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Abstract: A system of alkali-activated fly ash (FA)/slag (AAFS) mixtures as a clinkerless cement 21 

was investigated with different dosages of Na2CO3, as a sustainable activator. The effect of 22 

incorporating various proportions of reactive magnesia (MgO) was also examined. Mechanical, 23 

mineralogical, and microstructural characterisation of the cement pastes was carried out using the 24 

unconfined compressive strength, X-ray diffraction, thermogravimetric analysis, infrared 25 

spectroscopy and scanning electron microscopy. It was found that the strength of Na2CO3 activated 26 

FA/slag mixtures generally increased with time and the Na2CO3 dosage. The hydration products 27 

were mainly C-(N)-A-S-H gel of low-crystallinity, which is rich in Al and may have included Na in 28 

its structure, and hydrotalcite-like phases. Adding reactive MgO in the mixes showed an 29 

accelerating effect on the hydration rate as suggested by the isothermal calorimetry data. 30 

Additionally, findings revealed variations on the strength of the pastes and the chemical 31 

compositions of the hydration products by introducing reactive MgO into the mixtures.  32 

Keywords: Fly ash, Slag, Reactive magnesia, Sodium carbonate, Hydration, Microstructure 33 

 34 

 35 

Highlights:  36 

1. Na2CO3 activated fly ash/slag pastes were characterised by strength, hydration properties and 37 

microstructure.  38 

2. Increasing the Na2CO3 content from 5% to 10% resulted in a remarkable increase in strength 39 

and hydration rate.   40 

3. Incorporating reactive MgO to the blends has a notable influence on the reaction rate, the 41 

microstructure of the mixes and slight influence on the strength. 42 

4. Hydration products include mainly C-(N)-A-S-H gel, hydrotalcite-like phases, calcite, and 43 

gaylussite. 44 

 45 
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1. Introduction 46 

Portland cement (PC) and concrete are extensively used in the construction industry because 47 

of their remarkable technical performance and durability as well as their low cost. However, 48 

they are responsible for detrimental impacts on the environment because of their large 49 

consumption of natural resources, mass disposal of wastes, and the energy intensiveness and 50 

high carbon dioxide (CO2) emissions of cement production. The production of PC, currently 51 

at more than 3 billion tonnes annually, is predicted to reach more than 4 billion tonnes per 52 

year by 2050 [1,2]. Approximately 0.85-1.0 tonne of CO2 is emitted per tonne of cement 53 

clinker produced [3], which is responsible for 8-10% of the total man-made CO2 emissions 54 

[4]. This places huge pressures on the cement and concrete industries to apply more 55 

sustainable practices. Optimising the production process of PC, using waste as fuel and raw 56 

materials, using renewable energy, and replacing the clinker partially or completely with 57 

industrial by-products, are all applied to minimise the negative environmental impact of PC 58 

production [5]. Another promising and more sustainable alternative is the use of alkali-59 

activated cements (AACs) using industrial by-products. In this system, alkalis are introduced 60 

to silica aluminate materials (e.g., natural waste or industrial by-products) to raise the pH of 61 

the solution, thereby facilitating the breakage of the Si-O-Si and Al-O-Si bonds and starting 62 

the reactions to form a condensed structure [6,7]. Rashad [8] stated that AAC concrete 63 

compared to PC concrete could be 70% and 60% lower in global warming potential and 64 

energy consumption, respectively. 65 

The extensively used materials for AACs are slag and  fly ash (FA) [9]; the former is called 66 

alkali-activated slag (AAS) and the latter is known as geopolymer. Many previous studies 67 

investigated either alkali-activated slag or fly ash. As for the combined use of both, only a few 68 

studies were reported recently [10,11]. Given the limited global resources of the individual 69 
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by-products, combining them would provide a much bigger resource and counterbalance the 70 

disadvantages of each activation process [12]. The main hydration products of the alkali-71 

activated FA/slag (AAFS) system are calcium silicate hydrates (C-S-H) gel, hydrotalcite-like 72 

phases, pirssonite (Na2Ca(CO3).H2O), and calcite [12]. Chi and Huang [13] studied the 73 

binding mechanism and properties of AAFS mortars and concluded that better properties, 74 

compared to PC, have been obtained in terms of compressive strength, flexural strength and 75 

water absorption, although drying shrinkage was the major problem. 76 

The most widely used activators are NaOH, waterglass (sodium silicate), and a combination 77 

of both. These activators, however, are a source of concerns because they are the most 78 

expensive component in the system and the primary source of greenhouse gas (GHG) 79 

emissions in the production of AAC concrete. In addition, these activators would cause the 80 

AACs to shrink and harden more rapidly than what is desirable [14]. The use of sodium 81 

carbonate (Na2CO3) as an activator is much less extensively studied in AACs although it has 82 

been shown that buildings made of Na2CO3-activated binders remained sound and increased 83 

in strength over their service life under conditions in which PC deteriorated rapidly [15]. 84 

Compared to other conventional activators, Na2CO3 yields a lower early age strength due to 85 

its lower pH but it can demonstrate higher strength at late ages than NaOH resulting from the 86 

effect of CO3
-2

 ions [16], which lead to the formation of carbonated compounds that improve 87 

the mechanical strength [17]. Li and Sun [18] used Na2CO3 with or without NaOH to activate 88 

slag alone and a combination of slag and fly ash. The compressive strength of 10% Na2CO3-89 

activated slag developed from 0 MPa at 3 days to 60 MPa at 28 days. Recently, Bernal et al 90 

[19] examined the activation mechanism of Na2CO3-activated slag. They proposed that the 91 

activation took place in three different stages starting with the dissolution of the slag and the 92 

formation of gaylussite and zeolite A in the first day. Then the reaction might go through an 93 
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extended induction period of 4-6 days with the conversion of gaylussite to CaCO3 and the 94 

formation of hydrotalcite. In the last stage, the precipitation of C-A-S-H gel started [19]. 95 

Magnesia, MgO, is mainly produced from the calcination of magnesite, MgCO3, at different 96 

temperatures resulting in different grades [20]. The use of hard burned MgO, calcined at 900-97 

1200°C, as a shrinkage compensating additive in the construction of the Baishan dam in 98 

China in the mid of 1970s proved its efficiency and potential over the conventional 99 

admixtures [21]. Ground granulated blastfurnace slag (GGBS) normally contains a high 100 

content of MgO, which is in the slag glass network, sometimes up to 13%; whereas reactive 101 

grade MgO (calcined under 1000 °C) or hard burned MgO (calcined at 1000–1400°C) are 102 

often chosen for use as additives. Recent work  found that  reactive MgO can efficiently 103 

activate the GGBS and showed higher strength than hydrated lime activated GGBS [22,23]. 104 

The main hydration products of MgO-GGBS system were C-S-H and hydrotalcite-like phases 105 

[24]. The reaction of such system depends on the properties of MgO [24], which strongly 106 

depend on the source of the precursor and the calcination history [25]. 107 

There are very limited reports regarding the effect of reactive MgO in AACs. Ben Haha et al. 108 

[26] studied the effect of high inherent MgO content on alkali activated slag and found that 109 

for waterglass activated slag paste, the compressive strength after 28 days increased by 50-110 

80% with increasing MgO content from 8 to 13%. This was because the higher MgO content 111 

contributed to more hydrotalcite-like phases formed, resulting in up to 9% higher volume of 112 

hydrates and a lower porosity. Additionally, Shen et al. [27] studied the properties of reactive 113 

MgO modified alkali activated fly ash/slag cement (MAAFS) and concluded that the blends 114 

can reach the strength standard of 42.5N. They also showed that adding MgO reduced the 115 

shrinkage and cracking tendency due to its expansive hydration [27]. Kwok [28] studied the 116 

effect of reactive MgO in Na2CO3-activated slag/limestone systems and found that replacing 117 
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limestone by reactive MgO remarkably increased the early strength and slightly increased the 118 

28-day strength. The effect of MgO reactivity on the strength, shrinkage, and microstructure 119 

of sodium silicate and sodium carbonate-activated slag was studied by [29–31]. They found 120 

that adding reactive MgO into the AAC can effectively reduce the drying shrinkage and 121 

increase the strength depending on the reactivity and the content of reactive MgO. However, 122 

there is no literature on the role of reactive MgO in Na2CO3-activated slag/fly ash system. 123 

Hence the aim of this paper is to examine the effect of combining reactive MgO and Na2CO3 124 

for the activation of fly ash and slag blends on the strength, reaction kinetics, and hydration 125 

products and microstructure. 126 

2. Materials and Methods 127 

The GGBS used was supplied by Hanson cement, UK, and has basicity (𝐾𝑏 =
𝐶𝑎𝑂+𝑀𝑔𝑂

𝑆𝑖𝑂2+𝐴𝑙2𝑂3
) and 128 

hydration modulus (𝐻𝑀 =
𝐶𝑎𝑂+𝑀𝑔𝑂+𝐴𝑙2𝑂3

𝑆𝑖𝑂2
) values of ~1.0 and ~1.60, respectively. The GGBS 129 

was mainly amorphous with a broad hump in the 2θ region of 25–38° in the XRD pattern (not 130 

shown). Merwinite (Ca3Mg(SiO4)2) was identified as the only crystalline phase present. The 131 

FA was obtained from Cemex, Rugby, UK and is classified to meet the requirements of the 132 

British standard for use with PC (BS 3892: Part 1). The MgO was obtained from Richard 133 

Baker Harrison, UK, and has a reactivity of 170 sec according to the acetic acid test, which 134 

indicates medium reactivity according to the classification of Jin and Al-Tabbaa [25]. The 135 

chemical compositions of all materials are shown in Table 1. Sodium carbonate was supplied 136 

by Fisher scientific, UK as a powder and has the purity of 99%. It was dissolved in the mix 137 

water until complete dissolution was reached. 138 

 139 
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Table 1 Chemical composition and physical characteristics of the materials used (based on the 140 
suppliers’ datasheets) 141 

Component GGBS FA MgO 

CaO % 39.24 6.8±3.6 1.9 

SiO2 % 36.79 49.3±6.2 0.9 

Al2O3 % 11.51 24.1±0.4 0.1 

Fe2O3 0.42 9.7±1.3 0.8 

MgO % 8.10 1.1±0.2 93.5 

SO3 % 1.03 3.3±1.3 - 

K2O % 0.63 3.5±0.3 - 

Na2O % 0.37 1.2±0.1 - 

SSA (m
2
/kg) 545 2600 - 

 142 

Clinkerless systems were prepared from GGBS, FA, and MgO and activated by Na2CO3. All 143 

mixes had a water to binder (w/b) ratio of 0.31. Each material is given an appropriate notation 144 

for simplicity. G, F, M, and N refer to GGBS, FA, MgO, and Na2CO3, respectively. The ratio 145 

of GGBS to FA was fixed at 3 parts to 1 part by weight. The proportion of MgO changed 146 

from 0 to 10% by replacing GGBS+FA and the content of Na2CO3 varied from 0-10% by the 147 

weight of the total binder as shown in Table 2.  148 

Table 2 The mix proportions used in this study 149 

Mix  GGBS % FA % MgO % Na2CO3% 

GFM5N0 71.25 23.75 5 0 

GFM10N0 67.5 22.5 10 0 

GFM0N5 75 25 0 5 

GFM5N5 71.25 23.75 5 5 

GFM10N5 67.5 22.5 10 5 

GFM0N10 75 25 0 10 

GFM5N10 71.25 23.75 5 10 

GFM10N10 67.5 22.5 10 10 

 150 

For the preparation of the paste samples, all the dry materials (GGBS, FA, and MgO) were 151 

mixed by hand in a bowl followed by 5 minutes’ dry mixing in a mixer to which the Na2CO3 152 

solution was then added. The mixer was stopped after 3 minutes of slow mixing, to collect 153 
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any unmixed solids scraped from the sides of the mixing bowl and the paddle into the bowl. 154 

Then 2 more minutes of slow mixing and 5 minutes of fast mixing were applied to ensure 155 

homogeneity. For each mix, the freshly mixed cement paste was placed into 40 x 40 x 40 mm 156 

steel cubic moulds in three layers, and in between each layer the mixture was tapped with a 157 

spatula for at least 25 times in two directions to remove the air voids. The samples were 158 

demoulded after 2 days of curing and then cured in a water tank at temperatures between 20 ± 159 

2 °C until the designed testing age. The demoulding time was done after 48 hrs because some 160 

mixes were too soft to be demoulded after 24 hrs in agreement to [32]. 161 

Isothermal calorimetry experiments were conducted using a TAM Air Isothermal calorimeter, 162 

at a base temperature of 20 ± 0.02 °C. Fresh paste was mixed externally, weighed into an 163 

ampoule, and immediately placed in the calorimeter, and the heat flow was recorded for the 164 

first 140 hrs of reaction. All values of heat release rate were normalised by total weight of  the 165 

paste. 166 

The compressive strength testing was carried out using Controls Advantest 9 with a maximum 167 

capacity of 250 kN and a loading rate of 2400 N/s. Triplicate cubes were tested at ages of 3, 7, 168 

28, 56 and 90 days and the strength reported was an average of the three specimens. 169 

Immediately after the compressive strength test at 28days, selected samples for 170 

microstructural analyses were immersed in acetone for three days in order to stop any further 171 

hydration. Then the samples were filtered to remove the acetone followed by vacuum drying 172 

in a desiccator. The samples were then put in the oven at 60°C for at least 24 hrs. Thereafter, 173 

part of the samples was crushed and ground in the agate mortar until passing the 75 μm sieve. 174 

The powders obtained were sealed in plastic vials for further analysis.  175 

Powder X-Ray diffraction (XRD) was employed to identify the crystalline phases in the 176 

sample. The ground powders were placed on glass microscope slides onto which acetone was 177 
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dripped. After the acetone evaporated, the sample was affixed to the slide and placed in the 178 

Siemens D500 X-ray diffractometer with a CuKα source operating at 40 kV and 40 mA, 179 

emitting radiation at a wavelength of 1.5405 Å. The scanning regions were between 2θ values 180 

of 5 to 60°, at a resolution of 0.02°/step. Thermogravimetric analysis (TGA) were conducted 181 

using 20±2 mg powder under static air in an open alumina crucible heated at 10 °C/min over 182 

the range of 40-1000°C on a Perkin Elmer STA6000 machine. Attenuated Total Reflectance 183 

Fourier Transform Infrared (ATR-FTIR) spectra of the samples were taken using Perkin Elmer 184 

FTIR Spectrometer Spectrum 100 Optica. Spectra were collected in transmittance mode from 185 

4000 to 600 cm
-1

at a resolution of 1cm
-1

. Fractured surface specimens obtained from 186 

mechanical testing were examined by scanning electron microscope (SEM) conducted on a 187 

JEOL model JSM-820. Prior to SEM testing, the samples were mounted onto metal stubs 188 

using carbon paste and coated with gold film to ensure good conductivity. The accelerated 189 

voltage was set at 10 kV. Additionally, backscattered electron microscopy and energy 190 

dispersive X-ray analysis (EDX) were carried out on the 28-day samples using FEI Nova 191 

NanoSEM FEG at 15 kV accelerating voltage and a working distance of 5 mm. The samples 192 

were impregnated in epoxy resin before polishing and coated with carbon.  193 

3. Results and Discussions 194 

3.1. Unconfined Compressive Strength (UCS) 195 

The compressive strengths of all the mixes at ages of 3, 7, 28, 56, and 90 days are shown in 196 

Fig. 1. The compressive strengths of samples containing no Na2CO3 were far lower than the 197 

other mixes at all ages. However, it also demonstrates that even with the absence of the alkali 198 

activator (black lines), MgO can activate the slag/FA blends effectively since the 3-day 199 
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strength of 10 % MgO activated slag/FA blends reached ~9 MPa. This is in agreement with 200 

the findings of  [22,33,34].  201 
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Figure 1. UCS of AAFS cements at different ages 

Fig.1 also presents the effect of MgO on the strengths of blends activated by 5% (blue lines) 202 

and 10% (red lines) Na2CO3. Adding 5% of MgO (denoted with circles) had a marginal effect 203 

on strength, while an increase of the MgO content to 10% (denoted with triangles) remarkably 204 

increased the strength, especially after 28 days. The positive influence of MgO on the strength 205 

could be attributed to its contribution in forming hydrotalcite which densifies the 206 

microstructure [26,29]. Jin et al. [29] also showed the enhancement of strength by adding 207 

reactive MgO into the Na2CO3 activated slag pastes. The addition of MgO to alkali activated 208 

systems does not yield to strength loss as have been observed in PC-based systems [35,36]. 209 

This is because that MgO in alkali activate systems can react with the dissolved ions from the 210 

aluminosilicate precursors to yield hydrotalcite-like phase or magnesium silicate hydrate gel 211 
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[24,29] while in PC systems it reacts separately with water to form brucite (Mg(OH)2), which 212 

is weaker than the strength-giving phase in PC [36]. 213 

It is also shown in Fig. 1 that adding Na2CO3 effectively activated the binders especially when 214 

used at 10%. The range of the compressive strengths at early ages highly depended on the 215 

Na2CO3 dosage. There is steep strength gain before 7 days followed by a relatively gradual 216 

and almost linear gain up to 90 days for these mixes with Na2CO3, with final 90-day strength 217 

of over 60-70% higher than the 7-day strength; whereas for mixes without Na2CO3, only a 218 

slight strength gain was obtained after 28 days. The early age strength improvement by 219 

Na2CO3 can be attributed to the higher pH of the pore solutions which accelerate the 220 

dissolution of slag and FA. The remarkable strength development at later ages can be 221 

attributed to the effect of carbonate ions as proposed by [15]. These data suggest that 222 

activating slag/FA with Na2CO3 and incorporating MgO can yield strengths as high as 60 223 

MPa at 28 days and as high as 80 MPa at 90days. 224 

In the very few available reports about the strength of formulae activated by Na2CO3, lower 225 

strength have been reported following similar conditions of the current study [19,28,32,37], 226 

although they reported higher strength in special curing conditions[38]. Therefore, emphasis 227 

in this work is placed on the fact that no high-temperature curing (all samples cured at room 228 

temperature) or complicated fabrication techniques (autoclave curing, humidity chamber 229 

curing, etc...) were used, making these formulae both practical for large-scale usage and of 230 

reduced environmental impact. Therefore, the greatly reduced environmental impact, the 231 

simplicity of manufacture, and the use of natural reactants (Na2CO3) are all reasons for further 232 

investigation of these materials. 233 
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3.2. Isothermal Calorimetry 234 

The heat release curves of mixes containing different percentages of MgO are shown in Fig. 235 

2. There is an initial pre-induction period, associated with the partial dissolution of the slag 236 

and fly ash. This period is then followed by an extended induction period where little heat 237 

evolution was taking place. It is clear that increasing the activator dosage and the MgO 238 

content shortened this period. This indicates that the addition of MgO and increasing the 239 

activator dosage accelerate the reaction rate. The mix with 10% MgO led to higher heat of 240 

reaction (Fig. 2b) which means that an increased precipitation of reaction products occurred. 241 

The MgO content of slag has recently been identified to play a vital role in the kinetic of the 242 

reaction of alkali activated slag binders [39]. A high intensity heat evolution process between 243 

40-70 h and 30-60 h in binders containing 5% Na2CO3 and 10% Na2CO3, respectively, was 244 

identified. This peak refers to the acceleration and deceleration processes when the 245 

precipitation of voluminous reaction products occurs, thereby releasing a significant heat of 246 

reaction. The occurrence and timing of this period explain the need for keeping the samples in 247 

the moulds up to 48 hours before demoulding and confirm that the formation of the strength-248 

giving phases takes place during the first 48 hours. These results are different from [19], 249 

where the pre-induction and induction periods extended to more than 100 h, or sodium 250 

silicate-activated slag [26], which suggests that that the reaction kinetic is not only dependent 251 

on the alkaline activator but also on the chemical and physical properties of slag.  252 
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Figure 2. Heat release rate (a) and cumulative heat release (b) of different mixes 
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3.3. Hydration Products  253 

The evolution of crystalline phases in the mixes at different ages is shown Fig. 3. In samples 254 

cured for 3 days (Fig. 3a), the broad hump present in the non-hydrated slag in the 2θ region of 255 

25-38° slightly diminished during the first days of hydration and a new diffuse peak at about 256 

2θ = 29.5° appeared. This peak is assigned to C-S-H phase or calcite. C-S-H is generally 257 

considered to be poorly crystalline but its crystallinity in alkali-activated slag has already 258 

been reported by [40]. However, calcite occurrence is possible due to the recarbonation of Ca 259 

with CO3
2-

 ions as reported by [15,37] along with other calcium carbonate polymorphs such 260 

as vaterite and aragonite[19]. Another main crystalline phase is the double salt gaylussite 261 

(Na2Ca(CO3)2.5H2O), which is known to form as a natural evaporite in alkali lake waters 262 

[41]. The formation of such phases implies that at early ages there is a preferential reaction 263 

between the dissolved CO3
2- 

and the Ca
2+

 released from the partial dissolution of the slag.  264 
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Figure 3. XRD of cement pastes at (a) 3 days, (b) 28 days, and (c) 180 days 
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Additionally supply from MgO could enhance the formation of hydrotalcite as it is defined as 265 

an Mg-Al double-layered hydroxide. Also the presence of FA increased the uptake of Al to 266 

form the hydrotalcite and C-(N)-A-S-H gel as some traces of thomsonite 267 

(NaCa2Al5Si5O20·6H2O) was observed and confirmed by TGA (see below). Thomsonite has 268 

been identified in carbonated alkali-activated slag binders [42]. In addition, unreacted MgO 269 

and some quartz, indicating the presence of unreacted FA, were also observed. 270 

After 28 days of curing (Fig. 3b), the peaks of gaylussite disappeared on mixes containing 271 

only 5% Na2CO3 and decreased on mixes containing 10% Na2CO3. Also the intensities of 272 

calcium carbonate phases decreased possibly due to the formation of more C-A-S-H and 273 

hydrotalcite like phases.  274 

Significant increase in the intensities of the reflections assigned to hydrotalcite and C-A-S-H 275 

along with the decrease of quartz and MgO were observed at 180 days (Fig 3c). It is clear that 276 

the presence of MgO lead to the formation of more hydrotalcite-like phases and it seems that 277 

after this extended curing age that the C-A-S-H gel and hydrotalcite-like phases were the 278 

major hydration products, which agrees with the findings of [12,16,19,28,37]. Moreover, 279 

there was no clear evidence of the presence of any magnesium carbonate in these blends as 280 

reported by [27] or brucite reported by [26] which indicates that the presence of MgO in these 281 

system only lead to the formation of hydrotalcite-like phases or M-(A)-S-H gels intermixed 282 

with the main gel as will be discussed later. The activation of slag and FA initially consists of 283 

breakdown of the covalent bonds Si-O-Si and Al-O-Si [43]. Dissolved Mg
2+ 

ions then either 284 

reacts with the broken bonds to form M-S-H or hydrotalcite like phases, thereby hindering the 285 

precipitation of brucite [29]. This behaviour has been reported with adding reactive magnesia 286 

to slag and silica fume [33,44,45].  287 
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The TG curves in Fig.4 show that four main humps were observed. It was found that the 288 

weight loss increased with time for all samples. The first peak observed in the DTG curves 289 

was at 85-105°C and is attributed to C-S-H dehydration [46]. This is consistent with the 290 

removal of free evaporable water which is present in the pores of the geopolymer gel 291 

products, either C-(A)-S-H type or N-A-S-H (zeolite-like) gels [47]. The main mass loss peak 292 

between 300°C and 400°C is due to the decomposition of hydrotalcite [16]. The loss at 500-293 

600°C could be due to either the dehydration of thomsonite [48], M-S-H gel [29], or the 294 

decomposition of poorly crystallised phase of calcite [37,49]. The temperature range of 600-295 

800 °C is the decomposition range of various carbonate-containing phases including 296 

hydrotalcite, magnesium carbonate, and calcium carbonate [29]. These results are in good 297 

agreement with the XRD results presented above. The increase of the hydrotalcite peak with 298 

increasing the MgO content and with curing age was observed. The disappearance of the peak 299 

at 500-600°C indicates that this phase was transformed with extended curing to other phases, 300 

e.g., low crystalline calcite (vaterite) phases could be converted to a more stable phase such as 301 

calcite [19]. 302 

The total weight loss (indicating the chemically bound water content) and the bound water 303 

content in C-S-H are often used as a measurement of the hydration extent of blended cements 304 

[50]. The calculated weight losses from TG data at different ages were summarised in Table 305 

3, where the total weight loss was denoted as Δm. It can be seen that increasing the activator 306 

dosage significantly increased the hydration degree at all ages. Increasing the content of MgO 307 

increased slightly the hydration degree which could indicate that the presence of MgO 308 

promoted the formation of more hydration products or products with more chemically bound 309 

water. However, the contents of C-S-H and Δm of the mix made of GFM10N5 was lower 310 

than those of GFM5N5 after 28 days of curing. This could be due to the reduced slag/FA 311 
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content replaced by MgO, leading to less C-S-H formed, although the strength of GFM10N5 312 

was higher than that of GFM5N5. The improved strength could be attributed to the pore 313 

filling effect of the unhydrated MgO, resulting in denser microstructure. Besides, the weight 314 

loss associated to hydrotalcite-like phases increased with increasing MgO contents at 28 days. 315 

The reduction of these values at 28 days compared to 3 days values could be due to the 316 

overestimation of the weight loss associated to this peak as it overlapped with the third peak 317 

as shown in Fig. 4a. It was found the total weight loss after 180 days did not change 318 

significantly but the most apparent feature at this age was the disappearance of the third peak 319 

as shown in Fig. 4c.  320 
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Figure 4. DTG of the mixes at (a) 3 days, (b) 28 days, and (c) 180 days 
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Table 3. Weight losses calculated from TGA 321 

Blend 

Weight loss 

3 days 28 days 

C-S-H Ht Δ m C-S-H Ht Δ m 

GFM0N5 4.5 3.05 12 5.8 2.38 12.75 

GFM5N5 3 2.66 10.7 6.1 3.39 15 

GFM10N5 3.1 3.13 10.3 4.75 3.46 13.75 

GFM0N10 5 3.02 15.5 6.25 3.06 16.25 

GFM5N10 5.5 4.16 15.9 7.9 3.12 16.75 

GFM10N10 6 4.27 15.5 8 3.17 16.75 

 322 

The FTIR spectra for the 28-day samples are presented in Fig.5. All the spectra show very 323 

similar bands, suggesting a very similar nature of hydration products irrespective to the 324 

activator dosage and MgO content used. The figure indicates major bands systems at 325 

approximately 3400, 1650, 1450, 970, and 860 cm
-1

. The structure of molecular water in the 326 

alkali activated fly ash/slag system is characterized by the O-H stretching band, from 3,200 to 327 

3,700 cm
-1

, while the bending of the chemically bonded H-O-H is located at 1,650 cm
-1 

[47]. 328 

Noticeable bands at 1450 and 860 cm
-1

 suggest the presence of CO3
2-

, which can be attributed 329 

to the presence of calcite or hydrotalcite as detected by both XRD and TGA. The strongest 330 

band in the region of 1000-900 cm
-1

corresponds to the asymmetric stretching vibration of Si-331 

O-T (T = tetrahedral Al, Si). The position of this band is consistent with both the C-(A)-S-H 332 

structure formed by the activation of slag in alkaline media [11,51], and the N-A-S-H gels 333 

formed in geopolymer systems derived from fly ash [52]. The typical band of these binding 334 

gels in slag and FA is between 950 and 1100 cm
-1

 but the shift towards a lower wavenumber 335 

indicates the reduced content of calcium in the gel formed from the activation of the slag and 336 

increased incorporation of Al into this gel due to the dissolution of the FA [47]. Nevertheless, 337 

the absence of the absorption band around 1000 to 1100 cm
-1

 indicates that the typical 338 

structure of N-A-S-H gels is not formed within the hydration products.  339 
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The effect of MgO on the gel nanostructure as displayed by the FTIR spectra in Fig. 5 was 340 

more determinant in mixes activated by 5% Na2CO3. The principal band associated with Si-341 

O-T near 970 cm
-1

 is broader in GFM10N5 than in GFM5N5 and GFM0N5. This confirms 342 

that this mix is more disordered than the others, which indicates the wide distribution of the 343 

SiQ
n
 (mAl) units occurring in these structures due to the incorporation of MgO. Besides, it is 344 

noted that this Si-O stretching band shifted progressively towards greater wavenumber from 345 

950 cm
-1

 for GFM0N5 samples to 980 cm
-1

 and 985 cm
-1

 for GFM5N5 and GFM10N5, 346 

respectively. These values shift to higher wavenumber could be due to the decreasing of Al 347 

substitution in silicate network [53,54] which may be caused by the reaction of MgO and Al-348 

O to form Ht.  349 
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Figure 5. FTIR spectra of selective mixes 28 days 350 
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The FTIR bands of mix GFM0N10 at different ages is presented in Fig. 6. No clear changes 352 

in the bands have been observed with the curing age. However, there was a slight shift of the 353 

band at 950 cm
-1

 at 3 days to a higher wavenumber of 975 cm
-1

 at 28 days and 180 days 354 

indicating more cross-linked and highly siliceous gels due to the reaction of fly ash 355 
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Figure 5. FTIR spectra of the GFM0N10 blend at different ages 

3.4. Microstructural Analysis 356 

The microstructures of the mixes were quite similar. The micrograph of blends without 357 

Na2CO3 (Fig.7a) shows a loose network and many unhydrated slag grains, which explains the 358 

low strength of such blends. Mixes containing both MgO and Na2CO3 had a denser 359 

microstructure as shown in Fig.7b-d. Some unreacted fly ash particles were shown in the 360 

matrixes. 361 



2 
 

  

(a) (b) 
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Figure 6. Scanning electron micrographs of the AAFS mixes at 28 days (a) GFM10N0; (b) GFM0N5; 362 

(c) GFM5N5; (d) GFM10N10 363 

In all blends, C-S-H gel is the main feature of the microstructure with some fly ash remaining 364 

unreacted. That unreacted particles were easily found suggests that fly ash is not, at least at 365 

early ages, interacting with the cementing phase on a chemical level which is not unusual 366 

even in AAF (geopolymer) mixtures [10–12]. Regarding the C-S-H gel, it may belong to a 367 

low-crystalline calcium silicate hydrate rich in Al, which includes Na into its structure [12]. 368 
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To determine the elemental composition of the hydration products, EDX were performed on 369 

at least 20 points selected on the gels and some of the slag grains in some samples cured for 370 

28 days at a magnification of 2500 on a backscattered mode. Fig. 8a shows that the Al/Si ratio 371 

is very high for either a pure chain-structured C-A-S-H phase (Al/Si˂0.2 [55]) or considerable 372 

degree of crosslinking [56] so it corresponds to the presence of additional Al-rich products 373 

intermixed with Al-substituted C-S-H gel [19]. The good correlation of Mg/Si with Al/Si 374 

indicates the presence of hydrotalcite-like phases (Fig. 8-b), while the presence of a positive 375 

x-axis intercept reveals the level of incorporation of Al in the C-S-H (Table 4). The addition 376 

of MgO slightly changed the gel composition where higher Ca/Si, Al/Si and Mg/Si ratios 377 

were detected. From this observation, it may be deducted that the additional alkalis and MgO 378 

lead to immediate increased pH and therefore increased the dissolution rates of the Ca, Si, Al 379 

ions into the solution [57]. The Al-substitution decreased with the increase of MgO content 380 

due to the increased Al content in hydrotalcite-like phase which was also observed by [29]. 381 

The range of Na/Si in the investigated samples was from 0.18 to 0.7 as shown in Fig. 8c. The 382 

role of Na in the structure of the reaction products is to balance the negative framework 383 

charge induced by the incorporation of Al [12,58]. 384 

According to the EDX analysis, chemical composition of the gel could indicate the formation 385 

of hybrid C-(N)-A-S-H gel or the coexistence of N-A-S-H and C-A-S-H intermixed with 386 

hydrotalcite gel and M-S-H gel [29,59]. 387 

Table 4. Calculated parameters from EDS results at 28 days 388 
 389 

Sample Ca/Si Al/Si Mg/Si Na/Si 
Mg/Al (calculated 

from Fig. 8b) 

Al substitution 

Slag 1.19 0.40 0.36 0.09 0.7 - 

GFM0N10 0.83 0.43 0.30 0.53 1.94 0.28 

GFM5N10 1.17 0.48 0.45 0.41 1.63 0.19 
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Figure 7. Atomic ratios for 10% Na2CO3 activated mixes with 0 and 5% MgO(A) Ca/Si vs Al/Si, (B) 

Mg/Si vs Al/Si, and (C) Al/Si vs Na/Si. 

4. Conclusion 390 

The strength of the AAFS mixes highly depends on the activator dosage and it was clear that 391 

increasing the Na2CO3 dosage increased the strength at all ages. The highest strength obtained 392 

was attributed to the paste mix consisting of slag:fly ash in 3:1 ratio and with 10% of both 393 

Na2CO3 and MgO, which reached ~80 MPa at 90 days. It was found that incorporating MgO 394 

to the blends had a notable influence on the reaction rate, and the microstructure of the mixes 395 

and slight influence on the strength. These effects could be beneficial in accelerating the 396 

setting time of these blends and the reduction of the shrinkage as will be reported in future 397 

studies. The main hydration product was C-(N)-A-S-H gel as the binding phase in these 398 

mixes. Furthermore, other hydration products such as hydrotalcite-like phases, calcite, and 399 

gaylussite were formed.  400 
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