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Abstract—The calculation of ground-state energies of physi-
cal systems can be formalised as the k-LOCAL HAMILTONIAN
problem, which is the natural quantum analogue of classical
constraint satisfaction problems. One way of making the problem
more physically meaningful is to restrict the Hamiltonian in
question by picking its terms from a fixed set S. Examples of
such special cases are the Heisenberg and Ising models from
condensed-matter physics.

In this work we characterise the complexity of this problem
for all 2-local qubit Hamiltonians. Depending on the subset
S, the problem falls into one of the following categories: in
P; NP-complete; polynomial-time equivalent to the Ising model
with transverse magnetic fields; or QMA-complete. The third
of these classes contains NP and is contained within StoqMA.
The characterisation holds even if S does not contain any 1-local
terms; for example, we prove for the first time QMA-completeness
of the Heisenberg and XY interactions in this setting. If S
is assumed to contain all 1-local terms, which is the setting
considered by previous work, we have a characterisation that
goes beyond 2-local interactions: for any constant k, all k-local
qubit Hamiltonians whose terms are picked from a fixed set S
correspond to problems either in P; polynomial-time equivalent
to the Ising model with transverse magnetic fields; or QMA-
complete.

These results are a quantum analogue of Schaefer’s dichotomy
theorem for boolean constraint satisfaction problems.

Index Terms—Hamiltonian complexity; QMA-completeness.

I. INTRODUCTION

Constraint satisfaction problems (CSPs) are ubiquitous in
computer science and have been intensively studied since the
early days of complexity theory. A beautiful and surprising
result in this area is the dichotomy theorem of Schaefer [1],
which completely classifies the complexity of boolean con-
straint satisfaction problems of a certain form. These problems
can all be considered special cases of a general problem S-
CSP, where S is a set of constraints, each of which is a boolean
function on a fixed number of bits. An instance of the problem
is described by a sequence of these constraints, applied to dif-
ferent subsets of input bits. The task is to determine whether all
the constraints can be simultaneously satisfied. For example,
the 3-SAT problem fits into this class: here the constraints
are disjunctions of up to 3 input bits, or their negations.
Schaefer’s result states that if S is one of a particular family of
types of constraints, S-CSP is in P; otherwise, S-CSP is NP-
complete. This result is particularly remarkable given Ladner’s

theorem [2] that, assuming P 6= NP, there must be an infinite
hierarchy of complexity classes between P and NP.

Schaefer’s dichotomy theorem has subsequently been gener-
alised and sharpened in a number of directions. In particular,
Creignou [3] and Khanna, Sudan and Williamson [4] have
completely characterised the complexity of the maximisation
problem k-MAX-CSP for boolean constraints. Here we are
again given a system of constraints, but the goal is to maximise
the number of constraints we can satisfy. An example problem
of this kind is MAX-CUT. A recent monograph of Creignou,
Khanna and Sudan [5] has much more on this subject.

A natural quantum generalisation of constraint satisfaction
problems is provided by the k-LOCAL HAMILTONIAN prob-
lem [6]. A k-local Hamiltonian is a Hermitian matrix H on
the space of n qubits which can be written as H =

∑
iH

(i),
where each H(i) acts non-trivially on at most k qubits.

Definition 1 (k-LOCAL HAMILTONIAN). The (promise) prob-
lem k-LOCAL HAMILTONIAN is defined as follows. We are
given a k-local Hamiltonian H =

∑m
i=1H

(i) on n qubits
with m = poly(n). Each H(i) satisfies ‖H(i)‖ = poly(n)
and its entries are specified by poly(n) bits. We are also
given two rational numbers a < b of poly(n) digits such that
b−a ≥ 1/ poly(n), and promised that the smallest eigenvalue
of H is either at most a, or at least b. Our task is to determine
which of these two possibilities is the case.

k-LOCAL HAMILTONIAN is a direct generalisation of k-
MAX-CSP; the classical problem is the special case where
each matrix H(i) is diagonal in the computational basis and
only contains 0’s and 1’s. Just as k-MAX-CSP is NP-complete
for k ≥ 2, k-LOCAL HAMILTONIAN is QMA-complete for
k ≥ 2 [7], where QMA (quantum Merlin-Arthur) is the
quantum analogue of NP [6]. If a problem is QMA-complete,
this is good evidence that there is unlikely to be a polynomial-
time algorithm (whether classical or quantum) to solve it.

As well as the intrinsic mathematical interest of this non-
commutative generalisation of constraint satisfaction prob-
lems, a major motivation for this area is applications to
physics. Indeed, the classical connection between constraint
satisfaction and physics goes back at least as far as Barahona’s
work proving NP-hardness of cases of the Ising model [8].
One of the most important themes in condensed-matter physics



is calculating the ground-state energies of physical systems1;
for spin models, this is essentially an instance of k-LOCAL
HAMILTONIAN.

This connection to physics motivates the study of the
QMA-hardness (or otherwise) of k-LOCAL HAMILTONIAN
with restricted types of interactions, with the aim being to
prove QMA-hardness of problems of more direct physical
interest, rather than the somewhat unnatural interactions that
may occur in the general k-LOCAL HAMILTONIAN problem.
This is the quantum analogue of the classical programme of
proving NP-hardness of constraint satisfaction problems where
the constraints are picked from a restricted set S. One can
also consider k-LOCAL HAMILTONIAN with restrictions on
the interaction topology (for example, taking all interactions
to be 2-local on a planar lattice).

In particular, it is known that 2-LOCAL HAMILTONIAN
remains QMA-complete if:
• the Hamiltonian H is of the Heisenberg form with

arbitrary local magnetic fields,

H =
∑

(i,j)∈E

XiXj +YiYj +ZiZj +
∑
k

αkXk +βkYk +γkZk,

where αk, βk, γk are arbitrary coefficients and E is the
set of edges of a 2-dimensional square lattice [9], [10];

• the Hamiltonian H is of the form [11]

H =
∑
i<j

JijXiXj +KijZiZj +
∑
k

αkXk + βkZk,

or

H =
∑
i<j

JijXiZj +KijZiXj +
∑
k

αkXk + βkZk,

where Jij , Kij , αk, βk are arbitrary coefficients. These results
determine the complexity of various special cases of the
following general problem, which we call S -HAMILTONIAN.

Definition 2 (S -HAMILTONIAN). Let S be a fixed (finite or
infinite) subset of Hermitian matrices on at most k qubits,
for some constant k. The S -HAMILTONIAN problem is the
special case of k-LOCAL HAMILTONIAN where, for each i,
there exists αi ∈ R such that αiH

(i) ∈ S. That is, the overall
Hamiltonian H is specified by a sum of matrices H(i), each
of which acts non-trivially on at most k qubits, and whose
non-trivial part is proportional to a matrix picked from S.

We then have the following general question:

Problem 3. Given S, characterise the computational com-
plexity of S -HAMILTONIAN.

We will essentially completely resolve this question in the
case where every matrix in S acts on at most 2 qubits. Before
we state our results, we observe the following important points
about this problem:

1In practice, one might often actually like to determine some more
complicated property of the ground state; however, calculating the energy
is a reasonable starting point.

• In general, we assume that, given a set of interactions
S, we are allowed to produce an overall Hamiltonian by
applying each interaction M ∈ S scaled by an arbitrary
real weight, which can be either positive or negative. This
contrasts with constraint satisfaction problems, where
usually weights are restricted to be positive.

• We assume that we are allowed to apply the interactions
in S across any choice of subsets of the qubits. That is,
the interaction pattern is not constrained by any spatial
locality, planarity or symmetry considerations. However,
each application of a k-local interaction must be across a
set of k distinct qubits. Classically, it is common to allow
one constraint in a CSP to take as input multiple copies
of the same variable, but from a physical perspective
this seems less meaningful so we do not allow it. Even
classically, this distinctness requirement can make it more
difficult to prove hardness for families of CSPs [4].

• Some of the interactions in S could be non-symmetric
under permutation of the qubits on which they act; for
example, it could make a difference whether we apply
M ∈ S across qubits (1, 2) or qubits (2, 1). We assume
that we are allowed to apply such interactions to any
permutation of the qubits.

• We can always assume without loss of generality that the
identity matrix I ∈ S, as adding an arbitrarily weighted
identity term (energy shift) does not change the hardness
of the problem.

Making these assumptions will allow us to give a precise
classification of the complexity of S -HAMILTONIAN; the price
paid is that the problem instances considered are potentially
less physically meaningful (for example, containing terms with
polynomially large weights, with both positive and negative
signs, and with interactions across large distances). Finding
a full characterisation of S -HAMILTONIAN with additional
restrictions on the form of the Hamiltonians considered seems
to be a very challenging task. However, sometimes (see
Section II below) we are nevertheless able to classify the
complexity of S -HAMILTONIAN even when restricted to more
physically realistic interaction patterns.

A number of interesting special cases of k-LOCAL HAMIL-
TONIAN which do not exactly fit into the S -HAMILTONIAN
framework have also been studied. In particular, it has been
shown by Bravyi et al. [12] that k-LOCAL HAMILTONIAN is
in the complexity class AM if the Hamiltonian is restricted to
be stoquastic. A stoquastic Hamiltonian has all off-diagonal
entries real and non-positive in the computational basis. Such
Hamiltonians are of particular interest as they occur in a wide
variety of physical systems, and also in the quantum adiabatic
algorithm for SAT [13] and certain claimed implementations
of quantum computation [14]. As AM is in the polynomial
hierarchy, it is considered unlikely that k-LOCAL HAMILTO-
NIAN with stoquastic Hamiltonians is QMA-complete. This
result was subsequently sharpened by Bravyi, Bessen and Ter-
hal [15], who showed that this problem is StoqMA-complete,
where StoqMA is a complexity class which sits between



MA and AM. On the other hand, approximating the highest
eigenvalue of a stoquastic Hamiltonian is QMA-complete [16].
Bravyi and Vyalyi [17] proved that k-LOCAL HAMILTONIAN
is in NP for 2-local Hamiltonians with commuting terms, and
this has been extended recently by Hastings [18] to further
classes of commuting Hamiltonians.

A. Organisation and notation

Because of space limitations, many proofs, technical details
and discussions are deferred to the full version of the pa-
per [19]. In the remainder of this extended abstract, we state
our results; discuss our proof techniques; sketch the hardness
proof of an key special case (the Heisenberg model); give an
overview of the proof of one of our main results; and conclude
with some open questions.

We use X := ( 0 1
1 0 ), Y :=

(
0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
to denote

the Pauli matrices, and also define σ0 := I , σ1 := X , σ2 :=
Y , σ3 := Z. Any k-qubit matrix M can be decomposed as a
weighted sum of tensor products of Pauli matrices. For each
`, 0 ≤ ` ≤ k, we call the part of M corresponding to Pauli
matrices which act non-trivially on exactly ` qubits the `-local
part of M .

For any k-qubit matrix M , we let Mi1...ik denote the matrix
formed by applying M on qubits i1, . . . , ik, tensored with
the identity elsewhere. For conciseness, we usually follow
the condensed-matter convention of writing AB for the two-
qubit matrix A ⊗ B (so, for example, XX + Y Y + ZZ =
X ⊗ X + Y ⊗ Y + Z ⊗ Z). We usually let n denote the
number of qubits in the overall Hamiltonian.

II. STATEMENT OF RESULTS

We begin by considering a special case of the problem,
which we call S -HAMILTONIAN WITH LOCAL TERMS, is
defined as follows.

Definition 4. S -HAMILTONIAN WITH LOCAL TERMS is the
special case of S -HAMILTONIAN where S is assumed to
contain all 1-qubit Hermitian matrices.

That is, in the S -HAMILTONIAN WITH LOCAL TERMS prob-
lem we are given access to all 1-local terms for free: the overall
Hamiltonian is formed by taking a sum of terms from S,
each with an arbitrary positive or negative weight, then adding
arbitrary 1-local terms. For any S, S -HAMILTONIAN WITH
LOCAL TERMS is at least as difficult as S -HAMILTONIAN,
because it is a generalisation. It is therefore easier to prove
QMA-hardness of cases of S -HAMILTONIAN WITH LOCAL
TERMS. All previous proofs of QMA-hardness of special cases
of k-LOCAL HAMILTONIAN which we are aware of [7], [11],
[9], [10] actually prove QMA-hardness of S -HAMILTONIAN
WITH LOCAL TERMS for various sets S. Here we are able to
characterise the complexity of this problem when S contains
arbitrary matrices on up to k qubits, for arbitrary k = O(1).

We first need to define a notion of local diagonalisation. Let
M be a k-qubit Hermitian matrix. We say that U ∈ SU(2)
locally diagonalises M if U⊗kM(U†)⊗k is diagonal. We say
that U locally diagonalises S if U locally diagonalises M for

all M ∈ S. Note that matrices in S may act on different
numbers of qubits, so can be of different sizes. We are now
ready to state our first main result.

Theorem 5. Let S be an arbitrary fixed subset of Hermitian
matrices on at most k qubits, where k = O(1). Let S ′ be
the subset formed by subtracting all 1-local terms from each
element of S, and then deleting all 0-local matrices from the
resulting set. Then:
• If S ′ is empty, S -HAMILTONIAN WITH LOCAL TERMS is

in P;
• Otherwise, if there exists U ∈ SU(2) such that U locally

diagonalises S ′, then S -HAMILTONIAN WITH LOCAL
TERMS is TIM-complete, where TIM is a complexity class
satisfying NP ⊆ TIM ⊆ StoqMA (see discussion below);

• Otherwise, S -HAMILTONIAN WITH LOCAL TERMS is
QMA-complete. If every matrix in S ′ acts on 2 qubits,
this holds even if we insist that the 2-qubit interactions
in the final Hamiltonian are restricted to the edges of a
2d square lattice and all have equal weight.

We show in the full version [19] that the condition occurring
in the second case can be checked efficiently. This implies that
classification of a set S into one of the above categories can
be performed efficiently.

The alert reader may wonder why there are no NP-complete
or StoqMA-complete classes in the above characterisation.
In the former case, this is because of the free 1-local terms
allowed. In the latter case, this is because we allow terms in S
to be used with arbitrary weights with both signs. This implies
that one can always produce a non-stoquastic Hamiltonian
from any set S containing a non-diagonal matrix, even if all
the elements of S have real non-positive off-diagonal entries;
so stoquasticity is not a meaningful constraint in our setting.
In other words, the local Hamiltonian problem restricted to the
class of Hamiltonians with arbitrarily (positively or negatively)
weighted stoquastic terms is QMA-complete; see the end of
this section for a simple example of this.

The complexity class mentioned in the second case of
Theorem 5 deserves some explanation. This picks out those
special cases of S -HAMILTONIAN WITH LOCAL TERMS which
turn out to be polynomial-time equivalent to the problem
of approximating the lowest eigenvalue of a Hamiltonian in
the general Ising model with transverse magnetic fields. This
model describes Hamiltonians of the form

H =
∑
i<j

αijZiZj +
∑
k

βkXk. (1)

Such Hamiltonians have been much studied in mathematical
physics and in particular occur in the quantum adiabatic
algorithm for solving optimisation problems [13]. In our ter-
minology, the problem of determining the ground-state energy
of Hamiltonians in the transverse Ising model up to inverse-
polynomial precision is {ZZ,X}-HAMILTONIAN; we have
been unable to resist the name TIM to specify the class of
problems reducible to this. Thus a promise problem P is
in TIM if P can be solved by a polynomial-time Turing



machine equipped with an oracle for the problem {ZZ,X}-
HAMILTONIAN, and is TIM-hard if there is a poly-time
classical reduction from {ZZ,X}-HAMILTONIAN to P .

Fixing βk = 0 suffices to show that NP ⊆ TIM, by the NP-
hardness of the general Ising model (aka MAX-CUT). In the
other direction, we clearly have TIM ⊆ QMA, but a tighter
upper bound can be achieved. By conjugating any Hamiltonian
H of the form (1) by local Z operations on each qubit k such
that βk > 0, which maps X 7→ −X and does not change the
eigenvalues of H , βk can be assumed to be non-positive for all
k. The resulting Hamiltonian has all off-diagonal entries non-
positive, or in other words is stoquastic [12]. Approximating
the ground-state energy of stoquastic Hamiltonians is captured
by the complexity class StoqMA [15], so TIM ⊆ StoqMA. As
StoqMA is contained within the polynomial hierarchy, and in
particular within the class AM [12], it is unlikely that TIM =
QMA. Thus, for sets S which fall into this second class, S -
HAMILTONIAN WITH LOCAL TERMS is unlikely to be QMA-
complete.

We can go further than Theorem 5, and consider a setting
where we do not necessarily have access to all (or any) 1-qubit
matrices. In this case, we can still completely characterise
the complexity of S -HAMILTONIAN for all sets S of 2-
qubit Hermitian matrices, with a slightly more complicated
classification.

Theorem 6. Let S be an arbitrary fixed subset of Hermitian
matrices on at most 2 qubits. Then:
• If every matrix in S is 1-local, S -HAMILTONIAN is in

P;
• Otherwise, if there exists U ∈ SU(2) such that U locally

diagonalises S, then S -HAMILTONIAN is NP-complete;
• Otherwise, if there exists U ∈ SU(2) such that, for each

2-qubit matrix Hi ∈ S, U⊗2Hi(U
†)⊗2 = αiZ

⊗2+AiI+
IBi, where αi ∈ R and Ai, Bi are arbitrary single-
qubit Hermitian matrices, then S -HAMILTONIAN is TIM-
complete, where TIM is a complexity class satisfying
NP ⊆ TIM ⊆ StoqMA;

• Otherwise, S -HAMILTONIAN is QMA-complete.

In a sense, our result completely solves Kitaev’s original
qubit local Hamiltonian problem [6] for the case of two-body
interactions (the most physically relevant case of the original
qubit local-Hamiltonian problem). We highlight some interest-
ing special cases, which are important models in mathematical
physics.

The general Heisenberg model describes Hamiltonians of
the following form:∑

i<j

αij(XiXj + YiYj + ZiZj).

In our terminology, this corresponds to {XX + Y Y + ZZ}-
HAMILTONIAN. By Theorem 6, finding the ground-state en-
ergy of Hamiltonians in this model is QMA-complete. Prior to
this work, this problem was not even known to be NP-hard. We
stress that the αij coefficients are allowed to be independently
positive or negative; in physical systems one often restricts

them to be either all positive (the antiferromagnetic case) or
all negative (the ferromagnetic case); see Section IV-A for a
further discussion of this point.

Schuch and Verstraete [10] previously proved QMA-
hardness of the Heisenberg model where arbitrary 1-local
terms are also allowed, or in other words QMA-hardness of
{XX + Y Y + ZZ}-HAMILTONIAN WITH LOCAL TERMS.
The case where no local terms are allowed is particularly
interesting because it displays a large amount of symmetry;
indeed, the ground space of such a Hamiltonian on n qubits
must be invariant under conjugation by U⊗n for arbitrary
single-qubit unitaries U . Since the Heisenberg interaction is
equivalent to projecting onto the two-qubit antisymmetric state
(singlet), it can be viewed as a natural quantum generalisation
of the MAX-CUT problem.

Theorem 6 also implies QMA-completeness of the XYZ and
XXZ models in condensed-matter physics, which correspond
to Hamiltonians of the form∑

i<j

αijXiXj + βijYiYj + γijZiZj .

The general XY model describes Hamiltonians of the
following form: ∑

i<j

αij(XiXj + YiYj).

Similarly, by Theorem 6, calculating ground state energies
in this model is QMA-complete. Biamonte and Love [11]
previously proved QMA-completeness if arbitrary local X , Y
terms are allowed and the XiXj and YiYj terms can have
different weights (Y is relabelled to Z in their work). It is
worth remarking that, if the signs αij are restricted to be
negative, the resulting Hamiltonian is stoquastic. Therefore,
we see that QMA-completeness can be obtained from a simple
special case of the stoquastic local Hamiltonian problem by
allowing weights with varying signs.

Although the theory of QMA-completeness is now over a
decade old [6], the list of problems proven QMA-complete
is still relatively short (see [20] for a recent review). One of
the original motivations for Schaefer’s dichotomy theorem [1]
was to make NP-hardness proofs easier, by increasing the
repertoire of NP-hard problems for use in reductions. We hope
that our resolution of the complexity of S -HAMILTONIAN will
be similarly useful to those wishing to prove QMA-hardness.

A. Independent and subsequent work

Shortly after a first version of this work appeared on the
arXiv, Childs, Gosset and Webb [21] proved that the Bose-
Hubbard model is QMA-complete. In proving this result, they
showed that for Hamiltonians of the form∑

i6=j,Aij=1

XiXj + YiYj −
∑

k,Akk=1

Zk,

where A is the adjacency matrix of a graph, approximating
the lowest eigenvalue restricted to a subspace with fixed ex-
pectation value of Z⊗n (“magnetisation”) is QMA-complete.



Their work thus proves that a variant of the {XX + Y Y,Z}-
HAMILTONIAN problem with an additional restriction to a
subspace is QMA-complete, even if the non-zero coefficients
of the terms are fixed to 1 (for XX + Y Y terms) or −1 (for
Z terms).

More recently, Bravyi [22] has given a polynomial-time
algorithm for approximating the ground-state energy of TIM
Hamiltonians H =

∑
i 6=j αijZiZj +

∑
k βkXk in the fer-

romagnetic case where αij ≤ 0 for all i 6= j. A precise
characterisation of the complexity of general Hamiltonians of
this form remains open.

III. PROOF TECHNIQUES

As is typical for “dichotomy-type” results, our classification
theorems proceed by identifying some special cases which are
easy, and then proving hardness of all other cases. All of our
hardness results are based on reductions using gadgets (as
used in e.g. [7], [9], [10], [11]), rather than proving QMA-
hardness directly using clock constructions or similar (as used
in e.g. [6], [7]).

The basic idea is to approximately simulate some set of
interactions A, where A-HAMILTONIAN is QMA-hard, using
some other set of interactions B, thus proving QMA-hardness
of B-HAMILTONIAN. We use two kinds of gadgets, both
analysed using perturbation theory [7]. This theory allows
us to characterise the low-energy part of operators of the
form V + ∆H , where V and H are Hamiltonians and
∆ = poly(‖V ‖) is a large coefficient. The simpler type of
gadget consists of choosing a large enough constant ∆ such
that V is effectively projected onto the ground space of H .
This is the quantum analogue of the natural classical technique
of forcing some input bits to be in a certain state by applying
a heavily weighted constraint to them. A more complicated
type of gadget does not have a classical analogue. Here we
choose H to be 1-local, and by picking somewhat smaller ∆,
implement an effective 2-local interaction which we did not
have access to previously.

The S -HAMILTONIAN problem contains a daunting number
of cases, so the first step of our proof is to reduce the
Hamiltonians we consider to a normal form by conjugating
by local unitaries, which does not change the eigenvalues. It
turns out that the 2-local part of any given 2-qubit Hermitian
matrix H which is symmetric (resp. antisymmetric) under
interchange of the qubits can be reduced to a matrix of the
form αXX + βY Y + γZZ (resp. α(XZ − ZX)), which
drastically reduces the number of cases we need to cover. If
our set S contains more than one interaction, we need to be
careful to apply the same local unitaries to all H ∈ S.

In the case of S -HAMILTONIAN WITH LOCAL TERMS,
the techniques used to prove QMA-hardness are then fairly
standard (following previous work [7], [9], [10], [11]). We
use our access to arbitrary 1-local terms to create perturbative
gadgets which allow us to produce arbitrary interactions from
interactions of the form αXX + βY Y + γZZ. In the case
where S only contains interactions on 1 or 2 qubits, following
this approach allows us to prove QMA-hardness even when all

the 2-qubit interactions are equally weighted and are restricted
to the edges of a 2d square lattice. We can also prove QMA-
hardness for k-qubit interactions for k > 2, which is based
on using 1-local interactions to “cut out” components of the
k-local interactions and produce 2-qubit interactions2. One
interesting special case is S = {ZZ}, which as discussed
above is NP-hard and in StoqMA, and hence unlikely to be
QMA-complete.

In the more general case of S -HAMILTONIAN it is more
difficult to prove QMA-hardness, as the lack of access to 1-
local terms does not allow us to use the perturbative techniques
of [9], [10]. In some cases, we are also hampered by the
presence of symmetry. This is highlighted by the Heisenberg
model S = {XX + Y Y + ZZ}. As H = XX + Y Y + ZZ
is invariant under conjugation by local unitaries, the same
holds for the ground space of any Hamiltonian built only
from H terms, implying that it is hopeless to attempt to
directly encode the ground state of a general Hamiltonian
into a Heisenberg Hamiltonian. We therefore proceed using
an encoding method where we associate a block of 3 physical
qubits with a single logical qubit. This is inspired by related
ideas in work on universality of the exchange interaction for
quantum computation [23], but does not appear to follow
from it directly. In order to make the encoding work, we
use perturbation theory to effectively project onto a subspace
which we can control within the 3-qubit space. An interesting
aspect of the proof is that, in order to produce the correct
interactions, we need to find an exactly solvable special case
of the Heisenberg model with certain characteristics; very few
such cases exist, but luckily the Lieb-Mattis model [24] has
the properties we need.

The other important special case with significant symmetry
is the XY model S = {XX + Y Y }, which can be dealt
with using similar ideas. Once these cases are proven QMA-
hard, it turns out that using a number of different encodings
we can produce virtual interactions of either Heisenberg or
XY type using almost any 2-qubit interaction with no 1-
local part, sufficing to prove QMA-hardness for these. Finally,
QMA-hardness of cases with 1-local parts is proven by yet
another gadget construction, this time one which removes the
unwanted 1-local terms.

In many of these cases, we needed to carry out fairly compli-
cated eigenvalue-eigenvector calculations in order to prove that
our gadgets work. These calculations were performed using
a computer algebra package. However, once they are found,
verifying that the eigenvectors and eigenvalues are correct can
easily be done by hand.

IV. EXAMPLE: THE GENERAL HEISENBERG MODEL

To exemplify our techniques, we begin by giving the
QMA-hardness proof of one of the more interesting special
cases which occur in our classification: the Heisenberg model
without 1-local terms. Our proof is based on the use of the

2It is not obvious how to achieve this without having access to 1-local
interactions, which is one reason why we were unable to achieve a full
classification result for S-HAMILTONIAN for k > 2.



following tool, which is similar to the “Projection Lemma” of
Kempe, Kitaev and Regev [7]:

Lemma 7. Let H be a Hamiltonian such that λmin(H) = 0
and the next smallest non-zero eigenvalue of H is 1, and let
V be an arbitrary Hamiltonian such that ‖V ‖ ≥ 1. Further
take ∆ = δ‖V ‖2 for some δ ≥ 4, and let H̃ = ∆H+V . Then

‖H̃<∆/2 − V−‖ ≤ 41/δ.

The notation used in this lemma is as follows: H̃<∆/2 is the
restriction of H̃ to the subspace spanned by eigenvectors of H̃
of eigenvalue less than ∆/2, and V− = Π−VΠ−, where Π−
is the projector onto the subspace spanned by eigenvectors of
H with eigenvalue 0. Lemma 7, which is based on underlying
technical results of Oliveira and Terhal [9], improves the result
of Kempe, Kitaev and Regev [7] by showing that the low-
energy subspace of H̃ is actually close to V− in operator
norm, rather than the two operators just having a similar
lowest eigenvalue. This will be important for us as we will
need to encode data in this subspace. It is also immediate
that Lemma 7 can be applied a constant number of times in
series (which does not seem obvious from the result of [7]).
We will use the lemma to effectively project the low-energy
part of a Hamiltonian onto a smaller space, up to a small
(1/ poly(n)) additive error. For readability, we will not include
these additive errors in the description that follows.

The general Heisenberg model describes Hamiltonians of
the form

H =
∑
i<j

αij(XiXj + YiYj + ZiZj).

Such Hamiltonians can equivalently be described in terms of
the swap gate F := 1

2 (I +XX + Y Y + ZZ). Schuch and
Verstraete proved that determining ground-state energies in
the Heisenberg model is QMA-hard if one allows arbitrary
additional 1-local terms [10]. Our task is to prove this claim
without 1-local terms. The inherent symmetry of the model
means that, in order to approximate an arbitrary Hamiltonian
as a Heisenberg Hamiltonian, we will have to encode it
somehow. In particular, we would like to encode a qubit in
a larger space such that we can generate two non-commuting
matrices which encode X and Z on the logical qubit.

The simplest such encoding possible is to associate a block
of three physical qubits with each logical qubit (a similar idea
was used in [23]). To take advantage of the symmetry of the
swap operation, we use Schur-Weyl duality, which states that

(C2)⊗3 ∼= P(3) ⊗Q(3) ⊕ P(2,1) ⊗Q(2,1),

where P(3) and P(2,1) correspond to the irreps (3) and (2, 1)
of S3 and Q(3) and Q(2,1) are irreps of U(2). The point of this
decomposition is that any permutation of the 3 qubits acts only
on the spaces P(3), P(2,1). P(3) is trivial (one-dimensional);

Q(3) is 4-dimensional and can be written as

Q(3) = span{|000〉, 1√
3

(|001〉+ |010〉+ |100〉),

1√
3

(|110〉+ |101〉+ |011〉), |111〉}.

P(2,1) and Q(2,1) are 2-dimensional and we have

P(2,1) ⊗Q(2,1) = span

{
1√
2

(|01〉 − |10〉) |0〉,

1√
2

(|01〉 − |10〉) |1〉,−
√

2

3
|001〉+

1√
6

(|01〉+ |10〉) |0〉,√
2

3
|110〉 − 1√

6
(|01〉+ |10〉) |1〉

}
.

Write S1 = Q(3), S2 = P(2,1)⊗Q(2,1). Then it is clear that F ,
applied on any pair of the qubits, leaves S1 invariant. In the
case of S2, with respect to the above basis one can explicitly
calculate that

F12 + F13 + F23 = 0,−F12 = Z ⊗ I, F13 − F23√
3

= X ⊗ I.

(Subscripts here denote the qubits that F acts on.) On the
whole space (C2)3, the first of these corresponds to the
projection onto S1. Using Lemma 7, by applying this in-
teraction with a large but polynomially bounded weight, we
can (simultaneously) enforce each of the 3-qubit blocks to be
contained within S2. Our n triples of physical qubits thus give
us a logical space corresponding to n pairs of logical qubits;
within each qubit pair we can apply Z or X to the first qubit.
Note that these are not really separate qubits as we cannot
address the second qubit.

We now need to implement interactions across pairs of
logical qubits. Imagine we have two physical qubit triples,
with the first triple labelled 1 to 3, and the second triple
labelled 4 to 6. By applying F operators across different pairs
of physical qubits, we have 9 potential interactions on the
logical space of 4 qubits, split into two blocks of two logical
qubits: (1, 2) and (3, 4) (plus the 6 interactions we already
know about, by applying F across pairs in the same triple).
By explicit calculation, each choice (i, j) such that i and j are
in different triples turns out to give a logical interaction of the
form M

(i,j)
13 (2F − I)24 + I⊗4/2. As usual, we can ignore the

identity term. We will not write out all of the matrices M (i,j),
merely recording that

3

2

(
M (1,4) −M (1,5) −M (2,4) +M (2,5)

)
= XX,

1

2

(
M (1,4) +M (1,5) − 2M (1,6) +M (2,4) +M (2,5)

− 2M (2,6) − 2M (3,4) − 2M (3,5) + 4M (3,6)
)

= ZZ,

and

2

3∑
i=1

6∑
j=4

M (i,j) = II. (2)



The first two of these mean that we can implement the
interactions XX and ZZ across logical qubits (1, 3) – but
product with (2F −I⊗I) across qubits (2, 4). In other words,
we can implement a logical Hamiltonian of the form
n∑

i=1

(αiXi + βiZi)Ii′ +
∑
i<j

(γijXiXj + δijZiZj)(2F − I)i′j′ ,

where we identify the i’th logical qubit pair with indices (i, i′).
We would like to eliminate the unwanted (2F − I) operators.
One way to do this is to force the primed qubits to be in
a particular state by very strong Fi′j′ interactions. Consider
adding in the (logical) term

G = ∆
∑
i<j

wijFi′j′

where wij are some weights and ∆ is very large. We can do
this because we can make I1I3(2F − I)24, as shown in (2). If
the ground state |ψ〉 of G is non-degenerate, by Lemma 7 the
primed qubits will all be effectively projected onto the ground
state, and H will become
n∑

i=1

(αiXi+βiZi)+
∑
i<j

(γijXiXj+δijZiZj)〈ψ|(2F−I)i′j′ |ψ〉.

We therefore need to find a G whose ground state is non-
degenerate and 〈ψ|(2F − I)i′j′ |ψ〉 6= 0 for all i, j (and also
these quantities should be easily computable). In particular,
this implies that for all subsets S of two qubits, we need
ψS 6= I/4. In order to find such a G, we study exactly
solvable restricted special cases of the Heisenberg model.
A model (i.e. family of Hamiltonians) is said to be exactly
solvable if the eigenvalues and corresponding eigenvectors of
any Hamiltonian in the model can be calculated efficiently.
Only very few restricted versions of the Heisenberg model are
known to be exactly solvable. The case which we will use is
the Lieb-Mattis model on n qubits [24]:

H =
∑

i∈A,j∈B
XiXj + YiYj + ZiZj ,

where A and B are disjoint subsets of qubits. That is, the
interaction graph of this model is the complete bipartite graph
on A×B. For the case |A| = |B| = n, we have the following
lemma, which combines results stated (for example) in [24],
[25]. First define

|ψn
k 〉 :=

1√(
n
k

) ∑
x∈{0,1}n,|x|=k

|x〉.

Lemma 8. Write

HLM :=

n∑
i=1

2n∑
j=n+1

Mij =

n∑
i=1

2n∑
j=n+1

XiXj + YiYj + ZiZj .

Then the ground state of HLM is unique and given by

|φLM 〉 :=
1√
n+ 1

n∑
k=0

(−1)k|ψn
k 〉|ψn

n−k〉.

For i and j such that 1 ≤ i, j ≤ n or n + 1 ≤ i, j ≤ 2n,
〈φLM |Fij |φLM 〉 = 1. Otherwise, 〈φLM |Fij |φLM 〉 = −2/n.

The beautiful proof of Lemma 8 is well-known in the
condensed-matter theory literature, and the most difficult part
(proving uniqueness) was already shown by Lieb and Mattis in
their original paper [24]. However, the ingredients of the proof
are somewhat scattered, so we present a self-contained proof in
the full version [19]. Given Lemma 8 and the above discussion,
QMA-hardness of the Heisenberg model is essentially imme-
diate. We first (potentially) add one triple of physical qubits
to make the total number of logical qubits equal to 2n for
integer n. Then, by Lemma 7, we can effectively implement
Hamiltonians of the form

2n∑
k=1

αkXk + βkZk

+
∑
i<j

(γijXiXj + δijZiZj)〈φLM |(2F − I)i′j′ |φLM 〉.

As 〈φLM |(2F − I)i′j′ |φLM 〉 is non-zero, at most inverse-
polynomially small, and efficiently computable for all pairs
i, j, by rescaling γij and δij appropriately, we can effectively
implement any Hamiltonian of the form

2n∑
k=1

αkXk + βkZk +
∑
i<j

γijXiXj + δijZiZj

for any choices of αk, βk, γij , δij . This suffices for QMA-
completeness [11]. We have proven the following lemma.

Lemma 9. {XX + Y Y + ZZ}-HAMILTONIAN is QMA-
complete.

A. QMA-hardness with physically realistic interactions?

Our construction proving QMA-hardness of the general
Heisenberg model involves interactions between many pairs
of spatially distant qubits, and also a highly non-planar in-
teraction graph. It is natural to wonder whether one could
modify it to be more physically natural, and perhaps only
involving interactions on a 2d square lattice, as can be
achieved for {XX+Y Y +ZZ}-HAMILTONIAN WITH LOCAL
TERMS [10]. The following observation (which was already
made in [12] and essentially even in [24]) shows that such
a QMA-hardness construction is unlikely to work for either
ferromagnetic or antiferromagnetic cases.

Observation 10. Consider a Hamiltonian H of the form
H =

∑
i<j αij(XiXj + YiYj + ZiZj). Then, if αij ≤ 0

for all i, j, determining the ground-state energy of H up to
inverse-polynomial precision is in P. If αij ≥ 0 for all i, j,
and the graph of interactions that occur in H is bipartite,
determining the ground-state energy of H up to inverse-
polynomial precision is in StoqMA.

Proof. In the first case, the ground state of H is the product
state |0〉⊗n, so the problem is trivial. In the second case, split
the qubits on which H acts into two sets A and B such that all
interactions are between A and B, and apply Z rotations to the



B set. This corresponds to mapping every term in H to a term
of the form αij(−XiXj − YiYj +ZiZj). This is a stoquastic
matrix (i.e. all its off-diagonal entries are non-positive), so
finding its ground-state energy is in StoqMA [15].

V. THE GENERAL S -HAMILTONIAN PROBLEM

Our characterisation of the complexity of the general S -
HAMILTONIAN problem will be greatly facilitated by the
ability to transform any two-qubit Hermitian matrix H into
a standard normal form using conjugation by single-qubit
unitaries. The normal form we use is essentially the same as
one well-known in entanglement theory (e.g. [26]), except that
we insist that the unitaries applied are the same on each qubit.
This is important because mapping H 7→ U⊗2H(U†)⊗2 does
not change the eigenvalues of any Hamiltonian produced only
from applications of H , as

∑
i6=j

αij(U
⊗2H(U†)⊗2)ij = U⊗n

∑
i 6=j

αijHij

 (U†)⊗n.

Any traceless two-qubit Hermitian matrix H can be written as

H =

3∑
i,j=1

Mijσ
i ⊗ σj +

3∑
k=1

vkσ
k ⊗ I + wkI ⊗ σk

for some coefficients Mij , vk, wk. Write M(H) for the 3× 3
matrix M occurring in this decomposition. Also define the
Pauli rank of H to be the rank of M(H). We observe that,
if H is symmetric (resp. antisymmetric) under exchange of
the two qubits on which it acts, M(H) is a symmetric (resp.
skew-symmetric) matrix. For any S -HAMILTONIAN problem,
we can assume that every 2-qubit matrix H ∈ S is either
symmetric or antisymmetric under interchange of the two
qubits on which it acts. This holds because, given access to H ,
we can implement the two matrices H+ = (H+FHF )/2 and
H− = (H −FHF )/2, where F is the swap operator, simply
by applying H in both the normal direction and in reverse.
H+ is symmetric, and H− is antisymmetric. We have lost
nothing by doing this, as H+ +H− = H .

Lemma 11. Let H be a traceless 2-qubit Hermitian matrix.
If H is symmetric under exchanging the two qubits on which
it acts, there exists U ∈ SU(2) such that

U⊗2H(U†)⊗2 =

3∑
i=1

αiσ
i ⊗ σi +

3∑
j=1

βj(σ
j ⊗ I + I ⊗ σj),

for some real coefficients αi, βj . If H is antisymmetric under
this exchange, there exists U ∈ SU(2) and i 6= j such that

U⊗2H(U†)⊗2 = α(σi⊗σj−σj⊗σi)+

3∑
k=1

βk(σk⊗I−I⊗σk),

for some real coefficients α, βk.

Lemma 11 allows us to reduce the complexity of the S -
HAMILTONIAN problem to a manageable number of special
cases. As well as the Heisenberg model discussed above,

we prove QMA-completeness of the XY model and a skew-
symmetric case.

Lemma 12. {XX+Y Y }-HAMILTONIAN is QMA-complete.

Lemma 13. {XZ −ZX}-HAMILTONIAN is QMA-complete.

Based on reductions from these special cases, we can prove
QMA-completeness more generally:

Lemma 14. For any real β, γ such that at least one of β
and γ is non-zero, {XX + βY Y + γZZ}-HAMILTONIAN is
QMA-complete.

Lemma 15. For any β, γ such that at least one of β and γ is
non-zero, and any single-qubit Hermitian matrix A, {XX +
βY Y + γZZ +AI + IA}-HAMILTONIAN is QMA-complete.

Lemma 16. For any single-qubit Hermitian matrix A, {XZ−
ZX +AI − IA}-HAMILTONIAN is QMA-complete.

We will also need to consider some cases which are unlikely
to be QMA-complete:

Lemma 17. {ZZ}-HAMILTONIAN WITH LOCAL TERMS is
TIM-complete.

Lemma 18. For any single-qubit Hermitian matrix A such
that A does not commute with Z, {ZZ,X,Z}-HAMILTONIAN
reduces to {ZZ +AI + IA}-HAMILTONIAN.

Lemma 19. For any single-qubit Hermitian matrix A such
that A does not commute with Z, {ZZ,X,Z}-HAMILTONIAN
reduces to {ZZ,AI − IA}-HAMILTONIAN.

Finally, we consider the purely classical case of diagonal
matrices.

Lemma 20. Let S be a set of diagonal Hermitian matrices
on at most 2 qubits. Then, if every matrix in S is 1-local, S -
HAMILTONIAN is in P. Otherwise, S -HAMILTONIAN is NP-
complete.

Based on all the above lemmas, we are ready to prove
Theorem 6, which we restate as follows.

Theorem 6 (restated). Let S be an arbitrary fixed subset of
Hermitian matrices on at most 2 qubits. Then:
• If every matrix in S is 1-local, S -HAMILTONIAN is in

P;
• Otherwise, if there exists U ∈ SU(2) such that U locally

diagonalises S, then S -HAMILTONIAN is NP-complete;
• Otherwise, if there exists U ∈ SU(2) such that, for each

2-qubit matrix Hi ∈ S, U⊗2Hi(U
†)⊗2 = αiZ

⊗2+AiI+
IBi, where αi ∈ R and Ai, Bi are arbitrary single-
qubit Hermitian matrices, then S -HAMILTONIAN is TIM-
complete, where NP ⊆ TIM ⊆ StoqMA;

• Otherwise, S -HAMILTONIAN is QMA-complete.

Proof. The first case is clear: any Hamiltonian that can be
made from S is of the form H =

∑
iHi for 1-local matrices

Hi, so the lowest eigenvalue of H is the sum of the lowest
eigenvalues of the individual matrices Hi, which can be



calculated efficiently. For the second case, if there exists such
a U , applying it gives a set of diagonal matrices where at least
one is not 1-local (or we would be in the first case). The claim
then follows from Lemma 20.

For the third case, the problem is clearly no harder than
{ZZ}-HAMILTONIAN WITH LOCAL TERMS, so is contained
within TIM by Lemma 17. To prove TIM-hardness, first note
that after applying U , there must exist a matrix Hi ∈ S of
the form αiZZ + AiI + IBi with αi 6= 0, or we would be
in the first case. Symmetrising and rescaling, we can make a
matrix of the form ZZ+β(AI+IA) (where β or A might be
zero). If A does not commute with Z, Lemma 18 implies that
{ZZ,X,Z}-HAMILTONIAN reduces to S -HAMILTONIAN, so
S -HAMILTONIAN is TIM-hard. So assume that A commutes
with Z. As A can be taken to be traceless by adding an overall
identity term, this is equivalent to A being proportional to Z.
As we are not in the second case, there must also either exist
a 2-qubit matrix Hj ∈ S of the form αjZZ + AjI + IBj ,
where either Aj or Bj does not commute with Z, or a 1-qubit
matrix Hk ∈ S that does not commute with Z. If the latter
possibility is true, we can make IHk +HkI , so it suffices to
assume the former is true. Note that possibly i = j or αj = 0
(but not both).

First assume that Aj 6= −Bj . Then by rescaling and
symmetrising, we can assume we have access to matrices of
the form Hi = ZZ + α(ZI + IZ), Hj = γZZ + BI + IB,
where B is a traceless Hermitian matrix that does not commute
with Z, and α, γ ∈ R. By adding a suitable multiple of
Hi to Hj and rescaling, we can produce a matrix H ′ such
that H ′ = ZZ + AI + IA for some matrix A which
does not commute with Z. By Lemma 18, this implies that
{ZZ,X,Z}-HAMILTONIAN reduces to S -HAMILTONIAN, so
once again S -HAMILTONIAN is TIM-hard.

On the other hand, if Aj = −Bj , we have Hi = ZZ +
α(ZI + IZ), Hj = γZZ +BI − IB, where B is a traceless
Hermitian matrix that does not commute with Z, and α, γ ∈ R.
By adding a suitable multiple of Hi to Hj , antisymmetrising
and rescaling, we can produce a matrix ZZ+BI−IB for some
B that does not commute with Z. Lemma 19 then implies that
S -HAMILTONIAN is TIM-hard.

We finally address the fourth case (the QMA-hard case),
which is split into two subcases. In the first subcase, assume
there exists at least one 2-qubit matrix H ∈ S which has Pauli
rank at least 2. M(H) can be assumed to be either symmetric
or skew-symmetric. If M(H) is symmetric, by Lemma 11
(and possibly relabelling Pauli matrices), using local unitaries
H can be mapped to XX + βY Y + γZZ + AI + IA for
some β, γ such that at least one of them is non-zero and
some single-qubit Hermitian matrix A, so QMA-completeness
follows from Lemma 15. If M(H) is skew-symmetric, we get
QMA-completeness from Lemma 16.

In the second subcase, assume all 2-qubit matrices in
S have Pauli rank 1. There does not exist U such that
U⊗2Hi(U

†)⊗2 = αiZ
⊗2 + AiI + IBi for all Hi ∈ S ,

otherwise we would be in the third case. So in this subcase
there must exist a pair i 6= j and a unitary U such that

U⊗2H
(2)
i (U†)⊗2 is diagonal, but U⊗2H

(2)
j (U†)⊗2 is not,

where H
(2)
i is the 2-local part of Hi. By applying this U

and rescaling, we can assume that Hi = ZZ + δ(AI + IA),
Hj = (αX + βY + γZ)⊗2 + η(BI + IB), for some real
α, β, γ, δ, η where at least one of α or β is non-zero. So,
by rescaling Hj , we can assume that α2 + β2 = 1. There
exists an SO(3) rotation R which maps (α, β, γ) to (1, 0, γ)
while leaving (0, 0, 1) unchanged. Therefore, there exists a
unitary V such that V ⊗2Hj(V

†)⊗2 = (X + γZ)⊗2 and also
V ⊗2H

(2)
i (V †)⊗2 = ZZ. If γ = 0, we have something of the

form Hi = ZZ + δ(AI + IA), Hj = XX + η(BI + IB).
Adding these two matrices, relabelling Pauli matrices and
using Lemma 12 and Lemma 15, this case is also QMA-
complete. If γ 6= 0, by rescaling and subtracting Hi from
Hj , we can make a matrix whose 2-local part is unitarily
equivalent to XX + γ′ZZ for some γ′ 6= 0, so this case is
QMA-complete by Lemmas 14 and 15.

VI. OUTLOOK

We have completely resolved the complexity of a natural
subclass of S -HAMILTONIAN problems. However, many in-
teresting generalisations and open problems remain, e.g.:

1) Can we generalise our results to k-local Hamiltonians for
k > 2? Although we achieved this for S -HAMILTONIAN
WITH LOCAL TERMS, one potentially significant difficulty
with improving this to the full S -HAMILTONIAN problem
is that no comparable normal form exists for Hermitian
matrices on k ≥ 3 qubits. Another issue is that reduction
to the 2-local case, which we used for S -HAMILTONIAN
WITH LOCAL TERMS, does not seem easy to perform
without having access to 1-local terms.

2) Can we generalise our results beyond qubits? Again,
this could be difficult as the equivalent generalisation of
Schaefer’s dichotomy theorem [1] to constraint satisfac-
tion problems on a 3-element domain took 24 years, being
resolved in 2002 by Bulatov [27].

3) Can we prove hardness, or otherwise, for more restricted
types of Hamiltonian? One way of restricting further
would be to put limitations on the signs or types of coeffi-
cients allowed (such as the antiferromagnetic Heisenberg
model), another would be to restrict the topology of
interactions (such as only allowing a planar graph, or
a square lattice). We were able to achieve the latter for
2-qubit interactions with arbitrary 1-local terms, but this
seems more difficult for the general S -HAMILTONIAN
problem (but see Observation 10 for a small step in this
direction).
Another case which has been of interest is Hamiltonians
whose terms commute pairwise. In this case the k-local
Hamiltonian problem is in P for various special cases: 2-
local Hamiltonians [17], 3-local qubit Hamiltonians [28],
and k-local Hamiltonians whose terms are projectors onto
eigenspaces of Pauli matrices [29]. Another example in
this vein is a result of Schuch proving that the problem
is in NP for a special class of commuting 4-local qubit
Hamiltonians [30].



4) We were not able to completely determine the complexity
of the class of S -HAMILTONIAN problems which are
polynomial-time equivalent to the Ising model with trans-
verse magnetic field, merely encapsulating them by a new
complexity class TIM, where NP ⊆ TIM ⊆ StoqMA.
Could one of these inclusions be an equality? Our intu-
ition is that at least the inclusion MA ⊆ TIM should hold,
but thus far the proof has eluded us.

5) Our results can be seen as a quantum generalisation of
dichotomy theorems for the k-MAX-CSP problem [5].
Another way to generalise Schaefer’s original dichotomy
theorem [1] would be to prove a similar result for the
quantum k-SAT problem. This is a variant of k-LOCAL
HAMILTONIAN where each term is a projector, and we
ask whether there exists a state which is in the nullspace
of all the projectors (“satisfies all the constraints”).

6) In a different direction, an interesting open question is
whether one can prove a dichotomy theorem for unitary
quantum gates. For example, given a set G of unitary
gates, are circuits made up of gates picked from G always
either classically simulable or universal for BQP? This
question was resolved quite recently for gates produced
by applying 2-local Hamiltonians from a given set for ar-
bitrary lengths of time [31]. The general question is likely
to be sensitive to the precise definitions of “simulable”
and “universal”, as demonstrated by the apparently inter-
mediate class of commuting quantum computations [32].
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