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Abstract

An EGARCH model in which the conditional distribution is heavy-tailed and
skewed is proposed. The properties of the model, including unconditional
moments, autocorrelations and the asymptotic distribution of the maximum
likelihood estimator, are set out. Evidence for skewness in a conditional t-
distribution is found for a range of returns series, and the model is shown
to give a better fit than comparable skewed-t GARCH models in nearly all
cases. A two-component model gives further gains in goodness of fit and is
able to mimic the long memory pattern displayed in the autocorrelations of
the absolute values.

Keywords: General error distribution, heteroskedasticity, leverage, score,
Student’s t, two components, volatility

1. Introduction1

An EGARCH model in which the variance, or scale, is driven by an equa-2

tion that depends on the conditional score of the last observation was pro-3

posed by Creal, Koopman and Lucas (2008, 2011) and Harvey and Chakravarty4

(2008). (Simulation, estimation and inference of first-order Beta-t-EGARCH5

models is available via the R package betategarch, see Sucarrat (2013).)6

The model has a number of attractions. In particular, an exponential link7

function ensures positive scale and enables the conditions for stationarity to8

be obtained straightforwardly. Furthermore, although deriving a formula for9
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the autocorrelation function (ACF) of squared observations is less straight-10

forward than it is for a GARCH model, analytic expressions can be obtained11

and these expressions are more general. Specifically, formulae for the ACF of12

the absolute values of the observations raised to any power can be obtained.13

Finally, not only can expressions for multi-step forecasts of volatility be de-14

rived, but their conditional variances can be found and the full conditional15

distribution is easily simulated.16

When the conditional score is combined with an exponential link func-17

tion, the asymptotic distribution of the maximum likelihood estimator of the18

dynamic parameters can be derived; see Harvey (2012). The theory is much19

more straightforward than it is for GARCH models. An analytic expression20

for the asymptotic covariance matrix can be obtained and the conditions for21

the asymptotic theory to be valid are easily checked.22

A heavy-tailed conditional distribution can be modeled by a Student t-23

distribution, as in the GARCH-t model of Bollerslev (1987). However, the24

use of the conditional score in the dynamic volatility equation in what we25

call the Beta-t-EGARCH model means that observations that would be con-26

sidered outliers for a Gaussian distribution are downweighted. An announce-27

ment made by the computer firm Apple illustrates the robustness of Beta-t-28

EGARCH. On Thursday 28 September 2000 a profit warning was issued29

(CNN Money, see http://money.cnn.com/2000/09/29/markets/techwrap/,30

retrieved 1 November 2011), which led the value of the stock to plunge from31

an end-of-trading value of $26.75 to $12.88 on the subsequent day. In terms32

of volatility this fall was a one-off event, since it apparently had no effect on33

the variability of the price changes on the following days. Figure 1 contains34

a snapshot of the event and the surrounding period. The figure plots abso-35

lute returns, the fitted conditional standard deviations of a GARCH(1,1)-t36

specification with leverage, and the fitted conditional standard deviations of37

the comparable Beta-t-EGARCH model; a full set of estimation results are38

given later in Table 5. As is clear from the figure, the GARCH forecasts of39

one-step standard deviations exceed absolute returns for almost two months40

after the event, a clear-cut example of forecast failure. By contrast, the Beta-41

t-EGARCH forecasts remain in the same range of variation as the absolute42

returns. The main contribution of this paper is to extend conditional score43

models to skew distributions. Conditional skewness has important implica-44

tions for asset pricing, as discussed in Harvey and Siddique (2000). Here,45

the emphasis is on the Skew-t leading to a model that we call Beta-Skew-46

t-EGARCH. However, the same approach works for the general error dis-47
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Figure 1: Apple returns with Beta-t-EGARCH and GARCH filters, both with leverage
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tribution and gives the Gamma-Skew-GED-EGARCH model. The preferred48

specification is one in which skewness in the conditional distribution of yt is49

combined with leverage in the dynamic equation for scale. A two-component50

model gives further gains in goodness of fit and is able to mimic the long51

memory pattern displayed in the autocorrelations of the absolute values.52

The t-distribution is skewed using the method proposed by Fernandez53

and Steel (1998). The advantage of the FS approach compared with other54

skewing approaches is its computational and analytic tractability, conceptual55

simplicity and ease of application across a wide range of densities. The56

FS method has been adopted by a number of researchers, recent examples57

being Zhu and Zinde-Walsh (2009), Zhu and Galbraith (2010) and Gomez58

et al (2007). In the context of changing variance, Giot and Laurent(2003,59

2004) show that a Skew-t GARCH model (with leverage) does very well in60

predicting Value-at-Risk (VaR). This model is available as an option in the61

G@RCH package of Laurent (2009).62

The plan of the paper is as follows. Section 2 outlines the foundations of63

the Beta-t-EGARCH model, whereas section 3 introduces skewness. Section64

4 introduces a modification of the model which ensures that the innovation65

is a martingale difference (MD). Section 5 briefly outlines how the Gamma-66

Skew-GED-EGARCH class of models is obtained along the same lines as the67

Beta-Skew-t-EGARCH class, when the conditional distribution is GED in-68

stead of t. Section 6 contains an extensive set of empirical applications, while69

section 7 briefly notes how a time-varying location can be accommodated in70

terms of a dynamic conditional score model. Section 8 concludes and outlines71

several possible extensions.72

2. Beta-t-EGARCH73

The Beta-t-EGARCH model is74

yt = µ+ εt exp(λt|t−1), t = 1, ...., T, (1)

where εt is a serially independent variable that has a tν−distribution with75

positive degrees of freedom, ν, and λt|t−1, the logarithm of the scale, is a76

linear combination of past values of the conditional score77

ut =
(ν + 1)(yt − µ)2

ν exp(2λt|t−1) + (yt − µ)2
− 1, −1 ≤ ut ≤ ν, ν > 0. (2)
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The first-order model,78

λt+1|t = δ + φλt|t−1 + κut, (3)

is stationary if |φ| < 1. Since ut is a martingale difference, λt|t−1 is weakly79

stationary with an unconditional mean of ω = δ/(1−φ) and an unconditional80

variance of κ2σ2
u/(1− φ2). Note that the process is assumed to have started81

in the infinite past, though for practical purposes λ1|0 may be set equal to82

the unconditional mean. Identifiability requires κ 6= 0. Such a condition is83

hardly surprising since if κ were zero there would be no dynamics.84

2.1. Moments and predictions85

The conditional score may be expressed as86

ut = (ν + 1)bt − 1, t = 1, ...., T, (4)

where, for finite degrees of freedom,87

bt =
(yt − µ)2/

[
ν exp(2λt|t−1)

]
1 + (yt − µ)2/

[
ν exp(2λt|t−1)

] , 0 ≤ bt ≤ 1, 0 < ν <∞, (5)

is distributed as beta(1/2, ν/2) at the true parameter values. Since ut depends88

on the same beta distribution in all time periods, it is independently and89

identically distributed (IID), not just a MD. It has zero mean and variance90

V ar(ut) = σ2
u = 2ν/(ν + 3).91

Harvey and Chakravarty (2008) derive expressions for the moments and92

autocorrelations of the observations. The odd moments of yt are zero when93

the distribution of εt is symmetric. The even moments of yt in the stationary94

Beta-t-EGARCH model are95

E[(yt − µ)m] = E(εmt )E(exp(mλt|t−1)), (6)

=
νm/2Γ(m

2
+ 1

2
)Γ(−m

2
+ ν

2
)

Γ(1
2
)Γ(ν

2
)

emω
∞∏
j=1

e−ψjmβν(ψjm), m < ν,

where ψj, j = 1, 2, .. are the coefficients in the moving average representation,

λt|t−1 = ω +
∞∑
j=1

ψjut−j,
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and βν(a) is Kummer’s (confluent hypergeometric) function, 1F1(1/2; (ν +96

1)/2; a(ν + 1)); see Slater (1965, p 504).97

Expressions for the autocorrelations of |yt − µy|c , c > 0, were also ob-98

tained. Note that99

E(exp(cλt|t−1)) = ecω
∞∏
j=1

e−ψjcβν(ψjc) (7)

is valid for any c > 0.100

The optimal predictor of scale in Beta-t-EGARCH is101

ET
(
eλT+`|T+`−1

)
= eλT+`|T

`−1∏
j=1

e−ψjβν(ψj), ν > 0, ` = 2, 3, .., (8)

where λT+`|T is the linear predictor of λT+`|T+`−1. The MSE of the predicted
scale for ` = 2, 3, ..., is

MSE(ET
(
eλT+`|T+`−1

)
) = e2λT+`|T

`−1∏
j=1

e−2ψjβν(2ψj)−

(
`−1∏
j=1

e−ψjβν(ψj)

)2
 .

The multi-step predictor of the variance of yT+` is obtained from the formula102

above with V ar(εt) included, that is103

V arT (yT+`) =
ν

ν − 2

(
γ2 − 1 + γ−2

)
e2λT+`|T

`−1∏
j=1

e−2ψjβν(2ψj), ν > 2. (9)

2.2. Asymptotic distribution of maximum likelihood estimator104

The ML estimates are obtained by maximizing the log-likelihood function105

with respect to the unknown parameters. Although (3) is the conventional106

formulation of a stationary first-order dynamic model, the information matrix107

takes a simpler form if the paramerization is in terms of ω rather than δ. Thus108

λt|t−1 = ω + λ†t|t−1, λ†t+1|t = φλ†t|t−1 + κut, t = 1, ..., T, (10)

where ω = δ/(1− φ).109

When ν and µ are known, the information matrix for a single observation
is time-invariant and given by

I(ψ) = σ2
uD(ψ),
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where110

D(ψ) = D

 κ̃

φ̃
ω̃

 =
1

1− b

 A D E
D B F
E F C

 (11)

with111

A = σ2
u, B =

κ2σ2
u(1 + aφ)

(1− φ2)(1− aφ)
, C =

(1− φ)2(1 + a)

1− a
,

D =
aκσ2

u

1− aφ
, E = c(1− φ)/(1− a) and F =

acκ(1− φ)

(1− a)(1− aφ)
,

with112

a = φ− κ 2ν

ν + 3
, (12)

b = φ2 − φκ 4ν

ν + 3
+ κ2

12ν(ν + 1)(ν + 2)

(ν + 7)(ν + 5)(ν + 3)
,

c = κ
4ν(1− ν)

(ν + 5)(ν + 3)
, ν > 0.

Recall that σ2
u = 2ν/(ν + 3). The key conditions for the limiting distribution113

of
√
T (ψ̃−ψ) to be multivariate normal with zero mean vector and covariance114

matrix I−1(ψ) are κ 6= 0 and b < 1. The proof is sketched out in the appendix.115

The asymptotic distribution of ψ̃ is not affected when µ is estimated.116

Estimating ν does give a slight change since117

V ar(ψ, ν) =

 2ν
ν+3

D(ψ) 1
(ν+3)(ν+1)

 0
0

1−φ
1−a


1

(ν+3)(ν+1)

(
0 0 1−φ

1−a

)
h(ν)/2


−1

, (13)

where D(ψ) is the matrix in (11) and118

h(ν) =
1

2
ψ′ (ν/2)− 1

2
ψ′ ((ν + 1)/2)− ν + 5

ν (ν + 3) (ν + 1)
, (14)

with ψ′ (.) being the trigamma function; see, for example, Taylor and Verblya119

(2004).120
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2.3. Monte Carlo experiments121

Table 1 reports Monte Carlo results for the Beta-t-EGARCH model, (1)122

and (10) with µ known to be zero, but κ, φ, ω and ν unknown. The expression123

for the information matrix indicates that the asymptotic distribution of these124

parameters does not depend on the value of ω and this is supported by125

simulation evidence (tables available on request). For each experiment, which126

consisted of N = 1000 replications, the table shows the asymptotic standard127

error (ase) for each parameter, together with the numerical root mean square128

error (rmse).129

For T = 1000, the ase underestimates the rmse. For κ the underesti-130

mation is rather small, at most 10%. For ω the bias seems to be in the131

other direction for φ close to one. Again the difference is rarely more than132

10%. For φ the ase can be half the rmse when φ is 0.95 or 0.99, though the133

underestimation is less serious when κ is bigger.134

The ase for ν is not very sensitive to the other parameters and the ratio135

of the ase to the rmse is around 0.65.136

For T = 10, 000, the ase’s and rmse’s for ω, φ and κ are all very close.137

For ν the ratio of the ase to the rmse is around 0.8.138

2.4. Leverage139

Leverage effects may be introduced into the model using the sign of the140

observations. For the first-order model, (3),141

λt+1|t = δ + φλt|t−1 + κut + κ∗sgn(−(yt − µ))(ut + 1). (15)

Taking the sign of minus yt − µ means that the parameter κ∗ is normally142

non-negative for stock returns. Although the statistical validity of the model143

does not require it, the restriction κ ≥ κ∗ ≥ 0 may be imposed in order to144

ensure that an increase in the absolute values of a standardized observation145

does not lead to a decrease in volatility.146

The expressions for moments and ACFs can be adapted to deal with147

leverage, as can the asymptotic theory.148

2.5. Two components149

Alizadeh, Brandt and Diebold (2002, p 1088) argue strongly for two com-150

ponent (or two factor) stochastic volatility dynamics, in both equity and151

foreign exchange. Engle and Lee (1999) proposed a two component GARCH152

model. In both papers, volatility is modeled with a long-run and a short-run153
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Table 1: Finite sample properties and the asymptotic standard errors of the
Beta-t-EGARCH model: yt = exp(λt|t−1)εt, εt ∼ tν=6, λt|t−1 = ω +

λ†t|t−1, λ†t|t−1 = φ1λ
†
t−1|t−2 + κ1ut−1

Sample size T =1000:
DGP

(ω,φ1,κ1)
rmse
(ω̂)

ase
(ω̂)

rmse
(φ̂)

ase
(φ̂)

rmse
(κ̂)

ase
(κ̂)

rmse
(ν̂)

ase
(ν̂)

(0, 0.90,0.05) 0.053 0.049 0.075 0.052 0.016 0.016 1.357 0.844
(0, 0.90,0.10) 0.065 0.069 0.038 0.032 0.018 0.017 1.406 0.845
(0, 0.95,0.05) 0.069 0.069 0.058 0.024 0.014 0.013 1.334 0.844
(0, 0.95,0.10) 0.098 0.109 0.019 0.017 0.016 0.015 1.332 0.846
(0, 0.99,0.05) 0.198 0.226 0.010 0.006 0.010 0.010 1.371 0.845
(0, 0.99,0.10) 0.312 0.428 0.008 0.005 0.013 0.013 1.356 0.846
Sample size T = 10, 000:

DGP
(ω,φ1,κ1)

rmse
(ω̂)

ase
(ω̂)

rmse
(φ̂)

ase
(φ̂)

rmse
(κ̂)

ase
(κ̂)

rmse
(ν̂)

ase
(ν̂)

(0, 0.90,0.05) 0.017 0.015 0.017 0.016 0.005 0.005 0.354 0.267
(0, 0.90,0.10) 0.022 0.022 0.010 0.010 0.006 0.005 0.336 0.267
(0, 0.95,0.05) 0.021 0.022 0.008 0.008 0.004 0.004 0.345 0.267
(0, 0.95,0.10) 0.032 0.034 0.005 0.005 0.005 0.005 0.325 0.267
(0, 0.99,0.05) 0.065 0.071 0.002 0.002 0.003 0.003 0.343 0.267
(0, 0.99,0.10) 0.118 0.135 0.002 0.002 0.004 0.004 0.317 0.268

Simulations (N = 1000 replications) in R version 2.13.2. rmse, root mean

square error of estimates. ase, asymptotic standard error (computed as

T−1/2 · (i−1jj )1/2, where T is the sample size and (i−1jj ) is element jj of the inverse

of the information matrix). Estimation via the nlminb function with upper

and lower bounds on the parameter space equal to (∞, 0.999999999,∞,∞) and

(−∞,−0.999999999,−∞, 2.1), respectively. Initial values used: (0.005, 0.96,

0.02, 10).
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component, the main role of the short-run component being to pick up the154

temporary increase in volatility after a large shock. Such a model can display155

long memory behaviour; see Andersen et al (2006, p 806-7).156

The two-component Beta-t-EGARCH model is

λt|t−1 = ω + λ†1,t|t−1 + λ†2,t|t−1,

where157

λ†1,t+1|t = φ1λ
†
1,t|t−1 + κ1ut and

λ†2,t+1|t = φ2λ
†
2,t|t−1 + κ2ut.

The model is easier to handle than the two-component GARCH model; see158

the discussion on the non-negativity constraints in Engle and Lee (1999, p159

480).160

In the Beta-t-EGARCH model, as with the GARCH model, the long-term161

component, λ1,t|t−1, will usually have φ1 close to one, or even set equal to one.162

The short-term component, λ2,t|t−1, will typically have a higher κ combined163

with the lower φ. The model is not identifiable if φ2 = φ1. Imposing the164

constraint 0 < φ2 < φ1 < 1 ensures identifiability and stationarity.165

2.6. Nonstationarity166

The EGARCH model is nonstationary when φ = 1 in the first-order167

model as written in (10). When ω = λ1|0 is fixed and known, the result168

in sub-section 2.2 may be adapted to show that the limiting distribution of169 √
T (κ̃−κ) is normal with mean zero and variance (1−b)/σ4

u (Since ω is given,170

estimating ν does not affect the asymptotic distribution of κ̃.) For small κ,171

V ar(κ̃) ' 2κ/σ2
u. Thus for a tν−distribution the approximate standard error172

of κ̃ is
√
κ(ν + 3)/νT , provided that κ > 0.173

When the parameter ω is estimated, it appears from the simulation evi-174

dence in Table 2 that the asymptotic distribution of the ML estimator of κ175

is unchanged. The approximate asymptotic standard errors for κ = 0.05 and176

0.10 are 0.00274 and 0.00387 respectively and these are almost exactly the177

same as the values in Table 2.178

If φ is estimated unrestrictedly, it will have a non-standard distribution.179

(A reasonable conjecture is that the limiting distribution of T φ̃ can be ex-180

pressed in terms of functionals of Brownian motion, as is the case when a181

series is a random walk and observations are regressed on their lagged val-182

ues.) The simulations reported in Table 3, where ω, φ and κ are all unknown183
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Table 2: Numerical properties of ML estimation of Beta-t-EGARCH in
the case of unit root: T = 10000, ν = 6, 1000 replications. Only ω and
κ estimated (φ and ν fixed to 1 and 6, respectively)

DGP
(ω, φ, κ) m(ω̂) s(ω̂) m(κ̂) s(κ̂) c(ω̂, κ̂)
(0, 1, 0.05) 0.014 0.309 0.050 0.0027 0.0001
(0, 1, 0.10) 0.011 0.435 0.100 0.0038 0.0000

Simulations in R. m(·), average of estimates. s(·) and c(·, ·), sample

standard deviation and sample covariance of estimates (division by N ,

not by N − 1, where N is the number of replications). Estimation via

the nlminb function with upper and lower bounds on the parameter

space equal to (∞,∞) and (−∞,−∞), respectively. Initial values used:

(0.005, 0.02).

parameters, indicate that the distribution of κ̃ is unchanged, which is to be184

expected since, unlike φ̃, κ̃ is not superconsistent. (The parameter ω is not185

estimated consistently but this should not affect the asymptotic distribution186

of φ̃ and κ̃.)187

3. Skew distributions188

Skewness may be introduced into the Beta-t-EGARCH model using the189

method proposed by Fernandez and Steel (1998). The first sub-section190

describes the Fernandez and Steel method and the remaining sub-sections191

present the details for Beta-t-EGARCH. The same methods can be used for192

Gamma-GED-EGARCH, as described in section 5.193

3.1. Method of Fernandez and Steel194

The skewing method proposed by Fernandez and Steel (1998) uses a con-195

tinuous probability density function, f(z), that is unimodal and symmetric196

about zero to construct a skewed probability density function197

f(εt|γ) =
2

γ + γ−1

[
f

(
εt
γ

)
I[0,∞)(εt) + f(εtγ)I(−∞,0)(εt)

]
, (16)

where I[0,∞) is an indicator variable, taking the value one when εt ≥ 0 and198

zero otherwise, and γ is a parameter in the range 0 < γ <∞. An equivalent199
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Table 3: Numerical properties of ML estimation of Beta-t-EGARCH in the case of an
estimated unit root: T = 10000, ν = 6. Thus φ, ω and κ estimated (and ν fixed to 6)

DGP:

(ω, φ, κ) m(ω̂) s(ω̂) m(φ̂) s(φ̂) m(κ̂) s(κ̂) c(ω̂, φ̂) c(ω̂, κ̂)
(0,1,0.05) 0.012 0.313 1.00 0.00033 0.050 0.0027 0.00000 0.00005
(0,1,0.10) 0.020 0.435 1.00 0.00031 0.100 0.0038 0.00000 -0.00006

(ω, φ, κ) c(φ̂, κ̂) î11 î12 î13 î22 î23 î33
(0,1,0.05) 0.00000 13.41 -1.046 -0.00705 932.7 -0.0141 0.00102
(0,1,0.10) 0.00000 6.90 5.308 0.00219 1059.8 0.0073 0.00053

Simulations in R (1000 replications). m(·), average of estimates. s(·) and c(·, ·),
sample standard deviation and sample covariance of estimates (division by N , not

by N − 1, where N is the number of replications). î11, î12 and î22, estimates of

the elements of the information matrix. Extreme observations were excluded from

the computations in the second (23 observations in total) run of simulations, that

is, when κ was equal to 0.1. Estimation via the nlminb function with upper and

lower bounds on the parameter space equal to (∞,∞,∞) and (−∞,−∞,−∞),

respectively. Initial values used: (0.005, 0.96, 0.02).

but more compact formulation is200

f(εt|γ) =
2

γ + γ−1
f

(
εt

γsgn(εt)

)
. (17)

Symmetry is attained when γ = 1, whereas γ < 1 and γ > 1 produce left201

and right skewness respectively. In other words the left hand tail is heavier202

when γ < 1.203

The uncentered moments of εt, given by Fernandez and Steel (1998), are204

E(εct) = Mc
γc+1 + (−1)c/γc+1

γ + γ−1
, (18)

where205

Mc = 2

∫ ∞
0

zcf(z)dz = E(|z|c). (19)

Note that σ2
z = V ar(zt) = M2. Hence206

E(εt) = µε = M1(γ − 1/γ), (20)
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which is not zero unless γ = 1, and207

V ar(εt) = M2

(
γ2 − 1 + γ−2

)
−M2

1 (γ − 1/γ)2. (21)

The standard measure of skewness is208

E(εt − µε)3 = E(ε3t )− 3µεE(ε2t ) + 2µ3
ε

= (γ − γ−1)[(M3 + 2M3
1 − 3M1M2)(γ

2 + γ−2) + 3M1M2 − 4M3
1 ]

divided by (V ar(εt))
3/2; see Fernandez and Steel (1998, eq 6).209

The introduction of a location parameter, µ, and λ, the logarithm of scale,
so that

yt = µ+ εt exp(λ),

gives210

f(yt|γ) =
2

γ + γ−1

[
f

(
yt − µ
γ exp(λ)

)
I[0,∞)(yt − µ) + f

(
(yt − µ)γ

exp(λ)

)
I(−∞,0)(yt − µ)

]
.

(22)
As regards moments of the observations,

µy = E(yt) = µ+ µε exp(λ),

while V ar(yt) = E(yt − µy)2 = V ar(εt) exp(2λ).211

The median and mean are both less than µ when γ < 1, the former212

because Pr(yt ≤ µ) = 1/(1 + γ2) > 0.5 and the latter because (γ − 1/γ) < 0213

in (20).214

3.2. Beta-Skew-t-EGARCH215

When the conditional distribution of a Beta-t-EGARCH model, (1), is216

skewed, the log-density is217

ln ft = ln 2− ln(γ + γ−1) + ln Γ ((ν + 1) /2)− 1

2
ln π − ln Γ (ν/2)− 1

2
ln ν

−λt|t−1 −
(ν + 1)

2
ln

(
1 +

(yt − µ)2

γ2sgn(yt−µ)νe2λt|t−1

)
. (23)

The score is218

ut = u+t I[0,∞)(yt − µ) + u−t I(−∞,0)(yt − µ), t = 1, ..., T, (24)
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where ut = u+t and ut = u−t are as in (2), but with bt defined as

b+t =
(yt − µ)2/

[
νγ2 exp(2λt|t−1)

]
1 + (yt − µ)2/

[
νγ2 exp(2λt|t−1)

] or b−t =
(yt − µ)2/

[
νγ−2 exp(2λt|t−1)

]
1 + (yt − µ)2/

[
νγ−2 exp(2λt|t−1)

] ,
depending on whether yt−µ is non-negative (b+t ) or negative (b−t ). However,219

the properties of u+t and u−t do not depend on the sign of yt−µ since in both220

cases they are a linear function of a variable with the same beta distribution.221

Hence, as before, ut is IID with zero mean and variance is 2ν/(ν + 3).222

3.3. Asymptotic distribution of maximum likelihood estimator223

When γ is known and there is no leverage, the information matrix is224

exactly as in the symmetric case because the distribution of the score and225

its first derivative depend on IID beta variates with the same distribution.226

The asymptotic distribution of the ML estimators of the dynamic pa-
rameters is affected when γ is also estimated by ML. Zhu and Galbraith
(2010) give an analytic expression for the information matrix, but with a
different parameterization for the scale and the skewing parameter, which is
α = 1/(1 + γ2). Thus α is in the range 0 to 1 and symmetry is α = 0.5. The
scale measure is

σ = (γ + 1/γ)σ′/2 = (γ + 1/γ) exp(λ)
√
ν/4(ν − 2),

where σ′ is the standard deviation in the FS model; see Zhu and Galbraith227

(2010, eq 4). The same result can be found in Gomez et al (2007, propo-228

sition 2.3). Our formulae for the information matrix may be adapted quite229

easily by re-defining λ as lnσ. The full information matrix for the dynamic230

model is then constructed as in sub-section 2.2. The asymptotic theory still231

holds when skewness is combined with leverage, but the information matrix232

becomes more complicated.233

A set of Monte Carlo experiments were run on the Beta-Skew-t-EGARCH234

specification. The asymptotic theory indicates that the limiting distributions235

of ω, φ and κ are changed by the estimation of γ but the simulations indi-236

cated that any such changes were small. The inclusion of leverage makes no237

difference to the foregoing conclusion. The tables are available on request.238

3.4. Moments and predictions239

When the scale changes over time and the m− th unconditional moment240

of yt around µ exists, it may be written as in (6), but with E (εmt ) now given241
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by (18). Thus242

µy = Eyt = µ+ µεE
(
eλt|t−1

)
= µ+M1(γ − 1/γ)E

(
eλt|t−1

)
(25)

and243

V ar(yt) = E[(yt − µy)2] = E[
(
εte

λt|t−1 − µεE
(
eλt|t−1

))2
] (26)

= E
(
ε2t
)
E
(
e2λt|t−1

)
− µ2

ε(E
(
eλt|t−1

)
)2.

The expected value of the absolute value of a tν-variate raised to a power m244

is245

E(|z|m) =
νm/2Γ(m

2
+ 1

2
)Γ(−m

2
+ ν

2
)

Γ(1
2
)Γ(ν

2
)

. (27)

This expression may be used to evaluate Mc in (19). The unconditional ex-246

pectations, E
(
expmλt|t−1

)
are given by (7), just as in the symmetric case,247

because ut in (24) depends on the same beta distribution. Thus, from (25),248

the mean of the observations is249

µy = µ+
ν1/2Γ((ν − 1)/2)

Γ(ν/2)
√
π

(γ − 1/γ)E(exp(λt|t−1)), ν > 1. (28)

For ν > 2, the unconditional variance is obtained as

V ar(yt) =
ν

ν − 2

(
γ2 − 1 + γ−2

)
E(e2λt|t−1)−

[
ν1/2Γ((ν − 1)/2)

Γ(ν/2)
√
π

(γ − 1/γ)

]2
(E
(
eλt|t−1

)
)2.

When the conditional distribution is skewed, the volatility may increase the
skewness in unconditional distributions, just as it increases the kurtosis. The
calculations can be carried out by evaluating

E[(yt − µy)3] = E(ε3t )E
(
e3λt|t−1

)
−3µεE(ε2t )E

(
eλt|t−1

)
E
(
e2λt|t−1

)
+2µ3

ε(E
(
eλt|t−1

)
)2.

The skewness measure is then250

S(ν, γ) =
E[(yt − µy)3][
E[(yt − µy)2]

]3/2 , (29)

and this may be compared with E(εt − µε)3/(V ar(εt))3/2.251

The ACF of (yt − µy)2 can be obtained in the same way as for the sym-252

metric model.253
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The multi-step predictor of the variance of yT+` given in (9) needs to be
modified to

V arT (yT+`) =
ν

ν − 2

(
γ2 − 1 + γ−2

)
e2λT+`|T

`−1∏
j=1

e−2ψjβν(2ψj)− (µy − µ)2,

for ` = 2, 3, ... and ν > 2. The formula for µy − µ is given by (28).254

3.5. Leverage255

Skewing the t-distribution introduces a slight leverage effect, as illustrated256

by Figure 2 which plots the score against a t5-variate with a standard devia-257

tion of unity. However, even with γ = 0.8, the effect is rather small and is no258

substitute for including a leverage effect in the dynamic equation as in (15),259

that is260

λt+1|t = ω(1− φ) + φλt|t−1 + κut + κ∗sgn(−yt + µ)(ut + 1).

When κ∗ > 0, which is usually the case, the leverage effect from the above261

equation and the leverage induced by skewness re-inforce each other. Thus262

negative shocks have an even deeper impact on volatility.263

In contrast to the symmetric model, λt+1|t is no longer driven by a MD264

since the expectation of the variable in the last term is265

E[sgn(yt − µ)(ut + 1)] = (1− γ2)/(1 + γ2) (30)

because E(ut + 1) = 1. The moments are adapted accordingly.266

4. Modeling returns with the martingale difference modification267

There is a problem with using the formulation of the previous section for
modeling returns because the conditional expectation,

Et−1yt = µ+ µε exp(λt|t−1),

is not constant. Therefore yt cannot be a MD. The solution is to let µ be268

time-varying. The model is re-formulated as269

yt = µSt|t−1 + εt exp(λt|t−1), t = 1, ...., T, (31)

µSt|t−1 = µy − µε exp(λt|t−1),

16



Figure 2: Impact of u for t5 (thick), for Skew t5 with γ = 0.8 (thick dashed) and for
normal (thin dashed)
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where µy is a constant parameter, which is both the conditional and the270

unconditional mean. The time-varying parameter µSt|t−1 replaces µ in the271

likelihood function, (23). The score is now272

ut =
(ν + 1)((yt − µy + µε exp(λt|t−1))(yt − µy)

νγ2sgn(yt−µy+µε exp(λt|t−1)) exp(2λt|t−1) + (yt − µy + µε exp(λt|t−1))2
− 1.

(32)
Giot and Laurent (2003) transform their Skew-t GARCH model to make it273

a MD. They also standardize to make the variance one, but in our Skew-t274

model this is not necessary.275

4.1. Moments, skewness and volatility276

The model in (31) can also be expressed as277

yt = µy + (εt − µε) exp(λt|t−1). (33)

Since
Et−1[(yt − µy)2] = Et−1[(εt − µε)2 exp(2λt|t−1)],

it follows from the law of iterated expectations that the unconditional vari-
ance of yt is now

V ar(yt) = E[(yt − µy)2] = V ar(εt)E exp(2λt|t−1),

but the fact that (32) does not have the simple beta distribution of (24)278

makes analytic evaluation more difficult.279

The skewness in the MD model is

S(ν, γ) =
E[(εt − µε)3]E exp(3λt|t−1)[

E[(εt − µε)2]E(exp(2λt|t−1))
]3/2

and so the factor by which skewness changes because of changing volatility280

is just281

Sν =
E exp(3λt|t−1)[

E(exp(2λt|t−1))
]3/2 , ν > 3. (34)

It follows from Hölder’s inequality (E |x|r ≤ [E |x|s]r/s, where x = exp(λ) ≥282

0, and r and s can be set to 2 and 3 respectively) that Sν is greater than, or283

equal to, one.284
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4.2. Leverage effects285

When there is leverage, the dynamic equation becomes286

λt+1|t = δ + φλt|t−1 + κut + κ∗sgn(−yt + µy − µε exp(λt|t−1))(ut + 1). (35)

There is also a case for letting the leverage depend on sgn(−yt + µy) so that
(35) becomes

λt+1|t = δ + φλt|t−1 + κut − κ∗sgn(yt − µy)(ut + 1).

The rationale is that leverage should depend on whether the return is above287

or below the mean.288

Leverage in itself does not induce skewness in the multi-step and uncon-289

ditional distributions of Beta-t-EGARCH models. However, as was noted290

in the previous sub-section, when the conditional distribution is skewed, the291

volatility may increase the skewness in the unconditional distribution. The292

question then arises as to whether leverage exacerbates this increase.293

4.3. Asymptotic theory294

The expectation of ut is zero, as it should be, since it can be written295

ut =
(ν + 1)(yt − µy + µε exp(λt|t−1))

2 − (ν + 1)µε exp(λt|t−1)(yt − µy + µε exp(λt|t−1))

ν exp(2λt|t−1)γ
2sgn(yt−µy+µε exp(λt|t−1)) + (yt − µy + µε exp(λt|t−1))2

− 1

=
(ν + 1)εt

2 − (ν + 1)µε exp(λt|t−1)εt
ν exp(2λt|t−1)γ2sgn(εt) + εt2

− 1

= (ν + 1)bt − 1− (ν + 1)µε[(1− bt)εt exp(−λt|t−1)ν−1γ−2I[0,∞)(εt)

+(1− bt)εt exp(−λt|t−1)ν−1γ2I(−∞,0)(εt)].

Therefore296

E(ut) = E[(ν + 1)bt − 1]− (ν + 1)µεE[(1− bt) |εt| exp(−λt|t−1)ν−1γ−1]γ−1(γ2/(1 + γ2)

−E[(1− bt) |εt| exp(−λt|t−1)ν−1γ]γ(1/(1 + γ2),

which is zero as the first expectation is zero and the second and third expec-297

tations cancel.298

The distribution of ut does not depend on λ and the same is true of the299

distribution of its derivatives. The conditions for the ML estimator to be300

consistent and asymptotically normal hold just as they do in the symmetric301

case.302
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4.4. Forecasts303

The quantile function of a Skew-t distribution is given by expression (9)304

in Giot and Laurent (2003). If the τ−quantile is denoted as skst(τ, ν, γ),305

the τ−quantile of the one-step ahead predictive distribution of yt is µ +306

eλT+1|T skst(τ, ν, γ). Formulae for VaR (the same as the quantile formula)307

and expected shortfall in a Skew-t are given in Zhu and Galbraith (2010, p.308

300). These formulae may be used in one-step ahead prediction.309

Formulae generalizing the multi-step ahead predictions of the volatil-310

ity and observations, (8) and (9) respectively, for the symmetric Beta-t-311

EGARCH model are difficult to obtain. (Note that volatility has implications312

for skewness of multi-step distributions, just as it does for the unconditional313

distribution.) However, the main interest is in quantiles and the multi–step314

conditional distributions can be computed by simulation, simply by generat-315

ing beta variates and combining them with an observation generated from a316

Skew-t.317

5. Gamma-Skew-GED-EGARCH318

In the Gamma-GED-EGARCH model, yt = µ+ εt exp(λt|t−1) and εt has
a general error distribution (GED) with positive shape (tail-thickness) pa-
rameter υ and scale λt|t−1; see, for example, Nelson (1991) for details on the
GED density. The log-density function of the t−th observation is

ln ft(υ) = −
(
1 + υ−1

)
ln 2− ln Γ(1+υ−1)−λt|t−1−

1

2
|yt − µ|υ exp(−λt|t−1υ),

leading to a model in which λt|t−1 evolves as a linear function of the score,319

ut = (υ/2)(|yt − µ|υ / exp(λt|t−1υ)− 1, t = 1, ..., T. (36)

Hence σ2
u = υ. When λt|t−1 is stationary, the properties of the Gamma-GED-320

EGARCH model and the asymptotic covariance matrix of the ML estimators321

can be obtained in much the same way as those of Beta-t-EGARCH. The322

name Gamma-GED-EGARCH is adopted because ut = (υ/2)ςt − 1, where323

ςt = |yt − µ|υ / exp(λt|t−1υ) has a gamma(1/2, 1/υ) distribution.324

The model extends to the skew case in much the same way as does Beta–325

t-EGARCH. The asymptotic theory for a static model is set out in Zhu and326

Zinde-Walsh (2009).327

20



6. Applications328

In this section various Beta-t-EGARCH specifications (denoted βtE) are329

fitted to a range of demeaned financial return series. The fit of these mod-330

els is compared to that of the standard GARCH(1,1) model with a leverage331

term of the form proposed by Glosten, Jagannathan and Runkle (1993) –332

henceforth GJR – either with a Skew-t or exponential generalised beta (of333

the second kind) conditional distribution. A normal mixture GARCH(1,1),334

a two component model, is also included in the comparisons. The short-335

term component in this model contains a leverage effect, as in GJR. Apart336

from one series, Apple, which was already studied in the introduction, all337

the data are contained in the period 1 January 1999 to 12 October 2011,338

which corresponds to a maximum of 3275 observations. But for some of the339

series the available number of data points is substantially smaller. Yahoo Fi-340

nance (http://yahoo.finance.com/) is the source of the stock market indices341

and the stock prices, the European Central Bank (http://www.ecb.int/) and342

the US Energy Information Agency (http://www.eia.gov/) are the sources343

of the exchange rate data and the oilprice data, respectively, and Kitco344

(http://www.kitco.com/) is the source of the London afternoon (i.e. PM)345

gold price series.346

Table 4 contains descriptive statistics of the returns series, and confirms347

that they exhibit the usual properties of excess kurtosis compared with the348

normal and ARCH as measured by serial correlation in the squared returns.349

All of the stock returns – apart from DAX – and the oil return series ex-350

hibit negative skewness, whereas gold and the exchange rate returns exhibit351

positive skewness. (Below the unconditional positive skewness in DAX re-352

turns is converted into a negative conditional skewness when controlling for353

ARCH, GARCH and leverage.) For the exchange rate returns the positive354

skewness is presumably due to the fact that the more liquid currencies ap-355

pear in the denominator of each of the three exchange rates: An increase in356

the exchange rate (say, EUR/USD) implies a depreciation in the less liquid357

currency (Euro) relative to the more liquid currency (USD). Only two series358

do not pass the test of whether returns are a MD at traditional significance359

levels, namely SP500 and Statoil. For this reason these two return series are360

demeaned by fitting AR(1) specifications with a constant, whereas the rest361

of the returns are demeaned by a constant only.362

Demeaned returns, yt, are modeled as in section 4. The one-component363
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Table 4: Descriptive statistics of return series (January 1999 - October
2011)

m s Kurt Skew MDH
[p−val]

ARCH20
[p−val]

Apple: 0.072 3.104 53.846 -1.964 0.03
[0.86]

36.18
[0.01]

SP500: -0.001 1.364 10.061 -0.156 7.64
[0.01]

4357.63
[0.00]

Ftse: -0.002 1.310 8.459 -0.121 2.16
[0.14]

3581.03
[0.00]

DAX: 0.006 1.623 6.926 0.023 0.33
[0.56]

2994.33
[0.00]

Nikkei: -0.015 1.587 9.437 -0.377 0.86
[0.35]

3464.52
[0.00]

Boeing: 0.029 2.124 7.869 -0.185 0.06
[0.80]

806.82
[0.00]

Sony: -0.044 2.184 8.524 -0.239 0.43
[0.51]

568.21
[0.00]

McDonald’s: 0.034 1.701 7.754 -0.084 0.40
[0.53]

485.24
[0.00]

Merck: -0.010 1.988 26.914 -1.429 0.11
[0.74]

41.19
[0.00]

Statoil: 0.073 2.414 7.703 -0.496 5.36
[0.02]

3888.85
[0.00]

EUR/USD: 0.005 0.671 5.451 0.067 0.06
[0.81]

583.21
[0.00]

GBP/EUR: 0.006 0.516 6.653 0.398 2.37
[0.12]

2186.80
[0.00]

NOK/EUR: -0.004 0.444 10.801 0.253 2.26
[0.13]

1093.29
[0.00]

Oil: 0.070 2.426 7.712 -0.274 0.34
[0.56]

543.48
[0.00]

Gold: 0.079 1.397 6.255 -0.369 0.00
[0.98]

505.5
[0.00]

Notes: m, sample mean. s, sample standard deviation. Kurt, sample

kurtosis. Skew, sample skewness. MDH, Escanciano and Lobato (2009)

test for the Martingale Difference Hypothesis. ARCH20, Ljung and Box

(1979) test for serial correlation in the squared return.
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βtE specification is364

yt = exp(λt|t−1)(εt − µε), λt|t−1 = ω1 + λ†t|t−1,

λ†t|t−1 = φ1λ
†
t−1|t−2 + κ1ut−1 + κ∗sgn(−yt−1)(ut−1 + 1), |φ1| < 1,

with ut as in (32) with µy = 0. Three specifications contained in the one-365

component βtE are estimated, which are labelled βtE1, βtE2 and βtE3. The366

specification with both leverage and skewness is βtE3.367

The two-component βtE specification is given by368

yt = exp(λt|t−1)(εt − µε), λt|t−1 = ω1 + λ†1,t|t−1 + λ†2,t|t−1,

λ†1,t|t−1 = φ1λ
†
1,t−1|t−2 + κ1ut−1, |φ1| < 1, φ1 6= φ2,

λ†2,t|t−1 = φ2λ
†
2,t−1|t−2 + κ2ut−1 + κ∗sgn(−yt−1)(ut−1 + 1).

Following Engle and Lee (1999, p. 487) and others, only the short-term369

component has a leverage effect. A little experimentation indicated that this370

was a reasonable assumption to make here. A total of three specifications371

contained in the two-component βtE are estimated, which are labelled βtE4,372

βtE5 and βtE6. The specification with both leverage and skewness is βtE6.373

When only one component is used in the Beta-Skew-t-EGARCH model374

it is comparable with a GARCH(1,1) of the GJR type, namely375

yt = σt|t−1ε̃t|t−1, t = 1, ..., T,

σ2
t|t−1 = ω1 + φ1σ

2
t−1|t−2 + κ1y

2
t−1 + κ∗I(yt−1 < 0)y2t−1,

where ε̃t has zero mean and unit variance. Two versions of this model are376

fitted, one where ε̃t is a skewed t (ST), as in Giot and Laurent (2003), and one377

where ε̃t is an Exponential Generalised Beta of the second kind (EGB2), see378

Wang et al. (2001). For ST the shape parameters ν and γ have exactly the379

same interpretations as in the Beta-Skew-t-EGARCH case. For EGB2 the380

shape parameters ν and γ (denoted p and q in Wang et al. (2001)) together381

determine the tail-thickness and skewness. Symmetry is obtained when they382

are equal, whereas positive (negative) skewness is obtained when ν > γ383

(ν < γ). The smaller the values of ν and γ, the more heavy-tailed. The use384

of sgn(−yt−1) rather than the indicator I(yt−1 < 0) makes no difference to the385

fit. Note that the persistence parameter in the GJR model is φ1 +κ1 +κ∗/2,386

not φ1; see Taylor (2005, p 221). When two components are used in the387

Beta-Skew-t-EGARCH model it has features in common with the Normal388
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Mixture GARCH(1,1) with leverage (NM2) of Alexander and Lazar (2006),389

namely390

yt ∼ NM(ν, ν2, γ, γ2, σ
2
1,t|t−1, σ

2
2,t|t−1), (37)

such that391

ν + ν2 = 1, ν, ν2 > 0, ⇒ ν2 = (1− ν),

νγ + ν2γ2 = 0, ⇒ γ2 =
−ν

(1− ν)
γ,

Et−1(yt) = νγ + ν2γ2 = 0, (38)

V art−1(yt) = νσ2
1,t|t−1 + ν2σ

2
2,t|t−1 +

ν

1− ν
γ2, (39)

σ2
1,t|t−1 = ω1 + φ1σ

2
1,t−1|t−2 + κ1y

2
t−1, (40)

σ2
2,t|t−1 = ω2 + φ2σ

2
2,t−1|t−2 + κ2y

2
t−1 + κ∗I(yt−1 < 0)y2t−1. (41)

The σ2
1,t|t−1 and σ2

2,t|t−1 can be interpreted as the long-term and short-term392

components, respectively, and the leverage term appears in the short-term393

equation only. ν and ν2 are mixing parameters that sum to 1; a high value394

on ν (ν2) means the long-term (short-term) component is more important.395

γ and γ2 are mean parameters; if they both are equal to zero (unequal to396

zero), then the density is symmetric (skewed).397

Tables 5 to 9 contain estimation results of the different financial returns.398

The results of the Apple data were used in the introduction to illustrate a399

drawback with the GARCH framework. The maximized likelihood of the400

Beta-Skew-t-EGARCH model with leverage is clearly larger than those of401

the GJR models, and that of the ST model is clearly larger than those of402

the EGB2 and NM2 models. The use of two components gives a further403

improvement, but does not always give a better fit according to the Schwarz404

(1978) information criterion (SC). Despite the large outlier, there is little405

evidence of negative skewness in the fit; the estimates of γ are greater than406

one for ST and βtE, γ is close to ν for EGB2, and γ is close to zero for407

NM2. For some series, for example SP500, the estimate of κ2 is less than408

that of κ∗, indicating that the short run effect of a large positive return is409

to reduce volatility. There may be plausible explanations, but if not, the410

constraint κ2 = κ∗ may be imposed. When this was done here, there was411

usually a statistically significant decrease in the likelihood. However, the412

model still fitted well and there are no important implications regarding the413

overall merits of using two components.414
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All the results suggest that most conditional returns are heavy-tailed (the415

maximum estimated value of the degrees of freedom parameter for example416

is 17 (FTSE) among the βtE and ST models) and the presence of either417

leverage or skewness (or both) is a common feature across a range of se-418

ries. In fact, the only return series in which neither leverage nor skewness419

is significant (at 10%) among the ST and βtE models is the EUR/USD ex-420

change rate. A notable feature is that the unconditional positive skewness in421

DAX returns is converted into negative and significant conditional skewness,422

when controlling for ARCH, GARCH and volatility asymmetry. All in all,423

the results provide broad support in favour of the Beta-Skew-t-EGARCH,424

since according to the SC the GJR models beat the corresponding βtE spec-425

ification in only two instances (Statoil, a Norwegian petroleum company,426

and NOK/EUR). Moreover, in general the ST model does better than the427

EGB2 and NM2 models. Comparing the one-component and two-component428

versions of the Beta-Skew-t-EGARCH (excluding the Apple stock where a429

longer sample is used for estimation), the two-component performs better430

according to SC in only three instances (FTSE, DAX and gold).431

Both leverage and negative skewness are pronounced among the stock432

market indices. The leverage estimate is always positive, which yields the433

usual interpretation of large negative returns being followed by higher volatil-434

ity. Similarly, the skewness parameter estimate ranges from 0.86 to 0.91 in435

the ST and βtE models, which means the risk of a large negative (demeaned)436

return is higher than a large positive (demeaned) return. Interestingly, but437

maybe not surprisingly, most of the large stocks with relatively regular earn-438

ings payouts (Apple, Boeing, Sony, McDonald’s, Merck, Statoil) do not ex-439

hibit as much leverage or negative skewness as the indices, and sometimes the440

skewness is positive. A striking exception is Statoil whose negative skewness441

is 0.87 among the ST and βtE models.442

As noted above the most liquid currency pair (EUR/USD) exhibits little if443

any leverage and skewness. This is in line with what might be expected. How-444

ever, medium liquid exchange rates like EUR/GBP exhibit some skewness445

but no leverage, whereas relatively minor exchange rates like NOK/EUR ex-446

hibit substantial skewness and leverage. A common interpretation of “lever-447

age” in an exchange rate context is that a large depreciation (for whatever448

reason) can induce higher volatility. This means the leverage parameter can449

be negative, since the sign depends on which currency is in the numerator450

of the exchange rate. Specifically, if the currency of the smaller economy is451

in the numerator, then one would expect a negative sign: A positive return452

25



means a depreciation in the smaller currency, which subsequently leads to453

an increase in volatility, and vice versa. This accounts for the negative and454

statistically significant leverage estimate of NOK/EUR.455
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(û
)

[p
−
v
a
l]

A
R
C
H

(ε̂
)

[p
−
v
a
l]

F
T

S
E

:
(T

=
3
2
2
7
)

S
T

0
.0

21
[0
.0
0
4
]

0.
89

9
[0
.0
1
0
]

0.
0
0
7

[0
.0
0
9
]

0
.1

6
0

[0
.0
2
0
]

1
4
.8

0
[3
.0
9
]

0
.8

7
6

[0
.0
2
3
]
−

4
7
3
1
.9

(2
.9
4
8
)

-
3
0
.2

4
[0
.0
2
]

E
G

B
2

0
.0

22
[0
.0
0
4
]

0.
89

7
[0
.0
1
1
]

0.
0
1
0

[0
.0
0
9
]

0
.1

5
5

[0
.0
2
0
]

1.
8
6

[0
.4
0
]

3
.0

5
8

[0
.8
1
7
]
−

4
7
3
3
.3

(2
.9
4
9
)

-
2
9
.1

4
[0
.0
3
]

N
M

2
0.

00
7

[0
.0
0
2
]

0.
95

2
[0
.0
0
9
]

0.
8
0
9

[0
.0
0
0
]

0.
0
4
5

[0
.0
0
9
]
−

0.
0
0
6

[0
.0
0
0
]

0
.3

8
0

[0
.0
0
0
]

0.
5
7

[0
.0
5
]
−

0.
0
2
5

[0
.0
3
5
]
−

4
7
3
3
.1

(2
.9
5
6
)

-
3
4
.4

4
[0
.0
1
]

β
tE

3
0
.1

27
[0
.0
7
8
]

0.
98

6
[0
.0
0
3
]

0.
0
3
4

[0
.0
0
4
]

0.
0
4
1

[0
.0
0
4
]

1
4
.6

0
[2
.8
9
]

0
.8

5
3

[0
.0
2
2
]
−

4
7
1
4
.9

(2
.9
3
7
)

3
8
.2

5
[0
.0
0
]

2
5
.0

2
[0
.0
9
]

β
tE

6
0
.1

33
[0
.1
3
4
]

0.
99

3
[0
.0
0
4
]

0.
9
4
1

[0
.0
1
4
]

0.
0
3
1

[0
.0
0
9
]
−

0.
0
0
1

[0
.0
1
1
]

0.
0
5
4

[0
.0
0
5
]

1
7
.2

4
[4
.0
8
]

0
.8

6
6

[0
.0
2
2
]
−

4
7
0
3
.2

(2
.9
3
5
)

3
5
.0

8
[0
.0
0
]

3
0
.5

8
[0
.0
1
]

D
A

X
:

(T
=
3
2
5
6
)

S
T

0
.0

32
[0
.0
0
6
]

0.
89

8
[0
.0
1
0
]

0.
0
1
9

[0
.0
0
8
]

0
.1

4
4

[0
.0
1
9
]

1
1
.9

9
[2
.1
4
]

0
.8

9
0

[0
.0
2
2
]
−

5
5
3
0
.8

(3
.4
1
2
)

-
5
7
.5

9
[0
.0
0
]

E
G

B
2

0
.0

35
[0
.0
0
6
]

0.
89

5
[0
.0
1
1
]

0.
0
2
2

[0
.0
0
8
]

0
.1

4
0

[0
.0
2
0
]

1.
4
5

[0
.3
0
]

2
.0

5
4

[0
.4
6
3
]
−

5
5
3
5
.5

(3
.4
1
5
)

-
5
2
.9

3
[0
.0
0
]

N
M

2
0.

01
2

[0
.0
0
7
]

0.
94

7
[0
.0
2
2
]

0.
7
4
6

[0
.0
0
0
]

0.
0
5
1

[0
.0
2
2
]
−

0.
0
0
8

[0
.0
0
0
]

0
.3

9
2

[0
.0
4
6
]

0.
6
6

[0
.0
5
]
−

0.
0
8
7

[0
.0
3
2
]
−

5
5
2
8
.5

(3
.4
1
8
)

-
4
2
.2

8
[0
.0
0
]

β
tE

3
0
.3

64
[0
.0
8
2
]

0.
98

4
[0
.0
0
3
]

0.
0
4
1

[0
.0
0
4
]

0.
0
3
6

[0
.0
0
4
]

1
3
.9

9
[2
.7
9
]

0
.8

7
1

[0
.0
2
1
]
−

5
5
1
9
.5

(3
.4
0
5
)

5
1
.5

7
[0
.0
0
]

6
1
.5

9
[0
.0
0
]

β
tE

6
0
.5

71
[0
.4
0
6
]

0.
99

5
[0
.0
0
7
]

0.
9
3
3

[0
.0
1
4
]

0.
0
4
1

[0
.0
1
0
]
−

0.
0
0
8

[0
.0
1
3
]

0.
0
5
1

[0
.0
0
5
]

1
4
.5

6
[3
.1
8
]

0
.8

9
0

[0
.0
2
2
]
−

5
5
0
4
.1

(3
.4
0
1
)

4
7
.4

3
[0
.0
0
]

3
8
.7

5
[0
.0
0
]

N
ik

ke
i:

(T
=
3
1
3
5
)

S
T

0
.0

54
[0
.0
1
1
]

0.
88

9
[0
.0
1
3
]

0.
0
3
0

[0
.0
1
0
]

0
.1

1
5

[0
.0
2
0
]

1
3
.4

7
[2
.8
4
]

0
.9

1
2

[0
.0
2
3
]
−

5
4
3
9
.3

(3
.4
8
5
)

-
1
5
.8

3
[0
.5
4
]

E
G

B
2

0
.0

53
[0
.0
1
1
]

0.
88

8
[0
.0
1
3
]

0.
0
3
2

[0
.0
1
0
]

0
.1

1
4

[0
.0
2
0
]

1.
7
5

[0
.4
0
]

2
.6

0
2

[0
.7
3
7
]
−

5
4
3
7
.7

(3
.4
8
4
)

-
1
5
.6

9
[0
.5
5
]

N
M

2
0.

50
9

[0
.1
2
3
]

0.
69

7
[0
.0
9
1
]

0.
9
0
8

[0
.0
1
2
]

0.
1
6
8

[0
.0
6
1
]

0.
0
1
3

[0
.0
1
0
]

0
.1

1
8

[0
.0
2
6
]

0.
2
3

[0
.0
6
]
−

0.
2
5
5

[0
.1
2
3
]
−

5
4
4
4
.6

(3
.4
9
7
)

-
1
9
.9

0
[0
.2
8
]

β
tE

3
0
.2

66
[0
.0
5
1
]

0.
97

2
[0
.0
0
5
]

0.
0
4
3

[0
.0
0
5
]

0
.0

2
9

[0
.0
0
4
]

1
2
.7

2
[2
.3
6
]

0
.9

1
0

[0
.0
2
3
]
−

5
4
3
2
.4

(3
.4
8
1
)

3
1
.3

8
[0
.0
2
]

2
0.

1
2

[0
.2
7
]

β
tE

6
0
.2

59
[0
.0
8
9
]

0.
99

4
[0
.0
0
4
]

0.
9
3
2

[0
.0
1
8
]

0.
0
2
1

[0
.0
0
6
]

0.
0
2
1

[0
.0
0
8
]

0.
0
3
7

[0
.0
0
5
]

1
3
.3

1
[2
.5
9
]

0
.9

1
2

[0
.0
2
3
]
−

5
4
2
4
.9

(3
.4
8
1
)

3
4
.2

6
[0
.0
0
]

2
7
.2

5
[0
.0
3
]

B
o
ei

n
g:

(T
=
3
2
1
6
)

S
T

0
.0

55
[0
.0
1
5
]

0.
92

6
[0
.0
1
2
]

0.
0
3
4

[0
.0
1
0
]

0
.0

5
7

[0
.0
1
6
]

7.
2
5

[0
.8
3
]

0
.9

9
5

[0
.0
2
5
]
−

6
5
7
6
.0

(4
.1
0
5
)

-
3
4
.2

4
[0
.0
1
]

E
G

B
2

0
.0

60
[0
.0
1
6
]

0.
92

2
[0
.0
1
2
]

0.
0
3
6

[0
.0
1
0
]

0
.0

5
8

[0
.0
1
6
]

1.
0
1

[0
.1
6
]

1
.0

0
6

[0
.1
5
6
]
−

6
5
7
9
.5

(4
.1
0
7
)

-
3
3
.7

1
[0
.0
1
]

N
M

2
1.

32
7

[0
.0
0
0
]
−

0.
08

3
[0
.0
0
0
]

0.
9
2
2

[0
.0
1
1
]

0.
0
9
1

[0
.0
0
0
]

0.
0
7
5

[0
.0
1
1
]

0
.0

4
2

[0
.0
1
1
]

0.
3
2

[0
.0
4
]
−

0.
0
2
6

[0
.0
8
8
]
−

6
6
0
9
.6

(4
.1
3
3
)

-
3
4
.6

6
[0
.0
1
]

β
tE

3
0
.5

38
[0
.0
7
3
]

0.
98

8
[0
.0
0
4
]

0.
0
3
2

[0
.0
0
5
]

0.
0
1
7

[0
.0
0
3
]

7.
5
2

[0
.8
8
]

0
.9

8
3

[0
.0
2
4
]
−

6
5
6
8
.7

(4
.1
0
0
)

2
5
.2

0
[0
.0
9
]

4
5
.1

8
[0
.0
0
]

β
tE

6
0
.5

99
[0
.1
5
1
]

0.
99

7
[0
.0
0
2
]

0.
9
4
9

[0
.0
2
1
]

0.
0
1
7

[0
.0
0
5
]

0.
0
1
9

[0
.0
0
8
]

0.
0
2
4

[0
.0
0
5
]

7.
6
9

[0
.9
1
]

0
.9

8
9

[0
.0
2
4
]
−

6
5
6
4
.8

(4
.1
0
3
)

2
2
.6

0
[0
.0
9
]

4
2
.9

3
[0
.0
0
]

N
ot

es
:

S
ee

ta
b

le
5.

28



T
ab

le
7:
β

tE
an

d
G

J
R

sp
ec

ifi
ca

ti
o
n

s
fi

tt
ed

to
va

ri
o
u

s
re

tu
rn

se
ri

es
(J

a
n
u

a
ry

1
9
9
9

-
O

ct
o
b

er
2
0
1
1
)

ω̂
1

[s
e
]

φ̂
1

[s
e
]

φ̂
2

[s
e
]

κ̂
1

[s
e
]

κ̂
2

[s
e
]

κ̂
∗

[s
e
]

ν̂ [s
e
]

γ̂ [s
e
]

L
og
L

(S
C
)

A
R
C
H

(û
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7. Changing location456

Returns sometimes exhibit mild serial correlation. Such effects may be457

removed prior to fitting a volatility model as was done in the previous section.458

However, rather than simply using a standard procedure for estimating an459

ARMA model, a Beta-t-EGARCH model may be fitted, thereby providing460

protection against outliers. Indeed a Beta-t-EGARCH model with a skew461

distribution may be fitted and location and volatility estimated jointly.462

Another possibility to consider is that the serial correlation may actually463

arise as a consequence of combining serial correlation in scale with conditional464

skewness.465

7.1. Joint estimation of location and scale466

When yt | Yt−1 has a symmetric tν-distribution and the location changes467

over time, but the scale is constant, it may be captured by a model in which468

µt|t−1 is generated by a linear function of469

uµt =

(
1 +

(yt − µt|t−1)2

ν exp(−2λ)

)−1
vt, t = 1, ..., T, ν > 0, (42)

where vt = yt − µt|t−1 is the prediction error. The role of the term in paren-470

theses in (42) is to downweight extreme observations. The variable can be471

written472

uµt = (1− bt)(yt − µt|t−1), (43)

where473

bt =
(yt − µt|t−1)2/ν exp(2λ)

1 + (yt − µt|t−1)2/ν exp(2λ)
, 0 ≤ bt ≤ 1, 0 < ν <∞, (44)

is distributed as beta(1/2, ν/2). Hence the mean of uµt is zero, as it should474

be.475

The first-order model is476

yt = µt|t−1 + vt = µt|t−1 + exp(λt|t−1)εt, t = 1, ..., T, (45)

µt+1|t = δ + φµt|t−1 + κuµt .

This model might be interpreted as an approximation to an AR(1) process477

plus t-distributed white noise. More generally, a linear dynamic model of478

order (p, r) may be defined as479

µt+1|t = δ + φ1µt|t−1 + ...+ φpµt−p+1|t−p + κ0u
µ
t + κ1u

µ
t−1 + ...+ κru

µ
t−r, (46)
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where p ≥ 0 and r ≥ 0 are finite integers and δ, φ1, .., φp, κ0, .., κr are (fixed)480

parameters. Stationarity (both strict and covariance) of λt|t−1 requires that481

the roots of the autoregressive polynomial lie outside the unit circle, as in an482

autoregressive-moving average model.483

When the conditional distribution is Skew-t,484

uµt = u+t I[0,∞)(yt − µt|t−1) + u−t I(−∞,0)(yt − µt|t−1), t = 1, ..., T, (47)

where ut = u+t and ut = u−t are as in (43), but with bt defined as485

b+t =
(yt − µt|t−1)2/ν exp(2λ)

1 + (yt − µt|t−1)2/νγ2 exp(2λ)
or b−t =

(yt − µt|t−1)2/ν exp(2λ)

1 + (yt − µt|t−1)2/νγ−2 exp(2λ)
,

(48)
depending on whether yt − µt|t−1 is non-negative (b+t ) or negative (b−t ). The486

properties of u+t and u−t do not depend on the sign of yt−µt|t−1 since in both487

cases they are a linear function of the same beta variable, as defined in (44).488

The asymptotic distribution of the ML estimators may be obtained.489

Location and scale may be estimated jointly. The dynamic equations have490

the same form as before. Thus uµt is defined as in (47) but with λ replaced491

in (48) by λt|t−1. Similarly µy is replaced by λt|t−1 in the various formulae492

for ut. Both ut and uµt are MDs, dependent on beta variables with the493

same distribution. However, the unconditional information matrix cannot494

be evaluated in the same way as before because the variance of the score495

with respect to the location depends on the scale.496

The case for adopting the MD modification of section 4 may not be so
strong when there is serial correlation in the level. If the modification is to
be made, then

µSt|t−1 = µt|t−1 − µε exp(λt|t−1),

where λt|t−1 from (45) replaces the constant mean µy in (31). Of course497

if the serial correlation is first removed by pre-filtering the MD model is498

appropriate.499

8. Conclusions and extensions500

This article shows that much of the theory for the basic Beta-t-EGARCH501

model generalizes to a Skew-t model. Thus expressions may be obtained502

for unconditional moments of the observations and for predictions. An an-503

alytic expression can be derived for the information matrix of a first-order504
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model and its structure gives insight into the way in which the estimators of505

parameters interact for different parameterizations. For example, if the dy-506

namic equation is set up in terms of the mean, the asymptotic distribution507

is independent of its value. The effect of the skewness parameter may be508

similarly explored. Having said that, the derivation of an analytic expression509

for the information matrix of the ML estimators for the preferred specifica-510

tion, which is the one that retains the martingale difference property, is more511

difficult.512

The fact that a comprehensive set of theoretical properties can be de-513

rived for Beta-t-EGARCH models is a considerable attraction. Even more514

important, from the practical point of view, is that our results provide yet515

more evidence on the better fit afforded by the Beta-t-EGARCH specifica-516

tion as compared with the GARCH-GJR benchmark; see also the results in517

Harvey and Chakravarty (2008) and Creal, Koopman and Lucas (2011). The518

Beta-Skew-t-EGARCH model with a leverage effect, and either one or two519

components, gives the best results overall. Both leverage and negative skew-520

ness are found to be particularly pronounced among stock market indices,521

such as SP 500, FTSE, DAX and Nikkei.522

Zhu and Galbraith (2010) consider an asymmetric Skew t-distribution523

in which the degrees of freedom takes on a different value according to the524

sign of the deviation from the mean. The Beta-Skew-t-EGARCH model525

could in principle be extended in this way. There is also the possibility of526

introducing skewness into the multivariate model of Creal, Koopman and527

Lucas (2011). Zhang et al (2011) propose such a multivariate model based528

on the generalized hyperbolic distribution, but, as they note, computing the529

information matrix for this distribution is analytically intractable so deriving530

asymptotic properties of ML estimators using the methods employed here will531

not be possible.532
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Appendix: Asymptotic properties of the ML estimator632

This appendix explains how to derive the information matrix of the ML633

estimator for the first-order model and outlines a proof for consistency and634

asymptotic normality.635

As noted in the text, if the model is to be identified, κ must not be zero636

or such that the constraint b < 1 is violated. A more formal statement is637

that the parameters should be interior points of the compact parameter space638

which will be taken to be |φ| < 1, |ω| < ∞ and 0 < κ < κu, κL < κ < 0639

where κu and κL are values determined by the condition b < 1.640

The first step is to decompose the derivatives of the log density wrt ψ
into derivatives wrt λt|t−1 and derivatives of λt|t−1 wrt ψ, that is

∂ ln ft
∂ψ

=
∂ ln ft
∂λt|t−1

∂λt|t−1
∂ψ

, i = 1, 2, 3.

Since the scores ∂ ln ft/∂λt|t−1 are IID(0, σ2
u) and so do not depend on λt|t−1,641

Et−1

[(
∂ ln ft
∂λt|t−1

∂λt|t−1
∂ψ

)(
∂ ln ft
∂λt|t−1

∂λt|t−1
∂ψ

)′]
=

[
E

(
∂ ln ft
∂µ

)2
]
∂λt|t−1
∂ψ

∂λt|t−1
∂ψ′

= σ2
u

∂λt|t−1
∂ψ

∂λt|t−1
∂ψ′

.

Thus the unconditional expectation requires evaluating the last term. In642

order to do this, the following definitions, which specialize to the expressions643

in (49), are needed:644

a = φ+ κE

(
∂ut
∂λ

)
, (49)

b = φ2 + 2φκE

(
∂ut
∂λ

)
+ κ2E

(
∂ut
∂λ

)2

≥ 0 and

c = κE

(
ut
∂ut
∂λ

)
.

We also note that the first derivative of the conditional score is

∂ut
∂λt|t−1

=
−2(ν + 1)(yt − µ)2ν exp(2λt|t−1)

(ν exp(2λt|t−1) + yt − µ)2)2
= −2(ν + 1)bt(1− bt),
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and since, like ut, this depends only on a beta variable, it is also IID. Hence645

the distribution of ut and its first derivative are independent of λt|t−1. All646

moments of ut and ∂ut/∂λ exist for the t-distribution and the expressions647

for a, b and c are as in (49).648

The derivative of λt|t−1 wrt κ is

∂λt|t−1
∂κ

= φ
∂µt−1|t−2

∂κ
+ κ

∂ut−1
∂κ

+ ut−1, t = 2, ..., T.

However,
∂ut
∂κ

=
∂ut

∂λt|t−1

∂λt|t−1
∂κ

,

Therefore649

∂λt|t−1
∂κ

= xt−1
∂µt−1|t−2

∂κ
+ ut−1, (50)

where

xt = φ+ κ
∂ut

∂λt|t−1
, t = 1, ...., T.

Taking conditional expectations of xt gives

Et−1(xt) = φ+ κEt−1

(
∂ut

∂λt|t−1

)
= φ+ κE

(
∂ut
∂µ

)
,

where the last equality follows because ∂ut/∂λt|t−1 is IID and so unconditional650

expectations can replace conditional ones. The unconditional expression de-651

fines the general expression for the quantity ‘a’ in (49).652

When the process for λt|t−1 starts in the infinite past and |a| < 1, tak-
ing conditional expectations of the derivatives at time t − 2, followed by
unconditional expectations gives

E

(
∂λt|t−1
∂κ

)
= E

(
∂λt|t−1
∂φ

)
= 0 and E

(
∂λt|t−1
∂ω

)
=

1− φ
1− a

.

The derivatives wrt φ and ω are found in a similar way.653

To derive the information matrix, square both sides of (50) and take654

conditional expectations to give655

Et−2

(
∂λt|t−1
∂κ

)2

= Et−2

(
xt−1

∂µt−1|t−2
∂κ

+ ut−1

)2

= b

(
∂µt−1|t−2

∂κ

)2

+ 2c
∂µt−1|t−2

∂κ
+ σ2

u,
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where b and c are as defined in (12). Taking unconditional expectations gives

E

(
∂λt|t−1
∂κ

)2

= bE

(
∂µt−1|t−2

∂κ

)2

+ 2cE

(
∂µt−1|t−2

∂κ

)
+ σ2

u

and so, provided that b < 1,

E

(
∂λt|t−1
∂κ

)2

=
σ2
u

1− b
.

Expressions for other elements in the information matrix may be similarly656

derived; see Harvey (2012). Fulfillment of the condition b < 1 implies |a| < 1.657

That this is the case follows directly from the Cauchy-Schwartz inequality658

E(x2t ) ≥ [E(xt)]
2 .659

Consistency and asymptotic normality can be proved by showing that660

the conditions for Lemma 1 in Jensen and Rahbek (2004, p 1206) hold.661

The main point to note is that the first three derivatives of λt|t−1 wrt κ, φ662

and ω are stochastic recurrence equations (SREs); see Brandt (1986) and663

Straumann and Mikosch (2006, p 2450-1). The condition b < 1 is sufficient664

to ensure that they are strictly stationary and ergodic at the true parameter665

value. The necessary condition for strict stationarity is E(ln |xt|) < 0. This666

condition is satisfied at the true parameter value when |a| < 1 since, from667

Jensen’s inequality, E(ln |xt|) ≤ lnE(|xt|) < 0 and as already noted b < 1668

implies |a| < 1. Similarly b < 1 is sufficient to ensure that the squares of the669

first derivatives are strictly stationary and ergodic.670

Let ψ0 denote the true value of ψ. Since the score and its derivatives wrt
µ in the static model possess the required moments, it is straightforward to
show that (i) as T → ∞, (1/

√
T )∂ lnL(ψ0)/∂ψ →N(0, I(ψ0)), where I(ψ0)

is p.d. and (ii) as T → ∞, (−1/T )∂2 lnL(ψ0)/∂ψ∂ψ
′ P→ I(ψ0). The final

condition in Jensen and Rahbek (2004) is concerned with boundedness of
the third derivative of the log-likelihood function in the neighbourhood of
ψ0. The derivatives of ut, as well as ut itself, are affine functions of terms of
the form b∗t = bht (1− bt)k, where h and k are non-negative integers. Since

bt = h(yt;ψ)/(1 + h(yt;ψ)), 0 ≤ h(yt;ψ) ≤ ∞,

where h(yt;ψ) depends on yt and ψ, it is clear that, for any admissible ψ,671

0 ≤ bt ≤ 1 and so 0 ≤ b∗t ≤ 1. Furthermore the derivatives of λt|t−1 must be672

bounded at ψ0 since they are stable SREs which are ultimately dependent on673
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ut and its derivatives. They must also be bounded in the neighbourhood of674

ψ0 since the condition b < 1 is more than enough to guarantee the stability675

condition E(ln |xt|) < 0.676

Unknown shape parameters, including degrees of freedom, pose no prob-677

lem as the third derivatives (including cross-derivatives) associated with them678

are almost invariably non-stochastic.679
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