2.4,

with 2-6 mm radial resolution and 3-7 mm transverse resolution. The TGC response

time is 4 ns, well within the 25 ns bunch spacing.

The combination of precision tracking and fast trigger systems allows good muon position

and momentum resolution, which are further improved by matching MS segments to

tracks found in the ID.



Introduction 11

Trigger systems

With the ATLAS readout requiring roughly 1.6 MB per event, it is impossible to register

every collision event, given the LHC’s design collision rates of 40 MHz (in 2012, a bunch

spacing of 50 ns was used). The trigger and data acquisition (TDAQ) system is capable

of data-taking at a maximum rate of 400 Hz, so three levels of triggers are employed

to retain only interesting events. First, the Level 1 (L1) trigger uses calorimeter and

muon spectrometer information as input for a hardware veto, cutting the rate to 40

kHz in current operation. The L1 system also identifies regions of interest (ROIs) that

are used by the Level 2 (L2) trigger and initiates the readout of data from the entire

detector. At L2, a rudimentary reconstruction is performed on the basis of the L1 ROIs,

and software algorithms select events at a rate of 1-2 kHz. Finally, L2 selected events are

fully reconstructed by the Event Filter (EF), which accomplishes the final rate reduction.

Triggers are typically organised in “chains”, with a lower level trigger serving as a

seed to a higher level item. An example of such a chain is:

L1 J50 XE20→ L2 j70 xe20 noMu→ EF j75 a4 EFFS xe45 loose noMu

The Jxx and XEyy elements of the trigger names can be decoded as thresholds on the

leading jet transverse momentum and missing transverse momentum (pmiss
T )1 respectively

of 50 GeV and 20 GeV at L1, 70 GeV and 20 GeV at L2, and rising to 75 GeV and

45 GeV at EF. Most trigger chains require a similar stepwise increase in the thresholds

at higher levels as the reduced granularity of the lower level trigger systems implies some

selection inefficiency relative to more refined reconstruction stages.

1.1.3 Experimental observables

Modern particle detectors are able to reconstruct and identify the passage of four types

of particle: electrons, photons, muons and hadrons – effectively the full range of particle

species stable enough to reach the active components, and which have a sufficiently large

interaction cross-section with the detector. Charged and neutral hadrons varieties can be

distinguished based on their interaction with the charged particle tracker. Neutrinos are

also stable on detector length scales, but do not interact perceptibly with the instrument,

and hence escape undetected.

1Defined and discussed in Section 1.1.5.
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Reconstruction and identification of these various physics objects are accomplished

by combining measurements throughout the detector based on object reconstruction

algorithms, as described below.

Photons

The high granularity of the ATLAS LAr EM calorimeter is motivated by the identification

of isolated photons. A sliding window algorithm identifies electromagnetic clusters of

3× 5 projective towers (each with spatial extent 0.025× 0.025 in ∆η ×∆φ), which seed

a more detailed reconstruction of converted and unconverted photon candidates [7].

Unconverted photons are identified on the basis of longitudinal and transverse shower

shapes and the absence of an associated track in the ID. Photon candidates are required

to have a narrow shower profile in the EM calorimeter, and minimal leakage into the

hadronic calorimeter. More specific shower shape criteria define a more pure “tight”

photon selection. Discrimination from the major background of neutral pion (π0) decays

is accomplished by the fine segmentation of the first EM sampling layer – the paired

photons from a decaying π0 can usually be resolved.

Additionally, photons that have undergone electron-positron conversions in the ID

material are recovered by matching single or paired tracks to the EM cluster. In the case

of single-track conversions, the track must originate outside the innermost pixel layer,

whereas paired tracks must converge to a conversion vertex in the ID.

Electrons

Electron reconstruction is seeded by the same sliding window algorithm that initiates

photon reconstruction. The clusters must satisfy EM shower shape criteria, and must

additionally be associated to an ID track [8]. Basic cluster energies are corrected by

estimating the contributions from energy deposits outside the cluster, as well as in the

material surrounding the EM calorimeter. Tracks are extrapolated to the calorimeter,

accounting for radiative losses, from their final measured location in the tracker.

Discrimination between electrons and other objects with similar characteristics is

achieved via a cut-based selection on cluster and track properties. Three levels (loose,

medium and tight) of identification are defined, producing electrons of increasing purity.

The clusters must have minimal hadronic leakage and satisfy transverse shower shape
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criteria that reduce backgrounds from hadronic jets. Tracks must be of high quality,

possessing multiple silicon hits, arrive close to the cluster, and may further be required

to have a large proportion of high threshold hits in the TRT.

Outside of the tracking acceptance, purely calorimetric criteria are also used to define

forward electrons, but these are not used in this thesis.

Muons

Muons are chiefly identified on the basis of tracks or segments found in the MS, as no

other particles penetrate the calorimeters. ATLAS reconstruction distinguishes three

types of muons: standalone, segment-tagged and combined [9]. Standalone muons are

formed by extrapolating MS tracks to the interaction point, without the use of ID

information, whereas segment-tagged and combined muons associate an inner detector

track extrapolated to the MS with a track segment or complete MS track respectively.

Both combined and segment-tagged muons are used for analysis purposes, ensuring a

high efficiency while maintaining good precision in the momentum measurements. The

use of standalone muons is mostly restricted to performance studies.

Hadronic jets

Due to quark confinement and the short range of the strong force, the production of

energetic partons in a collision event results in a spray of charged hadrons that cannot

be effectively resolved. These particle jets offer an approximate reconstruction of the

partonic energy-momentum, but are strictly speaking distinct from their parton forebears,

and must be treated as such using a formal theoretical definition in terms of a concrete

reconstruction algorithm, and ideally one that is infrared and collinear safe. Within

ATLAS, the most common jet definition uses the anti-kt algorithm [10] with a radius

parameter R = 0.4. The jets are built from noise-suppressed topological clusters [11]

(treated as massless particles) using the FASTJET program [12].

Because the ATLAS calorimeters are non-compensating, jet energies are not typically

reconstructed in full – the chief losses are due to the neutral hadron response. It is

therefore necessary to calibrate the jets to an appropriate jet energy scale (JES), as

detailed in [13]. Two important calibration schemes are the EM+JES numerical inversion,

and the LCW+JES Local Cluster Weighting method.
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In the EM+JES scheme, clusters are first calibrated to the electromagnetic scale, i.e.

such that the energies of pure EM showers from electrons and photons are correctly

determined. Then, a pT - and η-dependent scaling factor is applied to correct the jet

energies to the hadron-level energies. This scaling factor is derived from Monte Carlo

(MC) simulation and test-beam measurements of the single-particle response.

In contrast, the LCW+JES method calibrates the component clusters individually prior

to jet formation, categorising the clusters as EM or hadronic based on shape, and

correcting their measured energies for the estimated losses. Additional JES corrections

based on the results of in situ measurements may then be applied, e.g. to mitigate the

impact of pileup contamination.

A subpopulation of jets initiated by bottom quarks (b-jets) can be identified by the

characteristic decays of B hadrons, whose half millimetre decay length can be resolved by

the precision tracking of the ATLAS ID. These b-jets are tagged using a neural network

(JetCombNN) tagger that combines shower shape information with the impact parameter

and decay length of a secondary vertex from the B hadron decay, reconstructed from

tracks within the jet [14]. To a lesser extent, charm jets can also be distinguished in

this manner, or by using leptons from the semileptonic decays of the heavy quarks. The

hadronic jet reconstruction also serves to seed algorithms for identification of hadronically

decaying tau leptons.

Hadronically-decaying tau leptons

In 35.3% of tau decays, a muon or electron is produced, while the remaining 64.7%

of tau decays produce hadrons, chiefly pions [15]. Tau lepton tagging is important for

identification of certain interesting processes at the LHC, notably the decays of the heavier

Higgs bosons from supersymmetric theories. While they are less important subjects for

this thesis, their reconstruction and identification is mentioned for completeness.

ATLAS uses a boosted decision tree (BDT) algorithm to identify tau jets [16, 17]. This

operates on the standard hadronic jets, and utilises differences in the shower width and

track multiplicity to reject quark- or gluon-initiated jets. Specifically, tau jets should be

narrowly collimated, and show a distinctive one-pronged or three-pronged track structure.

One- and three-pronged tau candidates are classified separately.
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1.1.4 SUSY Working Group object definitions

Within the ATLAS SUSY Working Group, a set of common object definitions is imple-

mented on top of the standard ATLAS criteria, to facilitate comparisons and cooperation

across analyses. This thesis uses the SUSY group definitions without exception. These

specifications are stated below.

Photons are used only in a control region selection for background estimation, and

no standard definition is in place. Details of the relevant selection criteria are given in

Section 3.4.5. In the default object selection, all photons will be reconstructed also as

jets, and treated as such in the analysis.

Electrons must satisfy a modified version of the medium requirements [8], denoted

medium++, which were reoptimised to reduce trigger rates at the high luminosities achieved

in 2011. They must be within the acceptance of the ID (|η| < 2.47), satisfy object

cleaning criteria that flag calorimeter defects and have a minimum transverse momentum

pT > 20 GeV. The position (η, φ) of the track is used if the track is of sufficiently

high quality, otherwise the cluster position is used. Energy/momentum measurements

are taken from the clusters, as the calorimeter energy resolution outperforms the track

momentum resolution at large transverse momenta. Any electrons falling in a section

of the EM calorimeter that suffered a readout failure in early 2011 (the “LAr hole”,

0 < η < 1.4 and −0.8 < φ < −0.6) are rejected, due to the potential for substantial

energy mismeasurement.

Muons are reconstructed using the STACO algorithm [9] and must be combined or

segment-tagged. Their four-momenta must satisfy pT > 10 GeV and |η| < 2.4, and the

muon candidate must satisfy the loose quality criteria. Requirements on the number of

silicon and TRT hits ensure a good ID track measurement and suppress fake backgrounds:

1. ≥ 1 pixel hit and ≥ 1 b-layer hit when expected

2. ≥ 6 SCT hits

3. < 3 pixel and SCT holes

4. If |η| ≤ 1.9, at least 6 TRT hits of which fewer than 90% may be outliers.2 If

|η| > 1.9, there is no requirement on the number of TRT hits, but the outlier

requirement is applied if at least six hits are recorded.

2 Two types of TRT hits are classed as outliers: straw hits not crossed by the nearby track, or hits along
the extension of a track that do not smoothly extrapolate from the pixel and SCT measurements.
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Jets must simply have a transverse momentum pT > 20 GeV and be within |η| < 2.8.

Because photon and electron clusters may be simultaneously reconstructed as jets (the

reconstruction algorithms operate independently), it is necessary to apply an overlap

removal procedure to avoid double counting of physics objects. If a jet four-momentum

lies within a ∆R < 0.2 cone relative to an electron or photon, the jet is discarded, and

the electron/photon retained. Conversely, if a muon or electron is within ∆R < 0.4 of a

surviving jet, the lepton is discarded, as the leptons are likely to originate from a heavy

flavour quark decay, rather than from the hard interaction. When actively discriminating

between photons and jets, photons in an annulus 0.2 < ∆R < 0.4 around a jet are

ignored as final state radiation. In this thesis, the EM+JES calibration is applied to all

jets, apart from in Chapter 2, where jets are constructed from MC truth particles, and

in Section 3.7, where the LCW+JES calibration is used.

The “baseline” electrons and muons defined above are used for application of lepton

vetoes, and the muons are used to recompute the missing transverse momentum (Sec-

tion 1.1.5). For purposes requiring genuine leptons, such as in single lepton or leptonic Z

control regions, stricter “signal lepton” criteria are enforced. These include higher pT

cuts of 25 (20) GeV for electrons (muons) and increased thresholds on object quality,

isolation and impact parameter:

1. Signal electrons must satisfy the tight++ cuts [8].

2. The sum of track transverse momenta in a cone of ∆R < 0.2 surrounding the

electron can be no more than 10% of the electron pT . An analogous track pT sum

must be less than 1.8 GeV for muons.

3. Signal muons must originate close to the primary interaction vertex: |zµ − zPV| <
1 mm, d0 < 2 mm to suppress backgrounds from cosmic rays.

As noted by Holmes,3 it is as important to observe what is absent as it is to observe

what is present. To complete the ensemble of “objects” from which our event description

is constructed, the missing transverse momentum (pmiss
T ) quantity will now be described.

We review the process of pmiss
T reconstruction, followed by the treatment of systematic

uncertainties on pmiss
T .

3“The curious incident of the dog in the night time”, Silver Blaze [18].
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1.1.5 Missing transverse momentum

While most of the stable particles from proton collisions are intercepted by the detector,

the elusive neutrino has only a 10−38 cm2/ GeV energy-dependent cross-section for nuclear

interactions [19–21]. Thus, the typical neutrino from a collision event has an attenuation

length measured in light years [22]! Neutrinos and any other particles (gravitons, axions,

neutralinos) that are similarly stable4 and weakly interacting will therefore be invisible

to the detector, and cannot be reconstructed.

However, the presence of such invisible objects can be inferred indirectly. While

proton compositeness implies that the centre-of-mass frame of a pair of colliding partons

may be longitudinally boosted relative to the laboratory frame, the initial state has next

to no momentum in the transverse direction. Thus, the spoor of these invisible particles

may be revealed in the form of apparent non-conservation of transverse momentum,

which also allows some constraints on their kinematics:

~p miss
T = −

∑

visible
particles

~pT =
∑

invisible
particles

~pT (1.2)

Measuring the vector sum of all the final-state particles is therefore a crucial part of

event reconstruction.

While the task is easily stated, it is not a simple affair. Firstly, combining the diverse

collection of objects reconstructed in any event is non-trivial. Overlapping measurements

in the calorimeter and multiple measurements of individual muon momenta5 need to

be resolved to avoid double-counting. Calorimeter noise, detector defects and energy

mismeasurement provide spurious contributions to the momentum sum. The need to

reserve space for the beam pipe, the risk of damage from radiation exposure and other

practical limitations also prevent sensitive instrumentation from being deployed in a

fully hermetic 4π solid angle. In addition, at the LHC’s design luminosities, the average

number of proton-proton interactions per bunch crossing is substantially larger than

one. Pollution from these pile-up events hence needs to be managed, alongside that

from proton remnants (the underlying event). Missing transverse momentum (pmiss
T )

reconstruction is thus sensitive to a large number of systematic uncertainties that need

to be properly accounted for.

4On collider length scales, i.e. with cτ = O(10 m).
5Muons are registered in the inner tracker, muon spectrometer and potentially also in calorimeter

deposits that may or may not be isolated.
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Missing transverse momentum reconstruction algorithms in ATLAS

The quantity known as missing transverse momentum has aliases to rival a secret agent:

MPT, pmiss
T , �pT , Missing Transverse Energy, MET, Emiss

T , ��ET , etc. For consistency, the

form pmiss
T will be used throughout this thesis, except where official ATLAS notation

dictates otherwise, such as in the naming of “MET definitions”.

ATLAS treats pmiss
T primarily as a calorimetric entity. Calorimeter cells are the basic

unit from which the measurement is constructed. The primary algorithm used by ATLAS,

MET RefFinal, is “object-based” in that the cells are viewed as constituents of physics

objects rather than fundamental elements. Each cell’s contribution is calibrated based on

the object to which it is assigned [23]. The ~pT sum for each class of objects (Section 1.1.3)

is built, defining a set of pmiss
T “terms” which add up to form the global pmiss

T object.

MET RefFinal is defined as the vectorial sum of a set of terms:

MET RefFinal = MET RefEle + MET RefGamma + MET RefTau + MET RefJet

+ MET RefMuon + MET CellOut Eflow + MET MuonBoy

Because the cell-level contributions are summed object-by-object, some ambiguity

resolution is needed in the case of cells that belong to multiple objects.6 Cells are

therefore associated to terms in the following order, and shared cells are removed from

terms lower in the hierarchy:

1. MET RefEle: Electrons

2. MET RefGamma: Photons

3. MET RefTau: Hadronic taus

4. MET RefJet: Jets with pT > 20 GeV

5. MET RefMuon: Muon calorimeter deposits

Two further terms are defined to deal with objects not in the previous categories:

1. MET CellOut Eflow: Cells in topological clusters outside reconstructed objects

(CellOut) are also included to account for soft hadronic activity that is not resolved

6The reconstruction algorithms for jets, electrons, photons etc. are executed independently, and may
make use of the same tracks and cells.
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into particle jets. Jets softer than 20 GeV use the same calibration as unassociated

clusters and are included in this term.

2. MET MuonBoy: Muons escape the calorimeters, depositing energy as minimally-

ionising particles (MIPs), so the calorimetric pmiss
T does not fully account for their

momenta. This is compensated by adding a muon-specific term built from measure-

ments using the inner detector and muon spectrometer tracking systems.

Cell energies may have scaling factors applied; these account for various effects, such

as the removal of electron corrections for out-of-shower radiation,7 and the reversion of

soft jets (pT ≤ 20 GeV) to topocluster-level calibration. For jets with pT > 20 GeV, the

LCW+JES calibration is applied [24]. Overlap removal is applied as previously described.

The contribution from cells outside objects is refined using energy flow, i.e. supplementing

the calorimeter measurements with soft tracks that may not reach the calorimeter and

replacing topocluster energies by the momenta of unambiguously associated tracks [25].

Prior to 2012 data-taking, the MET RefFinal algorithm was not fully commissioned,

and a larger diversity of algorithms was in use by physics groups. For supersymmetry

searches assuming R-parity conservation, pmiss
T is one of the most important signal

variables. The object-based pmiss
T reconstruction was hence critical for a consistent

estimation of the systematic uncertainties, e.g. those due to the jet energy scale. To this

end, a “simplified” algorithm, MET Simplified20, was used in SUSY analyses.

In MET Simplified20, the MET RefGamma and MET RefTau terms are omitted – pho-

tons and hadronic taus receive the same calibration as jets. The standard muon term

is discarded, and replaced by the vector sum of the momenta from selected (baseline)

analysis muons. In the MET RefJet term, the EM+JES calibration is used in place of

LCW+JES. The CellOut term is calibrated at the electromagnetic scale, rather than using

LCW calibration. In short,

MET Simplified20 = MET RefJet(EM+JES) + MET CellOut(EM scale)

+ MET RefEle−
∑

selected
muons

~pT

7Soft photons are emitted tangentially to the electron track, and are measured outside the electron’s
calorimeter cluster, and hence are picked up in the CellOut term. The electron energy is corrected to
for the radiative energy loss, which would double-count this contribution.
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Systematics on missing transverse momentum

Like the reconstruction process itself, propagation of systematic uncertainties to object-

based pmiss
T is not easy, due to the complex procedure for overlap resolution, energy

corrections and differences between object selections for pmiss
T reconstruction not being

reproducible from analysis-oriented data formats. Early analyses used a prescription in

which the vectorial uncertainty on each object was added to the event level pmiss
T :

δpmiss
x =

∑

obj

pobj
x (nom.)− pobj

x (syst.)

δpmiss
y =

∑

obj

pobj
y (nom.)− pobj

y (syst.)

pmiss
T (syst.) = (pmiss

x + δpmiss
x , pmiss

y + δpmiss
y ),

but this fails to fully capture the intricacies of the pmiss
T reconstruction. Above, ‘(syst.)’

indicates that an object’s energy has been scaled to the estimated 1σ excursion due to a

given systematic uncertainty. Better fidelity to the results of the pmiss
T reconstruction is

achieved if a correction factor wobj
px,y for the difference in the pmiss

T -level momentum and

the analysis-level momentum for each object is allowed:

δpmiss
x =

∑

obj

wobj
px

[
pobj
x (nom.)− pobj

x (syst.)
]

δpmiss
y =

∑

obj

wobj
py

[
pobj
y (nom.)− pobj

y (syst.)
]
.

By rights, all object energies should be varied by their uncertainties and the entire

pmiss
T reconstruction rerun for each systematic source, but this is computationally and

technically infeasible for analysis of large datasets. The weighted prescription offers a

reasonable compromise of accuracy and practicality.

Within the ATLAS pmiss
T reconstruction, the weights are computed as each object is

added to the pmiss
T sum. This is accomplished by dividing the corrected px, py of each

object, as determined by the pmiss
T algorithm (taking into account energy corrections and

cell overlap-removal), by the nominal px, py as used in analyses:

wobj
px = pobj

x (corr.)/pobj
x (nom.),

wobj
py = pobj

y (corr.)/pobj
x (nom.).
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Weights are stored in a MissingETComposition object, and users can use these weights

firstly to rebuild the pmiss
T if supplied the four-momenta of every object used in the pmiss

T

reconstruction, or subsequently to apply the object systematics.

An energy scale uncertainty on the MET CellOut term was initially derived from

the uncertainty on the cluster energy scale [26], but later shown to be excessively

conservative. The current systematic uncertainty on MET CellOut is estimated from

MC-data differences in the scale and resolution of pmiss
T measured in Zll events with no

jets [23].

1.2 Theoretical foundations

The ATLAS detector will be capable of precisely measuring properties of particle inter-

actions in the LHC’s collisions. We now review the current theoretical understanding

of these interactions. The material below is largely summarised from three references,

which are cited here for convenience [22, 27, 28], while major theoretical milestones are

cited within the text.

1.2.1 The Standard Model: As easy as U(1) × SU(2) × SU(3)

Our present understanding of fundamental particle interactions is governed by the

Standard Model (SM) of Particle Physics, which is a quantum field theory (QFT) built

on the following requirements:

1. Inclusion of the elementary particle content that has been directly observed: quarks,

leptons and the gauge bosons of the strong and electroweak interactions.8

2. Invariance under transformations in the proper Poincaré group (translations, rota-

tions and boosts).

3. Gauge invariance, i.e. invariance under local transformations from the gauge group

SUc(3)× SUL(2)× UY (1).

4. Stability, i.e. an energy spectrum that is bounded below.

8The existence of the graviton and possibly a dark matter particle are supported only by indirect
evidence at the time of writing.
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5. Renormalisability, i.e. the independence of the dynamics at a given energy scale

from effects arising from dynamics at much higher energies.

A number of “common sense” requirements such as causality, locality and unitarity are

also imposed, serving to set up the QFT formalism, but the list above is more critical in

terms of determining the phenomenology of the model.

The seemingly short list above wraps in many of the most important achievements of

twentieth-century physics: quantum mechanics [29–31], the quark model of hadrons [32],

special relativity [33], the unified electroweak theory [34–37] and quantum chromodynam-

ics, to name a few. In spite of this, the structure of the SM is quite phenomenological,

with the choice of gauge group and the fermion content in particular missing any im-

mediate intuitive theoretical motivation. The assortment of fermions leads to a slightly

baroque set of component fields, whereas the rich phenomenology of the gauge sector

more elegantly emerges from the choices of spacetime and internal symmetries, augmented

by a Higgs sector.

Below, Table 1.1 summarises the full complement of SM fermions, together with their

irreducible representations in the SM gauge groups. The quarks and leptons come in three

generations, with the left-handed quarks and leptons forming doublets of SU(2)L, while

the right-handed quarks and charged leptons are SU(2)L singlets. Not shown separately

are the three colours of quarks (red, green and blue) that underly the SU(3)C structure

of the strong force. The SM omits right-handed neutrinos from the fermion content,

as they have not been directly observed in experiments. However, their existence may

be required by the observation of neutrino oscillations, which imply non-zero neutrino

masses [38–42]. Massive neutrinos are hence sometimes considered a first signpost of

BSM physics.

These fermions, in particular the members of the first generation, constitute the

familiar “matter” content of the universe. Interactions through the strong, weak and

electromagnetic forces arise when gauge invariance under the SM gauge groups is enforced,

as discussed in the following sections.
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Fermion type Field label Field content Gauge representation

Quarks

Qn

(
u

d

)

L

,

(
c

s

)

L

,

(
t

b

)

L

(3,2,+1/3)

Un uR, cR, tR (3,1,−4/3)

Dn dR, sR, bR (3,1,+2/3)

Leptons
Ln

(
νe

e

)

L

,

(
νµ

µ

)

L

,

(
ντ

τ

)

L

(1,2,−1)

En eR, µR, τR (1,1,−2)

Table 1.1: Fermionic field content of the Standard Model, separated into the coloured quarks
and non-coloured leptons. Capital letters label groups of fields that come in three
distinct generations (labelled by n) of increasing mass. The three generations
are shown separately in the third column, comprising up u, down d, charm c,
strange s, top t and bottom b quarks, and the electron e, mu µ and tau τ
leptons, with corresponding neutrinos νe,µ,τ . Left- and right-handed quarks fall
into different SU(2)L representations, a doublet and two singlets respectively. A
similar structure is obeyed by the leptons, but the SM assumes the absence of
right-handed neutrinos, although neutrino oscillation measurements may imply
their existence. The representations of the fields under the SM gauge group are
shown in the rightmost column, shown in the order SU(3)C , SU(2)L and U(1)Y ,
with the boldface numbers referring to singlet, doublet or triplet representations,
and the third number indicating the value of the weak hypercharge Y .
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Quantum chromodynamics

Much of LHC physics is governed by the strong force, described by the theory of quantum

chromodynamics (QCD). Strong interactions exhibit asymptotic freedom [43, 44], allowing

perturbative calculations at energy scales up to those of LHC collisions. The low energy

growth of the QCD coupling αS prevents perturbative descriptions of soft QCD, which

implies the need for non-perturbative models of the behaviour of the proton remnant

(underlying event) and hadronisation processes. QCD also determines the structure of

the colliding protons in the LHC, forming the initial state of the processes under study.

The strong force arises in the Standard Model upon invoking local invariance under

SU(3)C transformations between the coloured states of quarks. Generically, to impose

local invariance under some gauge group, a free fermion Lagrangian

L0 = ψ̄(i��∂ −m)ψ (1.3)

should be modified by adding terms to the covariant derivative:9

∂µ → Dµ = ∂µ + igtaA
a
µ, (1.4)

where g is a coupling constant, ta is the matrix representation of the group generators

and Aaµ a vector field.10 The Lagrangian must also gain a free field term for the vector

boson that is quadratic in the field strength

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν . (1.5)

The structure constants fabc are fixed by the choice of gauge group. Thus, the Lagrangian

for the locally gauge invariant theory is

L = ψ̄(i��D −m)ψ − 1

4
F µνFµν (1.6)

From equations 1.4-1.6, it can be seen that the vector boson will couple to fermion-

antifermion pairs, as well as to itself in three- and four-point interactions (except in the

case of an abelian gauge group, for which the quadratic term in F a
µν vanishes).

9While the notation treats this change as a modification of the derivative, it is perhaps more intuitive
to interpret it as an alteration of the canonical momentum, analogously to classical Hamiltonian
electrodynamics. In the non-interacting case, the canonical momentum operator is simply Pµ = −i∂µ.

10Majorana spinors are used to represent fermions throughout this introduction.
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In the case of SU(3)C , the vector field is that of the gluon Ga
µ, and one representation

of the relevant group generators is the set of eight Gell-Mann matrices λa, satisfying the

commutation relation

[
λa
2
,
λb
2

]
= if cab

λc
2
. (1.7)

The SU(3) structure constants are described by Table 1.2, and are antisymmetric under

permutations of their indices. Gluons transform as octets under SU(3)C , and singlets

under SU(2)L and U(1)Y .

abc fabc abc fabc

123 1 345 1/2

147 1/2 367 −1/2

156 −1/2 458
√

3/2

246 1/2 678 −
√

3/2

257 −1/2

Table 1.2: Non-zero structure constants of the group SU(3), omitting permutations of the
indices, under which the structure constants are antisymmetric.

While the gluons are massless, the range of the strong force is restricted to nuclear

length scales due to the phenomenon of colour confinement, i.e. the absence of free states

that are not colour singlets. It is this colour confinement that causes quarks to hadronise,

forming colour singlet states of a quark-antiquark pair (mesons) or three quarks (baryons).

Hadronisation plays an important role in collider experiments, as it implies that energetic

quarks and gluons created in a high energy collision event will be observed only in the

form of a particle jet, which is a spray of hadrons with sufficient longevity to reach the

detector’s active components. Jet formation masks much of the information about the

initiating parton, such as charge and to a large extent flavour, although a perfect detector

might in principle be capable of determining some of these properties.
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Electroweak gauge bosons and spontaneous symmetry breaking

Electroweak interactions arise from the gauge theory of SU(2)L × U(1)Y . However,

empirical evidence implies that the physical effects of these two gauge groups cannot

be factorised from each other as they can from SU(3)C . Simply coupling three SU(2)

bosons W 1,2,3
µ and one U(1) boson Bµ in the same way as was done for QCD leaves the

bosons massless, in contradiction with the large observed masses of the W± and Z0

bosons. Gauge invariance prohibits the introduction of explicit mass terms for the gauge

bosons. The solution in the Standard Model is provided by the Higgs11 mechanism of

electroweak symmetry breaking (EWSB) [45–47].

EWSB follows from the addition of a complex scalar doublet with a non-zero vacuum

expectation value (VEV). Four scalar degrees of freedom φ1,2,3,4 are present in the Higgs

doublet, corresponding to the real and imaginary parts of the two complex fields

φ0 =
1√
2

(φ1 + iφ2), φ+ =
1√
2

(φ3 + iφ4). (1.8)

The two complex scalars make up an SU(2)L doublet,

φ =


 φ+

φ0


 (1.9)

possessing hypercharge Y = −1. This is introduced to the Lagrangian via the terms:

LH = Dµφ
†Dµφ− VH (1.10)

= Dµφ
†Dµφ+ µ2(φ†φ)− λ(φ†φ)2 − µ4

4λ
,

for which the coefficients µ2 and λ are both positive and non-zero as required by unitarity

and stability. The positive sign before the quadratic term ensures a non-zero VEV.

The ground state of the φ field occurs at the minimum of the potential VH , i.e. when

(φ†φ) = µ2/2λ. Only the magnitude of φ is fixed, hence the ground state is degenerate,

and gauge freedom allows the simple choice

φ1 = v =
µ√
λ
⇒ φ =


 0

v/
√

2


 , (1.11)

11The popular, if less politically-correct attribution will be used here, for brevity.
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with φ2,3,4 = 0. Working in the unitary gauge, one then expands around the ground state,

taking φ1 = v + h, with h a real scalar field. This puts the Higgs potential in the form

VH = λv2h2 + λvh3 +
λ

4
h4, (1.12)

showing a mass term with mh =
√

2λv2 and two self-couplings, all related by the coupling

strength λ and the VEV v.

In the kinetic term DµhD
µh, the expansion around the ground state makes explicit

new couplings for the gauge bosons, producing both scalar-vector couplings and a non-

diagonal mass matrix. It is possible to redefine the gauge fields in order that the mass

matrix is diagonal, which mixes the W 1,2,3
µ and Bµ to produce the physical gauge bosons

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ), (1.13)

Z0
µ =

1√
g1

2 + g2
2
(g2W

3
µ − g1Bµ), (1.14)

Aµ =
1√

g1
2 + g2

2
(g2W

3
µ + g1Bµ), (1.15)

of electroweak interactions. A convenient parameterisation of the Z and A mixing is in

terms of the weak mixing angles

sin θW =
g1

g1
2 + g2

2
, cos θW =

g2

g1
2 + g2

2
, (1.16)

rather than the gauge couplings g1 and g2. Crucially, the diagonalised mass matrix

contains elements mZ = v/2(g1
2 + g2

2), mW = mZ cos θW and mB = 0. That is, the

three remaining degrees of freedom in the Higgs doublet are “eaten” to provide masses

for the weak bosons, while the photon B remains massless.

As in the case of QCD, the electroweak bosons exhibit self-interactions – various

triple and quartic gauge couplings are permitted, provided that they conserve quantum

numbers, but all-neutral gauge couplings are notably absent from the set generated by

EWSB. Furthermore, the weak bosons interact with the physical Higgs scalar h. If we

now define the field strengths Aµν , Zµν as in equation 1.5, and W±µν similarly but with

a covariant derivative including the neutral gauge boson couplings,

DµW
±
ν = (∂µ ± ig2 cos θWAµ ± ig2 sin θWZµ)W±

ν , (1.17)
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then the electroweak interaction Lagrangian, as we have so far discussed it, is given by:

LEW = ∂µh ∂
µh− λv2h2 − λvh3 − λ

4
h4

−
(
h

v
+

h2

2v2

)(
2m2

WW
−
µ W

+µ +m2
ZZµZ

µ
)

− 1

4
AµνA

µν − 1

4
ZµνZ

µν − 1

2
W−µνW+µν . (1.18)

The fermion interactions have been neglected up to this point, and it is to these that we

turn to finally complete the picture.

Fermion-electroweak interactions

Fermion-gauge couplings from SU(2)L × U(1)Y behave much as the QCD couplings, via

the covariant derivative

Dµψ =
(
∂µ − ig1Y Bµ − ig2TaW

a
µPL

)
ψ. (1.19)

However, there is a notable addition in the form of the operator PL = (1− γ5), which

projects out the left-handed chiral component of a generic fermion state ψ. This reflects

the observed handedness of the weak interactions. When expressed in terms of the

electroweak boson mass eigenstates, it can be seen that the interactions due to the W±

affect only ψL, whereas the Z and A couple to ψR states via the Bµ component.

Previously, we avoided discussion of fermion mass terms such as

mf (ψ̄ψ) = mf (ψ̄LψR + ψ̄RψL), (1.20)

which before EWSB are prohibited by SU(2)L invariance, but are needed to match

our observations. However, the Higgs mechanism now offers a way out, in the form of

gauge-invariant Yukawa couplings to the scalar doublet,

Yu,nQ̄Uφ̄ = Yu,nuLuR
(v + h)√

2
= mu,nuLuR +

Yu,n√
2
uLuRh, (1.21)

Yd,nQ̄Dφ = Yd,ndLdR
(v + h)√

2
= md,ndLdR +

Yd,n√
2
dLdRh, (1.22)

Ye,nL̄Eφ = Ye,neLeR
(v + h)√

2
= me,neLeR +

Yl,n√
2
eLeRh, (1.23)
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which generate both a mass term and a scalar-fermion coupling for the three generations

n = 1, 2, 3 of quarks and leptons. The Higgs charge conjugate φ̄ = (φ0,−φ+)† in the first

line is required to pick out the upper element of the doublet. An obvious omission are

mass terms for the neutrinos, which are absent due to the lack of right-handed neutrino

fields, although these may be present in nature, as previously mentioned.

Fermion masses are hence intricately linked to their couplings with the Higgs, since

mf = vYf/
√

2. Here, the Yukawa couplings have been written in a diagonal format, but

this is not simultaneously diagonal with the weak eigenstates. The Cabbibo-Kobayashi-

Maskawa (CKM) matrix Vmn is therefore introduced to translate between the quark mass

and flavour bases, allowing the charged current interactions with the W± to transform

flavour states.

1.2.2 Extending the Standard Model: Supersymmetry

In empirical terms, the Standard Model has been phenomenally successful, its predictions

having been tested to great precision over many orders of magnitude. It is particularly

attractive that the underlying structure can be so comprehensively specified by imposing

symmetry constraints on the Lagrangian. This begs the question as to whether additional

symmetries can be accommodated, and what their consequences would be. As it happens,

Coleman and Mandula were able to show that in an interacting QFT that is Poincaré

invariant, with a finite number of particles below any given mass, the symmetry group

of the Lagrangian can only be a direct product of the Poincaré group and an internal

symmetry group (e.g. the SM gauge group) [48]. An alternative statement is that

symmetry transformations must treat spacetime and internal symmetries independently.

The Coleman-Mandula theorem assumes that all symmetries are bosonic, i.e. that their

conserved charges have integer spin. Allowing conserved charges to be spinors relaxes the

theorem to the formulation of Haag, Lopuszanski and Sohnius, which replaces the Poincaré

group with the super-Poincaré group [49]. This means that SUSY transformations

that mix bosonic and fermionic states are also symmetries of the theory. In other

words, spacetime and internal symmetries remain independent, but the set of spacetime

symmetries is expanded to allow transformations between spin states. A rich set of

consequences arise from imposing SUSY on the Lagrangian.
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Superfoundations

The most basic supersymmetric Lagrangian was constructed by Wess and Zumino [50],

and has the form

LW-Z =
1

2
∂µA∂

µA+
1

2
∂µB∂

µB +
1

2
ψ̄(i��∂ −m)ψ − 1

2
(F 2 +G2) (1.24)

Under the infinitesimal global SUSY transformations

δA = iᾱγ5ψ, (1.25)

δB = −ᾱψ, (1.26)

δψ = (−F + i��∂B + iG+ ��∂γ5A)α, (1.27)

δF = iᾱ��∂ψ, (1.28)

δG = ᾱγ5��∂ψ, (1.29)

with spinor parameter α, the action remains invariant (the Lagrangian changes by a total

derivative). This supersymmetric Lagrangian contains four real spin 0 fields A,B, F,G

and a fermion ψ, which transform into one another under SUSY transformations. F and

G are in fact not physical fields, but auxiliary ones that allow the SUSY relations to hold

off-shell as well as on-shell. Their equations of motion give

F = −mB, G = −mA, (1.30)

allowing us to see from the mass terms that the physical fields A,B, ψ share a common

mass m. Without stating their form, we assert here that interaction terms can be added

to this free Wess-Zumino Lagrangian while preserving supersymmetry.

The SUSY operators Q are spinors generating a graded Lie group, and are part of

the super-Poincaré algebra,

[Pµ, Pν ] = 0, (1.31)

[Mµν , Pλ] = i (gνλPµ − gµλPν) , (1.32)

[Mµν ,Mρσ] = −i (gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ) , (1.33)

[Pµ, Qa] = 0, (1.34)

[Mµν , Qa] = −1

2
(σµν)abQb, (1.35)

{Qa, Q̄b} = 2(γµ)abPµ, (1.36)
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where σµν = i
2
[γµ, γν ], the momentum operators P µ generate spacetime translations, and

the Poincaré tensor generators Mµν are defined from the generators of rotations Ji and

boosts Ki as Mij = εijkJk and M0i = −Ki. The conjugate transformation Q̄ is simply

the Dirac conjugate of the spinor Q.

An alternative formulation of the Wess-Zumino Lagrangian in terms of complex fields

is

LW-Z = ∂µS∗∂µS +
i

2
ψ̄L(i��∂ −m)ψL −F∗F (1.37)

where

S =
1√
2

(A+ iB), (1.38)

ψL = PLψ = (1− γ5)ψ, (1.39)

F =
1√
2

(F + iG), (1.40)

transforming as

δS = −i
√

2ᾱψL, (1.41)

δψL = −
√

2(FαL + ��∂SαR), (1.42)

δF = i
√

2ᾱ��∂ψL. (1.43)

The fields S, ψL,F form a left chiral supermultiplet, the supersymmetric extension of

the left chiral fermions of the SM, and will all possess the same gauge quantum numbers.

By complementing the four-dimensional spacetime coordinates xµ with a second set of

coordinates θ forming a four-component spinor whose components θa anticommute,12

and contracting θµ with ψµ, the three fields can be combined into a single superfield

Φ̂(xµ, θµ). Analogous superfields Φ̂A can be defined that represent gauge supermultiplets,

but in this case the physical fields will be a vector V µ, a fermion λ and an auxiliary scalar

D. The superfields Φ̂ and Φ̂A make up separate irreducible representations of SUSY.

Above, we have considered only N = 1 SUSY, i.e. with just a single SUSY transfor-

mation generator, which turns out to be the only case that permits chiral representations.

Specifying a set of chiral and gauge superfields corresponding to the SM fermion and

gauge boson content is almost sufficient to define the Minimal Supersymmetric Standard

12These θa are anticommuting Grassmann variables.
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Model (MSSM) – the only omission is the Higgs sector, which can be filled with chiral

superfields in which the spin 0 fields correspond to the SM Higgs scalars. However, the

supersymmetric potential does not admit the charge conjugate of the Higgs doublet,

which in the SM was needed to couple to the down-type quarks.13 The down-type quarks

are therefore coupled to a second Higgs doublet. The MSSM chiral superfield content is

summarised in Table 1.3. As for the gauge sector, the eight gluons, three weak bosons

and photon gain their own superfields Ĝa, Ŵ a and B̂, in which the V µ piece in each

supermultiplet corresponds to the familiar SM vector boson.

A simple count of the degrees of freedom shows that the MSSM more than doubles

the SM field content – each of the superfields contributes a fermion and a boson, while

the Higgs degrees of freedom have quadrupled! The spin-0 superpartners are whimsically

termed sfermions (“stop”, “sup”, “selectron” etc.), whereas the spin-1/2 superpartners

are given the more endearing “-ino” diminutive.14 All superpartners share their SM

counterparts’ symbols, with an attached tilde, hence the sleptons are l̃ = ẽ, µ̃, τ̃ etc. After

EWSB, three of the Higgs scalars are eaten, leaving five physical Higgs bosons – two

neutral scalars h,H; two charged scalars h±; and one neutral pseudoscalar A – and four

accompanying Higgsinos.

So far, we have discussed the case of unbroken SUSY, in which the masses of all

particles in a supermultiplet must be identical, but this picture does not match our

universe. Instead, SUSY must be broken. There is no outright prohibition on adding

mass terms to the Lagrangian, but some constraints must be obeyed if certain attractive

aspects of SUSY are to be maintained, an example of which will be given in the discussion

of quadratic divergences in the next section.

Implications of supersymmetry at the TeV scale

At this stage, it is not clear that we have improved the Standard Model by adding SUSY

– certainly not as far as explaining structural underpinnings like the choice of gauge group

or the reasons for the fermionic content being what it is. In fact, SUSY comes with many

benefits and offers solutions to both aesthetic and empirical gaps in the SM, which will

be discussed next, followed by a summary of the constraints on SUSY. TeV-scale SUSY

13Specifically, the Yukawa couplings are part of the superpotential, which is built of left chiral superfields
only, as opposed to the Kähler potential that includes their conjugates.

14Fortunately for this nomenclature, the neutrino is a fermion.
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Chiral superfield Label Content Gauge representation

Quarks

Q̂n

(
û

d̂

)

L

,

(
ĉ

ŝ

)

L

,

(
t̂

b̂

)

L

(3,2,+1/3)

Ûn ûR, ĉR, t̂R (3,1,+4/3)

D̂n d̂R, ŝR, b̂R (3,1,−2/3)

Leptons
L̂n

(
ν̂e

ê

)

L

,

(
ν̂µ

µ̂

)

L

,

(
ν̂τ

τ̂

)

L

(1,2,−1)

Ên êR, µ̂R, τ̂R (1,1, 2)

Higgs sector
Ĥu

(
ĥ+
u

ĥ0
u

)
(1,2, 1)

Ĥd

(
ĥ−d
ĥ0
d

)
(1,2∗,−1)

Gauge group Vector superfield Gauge representation

SU(3)C Ĝa (8,1, 0)

SU(2)L Ŵ a (1,3, 0)

U(1Y ) B̂ (1,1, 0)

Table 1.3: Superfield content of the Minimal Supersymmetric Standard Model, in analogy to
Table 1.1 and augmented by the two Higgs doublets. The quark and lepton super-
fields corresponding to the SU(2)L singlets are right-chiral, while the remainder of
the matter superfields as well as the Higgs doublets are left-chiral. Gauge bosons
and gauginos are represented by vector superfields.
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is particularly attractive, not to mention imminently testable, and so we concentrate on

arguments for this particular mass range.

The textbook theoretical argument in favour of SUSY relates to the Higgs mass

hierarchy problem in the SM. Briefly, the hierarchy problem is the conflict between the

requirement for a low Higgs mass from unitarity restrictions and the instability of scalar

masses in the presence of interactions with other heavy particles. The latter drives the

Higgs mass towards the largest mass scale present in the theory, which is the Planck

scale if the SM is assumed to be valid up to the quantum gravity limit.

In more detail, the Higgs mass, now tentatively measured to be 125 GeV, was expected

to be O(100) GeV on the basis of precision measurements such as of electroweak couplings

and the W and top masses, but also required to be under a TeV in order to preserve

unitarity in vector boson scattering interactions. Generically, all particles receive quantum

corrections to their masses determined by their interactions. Scalars are particularly

susceptible to divergences in these corrections. At one loop, a fermion correction gives:

δm2
h = −Nc

m2
f

v2

∫
d4k

(2π)4
Tr



(
i��k −m
k2 +m2

f

)2



= −4Nc

m2
f

v2

∫
d4k

(2π)4

[
1

k2 +m2
f

+
m2
f

(k2 +m2
f )

2

]
. (1.44)

The integral of the first term is quadratically divergent in a cutoff scale Λ up to which the

SM is assumed to be a good effective theory. This implies that if no new physics arises

before the quantum gravity limit, mh ∼ Λ = mPl = 1.2× 1019 GeV unless cancelled by a

bare mass µ fine-tuned to 17 orders of magnitude.

Supersymmetric theories, however, contain superpartners with identical mass but

opposite spin classification that provide a cancelling contribution in every loop diagram.

This implies that a supersymmetric model is guaranteed to solve the mh hierarchy

problem absolutely. Even in the case that SUSY is broken, it is possible to generate

mass terms while maintaining cancellation of the quadratic divergences, i.e. requiring

SUSY-breaking to be soft. In theories with softly-broken SUSY, logarithmic divergences

remain, but these are much less problematic. Aesthetically, sparticle masses ought to be

around O(1 TeV) to minimise fine-tuning, but this is not a hard constraint. Admittedly

a similar hierarchy problem arises in the MSSM Higgs sector (with a parameter also

denoted µ), but this may be solved in specific SUSY-breaking mechanisms.



Introduction 35

Preventing proton decay can surprisingly lead to a cosmological motivation for SUSY.

A generic superpotential includes baryon-number-violating terms:

λijkÛ
c
i D̂

c
jD̂

c
k, (1.45)

and similar terms that violate lepton number (the c superscript denotes charge conjugation,

which is needed to put the superfields in left chiral form). Violation of (B − L) can

lead to proton decay, implying strong constraints on the couplings λijk. Protection of

the proton’s longevity can be achieved via the ad-hoc requirement that the parity of

R = (−1)3(B−L+2s) be conserved, forbidding these couplings entirely. R-parity is even

for all SM particles and odd for their superpartners, so its conservation implies the

stability of the lightest supersymmetric particle (LSP), typically the lightest neutralino

χ̃0
1, i.e. a mixture of the neutral Bino, Wino and Higgsino fields. Not only does the

LSP in R-parity-conserving (RPC) SUSY fit the bill for dark matter due to its being

a stable weakly-interacting massive particle (WIMP), it can do so with the right mass

scale and interaction cross-section to provide the observed density of cold dark matter,

the existence of which is well-established.

In concrete models of SUSY-breaking (e.g. gauge-mediation [51], gravity media-

tion [52], anomaly mediation [53]), the particle spectrum is typically specified by fixing

mass parameters at the SUSY-breaking scale (between 104 − 1016 GeV), and using the

renormalisation group equations (RGEs) to run the masses down to the weak scale

∼ mZ . Of special importance is the impact on mh, which can be made negative, implying

not that the Higgs is tachyonic, but that the quadratic coefficient in equation 1.11 is

driven negative – precisely the ingredient needed for EWSB! This mechanism is known as

radiative electroweak symmetry-breaking (REWSB). Another happy coincidence resulting

from RGE evolution is that corrections from TeV-scale superpartners appear to modify

the running of the strong, weak and electromagnetic gauge couplings so that they unify

at a scale MGUT = O(1016) GeV, which is close to the estimated unification scale needed

to avoid proton decay at observable rates. In the SM, the three running gauge couplings

meet over a range of around 104 GeV, a less dramatic and convincing convergence than

in the TeV-scale MSSM.

The theoretical appeal of SUSY is also improved by the necessity of supersymmetry

in superstring theory, and the fact that imposing local supersymmetry generates a QFT

including gravity, but neither of these arguments necessarily requires superpartners to be

at masses relevant to experiments in the present-day or near future.
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Constraints and prejudices on supersymmetry

If we are to discover SUSY, we will need some idea of where to start looking. In truth,

SUSY has been sought in many experiments, including at colliders (LEP, Tevatron and

most recently LHC), in indirect and direct dark matter detection experiments and in

precision measurements. As this thesis concerns a specific LHC search for SUSY, namely

a search for jets and pmiss
T , discussion of results from the most similar channels at the

LHC will be deferred to the main body and conclusions.

The most direct limits on SUSY are set by searches for particular sparticles, or by

extension specific SUSY theories with a fully-defined sparticle content. Pre-LHC searches

of this sort were chiefly the domain of LEP and the Tevatron. As superparticles obey

the familiar gauge interactions, their production and decays are well-understood. In fact,

in RPC models, a simple mnemonic specifies the Feynman rules for all SM particles

and superparticles – at any SM vertex, replacing an even number of incoming/outgoing

particles with their superpartners generates a valid interaction. The differing spins will

of course make themselves known in differential cross-sections. RPV models are outside

the scope of this thesis, and are hence ignored.

To a large extent, earlier SUSY searches concentrated on particular brands of SUSY,

i.e. constrained models such as the Constrained MSSM (or CMSSM, inspired by the

minimal gravity mediated theory) [52, 54–58]. Such models typically assume that all

scalar superpartners have a common mass m0 at the SUSY-breaking scale, and a separate

parameter m1/2 sets the masses of the gauginos, with finer differences resulting from

the RGE evolution. The greatest mass reach was provided by the Tevatron, with limits

near 400 GeV set on the masses of the squarks and gluino in the CMSSM framework.

CDF [59] and D0 [60] achieved these limits by searching for events with multiple hard

jets and missing transverse momentum, and without leptons. Searches of this nature are

sensitive to squark and gluino production and decays, drawing on the relatively large

QCD production cross-sections of these states, and targeting the substantial pmiss
T from

decays producing the invisible LSPs. They are relatively generic in that squarks and

gluinos decay almost without exception to jets and pmiss
T , although leptons and photons

may appear in particular configurations of the sparticle spectrum. At low masses, L3 [61]

was able to exclude squarks less massive than 100 GeV in a model-independent search,

requiring only that there be at least 10 GeV separating the squark and LSP masses.

The electroweak sector is more difficult to constrain in a model-independent manner,

as the electroweak sparticles (Bino, Wino and Higgsinos) generally exhibit substantial
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mixing into chargino χ̃±1,2 and neutralino χ̃0
1,2,3,4 states, resulting in a wide variety of

possible decay characteristics and branching fractions. Similar mixing occurs between

left- and right-handed stops, sbottoms and staus, which are typically also lighter than

their first- and second-generation counterparts. DELPHI set the most current limits on

the masses of the lightest neutralino and chargino quoted by the PDG, in a simultaneous

search for the gauginos and sleptons in a CMSSM model [62]. These were constrained

to be at least 45.5 GeV and 94 GeV respectively. Limits between 80 and 100 GeV

on the masses of the various sleptons were set by the DELPHI [62] and ALEPH [63]

collaborations, once more in a Constrained MSSM framework. However, when the

CMSSM assumptions are relaxed, the limits may change substantially or even evaporate,

as argued by Dreiner et al, who showed nearly massless neutralinos to be consistent with

all collider and astrophysical data when the mass universality condition is dropped [64].

Astronomical observations supply many constraints beyond those obtained by colliders,

chiefly on the LSP as a WIMP. A detailed review of experimental evidence for dark

matter is given in [65]. Gravitational measurements such as galactic rotation curves

and gravitational lensing supply the most convincing proof for the existence of dark

matter, but are less specific about its character. More informative for particle physics

are direct searches measuring nuclear interactions or the products of WIMP annihilation.

These results are, however, prone to controversy, as multiple experiments have reported

positive observations that are in contradiction with one another, and none are at present

considered to be conclusive. The most tantalising results at present include annual

modulation signals from DAMA/LIBRA [66] and CoGeNT [67]; excess positrons observed

by PAMELA [68]; and a 130 GeV photon line in Fermi-LAT data ostensibly from dark

matter annihilation [69]. Constraints from XENON100 [70] and various other experiments

are incompatible with most of these observations.

Complementary to these direct searches are precision tests from flavour physics

and electroweak observables. Major restrictions are implied by the non-observation of

flavour-changing neutral currents (FCNCs) [15], together with branching fractions of

decays such as b→ sγ, Bs → µ+µ− and various CP-violation observables in the heavy

flavour sector [71]. Specifically, avoidance of FCNCs forces the soft mass terms to be

diagonal, which arises naturally via gauge-mediated or anomaly-mediated SUSY breaking

mechanisms, which are flavour-blind. Heavy flavour decays may receive additional SUSY

contributions, e.g. from the extended Higgs sector. One recent result that could be

incredibly damaging to minimal SUSY if confirmed is an anomalous measurement by

BaBar of the decays B̄ → Dτν̄, B̄ → D(∗)τ ν̄ [72], which threatens to rule out the Type-II
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2 Higgs Doublet Model underlying the MSSM. Certain measurements of the anomalous

magnetic moment of the muon (g − 2), on the other hand, are inconsistent with the SM,

favouring certain SUSY scenarios [73].

A final important piece of the SUSY puzzle is the status of the SM Higgs search. As

of December 2012, the existence of a 126 GeV particle compatible with the SM Higgs

has been established [1, 2], with measurements of its properties such as spin and parity

beginning to show sensitivity to (and disfavouring) alternate scenarios. The reported

branching ratio to γγ, at 1.4 (ATLAS) or 1.6 (CMS) times the SM value, is high, though

consistent with the SM within experimental uncertainties. This leads to speculation that

the enhancement might be due to stau loops [74]. Due to the nature of REWSB, the Higgs

mass too has turned out to be an important constraint on SUSY, the measured value

being too high to be easily achieved in minimal SUSY scenarios. Specifically, REWSB

produces a tree-level mh equal to the Z mass, which can be raised to a limited extent

via radiative corrections. These corrections can typically only reach mh = 126 GeV for

relatively high sparticle masses, although it is possible also to retain lighter stops under

the assumption of maximal mixing [75]. SUSY models with additional content such as

the Next-to-Minimal Supersymmetric Standard Model (NMSSM) are more easily able to

accommodate this constraint [76]. Constrained models, however, are sorely tested [77].

The collective results stated above are not necessarily conclusive enough to permit a

brief summary. Nevertheless, a rough set of expectations might be stated as follows:

1. Squarks and gluinos might be as light as a few hundred GeV, depending on assump-

tions about decay patterns.

2. The least model-dependent constraints on the LSP mass permit virtually any value,

but gauge mass unification implies the relatively low limit of 46 GeV.

3. Light sleptons are permitted down to masses of about 100 GeV.

4. The Higgs mass may imply that most sparticles are several TeV in mass, but relaxed

assumptions can lower this limit as well.

From the many caveats stated above, one implication might be that the most general

search possible should be carried out. Certainly, some effort should be made at addressing

the holes left by overly specific model assumptions in previous analyses. This thesis

therefore describes one such attempt, which targets the coloured sparticles (squarks and

gluinos), prioritising these for their relatively high cross-sections, and singles out the

signature of jets and pmiss
T , which is least sensitive to specific sparticle mixing assumptions.
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1.3 Goals of this thesis

There are three main aspects of a successful collider-based search for new particles:

• A clear understanding of the signal processes, and how they may be distinguished

from background processes.

• Robust methods for estimating the residual background contributions after background-

suppressing selections have been applied to the data.

• Sound assessment of the statistical significance of any discrepancies between the

observed and expected values of the measurement, taking into account systematic

uncertainties and their correlations. This may lead to interpretations of the analysis

results in theoretical settings.

Each of these topics will be covered within this thesis, focusing on particular approaches

that form the backbone of the ATLAS results, which have consistently been among the

most sensitive searches for squark and gluino production at the LHC.

Chapter 2 explains and expands on the use of techniques developed for measuring

sparticle masses in RPC scenarios. These are based on the concepts of transverse

projection of four-momenta and minimisation over unknown quantities. Such mass bound

variables would be powerful tools for mass measurement in the event that SUSY were to

be discovered at the LHC. Their importance is not wholly dependent on a SUSY discovery,

however; these techniques are critical to the search effort. Beginning with a summary

of important results contributed by the author to a collaborative publication [78], the

chapter follows with a systematic evaluation of the performance of these techniques for

mass measurement in an experimental setting. It concludes with a discussion of their

potential as discriminating variables in the search for SUSY.

In Chapter 3, the strategy employed by ATLAS in the quest for squarks and gluinos

is described [79], focusing throughout on the author’s contributions to the analysis. The

account begins by stating the event selection criteria optimised for SUSY discovery, and

then elucidating a method for estimating the magnitude of the irreducible background

component of Z + jets production with invisible Z decays to neutrinos. Details of the

Z background estimation strategy are contextualised within the overall background

estimation strategy. Results from the analysis of the ATLAS data collected in 2011

are then presented in full. Finally, initial studies in support of improvements in the Z

background estimation technique are presented as a promising avenue for future work.
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Building on the descriptions of the search, Chapter 4 discusses the interpretation of

the analysis results, carried out by the author, in a wide range of supersymmetric signal

models using a detailed statistical treatment. Specifically, the analysis results are used

to set constraints on the SUSY parameter space, producing the strongest contemporary

bounds on squarks and gluinos in several supersymmetric scenarios. The impact of the

analysis is then studied in a wider theoretical context, firstly in terms of the Bayesian

posterior probabilities for models in the CMSSM framework [80], and then by setting

limits on a minimal anomaly-mediated SUSY-breaking parameter plane [81]. Finally,

the progression of the ATLAS limits is used to illustrate particular advancements made

in analysis optimisation, recalling lessons learnt on how certain variables can be best

employed in SUSY searches.

The thesis concludes with comments on the present state of SUSY, and muses on

what may await after the LHC long shutdown and the move to design energy in 2014.
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Mass bound variables

41
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“ God’s truth, Septimus, if there is an equation for a curve like a bell,

there must be an equation for one like a bluebell, and if a bluebell, why

not a rose? Do we believe nature is written in numbers? ”

— Thomasina Coverly

The production of invisible particles is a hallmark of certain interesting physical

processes. Historically, only the neutrino has served in this role, as a marker of the

production of W bosons and top quarks. Various important models of BSM physics

predict more varieties of invisible particles, SUSY being no exception. Of course, the

inability to detect these particles presents challenges for event reconstruction. Any

attempt to measure the mass of a particle decaying semi-invisibly is hindered by the

limited final-state momentum information. This problem has a long pedigree, and thus

there exist numerous approaches to account for the missing information [82].

While there exist alternative approaches [83, 84], the study of semi-invisible decays

almost inevitably utilises the missing transverse momentum. It is typical (and in the

absence of evidence for mismeasurement, reasonable) to assume that all the missing

transverse momentum originates from the unmeasured momenta of invisible particles,

supplying the constraint from equation 1.2. We shall make this assumption throughout

the chapter. Without making further suppositions, this is all the information that can

be obtained about the invisible particles’ kinematics. The constraint diminishes in power

depending on the number of invisibles – each invisible particle has four energy-momentum

components, while the ~p miss
T measurement always offers exactly two constraints.

To reconstruct a composite particle mass in such a configuration, it is necessary

to somehow combine the fully-measured visible momenta with the partially-measured

invisible momenta. There is no single way to do this; a choice of some sort must be made.

Furthermore, in both fully visible and semi-invisible decays, the visible and hypothesised

invisible momenta may have to be partitioned into groups corresponding to different

decaying particles. This partition may be easy. For example, the decay of a W boson

produces one charged lepton and one unobserved neutrino, which can be assumed to

account for all the missing transverse momentum.

A more complicated example from the SM involves top quark pairs, decaying dilepton-

ically: tt→ bb̄W+W− → bb̄ll̄νν̄. To reconstruct the top quark masses correctly, the W

decay products need to be recombined appropriately with the hadronic jets originating
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from the b-quarks. Jet formation obliterates much of the quantum state information, such

as flavour and charge, making the b and b̄ indistinguishable. A combinatorial problem

ensues due to the two possible pairings of lepton to b. The missing momentum also needs

to be decomposed into two neutrino momenta, but the correct partition is not obvious.

Similar statements apply to the decays of pair-produced squarks q̃q̃∗ → qq̄χ̃0
1χ̃

0
1.

In [78], a particular approach to semi-invisible mass reconstruction was investigated,

namely transverse projection (transversification) of particle momenta and minimisation

over the resultant mass invariants. This was not an new idea; many variables based on

this principle predated the paper. However, this investigation established a classification

scheme for variables new and old, revealing some hitherto unappreciated interconnections

between them. This section will discuss some important concepts from the paper, and

highlight my own contributions to the study.

The following structure will be adopted. First, the principles of transversification

and minimisation as routes to mass estimation will be reviewed, in order to set up a

conceptual framework for mass reconstruction. On these foundations will be constructed a

number of different variables, appropriate for studying different decay chains. Connections

between these variables will be explored, culminating in the derivation of a hierarchy

of different mass bounds. The focus of the section will then shift to more practical

considerations, in particular the effectiveness of the mass bound methods in two contexts:

mass measurement and signal discrimination in collider searches.

A note on attribution: Sections 2.1.1-2.1.3 summarise the basic principles behind

transverse mass bounds, and are the work of many authors, not least my collaborators on

[78]. The proofs of the mass bound hierarchies, both in the single- and multiple-parent

cases, are my own work, as are the simulation studies presented from Section 2.3 onwards.
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2.1 Transversification and minimisation

2.1.1 Transversification

The human experience of life in a four-dimensional space-time is asymmetric, with the

time axis distinctly divorced from the spatial dimensions. Furthermore, though we inhabit

a three-dimensional volume, our primary sense captures information on a planar surface.

Hence, the reduction of three-dimensional information to two-dimensional projections

is quite fundamental to our Weltanschauung. Philosophical musings aside, reduction of

dimensionality is an important tool of the pragmatic physicist: discarding suspect degrees

of freedom can be a very effective way of dealing with unreliable or limited information.

In the current context of a hadron collider, it is the longitudinal components of the

measurement that are considered less reliable.1 Any attempt to reconstruct the full

initial state longitudinal information is therefore subject to a degree of doubt. Making

some sensible assumptions may allow recovery of useful information from the longitudinal

components. On the other hand, added assumptions bring fragility in the cases where

they are not fulfilled. Hence a measure of safety is achieved by avoiding such assumptions,

and instead eliminating sensitivity to the problematic information.

Elimination of degrees of freedom from a three- or four-dimensional object can

be phrased in terms of projection onto a subspace, in this case the transverse plane.

Projection of vector quantities such as momenta is simple. However, four-momenta

contain also an energy-time component which cannot be ignored, yet whose “projection”

is ill-defined. In fact, the term “transverse energy” is frequently used, notably in the

context of “missing transverse energy”, but defining transverse energy proves to be

fraught with dangers.

For clarity, we first consider the projection of a three-dimensional momentum vector
~P = (px, py, pz) into a two-dimensional transverse momentum vector ~pT . Convention and

convenience dictate simply projecting out the z-component:

~pT = (px, py) (2.1)

= (p sin θ cosφ, p sin θ sinφ). (2.2)

1Apart from the incomplete measurements already considered in the context of missing transverse
momentum (Section 1.1.5), the pile-up contamination contributes significantly more in the longitudinal
direction than the transverse
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The magnitude of this projected vector is

pT = |~pT | =
√
p2
x + p2

y (2.3)

= P sin θ. (2.4)

One could apply the same transformation to the energy component, but it is easy to see

that this procedure is not appropriate for dealing with relativistic, massive particles.

Insight into the appropriate projection of the energy component is gained by consid-

ering how the transverse-projected four-momentum (henceforth TMomentum) is to be

interpreted. Given the goal of reconstructing a parent particle by summing a collection

of these projections, it is reasonable to insist that they satisfy relativistic mechanics in

their reduced state space. That is, to treat each TMomentum as though it describes a

relativistic particle confined to a plane. The longitudinal component and any uncertain-

ties thereon are rendered irrelevant, and may be omitted. These TMomenta should obey

an analogous algebra to their progenitor four-momenta, i.e. one in which components

can be added and subtracted in the usual fashion. Projection can then be defined as an

operation that takes a four-momentum P µ to a TMomentum pαT :

Pµ = (E, px, py, pz) 7→
proj.

pTα = (eT , px, py) (2.5)

As it has not yet been specified how the energy projection is done, the projected energy

component takes the “generic T” subscript from [78].

With this decision made, the deficiencies of the näıve projection previously sug-

gested become apparent. Consider the case of a particle having four-momentum

Pµ = (E, px, py, pz), where special relativity dictates

E2 = M2 + |~P |2. (2.6)

Suppose the projection from equation 2.4 is applied, making ~pT = (px, py) and eT = E sin θ.

This state corresponds to a rather peculiar behaviour; it acts like a particle moving with

the same speed v in the plane as its speed V in the 3D space:

v =
P sin θ

E sin θ
=
P

E
= V, (2.7)

which follows from P = γMV , E = γM . The implication is that the projected object

retains some dependence on its initial longitudinal momentum; a particle with a large z-
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boost is correspondingly assigned a huge transverse velocity, by suppressing its projected

mass. While this projection may be useful in some other contexts, it is not the most

appropriate for this application.

A more physically motivated projection is defined in the spirit of the 3+1 dimensional

energy, as in equation 2.6, but replacing the 3-momentum scalar P with the unambiguously

projected transverse momentum pT :

e> = M2 + p2
T = E2 − p2

z. (2.8)

Indeed, this is precisely the description of the particle-in-a-plane suggested above.2

Hereinafter, this form of transverse projection will be used in all cases. Frequently,

we may work with particles in the highly relativistic regime, for which pT � M , and

hence the simplification e> = pT can reasonably be made. This is a special case of the

mass-preserving projection, and need not be discussed at length here.

We now establish some notational conventions for projected and unprojected momenta.

Contravariant/covariant four-momenta will be indicated by a capital letter and a Greek

superscript/subscript:

P µ, Pµ

The corresponding TMomenta use a lowercase letter, with a > to indicate the mass-

preserving transverse projection, and retain a super/subscript for differentiation from

two-vectors with no associated energy component:

pα>, p>α

A capital or lowercase letter with a vector arrow ~P , ~pT will be used to indicate a 3D or

2D momentum. The generic T subscript will be applied to 2D transverse momenta:

~P , ~pT .

For the magnitudes of 2D or 3D vector quantities, the same symbol with no vector arrow

will ordinarily be used. When necessary, such as to indicate the magnitude of an explicit

sum of vectors, modulus signs will be used instead. Additional notation will be defined

where it is needed.

2The velocity-preserving projection reduces to this in the massless case, or when there is no initial
z-momentum, in which case projection is unnecessary!
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In the next section, further motivation for projecting out longitudinal momenta will

be given. The transverse projection convention will be shown to follow naturally from

the procedure of constructing event-by-event bounds on the masses of semi-invisibly

decaying particles. This procedure ensures that a concrete conclusion can be drawn from

the available information in each event.

2.1.2 Minimisation

When attempting to extract a maximal amount of useful information in a problem

with unknown parameters, one might consider various approaches; maximisation of a

likelihood over the possibilities, making reasonable simplifying assumptions etc. The

strategy adopted in this case is to set a lower bound on the mass of the decaying particle

by minimising over all unknowns.3 With sufficient event statistics, the distribution of the

mass variable thus constructed will exhibit an endpoint, which must lie below the true

mass (although this may be obscured by experimental resolutions, combinatorics and the

presence of background processes). It is possible for the endpoint to correspond to the

true mass, but this requires all assumptions made in the variable definition (of which

there may be many, e.g. the decay chain structure and final state particle masses) to be

satisfied [85]. In greater generality, it is possible in the presence of additional constraints

to derive upper bounds via maximisation as well, but under the assumptions that will be

made in this chapter, maximisation simply gives infinity!

Consider first the case of a single visible object being combined with a single invisible

object. More complex cases can be generalised from this setup straightforwardly. In

this situation, the goal is to find the mass M of an object that has decayed to a visible

object with momentum P µ, and an invisible object with momentum ��P µ. Only the two

transverse components of ��P µ are known, while the mass and longitudinal components

are unmeasured. Lacking the full momentum information, we settle for finding a lower

bound on M , which we label M1, in the notation of [78]:

M1 ≤M =
√

(P µ +��P µ)(Pµ +��P µ). (2.9)

3In some sense, this choice is a deliberate attempt to avoid making assumptions – model-independence,
or perhaps even model-denial!
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Define M1> as the minimum over the invisible object’s z-momentum �pz:

M1>(��m) ≡ min
�pz

M(��m), (2.10)

where the mass ��m contributing to ��P µ has been left as an explicit parameter. This

definition not only satisfies the inequality in equation 2.9, but also saturates it for certain

event configurations [86, 87]. Hence computing M1> gives a concrete and informative

conclusion regarding the true parent mass. As noted in [78], in a hadron collider

environment, M1> is in fact the strongest bound that can be constructed in this manner

for any single particle decaying semi-invisibly, and is therefore equivalent to M1.4

The minimisation condition is trivial to determine by differentiation:

d(M2)

d(pz)
= 2�pz

E

��E
− 2pz = 0 ⇒ �pz

��E
=
pz
E
, (2.11)

which implies that the rapidities of the visible and invisible particle should be the same:

y =
1

2
ln

(
1 + pz/E

1− pz/E

)
=

1

2
ln

(
1 + �pz/E

1− �pz/E

)
= �y. (2.12)

The quantity M2 is a relativistic invariant, and hence may be evaluated in the frame

where the rapidity of the visible particle is zero (related to the lab frame by a simple

longitudinal boost). This choice sets pz = �pz = 0, and hence

M2
1 = M2

1>(��m) = m2 +��m2 + 2(e>�e> − (px�px + py�py)) (2.13)

= m2 +��m2 + 2(e>�e> − ~pT ·~�pT ). (2.14)

Conveniently, this is equivalent to the applying the mass-preserving transverse projection

from the previous section to both the visible and invisible daughters. The variable thus

derived is the familiar W transverse mass [88]. In the absence of a well-founded hypothesis

for the mass of the invisible particle ��m, a second minimisation could be applied, which

would simply set ��m = 0, making �e> = �pT .

The elegant structure of the minimised variable is a result of the invariance properties

of M2 under Lorentz boosts. Utilising invariance under other sorts of transformations is

also an interesting line of attack [84, 89].

4At a lepton collider, one could in principle extract a 3D missing momentum, and avoid the �pz
minimisation altogether.
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pmiss
T

observed

��M

��M

Figure 2.1: The measured pmiss
T may be interpreted equivalently as arising from a single

invisible object of mass ��M, or any number of invisible objects with collective
invariant mass ��M.

2.1.3 Composition

Having established how to compute one-plus-one, we are ready to tackle the combination

of larger groups of objects. For now we continue to assume that there is only a single

parent particle to deal with. The visible components are always unproblematic; one

simply sums their four-momenta to build up a composite particle (denoted with bold-face

symbols) whose mass takes into account the relative momenta of its constituents:

Pµ = (E, ~P) =
∑

i∈visibles

P µ
i . (2.15)

The invisible components likewise make up a composite particle

��P
µ = (��E, ~��P) =

∑

i∈invisibles

��P
µ
i . (2.16)

We have access only to the vector sum of the invisible transverse momenta, as noted in

equation 1.2. However, this does not lead to an explosion of the number of degrees of

freedom. Instead, we need only account for the collective missing mass ��M and collective

longitudinal momentum �pz, as before (Figure 2.1).

Even if we have assumed a mass for each invisible object, it is necessary to account for

the relative momenta of the invisible particles, since these contribute to the missing mass.
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Intuitively, minimising the composite missing mass requires all the invisible momenta to

be parallel,

~
��P i = c ~��P, (2.17)

meaning that c should be some weighting factor that depends only on the masses ��mi. It

is easy to verify the solution for c from [90]:

c = ��mi/��M, with (2.18)

��M =
∑

i∈invisibles

��mi. (2.19)

The composite missing mass comes out to be the sum of the component masses, which is

pleasingly the lowest possible value for ��M; the relative momenta are all zero. Then, from

the previous result in Section 2.1.2, the longitudinal minimisation must require that the

invisible objects be at the same rapidity as the visible composite:

�y = y. (2.20)

This is simply a generalisation of the transverse mass, mT [88], known elsewhere [90] as√
ŝmin, and classified as M1>(��M) under the scheme in [78]:

M2
1> ≡ (pα> + �p

α
>)(p>α + �p>α) (2.21)

= (e> +�e>)2 − |~pT + ~�pT |2 (2.22)

In the absence of a firm mass hypothesis for each invisible particle, we could minimise

once more over the ��mi. Such a minimisation is trivially easy: any unknown ��mi is taken

to zero, diminishing ��M appropriately.

It is worth pausing momentarily to reflect on the variable we have concocted. This

is a lower bound on the mass of a single particle that decays into a collection of visible

and invisible objects, under the assumption that all the measured missing transverse

momentum ~p miss
T originates from the momenta of the invisible particles. Fortuitously, it

can be computed easily as the mass of a single composite visible and a single composite

invisible, both of which have no longitudinal momentum.
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2.1.4 Ordering of projection and composition

We now consider variations in which momenta are transversified prior to composition,

as well as cases where the masses are discarded. The former procedure throws away

information about the relative longitudinal momenta of the component four-momenta in

each composite particle.

At first glance, making either of these choices on top of the transverse projection

may appear regressive, or at least poorly motivated – discarding even more information

will degrade the bound further. But as with the total longitudinal information, it may

be preferable to work with more limited information in order to avoid susceptibility

to misinformation: measurements that are untrustworthy or overemphasise irrelevant

features. For example, mass measurements of calorimeter jets, based on the spread of

massless calorimeter clusters, might be contaminated by pile-up, and in general exhibit

poor resolution. Elsewhere, the inclusion of forward jets whose momenta are dominated

by a large longitudinal component might inflate the mass of the visible composite, in the

absence of specific object filters.

Altering the order of projection and composition is equivalent to adding successive

minimisation steps, and each permutation defines a different mass bound variable. These

various mass bounds will be shown to obey a mass hierarchy, which can be understood

in terms of information retention.

To briefly expand on the notation from [78], the following subscript convention is

used to distinguish variables that are projected “early” or “late” relative to summing the

energy-momenta:

• A numerical value indicates the number of parent particles into which the mo-

menta have been grouped (discussion of more than one parent will be deferred to

Section 2.1.5).

• A > indicates the mass-preserving projection equation 2.8, while a ◦ indicates that

the mass has additionally been neglected in the projection.

• The order of the two components mirrors the order of operations, with the number

representing summation of momenta into composite particles.

Hence M1> is a variable in which the momenta are first combined into a single visible

and a single invisible, and then projected using the mass-preserving projection. Three

other variants will be considered: M>1, M1◦ and M◦1.
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The first variant, M>1 applies the projection early, and is defined thus:

M2
>1 ≡ (p̄α> + ��̄p

α
>)(p̄>α + ��̄p>α), (2.23)

where the bar (e.g. p̄αT ) denotes composite momenta that have been projected early,

in contrast to the late-projected composites that are shown unbarred (e.g. pαT ). This

distinction is of course irrelevant to both the unprojected 3+1D momenta and to the

2-vector momentum, so only the unbarred symbols will be used for these (Pµ and ~pT ).

More explicitly:

pα> =

( ∑

i∈visibles

~Pi

)α

>

(2.24)

p̄α> =

( ∑

i∈visibles

pαi>

)
(2.25)

The result of the early projection is that the mass of the composite p̄αT does not reflect

any relative longitudinal momenta between the components. Therefore, the composite

mass must be smaller than the corresponding late-projected composite mass. This implies

that

M>1 ≤M1>, (2.26)

with equality in the case that the component particles are stationary relative to one

another in the longitudinal direction.

Defining the remaining two variants is rather easy. To get M◦1, the component

particles are projected early, with their masses taken to be zero, and from these massless

projections the composite particles are formed:

M2
◦1 ≡ (p̄α◦ + ��̄p

α
◦ )(p̄◦α + ��̄p◦α). (2.27)

Due to the ◦ projection’s neglect of the component masses, it is clear that M◦1 ≤M>1,

equality being achieved when all components are massless. Similarly, M1◦ is defined by

forming the composite particles, and then transversifying these with masses neglected.

M2
1◦ ≡ (pα◦ + �p

α
◦ )(p◦α + �p◦α), (2.28)
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A subtle difference arises here, however – the relative magnitudes of the two ◦ mass-

bounds are reversed with respect to their > counterparts! This is easy to understand

from an informational perspective. When constructing M◦1, the composite particles

retain the mass-energy due to their components’ relative transverse momenta, whereas

all the mass information of the composites has been discarded in the case of M1◦.

Putting the pieces together, the transverse mass bounds are seen to obey a strict

hierarchy:

M1 = M1> ≥M>1 ≥M◦1 ≥M1◦. (2.29)

In fact, we can also frame each of the inequalities in terms of a minimisation. The

first, M1> ≥ M>1 corresponds to minimising the aggregate visible mass M̄ over the

relative longitudinal momenta of the visibles,

M = min
∆piz

M̄ ⇒ M>1 = min
∆piz

M1>, (2.30)

with the minimisation running over ∆piz = piz − pz for all particles i in the visible

composite. Next, minimising over the masses of each visible particle, mi yields:

M◦1 = min
mi

M>1. (2.31)

Lastly, minimising over the vector transverse momenta of the visible particles relative to

their cumulative transverse momentum, kiT = |~p iT −~pT |, forcing them to be parallel, gives

M1◦ = min
kiT

M◦1. (2.32)

This same strategy of transversification and minimisations can be applied to variables

seeking to set mass bounds where several particles are assumed to decay in each event.

Such variables will be considered next.
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observed

Figure 2.2: Two possible interpretations of the same collision event, consistent with partitions
of the (visible or invisible) outgoing particles into either one or two collections.
Each collection is identified with the decay products of one heavy particle.

2.1.5 Events with multiple decays

The construction of mass bounds on single parents so far has been straightforward.

A natural generalisation is to allow for multiple parents decaying semi-invisibly in a

single event. Variables of this type were first constructed in [86], motivated by mass

measurements of supersymmetric particles that must be produced in pairs due to R-parity

conservation. For simplicity’s sake, it is assumed that all decaying particles have the

same mass, although asymmetric variables have appeared in the literature [85, 91, 92].

Furthermore, the same mass-bound scheme (i.e. order and type of projection) will be

applied to every postulated parent particle.

To make this generalisation, the following procedure must be obeyed. Firstly, a visible

composite must be constructed for each parent. Then, the appropriate single-parent

mass bound is formed for each parent, assuming a trial invisible momentum, and the

largest of these will give the overall bound due to the event. The missing transverse

momentum constraint still applies, so the sum of the invisible composite transverse

momentum hypotheses must add up to the measured ~p miss
T . Finally, the overall bound is

minimised over all trial invisible momenta satisfying the ~p miss
T constraint. Explicitly,

MN> ≡ min∑
a
~
�paT=~p miss

T

(
max
a

[
M1>(Pµ

a ,��P
µ
a)
])
, (2.33)
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with the index a running over all N parent particles. The variables M>N , M◦N and MN◦

are defined analogously. Note that each choice of N defines a different variable, corre-

sponding to an alternative interpretation of the same set of four-momenta (Figure 2.2).

In the generalised N -parent case, a hierarchy similar to that in equation 2.29 can

be found. The critical piece of the derivation is to show that taking the maximum of

the individual parent bounds and then minimising over the missing transverse momen-

tum partitions does not alter the inter-variable inequalities previously derived. It was

established earlier that M1 = M1>, because the late projection retains maximal mass

information from the longitudinal momenta. Extending this equality to to MN is easy:

MN ≡ min∑
a
~
�paT=~p miss

T

(
max
a

[
M1(Pµ

a ,��P
µ
a)
])

(2.34)

= min∑
a
~
�paT=~p miss

T

(
max
a

[
M1>(Pµ

a ,��P
µ
a)
])

(2.35)

≡MN> (2.36)

The second equality follows from the lack of any constraint on the longitudinal components

of the composites.

Proving the inequalities takes only a little more effort. We need only concern ourselves

with the visible components, since it was already found that the solution for the invisible

composites corresponds to a set of co-moving particles whose collective mass is the sum

of the individual masses (when it is not simply minimised to 0). In fact, we can in one fell

swoop establish all three inequalities. Each of the single-parent variables M>1, M◦1, M1◦

is related to M1> by successive minimisation over some set of properties of the component

four-momenta, respectively their relative longitudinal momenta (equation 2.30), their

masses (equation 2.31) and finally their relative transverse momenta (equation 2.32).

Crucially, these minimisations are all independent of the invisible transverse momenta.

For any set of invisible transverse momentum hypotheses {~paT}, then, the single-parent

hierarchy holds for each parent collection, and hence:

max
a

[
M1>(Pµ

a ,��P
µ
a)
]
≥ max

a

[
M>1(Pµ

a ,��P
µ
a)
]

(2.37)

≥ max
a

[
M◦1(Pµ

a ,��P
µ
a)
]

(2.38)

≥ max
a

[
M1◦(P

µ
a ,��P

µ
a)
]
. (2.39)
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Since these inequalities are satisfied for any and all {~paT}, the global minimum over

{~paT} consistent with the constraint
∑

a
~�paT = ~p miss

T must also satisfy the same ordering.

Therefore, the hierarchy of the N -parent mass bounds matches that of the single-parent

bounds to a

MN = MN>

≥
M>N

≥
M◦N

≥
MN◦. (2.40)

2.1.6 Partition choices

As previously mentioned, the decision about which visible objects one may wish to

include in the visible composite particle(s), and how to distribute them in the case of

multiple-parent events, is a non-trivial one. No one “solution” will be suggested here, but

it is useful to mention some proposed partition schemes that will be used later in this

chapter. Below, it is assumed that the visible objects are completely indistinguishable,

this being the most challenging scenario.

A first possibility, advocated for use with mT2, but applicable to all mass bounds with

N > 1, extended philosophy of minimisation over unknowns to the visible momentum

partition, and is known as mTgen [93]. The mTgen variable is defined as the minimum

value of mT2 out of all possible assignments of visible objects to (two) parents, and

guarantees a value that does not exceed the true mass (assuming no mismeasurement of

the inputs, or contamination from spurious inputs). The downsides of the procedure are

the computational cost of repeated variable evaluations, and a bound much lower than

that possible with perfect assignments. It could be argued that the mTgen procedure is

too conservative in dealing with the assignment ambiguity, but this must be accepted as

part of the minimisation ethos, and the price of assumption-agnosticism.

Alternative schemes to the mTgen-style minimisation abound, and are primarily based

on spatial segregation of visible decay products. If the decaying objects are boosted,

the decay products will collimate in the direction of the boost, ultimately resembling a

single particle jet. Recent years have seen much interest in jet reconstruction methods
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dealing with such boosted objects [94]. However, such methods typically require a boost

comparable to the mass scale of the decaying particles, and impose a cap on the distance

parameter, typically R = 1.0. When dealing with TeV-scale objects, such boosts become

unlikely, and the spatial extent of the decay products grows. The CMS experiment

has found inspiration for yet another type of partition in lepton collider techniques for

dividing up events into “hemispheres” [95].

In e+e− collisions, the laboratory frame is also the centre-of-momentum frame of the

colliding particles, meaning that event shape variables such as thrust or spherocity can be

used to define a unique axis along which the event is most elongated [96]. If two particles

decay, emitting their daughters into distinct halves of the detector, dividing the detector

into hemispheres using a plane normal to the thrust/spherocity axis should reliably

disentangle the daughters of the two parents. At the LHC, though, the congruence

between the laboratory and COM frames is lost. The event’s unknown longitudinal boost

and further boosts from ISR may cause the hemisphere axes no longer to be back-to-back,

necessitating reconstruction of two separate axes. CMS suggested several schemes for

iteratively reconstructing hemispheres [95]:

1. Hemispheres are seeded by choosing two objects to serve as axes (e.g. the two

highest pT objects, or the pair with the largest invariant mass).

2. The remaining objects in the event are associated with one or the other hemisphere

based on minimising some distance measure (e.g. the angular separation, the sum

of the hemisphere masses or the Lund distance [97]).

3. Hemisphere axes are computed as the sum of the associated object four-momenta.

4. Steps 2 and 3 are repeated until a stable configuration is found.

Of these possibilities, the combination of the maximal invariant mass seeds and the Lund

distance association is currently being used in a search utilising mT2 as a discriminating

variable [98]. Two non-seeded algorithms are also in use. The Razor search [99] simply

uses the assignment of jets to “megajets” that minimises the megajet mass sum, whereas

the αT search [83] defines an association scheme that minimises the ET difference between

the two “pseudojets”. The existence of three association schemes for three analyses

perhaps indicates that none of these algorithms is objectively superior to the rest.5

Association schemes built on the simplistic expectation that shared decay products

should be close together spatially may still not be effective at separating the two parents’

5Admittedly, the αT requirements are somewhat different from those of other variables
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decay products in the case where the parents are produced at threshold and nearly

stationary. Angular orientations of the decays can mingle the final state objects. Even

more problematic is the contamination of the hemispheres by ISR or pileup. Again, no

optimal procedure has been found, although solutions have been attempted. For example,

Nojiri and others have suggested that generating subsets of the final state objects and

minimising over the resulting mT2 values (clustering into hemispheres when necessary)

improves end-point recognition [100–103]. Another possibility is that ISR jets might be

tagged, and eliminated from the reconstruction. An ISR tagger was proposed in [104],

which aimed to measure sparticle masses from ISR jet properties. Although the achieved

40% efficiency versus 10% mistag rate was found to be sufficient for the purposes of the

intended measurement, applying this tagger to reduce contamination for more inclusive

mass measurement methods might require additional improvements.

2.2 Alternative mass measurement schemes

A few alternatives to the mass bounds [78] are defined here, to offer contrasting perspec-

tives to the transversification/minimisation paradigm. These will be compared with the

mass bounds in a set of benchmarking tests in the remainder of this chapter.

2.2.1 Effective mass

The “effective mass” is a venerable mainstay of ATLAS SUSY search strategies. Proposed

in 1995 by Hinchliffe et al [105], it is defined simply as:

meff = pmiss
T +

∑

j in selected jets

pjT . (2.41)

This modest scalar sum was shown to be correlated at the level of 10% with the smaller

of the squark and gluino masses. In the original definition, the variable was constructed

only from the four leading jets. Tovey produced a more detailed study of the effectiveness

of meff [106], and found that including all jets in the variable definition improved the

mass resolution. Due to its simplicity, as well as demonstrations in simulation of its

separation power, meff is one of the most important variables for discriminating signal

and background in ATLAS searches using jets and pmiss
T .
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In [78], it was shown that meff is closely related to M◦1:

M2
◦1 = m2

eff − u2
T , (2.42)

where ~uT is the upstream transverse momentum, i.e. the sum of the transverse momenta

of all objects not assigned to the parent system, such that

~p miss
T + ~uT +

∑

i in visibles

~p iT = ~0. (2.43)

This is equal and opposite to the transverse boost of the decaying system, and its removal

in equation 2.42 corrects M◦1 to the parent rest frame. While contributions to uT from

soft radiation are typically insignificant, energetic ISR production can produce large uT ,

skewing the values of M◦1 and meff upwards if not identified.

2.2.2 Effective transverse energy

A recent paper by Cabrera and Casas [107] suggested an improvement on the established

meff variable. Their innovation is to combine all visible input particles into a single

conglomerate, and then to add the resulting transverse energy e> to twice the pmiss
T :

εeff
T = e> + 2 · pmiss

T (2.44)

As has been made clear earlier in this chapter, the former step produces a genuine

transverse energy with a more meaningful interpretation than the simple scalar pT sum.

Doubling the pmiss
T contribution is justified on the basis that, for stationary scalar particles

decaying to jets and a neutralino, an average over the possible neutralino configurations

leads to a factor of 1/2 in their collective transverse momenta, and this factor should be

corrected when estimating the parent masses. This redefinition was intended to ensure

that the new “effective transverse energy” εeff
T peaks at the value of the SUSY mass scale,

rather than slightly lower, as in the case of meff.

2.2.3 Razor

The Razor variables [108] are a novel attempt to estimate the masses of identical pair-

produced particles, each decaying to a single jet and an invisible particle – characteristic

squark decays. Under the assumption of threshold production, the parents are at rest,
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and hence the jets should be monoenergetic in the COM frame, with energy equal to half

the parent mass. If this frame is related to the laboratory frame by a single longitudinal

boost, then the parent mass is simply

MR = 2

√
(Ea · pbz − Eb · paz)2

(paz − pbz)2 − (Ea − Eb)2
, (2.45)

in terms of the lab frame observables. For the purposes of background separation, a

transverse variable is concocted:

MR
T =

√
pmiss
T

2
(paT + pbT )− 1

2
~p miss
T · (~p aT + ~p bT ). (2.46)

CMS has pioneered the use of this twin-bladed Razor in a SUSY search [99]. While

MR
T ' MR/2 for SUSY events, SM events are expected to fall at small values of

R = MR
T /MR, and so a cut around R > 0.5 effectively suppresses backgrounds, sparing

the SUSY signal.

In the case that the energies Ea,b differ by more than the difference of the longitudinal

momenta pa,bz , the quantity MR becomes imaginary (undefined if both are zero). This in

fact occurs for a sizeable fraction of signal events, in which the various assumptions about

the parent particle kinematics are violated. To recover the lost statistics, an alternative

variable is defined, allowing for a transverse boost as well as a longitudinal one:

MR∗ =

√

(Ea + Eb)2 − (paz + pbz)
2 −

∣∣(paT )2 − (pbT )2
∣∣2

|~p aT + ~p bT |2
. (2.47)

This variable is afflicted with rather large tails, and still potentially becomes imaginary for

certain configurations. To counteract this, a further modification is made by multiplying

in the boost factor of the centre-of-mass frame,

γR∗ =

√√√√
(Ea + Eb)2 − (paz + pbz)

2

(Ea + Eb)2 − (paz + pbz)
2 − |(p

a
T )2−(pbT )2|2
|~p aT+~p bT |2

, (2.48)

whose denominator is identical to MR∗. The product, multiplied out explicitly, is

γR∗ ×MR∗ =
√

(Ea + Eb)2 − (paz + pbz)
2, (2.49)
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which should be familiar from equation 2.8 as the visible components’ >-projected

transverse energy, e>! This product, γR∗ ×MR∗ is the Razor mass variable actually

employed by both ATLAS and CMS collaborations, not only for cuts, but also for forming

the Razor ratio R, which becomes MR
T /(γR∗ ×MR∗).

The parable of the Razor mass above serves well as a cautionary tale – sophisticated

variables defined according to high-minded ideals can be reduced to far more basic ones

by the modifications of well-meaning experimentalists driven by practical constraints.

Necessity may not be only a mother, but also a corrupter to invention.

2.2.4 Miscellany

While not designed for mass measurement as such, some simpler observable quantities

can be tied to the mass determination. Two important observables are HT =
∑

jets p
j
T

and of course pmiss
T . Summed, they form meff, while pmiss

T obeys the relation

M2
1◦ =

(∣∣pmiss
T + uT

∣∣+ pmiss
T

)2 − u2
T (2.50)

= 2
(
~p miss
T · (~p miss

T + ~uT ) + pmiss
T · (pmiss

T + uT )
)
, (2.51)

similar to the relation between meff and M◦1. Thus, in the limit of no uT , the pmiss
T can

also be viewed as a mass bound, although it sits low in the hierarchy (equation 2.29).

Despite this identity, treating pmiss
T as a fully-fledged mass measurement is potentially

overoptimistic. Similarly basic observables have formed the basis of published experimen-

tal mass measurements, with unremarkable results. A case in point is the measurement

of the top mass by CDF using only the lepton pT in semileptonic events [109]. This

strategy was intended to produce an especially precise measurement, by avoiding the

uncertainties associated with jet energy scales and resolutions. It did not. The precision

of the leptonic momentum measurements did not counteract the indistinguishability of

the lepton pT templates for different top mass hypotheses, resulting in a large statistical

uncertainty. Combining the lepton four-momenta with other kinematic information,

even that which is more poorly measured, yields greater overall precision [15]. So this

may somewhat temper the message made in the chapter introduction about rejecting

information. Suitable methods need not discard imprecise information if the information

can be combined with other measurements in such a way that value is added overall.
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Intermezzo: from theory to performance

Developing new methods is all well and good, but by rights is only a prelude to using them

in the field. Having now discussed how to define a set of variables for mass reconstruction,

and examined some of their interrelations from an analytical point of view, an appropriate

next step is to review their performance in their intended application. The remainder of

this chapter is more empirical, and based substantially on Monte Carlo.

The characterisation of the “fitness” of SUSY mass variables has so far seen only

limited exploration. While many variables have been proposed, and the merits of each

usually touted against the deficiencies of their competitors, a systematic comparison of a

broad range of variables has not, to my knowledge, been undertaken. An investigation of

this nature will now be described, but restricted primarily to the mass bounds previously

defined, to allow sufficient depth within the confines of this thesis chapter. Also considered

will be recent advancements in the field, including novelties such as the Razor mass [108]

and the unfortunately-named “Effective transverse energy”, which in fact is billed first

as a mass variable [107]! Sampling of a wider range of methods as might be drawn from

[82] is left for later work.

Providing measurements of the masses of supersymmetric particles is the primary

application for the variables under scrutiny. Testing the accuracy and robustness of the

mass reconstruction in various scenarios is hence of great importance. Discovery of the

particles to be characterised, though, takes (chrono)logical precedence! Therefore, it is of

similar importance to understand what techniques serve best in the search context.

Some of the criteria for a good signal variable clearly coincide with those for good

mass measurements. Precision of mass determination is optimal for a highly peaked

distribution, and such a shape will also contrast better with the continuum background.

A variable that reliably distinguishes low and high mass events will also provide better

signal discrimination against rapidly falling backgrounds. Nevertheless, it need not be

the case that all the features that lead to good mass determination should also result

in good signal-background discrimination. For example, where one wishes portions of

the signal with different masses to be well delineated in the measurement case, a single

undifferentiated peak may facilitate earlier discovery. This makes determining whether

the same variables perform best in both contexts a rather interesting question. Evaluating

the variables’ performance in mass reconstruction is the first port of call.
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2.3 Hadron collider variables for measuring masses

Proceeding in the spirit of [106], the fidelity of the mass reconstruction can be evaluated

in terms of the correlation between the mass as estimated by the variables and the true

SUSY mass scale. Previously, tests of this nature have generally been carried out on full

SUSY-breaking models such as the Constrained Minimal Supersymmetric Standard Model

(CMSSM) [52, 54–58]. In such models, the presence of multiple accessible production

and decay modes complicates the SUSY signal, and can modify the shapes of mass peaks.

While this allows for a more general and challenging test, a complementary check is

to study the performance of the variables without these complications. This can be

accomplished using the “simplified model” paradigm of a single production and decay

mode [110–113]. A further benefit of studying simplified models is that the effects of

different decay topologies on the mass reconstruction can be quantified.

This study will concentrate on the case of fully hadronic decays, where the indis-

tinguishability of the decay jets magnifies the combinatorial difficulties. Single-parent

variables do not of course suffer from combinatorics, but are theoretically less appropriate

for mass reconstruction in the case of pair-production. The two-parent variables of mT2’s

lineage [86] will hence be pressed into service as well.

2.3.1 Practical considerations

Event samples used for this study were produced in the ATLAS production framework,

and are described in detail in Section 4.2.1. The object selection criteria outlined in

sections 1.1.3 and 1.1.4 are adhered to, although it should be noted that the jet and

pmiss
T definitions are those from early 2012 rather than late 2011. This means that jet

energies are set using the LCW+JES jet calibration scheme and the pmiss
T is defined using

the MET RefFinal algorithm. To simulate the need to trigger on data, and to make basic

concessions to background suppression, the following selection is applied to all events:

• All jets must pass data quality criteria, indicating that they are well-measured.

• Light leptons (e, µ) are vetoed.

• The leading jet must have pT > 100 GeV.

• The event must have pmiss
T > 150 GeV.

• The second hardest jet must have pT > 40 GeV.
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2.3.2 Mass determination

When utilising a mass variable, the target is usually to identify the position of some

identifying feature that correlates with the mass scale of the object to be weighed. This

feature may typically be a peak or an endpoint, but the former is easier to measure. In

the early stages after discovery, signal statistics will be limited allowing employment

only of the most basic procedures. Here, while attempting to benchmark the mass

bound methods, we will concentrate on the use of the mass peak for simplicity and

model-independence.

It need not be the case that the peak position must coincide with the target mass.

For that matter, a genuine peak need not exist at all. Indeed, this is the case for the

transverse mass bounds – their distributions are required only to extend up to some

kinematic endpoint below the true mass. Nonetheless, the distribution will rise from zero

to some maximum value before descending to the endpoint, so some peak-like structure

should be discernible, even if it does not closely resemble a Gaussian or similar function.

If variables provide a precise peak position with sufficient discrimination between different

mass values, some transformation can be applied to the peak position to recover the

correct value of the mass. In principle, one could extract more information than merely

the peak position by carrying out a set of template fits with appropriate mass hypotheses.

However, this is model-dependent and hence less versatile/robust than the simpler option.

With the mass of the LSP initially unknown, a typical assumption in the mass

variables is of massless invisibles. This implies that the variables are insensitive to the

true mass scale MSUSY, because part of the mass-energy of the initial state could be

locked up in a large LSP rest mass. Thus, one instead wishes to test the ability of the

mass bounds to estimate a corrected mass scale M corr
SUSY that accounts for non-zero MLSP

after the style of Tovey [106]. Tovey used the mass scale

M corr
SUSY =

M2
SUSY −M2

LSP

MSUSY

, where (2.52)

MSUSY =
∑

p in sparticles

Mp ·
σp
σtot

, (2.53)

derived from the sum of the momenta of the decay particles in a two-body decay. This

parameterisation is found to perform well for squark decays that are intrinsically two-body,

but fails for gluino three-body decays. We propose an extension of the scale definition to

account for particles decaying to N daughters that provides a substantial improvement
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in the correlation between M corr
SUSY and the measured peak positions of mass variables.

For N > 2, we make the simple, if slightly artificial, assumption that the decay products

are distributed isotropically, which yields

M corr
SUSY =

(N − 1)MSUSY −
√
M2

SUSY + (N2 − 2N)M2
LSP

N − 2
. (2.54)

This function is found to reasonably approximate the results of an isotropic phase space

MC for N > 2. An extended discussion of this issue is to be found in Appendix 1. In

models with more than one sparticle species, MSUSY is defined by taking a weighted

average over sparticles by cross-section.

A simple Gaussian fit to the peak region is used for the purposes of this study. The

Gaussian distribution provides a sufficient approximation to any narrow peak, and has

a straightforward parameterisation. As a first basic test, the signals are considered in

the absence of background, as any eventual collider measurement will need to employ

a background subtraction. For each parameter point in a SUSY model grid, the mean

µM and RMS σM of the distribution are extracted from the histogram, and then a

Gaussian fit is performed in the range [µM − 2σM , µM + 2σM ], which should contain the

distribution’s peak, without extending too far into tails that deviate strongly from the

Gaussian shape. An example of the fit is shown in Figure 2.3, where the distributions

are drawn from a model permitting production only of 900 GeV gluinos, each of which

decays to two jets and a 300 GeV LSP. In both variables considered, the Gaussian peak

reasonably replicates the peak structure, and this is true in general for the different

variables and signal models. Then, the mean µG of the Gaussian is plotted against the

effective SUSY mass scale M corr
SUSY, such as in Figure 2.4 below (further examples are

shown in Appendix 2). A straight line is fitted to the scatterplot, and to quantify the

accuracy of the mass determination, the deviation ∆M corr
SUSY of the linear estimate from

the true value is plotted for each model, e.g. in Figure 2.14 (middle).

Three classes of SUSY models are considered:

1. Simplified models with only squark-antisquark production, decaying via q̃ → jχ̃0
1

2. Simplified models with only gluino production, decaying via g̃ → jjχ̃0
1

3. Constrained MSSM/MSUGRA models with tan β = 10, A0 = 0 and µ > 0.

All signal MC samples are generated at 8 TeV COM energy in the ATLAS MC12

production campaign [114]. Details of the event generation are given in Section 4.2.1,
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Figure 2.3: Distributions and Gaussian fits to the peak region for the mass variables M>1 and
M◦2 for a gluino simplified model with mg̃ = 900 GeV and MLSP = 300 GeV. For
the variable M◦2, all jets in each event are partitioned into a pair of collections
such that the sum of the invariant masses of the two collections is minimised.
The numerical values in the plots are: the corrected mass scale M corr

SUSY, the mean

value of the distribution Mmean
SUSY, the peak of the Gaussian µG = Mpeak

SUSY and the
width of the Gaussian σG = σ(MSUSY). Other mass variables behave similarly.

albeit for 7 TeV samples. The 7 and 8 TeV simulated datasets are identical in all

important respects, save that the CMSSM/MSUGRA model spectra are computed using

SOFTSUSY [115] at 8 TeV, while ISAJET was used for the 7 TeV samples.

Squark simplified models

The scatterplots and results of the linear fits for the squark simplified models are shown in

Figure 2.4. Most models lie very close to the fitted line for every variable tested, although

the constants of proportionality vary widely. The fits are cut off below M corr
SUSY = 250 GeV,

because for smaller values the mass variable distributions are truncated by acceptance

cuts required to simulate the use of an experimental trigger.

To evaluate the precision of the mass measurements, the deviation between the

estimated and true values of M corr
SUSY from the linear model, ∆M corr

SUSY, is computed for

each model and variable. Graphically, this is the horizontal displacement of the plotted

point from the linear fit. Then, the RMS of ∆M corr
SUSY, denoted σ(M corr

SUSY), is plotted in

Figure 2.5 against its mean 〈∆M corr
SUSY〉, which defines the bias of the mass determination,

for each mass variable, excluding models with M corr
SUSY < 250 GeV for the reasons discussed

above. The determination of the corrected mass scale is good to within 40 GeV, with the
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Figure 2.5: Summary of the RMS deviations of the estimated and true values of M corr
SUSY from

the linear fits versus the bias in the predictions for all variables, in simplified
models with only squark production and decays to jets and neutralinos.

precision being flat for all values of M corr
SUSY. Additional plots including the distributions

of ∆M corr
SUSY can be found in Appendix 2.

The most precise mass determination is given by the Razor transverse variable MR
T ,

with σ(M corr
SUSY) = 15 GeV. Close runners-up are the almost-equivalent two-parent

variables M>2 and M◦2, using the minimal-invariant-mass partition. Besides exhibiting

good precision, the various methods do not demonstrate a strong bias: at worst this is

10 GeV, which is excellent performance for mass scales ranging up to a TeV. MR
T in fact

shows nearly no bias, as do M>2 and M◦2, regardless of which jet association is used.

Interestingly, εeff
T appears to outperform its closest relative, M1>, which differs from it

only in the treatment of the pmiss
T component. It does not, however, match the precision

of meff. Unlike its transverse cousin, the Razor mass γR∗×MR∗, performs rather dismally.

This is presumably due to its neglect of the pmiss
T information, as the treatment of the

visible portion is effectively the same as that of εeff
T and M1>.

The impact of the treatment of the pmiss
T constraint is worth exploring further. As a

reminder, γR∗×MR∗ is simply the >-projected visible transverse energy. To this, εeff
T adds

twice the magnitude of the pmiss
T , while M1> forms the minimum mass consistent with the

pmiss
T being produced by the invisible particles. While we might expect M1> to perform

better on the basis that it uses the pmiss
T constraint within the context of each event, the

fits do not bear out this prediction. It may be that the single-parent assumption of M1>,
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which ignores the mass of the neutralino pair, discards too much information, whereas

the seemingly simplistic average over neutralino angular distributions made in εeff
T is

indeed well-motivated. The best estimates come ultimately from two-parent variables in

which the pmiss
T constraint is treated in a more sophisticated manner.

Gluino simplified models

The squark simplified models are arguably the “easiest” case for mass determination,

in that the final state of two jets allows no room for combinatorial ambiguity, and

furthermore enforces a fixed jet energy spectrum in the parent rest frame. Moving

to gluino simplified models adds the complications of combinatorics from the four-jet

final state in variables that require partition choices, as well as permitting a more free

distribution of energy amongst the products of the three-body decay.

The mass variables perform substantially differently on gluino models. The three-body

formula for M corr
SUSY (equation 2.54) has been assumed.6 Figure 2.6 shows the correlation

of the mass variable peak positions with M corr
SUSY for the gluino simplified models. In these

models the linear relationship remains strong, though a deterioration of the precision

is immediately evident for certain variables. From Figure 2.7, the resolution σ(M corr
SUSY)

shows an increased spread, particularly for the MN◦ variables: M1◦ manages a 70 GeV

resolution, while the 2-parent analogues have σ(M corr
SUSY) > 100 GeV. However, the best

achievable resolution in fact improves, with εeff
T managing a resolution close to 10 GeV

with no bias, while the meff trio provides very comparable performance – these “effective”

variables live up to their names!

Surprisingly, MR
T becomes substantially less powerful, with its resolution close to

40 GeV, nearly double that managed in the squark scenarios. This may be due to its

discarding the mass information carried by the jets in the two “hemispheres”. Exactly

why the resolution of the two-parent variables deteriorates relative to the squark case

is unclear, but one reason may be that the combinatorial problem outweighs their

theoretical advantages over the single-parent variables. This hypothesis could be tested

by comparison with the performance achieved when making the partition assignments

using truth information.

6Additional differences and performance degradation are observed when using the two-body formula.
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(b) Summary plot

Figure 2.7: Summary of the RMS deviations of the estimated and true values of M corr
SUSY from

the linear fits versus the bias in the predictions for all variables, in simplified
models with only gluino production and decays to jets and neutralinos.

Constrained MSSM models

While considering the gluino and squark production subprocesses in isolation has already

led to interesting insights, it may be the case that the full spectrum of SUSY particles is

sufficiently compact that a larger variety of sparticles can be produced. The exercise is

now repeated on a set of Constrained MSSM (CMSSM/MSUGRA) models, for which

the gauginos are lighter than the squarks and gluinos, permitting cascade decays. The

third generation squarks may be also lighter than the gluino and light-flavour squarks,

although their production cross-section is often smaller. In this complex environment,

the pmiss
T spectrum may be obscured by additional neutrinos, or just diluted as the parent

rest energy is diverted into long decay chains.

On these grounds, one might expect that the mass reconstruction would suffer relative

to the simplified models. Indeed, a näıve attempt yields precisely this result. A linear

fit to all the CMSSM models yields a precision that is up to ten times worse relative to

both gluino and squark simplified models! However, the story is more complex than this

– in fact, the CMSSM grid necessarily covers a wider range of phenomenological scenarios,

and any analysis of it must account for these different possibilities.

Figure 2.8 illustrates the CMSSM grid studied in this section, showing the masses of the

coloured sparticles as well as regions of the plane that are theoretically or experimentally
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excluded. Events are generated in all non-excluded regions, in a grid spaced at 200 GeV

in m0 and 50 GeV in m1/2. Based on empirical and theoretical reasons, we divide up the

CMSSM grid into three regions, distinguished by the relationship between the squark and

gluino masses. Models with similar squark and gluino masses (mq̃ < 1.25mg̃) are shaded

in blue, while the green shading indicates models for which the gluino is substantially

lighter (mq̃ ≥ 1.25mg̃). In the CMSSM, it is impossible to obtain gluinos that are much

heavier than the squark; for the parameter choices made here, the maximal ratio of

mg̃/mq̃ is approximately 1.1. Finally, a high-mass region with very large splitting between

the squarks and gluino is hatched in black. Here, the models conform to neither of the

other two regions in the correlation plots between mass variables and M corr
SUSY, so they are

excluded from fits. In these models, a large proportion of events contain a squark/gluino

produced in association with an electroweak gaugino. Although the definition of M corr
SUSY

in principle accounts for the asymmetric sparticle masses, and single-parent bounds on

the total energy in the event should also allow for this imbalance, there may be other

kinematic differences that disturb the mass determination in such events. The same

colouring will be used to designate these groups of models in later figures.

Figures 2.9-2.12 show the linear fits to the model sets 1 and 2, i.e. those models

in the regions shown in blue and green in Figure 2.8 respectively. There turn out

to be fewer distinctions between the two- and three-body definitions of M corr
SUSY in the

CMSSM/MSUGRA models, chiefly because the LSP mass always remains relatively

small; the three-body definition has been used here. The lines of best fit are different

for both model sets, and combining both in a single fit gives much worse performance,

as can be seen from the summary plots in Figure 2.13. When all CMSSM models are

simultaneously fit with a single line, the best predictions have RMS deviations of at least

100 GeV, far worse than the 10-15 GeV resolution achievable for either of the simplified

models. However, upon splitting up the models as shown in Figure 2.8, it is possible

to improve the mass determination to within 50 GeV – worse than in the squark and

gluino models, but without a correspondingly larger bias. This would be a moot point, if

the model division were purely along theoretical grounds, but it turns out that one can

distinguish the two model sets somewhat reliably using experimental observables.

In Figure 2.14, fits of the single-parent variables to the two populations are shown

simultaneously on the left. Additionally, the spread of the models around the best fit

line (middle) and the correlation of the width of the Gaussian fit to the fitted mean

(right) are displayed. From these plots, it is clear that the blue and green populations are

quite reliably distinguishable even with a simple dividing line, in most of the variables
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Figure 2.8: Illustration of phenomenologically distinct regions of the CMSSM grid, as pa-
rameterised in the universal scalar and gaugino GUT-scale masses, m0 and m1/2.
Red lines indicate the masses of the gluino (straight, diagonal contours) and first-
and second-generation squarks (curved contours). The gluino masses increase in
steps of 200 GeV, while the squark masses increase in steps of 500 GeV. Solid
shaded regions indicate regions that are excluded because of (yellow) the charged
stau being the LSP, (light blue) a failure to solve the Renormalisation Group
Equations to sufficient precision, and (green) lack of electroweak symmetry break-
ing. A recent paper [116] studied the properties of the latter two regions, and
proposed methods for reducing the size of the “No RGE convergence” region.
The lightly-shaded blue (green) region corresponds to an area in which the squark
masses are less than (greater than) 1.25 times the gluino mass. The black hatched
region has extremely high masses and splittings between the squark and gluino,
resulting in behaviour that is difficult to classify within the other two classes.
Black diamonds indicate the three sample points whose properties are compared
later on in the chapter.



74 Mass bound variables

 [GeV]
corr
SUSYM

0 400 800 1200 1600 2000

 [
G

e
V

]
G

µ

0

800

1600

2400

3200

4000

 / 2 ­ 3001TM

 / 2 + 700T1M

 / 2 + 1700o1M

 / 2 + 27001oM

(a) mq̃ ≤ 1.25mg̃

 [GeV]
corr
SUSYM

0 400 800 1200 1600 2000

 [
G

e
V

]
G

µ

0

800

1600

2400

3200

4000

 / 2 ­ 3001TM

 / 2 + 700T1M

 / 2 + 1700o1M

 / 2 + 27001oM

(b) mq̃ > 1.25mg̃

Figure 2.9: Fits to correlation plots of the peak position to the effective SUSY mass scale
M corr

SUSY, for single-parent mass bound variables, in Constrained MSSM models. An
arbitrary offset is applied to the points in order to distinguish different variables,
as labelled on the plot. In the left plot, the models contain squarks with masses
close to the gluino mass, while in the right plot, the squarks are at least 25%
heavier.



Mass bound variables 75

 [GeV]
corr
SUSYM

0 400 800 1200 1600 2000

 [
G

e
V

]
G

µ

0

800

1600

2400

3200

4000

) ­ 300
inv

 (min M2TM

) + 700
inv

 (min MT2M

) + 1700
inv

 (min Mo2M

) + 2700
inv

 (min M2oM

(a) mq̃ ≤ 1.25mg̃

 [GeV]
corr
SUSYM

0 400 800 1200 1600 2000

 [
G

e
V

]
G

µ

0

800

1600

2400

3200

4000

) ­ 300
inv

 (min M2TM

) + 700
inv

 (min MT2M

) + 1700
inv

 (min Mo2M

) + 2700
inv

 (min M2oM

(b) mq̃ > 1.25mg̃

Figure 2.10: Fits to correlation plots of the peak position to the effective SUSY mass scale
M corr

SUSY, for two-parent mass bound variables, in Constrained MSSM models.
The jets are partitioned into a pair of collections such that the sum of the
invariant masses of the two collections is minimised. An arbitrary offset is
applied to the points in order to distinguish different variables, as labelled on
the plot. In the left plot, the models contain squarks with masses close to the
gluino mass, while in the right plot, the squarks are at least 25% heavier.
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Figure 2.11: Fits to correlation plots of the peak position to the effective SUSY mass scale
M corr

SUSY, for two-parent mass bound variables, in Constrained MSSM models.
The jets are partitioned into a pair of collections that minimise the value of the
mass bound (i.e. using the mTgen procedure. An arbitrary offset is applied to
the points in order to distinguish different variables, as labelled on the plot. In
the left plot, the models contain squarks with masses close to the gluino mass,
while in the right plot, the squarks are at least 25% heavier.
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Figure 2.12: Fits to correlation plots of the peak position to the effective SUSY mass scale
M corr

SUSY, for alternative mass variables, in Constrained MSSM models. In the case
of the Razor variables, jets are partitioned such that the sum of the invariant
masses of the two collections is minimised. An arbitrary offset is applied to the
points in order to distinguish different variables, as labelled on the plot. In the
left plot, the models contain squarks with masses close to the gluino mass, while
in the right plot, the squarks are at least 25% heavier.
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(b) Summary plot (all CMSSM)
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(c) Summary plot (mq̃ ≤ 1.25mg̃)
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(d) Summary plot (mq̃ > 1.25mg̃)

Figure 2.13: Summary of the RMS deviations of the estimated and true values of M corr
SUSY from

the linear fits versus the bias in the predictions for all variables, in a Constrained
MSSM model grid. The performance summary plot for all CMSSM models
is shown in the upper right plot. Below, two sets of models are considered
separately: those with similar squark and gluino masses (set 1) and those with
mq̃ ≥ 1.25mg̃ (set 2). If these two model sets can be distinguished, the mass
reconstruction can be substantially improved.
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considered. Hence there is hope that, by using additional information from the fits, not

only can the mass resolution be improved, but information about the mass hierarchies in

the various models can be gained as well. It is conceivable that the use of higher order

central moments, might carry further information.

Upon separating the two model sets, the resolution generically improves for both, but

the improvement for the different variables is not uniform. In the degenerate squark-

gluino mass case, inclusive single-parent variables (M>1,M◦1,M1>,meff, ε
eff
T ) obviously

outperform the others, with a resolution below 50 GeV, at least 40% better than the

70-100 GeV achieved by the two-parent variables. The variables respond very similarly

to these models as they do to the gluino simplified models. By contrast, when the

gluinos are lighter, the variables respond more uniformly, with most achieving 50 GeV

resolution. Those which perform poorly are the various late ◦-projected variables, MR
T

and γR∗ ×MR∗. The degraded performance is likely due to the lengthier cascade decays

allowed by the CMSSM’s expanded spectrum – increasing the jet multiplicity means that

the visible composite masses become more significant, so disregarding these, as in the

MN◦ and MR
T definitions, is undesirable. Moreover, the two-body decay assumptions

motivating the Razor masses are badly violated.

2.3.3 Investigation of individual CMSSM models

We now take a detailed look at three models from each of the distinct CMSSM regions,

in order to explore the differences in parameter space that translate to the observable

differences between the models.

Three sample parameter points are illustrated below. Points 1, 2 and 3 are drawn from

the blue, green and black regions of Figure 2.8, respectively, and indicated by diamonds

in the figure. Mass spectra for these three points are shown in Figure 2.15, translating to

M corr
SUSY ' 1500 GeV. From examining the spectra, the chief relevant distinction between

the models is clearly the relative masses of the squarks and the gluino. The slepton

masses are also substantially different, but are largely irrelevant, as slepton production is

ignored in the event generation. Gaugino decays to sleptons are permitted only in the

first model, and these show branching ratios below 20%, so can safely be ignored.

The relative masses affect not only the decay modes and kinematics of the models,

but also the production cross-sections for each sparticle. When the squarks and gluinos

are roughly degenerate, there is a substantial production enhancement for associated
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Figure 2.14: Fits to correlation plots of the peak position to the effective SUSY mass scale
M corr

SUSY for single-parent mass bound variables, in a Constrained MSSM model
grid. The plots show (left) the correlation and parameters of the fitted line,
(middle) difference ∆M corr

SUSY between the estimated and true mass scales, and
(right) correlation of the Gaussian width and mean for each model.
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squark-gluino production, due to the favourable PDFs. As the mass-splitting between

gluinos and squarks grows, this enhancement is lost, but there may remain some small

contributions from production of the heavier squarks, which will have a larger visible

energy. Eventually, it becomes impossible to produce squarks at all, but some cross-

section may be recovered via associated electroweak production, though this is also

dependent on the mixings of the gauginos.

While it is still not completely clear why the models in the high mass region do not

fit the linear models for either of the other model sets, a hint may perhaps be gleaned

from the cross-sections for different production modes. Examining the cross-sections for

various strong production cross-sections plotted in Figure 2.16 (the five lighter flavour

squarks, gluino and stop, as well as associated production of the gluino or squarks

with an electroweak gaugino), the obvious difference is that the associated production

cross-section becomes comparable to the gluino production cross-section (the squarks

being very heavy and never produced directly). These associated production processes

result in very asymmetric masses on the two sides of the event. In the definition of

MSUSY (equation 2.52), an attempt was made to account for the asymmetric production

modes. Still, it is conceivable that, through kinematic effects, the asymmetry affects the

mass variable distributions substantially, e.g. by lowering the peak more than accounted

for by the näıve cross-section weighting.

To understand concretely the effects of the different mass spectra on observables, the

distribution of M>1 is plotted for each model in Figure 2.17, together with the best-fit

Gaussian curve. The values of M corr
SUSY, as well as the mean values of M>1 of the entire

distribution and that extracted from the Gaussian peak are printed on the plot, and

indicated by dashed lines. The width of the fitted Gaussian is shown as well. Immediately

visible is a larger separation between the fitted mean and the true mass scale for the

third, high-mass, model point, leading to the deviation from both of the fitted lines for

the two model sets as illustrated in Figures 2.9-2.12.

Also apparent are some smaller distinctions. Firstly, the Gaussian peak and the

mean of the entire distribution are essentially identical in the first model, but in the

remaining pair of models, there are differences of −80 GeV and −50 GeV respectively.

These deviations relate to the skewness of the distributions, but no useful information

has yet been extracted from this quantity. Secondly, and more importantly, the ratios

of the Gaussian width to the Gaussian mean differ substantially between the first two

models: model 1 has σ/µ = 0.21, whereas model 2 has σ/µ = 0.31, illustrating that the

two could be easily distinguishable on the basis of shape alone.
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Figure 2.15: Mass spectra and preferred decay modes for three CMSSM/MSUGRA models,
chosen from the blue (left), green (middle) and black (right) regions of the
CMSSM grid, as shown in Figure 2.8. The effective mass scales of the three
models are 1509 GeV, 1507 GeV and 1507 GeV respectively. Only decay modes
which make up branching fractions of at least 15% are plotted.
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Figure 2.16: Production cross-sections for the for the three CMSSM/MSUGRA models shown
in Figure 2.15.
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Figure 2.17: Distributions and Gaussian fits to the peak region of the mass variable M>1

for the three CMSSM/MSUGRA models shown in Figure 2.15. The numerical
values in the plot are: the corrected mass scale M corr

SUSY, the mean value of the

distribution Mmean
SUSY, the peak of the Gaussian µG = Mpeak

SUSY and the width of
the Gaussian σG = σ(MSUSY).
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2.3.4 Discussion

From the preceding investigation, it is clear that (in the absence of background) accurate

mass determination of SUSY models is possible using the various mass determination

methods at our disposal. One argument driving the definition of εeff
T [107] was that it

achieved a mass peak closer to the true M corr
SUSY value, at least in CMSSM-like models.

The preceding investigations have borne out this statement, in most cases; the linear

models used to estimate the SUSY mass scales in each model set have a slope close to

unity for εeff
T , whereas most other variables have a smaller slope, and only γR∗ ×MR∗

regularly shows a slope greater than 1. However, there is little reason to believe that this

confers any genuine advantage – a strong linear relation between a mass variable and the

true mass is sufficient for accurate mass determination.

Indeed, it can be seen that there is little correlation between slope and resolution

from Figures 2.18 and 2.19, where the fitted slope is plotted against the mass resolution

for each variable. For example, M1>, M>1, meff and εeff
T have nearly identical resolution,

but a large spread in slopes. Indeed, this pattern (or lack of a pattern) emerges for nearly

every variable in Figure 2.19. The important distinction is really between single- and

two-parent variables, which only gives some impression of slope dependence because the

former have larger slopes in general. It must be conceded that the assumptions and

approximations made in defining εeff
T have their merits, but it is not the exact position of

the mass peak that drives the performance of the variable.

We move now to a study of the performance of the same variables in the context

of SUSY searches. It is hoped that, by separately scoring the mass variables on their

contribution to search sensitivity, the interplay between measurement and discovery

criteria can be better understood.
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Figure 2.18: Summary of the RMS deviations of the estimated and true values of M corr
SUSY from

the linear fits versus the bias in the predictions for all variables, in simplified
models with only (b) squark or (c) gluino production and decays to jets and
neutralinos.
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Figure 2.19: Summary of the RMS deviations of the estimated and true values of M corr
SUSY

from the linear fits versus the slope of the fitted lines for all variables, in a
Constrained MSSM model grid. The performance summary plot for all CMSSM
models is shown in the upper right plot. Below, two sets of models are considered
separately: those with similar squark and gluino masses (set 1) and those with
mq̃ ≥ 1.25mg̃ (set 2). If these two model sets can be distinguished, the mass
reconstruction can be substantially improved.
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2.4 Hadron collider variables for BSM searches

Our goal is to determine what sets of variables are most effective at discriminating

between SUSY and SM processes. Events are preselected according to the requirements

in Section 2.3.1, additionally imposing a minimum separation in azimuthal angle (∆φ >

0.4) between the three leading jets and the pmiss
T vector, which eliminates most of the

mismeasured QCD background. As a proxy for a full-blown analysis optimisation, we

employ multivariate techniques, which can make use of correlations between variables.

The same three model grids are used as target signals, allowing the study of the

sensitivity of different variables to a range of model spectra. At each model point, a

Boosted Decision Tree (BDT) using a gradient boost algorithm, as implemented in the

TMVA package [117], is trained to discriminate between the signal and a sample of 31526

SM background events drawn from MC samples described in Appendix 3. Training of

the BDT is based on triplets of input variables, as described below in Section 2.4.1.

Configuration options for the BDT are given in Table 2.1. Signal samples with fewer than

2000 unweighted MC events passing the preselection are dropped from the investigation,

to avoid overtraining of the BDT discriminator. The signal and background MC events

are split into two halves, which are used as training and test samples.

Number of decision trees 1000

Number of nodes per tree 5

Boosting algorithm GradientBoost

Shrinkage parameter 0.3

UseBaggedGrad flag True

GradBaggingFraction 0.6

Separation criterion Gini index, p · (1− p)

Table 2.1: Configuration for the Boosted Decision Tree classifier used to benchmark the
sensitivity of selected search variables for discrimination of SUSY events. The
shrinkage parameter determines the degree to which weights of trees are diminished
in successive tree growth iterations, reducing the learning rate of the algorithm.
The UseBaggedGrad option toggles stochastic gradient boosting, which grows the
decision trees from a random subsample of training events, whose size is controlled
by GradBaggingFraction. Determination of cut thresholds on discriminating
variables at each node of a tree is made by maximising the separation criterion.
These options are the default offered by TMVA for gradient-boosted decision trees,
and offer substantial resistance to overtraining.
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2.4.1 Input variables

Discrimination is provided by input variables drawn from the following selection:

• The single-parent mass bounds M1T , M>1, M1◦, M◦1.

• The two-parent mass bounds M2>, M>2, M2◦, M◦2, using either the minimal mass

or mTgen partition prescriptions, as described in Section 2.1.6.

• The Razor mass variables γR∗×MR∗ and MR
T , and other non-mass bound variables:

meff, εeff
T , HT and pmiss

T .

Pairs of the variables above are selected for testing as follows:

1. First, one of the three highly-correlated variables pmiss
T , MR

T and M1◦ (henceforth

denoted pmiss
T -like variables) is specified. This choice retains the spirit of a pmiss

T -based

analysis, without ruling out improvements via the use of alternative variables.

2. Each of the remaining variables is then paired with the pmiss
T -like variable, permitting

correlations between variables to be accessed by the BDT. For convenience, this

second variable is referred to as the “mass-like variable”. Of special interest are the

following variable pairs, which form the basis of major ATLAS and CMS searches:

(pmiss
T , meff), (pmiss

T , HT ) and (MR
T , γR∗×MR∗). A total of 49 pairings are investigated.

To complete the triplet of input variables for the BDT, the pairs are supplemented

with the jet multiplicity (pT > 40 GeV), but capped at a maximum of six, representing

the largest number of jets that can be reliably simulated by contemporary MC event

generators, and the largest jet multiplicity channel used in mainstream searches. The jet

multiplicity is known to be a strong discriminating variable, particularly when extended

cascade decays are possible.
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background, for a relatively overtrained BDT classifier. While the K-S probability
for the signal is relatively small, at 0.4%, the differences between the training
and test distributions are not so large as to seriously impair classification.

2.4.2 Tests for overtraining

For each variable set, distributions of the BDT output from the training and test samples

were compared using a Kolmogorov-Smirnov (K-S) test [118, 119]: an overtrained

discriminator produces very discrepant distributions from the training and test samples.

The K-S test produces the probability that two distributions are identical, with 1 being

the target for a well-trained BDT.

The smallest K-S probabilities were found to be O(10−3), for which an example is

shown in Figure 2.20. Overtraining to this extent is unlikely to seriously degrade the

performance of the discriminator, and fewer than 5% of model points suffer from this

degree of overtraining for a given set of input variables.
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2.4.3 Sensitivity benchmarking

For this preliminary study, the measure of signal sensitivity is taken to be the familiar

Z = S/
√
B, with S and B respectively the signal and background expectations after an

optimised cut on the BDT classifier output, assuming the nominal signal and background

cross-sections and an integrated luminosity of 20 fb−1. This simple measure is sufficient to

answer the question as to what variables provide the greatest separation power purely on

the basis of “information content”, which is complementary to the previous investigation

of performance in mass measurement. A full-blown experimental test would need to also

account for the impact of systematic uncertainties on S and B.

A fair comparison requires of course an optimisation of the cut threshold, but the

use of the BDT classifier reduces this to the trivial problem of finding the BDT output

threshold for which Z is maximised for the given model. To avoid pathologies due to

extremely small signal cross-sections and/or background MC statistics, models for which

the optimised cut gives S < 10, B < 10 or an uncertainty on Z larger than 100% are

dropped. Labelling this maximal sensitivity Zmax, we rank variable sets in terms of how

many model points are discoverable in each grid with significances of Zmax > 5 and

Zmax > 3. The top ranked variable combinations are shown in Tables 2.2-2.4.

From the tables, we find both similarities and differences between the results for each

of the grids. Immediately obvious is the fact that the two-parent variables demonstrate

the best sensitivity. Also clear is that the differences in sensitivity between variable

pairs are relatively small, especially in the squark grid. The mTgen-partitioned variables

perform best in the squark grid, while the minimal mass partition is more effective in

the other two grids, and particularly in the gluino models. This last observation may be

linked to the preference in the squark grid for M2◦ over the other two-parent variables,

which is reversed in the gluino and CMSSM scenarios. Of the pmiss
T -like variables, the

most consistently good performance comes from M1◦, but it is in fact MR
T that tops the

chart for the squark grid, while pmiss
T makes a showing for the remaining two grids.

These tables show neither nuances arising from the mass-dependent event kinematics

in each grid nor complementarity of the variables in covering different portions of the

grids. Figures 2.21-2.23 show which variables from selected subsets (e.g. single-parent,

pmiss
T -like) give the highest Zmax at each grid point, illustrating similarities and differences

beween the grids more vividly, while also allowing the expression of intra-grid variations.
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Ranking
Variable pair Models discoverable

pmiss
T -like mass-like Zmax > 5σ Zmax > 3σ

1 MR
T M2◦(gen) 103 131

2 M1◦ M2◦(gen) 102 131

3 M1◦ M◦2(gen) 101 136

4 MR
T M2◦(min Minv) 101 130

5 M1◦ M>2(gen) 100 131

6 M1◦ M>2(min Minv) 99 127

6 M1◦ M◦2(min Minv) 99 127

6 M1◦ M2>(gen) 99 127

9 pmiss
T M2◦(gen) 98 127

10 MR
T M>2(gen) 98 126

10 M1◦ M2◦(min Minv) 98 126

Table 2.2: The eleven pairs of variables most sensitive to SUSY models in the squark-neutralino
mass plane. Variables are ranked based on the number of SUSY models discoverable
at 5σ and 3σ significance. A total of 320 model points were surveyed, of which 232
were successfully optimised and are displayed in the figures below. For the 2-parent
mass bounds, parentheses indicate which partition procedure has been used.

Ranking
Variable pair Models discoverable

pmiss
T -like mass-like Zmax > 5σ Zmax > 3σ

1 M1◦ M◦2(min Minv) 191 228

2 M1◦ M>2(min Minv) 190 232

3 M1◦ M>2(gen) 187 220

4 M1◦ M2>(gen) 185 221

5 M1◦ meff 184 223

6 M1◦ M◦2(gen) 184 218

7 pmiss
T M>2(gen) 183 227

8 pmiss
T M◦2(min Minv) 182 221

9 M1◦ HT 182 220

10 pmiss
T M2◦(gen) 182 219

Table 2.3: The ten pairs of variables most sensitive to SUSY models in the gluino-neutralino
mass plane. Variables are ranked based on the number of SUSY models discoverable
at 5σ and 3σ significance. A total of 421 model points were surveyed, of which 337
were successfully optimised and are displayed in the figures below. For the 2-parent
mass bounds, parentheses indicate which partition procedure has been used.
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Ranking
Variable pair Models discoverable

pmiss
T -like mass-like Zmax > 5σ Zmax > 3σ

1 M1◦ M◦2(min Minv) 47 57

2 MR
T M◦2(min Minv) 45 50

3 pmiss
T M>2(min Minv) 41 53

4 MR
T M>2(min Minv) 41 50

5 pmiss
T M◦2(min Minv) 40 54

6 pmiss
T M>2(gen) 40 47

7 M1◦ M◦2(gen) 39 50

8 MR
T M2◦(min Minv) 38 51

8 M1◦ M>2(gen) 38 51

8 M1◦ M2>(gen) 38 51

Table 2.4: The ten pairs of variables most sensitive to SUSY models in the CMSSM plane.
Variables are ranked based on the number of SUSY models discoverable at 5σ
and 3σ significance. A total of 172 model points were surveyed, of which 84 were
successfully optimised and are displayed in the figures below. For the 2-parent
mass bounds, parentheses indicate which partition procedure has been used.
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pmiss
T -like variables (Figure 2.21)

The squark grid decisively favours MR
T , whereas the CMSSM and gluino grids prefer

M1◦ overall, but a strip of the gluino grid with mass-splittings of 100-500 GeV is the

only region in which pmiss
T is consistently dominant. Conversely, M1◦ appears to rival the

sensitivity of MR
R both at the smallest and largest mass-splittings in the squark grid.

The message in the CMSSM grid is more mixed, with the two extremes of low and high

m0 providing some appearances for MR
T , with pmiss

T showing up at intermediate m0.

Single-parent variables (Figure 2.22)

Preferences for specific single-parent variables appear to be more dependent on the

parameters of the models being investigated: both simplified model grids show distinct

regions in which either the meff-like variables7 in green, or the late-projected εeff
T and

M1> pairing in blue are most sensitive. In the squark simplified model grid, the division

seems to be based on the mass scale (along the horizontal axis), whereas the gluino

simplified models show distinct behaviour depending on the mass-splitting (which grows

perpendicularly to the mg̃ = MLSP diagonal).

The pmiss
T -free variables HT and γR∗ × MR∗ appear to contribute strongly to the

sensitivity at the smallest mass-splittings, and HT gets a “second wind” at mass-splittings

of 300-500 GeV, a similar region to the pmiss
T -dominated region of the previous plot. It may

be of interest to determine if HT and meff (related simply by the addition or subtraction

of pmiss
T ) genuinely have differing sensitivity, since in principle the same information is

being accessed.

In the CMSSM models, variation appears along the horizontal axis, with points at

low m0 favouring εeff
T and the meff-like variables, whereas HT and particularly γR∗ ×MR∗

grow in importance at large m0, although meff and its cousins remain relevant across the

entire grid.

Two-parent variables (Figure 2.23)

In the squark grid, the variable M2◦ is the most powerful, being most sensitive to a good

half of the model points. The CMSSM, in contrast, appears to prefer the early-projected

7The variables meff, M>1 and M◦1 are nearly identical, as has been shown earlier in this chapter.
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variables M◦2 and M>2. More diversity is apparent in the gluino grid, in which all the

two-parent mass bounds apart from M2> are well-represented.

As important as the variable definition is the procedure used for partitioning the

input jets. The mTgen procedure is clearly preferred in the squark simplified model grid,

except for a region at larger masses but smaller mass-splittings in which the minimal

mass partition performs better. In the gluino simplified model and CMSSM grids, this

preference is reversed. The MR
T variable, when treated as a mass-like variable (i.e. in

conjunction with pmiss
T or M1◦), is not strongly favoured by any of the grids.

All mass-like variables (Figure 2.24)

Finally, for a more general test of which mass-like variables are most effective in each

grid, Figure 2.24 shows the preferred mass-like variables at each grid point, but where

the pmiss
T -like variable is fixed to be that preferred by the grid (i.e. MR

T for the squark

grid, M1◦ for the gluino and CMSSM grids). Overall, the results convincingly indicate a

greater effectiveness for the two-parent variables, although the gluino grid notably shows

great diversity in the preferred variable sets. Single-parent variables may be of use in the

mass-degenerate region of the diagonal.

2.4.4 Discussion

In interpreting the results of this investigation, the degree of variation in sensitivity

between the competing variables must be borne in mind. Typically, the difference in

Zmax between the two best-performing variables is less than 10%, which should not be

overly surprising considering that many of these variables are subtle variations on one

another. Hence, isolating single variables that appear to be most sensitive to individual

models is generally less informative than identifying the broader trends reported above.

This should not, however, be taken to mean that the potential gains from optimisation

of the input variables are small – comparing instead the maximal sensitivity at each grid

point with the median sensitivity (considering all variable pairings), relative increases

of 20% are common. In the CMSSM grid the improvement is enhanced with sensitivity

gains of 50% or more over the median being the norm. This illustrates the existence of

a small set of optimal variables with similar sensitivity that stand out over the bulk of

possible pairings.
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Figure 2.21: Preferred pmiss
T -like variables at each model point. The most sensitive variable

pair is determined for each signal sample, but only the pmiss
T -like variable is

identified.
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Figure 2.22: Preferred single-parent variables at each model point. The most sensitive
variable pair is determined for each signal sample from the subset of variable
pairs containing a single-parent variable, but only the mass-like variable is
identified. Classes of similar variables are distinguished by colour: blue labels
M1> and εeff

T , which both combine the late-projected visible four-momentum
with the pmiss

T vector; green labels M>1, M◦1 and meff, which combine the early-
projected visible four-momentum with the pmiss

T vector; and red labels HT and
γR∗ ×MR∗, both of which do not use the pmiss

T information.
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Figure 2.23: Preferred two-parent variables at each model point. The most sensitive variable
pair is determined for each signal sample from the subset of variable pairs
containing a two-parent variable, but only the mass-like variable is identified.
Classes of similar variables are distinguished by colour: blue labels the mass-
bound variables using the minimal mass partition procedure; green labels the
mass-bound variables using the mTgen partition procedure; and red labels MR

T ,
which also applies the minimal mass partition procedure.
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Figure 2.24: Preferred mass-like variables at each model point, having specified the pmiss
T -like

variable to be MR
T for the squark simplified models, M1◦ for the gluino simplified

models, and pmiss
T for the CMSSM models, based on the preference for pmiss

T -like
variables identified in Figure 2.21. Classes of similar variables are distinguished
by colour: blue labels the single-parent mass-bound variables; green labels the
two-parent mass-bound variables; and red labels the variables that are not mass
bounds.
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Exploring in detail why each of the different variable preferences arises would be

an extensive investigation for which there is no room here. The use of multivariate

techniques somewhat complicates the assessment, as non-obvious correlations between

the input variables may contribute substantially to the effectiveness of the classifiers.

However, a few brief conjectures may be made which can be followed up in later work.

Firstly, the evidence of Figure 2.24, and of the preceding tables, strongly supports

the relevance of two-parent variables similar to mT2 as promising search variables in

all model topologies. Similar arguments have been made previously, such as in [120]

and [121], and both CMS and ATLAS currently conduct mT2-based searches [98, 122],

although the most recent hadronic searches by ATLAS do not employ such variables.

However, less attention has been paid to the utility of the mTgen partition procedure,

which may offer improvements in searches specifically targeting squarks. One explanation

for the preference for mTgen partition over the minimal mass partition for squark models

is that direct squark decays produce fewer jets overall, offering fewer possibilities for

misassigning the jets and in so doing grossly reducing the mass bound value relative to

the true value (in which all assignments are correct).

One might further expect that M2◦ would be favoured in the case of few jets, and

disfavoured for high jet multiplicities, as this variable receives no contribution from the

potentially large invariant masses of the two jet collections. Indeed, M2◦ is the most

important variable in the squark case, but its cousins M>2 and M◦2, which retain the

transverse mass information of the jet collections, are preferred in the jetty gluino and

CMSSM models. Additional insight into the poorer performance of M2◦ in non-squark

models is found in figures 2.6, 2.10 and 2.11, in which the value of M2◦ is found to be

nearly constant irrespective of the sparticle mass scale. This implies that the signal-

background discrimination of a large M2◦ value does not improve for high mass models

at a rate sufficient to compensate the falling cross-section.

Convincing explanations for the behaviour of the pmiss
T -like and single-parent mass-

like variables are more difficult to come by. It is worth noting that MR
T was designed

specifically for the case of squark production, and hence the observation that MR
T

outperforms the other pmiss
T -like variables in that topology may attest to the fragility of

the advantages brought by specific assumptions. Use of M1◦ as an alternative to pmiss
T

should be given serious thought. As for the special combinations (pmiss
T , meff), (pmiss

T , HT )

and (MR
T , γR∗×MR∗) in use by the experimental collaborations, only the first appears in

the top ranked variable pairs (Table 2.4). Hence, continued experimentation with search

methods remains a high priority.
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2.4.5 Conclusions

When beginning the benchmarking portion of this chapter, the question was posed as to

whether the same properties that lead to accurate mass measurement also result in strong

signal-background discrimination. Even if the conclusions of the search benchmarking

study remain tentative, this question can convincingly be answered in the negative

– on the basis of the mass measurement studies, one would have predicted stronger

performances from meff and the single-parent mass bounds, and severe disadvantages

for the late-projected, mass-discarding variable M2◦, which has on the contrary shown

substantial promise. Only in the case of the squark topology did the preferences of

the mass measurement and search tests for MR
T and the two-parent mass bounds align.

To some extent, these discrepancies may be due to the varying responses of different

variables to the background processes, itself a topic worthy of study.

Much room remains for extension of the search sensitivity investigation. In particular,

identification of which aspects of the favoured variable combinations are most critical

for sensitivity gains, and if possible the translation of these into simpler relations that

could for example be used to define straightforward analysis cuts, would yield much more

insight into how backgrounds can be controlled effectively. A thorough accounting of

experimental uncertainties would also be of significant value. Ultimately we might be led

to conclude that the mass measurement variables are unsurprisingly much more fit for

their intended purpose than for the secondary search application, though by no means

ineffective at the latter.
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“ It’s all very, very noisy out there. Very hard to spot the tune. Like a

piano in the next room, it’s playing your song, but unfortunately it’s out

of whack, some of the strings are missing, and the pianist is tone-deaf

and drunk – I mean, the noise! Impossible! ”

— Valentine Coverley

The work in this thesis is motivated by and constructed around an ATLAS search for

supersymmetry in events without light leptons (electrons, muons) a.k.a. a 0-lepton search.

This chapter will provide details on the following aspects of the analysis: strategy and

event selection; the collision and simulated datasets on which the analysis was based; and

last but not least the sophisticated techniques employed for background determination.

Discussion of the final results and their statistical interpretation in terms of limits on the

SUSY parameter space will take place in Chapter 4.

At the time of writing, three publications have resulted from this search [79, 123, 124].

I contributed to various critical tasks in each. The descriptions provided herein are

sourced from and refer to the most recent publication [79], but remain broadly applicable

to the previous incarnations of the search. Of the material below, I was primarily

responsible for defining aspects of the analysis strategy (Section 3.1) and optimisation

of the event selection (Section 3.3), as well as defining and studying the signal models

(Section 4.2). The use of the dual meff definitions (“inclusive” meff(incl.) for the final

discriminating cut and “exclusive” meff(Nj) for the pmiss
T /meff ratio cut) was motivated

by my design of the most performant “high-mass” signal selection in [124]. As described

in Section 3.4.1, I also provided the Z → νν̄ + jets background estimates for the 5 fb−1

iteration [79]. While I selected the final cuts in the two earlier papers [123, 124], specific

cut values for [79] were chosen by Yu Nakahama. Other aspects of the analysis were

handled by the rest of the 50-strong analysis team.

3.1 Overview of analysis strategy

R-parity-conserving SUSY models have as their premier signature the production of

copious pmiss
T , arising when heavy superparticles decay to invisible neutralinos. The search

described here prioritises pmiss
T as a discriminating variable, but also places stringent

requirements on the “effective mass” meff, defined as the scalar sum of the jet transverse
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momenta and the magnitude of the pmiss
T (equation 2.41):

meff = pmiss
T +

∑

j in selected jets

pjT .

In the limit where no objects are present besides the selected jets (no upstream transverse

momentum), meff is equal to the variable M◦1 (equation 2.42) [78]. This limit is satisfied

in the data selected for analysis, as events containing hard leptons are discarded, while the

residual transverse boost due to soft radiation and the underlying event is small compared

with the event energy scales. The empirical equivalence of these variables has also been

demonstrated in the previous chapter. The effective mass therefore approximately bounds

the mass of a single heavy particle or the initial state parton collision energy
√
ŝ. We

have seen in Chapter 2 that meff exhibits a peak whose position is strongly correlated

with the sparticle mass scale in SUSY events. SM background processes, not having a

large mass scale, produce meff distributions that exhibit close-to-exponential decay, as

illustrated by Figure 3.1 and Figure 3.2. This gives meff great discriminating power in

searches for heavy objects.

Theoretically speaking, meff is not necessarily the most appropriate variable for

sparticles that are pair-produced, as mandated by RPC. However, cuts on the theoretically

preferred two-parent variables such as mT2 require precise tuning to any target mass scale,

because of the sharp endpoint achieved for SUSY topologies (the intended behaviour!).

The tails of meff, on the other hand, fall off at approximately the same rate for both

background and signal, meaning that it is sufficient to cut anywhere above the meff peak

to achieve roughly maximal sensitivity, subject to statistical uncertainties. This feature

can be understood as follows: when heavy particles are pair-produced, the partonic

centre-of-mass energy
√
ŝ has a distribution that decays as the convolution of PDFs,

the rate of decay being fixed chiefly by the initial state. As meff bounds
√
ŝ, it should

legitimately display this tail. In events where the pair-production assumption of mT2 is

met, mT2 will bound the masses of the decaying particles, which are fixed, producing a

distinct endpoint. The SM tails arise from fortuitous combinations, and are not bound

to terminate neatly. Section 4.5 explores the concrete impact of the mT2 endpoint on

search sensitivity in greater detail.

In order to target strongly-produced sparticles, i.e. squarks and gluinos, this search se-

lects events containing multiple hard particle jets and substantial pmiss
T . Events containing

a hard lepton (specifically, electron or muon) are discarded, to suppress SM background

processes producing genuine pmiss
T , and to maintain an exclusive selection with respect to
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other searches selecting at least one lepton.1 Hadronic tau jets and b-tagged jets are not

explicitly identified, except in control selections. In typical SUSY scenarios, this search

channel has the highest yield, due to large QCD production cross-sections and hadronic

decay branching ratios, and hence is the first to become sensitive to production of massive

particles. Another benefit of searching in the 0-lepton channel is that the final state is

far less sensitive to variations in the mixing of the sparticles, whereas branching frac-

tions to leptons are sensitive to the composition of the electroweak gauginos, and hence

more model-dependent. However, it suffers from substantial background contamination,

necessitating effective background estimation strategies.

3.2 Datasets from simulations and collisions

The analysis described in this section utilises collision data collected over the period

22nd March 2011 – 30th October 2011, with the LHC operating at
√
s = 7 TeV. For the

ATLAS run numbers and data periods, please see Appendix 3. Over this period the peak

instantaneous luminosity increased from 1.3× 1030 to 3.6× 1033 cm−2 s−1 and the peak

mean number of interactions per bunch crossing increased from 2.6 to 17.5. The raw

recorded data corresponds to an integrated luminosity of 5.25 fb−1, falling to 4.7 fb−1

after application of basic data quality requirements via the SUSY working group Good

Run List.2 The uncertainty on the luminosity is 3.7% [125].

Events were selected for the main analysis by the following triggers,3 requiring an

energetic leading jet and large pmiss
T , in different run periods (Table 3.1):

1. EF j75 a4 EFFS xe45 loose noMu requires a leading jet with pT > 75 GeV mea-

sured at the electromagnetic scale, and reconstructed using an anti-kt algorithm

with size parameter R = 0.4 from topological towers, together with at least 45 GeV

in pmiss
T from the calorimeter only (excluding muons). The EFFS (Event Filter Full

Scan) designation implies that full event information is used at the Event Filter

level, rather than only information local to Regions-of-Interest (ROIs).

1A statistical combination of the results from multiple searches is easier to carry out in the case of
non-overlapping selections, as correlations between the event selections are avoided.

2Good Run Lists provide a most basic level of selection by identifying good quality data at the level of
ATLAS luminosity blocks. This analysis used the official Good Run List for 2011 data, defined for
Moriond 2012 and designated (data11 7TeV.periodAllYear DetStatus-v36-pro10 CoolRunQuery-

00-04-08 Susy.xml).
3Auxiliary control measurements and other background estimation techniques made use of alternative

triggers.
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2. EF j75 a4tc EFFS xe45 loose noMu is the same as the previous trigger, except

that jets are reconstructed using topological clusters (a4tc) for improved noise

suppression over the topological tower constituents (a4).

3. EF j75 a4tc EFFS xe55 loose noMu simply raises the pmiss
T threshold to 55 GeV, as

the trigger rate for the 45 GeV threshold was unsustainable at the higher luminosities

achieved in late 2011.

Besides the collision data, Monte Carlo (MC) simulated events were used for studies

of background and signal processes. No trigger requirement was imposed on these events,

due to concerns about the accuracy of the trigger simulation. Instead, tighter thresholds

of 130 (160) GeV were placed on both the leading jet pT (pmiss
T ) computed after full event

reconstruction, which ensures maximal trigger efficiency (& 98%) in data and hence

minimises systematic uncertainties arising from the non-application of a trigger in MC.

The SM background MC samples are described in detail in Appendix 3, categorised

by the underlying physics process. Event generators and configurations for these samples

are listed below. Signal MC samples are described in Section 4.2.

All simulated samples were produced with release 17 of the ATLAS offline software, at
√
s = 7 TeV. These used the default ATLAS parameter sets, chiefly MC11c [126] (using

PYTHIA6 to model pile-up events) but with some samples utilising MC11b [127] (pile-up

modelled with PYTHIA8 [128]). A GEANT4-based detector simulation [129] is applied to all

simulated events, taking into account year-round detector conditions. The MC events are

given event weights (pile-up weights) such that the distribution of the average number

of interactions per bunch crossing 〈µ〉 matches that in data sample, with the central

value MC predictions being obtained with the nominal 〈µ〉, and the uncertainty on the

MC predicted event counts due to the pile-up reweighting obtained by comparison with

results obtained with 〈µ〉 × 0.9.

The MC event generators and parton distribution functions (PDFs) differ from process

to process, and are as follows:

1. QCD jet events: generated with PYTHIA6 [130], using the MRST2007LO* modified

leading-order PDFs [131].

2. Top quark pairs (tt): simulated with ALPGEN [132] and PDF set CTEQ6L1, cross-

checked with MC@NLO [133, 134] (with a top quark mass of 172.5 GeV) and the

Next-to-Leading Order (NLO) PDF set CTEQ6.6 [135].



108 ATLAS search strategies in the SUSY 0-lepton channel

3. Vector boson (W , Z/γ∗, γ) plus jets: ALPGEN, as for tt.

4. Single top production: simulated with AcerMC [136] interfaced to PYTHIA6 and using

PDF set MRST LO** [131].

Fragmentation and hadronization for the ALPGEN and MC@NLO samples is performed with

HERWIG [137, 138], using JIMMY [139] for the underlying event. Additional photon and Z

samples produced using SHERPA [140] are used for cross-checks of the RZ/γ background

estimation method (Section 3.4.1).

3.3 Event selection

Selection of events in the 0-lepton analysis begins with a data sample passing a jet/pmiss
T

trigger as defined in the previous section. Preselection criteria reject events with poor

data quality or potentially contaminated by non-collision backgrounds (such as cosmic

rays and beam halo interactions) [141], and are listed below in Table 3.1. Events are also

discarded if they contain any electrons or muons with pT > 20 GeV, eliminating the bulk

of SM backgrounds containing genuine pmiss
T from neutrinos. A tighter selection than

that applied at trigger level is additionally imposed on the fully-reconstructed objects,

requiring at least one jet with pT > 130 GeV and pmiss
T > 160 GeV.

The selection is refined by applying stringent requirements on the transverse momenta

of jets and the magnitude and direction of the pmiss
T . Eleven signal regions (SRs) are defined

in Table 3.2. These are split into six channels (A-E) chiefly characterised by increasing

jet multiplicity requirements, with the thresholds for the jets being pT > 130 GeV for the

leading jet, pT > 60 GeV for the second, third and fourth jets and pT > 40 GeV for any

remaining jets. Pile-up events, being predominantly low energy, contribute negligibly

to jet multiplicities at these thresholds. Selecting higher jet multiplicities is an effective

way to eliminate SM background processes, as each additional jet incurs a cross-section

penalty that scales as 1/αs. This penalty does not apply to jets produced in decays, such

as those originating from top quarks or from SUSY cascade decays.

The inclusive effective mass, meff(incl.), is calculated as the sum of pmiss
T and the

magnitudes of the transverse momenta of all jets with pT > 40 GeV, and is used as the

final discriminating cut. A second definition of meff uses only the Nj jets required in the

channel selection, and is used in a cut on pmiss
T /meff, which suppresses background from

mismeasured QCD multijet events. Splitting the meff definition into two in this manner
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Cut Channel

DQ (data)
Run / lumi block appears in SUSY GRL data11 7TeV.periodAllYear

DetStatus-v36-prod10 CoolRunQuery-00-04-08 Susy.xml

Trigger

EF j75 a4 EFFS xe45 loose noMu (data period B) /

EF j75 a4tc EFFS xe45 loose noMu (K ≥ data period ≥ D) /

EF j75 a4tc EFFS xe55 noMu (data period ≥ L) /

None (MC)

Jet cleaning No Looser bad jets after jet-lepton overlap

(data only) removal with pT > 20 GeV and any η

Jet cleaning Reject if leading up to 2 selected jets with pT > 100 GeV after overlap removal

(data and MC) possess (chf < 0.02 and |η| < 2.0) or (chf < 0.05 and emf > 0.9 and |η| < 2.0)

Jet timing Energy-weighted mean time of leading N selected jets after

overlap removal in N jet analysis |〈t〉| < 5 ns.

Cosmic muons No selected muons after overlap removal with

(|mu staco z0 exPV| ≥ 1 mm) or (|mu staco d0 exPV| ≥ 0.2 mm)

Bad muon veto No selected muons before overlap removal with
√
mu staco cov qoverp exPV / |mu staco qoverp exPV| ≥ 0.2

Bad MET MUON Veto event if (MET MUON/pmiss
T )× cos(MET MUON phi− MET phi) > 0.5

Bad MET CellOut Veto event if (MET CellOut/pmiss
T )× cos(MET CellOut phi− MET phi) > 0.5

LAr hole ‘Smart’ LAr hole veto

LAr status larError == 0 (data only)

Bad tile drawers Veto event if any selected jet with pT > 40 GeV and BCH CORR JET > 5%

satisfies ∆φ < 0.2

Primary vertex Leading primary vertex with > 4 tracks

Lepton veto No selected e/µ after overlap removal with pT > 20/10 GeV.

Table 3.1: Preselection cuts to ensure good data quality for the 0-lepton 5 fb−1 analysis [79].

is optimal for signal acceptance, because SUSY decays often produce more jets than the

typical background processes, enlarging the inclusive meff. Excluding these “extra” jets

from the denominator of the pmiss
T /meff ratio prevents the signal acceptance of this second

cut from being adversely affected.

Optimal cut values were determined so as to maximise the potential for discov-

ery/exclusion of supersymmetric models in a wide range of parameter spaces. Determi-

nation of discovery/exclusion reach is dependent on a statistical analysis, which will be

described in Chapter 4, together with illustrations of the gains from cut optimisation.
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Requirement
Channel

A A′ B C D E

pmiss
T [GeV] > 160

pT (j1) [GeV] > 130

pT (j2) [GeV] > 60

pT (j3) [GeV] > – – 60 60 60 60

pT (j4) [GeV] > – – – 60 60 60

pT (j5) [GeV] > – – – – 40 40

pT (j6) [GeV] > – – – – – 40

∆φ(jets, ~p miss
T ) > 0.4 (i = {1, 2, (3)}) 0.4 (i = {1, 2, 3}), 0.2 (pT > 40 GeV)

pmiss
T /meff(Nj) > 0.3 (2j) 0.4 (2j) 0.25 (3j) 0.25 (4j) 0.2 (5j) 0.15 (6j)

meff(incl.) [TeV] > –/1.4/1.9 –/1.2/– –/–/1.9 0.9/1.2/1.5 –/–/1.5 0.9/1.2/1.4

Table 3.2: Channels used in the 0-lepton 5 fb−1 analysis [79], wherein the SRs are defined by
the last cut on meff(incl.). Note that meff constructed from the leading Nj jets is
used in the pmiss

T /meff cut for the Nj jet channel while meff constructed from all
jets with pT > 40 GeV is used for the final meff(incl.) selection. The three meff

selections listed in the final row denote the ‘loose’, ‘medium’ and ‘tight’ selections
respectively (not all channels possess all three SRs).

Distributions of meff(incl.) in data and MC after all selection cuts excluding the final

meff(incl.) selection are shown in Figures 3.1-3.2.

3.4 Standard Model Backgrounds

Even with high thresholds on meff, pmiss
T and jet transverse momenta, the tails of the SM

background distributions can lead to substantial contamination of the SRs. Electroweak

processes can produce neutrinos, which serve as a genuine pmiss
T background. Mismeasure-

ment of jet energies, limited fiducial acceptance, reconstruction inefficiencies and detector

defects can all lead to additional background contributions. Thus, accurate estimations

of the background contributions in the SRs are critical.
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Figure 3.1: Observed meff(incl.) distributions in MC and data for SRs A-C of the 0-lepton
5 fb−1 analysis [79]. In the top panels, the histograms show the SM background
expectations, derived from a data-driven (jet smearing [142]) estimate in the
case of QCD multijets, or from MC. The sum of the MC histograms before
scaling (normalised to luminosity) is shown by the black open histogram. They
are then normalised using a fit to CR measurements described in Section 3.5,
and shown by the filled histograms, with their sum represented by the red open
histogram. Two CMSSM/MSUGRA benchmark model points with m0 = 500 GeV,
m1/2 = 570 GeV and with m0 = 2500 GeV, m1/2 = 270 GeV, illustrating different
kinematic topologies, are also shown. These points lie just beyond the reach of
the previous analysis [124]. Arrows indicate the locations of the lower edges of
the various signal regions. The bottom panel shows the ratio of the data to the
total unscaled background estimate (black points), together with the ratio of the
total scaled background estimate to the total unscaled background estimate (red
line). The yellow band shows the combined experimental uncertainties on the
unscaled background estimates, while the green band additionally includes the
total theoretical uncertainties.
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Figure 3.2: Observed meff(incl.) distributions in MC and data for SRs D-E of the 0-lepton 5
fb−1 analysis [79]. Histograms are as described in Figure 3.1.
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Figure 3.3: Summary of several Standard Model total production cross section measurements
compared to the corresponding theoretical expectations [143]. The W and Z
vector-boson inclusive cross sections were measured with 35 pb−1 of integrated
luminosity from the 2010 dataset. All other measurements were performed using
the 2011 dataset or the 2012 dataset. The top quark pair production cross-
section is based on a statistical combination of measurements in the single-lepton,
dilepton and all-hadronic channels using up to 1.02 fb−1 of data. The single-top
measurement uses 0.7 fb−1 of data, while the WZ measurement uses 1.02 fb−1.
The WW and ZZ measurements were made with the full 2011 dataset. The
dark error bar represents the statistical uncertainty. The red error bar represents
the full uncertainty, including systematics and luminosity uncertainties. All
theoretical expectations were calculated at NLO or higher.
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The following physics processes (already mentioned in the context of MC event

generation) constitute the major backgrounds to the 0-lepton search, ranked by production

cross-section (Figure 3.3):

1. QCD multijet events are by far the most commonly produced in LHC collisions. Two

incoming partons scatter to create a high-pT dijet pair, and additional jets may be

generated via hard gluon emissions or gluon splittings. While these events contain

little intrinsic pmiss
T , jet mismeasurement can create pT imbalances. Additional pmiss

T

can arise from semileptonic decays of heavy flavour quarks. In mismeasured QCD

events, the pmiss
T is typically aligned with one jet unambiguously.

2. W boson production in association with hard jets from ISR, in conjunction with

a leptonic decay, can generate large pmiss
T from a highly boosted neutrino. If the

lepton is not correctly identified (due to reconstruction inefficiency, falling outside

of detector acceptance or misidentification as a jet in the case of electrons or taus),

such events may enter the signal selection.

3. Z boson production, like W boson production, is an important background when

accompanied by hard ISR jets. Leptonic Z (Zll) events are usually well-measured,

possessing no genuine pmiss
T , except where the lepton is a τ , and in any case typically

fail event selection due to the presence of leptons. The main risk of Z contami-

nation is due to the 20.5% branching fraction to neutrinos, which generates event

configurations indistinguishable from the signal, making the Z → νν̄ + jets process

(henceforth Zνν) an “irreducible” background.

4. Top production, either singly or in pairs, followed by a decay to a leptonic W , is also

accompanied by genuine pmiss
T as well as larger jet multiplicities, as decay jets are

not suppressed in the same manner as those originating from final state radiation.

Other minor components include diboson production, which has a small cross-section,

and non-collision backgrounds, which can be effectively eliminated by requirements on the

timing, impact parameter and calorimeter properties. All other backgrounds contribute

negligibly, either having a small cross-section or being eliminated due to the lepton veto

and large pmiss
T requirement.

A combination of data-driven and MC-based techniques are used to estimate the

background contributions to the signal regions. These produce transfer factors (TFs) that

relate the SR contamination to measurements in CRs (Table 3.3, see also Section 3.5).

In brief, the methods used are the following:
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1. Section 3.4.1 describes the use of a selection of γ + jets events to predict the

irreducible Zνν + jets background [144]. The photon events are expected to exhibit

similar kinematics to the Z events, if the photon is treated as an invisible particle,

and reproduce distributions of observables well, after scaling to the appropriate

cross-section [145]. Events selected to contain a leptonically-decaying Z boson are

used to cross-check the predictions from the photon+jets sample. Two control

regions, CR1a and CR1b, are used to constrain the Z background, corresponding

to the photon and Zll selections respectively.

2. QCD multijet processes are modelled with pseudo-data produced by smearing jet

energies in data events to simulate mismeasurement [142]. First, well-measured

QCD “seed” events with low pmiss
T are selected in collision data. Then, the jet

energies are fluctuated according to a response function, measured from the data,

that describes the degree to which jet energies are mismeasured by the detector. A

QCD control region CR2 is defined by reversing the ∆φ(jets, ~p miss
T ) cut to select

events in which the pmiss
T is unambiguously associated with one jet.

3. Predictions of W boson and top quark production are derived from MC, and

validated against data-driven methods. Specifically, the MC is used to extract

estimates of the W and top contributions to the SR as well as to CRs selecting

events with one light lepton (e or µ). These CRs are further split into a W -enriched

CR3 and top-enriched CR4, by the absence or presence of a b-tagged jet respectively.

4. Small residual backgrounds from diboson production are estimated directly from

MC simulation, while non-collision backgrounds are estimated from data [141].

The final estimate of all backgrounds is made using a likelihood fit to a set of control

region (CR) selections, described in Section 3.5.

The following pages cover a cross-section ratio background estimation method (abbre-

viated RZ/γ) that uses photon (γ + jets) events to estimate the Zνν + jets contamination

of fully hadronic SUSY searches. It serves as a case study for the detailed background

estimates that underly the ATLAS 0-lepton search. This work was performed in collabo-

ration with Tanya Sandoval and Stefan Ask, building on their previous studies with Andy

Parker, Meg Shea and James Stirling. I implemented the RZ/γ method for the 5 fb−1

analysis [79], integrating this with a collective analysis framework and the likelihood

defined for unified background estimation, described in Section 3.5. Additionally, I

carried out a proof-of-principle study for expanding and generalising this method, as

described at the end of this chapter.
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3.4.1 Using γ + jets events as pseudo-data for Zνν + jets

backgrounds

With the Zνν + jets forming a dominant and “irreducible” source of contamination, it is

necessary to have a robust method in place for estimating its magnitude. Use of MC

simulated datasets is a standard option, but these are inevitably subject to uncertainties

and inaccuracies in the theoretical modelling. A better choice is to select a control sample

of similar background events as a proxy for the problematic process. If no appropriate

control sample of the specific physics process can be selected, then the most similar

process available should be used. This minimises any extrapolation in the shapes of

kinematic quantities, avoiding large theoretical uncertainties on the estimate. In the case

of Zνν , the obvious choice is to use the leptonic decays of the Z, keeping the production

process consistent. Unfortunately, the branching fraction for Z decays to leptons is only

3.5% per lepton flavour, compared to a 20.5% branching fraction to neutrinos [15].

An alternative is offered in the form of γ + jets events, which have a large cross-section

and are easy to identify and reconstruct. If the photon is treated as though it were an

invisibly-decaying Z boson, the remainder of the event, largely composed of jets, will

be effectively indistinguishable from an actual Zνν event, meaning that a photon event

sample can be converted into a proxy for a Zνν event sample. The suggestion that photon

events could be used for this purpose was made in [146], and its theoretical underpinnings

have been studied in detail [145, 147].

3.4.2 Theoretical motivation

The physical Z and γ bosons are mixtures of the electrically neutral gauge bosons of

the unbroken U(1) and SU(2) gauge symmetries, and hence share many of the same

interactions. Indeed, any vertex involving a Z and a pair of charged particles can

be substituted for one involving a γ, and vice versa – strictly speaking, the Z and γ

amplitudes interfere quantum mechanically. For example, continuum production of lepton

pairs, i.e. Drell-Yan production involves contributions from Z/γ∗ diagrams. Of course,

there are also differences between the two, the most obvious being the large mass of the

Z. Apart from that, their coupling strengths to different particles also vary, and the Z

also possesses axial couplings to fermions.
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Critically, the mass of the Z can be rendered irrelevant when working at high energy

scales, where the disparity in coupling strengths becomes the dominant difference. Axial

couplings and spin states add some differences in the boson rapidity distributions. Once

these details are accounted for, though, the kinematics of the hadronic portions of Z and

prompt γ (those produced directly from the hard process) events should be very similar.

Note that because charged final state particles may radiate photons, events containing

soft or non-isolated photons in particular may behave differently from Z events, and

hence some care must be taken to distinguish prompt photons from final state radiation

(FSR) as far as possible. Allowing for this distinction, a viable procedure for modelling

invisible Z backgrounds is to first select a sample of prompt photon events in data, and

then scale them to the cross-section of similar Z events. If the γ is then treated as

being invisible (neutrinified), this provides a sample of ersatz Z’s that may be useful for

background estimation.

3.4.3 Z/γ cross-section ratio

In order to perform the rescaling of the photon events, one needs the ratio of the

differential Z cross-section to that of the photons

RZ/γ(x) =
∂σZ/∂x

∂σγ/∂x
,

where x stands for any set of observables. Perfect replication of the Zνν + jets kinematics

is unrealistic – it is sufficient to ensure that those distributions utilised in the search

(particularly those on which some event selection is made) are well reproduced. The

differential cross-section ratio is expected to vary substantially, depending on the boson

transverse momentum and rapidity. Ask et al [145] identified the number of jets produced

in association with the bosons as another source of variation, although studies of the

ratio at NLO precision in [147], allowing up to three jets in the matrix element, indicate

that this variation may be less significant than LO studies would suggest. If RZ/γ is

parameterised in these observables, any remaining discrepancies should hopefully be no

larger than the uncertainties associated with the method.

Ideally, RZ/γ would be measured in data utilising samples of photons and leptonically

decaying Z bosons. However, because of the same small leptonic branching fractions

that motivate the use of the photon control sample, statistical limitations would preclude

a determination of the ratio in the kinematic regime relevant to the signal selection.
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Instead, it is practical to compute the ratios in MC, as correlated uncertainties on the Z

and γ cross-sections should cancel in the ratio. Nevertheless, measurement of the ratios

using leptonic Z’s under a relaxed selection remains useful as a confirmation that the

MC provides an adequate description.

As the searches demand large jet multiplicities, it is necessary to use multileg MC

generators, which primarily function at LO. Fortunately, higher order corrections to

RZ/γ effectively cancel in the ratio [147], rendering the transition from LO to NLO

mostly stable. While some variation is present, particularly for the ME+PS formalism, it

remains relatively small in relation to typical uncertainties from pure MC estimates. The

distributions of photons and leptonic Z’s simulated by SHERPA have been found to provide

a relatively good match for the distributions in collision data. SHERPA is additionally

capable of producing NLO cross-section calculations for each sample. However, the official

ATLAS SHERPA Zνν samples were too statistically limited to be useful when carrying

out the estimate for [79]. ALPGEN samples were found to perform adequately, although a

larger degree of mismodelling is apparent.

3.4.4 Practical considerations

Experimentally, the process of selecting an appropriate control sample of photon events

is not completely trivial. For starters, the limited fiducial acceptance of the detector

prevents photons produced at high (pseudo)rapidities from being reliably identified and

reconstructed. Furthermore, a Z with any non-zero transverse momentum will produce a

pT imbalance if it decays to neutrinos, although this is only relevant when the Z pT is

larger than the scale of any fake pmiss
T . Photons, on the other hand, cannot be identified

with perfect efficiency, particularly when fake photons from misidentified hadronic jets or

electrons must be rejected. Fortunately, many of these problems are alleviated at high

boson pT , as production becomes very central for both Z’s and photons, and photon

identification efficiencies rise. It is in any case necessary to apply some corrections for

the acceptance differences between Z’s and photons.

A further complication in the control sample selection is that any selected data sample

is bound to suffer from contamination from background processes. In the case of photon

selection, the major backgrounds are QCD multijets faking photons, and misidentified

electrons from W decays. The associated production of a photon with a vector boson

or top quark provides a more marginal contribution. Dedicated ATLAS studies found

a relatively minimal contamination, at the percent level for high pT photon selections,
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allowing the background contribution to be safely neglected in earlier iterations of the

method. Nonetheless, quantifying the contamination is critical to maintaining accuracy

and controlling uncertainties.

3.4.5 The RZ/γ method as implemented by ATLAS

The standard implementation of the RZ/γ method both in CMS and in ATLAS begins

by selecting photon events in a control region, notated as CRγ (CR1a in Ref. [79]). CRγ

is defined to match as closely as possible the SR selection, with only two modifications

applied. First, a hard, good quality photon, as defined in Table 3.4, is required [148].

Then, a mock missing transverse momentum p̃miss
T is constructed by treating the photon

as though it were an invisible Z, and this p̃miss
T is used in place of the measured pmiss

T in

all selection cuts.

Selection of a photon control sample

The CRγ control sample involves mostly the same selection cuts as the signal selection

– this is one of the main strengths of the photon-based background estimation. Where

the selections differ are in the trigger, the requirement of a good quality photon and the

simulation of pmiss
T using the selected photon. Table 3.4 summarises the photon selection

criteria, which match definitions made by the ATLAS Standard Model Direct Photons

subgroup, allowing cross-checks [148]. While no analyses using these selections have yet

been made public, the definitions are similar to those used in [149].

The photon control sample uses a trigger selecting photons with pT > 80 GeV, in place

of the baseline jet and pmiss
T trigger. Identification criteria are relaxed relative to offline

reconstruction to permit the study of efficiencies and fake estimations. Full efficiency of

the trigger is ensured by an offline photon pT threshold of 85 GeV. Events are retained if

the leading photon’s pseudorapidity places it in well-instrumented regions of the detector:

|η| < 2.37 ensures that it is within the acceptance of the tracking system, and the barrel-

endcap transition region 1.37 < |η| < 1.52, which shows poorer resolution, is excluded.

Further photon identification cuts are computed using the PhotonIDTool-00-01-00

package.4 Finally, the contribution of FSR photons from jet fragmentation is reduced by

4No official documentation for this package exists, but it is available in the ATLAS
SVN repository at https://svnweb.cern.ch/cern/wsvn/atlasgrp/Physics/StandardModel/

PromptPhotons/PhotonIDTool/

https://svnweb.cern.ch/cern/wsvn/atlasgrp/Physics/StandardModel/PromptPhotons/PhotonIDTool/
https://svnweb.cern.ch/cern/wsvn/atlasgrp/Physics/StandardModel/PromptPhotons/PhotonIDTool/
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imposing a maximum value of 5 GeV on the calorimeter transverse energy Eisol
T measured

in neighbouring cells (∆R < 0.4).

In selected MC photon events, an efficiency scale factor is applied to correct for

differences in the distributions of variables used for photon identification. This is

computed using the FudgeMCTool-00-00-10 utility, which applies constant offsets to

the relevant distributions to correct these to the values measured in data, and then

determines the probability that the event would have passed the identification cuts.

These corrections are described in [150]. Corrections are also applied to the energies of

photons and electrons using the EnergyRescaler tool [151]. The isolation energy Eisol
T

is mismodelled in MC, leading to differences in the isolation cut efficiency, as shown in

Figure 3.4. While simulated shapes of the genuine and fake photon Eisol
T appear to match

the shape measured in data, there appears to be a flat 2 GeV offset in MC, allowing an

assessment of the uncertainty due to this effect by comparing the efficiencies at cuts of

3 GeV and 5 GeV in MC. In contrast, the transverse momentum and pseudorapidity

are relatively well modelled, as illustrated in Figure 3.5. Discrepancies at the level of

20% are observed at low pT , although these could also be attributed to underestimating

the contribution from fake photons. These are not considered serious, as stringent

requirements on the hadronic portion of the event, especially the selection on the p̃miss
T ,

reject the bulk of lower pT events. At large pT , the data noticeably undershoots – this is

true in the ALPGEN samples as well – but the shape of the distribution in data suggests

that a statistical fluctuation is responsible to some degree.

Cut Specification

Trigger g80 loose

Transverse momentum pT ≥ 85 GeV

Pseudorapidity |ηs2| < 1.37 or 1.52 ≤ |ηs2| < 2.37

Photon quality ph OQ flag and PhotonCutsTight(6), from PhotonIDTool

Calorimeter isolation Eisol
T = Etcone40 < 5 GeV

Table 3.4: Criteria defining a “good quality” photon for the purposes of the CRγ selection.
Photon identification cuts are those defined in [148], and are similar to those used
in the publication [149]. The pseudorapidity cut is applied using the pseudorapidity
measured in the second EM calorimeter sampling layer, ηs2. Calorimeter isolation
is recomputed using the CaloIsolationTool, which applies corrections to remove
an ET -dependence of the Eisol

T peak in data, as documented in [152].
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Figure 3.4: Isolation variable Eisol
T distribution for preselected “tight” photon candidates

in data and MC. The MC include the target γ + jets processes and QCD and
electroweak backgrounds to the γ + jets selection. The width of the Eisol

T spectrum
for signal is driven by noise in the EM calorimeter, which is calibrated to be centred
at zero, hence the negative component corresponding to downward fluctuations
in the calorimeter cells.

Once a photon sample has been selected, the proxy pmiss
T , denoted p̃miss

T , is defined

by “neutrinifying” the photon. Neutrinification can be accomplished by adding the

measured photon ~pT to the ~p miss
T , which was the standard procedure prior to the Moriond

2012 analysis. However, this does not exactly match what would be produced by the

pmiss
T algorithms if the physical γ was replaced by an invisible Z, particularly because

the analyses utilised the MET Simplified20 definition which lacks a genuine photon

term. Instead, the photon contribution is typically shunted to the electron or jet term.

Particularly when the photon is treated as a jet, the calibration overestimates the pT of

the photon, leading to spurious pmiss
T in the pre-neutrinification events.5 Hence, a more

consistent treatment is to find the electron or jet candidate that takes the place of the

photon, and remove its weighted contribution from the ~p miss
T sum. Figure 3.6 shows

a comparison between the pmiss
T before and after neutrinification of the photon using

MET Simplified20 reconstructed with and without an explicit photon term, showing

that differences after removal of the photon are minimal.

A final selection on the CRγ photon events is made by applying all 0-lepton SR

selections from Table 3.2, replacing pmiss
T with p̃miss

T in every instance. The meff(incl.)

5It has been checked that such events do not substantially contaminate the signal regions, because
the pmiss

T is aligned with a counterbalancing jet, and hence fails a cut on the azimuthal angle ∆φ
between the jets and the pmiss

T .
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Figure 3.5: Upper plots: Leading photon (a) pT and (b) η distributions from data and MC
after the photon selection (Table 3.4). Lower plots: Leading photon pT after all
SR A selection excluding the final meff(incl.) cut (c) and after the SR A medium
selection with meff(incl.) > 1.2 TeV (d).
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Figure 3.6: Comparison of different pmiss
T and p̃miss

T definitions from [79], after the photon
selection (Table 3.4). The definitions are as follows: MET Simp20: standard
SUSY definition, photons not explicitly reconstructed. MET Simp20wTP: SUSY
definition, but identifying tight photons and calibrating their clusters appropriately.
METp Simp20: as for MET Simp20, but with the contribution of a jet or electron
matched to the leading photon removed. METp Simp20wTP: as for MET Simp20wTP,
but with the contribution of the leading photon removed. In subplots (a) and (b),
a noticeable tail is visible. This is due to backgrounds with genuine pmiss

T from a
W → eν decay, where the electron fakes a photon. The broadening of the pmiss

T

spectrum due to miscalibration of photon clusters is also evident. After removing
the photon contribution, the resulting p̃miss

T distribution is mostly independent of
the reconstruction algorithm, as demonstrated in subplots (c) and (d).
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distributions obtained after all preceding cuts are shown in Figure 3.7, illustrating that

high-statistics event samples can be generated without compromising on the analysis

selection. It may be noted that in some SRs, particularly C and D, that at large

values of meff(incl.) the data undershoots the MC substantially. To some extent, these

discrepancies appear consistent with simple statistical fluctuations, rather than any

mismodelling in the MC, given that the distributions agree well apart from a string of

empty bins at high values. However, ALPGEN is known to produce boson pT distributions

that are somewhat harder than those measured in data; SHERPA, reproduces the data

better. These distributions are not translated directly into the final predictions for the

Zνν background in the SRs – recall that the parameterisation of the cross-section ratio is

in the pT of the boson. Instead, each event has a pT -dependent event weight applied, as

described in the next section.

Conversion of the γ + jets sample into a Zνν + jets estimate

Events passing the selection above are weighted to the Zνν + jets cross-section, using a

weighting factor

W (pT , sel.) =
RZ/γ(pT , sel.) ·BR(Z → νν̄)

Aγ(pT ) · εγ(pT )
. (3.1)

The weight factors are parameterised in the boson pT , and determined separately for

each of the 6 analysis channels. The denominator of the RHS corrects for the acceptance

and efficiency of the photon selection, as mentioned in Section 3.4.4.

Determination of the numerator is performed using the ratios of differential cross-

sections from Zνν and γ MC, including also the invisible branching ratio of the Z.

Differential distributions of boson pT used to derive this ratio are shown in Figures 3.8

and 3.9, together with the ratio itself, for each analysis channel. Several selection stages

are shown, to illustrate the evolution of the ratio as the event selection is tightened.

In all SRs, and at each level of selection, the ratio follows a classic “turn-on” shape,

rising from 0 at low pT to an asymptotic “plateau” at values of ∼ 400 GeV. The selection

was applied at the reconstruction level. However, the boson pT binning utilises truth

information (since no Z is reconstructed). There is a deviation at very low pT at the

preselection stage, but this is merely due to the photon trigger requirement (pT > 85 GeV)

that is not imposed on the Z events. At high pT , the statistical uncertainty on the MC

events becomes large, especially in the Z samples, and the ratio is subject to visible
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Figure 3.7: Distributions of meff(incl.) for photon events selected in CRγ for the 0-lepton
analysis. All selection criteria prior to the final meff(incl.) cut are applied. MC
samples are simulated using ALPGEN and normalised to the data luminosity.
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fluctuations. To compensate for this, the weight factors are computed with the value

of RZ/γ fixed above pT thresholds pmax
T of 500 GeV (SR A, A′, B), 400 GeV (SR C) or

350 GeV (SR D, E), at which the ratio has flattened out, but before the fluctuations

become overly significant. Events with pγT > pmax
T are weighted to RZ/γ(p

max
T ). A large 25%

statistical uncertainty was assigned to the value of the ratio, eclipsing other theoretical

uncertainties from scale and PDF variations [145]. MC statistics are particularly poor

for the 6-jet channel (E), necessitating the substitution of the 5-jet (D) ratio.

The acceptance and efficiency corrections are computed using the same MC samples.

Acceptance, Aγ, is defined as the fraction of true photon events meeting the selection

criteria on the hadronic system (and satisfying the lepton veto), and hence accounts for

the differences between the photon and Z fiducial acceptance. Efficiency, εγ , refers to the

fraction of photon events that are successfully reconstructed and identified. Together,

these two quantities correct the weight function for the photon selection that is applied

on top of the signal selection. Plots of the product Aγ × εγ are shown together with the

γ pT distributions from which they are derived in Figures 3.10 and 3.11. As the Aγ × εγ
ratio suffers from the same statistical limitations as the RZ/γ ratio, plateau values are

used above the same pT thresholds in each SR. Likewise, SR E utilises the ratio computed

in SR D.

Final predictions for the Zνν contamination in the SR are produced in the form of

meff(incl.) histograms, filled with the reweighted photon data. The Aγ×εγ and RZ/γ ratio

values applied are those computed after all selection criteria apart from the meff(incl.) cut.

Insofar as the bulk of events selected with a high meff(incl.) threshold contain a photon

with pT > 400 GeV, the differences due to the weights for lower pT photons should

be minimal, while the MC statistical uncertainty is reduced by omitting the meff(incl.)

cut. Figure 3.12 compares the Zνν background predictions from the CRγ sample with

those derived from photon and Zνν MC for each SR. To facilitate the likelihood-based

collective background estimation (Section 3.5), transfer factors were computed in the

form of cross-section-weighted average values of the weighting function:

TFSR = NSR(est, Zνν)/NCRγ (obs, γ). (3.2)

Table 3.6 shows the final estimates from photon data, compared with MC, while the

corresponding TFs and their uncertainties are shown in Table 3.5. The chief uncertainties

on the TFs and predictions are as follows:
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• Background fraction, fbkg in CRγ. This is a flat 5% uncertainty, fixed at the

maximum estimated CRγ contamination due to QCD jets and electrons faking

prompt photons [149, 153].

• Efficiency of the isolation cut, εisol, due to mismodelling of the isolation energies

(see Figure 3.4). A flat 5% is assessed from MC, as described earlier.

• Experimental effects on the acceptance and efficiency correction for photon events,

Aγ × εγ . A small uncertainty is evaluated by comparing the limiting Aγ × εγ values

at large pT with those estimated using the results of other analyses [149]. In general,

the differences are very small, so a minimal uncertainty of 5% is assigned, but this

is increased where the prediction and MC result disagree (i.e. SR E).

• Theoretical uncertainties, including MC statistics, on the cross-section ratio RZ/γ.

A conservative 25% uncertainty is assigned here, largely due to the limited MC

statistics of Z samples at high pT . In principle, scale and PDF uncertainties on the

MC modelling should be no larger than 10% [145].

• Jet energy scale (JES) and resolution (JER) uncertainties. These are computed

repeating the analysis with the jet energies fluctuated up/down by the 1σ range of

the JES, or smeared by the uncertainty in the JER, but are expected to cancel in

the cross-section ratio. Indeed, for SRs in which there are substantial MC statistics,

the contribution from JES/JER is only a few percent, but can be larger where

statistics are sparse.

• Scale of the soft pmiss
T terms from unassociated clusters (CellOut), estimated from

the cluster energy scale uncertainty [26]. These are computed by repeating the

analysis with the soft pmiss
T terms varied within their 1σ uncertainty ranges, but the

impact is expected to cancel in the cross-section ratio. Since the pmiss
T or p̃miss

T is

dominated by a large genuine bosonic recoil, which is primarily balanced by the

jets, the significance of the soft terms is anyhow minor.

Estimates of the Zνν background using the photon events from data are compared

in Table 3.6 to those derived from Zνν MC samples, as well as the application of the

estimation method to photon MC samples. Two MC generators are used: SHERPA and

ALPGEN. In general, the estimated Zνν contamination from data matches that from SHERPA

and ALPGEN photon samples relatively well. There is tolerable agreement with the pure

Zνν MC as well, but even the ALPGEN MC samples used to compute RZ/γ can be more

than 1σ away from the data-based predictions. In some cases, this is because the photon



132 ATLAS search strategies in the SUSY 0-lepton channel

C
R
γ
T
F

c
e
n
tra

l
v
a
lu
e
a
n
d

u
n
c
e
rta

in
tie

s

S
R

A
A
′

B
C

D
E

m
eff (in

cl.)
1
4
00

1900
1200

1900
900

1200
1500

1500
900

1200
1400

C
en

tra
l

V
alu

e
0
.3

7
7

0.382
0.388

0.414
0.312

0.337
0.343

0.299
0.28

0.304
0.312

f
b

k
g

5
%

5%
5%

5%
5%

5%
5%

5%
5%

5%
5%

ε
iso

l
5
%

5%
5%

5%
5%

5%
5%

5%
5%

5%
5%

A
γ ×

ε
γ

5
%

5%
5%

5%
5%

5%
5%

5%
7.47%

7.47%
7.47%

T
h

eo
ry

(R
Z
/
γ )

25%
2
5%

25%
25%

25%
25%

25%
25%

25%
25%

25%

J
E

S
/J

E
R

1
.5

6
%

1
.9%

1.55%
3.63%

2.69%
10.7%

16.6%
10.7%

4.95%
6.79%

9.18%

T
rigger

<
1
%

<
1%

<
1%

<
1%

<
1%

<
1%

<
1%

<
1%

<
1%

<
1%

<
1%

P
ileu

p
<

1
%

<
1%

<
1%

<
1%

<
1%

<
1%

<
1%

<
1%

<
1%

<
1%

<
1%

M
E

T
C

ellO
u

t
0
.3

1
%

0.39%
0.29%

0.97%
0.39%

0.65%
0.93%

1.3%
0.86%

1.04%
1.3%

T
a
b
le

3
.5
:

C
R
γ

T
F

ex
p

ected
va

lu
es

fo
r

ea
ch

S
R

in
th

e
0
-lep

to
n

5
fb −

1
a
n
a
ly

sis,
to

g
eth

er
w

ith
a
sso

cia
ted

u
n
certa

in
ties.

T
h
e

“
T

h
eo

ry
”

u
n

certain
ty

co
m

p
o
n

en
t

is
d

om
in

ated
b
y

th
e

M
C

statistical
u

n
certain

ty.



ATLAS search strategies in the SUSY 0-lepton channel 133

data collected in CRγ falls significantly short of the MC, notably in SR-C tight and SR-D,

where the pT distributions in Figure 3.7. Where the SR-E predictions are concerned,

recall that the weighting factors from SR-D were used due to a shortage of MC statistics

with at least 6 jets, giving a slightly higher prediction than would have been produced

by using the ratio computed in SR-E. There is some reassurance that this decision was

not unfounded, in that the SR-E photon MC undershoots the data. In any case, all MC

predictions turn out to be within 1σ of the prediction from data.

While certainly effective as a means for estimating a difficult background component,

the Moriond 2012 incarnation of the RZ/γ method still suffered from a number of

drawbacks. Most significantly, the method was only useful as a final stage estimation

method, since the ratios were computed only after the bulk of the selection had been

applied. It would potentially be of greater utility if an estimate could be produced with

fewer selection criteria applied, as the resulting pseudo-data could be used for analysis

optimisation. More space for improvement lies in the dependence on MC, and in the lack

of an integrated background estimate for CRγ . The latter has begun to be addressed in

the summer 2012 implementation (in which I was only minimally involved) by including

estimates of the QCD fake background using a matrix method, and of the electron

background from MC [154].
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Figure 3.12: meff distributions from data and MC in all SRs.
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3.5 Unified background estimation

Using detailed studies of data and MC events, as exemplified by the method presented in

Section 3.4.1, individual background components can be estimated on the basis of auxiliary

measurements in control selections. However, a full description of the background can

only be satisfactorily achieved by combining all the individual treatments in a unified

strategy. This section explains how the background estimates are consistently combined,

based on the likelihood minimisation approach described in [155].

The strategy for producing a unified background estimate uses a likelihood model

to coordinate auxiliary measurements from control region selections enriched in the

various background processes. This coherently determines the normalisation of each

background component, while minimising theoretical uncertainties on MC modelling.

Selection criteria for the CRs are chosen so as to produce samples enriched in the

background processes to be constrained or their proxies, as outlined in Section 3.4. For

each background process p, a transfer factor is defined from its associated CR r to a

different region r′, which may be the SR or any other CR in which it has a substantial

presence, as simply the ratio of expected event counts in the two regions:

TFp,r′ =
N exp
p,r′

N exp
p,r

. (3.3)

The TFs and the observed event counts in each CR are sufficient to determine the

background estimates in the signal region. A summary of the TFs to each SR from its

associated CRs is shown in Table 3.3. The likelihood method used to extract estimates

of the background processes is described later, in Section 3.5, and the final estimates of

backgrounds are presented there.

The inputs to the statistical analysis of the collision data consist of the following:

1. Measurements in various (signal and control) regions, ~o;

2. Transfer factors for each background process p from its associated CR to region r,

notated cp,r, and defining a matrix C;

3. Uncertainties on the provided transfer factors, including estimates of correlations.

These should provide a set of outputs, which are the expected event counts in every

region due to all sources of background, ~λ.
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Assuming that each background process has a single associated CR (for which r = p),

expected values λr for the event counts in every CR are given by

λr =
∑

p∈processes

cp,r · np (3.4)

=
∑

p∈processes

cp,r · (op − bp), (3.5)

where the values of np are the background-subtracted event counts for a particular process

in its associated CR p, and bp are assumed background values for the same. In short,

~λ = C · ~n. (3.6)

The background counts can be expressed as

~b = (C − I) · ~n, (3.7)

where the identity term I comes from assuming the sensible convention that cp,p = 1.

equation 3.7 implies that we can solve for ~n in terms of ~o as a simple matrix inversion,

~n = C−1 · ~o. (3.8)

This implies that ~λ = ~o, as we should hope – while seeming tautological, in that our

best estimates of the expectation values, having seen the data, are the very measured

values, we have found a way to extract the raw background normalisation ~n, which can

be translated into estimates for the signal region background contamination.

In practice, systematic and statistical uncertainties on the TFs must also be taken

into account in the background determination, and it may also be desirable to include

additional measurements in order to overconstrain the system (e.g. by using multiple

control measurements of the same background process). This can be done by turning

the hitherto constant matrix C into a function of the background process normalisation

factors ~n, and nuisance parameters ~θ constrained by a likelihood function. The important

experimental and theoretical uncertainties are described in the next section, followed by

a description of the likelihood function.



138 ATLAS search strategies in the SUSY 0-lepton channel

3.5.1 Sources of uncertainty on background and signal

predictions

No experimental result is complete without a careful accounting of uncertainties, both

systematic and statistical. Every effort has been made to understand and control the

systematic uncertainties on all background and signal predictions, which dominate the

uncertainty budget in most SR selections. A list of the most important systematic

uncertainty components is given below:

1. Jet Energy Scale;

2. Jet Energy Resolution;

3. Statistical uncertainties on control region selections and Monte Carlo samples;

4. Theoretical uncertainties on modelling of initial state radiation in signal and back-

ground Monte Carlo samples;

5. Theoretical uncertainties on Parton Distribution Functions (PDFs) used in cross-

section calculations and event generation;

6. Theoretical uncertainties on extrapolation of Monte Carlo-based background esti-

mates to other kinematic regions.

The impact of these uncertainties on the experimental results is determined by

estimating the range of fluctuation in the TFs due to each of the systematics sources.

They are then propagated through the statistical apparatus, affecting the significance

of any deviations observed in data. Procedures for estimating the impact of the main

uncertainties are as follows:

• Uncertainties related to energy scales are dealt with by varying the energies of all

affected objects up and down by the estimated 1σ range of the scale. These modified

object energies are propagated throughout the analysis, altering selection accep-

tances, and hence shifting the signal expectations or background TFs. Resolution

uncertainties are treated similarly, but object energies may be smeared by a factor

drawn from a Gaussian of width σreso, rather than scaled by a predetermined factor.

• Statistical uncertainties due to control region and Monte Carlo samples with few

events are simply applied as a symmetric uncertainty on the TFs.
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• ISR modelling is studied in background samples by two methods. In some cases,

parameters governing the ISR production are modified in event generation codes.

Alternatively, when working with multileg MC generators, the number of additional

jets explicitly produced in the matrix element may be reduced. The difference in

the results between the nominal and modified samples defines the 1σ uncertainty

range. The former treatment is also applied to signal event samples, and described

in more detail in Section 4.2.1.

• PDF uncertainties are computed from the 68% confidence level envelope of the

MSTW and CTEQ 6.6 PDF uncertainty sets according to the PDF4LHC prescrip-

tion [156]. The maximal and minimal values of the MSTW and CTEQ envelopes

demarcate the uncertainty range, the central value of which is taken as the nominal

value of the cross-section etc.

3.5.2 Likelihood function

The likelihood function, conditioned on the set of observed event counts in the various

control regions, ~o = {or|r ∈ regions}, is defined to be of the form:

L(~o | ~n, ~θ ) =
∏

r∈regions

P
(
or |λr(~n, ~θ )

) ∏

s∈syst

G(θs | 0, 1), (3.9)

where P [or|λr(θs)] represents a Poisson distribution with mean parameter λr taking the

form

λr(~n, ~θ ) =
∑

p∈processes

cp,r np
∏

s∈syst

(1 + ∆r,p,s θs). (3.10)

The (1+∆r,p,s θs) factors encode the impact of each nuisance parameter θs on the expected

contribution of each process p in the measurement region r. Unit Gaussian constraints

G(θs|0, 1) are applied to the nuisance parameters such that θs = ±1 translates to a ±1σ

fluctuation in the relevant systematic.6 Zero values for ∆r,p,s are possible, in the case

that a given systematic does not apply to a particular measurement of some process.

6The choice of Gaussian priors for the nuisance parameters is not without flaws, in that large uncer-
tainties may lead to substantial tails below 0. Alternative priors such as log-normal distributions
may solve this issue, but have their own drawbacks; in the final statistical computation, Gaussian
terms are retained, but truncated at 0 to avoid unphysical predictions.
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The logic behind this formulation is as follows:

1. Poisson pdfs7 in the first product in equation 3.9 determine the probability of the

measurement in each region r assuming the expectation values λr, accounting for

statistical uncertainties only.

2. Normalisation factors ~n allow the magnitudes of the different background processes to

be modified; they are not constrained by the likelihood a priori, but are conditioned

on the measurements ~o.

3. The Gaussian pdfs constrain the nuisance parameters ~θ representing the systematic

uncertainties – in the first instance, the assumption that the measurements are

nominally “correct” is preferred, but if the measurements do not conform exactly

to the background model encoded in the TFs, then shifts of ~θ can accommodate

the deviations in addition to modifications of ~n.

By maximising the likelihood L given a set of measurements ~o, the normalisation

factors ~n are fixed to the values most consistent with the data, accounting for the

systematic uncertainties. The nuisance parameters ~θ are likewise determined, but

their values need not have a concrete physical interpretation, existing mainly to allow

additional elasticity in the background model. Via the parameterisation in equation 3.10,

the expected contribution of each background process to any of the CRs, and more

importantly the SR, can be determined. For background determination, no signal

component is assumed, and hence the SR measurement is not fed into the likelihood, so

as to avoid introducing any bias.

3.6 Results

The values of all background predictions in the eleven signal regions obtained from

the fit to the 4.7 fb−1 of data analysed in [79] are quoted in Table 3.7. Also shown

are the total SM background estimates together with their statistical and systematic

uncertainties, and the actual measured event counts from the SR data. In most SRs, the

expected and observed event counts agree to within one standard deviation, indicating a

well-constructed background model, but sadly no signal. There are also SRs in which the

expectation and observation deviate substantially, both upwards and downwards – the

7To distinguish probability density functions from parton distribution functions, “pdf” will be used to
abbreviate the former, and “PDF” for the latter.
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significance of these deviations will be quantified not here, but in the following chapter.

However, in some cases, the discrepancies can easily be explained away. For example, the

eight excess events in SR C tight appear tantalising and/or alarming, but as Figure 3.7

indicates, there appears to be a large downward fluctuation in the photon CR, resulting

in a depressed estimate of the Z + jets background contribution. The large shortfalls

in SRs A and B are perhaps more emblematic of background mismodelling, especially

because the dominant Z + jets background estimates are already suppressed relative to

the näıve expectations from MC.

While the background composition in each SR varies to quite a large degree, the

variation is very much on physical grounds, as the kinematic selection favours certain

background processes over others. The dominant impact is from the jet multiplicity. As

alluded to previously, the strong coupling suppresses radiation of additional jets. Hence,

2→ 1 processes such as W/Z production exhibit a markedly hierarchical structure in

the transverse momenta of their accompanying jets. This is present to a lesser extent

in QCD multijet and tt production, where two objects are initially produced, and may

yield additional jet radiation through jet fragmentation or decay processes. Because

hadronic W decays produce little pmiss
T , the main route by which top and W events enter

the SR is through decays to a neutrino and τ lepton which itself decays hadronically,

mimicking a jet and inflating the jet multiplicity. However, the possibility for production

of neutrinos with a large boost away from the visible jets is largest in the Zνν + jets

configuration. As a result, the low jet multiplicity SRs A, A′ and B have a predominant

contribution from Z + jets backgrounds, whereas tt production becomes increasingly

important as additional jets are required by the event selection. The large presence of

diboson production predicted in several SRs is not theoretically expected, but likely

due to events with large weights present at large meff in the MC, as is clearly visible in

Figures 3.1 and 3.2. Finally, due to effective event selection choices, the QCD background,

which is by far the largest in cross-section, is immensely suppressed, and contributes

< 10% to all selections.

Further exploration of the experimental results awaits in Chapter 4, where the

statistical interpretation of the analysis and theoretical contextualisation will be discussed.
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3.7 Extension and generalisation of pseudo-data

generation

Based on the premise that γ + jets event kinematics resemble those of Z + jets events

in most respects, and supposing that they show substantial differences only in a limited

number of distributions, a logical generalisation of the RZ/γ method is to parameterise the

ratio in these observables. Rather than reweight the distribution of a single observable,

it would then be possible to derive event weights for the photon control sample such

that any desired distribution could be estimated. Such a parameterisation would need to

balance faithful reproduction of the Z + jets kinematics with the statistical accuracy of

the ratio computation. That is, enough parameters are needed to correct the evident

Z/γ differences, but not so many that MC statistical uncertainties grow too large (or

equivalently that an impractically large MC sample is needed).

Clearly, the pT of the bosons is the most important parameter for the ratio, and

reweighting in this variable has already demonstrated its efficacy. The jet multiplicity and

boson pseudorapidity have also been mentioned as observables in which the cross-section

ratio shows some variation. To judge the quality of the Z estimate, it is of course necessary

to check a set of variables that are less correlated with the reweighting parameters. It

is appropriate to concentrate on the variables on which important selection cuts are

imposed. These include meff(incl.) and the azimuthal separations of the ~p miss
T and the

jets, ∆φ(jets, ~p miss
T ), abbreviated simply as ∆φ.

A “proof-of-principle” study has been carried out to evaluate the viability of this

approach, and will be duly described. It utilises improved MC samples (ALPGEN and

SHERPA), and is carried out purely at truth level for simplicity. So long as the RZ/γ

parameterisation is restricted to observables that are well-modelled (alternatively, well-

measured), no large biases should be introduced relative to the reconstruction-level ratio.

MC of both Zνν + jets and γ + jets events is produced at
√
s = 8 TeV with staggered

pT cuts of 70, 140, 280 and 500 GeV, and up to 5 jets with pT > 30 GeV in the matrix

element (Appendix 3). SHERPA has been shown to reproduce the data better in photon

events, and was the main event generator used to apply this background estimation

method to the 8 TeV LHC data [154].

Using these simulated samples, the distributions of numerous important observables

are compared between the Zνν + jets and γ + jets samples, and cross-section ratios

extracted. All analysis is performed at truth level, using jets formed from stable hadrons
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and charged particles, and pmiss
T defined from the sum of the transverse momenta of all

neutrinos. Comparisons are made after a minimal event selection that should not bias

the results, but eliminates a large fraction of events that would almost certainly fail any

search selection. Two jets with pT > 30 GeV (excluding the hardest prompt photon) are

required, and are further requested to have ∆R > 0.4 with the photon or Z boson, to

approximate the calorimeter isolation criterion on the photon selection. Distributions of

the boson pT before and after showering are shown in Figure 3.13, demonstrating that the

generated events have a smooth pT distribution that is not marred by large event weights,

and that even after showering is simulated, the pT boundaries remain quite sharp. Using

the final state pT distribution, the cross-section ratio RZ/γ(pT ) is computed, and shown

in Figure 3.14. The ratio demonstrates the same turn-on and plateau behaviour seen in

the earlier plots (Figures 3.8 and 3.9), arriving at a value fixed by the quark couplings of

the two bosons, and remains flat up to pT ' 1 TeV, where statistical fluctuations begin.
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Figure 3.13: MC truth distributions of boson pT prior to showering (top), illustrating pT
slicing; and (bottom) boson pT in final state, post-showering. Events are
generated in SHERPA.
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Figure 3.14: The cross-section ratio RZ/γ , parameterised in the boson pT .

While it is important to correctly model the bosons, the main goal of this method is

to simulate the hadronic system of the Z’s with that of the photons, so it is critical that

both of these are likewise well-modelled, and furthermore that they agree in all important

respects. A proper test of the modelling involves a data-MC comparison, which is not

done here, but a comparison of the photon and Z distributions will be shown, in order to

show the extent to which the pseudo-data generation is possible. Four important hadronic

distributions need to be considered: the number of 30 GeV jets (Nj30), the scalar sum

of the jet transverse momenta (HT ), the effective mass (meff(incl.) = HT + pmiss
T ) and

the eta-phi distance between the jets and the boson (∆R(jets, boson), abbreviated ∆R).

In Figure 3.15, their cross-section ratios RZ/γ(Nj30), RZ/γ(HT ), RZ/γ(meff(incl.)) and

RZ/γ(∆R), are shown.

It is clear that the cross-section ratio is not completely independent of the hadronic

distributions, which implies that a simple parameterisation in the boson pT may not

capture all the variation. However, it must be noted that there is a degree of correlation

between the pT and these various distributions, which certainly underlies some of the

turn-on behaviour in HT , and more importantly in meff(incl.). There is a far weaker

correlation between pT and Nj30, and indeed RZ/γ(Nj30) shrinks rather than grows as the

jet multiplicity increases. Finally, the ratio parameterised in ∆R is flat at intermediate

values, but the ratio shifts to lower values when the jets are either very far from or very

close to the boson. This is potentially problematic, as an important cut is placed at

∆φ(jets, ~p miss
T ) > 0.4, which is strongly correlated with ∆R, and might be mismodelled

if this behaviour is not corrected.
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Figure 3.15: Cross-section ratios RZ/γ , parameterised in several hadronic distributions: Nj30,
HT , meff(incl.) and ∆R.

To clarify the impact of the correlations with pT , the ratio is plotted again for each

of the hadronic variables, but now split into several bins of pT , in Figure 3.16. Some

differences immediately become obvious. The variation in RZ/γ with pT is relatively

minimal for Nj30 and ∆R, with only an overall normalisation change occurring. However,

the shape of the ratio function changes significantly with HT , and by implication with

meff(incl.), though a specific trend is more difficult to identify. This suggests that either

Nj30 or ∆R might be a suitable parameter for reweighting, alongside pT .

As a test, the ratio RZ/γ(pT ) is used to reweight the γ + jets events to the Zνν + jets

cross-section, and a comparison of the resulting pseudo-data to the original Zνν + jets

events is made to evaluate the quality of the simulation. Resulting distributions of kine-

matic observables in the Z and γ MC as well as the reweighted γ + jets pseudo-data are

shown in Figure 3.17. The exercise is repeated, parameterising RZ/γ in terms of (pT , Nj30)

and (pT ,∆R), and the results are shown in Figure 3.18 and Figure 3.19, respectively.
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Figure 3.16: Cross-section ratios RZ/γ , parameterised in several hadronic distributions: Nj30,
HT , meff(incl.) and ∆R.

The deficiencies of the pT -parameterised reweighting are clear: the photon pseudo-data

overestimate the number of high jet multiplicity events, and the ∆R discrepancy leads

to a large difference in the ∆φ distributions, as expected. However, HT and meff are very

well reproduced, apart from a 10% increase in the relative normalisation. Reweighting

the photon events in RZ/γ(pT , Nj30) fixes the overestimation of the jet multiplicity by

construction, except in the highest jet multiplicity bin, where some residual excess

remains. The ∆R discrepancy remains as a problem, though, and the reweighted HT

distribution develops a small negative slope relative to the Z MC, although the overall

normalisation improves. There is no discernible mismodelling in the meff distribution

at all. Finally, using RZ/γ(pT ,∆R) to reweight the photon events improves the Nj30

simulation by a modest amount while repairing the ∆R problem – the ∆φ distribution is
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perfectly reproduced. A penalty is incurred in the form of a more drastic slope difference

in the HT distribution, and an imperfect meff modelling.

Ultimately, it may prove necessary to parameterise RZ/γ in terms of all three variables

pT , Nj30 and ∆R, although this may come at the expense of a larger statistical uncertainty

on the ratio. Alternatively, if one of these variables is sufficiently uncorrelated with the

remaining two, a second correction could be derived independently.

Various open issues need to be resolved before this generalised method can be employed.

Firstly, the reconstruction efficiency corrections need to be taken into account, as in

the preexisting method – ideally these would be evaluated in data rather than MC, e.g.

via a tag-and-probe study. A detailed background study is also required, in order that

any background contamination can be estimated and subtracted. Finally, a stronger

validation of the reweighting should be carried out by constructing weights for leptonic

Z events, and checking the agreement between Zll data and pseudo-data. Nevertheless,

the method shows promise, and could bring important improvements in future analyses.
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Figure 3.17: Comparison of kinematic observables in Z and γ SHERPA MC with γ events
reweighted by RZ/γ(pT ). Pale shading indicates the statistical uncertainty on
the distributions.
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Figure 3.18: Comparison of kinematic observables in Z and γ SHERPA MC with γ events
reweighted by RZ/γ(pT , Nj30). Pale shading indicates the statistical uncertainty
on the distributions.
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Figure 3.19: Comparison of kinematic observables in Z and γ SHERPA MC with γ events
reweighted by RZ/γ(pT ,∆R). Pale shading indicates the statistical uncertainty
on the distributions.
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“ The law of probability, it has been oddly asserted is something to do

with the proposition that if six monkeys. . . if six monkeys were. . .

The law of averages, if I have got this right, means that if six monkeys

were thrown up in the air for long enough they would land on their tails

about as often as they would land on their – [Heads]. ”

— Guildenstern

Of the possible outcomes of an experimental search for new physics, the discovery

result is by far the more exciting. However, a negative result is not a null result, and still

carries substantial information about the structure of physics. Indeed, while SUSY has

yet to be detected in any direct fashion, results from the LHC have wrought large scale

changes in the theoretical landscape in the past two years. ATLAS and CMS searches

have already reached sensitivity to TeV-scale squarks and gluinos in a wide range of

decay modes, with the result that the simplest SUSY models, such as the Constrained

MSSM/Minimal Supergravity (CMSSM/MSUGRA) framework, have been increasingly

discredited in favour of more “natural” SUSY spectra [157].

In this chapter, the statistical techniques used by ATLAS for limit setting will be

described. These incorporate a method for simultaneously estimating the contributions of

multiple background sources, taking into account measurements and cross-contamination

in multiple control selections. These techniques will be applied to interpret the results

of the ATLAS searches in various model spaces. Contextualisation of the search results

in the wider SUSY context is provided in the form of two phenomenological studies

conducted with Cavendish and DAMTP theorists. Finally, the evolution of the search

strategy will be used to illustrate how the analysis has been optimised over time.

The hypothesis-testing prescription in Section 4.1 is a review of methods endorsed by

and developed by the ATLAS Statistical Forum. My co-authors on [155] and I developed

a software package initially used for limit-setting by the SUSY group, although this has

more recently been superseded by newer tools. All limit plots produced for the 0-lepton

search up to and including the 5 fb−1 publication [79] were the joint work of Michael

Rammensee and myself. While I did not handle the detailed validation of the statistical

infrastructure, the analysis of signal MC samples was my sole responsibility. Furthermore,

I was responsible for the choice of relevant signal models and the preparation of MC

samples, which have to a large extent driven the development and focus of the analysis.
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4.1 Statistical analysis

Statistical analysis of an experimental result determines whether a measurement is in

agreement with our expectations. We start by encoding the predicted measurements

given some relevant set of experimental backgrounds and signals, extending the likelihood

model described in Section 3.5. Once a background estimate has been made (Table 3.7),

it is possible to determine the exclusion or discovery significance of the measured data.

To accomplish either of these, a SUSY signal is added to the list of contributing

processes, and the signal region included in the fit as an additional constraint. A

parameter µ is used to parameterise the signal strength, analogously to the background

normalisation factors. For convenience, µ is treated as a relative strength,

λr = sr · µ+ br, (4.1)

meaning that µ = 0 indicates an expected measurement of only the background total,

while µ = 1 for the nominal signal hypothesis. The nominal signal contribution is a

constant, s, determined from simulation. In the fit, µ can take any real value, and can

even be negative. The signal is present in the SR for both discovery and exclusion tests.

It may also contribute to CR expectations, modifying the background normalisation, for

the exclusion test only (since in that case a particular signal model is assumed).1

Deviations between the predicted SR event count and the data are assigned a statistical

significance in the form of a p-value: the likelihood that a deviation of at least that

magnitude would occur due to random fluctuations. In an exercise with only one

measurement, this could be restated as the likelihood of more (fewer) events being

measured than predicted for a discovery (exclusion) test. As our background estimation

procedure is conditioned on the CR measurements, which are not entirely independent

from the SR measurement, the size of the deviation is not as easy to quantify in terms of

a simple difference between prediction and measurement. It is convenient to define a test

statistic that encapsulates in one number the size of this deviation – it maps the set of

measurements ~o onto R.

1The assumption that the signal contributes to the CR counts allows for the background contributions
to be depressed by the best-fit signal strength, and therefore can (realistically) weaken a test for
exclusion. In a search for a generic excess due to signal, no specific estimate can be made for SR
contamination. Ignoring signal contamination does not artificially strengthen a discovery test, since
if the CRs were indeed contaminated, the fitted signal strength in the SR would be reduced.
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In fact, the likelihood itself can serve as a test statistic. However, it is convenient

to use a different test statistic which permits the use of approximate calculations when

computational resources are limited [158]. This is based on the profile likelihood ratio,

tµ = −2 ln Λ(µ,~o ) = −2 ln
L(~o | µ, ˆ̂~n,

ˆ̂
~θ )

L(~o | µ̂, ~̂n, ~̂θ )
, (4.2)

where the single-hatted variables are the unconditional maximum-likelihood-estimators

for µ, ~n and ~θ, i.e. those values that maximise the likelihood for the given ~o; and

the double-hat indicates the conditional maximum-likelihood-estimators for ~n and ~θ,

where µ is chosen as the best-fit value given the measurements ~o.2 Profiling over the

nuisance parameters in this manner produces similar results to the Bayesian method

of marginalising over priors for the nuisance parameters, while avoiding large multi-

dimensional integrals in every evaluation of the test statistic. The magnitude of the test

statistic tµ is determined solely by the deviations between expectation and observation

(accounting for systematics), regardless of direction.

It is an assumption of the 0-lepton analysis, and indeed of many searches, that a signal

can only lead to a positive enhancement of the SR event counts, and that a negative

contribution is unphysical. The presence of new physics is then consistent only with

an excess of events. Conversely, one would not wish to exclude a new physics scenario

on the grounds that more events were seen than predicted. These restrictions can be

applied to the test statistic as follows:

• In the discovery case, an input value of µ = 0 is taken and test statistic is fixed to 0

(perfect agreement) in the case of fluctuations below the background expectation:

q0 =




−2 ln Λ( 0, ~o ) µ̂ ≥ 0,

0 µ̂ < 0.
(4.3)

• For setting upper limits, it is set to 0 when the best-fit signal strength parameter µ̂

is larger than one (µ = 1 corresponds to the signal plus background hypothesis):

q1 =




−2 ln Λ( 1, ~o ) µ̂ ≤ 1,

0 µ̂ > 1.
(4.4)

2In [158], the parameters ~n were subsumed into ~θ, but are shown separately here for clarity.
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The p-values can then be formally defined, for discovery (µ = 0) and exclusion (µ = 1):

pµ =

∫ ∞

qµ,obs

f(qµ) dqµ, (4.5)

where f(qµ) represents the pdf of the test statistic, while qµ,obs is shorthand for qµ(o).

The pdfs f(qµ) are not easy to compute or integrate. However, qµ is a function of

the parameter sets ~n, ~θ, whose pdfs are equivalent to the likelihood function L(~o), so a

practical solution is instead to change the variables of integration:

pµ =

∫∫
H(qµ − qµ,obs) · qµ d~n d~θ. (4.6)

In the integrand, the H represents the Heaviside step function, which is needed to allow

an integral over all possible values of ~n, ~θ while retaining the limits of integration on

qµ. Once the p-values have been defined concretely, the integration can be accomplished

using Monte Carlo methods, generating pseudo-data from the likelihood model itself.

4.1.1 Determining significance

Once p-values have been computed, the data can then be interpreted as being more

compatible with a signal plus background hypothesis (large p0) or with the background

only (large p1). Especially when either p0 or p1 is small, it is convenient to work in units

of approximate Gaussian significance,

Z0,1 = Θ−1(1− p0,1), (4.7)

where Θ is the cumulative distribution of a normal distribution, and Θ−1 hence refers

to the quantile. A discovery is marked by Z0 ≥ 5, equivalent to p0 ≤ 2.87 × 10−7.

The criterion for exclusion of a signal model is less stringent: the 95% confidence level

(C.L.), i.e. p1 ≤ 0.05 or Z1 ≥ 1.64, is considered sufficient. In order to protect against

setting spurious exclusion limits due to downward fluctuations in the data, the CLs

prescription [159] is used, such that a model is excluded if

CLs = p1/(1− p0) ≤ 0.05. (4.8)

The prescription accomplishes its goal by penalising measurements that would come

close to rejecting the Standard Model only hypothesis – these could exclude even models
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with a minuscule signal expectation and little separability from the background. In strict

frequentist terms, this definition overcovers, due to the denominator which is always less

than 1 (meaning that CLs may be larger than 1).

ATLAS, by convention, presents both discovery and exclusion results, avoiding

problems associated with “flip-flopping” [160]. For discovery significance, a single number

(for each SR) is sufficient: we present p0 and the equivalent Z0. Exclusion limits are

usually shown in one of two formats:

• Numerical values comprising an upper limit on the BSM cross-section. This may be

a fiducial/visible cross-section σvis = σ×BR×ε×A, which is dependent solely on the

analysis sensitivity and observations – model-independent in a sense. Alternatively,

model characteristics, especially the acceptance and efficiency for a given signal

scenario can be factored in to determine a limit on the σ × BR.

• Excluded regions in some parameter space are determined by hypothesis-tests on a

grid of models, and are often represented visually by a region in the plane.

Statistical analysis of 7 TeV collision data from 2011

Using the background predictions from Table 3.7, the agreement between the data and the

predicted background is quantified in terms of discovery significance p0, as well as upper

limits on the number of events from new physics, NBSM, and upper limits on the visible

cross-section of new physics, σvis, contributing to the SR event counts. These values

are shown for each SR in Table 4.1. It can be seen, unfortunately, that no compelling

evidence for new physics is apparent, the largest excess over predictions being at the

level of 2.1σ, and attributed to CR fluctuations depressing the background estimate. The

constraints on new physics placed by this analysis are very stringent – in the 2- and 3-jet

channels A and B, BSM contributions greater than 0.66 fb and 0.64 fb respectively are

ruled out. We now translate these results directly into constraints on SUSY.
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4.2 Supersymmetric signal spaces

4.2.1 Models relevant for lepton-free searches

Several model spaces are selected as straw men for analysis optimisation and interpretation

of the analysis results. MC samples are produced in these model grids, and the event

samples run through the ATLAS full simulation and reconstruction routines. The models

used for interpretation of the analysis results fall into two categories. In the first category

fall models in which an “inclusive” sparticle content is assumed: their diverse sparticle

content allows for a complex phenomenology via multiple decay routes. These may be

motivated by a concrete SUSY-breaking model. A second category is made up of more

restrictive “simplified models”, usually exemplifying a single production and decay mode.

Inclusive supersymmetric spectra

The main inclusive model to be discussed is a slice of the Constrained MSSM [52, 54–58]

used for comparison with similar searches carried out at ATLAS, CMS, CDF and D0.

This slice covers the ranges 100 < m0 < 3500 GeV and 50 < m1/2 < 600 GeV, while

the remaining CMSSM parameters are set to tan β = 10, A0 = 0, µ > 0.3 As the

CMSSM is only one of many possible SUSY models motivated by high-scale physics,

and is increasingly discredited by results from Higgs searches [161], constraints on this

plane may not be the most theoretically significant. However, it covers a wealth of

phenomenological scenarios (see e.g. Figure 2.8), and is thus a good proxy for the larger

realm of supersymmetric possibility.

Simplified model parameterisation

Simplified models are characterised by well-defined SUSY particle production and decay

modes, and a minimal particle content [110–113]. This can be achieved by assuming that

all SUSY particles not of interest are very massive and decouple. Multijet final states

with pmiss
T but no leptons can be described by a number of simplified models. In this

note, results are presented for the most basic ones. In the following models, the lightest

neutralino χ̃0
1 is always the LSP, and R-parity conservation is assumed.

3A particular CMSSM model is specified by five parameters: the universal scalar mass, m0, the
universal gaugino mass m1/2, the universal trilinear scalar coupling, A0, the ratio tanβ of the vacuum
expectation values of the two Higgs fields, and the sign of the higgsino mass parameter, µ.
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The simplified models reduce the supersymmetric parameter space to a maximum of

three free parameters, from the list below:

1. The mass of the degenerate first- and second-generation squarks, mq̃.

2. The mass of the gluino, mg̃.

3. The mass of the neutralino LSP, mχ̃0
1
.

4. The parameter x, defined as

x =
mχ̃±1

−mχ̃0
1

mq̃L,g̃ −mχ̃0
1

, (4.9)

which controls the mass of the lighter chargino relative to the mq̃ or mg̃ and mχ̃0
1
.

Interpretation of the results in Ref. [79] is carried out in the following simplified models:

1. Pair production of first- and second-generation squarks decaying directly to quarks

and the LSP (q̃L,R → q χ̃0
1) with 100% branching ratio. Squark masses 137.5 GeV ≤

mq̃ ≤ 1200 GeV and LSP masses 0 ≤ mχ̃0
1
≤ (mq̃ − 25 GeV) are considered.

2. Pair production of gluinos decaying directly to a quark-antiquark pair and the

LSP (g̃ → qq̄ χ̃0
1), with 100% branching ratio. Gluino masses 137.5 GeV ≤ mg̃ ≤

1200 GeV and LSP masses 0 ≤ mχ̃0
1
≤ (mg̃ − 25 GeV) are considered.

3. Production of first- and second-generation squarks decaying to a quark and a

chargino, and subsequent decay of the chargino to an on- or off-shell W and

the LSP (q̃L → qχ̃±1 → qW (∗)χ̃0
1) with 100% branching ratio. Only left-handed

squarks are considered, the couplings of the right-handed squarks to the chargino

being forbidden. Squark masses 137.5 GeV ≤ mq̃ ≤ 1200 GeV and LSP masses

0 ≤ mχ̃0
1
≤ (mq̃ − 25 GeV) are considered. Chargino masses are determined by the

choice of the parameter x, as defined in equation 4.9. Two grid parameterisations

are produced: one in which x = 1/2, with the squark and LSP masses being varied,

and a second in which the LSP mass is held constant at 60 GeV, while the chargino

mass is varied between mχ̃0
1

and mq̃.

4. Production of gluinos decaying to a quark-antiquark pair and a chargino, and

subsequent decay of the chargino to an on- or off-shell W and the LSP (g̃ → qq̄χ̃±1 →
qq̄W (∗)χ̃0

1) with 100% branching ratio. Gluino masses in the range 137.5 GeV ≤
mg̃ ≤ 1200 GeV and LSP masses 0 ≤ mχ̃0

1
≤ (mg̃ − 25 GeV) are allowed. The

chargino masses and grid parameterisations are identical to those in model 3.
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5. Production of first- and second-generation squarks and gluinos with direct two-body

(q̃L,R → q χ̃0
1) or three-body decays (g̃ → qq̄ χ̃0

1), as in models 1 and 2. When kine-

matically allowed, the heavier strong sparticles may decay via the lighter ones, e.g.

(q̃L,R → q g̃ → qq′q̄′ χ̃0
1), (g̃ → q q̃∗ → qq̄ χ̃0

1). Planes in the squark and gluino masses

with mχ̃0
1

= 0, 195, 395 GeV are probed with (mχ̃0
1
+5 GeV) ≤ mq̃,g̃ ≤ 2 TeV. Four

production processes are permitted: g̃-g̃, g̃-q̃, q̃-q̃ and q̃-q̃∗ (and charge conjugates).

The choice of 137.5 GeV as a lower bound on the gluino or squark masses simulated

is partly motivated by the bound of 100 GeV on mq̃ from LEP. In addition, as the

trigger selection implies cuts above 130 GeV on the leading jet pT and pmiss
T , the efficiency

becomes vanishingly small for models in which the sparticle masses are lower. All

sparticles not intended to be produced in the models above are given masses of 4.5 TeV.

Signal model event generation, cross-sections and theoretical uncertainties

The MC codes used for signal event generation were HERWIG++ and MADGRAPH/MADEVENT

with hadronisation performed in PYTHIA6. Specifically, HERWIG++ [162, 163] was used for

production of the CMSSM/MSUGRA samples, while MADGRAPH/MADEVENT + PYTHIA6

was used to generate all remaining samples to overcome HERWIG++’s limited handling of

ISR. In scenarios where the SUSY mass spectrum is substantially compressed, the high√
ŝ encourages energetic ISR production, which offers an additional handle on discovery.

Being driven by a parton-shower algorithm, HERWIG++ is unable to fully account for

ISR production and moreover lacks the option to tune ISR parameters for uncertainty

determination. To counter this, MADGRAPH/MADEVENT version 4.4.57 [164, 165] was used

to generate particle four-vectors including up to one additional jet in the matrix element.

The resulting events were showered and hadronised in PYTHIA6 [130], which permits

adjustment of certain scales affecting the ISR production and facilitates the study of

uncertainties on ISR modelling.

For event generation, the MC programs were provided with SUSY mass spectra

in the SUSY Les Houches Accord (SLHA) format [166]. The mass spectra for the

CMSSM/MSUGRA models were computed using the ISASUSY RGE solver from ISAJET

version 7.80 [167]. Simplified model spectra were specified by hand, so as to satisfy the

requirements listed in the previous section.

The contributions to the signal regions from various SUSY production processes

were normalised to the NLO cross-sections, including the NLO supersymmetric QCD
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corrections and the resummation of soft gluon emission at next-to-leading-logarithmic

(NLL) accuracy, calculated by NLL-fast where possible (essentiallymq̃,mg̃ < 2 TeV) [168].

When NLL-fast cross-sections were unavailable, PROSPINO v2.1 [169] was used instead.

The standard ATLAS GEANT4-based detector simulation was used to model detector

response to the signal MC events [129].

Uncertainties on the signal yield of the SUSY models originate from experimental

and theoretical sources. The former are identical to those on the background processes,

and have been discussed in Section 3.5.1. Major theoretical uncertainties on the signal

expectations arise from PDF and renormalisation/factorisation scale uncertainties on

signal cross-sections, as well as from uncertainties on ISR modelling, where ISR jet

production contributes significantly to signal acceptance. The latter is important for

models with small masses and mass-splittings (MSUSY . 300 GeV, ∆MSUSY . 200 GeV).

At high masses, on the other hand, the lack of strong experimental constraints on the gluon

PDF at high x implies large PDF uncertainties. Hence, the theoretical signal systematics

become large (& 30%) at high and low masses, but are typically less substantial in the

approximate mass range 300 GeV .MSUSY . 800 GeV.

ISR systematics were determined by comparing the acceptance of signal selections

while varying ISR parameters in MADGRAPH/MADEVENT + PYTHIA6 samples [170]. On the

basis of this study, a maximum uncertainty of 30% was found, which becomes negligible

as growing sparticle mass scales and mass-splittings increase the available kinetic energy

of the decay products. A conservative ISR-modelling uncertainty on the acceptance is

thus assigned, according to the formula:

σISR =





0 ∆MSUSY ≥ 300,

σ0 · (300−∆MSUSY)/300 ∆MSUSY < 300,
where (4.10)

σ0 = 0.27 · (300−MSUSY)/400. (4.11)

This is applied to all signal grids apart from CMSSM/MSUGRA, in which the mass-

splittings are always large enough to render this uncertainty negligible.

The next section will discuss the characteristic kinematics of various SUSY models,

highlighting several interesting features affecting search sensitivity to these models.
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4.2.2 Phenomenology of SUSY model spaces

Phenomenological MSSM squark/gluino production

The MSSM squark/gluino grid contains only strong production of gluinos and first- and

second-generation squarks, and direct decays to jets and LSP’s are enforced. Following

are details on some of the theoretical properties of the models in this grid, as well as the

effect of the dominant detector systematics on the signal acceptance. Three values of the

LSP mass were considered: 0, 195 and 395 GeV.

Example tree-level Feynman diagrams for the four production modes are displayed

in Figure 4.1, and plots of the corresponding cross-sections are shown in Figure 4.2. In

the cases of q̃-q̃∗, g̃-g̃ and q̃-g̃ production, the cross-sections fall off simply as the sum

of the final state masses increases. Cross-sections for the q̃-q̃∗ process are independent

of the gluino mass and vice versa. However, in the q̃-q̃ case, there is an additional

dependence on the gluino mass. This is explained by the gluino t-channel propagator

in the production diagram – as the gluino mass rises, this diagram is suppressed. In

Figure 4.3, the fractional contribution of each production process is shown, demonstrating

clearly which production channels are most important in different regions of the mass

plane. Unsurprisingly, the g̃-g̃ and q̃-g̃ processes dominate the regions of low gluino

masses and equal squark/gluino masses, respectively. What is interesting is that the q̃-q̃∗

process is critical at the lowest squark masses, and is superseded by the t-channel q̃-q̃

production process only when the squark mass is somewhat larger (& 600 GeV).

Of critical importance in the phenomenology of these models is the difference in decay

modes of the squarks and gluinos. When a squark is the next-to-lightest supersymmetric

partner (NLSP), it must decay to a quark of the same flavour and the LSP (assumed to be

a neutralino), via the electroweak couplings of the quarks/squarks. The analogous decay

of a gluino to a gluon and an LSP is forbidden at tree level and therefore the decay must

proceed via a quark and an off-shell squark, which then decays to an additional quark

and the LSP. Gluino decays with an off-shell intermediate squark are thus inherently

three-body. If gluinos are lighter than squarks, then the squarks may themselves decay

to a quark and gluino, producing three jets and an LSP in total. Of course, this applies

to both sides of the event.

The characteristics of the sparticle decays shape the acceptance of selection cuts

throughout the squark/gluino mass plane. Where gluino decays predominate, selections

requiring many hard jets are more efficient, and typically attain better signal-background
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Figure 4.1: Representative Feynman diagrams for the four tree-level production modes of
coloured sparticles, generated in the MSSM squark/gluino grid. Apart from the
q̃-q̃ process (a), each process has contributions from both t-channel and s-channel
diagrams, whereas q̃-q̃ production is exclusively t-channel.



166 Results and interpretation of the 0-lepton search

 [
p
b
]

σ

­410

­310

­210

­110

1

10

210

m(Gluino) [GeV]
0 400 800 1200 1600 2000

m
(S

q
u
a
rk

) 
[G

e
V

]

0

400

800

1200

1600

2000

xsec_madgraphSG_0_sqsq

 [
p
b
]

σ

­410

­310

­210

­110

1

10

210

xsec_madgraphSG_0_sqsq

(a) q̃-q̃

 [
p
b
]

σ

­410

­310

­210

­110

1

10

210

m(Gluino) [GeV]
0 400 800 1200 1600 2000

m
(S

q
u
a
rk

) 
[G

e
V

]

0

400

800

1200

1600

2000

xsec_madgraphSG_0_sqasq

 [
p
b
]

σ

­410

­310

­210

­110

1

10

210

xsec_madgraphSG_0_sqasq

(b) q̃-q̃∗

 [
p
b
]

σ

­410

­310

­210

­110

1

10

210

m(Gluino) [GeV]
0 400 800 1200 1600 2000

m
(S

q
u
a
rk

) 
[G

e
V

]

0

400

800

1200

1600

2000

xsec_madgraphSG_0_sqgl

 [
p
b
]

σ

­410

­310

­210

­110

1

10

210

xsec_madgraphSG_0_sqgl

(c) q̃-g̃

 [
p
b
]

σ

­410

­310

­210

­110

1

10

210

m(Gluino) [GeV]
0 400 800 1200 1600 2000

m
(S

q
u
a
rk

) 
[G

e
V

]

0

400

800

1200

1600

2000

xsec_madgraphSG_0_glgl

 [
p
b
]

σ

­410

­310

­210

­110

1

10

210

xsec_madgraphSG_0_glgl

(d) g̃-g̃

Figure 4.2: NLO production cross-sections shown for each MSSM squark/gluino point by
sub-process. There is a clear dependence on the masses of the sparticles being
produced. The cross-section for the squark-squark process additionally shows
a weak dependence on the gluino mass, as this mode of production involves a
t-channel gluino exchange. The dependence of the production cross-section on
the LSP mass is negligible. In these colour plots, white areas correspond to values
below 10−4 pb. No model points were generated with squark or gluino masses
below 200 GeV.
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Figure 4.3: The fractional contribution of each production process to the total SUSY pro-
duction cross-section. In these colour plots, white areas correspond to fractions
below 10−4. The discontinuities at low mq̃ and mg̃ are due to poor interpolation.
ROOT’s TGraph2D uses a linear interpolation (via Delaunay triangles) that devi-
ates substantially from the functional form of the cross-section, which resembles
an exponential decay [171].
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separation, due to the cross-section suppression when requiring additional QCD splittings

from SM processes. However, when the squark decays occur more frequently, the same

selections decimate the signal. Some compensation is offered by the tendency for the

decay jets to be more energetic, and also for the pmiss
T to be enhanced in magnitude. The

latter effect comes about due to the greater likelihood that the invisible LSPs will be

strongly boosted opposite the visible jets.

To illustrate these claims, the acceptance times efficiency (A× ε) of the selection cuts,

i.e. the fraction of generated events retained by the selection at reconstruction level, is

shown for the four medium SRs defined in the analysis: A, A′, C and E in Figure 4.4. It

is apparent that the SR A selection of two hard jets achieves relatively even efficiencies

that increase in step with the sparticle mass scales. SR A′ likewise requires at least two

jets, but also demands a larger ratio of pmiss
T /meff, so the pmiss

T makes up a larger fraction

of the observed/inferred energy in the event. The consquences are clear: efficiencies fall

for models with lighter gluinos, above the mq̃ = mg̃ diagonal, as the kinetic energy is

spread out more evenly across the multiple decay jets. There is a drastic contrast when

comparing this with the SR C and E selections, which instead require more jets while

relaxing the pmiss
T /meff cut. The 4-jet and 6-jet requirements progressively lose more

acceptance below the diagonal, becoming poorer at selecting events with lighter squarks,

while retaining sensitivity above the diagonal.

A secondary issue is the loss of signal acceptance for low mass models. This motivates

the definition of SRs with lower meff(incl.) thresholds in order to accommodate models

with softer final state kinematics, particularly more compressed models in which cross-

sections do not change, but acceptance falls.

As the LSP mass is allowed to rise, the energy available to boost the decay products

is siphoned off into the LSP mass-energy, as previously considered in Section 2.3.2 and

Appendix 1. This implies lost selection efficiency, while the production cross-section

remains unchanged. For illustration, comparisons of the expected yield of SUSY models

(Lint × σ ×A× ε) are made between the three LSP mass choices (0, 195, 395 GeV) for a

low jet multiplicity (SR A) and a high jet multiplicity (SR E) selection in Figure 4.5.

The medium cuts are used. At low masses, the signal expectations are patently reduced,

but little reduction is evident close to the TeV scale.
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Figure 4.4: Signal acceptance times reconstruction efficiency for the medium signal selections,
computed as the expected signal yield divided by the total expected SUSY
production. The LSP is set massless. The dijet signal region is primarily sensitive
to direct squark production and decays. Requiring more hard jets increases the
efficiency for selecting gluino production, at the expense of squark sensitivity.
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(a) SR A, mLSP = 0
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(b) SR E, mLSP = 0
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(c) SR A, mLSP = 195 GeV
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(d) SR E, mLSP = 195 GeV
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Figure 4.5: Number of SUSY events from MSSM squark/gluino models expected, scaled to a
luminosity of 4.7 fb−1 for SRA medium (left) and SRE medium (right) selections.
The LSP mass is set to 0 (top row), 195 (middle row) or 395 (bottom row) GeV.
No model points were generated with squark or gluino masses below 200 GeV
(400 GeV for the 395 GeV LSP case).
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Single-process simplified models

To understand and constrain the parameter space for squarks and gluinos separately, a

complementary set of simplified models is produced, parameterised in the masses of the

squark/gluino and the LSP. The signal grids are defined so as to allow finer gradations

of the squark/gluino-LSP mass-splittings than in the (mg̃, mq̃) plane.

Two sets of decay modes are allowed. The first simply consists of direct decays to

jets and missing momentum, as permitted in the squark/gluino grid. Alternatively, the

lightest chargino is taken to be the NLSP, in which case the squark or gluino favours

decaying in a cascade including the chargino. In the case of squarks, only half the

cross-section is considered, since right-handed squarks will not couple to the chargino,

and would decay directly. A neutralino could replace the chargino in the latter topology,

which has been studied for example in [172]. Production cross-sections are shown in

Figure 4.6, and depend only on the masses of the sparticles.

When the chargino is present, its mass becomes a third free parameter. Thus, two

grid parameterisations can be defined: First, the y-axis is taken to be the LSP mass,

in which case the chargino mass is placed halfway between the squark/gluino and LSP

masses (equation 4.9)

x =
mq̃,g̃ −mχ̃±1

mq̃,g̃ −mχ̃0
1

=
1

2
.

Second, the parameter x itself is varied on the y-axis, with the LSP mass set to 60 GeV.

Once again, the disparate decay modes influence the sensitivity of different SRs to the

models in these grids. The comparison between the A× ε of SR A′ and SR E in gluino

vs squark models in Figure 4.7 effectively demonstrates the suitability of SR A′ to squark

selections and SR C to gluino selections. The differences are not purely in magnitude,

however. It is interesting that the efficiency of the gluino selections falls off slightly for

models with the largest mass-splittings, i.e. along the horizontal axis, regardless of the

SR selection. This does not occur for squark models.

Martin and LeCompte have suggested that this effect is due to the interplay between

the rates at which the pmiss
T and meff diminish with shrinking mass-splittings [173, 174].

For heavier models, typical meff values may fall without substantially impacting the total

acceptance. If the average magnitude of the pmiss
T does not decline as rapidly, then in

fact the pmiss
T /meff ratio may increase, improving the acceptance in some cases. This
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Figure 4.6: NLO production cross-sections shown for squark-antisquark or gluino-gluino
production, with all other sparticles decoupled. These depend only on the masses
of the sparticles being produced.

explanation neatly suits the observation, particularly as the effect is enhanced in SR A′,

which has an especially stringent cut on pmiss
T /meff.

When introducing an NLSP between the squark/gluino and LSP, additional decay

effects are observed. The presence of the on-shell intermediate particle makes the

decay kinematics more complex due to the boost of the intermediate becoming relevant.

Additional decay jets are also present, augmenting the efficacy of the high jet multiplicity

selections. Hence, the differences in magnitude between the A× ε of SR A′ and SR C

become less pronounced, as shown in Figure 4.8. Only in the least compressed models

are these two selections noticeably distinguished – this is unsurprising, since when the

NLSP is degenerate either with the LSP or the NNLSP, one of the decays results in a soft

jet that escapes detection, making the observed decay resemble the direct decay process.

When the NLSP is relatively light but not degenerate with the LSP, then truly novel

behaviour occurs: the acceptance drops precipitously for x ' 0.1. This phenomenon

results from a large boost being applied to the NLSP, in which case its decay products

are collimated. Due to the requirement that jets and pmiss
T be substantially separated in

azimuthal angle (∆φ), events of this sort tend to be vetoed, since two jets will point in

the direction taken by the LSPs.
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Figure 4.7: Signal acceptance times reconstruction efficiency for the medium signal selections,
computed as the expected signal yield divided by the total expected SUSY
production. SR A′ (top) and SR C (bottom) medium selections are shown for
squark (left) and gluino (right) models with direct decays to jets and pmiss

T .
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Figure 4.8: Signal acceptance times reconstruction efficiency for the medium signal selections,
computed as the expected signal yield divided by the total expected SUSY
production. SR A′ (top) and SR C (bottom) medium selections are shown for
squark (left) and gluino (right) models with decays to jets, a W boson and pmiss

T .
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Constrained MSSM / Minimal Supergravity scenario

In the CMSSM/MSUGRA model, strong processes for production of all squarks and the

gluino are allowed, as well as associated production of either a squark or a gluino with

a weak gaugino. The cross-sections for various subprocesses in the CMSSM/MSUGRA

plane are shown in Figure 4.9, and their contributions as fractions of the total cross-section

in Figure 4.10. It is clear that gluino pair production overwhelms all other production

processes in most of the allowable parameter space, with light flavour squarks becoming

important only at low m0, and associated squark-gluino production being critical in a

swath that bridges the squark-dominated and gluino-dominated regions. Only when the

masses of the coloured sparticles are raised to multiple TeV does gaugino associated

production begin to be relevant, i.e. at very high m0 and m1/2.

Owing to the large set of accessible sparticle production processes and cascade decays,

many CMSSM/MSUGRA models feature large jet multiplicities, except for those at low

m0, where the squarks are relatively light. At large m0 in particular, events with many

jets are prevalent, aided by a substantial higgsino component of the lighter neutralinos,

and SR E quickly becomes the most performant SR. This is illustrated in Figure 4.11.

Not only do the high jet multiplicity SRs tend to retain more events, they also have

generally reduced backgrounds, further boosting the sensitivity to these models.
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Figure 4.9: NLO production cross-sections shown for each CMSSM point by sub-process.
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Figure 4.10: The fractional contribution of each production process to the total SUSY pro-
duction cross-section.



178 Results and interpretation of the 0-lepton search

N
(s

ig
n
a
l)

1

10

210

310

 [GeV]0m
0 1000 2000 3000 4000

 [
G

e
V

]
1
/2

m

0

100

200

300

400

500

600

700

800

SigExp_msugra_SRA_meff1400

N
(s

ig
n
a
l)

1

10

210

310

SigExp_msugra_SRA_meff1400

(a) SR A

N
(s

ig
n
a
l)

1

10

210

 [GeV]0m
0 1000 2000 3000 4000

 [
G

e
V

]
1
/2

m

0

100

200

300

400

500

600

700

800

SigExp_msugra_SRAp_meff1200

N
(s

ig
n
a
l)

1

10

210

SigExp_msugra_SRAp_meff1200

(b) SR A′

N
(s

ig
n
a
l)

1

10

210

 [GeV]0m
0 1000 2000 3000 4000

 [
G

e
V

]
1
/2

m

0

100

200

300

400

500

600

700

800

SigExp_msugra_SRC_meff1200

N
(s

ig
n
a
l)

1

10

210

SigExp_msugra_SRC_meff1200

(c) SR C

N
(s

ig
n
a
l)

1

10

210

310

 [GeV]0m
0 1000 2000 3000 4000

 [
G

e
V

]
1
/2

m

0

100

200

300

400

500

600

700

800

SigExp_msugra_SRE_meff1200

N
(s

ig
n
a
l)

1

10

210

310

SigExp_msugra_SRE_meff1200

(d) SR E

Figure 4.11: Number of SUSY events from CMSSM/MSUGRA models expected in the
medium signal regions, scaled to a luminosity of 4.7 fb−1.
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4.3 Limits on SUSY models and analysis

interpretation as of 2012

In this section, the experimental constraints on specific SUSY models resulting from

[79] are displayed, and a detailed explanation of their phenomenological implications is

given. The signal models chosen for this interpretation are described in Section 4.2.1.

Limits are set using the hypothesis-testing setup from Section 4.1. Each model point is

determined to be excluded or not excluded on the basis of a hypothesis test carried out

independently for each SR measurement. An overall limit combining the results of the

multiple measurements is then extracted as follows:

1. The SR providing the strongest expected limit (greatest exclusion significance Zexp
1 )

is determined for each model point.

2. The plane is populated with expected/observed values of the exclusion significance

based on the SR selected in the previous step, interpolating between model points.

3. The expected/observed limit contour corresponds to the contour with significance

Z1 = 1.64, corresponding to p1 = 0.05.

This procedure avoids biases by selecting the optimal SR at each point on the basis of the

expected limit only (discounting the SR measurement, but determining the background

via fits to the CRs). Interpolation is performed in the significance Z1 as this quantity

varies relatively linearly in the mass parameters, whereas p-values such as p1 are extremely

non-linear and would necessitate a more complicated interpolation method [155].

While a more sophisticated combination of the results in multiple SRs should in

principle improve sensitivity from the additional information available, implementing

such a scheme is non-trivial. If the SRs are not mutually exclusive, correlations between

uncertainties must be accounted for, while the unified background estimation has proven

computationally intractable even for independent SR selections. Another benefit of the

current scheme is that it has proven easier for external parties to use the experimental

results without having to approximate a complex statistical model.
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4.3.1 Limits on CMSSM models

In Figure 4.12, the experimental limits on the CMSSM/MSUGRA framework are shown.

The slice described in Section 4.2.1, with tan β = 10, A0 = 0 and µ > 0, is shown,

parameterised in the unified mass parameters m0 and m1/2. Certain regions of the plane

are already ruled out by previous ATLAS searches, while others are disfavoured due to

constraints from theory or from other observations, as noted in the legend. The observed

limit in red is seen to extend beyond the dashed expected limit contour in two regions

– this is due to the data undershooting the background predictions in the two relevant

SR selections, SR A tight (low m0) and SR E medium (large m0). Such discontinuities

in the limits are due to the policy of combining measurements in multiple SRs on the

basis of expected exclusion significance. Combined expected limits will be smooth, as the

values of Zexp
1 change continuously across transitions between preferred regions. However,

as the trends in data may vary between the preferred regions, Zobs
1 may change sharply

across the boundaries.

As implied by the CMSSM phenomenology (see Section 4.2.2), the low-jet multiplicity

SRs A and B are most important at low m0, where squark production is dominant, and

the production cross-section is sufficient to outcompete the large SM backgrounds. The

large m0 region, however, favours gluino production and long cascade decays resulting in

many softer jets, benefiting from the SR E selection – the tightest cuts are effective at

intermediate m0, where squark-gluino coproduction boosts the total cross-section, but

the harsh selection falters due to lower selection efficiency as the squark mass ascends.

While the CMSSM interpretation is an important agreed benchmark between the

CMS and ATLAS collaborations, it is also a test of analysis sensitivity in a complex and

rich phenomenological environment, and it is no mean feat that the 0-lepton analysis

attains strong sensitivity across the plane, with the main factor limiting sensitivity being

the SUSY production cross-section.
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4.3.2 Limits in the gluino-squark mass plane

As a counterpart to the inclusive CMSSM spectrum, ATLAS also presents interpretations

in a variety of simplified models, in which the high scale SUSY breaking dynamics are

abstracted out, and the physics of interest is determined entirely by sparticle masses.

For analyses focusing on jets and pmiss
T , the squark, gluino and LSP masses are the three

most critical parameters. This motivates the publication of limits in the (mg̃,mq̃) plane,

as displayed in Figure 4.13. The setup of the models is described in Section 4.2.1, and

some relevant phenomenology is discussed in Section 4.2.2.

For LSP masses up to and including 395 GeV, and with neither the squark nor

gluino mass exceeding 2 TeV, ATLAS excludes squarks with masses below approximately

1350 GeV and gluinos with masses below 900 GeV. These values are very close to the

limits on squark and gluino masses obtained in the CMSSM framework, with minimal

dependence on the LSP mass in the region of the limit. Raising the LSP mass does

imply a loss of sensitivity at squark/gluino masses below the TeV range, but permits

exclusion at the nominal MSSM cross-sections down to mass scales that have been

probed by previous iterations of the search. The variation of the limits across this plane

demonstrates the importance of accounting for the interplay between the squark and

gluino masses when trying to build up the constraints on inclusive models by extending

limits on simplified models – an attempt to reproduce the ATLAS CMSSM limits using

only squark and gluino simplified models independently fell short in the region where

neither sparticle was decoupled, whereas including squark-gluino production would have

filled the gap in the “basis set” of simplified models [175].

Once more, the use of multiple signal selections is critical to achieving reach across

the (mg̃,mq̃) plane, as demonstrated in Figure 4.14, which shows the most important

SRs for each model point, and for each LSP mass hypothesis. Particularly as the mass

of the LSP rises, the preferred SR changes, normally to a less stringent selection. This

is especially obvious in the lower right-hand corner, where SR A′ becomes increasingly

favoured – this selection was defined explicitly to provide sensitivity to models with a

more compressed mass spectrum. In the gluino-dominated region (top left), the trend is

not always as evident, as a larger diversity of selection channels contributes to the limit.

However, an obvious shift away from tighter cuts on meff(incl.) occurs, with SR B tight

(meff(incl.) > 1900 GeV) giving way to C and D tight selections (meff(incl.) > 1500 GeV)

or even to C medium (meff(incl.) > 1200 GeV) and loose (meff(incl.) > 900 GeV).
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Figure 4.13: The 95% CLs exclusion limits on the (mg̃,mq̃)-plane in a simplified MSSM
scenario with only strong production of gluinos and first- and second-generation
squarks, with direct decays to jets and neutralinos. Three values of the lightest
neutralino LSP mass are assumed: 0, 195 and 395 GeV. Curves are as defined in
Figure 4.12. Previous results from ATLAS [124] are represented by the shaded
region at bottom left in each case for the MLSP = 0 hypothesis.
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Figure 4.14: The 95% CLs exclusion limits on the (mg̃,mq̃)-plane in a simplified MSSM
scenario with only strong production of gluinos and first- and second-generation
squarks, with direct decays to jets and neutralinos. Three values of the lightest
neutralino LSP mass are assumed: 0, 195 and 395 GeV. Curves are as defined
in Figure 4.12. The letters overlaid on the plot indicate the SR selection
providing the best expected sensitivity at each grid point. Previous results from
ATLAS [124] are represented by the shaded region at bottom left in each case.



Results and interpretation of the 0-lepton search 185

4.3.3 Limits on squarks and gluinos in isolation

Though the presence of both energetically accessible gluinos and squarks in the SUSY

mass spectrum leads to interesting behaviour, gluinos and squarks need not both be light.

Studying each production process in isolation is hence of interest as well. In addition,

the removal of one degree of freedom allows a natural parameterisation in the mass of

the coloured sparticle against the LSP mass. This in turn reveals information about how

the search efficacy evolves in response to changes in the mass scale and mass splitting.

Limits on squarks and gluinos decaying directly to jets and pmiss
T , as in the gluino-

squark plane parameterisation, are shown in Figure 4.15. In the upper set of figures, the

limits on the cross-section times branching ratio σ × BR are also shown as a numerical

overlay. Once more, discontinuous changes are introduced due to the deviations between

observation and expectation in the preferred SRs, which are themselves labelled in the

lower set of plots. While the gluino mass limits extracted for massless LSPs in this

parameterisation reach 950 GeV, matching those shown in Figure 4.13, the squark limits

clearly fall short of the 1350 GeV attained for non-decoupled gluinos. The primary reason

for this is the change in production modes; when the gluinos are decoupled, the t-channel

diagram for squark-squark production (Figure 4.1) is forbidden, substantially reducing

the total production cross-section. From Figure 4.3, one sees that when assuming a

gluino mass of 2 TeV, q̃-q̃ production contributes a full 60% or more of the total SUSY

production. In the range 700 GeV < mq̃ < 1 TeV, the fractional contribution of the

q̃-q̃∗ process is at most half of this – decoupling the gluinos means halving the squark

cross-section. Here it is assumed that the kinematics of squark and antisquark production

and decays are identical, which is reasonable.

Another feature that draws the eye is the near-horizontal cutoff of the limits at

MLSP ' 400 GeV (270 GeV) for gluinos (squarks). This is chiefly coincidental, and

follows contours of the expected signal yield, which is itself the product of experimental

acceptance, efficiency and production cross-section. In the squark case, this is accentuated

by the downward fluctuation of the data in SR A′, whereas the expected limit shows a

more gradual degradation of the limit as the squark mass rises.

Moving beyond direct decays, the possibility of squark and gluino decays via an

intermediate chargino is shown in Figure 4.16. As described in Section 4.2.2, results are

shown either for chargino masses exactly halfway between the LSP and squark/gluino

masses, or for a fixed MLSP and varying chargino mass. The former scenario produces

limits relatively similar to the direct-decay results for gluinos, but drastically reduced
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limits for squarks. It is important to note that the extent of the excluded region

demarcated by the contours does not tell the entire story, since only half the cross-section

has been assumed (under the assumption that right-handed squarks will decay directly

to jets and pmiss
T , as they do not couple to charginos). The numerical cross-section limits

provide evidence that the sensitivity is reduced – increases of at least a factor of 1.5 are

visible across both parameter planes.

Also of note is the shape of the limits generated when allowing the chargino mass

to vary. While less distinct in the case of gluinos, the loss of sensitivity for relatively

light charginos is starkly apparent in the squark case. This can be traced to the loss

of acceptance described by Figure 4.8. From Figure 4.17, it is also apparent that the

direct-decay limit is reached when the chargino is nearly degenerate with the coloured

object – the preferred SRs shift from D and E to A at the highest masses. While one

might imagine that gluinos should favour SR C or D in this limit, a heavy decaying

chargino will in fact tend to produce only a single jet (the soft jet pair produced in

conjunction with the gluino decay will be unreconstructed), as the W decay products

will be highly boosted and thus collimated.
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Figure 4.15: The 95% CLs exclusion limits on simplified models assuming direct production
of (a) gluino pairs with decoupled squarks or (b) squark pairs with decoupled
gluinos, each decaying to two jets, or one jet, respectively, and a neutralino LSP.
Curves are as defined in Figure 4.12. The 95% CLs upper limit on the cross
section times branching ratio σ × BR (in fb) is printed for each model point. In
subplots (c) and (d), the same limits are shown with the optimal expected SRs
overlaid in place of the upper limit on σ × BR.
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Figure 4.16: The left (right) plots show combined 95% CLs exclusion limits on simplified
models assuming direct production of gluino and (squark-antisquark) pairs, each
decaying via an intermediate chargino to two jets (one jet), a W boson and a
neutralino LSP. The chargino mass is fixed halfway in between the gluino/squark
and LSP masses in subfigures (a)/(b). The neutralino mass is fixed at 60 GeV
in subfigures (c)/(d), where the y-axis shows the ratio of the chargino-LSP
mass-splitting to the gluino/squark-LSP mass-splitting. Curves are as defined
in Figure 4.12. The 95% CLs upper limit on the cross section times branching
ratio (in fb) is printed for each model point.
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Figure 4.17: The left (right) plots show combined 95% CLs exclusion limits on simplified
models assuming direct production of gluino and (squark-antisquark) pairs, each
decaying via an intermediate chargino to two jets (one jet), a W boson and a
neutralino LSP. The chargino mass is fixed halfway in between the gluino/squark
and LSP masses in subfigures (a)/(b). The neutralino mass is fixed at 60 GeV
in subfigures (c)/(d), where the y-axis shows the ratio of the chargino-LSP
mass-splitting to the gluino/squark-LSP mass-splitting. Curves are as defined in
Figure 4.12. The letters overlaid on the plot indicate the SR selection providing
the best expected sensitivity at each grid point.
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4.4 Contextualisation of experimental results

While experiments can and will usually publish interpretations of their results in various

forms, it is infeasible for experimentalists to supply all possible contextualisation of their

results. Instead, it falls to phenomenologists to extend the scope of analyses to areas that

are theoretically relevant. Together with colleagues at the Cavendish and at DAMTP, I

worked on two papers that utilised the results of the ATLAS 0-lepton searches in data from

2010 and 2011. In [80], we performed a Bayesian likelihood fit of the CMSSM/MSUGRA

parameter space, in order to gauge more broadly the implications of the 35 pb−1 ATLAS

search [123] on the CMSSM parameters. Posterior pdfs were extracted for various model

parameters, such as sparticle masses and production cross-sections. Subsequently, we

produced an interpretation of the 0-lepton search with 1 fb−1 of ATLAS data [124] in

the minimal Anomaly-Mediated Supersymmetry Breaking (mAMSB) paradigm [81].

For both of these papers, I provided technical expertise on the experimental aspects

of the searches and translated the ATLAS statistical models into formats appropriate for

our needs. Lacking access to the full ATLAS detector simulation and data, appropriate

simplifications needed to be made without sacrificing accuracy. I also explored the

kinematic similarities and differences between the CMSSM and mAMSB models in order

to understand differences between the constraints set on those two model spaces. Below,

I describe the major points from both papers, focusing on my contributions, and their

relationship to the ATLAS experimental analysis.

4.4.1 Global likelihood fits of the CMSSM/MSUGRA

The first LHC constraints on SUSY (CMSSM/MSUGRA) were reported by CMS at

the end of 2010 [176], demonstrating reach beyond the Tevatron experiments. Multiple

extensions of these results were produced, with several groups utilising the new limits to

compute probability densities for the CMSSM space and forecasts of the SUSY discovery

potential [177, 178]. The ATLAS results that followed in early 2011 were considerably

more powerful than the CMS ones, with the most constraining being from the 0-lepton

channel [123]. Logically, therefore, updated likelihoods based on this search should be an

even better barometer of SUSY.

Our study combined a likelihood model of the CMSSM from the ATLAS search

with a previous global Bayesian fit of the CMSSM from the KISMET (Killer Inference in
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Region A Region B Region C Region D

Number of required jets ≥ 2 ≥ 2 ≥ 3 ≥ 3

Leading jet pT > 120 GeV > 120 GeV > 120 GeV > 120 GeV

Subsequent jet(s) pT > 40 GeV > 40 GeV > 40 GeV > 40 GeV

pmiss
T > 100 GeV > 100 GeV > 100 GeV > 100 GeV

∆φ(jets, ~p miss
T ) > 0.4 > 0.4 > 0.4 > 0.4

pmiss
T /meff(Nj) > 0.3 - > 0.25 > 0.25

meff(Nj) > 500 GeV - > 500 GeV > 1000 GeV

mT2 - > 300 GeV - -

Observed 87 11 66 2

Standard Model background 118±25±32 10±4.3±4 88±18±26 2.5±1±1

Table 4.2: The cuts used to define the four signal regions of the 35 pb−1 ATLAS 0-lepton
analysis [123]. A veto on events containing isolated leptons with pT > 20 GeV
is also required, but not shown in the table. In each SR, the variable meff is
computed using only the number of jets required, i.e. specified in the first row.
Also displayed are the number of events ATLAS observed in each region, along
with the expected Standard Model backgrounds. The first uncertainty represents
the uncorrelated systematic on the background, whereas the second labels the jet
energy scale systematic.

Supersymmetric METeorology) collaboration [179] to: the relic density of dark matter, the

anomalous magnetic moment of the muon, the branching ratios BR(b→ sγ), BR(Bs →
µµ), MW , sin2 θlw, as well as 95% exclusions from LEP and Tevatron direct search data.

Flat priors were used for the parameters above, while log priors were used for the unified

mass parameters m0 and m1/2. Further details of the fits are available in [179]. The

CMSSM/MSUGRA parameter plane used in this investigation is identical to that used

by more recent ATLAS searches (Section 4.2.1), except for specifying tan β = 3 to match

earlier searches. In any case, the 0-lepton analysis results have been shown to be relatively

insensitive to the value of tan β [180].

The experimental cuts utilised in the ATLAS analysis [124] are shown in Table 4.2,

together with the predicted and observed event counts in each signal region. Using mate-

rial provided by ATLAS containing signal expectation values for the CMSSM/MSUGRA

plane, a likelihood map was generated for the (m0, m1/2) plane as described in the

following section.
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Definition and validation of a Bayesian likelihood function for the CMSSM

Assuming the information ~Σ(i) = (n
(i)
s , n

(i)
b , σ

(i)
s , σ

(i)
b ), i.e. signal and background expected

values and uncertainties, for a particular CMSSM point and signal region i, the expectation

value for the number of events observed in data was modelled as

λ(~Σ(i), δs, δb) = n(i)
s (1 + δs · σ(i)

s ) + n
(i)
b (1 + δb · σ(i)

b ), (4.12)

where the impact of systematic variations is accounted for by nuisance parameters

δs, δb. This parameterisation is a substantially simplified version of that described in

Section 3.5.2, defining just one background normalisation factor nb that is held constant

– the 35 pb−1 analysis did not implement the full background estimation technique of

Section 3.5. While the ATLAS statistical treatment accounted for the main uncertainties

(Section 3.5.1) individually, the full uncertainty information was not released to the

public. We assumed uncorrelated nuisance parameters δs, δb for uncertainties on the

signal and the background, respectively.

Supposing the nuisance parameters to be Gaussian-distributed, the probability of

observing n
(i)
o events, with systematic deviations δs, δb from the central value, is given by

Psyst(n
(i)
o , δs, δb|~Σ(i)) =

1

N (i)
Poiss

(
n(i)
o |λ(~Σ(i), δs, δb)

)
e−

1
2

(δ2b+δ2s). (4.13)

The normalisation factor takes the form

N (i) =

∫ 5

max(−5,−1/σ
(i)
s )

dδs

∫ 5

max(−5,−1/σ
(i)
b )

dδbe
− 1

2
(δ2b+δ2s), (4.14)

where the nuisance parameter integrals are truncated at 5σ for convenience, with ad-

ditional restrictions to keep both signal and background counts non-negative. The

probability of observing n
(i)
o events is then

Pm(n(i)
o |~Σ(i)) =

∫ 5

max(−5,−1/σ
(i)
s )

dδs

∫ 5

max(−5,−1/σ
(i)
b )

dδb Psyst(n
(i)
o , δs, δb), (4.15)

where the integrals imply marginalisation over the nuisance parameters, in contrast to

the ATLAS profile-likelihood method.

This simplified statistical setup was validated by computing exclusion limits corre-

sponding to the ATLAS results for SR C and SR D. Since SR A and SR B contributed

negligibly to the CMSSM/MSUGRA constraints, they were neglected in this study.
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Figure 4.18: Validation of our approximation to ATLAS’s statistical analysis. The solid lines

indicate the expected and observed exclusion contours fixed by pexcl(n
(C,D)
o ) <

0.05, while the dashed lines show ATLAS’s officially published contours. Both
sets of expected/observed curves agree well at low m0, although those resulting
from systematic variations are not as well reproduced.

For each signal region i, we computed the exclusion p-value, defined as the cumulative

marginalised likelihood for n
(i)
o observed events

pexcl(n
(i)
o ) =

n
(i)
o∑

n=0

Pm(n|~Σ(i)). (4.16)

This corresponds to the likelihood that the observed event count was given by a downwards

fluctuation from the Poisson mean of the nominal signal hypothesis. The 95% C.L. contour

corresponding to pexcl = 0.05 was then interpolated in the m0−m1/2 plane and compared

with the ATLAS results. N.B. the CLs procedure was not used at this point in time.

The likelihood function defined in equation 4.15 assumed knowledge of four parameters,

n
(i)
s , n

(i)
b , σ

(i)
s , σ

(i)
b . Of these, only three were published by ATLAS, whereas values of the

signal uncertainty σ
(i)
s were not specified. In principle, σ

(i)
s should vary from model to

model. For simplicity, we chose global values of σ
(C)
s and σ

(D)
s in order to provide a

reasonable fit to the official ATLAS exclusion contours, as shown in Figure 4.18. Varying

them manually, the values σ
(C)
s = 0.6 and σ

(D)
s = 0.3 were found to provide a reasonable

fit in the most important area of the parameter plane for each signal region. Changing

either value by 0.05 had only a marginal impact on the position of the exclusion contours.
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ATLAS 95% C.L. exclusion limit is shown as the light (green) solid line.

Our approximations perform very well at high m1/2. This is crucial, since the global

fits before including ATLAS 0-lepton search results favoured this region of the CMSSM

parameter space, as is demonstrated below in Figure 4.20, and hence the ATLAS search

likelihoods would have the greatest impact in this region. Elsewhere, at lower values of

m1/2 and high m0, the approximation is less good, particularly in signal region D. This

is likely due to the assumption of a flat signal uncertainty for each signal region. In fact,

the poor signal region D likelihood reproduction in the small m1/2/larger m0 area does

not make much difference to our combined likelihood, since there it is dominated by

signal region C anyway, where our approximation is reasonable, as Figure 4.18 (a) shows.

For the purposes of determining the global likelihood, the measurements from the

two signal regions C and D are combined. Here we diverged from the ATLAS strategy

of using only the optimal signal region at each model point – this choice facilitates the

combination of SR selections that overlap only partially, whereas SR D is a subset of

SR C, simplifying the handling of correlations. The observed data are notated as ~n,

where ~n = (n
(C)
o , n

(D)
o ) emphasises the two component measurements n

(C)
o and n

(D)
o . As

the SR D selection is the same as SR C with only a tighter meff cut, the independent

quantities entering the measurement are actually the numbers n
(D)
o and n

(C)
o − n(D)

o .
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Denoting the expected counts in SR C and D respectively by λC and λD, the probability

of observing our data ~n as a function of ~λ = (λC , λD) is given by:

P (~n|~λ) = Poiss(n(D)
o |λD) Poiss(n(D)

o − n(C)
o |λC − λD). (4.17)

Again, we can model the systematic uncertainties in the Poisson means,

λC = λ(~Σ(C), δs, δb), (4.18)

λD = λ(~Σ(D), δs, δb), (4.19)

with the same δs and δb retained in both definitions, under the assumption of uncertainties

that are fully correlated between the two signal regions. Extending equation 4.13 to use

equation 4.17, the probability of measuring data ~n is

Psyst(~n, δs, δb|~Σ(C), ~Σ(D)) =
1

N (C,D)
Poiss

(
n(C)
o |λ(~ΣC , δs, δb)

)
× (4.20)

Poiss
(
n(C)
o − n(D)

o |λ(~ΣC , δs, δb)− λ(~ΣD, δs, δb)
)
e−

1
2

(δ2b+δ2s)

with the normalisation factor N (C,D) defined similarly to 4.14 as

N (C,D) =

∫ 5

max(−5,−1/max(σ
(C)
s ,σ

(D)
s ))

dδs

∫ 5

max(−5,−1/max(σ
(C)
b ,σ

(D)
b ))

dδb e
− 1

2
(δ2b+δ2s). (4.21)

Marginalising over the systematics once more produces the probability of measuring ~n

under the nominal signal hypothesis,

Pm(~n|~Σ(C), ~Σ(D)) =

∫ 5

max(−5,−1/max(σ
(C)
s ,σ

(D)
s ))

dδs

∫ 5

max(−5,−1/max(σ
(C)
b ,σ

(D)
b ))

dδb

{Psyst(~n, δs, δb|~Σ(C), ~Σ(D))}. (4.22)

From here onwards, all mention of the likelihood refers to Pm(~n|~Σ(C), ~Σ(D)).

The 0-lepton search results are minimally affected by variations in A0 and tan β,

because the signal is dominated by the QCD cross-sections of squark and gluino pro-

duction, which are largely independent of those parameters [180]. This was explicitly

checked for the CMS αT search [178], which prioritises the same final state. Therefore,

parameterising Pm in m0 and m1/2 alone is sufficient for our purposes.
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As a final validation step, Figure 4.19 displays

∆χ2
ATLAS = −2 ln(Pm/Pm(0 sig)) (4.23)

computed using the combined SR C and D likelihood Pm together with the official ATLAS

exclusion contour. Larger values of this chi-squared represent growing incompatibility

with the background-only hypothesis. The brightest red shade of the colour plot indicates

the value ∆χ2 = 5.99, which corresponds to 95% CL exclusion in the limit of Gaussian

statistics, and closely follows the green ATLAS exclusion curve.

The (m0, m1/2) region in which we are able to compute the ATLAS likelihood is small

compared to the larger CMSSM parameter ranges to be covered by the full likelihood scan.

However, to some extent the results can be extended simply outside the boundaries of

Figure 4.19. At large m1/2, ∆χ2
ATLAS tends to a constant, as squarks and gluinos become

too heavy to be produced. Along the upper edge of the plot (large m0), the SUSY signal

is dominated by gluino pair production, and the dependence of the SUSY cross-section

and kinematics (and thereby Pm) on the scalar mass parameter m0 is negligible. So, the

likelihood across the (m0, m1/2) plane can be approximated as follows:

1. If m1/2 > 430 GeV, nCs = nDs = 0.

2. if m1/2 > 340 GeV and m0 > 430 GeV, then again nCs = nDs = 0.

3. If m0 > 1160 GeV and m1/2 < 430 GeV, the Pm value given by the m0 = 1160 line

on the figure is used.

4. If m0 < 1160, m1/2 < 430, we interpolate linearly within the grid of ∆χ2
ATLAS.

Global CMSSM fits including the ATLAS search

The goal of this investigation was ultimately to examine the effect of the ATLAS search

on the posterior probabilities of points sampled from the CMSSM space. 2.7 million

points were sampled from the fits in [179], with densities in parameter space proportional

to their posterior probability distributions. At each point, the global fit likelihood was

then reweighted by Pm calculated from the 0-lepton search. Changes in the posterior

probability distributions before and after the reweighting reveal the effect of the ATLAS

SUSY exclusion data on the viability of each CMSSM model. The comparison in terms

of m0 and m1/2 is shown in Figure 4.20. Many of the low-mass model points previously

favoured by the indirect data were excluded directly by the ATLAS search. Models
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Figure 4.20: Global CMSSM fits in the (m0, m1/2) plane: (a) excluding the ATLAS 0-lepton
search and (b) including the ATLAS 0-lepton search likelihood. The posterior
probability of each bin is shown as the background colour, normalised to the
maximum bin probability. The region to the left of the almost vertical solid
green (dotted yellow) curve is excluded by the ATLAS 0-lepton search (CMS αT
search) at the 95% C.L. The cyan inner (outer) contour shows the 68% (95%)
Bayesian credibility region.

with larger masses and at higher values of m1/2 are preferred by the ATLAS likelihood.

A second projection of the CMSSM probability is shown in Figure 4.21, showing m1/2

versus tan β. While it is true that the ATLAS search had less sensitivity to changes in

tan β, it nevertheless was capable of constraining the parameter to higher values, partly

due to correlations between tan β and m1/2.

The constraints placed on m0 and m1/2 directly influence the probability distribu-

tions of sparticle masses. A representative sample of these is displayed in Figure 4.22.

Predictably, all the sparticle masses were implied to be larger by the ATLAS results,

since lower masses would favour larger experimental observations. The squark and

gluino masses were most strongly affected, being the targets of the search, but through

the unified mass parameters, the neutralino and slepton masses were also forced higher.

Finally, the raising of the sparticle mass scale implies a decrease in sparticle cross-sections,

as is shown in Figure 4.23. It should be noted that the SR A and SR B selections,

both of which showed excesses in data, were not accounted for, and might have led to a

counterbalancing effect.
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Figure 4.21: Global CMSSM fits in the m1/2 − tanβ: (a) excluding the ATLAS 0-lepton
search and (b) including the ATLAS 0-lepton search likelihood. The posterior
probability of each bin is shown as the background colour, normalised to the
maximum bin probability. The cyan inner (outer) contour shows the 68% (95%)
Bayesian credibility region.
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Figure 4.22: Effect of the ATLAS 0-lepton, jets and missing momentum search [123] on the
probability distributions of sparticle masses in the CMSSM. The area of each
histogram has been normalised to 1 and labeled ‘Incl. ATLAS’ (‘Excl. ATLAS’)
if it includes (excludes) the ATLAS results.
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Figure 4.23: Effect of the ATLAS 0-lepton, jets and missing momentum search [123] on the
total SUSY cross-section σSUSY in the CMSSM in pp collisions at

√
s = 7 TeV.

The area of each histogram has been normalised to 1 and labeled ‘Incl. ATLAS’
(‘Excl. ATLAS’) if it includes (excludes) the ATLAS results.

4.4.2 Extension of limits to minimal Anomaly-Mediated

Supersymmetry Breaking models

The CMSSM has traditionally been of interest because it allows a simple parameterisation

of the MSSM’s otherwise unmanageable dimensionality. It is often tied to the supergravity

paradigm of supersymmetry-breaking. However, other mechanisms can break SUSY,

such as Anomaly-Mediated SUSY Breaking (AMSB) [53]. The minimal version of AMSB

has the benefits of avoiding SUSY flavour and CP problems, while achieving the correct

dark matter relic density.

In [81], we applied the updated ATLAS search results using 1 fb−1 of 7 TeV p-p data

to a slice of the mAMSB parameter space, supplying powerful new constraints on the

model space. At the time of publication, this was the only LHC constraint directly

applied to the AMSB parameter space, although a dedicated search [181] has now been

produced, which searches for tracks produced by the decays of charginos along similar

lines to proposals by [182, 183]. This investigation used an updated event selection shown

in Table 4.3, together with the observed and expected background counts, and the limit

on σvis = σ × A× ε for each SR.

To set limits on mAMSB, we made use of the σvis limits by generating signal events

in a scan of m0 and m3/2, i.e. the universal scalar mass and the gravitino mass, which are

two of the four fundamental parameters in mAMSB. The remaining model parameters

were fixed as tan β = 10 and µ > 0. This grid covered the parameter ranges 20 TeV ≤
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m3/2 ≤ 80 TeV and 150 GeV ≤ m0 ≤ 1450 GeV. For comparison and validation,

a companion CMSSM sample was produced, with tan β = 10, A0 = 0, µ > 0, and

parameterised in 150 GeV ≤ m0 ≤ 1450 GeV, 150 GeV ≤ m1/2 ≤ 500 GeV. In both

cases, 11×11 model points were generated using HERWIG++ 2.5.1, and detector simulation

was performed using DELPHES 1.9 [184], with an ATLAS-like configuration. Mass spectra

were computed using SOFTSUSY 3.1.7 [115], and NLO production cross-sections using

PROSPINO 2.1 [169].

An approximation to the ATLAS search was made by applying the cuts from Table 4.3

to the simulated samples after performing detector simulation. Since DELPHES is not

capable of reproducing the ATLAS detector simulation to a comparable level of accuracy,

our values of A× ε needed to be validated against the ATLAS results. This was done

by interpolating exclusion contours in the CMSSM grid for which the SR expectations

exceeded the model-independent limits on σvis. In the absence of corrections, the limits

obtained using DELPHES greatly exceeded those published by ATLAS. Two corrections

were needed: the first was a scaling of the efficiencies by 0.85 to approximate the impact of

data loss owing to a calorimeter failure not outlined in the ATLAS publication. Secondly,

additional scaling factors were applied to simulate the loss of sensitivity due to systematic

uncertainties, which were not included in the ATLAS limits on σvis. It can be seen

from the dotted curves in Figure 4.24 that the DELPHES limits significantly overshoot the

ATLAS ones without these scaling factors. Values of s2j = s3j = 0.7, s4jl = s4jh = 0.8,

and shm = 0.9 were applied to the 2-jet, 3-jet, 4-jet (low/high) and high-mass selections

respectively, and selected such that the limits were best reproduced, as shown by the

solid red curves in Figure 4.24. Each factor was applied uniformly in the plane. In

principle, the uncertainties would vary from model to model, typically increasing in m0 –

this variation is the cause of the red corrected DELPHES limits undershooting the ATLAS

limits in blue at low m0, while overshooting at large m0. Nevertheless, the chosen values

provide a reasonable compromise.

In Figure 4.25, a comparison between various kinematic distributions is made, choosing

a point each from the mAMSB and CMSSM grids, with similar gluino and squark masses

of around 1 TeV (with degenerate squarks and gluinos). The most significant differences

observed were in the jet multiplicities and meff, with the mAMSB model showing less

hadronic activity overall. This is believed to be a consequence of the highly-degenerate

chargino and LSP in mAMSB absorbing one possible channel for jet production. However,

the reduced meff values led to a harder spectrum of pmiss
T /meff in the mAMSB case,

counterbalancing somewhat the loss of events due to the meff cut. The fractions of events
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produced at each model point with 0, 1 or 2 leptons are shown in Figure 4.26. From this

figure it can be seen that substantial portions of the parameter plane produce at least

one lepton with pT > 20 GeV, notably in the low m0 region, where the limit falls lower

than the corresponding CMSSM bound.

With the ATLAS limits on the CMSSM successfully reproduced, the bounds on

mAMSB could be computed. The limits are shown for each SR in Figure 4.27, demon-

strating that the high mass SR is typically the most constraining, followed by the 2-jet

SR in a narrow corridor. Figure 4.28 shows the combination of these limits, together

with the approximate limits that would be attained had we simply assumed the lim-

its on squarks and gluinos published by ATLAS (Figure 2a in [124], from model 5 in

Section 4.2.1) – clearly, the latter limits cannot be considered universal! Unfortunately,

ATLAS did not also publish the expected model-independent limits on σvis, only the

observed limits. Hence, it was necessary to combine the exclusion regions on the basis of

the observed bounds, which introduces some bias. However, given that ATLAS did not

observe large deviations from the background predictions, the bias should not have been

too substantial.

To sum up the results of the extension of the ATLAS 1 fb−1 results to the mAMSB

framework, it was observed that the limit on equal-mass squarks and gluinos in mAMSB

fell at 900 GeV, compared with the limit of 950 GeV in the analogous point in the CMSSM.

For all values of m0, the limit on m3/2 lies in the range 34 TeV ≤ m3/2 ≤ 42 TeV. The

analysis yielded weaker bounds on the squark mass in mAMSB, due to an increased

predilection for decays to leptons relative to the CMSSM. However, the limit did not

degrade as rapidly in the gluino-dominated region of large m0.

4.4.3 Summary of phenomenological interpretations

The two phenomenological studies presented here provide a small demonstration of the

broad applicability of the ATLAS 0-lepton search and the extent to which it has shaped

the theoretical landscape of SUSY using only the first 1 fb−1 of LHC data. As of Dec

2012, the total integrated luminosity gathered comprises 5 fb−1 of 7 TeV and 22 fb−1

of 8 TeV collision events. To maximise the use of this tremendous dataset during the

dry months of the 2013-2014 shutdown, as well as to prepare for the impending energy

doubling at 14 TeV, it is critical that more improvements be made to the analysis.
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Figure 4.24: Comparison of our 95% C.L. exclusion limits with those of ATLAS in the case
of the CMSSM with tanβ = 10, A0 = 0 and µ > 0. Each subfigure shows
a different signal region, as defined in Table 4.3. The red solid curve shows
our estimate including signal systematic errors, while the blue contour shows
the official limits produced by ATLAS [124]. The dashed red curve shows our
estimate neglecting systematic errors in the signal. We show iso-contours of
gluino and squark mass as labelled dotted lines.
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Figure 4.25: Important kinematic distributions of the signals for mAMSB and CMSSM
sample model points for tanβ = 10 and µ > 0. For the mAMSB point, we have
m0 = 384 GeV and m3/2 = 44 TeV, whereas the CMSSM point has m0 = 455,
m1/2 = 420 and A0 = 0. Only minimal kinematic cuts are applied, i.e. requiring
two, three or four jets with pT > 40 GeV for the meff and pmiss

T /meff distributions,
as is appropriate.
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Figure 4.26: Fraction of events with 0, 1 or 2 hard isolated leptons in the mAMSB parameter
space considered in this paper: tanβ = 10, µ > 0. Leptons with pT > 20 GeV
are considered to be hard and isolated if they are not inside a jet (also with
pT > 20 GeV). No additional kinematic selection is applied. Note the different
z-axis scales in the three plots.
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Figure 4.27: ATLAS mAMSB exclusion from the 1.04 fb−1 0-lepton search, for tanβ = 10
and µ > 0 for each signal region. The region under each line is excluded at the
95% confidence level for each individual signal region, labelled by the key and
detailed in Table 4.3. The asterisks in the background display which signal region
is expected to be the most sensitive at various points in parameter space. The
white region in the upper left hand side of the plot is theoretically disfavoured
due to the presence of negative mass squared sleptons (‘tachyons’).
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Figure 4.28: ATLAS mAMSB exclusion from the 1.04 fb−1 0-lepton search, for tanβ = 10
and µ > 0, with signal regions combined. The coloured region is excluded
at the 95% confidence level. The black dashed lines show equal contours of
gluino mass (almost horizontal lines) and squark mass (arcs) according to the
label on the left-hand side of the figure, in units of GeV. Also shown are the
benchmark mAMSB line and points defined in Ref. [185] and the simplified
model approximation.
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4.5 Optimisation of 0-lepton searches

While the broad strategy of the ATLAS 0-lepton search has remained largely unmodified,

numerous improvements have been made over time to all aspects of the search. In this

section, I present changes that have resulted from my own studies into optimisation of

the event selection, and which impart more general insights regarding the use of hadron

collider mass variables.

Comparing the selection requirements in Tables 3.2, 4.2 and 4.3 highlights two obvious

changes, which will both be discussed below. The first of these is the presence of a SR

based on mT2 in the 35 pb−1 search (SR B), but not reproduced in later searches. The

other difference relates to the development of the meff definitions.

In Figure 4.29, the exclusion limits obtained on the squark-gluino mass plane (model 5

in Section 4.2.1), are shown for each of the four signal regions individually. SR A and

SR B impose dijet selections, while SR C and SR D require at least three jets with pT

thresholds of 40 GeV in all cases. Apart from SR B, all the SRs are defined based on

a final meff(Nj) cut. For understanding the relative sensitivity of the signal selections,

the expected limits shown as dashed blue lines are more relevant than the observed

limits (solid red), as the latter are influenced by deviations of the data from the expected

background values. SR A and SR C, requiring meff > 500 GeV, are seen to provide

sensitivity to low mass squarks and gluinos respectively, whereas SR D substantially

enhances the mass reach in regions with similar squark and gluino masses, where the

total cross-section is amplified via g̃-q̃ associated production.

All the meff selections show sensitivity to a broad range of masses, illustrated particu-

larly well by SR A and SR C in the bottom right and top left corners of the grid. In

these regions, the large mass difference between the squarks and gluinos ensures that only

a single production mode is dominant. The fact that the SR A (C) sensitivity extends

nearly to the massless limit for light squarks (gluinos) illustrates the importance of the

long meff tail alluded to when motivating the use of meff as a discriminating variable in

the 0-lepton search. To some extent, the same is true of the SR D selection, but being

very limited by cross-section, the high meff selection is more affected in regions with

one sparticle partly decoupled. The mT2 selection, however, shows markedly different

behaviour in the region for which it is optimised: squark production (as with SR A, but

at slightly higher masses). In this search, the partition choice was crude – the leading

jet pair was used as input to mT2, regardless of the actual jet multiplicity. The end
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Figure 4.29: 95% CL exclusion limits on the (mg̃, mq̃)-plane based on an analysis of 35pb−1

of
√
s = 7 TeV proton collision data collected by ATLAS in 2010. The four SR

selections are shown separately. Limits from LEP and the Tevatron experiments
are shown for comparison, but the Fermilab results are derived from a set of
CMSSM/MSUGRA models with assumptions differing from those made by
ATLAS, and hence are not directly analogous.
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Figure 4.30: 95% CL exclusion limits on the (mg̃, mq̃)-plane based on an analysis of 35pb−1 of√
s = 7 TeV proton collision data collected by ATLAS in 2010. Constraints from

all four SRs are used, with the SR providing the best expected sensitivity used
at each grid point. This best SR is labelled at each model point. Limits from
LEP and the Tevatron experiments are shown for comparison, but the Fermilab
results are derived from a set of CMSSM/MSUGRA models with assumptions
differing from those made by ATLAS.

result is that, once the associated production cross-section bonus falls away at large mg̃,

the SR B selection is sensitive only to a sliver in mq̃, although it outperforms any meff

selection (including values intermediate between 500 and 1000 GeV, which were also

tested). Another good illustration of this behaviour is in Figure 4.30, which shows that

SR B is optimal (only) for models with squark masses between 400-500 GeV and with

heavy gluinos.

The localised sensitivity of the mT2 selection was important for the context of the

35 pb−1 search, in that we optimised this analysis for exclusion sensitivity, expecting

somewhat pessimistically that SUSY lay at higher mass scales than could immediately

be accessed. In this context, the mT2 exclusion neatly filled a “gap” in the limit at

large (> TeV) gluino masses and intermediate squark masses (400-500 GeV) that was

inaccessible to a search based solely on meff. However, as the figures clearly illustrate,

the improved sensitivity came at the price of very high specificity, whereas in the absence

of any compelling evidence, the optimal search strategy is to keep the analysis generic.

For these reasons, the subsequent 0-lepton searches set aside mT2 selections in favour

of defining several broadly applicable meff SRs. The development of these meff SRs also

holds interesting insights into signal discrimination strategies.
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Figure 4.31: 95% CL exclusion limits on the CMSSM/MSUGRA (m0, m1/2)-plane based

on an analysis of 1.05 fb−1 of
√
s = 7 TeV proton collision data collected by

ATLAS in 2011. The five SR selections are shown separately.
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Figure 4.32: 95% CL exclusion limits on the CMSSM/MSUGRA (mg̃, mq̃)-plane based on an
analysis of 1.05 fb−1 of

√
s = 7 TeV proton collision data collected by ATLAS

in 2011. Constraints from all five SRs are used, with the SR providing the best
expected sensitivity used at each grid point.

Optimisation of search sensitivity goes beyond the mathematical niceties of a variable

definition. Other factors, such as the choice of input objects, may be of greater importance

than in the mass determination scenario. The background composition of course matters

a great deal more.

An important example in the ATLAS search history is the number of input jets to

the meff variable. The original variable definition assumed a fixed number of up to four

jets in the pT sum, a specification that was not challenged in early searches. This was

despite the observation by Tovey that using all available jets provided a better mass

determination [106]. When reoptimising the 0-lepton analysis for 1 fb−1, the search

sensitivity of the meff definitions with Nj jets was compared against that of the “inclusive”

variant accepting all jets above a specified pT threshold. The fact that many SUSY

events tended to have larger jet multiplicities than typical background events suggested

that this inclusive definition would be preferable.

A wrinkle was introduced in the form of another important discriminating variable,

i.e. the ratio of pmiss
T over meff, which effectively suppresses backgrounds lacking a source

of substantial genuine pmiss
T . Introducing more jets to the meff definition inflates the

denominator, thus disadvantaging the SUSY signal, reversing the gains in the meff

separation. The solution was to use different meff definitions for the ratio cut and the

final cut – an exclusive meff definition for the former and an inclusive one for the latter.

These definitions, with raised jet pT thresholds, defined the “high mass” SR E for the
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analysis reported in [124]. As illustrated by Figure 4.31, the SR E selection is unparallelled

at large m0 in the CMSSM/MSUGRA plane, where the highest jet multiplicities are

encountered. If compared with the combined exclusion from all SRs in Figure 4.32, one

in fact sees that only the edge of the exclusion at m0 = 100 GeV is influenced by any

other SR (specifically, SR A)!

This situation illustrates that one need not assume that the “same variable” cannot be

modified when used in different stages of selection. Every cut and the variables defining

them should really be considered independent! As a result of the evident advantages, all

subsequent ATLAS analyses using the meff variable for signal discrimination – chiefly

the 0- and 1-lepton analyses on 2012 data [154, 186] – have in fact adopted the inclusive

meff definition, with the exclusive meff being retained in the ratio cut where applicable.

It should be noted that for the 1 fb−1 search optimisation, multiple signal models

(squark, gluino simplified models, the squark-gluino mass plane and CMSSM) were

scanned for discovery sensitivity using a wider range of variables than has been described

so far. While it is neither relevant nor interesting to list the entire set, the variety of

kinematic observables that could be employed in a search optimisation just within the

0-lepton channel should not be understated. The long shutdown and preparations for

14 TeV running provide a good opportunity to build on the existing analyses, making

full use of new techniques and the potential for innovation, along the lines of the study

performed in Section 2.4.
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“ It makes me so happy. To be at the beginning again, knowing almost

nothing. . .

A door like this has cracked open five or six times since we got up on

our hind legs. It’s the best time to be alive, when almost everything you

knew is wrong. ”

— Valentine Coverly

In the preceding pages, we have seen the extent to which a search for jets and missing

transverse momentum has been able to place bounds on the allowable parameter space

of supersymmetric theories. Specifically, squarks and gluinos have been sought under a

variety of model assumptions, and in the models to which the analysis has most sensitivity,

mass bounds on these sparticles have reached the TeV scale. It is of interest to summarise

the conditions under which sub-TeV squarks and gluinos may have evaded the 0-lepton

analysis. Among the possibilities are:

• Heavy LSPs or small mass splittings – most collider searches are built on the premise

that the particles being searched for are much heavier than those in the Standard

Model, liberating a large amount of energy in their decays. When the mass scale is

compressed, the accessible final state energy is reduced, hurting signal efficiency.

In general, models with MLSP above 200-400 GeV are poorly constrained, with the

precise cutoff being dependent on model assumptions.

• Exclusive squark production – one of the main observables for background sup-

pression is the multiplicity of hard jets, which is less effective in squark-dominated

models. If NLSP is a squark, its decays will only produce a single jet on each side of

the event. The 1/αs suppression of jet radiation in SM processes, especially vector

boson production, is then weaker, allowing larger background contributions to bury

the signal. Evidence suggests that the relatively simple decay topology may benefit

from the use of topological variables such as mT2 that more intelligently reconstruct

the final state mass, hinting that analyses optimised for the detection of squark

production should be cultivated.

• Cascade decays – when an intermediate state (e.g. gaugino NLSP) is placed between

the gluino or squark and LSP, some reduction in signal efficiency is observed. This

efficiency loss is due to two main factors, which are a diminished branching fraction

to jets, and dilution of the jet transverse momenta. These effects may be mitigated
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by expanding the analysis scope to include leptonic decays and/or by identifying

softer accompanying jets, although the latter strategy may be susceptible to pile-up

contamination. Further gains may be had by expressly reconstructing W or Z

bosons within the cascade decay when kinematically allowed, potentially using jet

substructure techniques.

While development of the 0-lepton search continues [154], it must be remembered that

the search does not exist in a vacuum. The ATLAS search environment is perhaps best

summed up by Figure 5.1, which exhibits the mass limits obtained on supersymmetric

particles of all kinds, utilising diverse signatures including jets, pmiss
T , e, µ, τ leptons,

heavy flavour tagging, photons – in short, any object that may be produced at a hadron

collider. Related searches by CMS cover a similarly broad range of signatures and masses.

A discussion of all the bounds would be unilluminating; more interesting is to consider

which investigations are most complementary to the 0-lepton search for the goal of

covering a maximally generic signal space.

An obvious path to complementarity is to reverse analysis choices, such as incor-

porating leptons or relaxing pmiss
T selections, although these need simultaneously to be

supported by well-motivated target signals. One important contribution is made by

monojet searches, which allow for extremely mass-degenerate scenarios to be probed by

detection of hard ISR jets [187]. A potentially powerful strategy is to adopt a holistic ap-

proach, and incorporate large amounts of information from many measurement channels

into a single statistical analysis [188]. While the ATLAS multichannel search has yet to

achieve similar sensitivity to its CMS counterpart [99] or the dedicated ATLAS 0-lepton

search, it remains an interesting strategy with much promise.

It is easy to picture a patchwork proliferation of analysis strategies that test the SUSY

parameter space, but some perspective should be retained – not every search strategy

that has been concocted is necessarily optimal, and the association between strategies

and discriminating variables bears hints of arbitrariness. The next two years in which

the LHC will be shut down and no new data will be taken offer a good opportunity

for retrospection and reassessment of which techniques may best be employed in which

spheres, in order that efforts may be focused optimally for the LHC restart in 2014,

which should bring renewed vigour to SUSY searches. Studies of mass variables along

the lines of those carried out in Chapter 2 can and should inform this process, permitting

the extraction of maximal information from the data already at hand.
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Contextualisation of the 0-lepton results has been discussed to some degree in Chap-

ter 4. A wider view of the LHC’s impact on supersymmetry, particularly that of the

direct searches, can be gleaned from several quarters. Of particular interest are studies

of the phenomenological MSSM (pMSSM), which is a model constrained primarily by

empirical evidence, and nicely complements investigations of constrained models defined

more by theoretical appeal [189, 190]. Recent studies of this framework [191, 192] infer

similar conclusions to those listed above about models that may have escaped detection,

particularly the blind spot due to large compression. One important revelation from

this pMSSM study is that the coverage of models (i.e. the fraction of models able to be

discovered/excluded) of the various LHC searches is little affected by the imposition of a

Higgs mass constraint at mh = 126± 3 GeV. However it must be stressed that the Higgs

constraint itself is responsible for eliminating many of the otherwise-allowed models. A

tentative conclusion therefore is that the July 4th discovery is not grounds for altering

the nature of collider-based searches, but simply offers substantial complementarity.

It is worth noting that support for the Cosmological Standard Model (ΛCDM) of 5%

baryonic matter, 23% dark matter and 74% dark energy [15] continues to grow, with

the recent measurement of baryon acoustic oscillations in the matter-dominated stage

of the universe by BOSS [193] supporting the standard Friedman-Robertson-Walker

evolution. This makes a case for the impending appearance of dark matter in collider

experiments, which would be a significant indicator of non-SM physics. Discovery of a

supersymmetric WIMP would allow characterisation of dark matter properties via other

SUSY channels [194].

Hopes of discovering supersymmetry at the LHC have yet to be entirely extinguished

(B̄ → Dτν̄ decay anomalies notwithstanding). What is most important to bear in mind is

the good health of the search industry, which strives to ensure that if SUSY is realised at

the TeV scale, it will be found. Some amusement may be found in a statistical analysis of

statistical analyses that indicates excessive conservatism in determining the significance

of experimental results on the parts of both CMS and ATLAS [195]. The author sincerely

hopes that the data dry-spell of 2013-2014 will merely be the calm before the storm, and

that searches at 14 TeV will encounter a deluge rather than a desert. In the meantime,

experimentalists should busy themselves preparing a sufficient quantity of buckets.
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1 Defining an effective SUSY mass scale

Prior to measurement of the mass of the LSP, many mass measurements will likely

make the simple assumption of a massless LSP, if there are no grounds for choosing a

specific non-zero value. Should the LSP indeed be massive, the failure to account for the

LSP mass implies that any measurements of the mass of a heavier decaying object will

underestimate the true mass. Instead, the measurements will indicate a reduced mass

scale, characteristic of the event kinematics.

It is therefore of interest to define an effective mass scale M corr
SUSY, that will reflect the

results of any attempted measurement, taking into account the mass of the LSP. We

consider the decay of a heavy particle with mass MSUSY to N objects, of which one is

an LSP with mass MLSP and the remainder are SM particles that are approximately

massless. For two-body decays, such as those of squarks, it is appropriate to use that

defined by Tovey (equation 2.52) [106]:

M corr
SUSY =

M2
SUSY −M2

LSP

MSUSY

, where

MSUSY =
∑

p in sparticles

Mp ·
σp
σtot

,

which corresponds to sum of the momenta of the final state particles. However, the

kinematics of N -body decays will in general not conform to this special case, and a

more sophisticated measure is needed. In principle, one could use a MC programme

to integrate over the matrix element and phase space for any conceivable decay, such

specific choices will result in a large degree of model-dependence, for example on the spin

and couplings of the parent and daughter particles. For early measurements, a simpler

proxy is sufficient.

A somewhat unphysical assumption of isotropic decay, i.e. that the decay products

are distributed with perfect angular symmetry, yields a convenient calculation that is

nonetheless reasonably realistic. The general formula for N > 2 (equation 2.54)

M corr
SUSY =

(N − 1)MSUSY −
√
M2

SUSY + (N2 − 2N)M2
LSP

N − 2
,

is easily derived. Although some asymmetry should be anticipated due to the LSP

being heavier, this expression yields good agreement with the mean of the momentum
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sum of an N -body isotropic phase space Monte Carlo, computed using a Mathematica

implementation of the RAMBO algorithm [196].

Plots comparing the isotropic decay approximation and the simple two-body formula

with the average over 1000 N -body phase space MC events are shown in Figure 3 and

Figure 2. The isotropic decay formula clearly outperforms the two-body assumption as

MLSP increases and as N increases. For N ≤ 8, the value of M corr
SUSY from equation 2.54

for LSP masses between 0 and 0.9MSUSY lies within 18% of the MC value, being

underestimated for non-zero MLSP. The maximum deviation for N = 3 is around 10%

for MLSP = 0.9MSUSY.

0.2 0.4 0.6 0.8
MLSP � Mparent

0.05

0.10

0.15

HS pLiso-HS pLMC

Relative deviation of isotropic decay approximation from N-body MC

N = 6

N = 5

N = 4

N = 3

(a) Isotropic decay
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Relative deviation of 2-body decay approximation from N-body MC
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N = 5

N = 4

N = 3

(b) 2-body decay

Figure 2: Relative deviations between the isotropic decay and 2-body decay approximations to
N-body Lorentz-invariant phase space MC, corresponding to N = 3− 6 in Figure 3.
The cases N = 7, 8 are omitted to aid distinguishability of the displayed curves, but
obey the same trend.
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(a) 3-body decay
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(c) 5-body decay
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(d) 6-body decay
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(e) 7-body decay
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(f) 8-body decay

Figure 3: Comparison between the average values of the sum of outgoing particle momenta
from N -body decays computed using a Lorentz-invariant phase space MC and the
isotropic decay assumption. The curve for the two-body decay is also shown for
illustration.
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2 Correlations of mass bounds with effective SUSY

mass scales
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Figure 4: Fits to correlation plots of the peak position to the effective SUSY mass scale M corr
SUSY

for single-parent mass bound variables, in a Constrained MSSM model grid. The
plots show (left) the correlation and parameters of the fitted line, (middle) difference
∆M corr

SUSY between the estimated and true mass scales, and (right) correlation of the
Gaussian width and mean for each model. Reproduction of Figure 2.14.
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Figure 5: Fits to correlation plots of the peak position to the effective SUSY mass scale
M corr

SUSY for two-parent mass bound variables, in a Constrained MSSM model grid.
The jets are partitioned into a pair of collections such that the sum of the invariant
masses of the two collections is minimised. Plots are as in Figure 4.
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Figure 6: Fits to correlation plots of the peak position to the effective SUSY mass scale
M corr

SUSY for two-parent mass bound variables, in a Constrained MSSM model grid.
The jets are partitioned into a pair of collections that minimise the value of the
mass bound (i.e. using the mTgen procedure). Plots are as in Figure 4.
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Figure 7: Fits to correlation plots of the peak position to the effective SUSY mass scale
M corr

SUSY for alternative mass measurement variables, in a Constrained MSSM model
grid. In the case of the Razor variables, jets are partitioned such that the sum of
the invariant masses of the two collections is minimised. Plots are as in Figure 4.
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3 Collision and simulated datasets for the ATLAS

0-lepton analysis

3.1 Collision data samples

The ATLAS proton collision data analysed in the 0-lepton search for squarks and

gluinos [79] corresponds to runs 178044 –191933 (data-taking periods B2 – M10). Period

C was excluded, because the LHC was running at reduced
√
s during this period.

3.2 Monte Carlo simulated samples at 7 TeV

QCD multijets

QCD 2→ 2 scattering events are generated with PYTHIA6 [130], using the MRST2007LO*

modified leading-order PDFs [131]. These are purely parton-shower based, and are not

necessarily expected to accurately reproduce angular distributions between jets in all

QCD events. This is not of major concern, however, as the MC samples are used only

for illustrative purposes, and to a very limited extent for analysis optimisation. A fully

data-driven technique [142] is used for the final background estimates, and reveals that

the MC substantially overestimates the QCD contamination.

Nine Pythia QCD samples are defined, each comprising one million events, which are

produced in exclusive pT intervals, with lower thresholds at 8, 17, 35, 70, 140, 280, 560,

1120 and 2240 GeV. These correspond to MC sample ID’s 105009-105016.

Top quark production

Top quark pairs (tt) are simulated with ALPGEN [132] and PDF set CTEQ6L1, cross-checked

with MC@NLO [133, 134] (with a top quark mass of 172.5 GeV) and the Next-to-Leading

Order (NLO) PDF set CTEQ6.6 [135]. Separate samples with up to five additional

final state partons are generated in ALPGEN, for dileptonic and semileptonic tt events

independently (sample ID’s 105890-105892, 105894-105896, 117887-117889, 117897-

117899). Fully hadronic tt decays are simulated in MC@NLO (sample ID 105204). Although

ALPGEN does not reproduce top quark kinematic distributions as accurately as MC@NLO,

the latter program is only capable of simulating a single extra jet in the matrix element,
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and substantially underestimates the number of events with large jet multiplicities (≥ 5

jets), which chiefly originate from tt events with additional ISR radiation.

Single top production is simulated with AcerMC [136] interfaced to PYTHIA6 and

using PDF set MRST LO** [131]. Associated W -t production (sample ID 105500) and

s- and t-channel processes are generated separately by lepton flavour (sample ID’s

115360-117365).

Finally, tt plus vector boson events are generated in MADGRAPH/MADEVENT + PYTHIA6,

including tt W and tt Z with up to one extra jet and tt W W processes (sample ID’s

119353–119356 and 119583).

Vector boson production

Vector boson (W , Z/γ∗, γ) plus jets events are generated in ALPGEN, as for tt. These

processes are divided into the various possible leptonic decays (W → e, µ, τ and

Z → ee, µµ, ττ, νν), with up to five additional partons in the matrix element, and

are supplemented by W and Z production with heavy flavour (c or b) quarks. The sample

ID’s are

1. γ + jets: 106123-106127, 150090-150095

2. W + jets: 107680-107685, 107690-107695, 107700-107705, 107280-107283, 117284-

117287, 117293-117297, 144018, 144022, 144196-144207

3. Z + jets: 107650-107655, 107660-107665, 107670-107675, 107710-107715, 116250-

116255, 116260-116265, 116940-116945, 144017, 144021, 144192-144195

Additional photon and Z samples produced using SHERPA [140] are used for cross-

checks of the RZ/γ background estimation method (Section 3.4.1). The SHERPA photon

events are produced in inclusive pT samples with thresholds of 35, 70, 140 280 and

500 GeV (sample ID’s 113714-113717 and 126371), whereas the Z → νν̄ sample has a Z

pT cut of 30 GeV (sample ID 118959).

Fragmentation and hadronisation

Fragmentation and hadronization for the ALPGEN and MC@NLO samples is performed with

HERWIG [137, 138], using JIMMY [139] for the underlying event.
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3.3 Monte Carlo simulated samples at 8 TeV

The studies of mass bound variables in Chapter 2 and the RZ/γ improvements in Chapter 3

were conducted on MC samples simulated at 8 TeV in the MC12 campaign [114]. Apart

from the centre-of-mass energy, these are largely identical to the 7 TeV samples. A few

differences are described below.

QCD multijets

Once again, PYTHIA6 was used for generation of the QCD multijet samples. However,

one notable alteration was made: the event weighting is altered to improve the behaviour

of the pT distribution of the samples across pT thresholds [197]. This permits the

augmentation of MC statistics at large pT . The sample ID’s used were 147913-147917,

with the softer pT thresholds ignored due to negligible selection acceptance.

Top quark production

At the time when the sensitivity benchmarking study was being carried out, the MC12

production samples did not include ALPGEN tt samples. To replace these, MC@NLO fully

hadronic and semileptonic samples were used instead (sample ID’s 105200 and 105204).

Vector boson production

As mentioned in Chapter 3, the boson pT spectra produced by ALPGEN were found

disagree with measurements in data. To replace these, samples generated with SHERPA

were substituted. The SHERPA samples are generated with up to 5 additional jets in the

matrix element, corresponding to the following sample ID’s:

1. γ + jets: 113714-113717, 126371 and 126955-126956, extending the minimum pT

cuts to 800 and 1000 GeV.

2. W + jets: 144992-144994, 147774-147776, 157534-157536

3. Z + jets: 146820-146822, 157537-157540, the latter applying pT thresholds of 70,

140, 280 and 500 GeV to the Z → νν̄ +jets process.
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In the RZ/γ improvement studies, pT -sliced ALPGEN Z → νν̄ and γ samples were used

for comparison with the standard SHERPA MC. These included sample IDs:

1. γ +jets: 156839-156840, 156842-156845, 156847-156850, 156852-156855, 156857-

156860, 156862-156863

2. Z → νν̄ +jets: 156805-156808, 156810-156813, 156815-156818, 156820-156823,

156825-156828
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Colophon

This thesis was made in LATEX 2ε using the “hepthesis” class [198].

Chapter quotations are from Tom Stoppard’s plays Arcadia [199] and Rosencrantz

and Guildenstern are dead [200].
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