
Abstract

This paper sets out to provide a risk-management tool (namely the distribution of the
stock price of a warrant-issuing firm) and at the same time resolves an outstanding issue
between the theory and the empirical evidence of the warrant pricing literature. In their
seminal article on warrant pricing, Galai and Schneller (1978) make the following statement:
“…if the distribution of the firm’s liquidation value is lognormal, the value of its share price
is not lognormally distributed”. On the other hand recent empirical studies suggest that
assuming lognormality for the stock price distribution of a warrant-issuing firm gives a very
good approximation for the value of a warrant (this is the so-called “option-like” warrant
valuation approximation). In this paper we derive the “theoretical” distribution of the stock
price for a warrant-issuing firm and show that dilution is reflected and incorporated in the
underlying stock price prior to expiration. We also show that despite of the fact that the (risk-
neutral) distribution of a warrant-issuing firm and a non-warrant issuing firm is different,
valuation by taking expectations of the discounted payoff of the warrant over the two different
risk-neutral distributions produces warrant prices very close to each other for a large number
of cases even when the log-stock price distribution of the warrant-issuing firm exhibits
marked skewness and kurtosis. Exceptions occur for deep-out-of-the-money and close to

maturity out-of-the-money warrants in general. In such cases the “option-like” approximation
will significantly overprice warrants. The distinction we make in this paper between warrants
and executive stock options is simply a matter of whether the contract is traded or not. We use
the term warrant to cover both cases.

Keywords: Warrants, Executive Stock Options, Value of the Firm, Risk-neutral, Distribution.
JEL Classification: G12, G13.
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1. INTRODUCTION

A natural application for option pricing models is the valuation of warrants. However,
unlike call options, warrants and executive stock options are written by companies on their
own stock and form part of their equity. When exercised, they increase the number of
outstanding shares in the firm and thus have a dilution effect.1 The textbook treatment of
warrant valuation therefore mandates that instead of taking the stock price of the firm as the
underlying asset, one should use the total equity value of the firm as the state variable2. To
illustrate; in the classical Black-Scholes framework for option valuation it is assumed that the
stock price process is governed by a Geometric Brownian Motion (or lognormal diffusion). In
a similar spirit, a Black-Scholes framework for warrant valuation assumes that Geometric
Brownian Motion is the process governing the total equity value of the firm (instead of the
stock process; we illustrate why this is the case in section 2 below). But then if lognormal
diffusion is the process governing the equity value of the firm what is the process governing
its stock price? And even more importantly, what is the distribution of the stock price of this
warrant-issuing firm? Answering this question is the purpose of this paper.

The first insight is given by Galai and Schneller (1978): "…if the distribution of the firm's
liquidation value (total equity) is lognormal, the value of its share price is not…".3 Knowledge
of the distribution of the stock price of a warrant issuing firm is very important for a number
of reasons such as risk management purposes (e.g. Value-at-Risk calculations), credit
management purposes (e.g. estimating the probability of default of a firm)4, not to mention the
fact that as noted by many authors (Galai and Schneller (1978), Galai (1989), Sidenius

                                                          
* Theo Darsinos gratefully acknowledges financial support from the A.G. Leventis Foundation, the Wrenbury
Scholarship Fund at the University of Cambridge, and the Economic and Social Research Council (ESRC). We
thank Chiaki Hara and Geoff Meeks for useful suggestions, and Alan Scowcroft, Alexander Ineichen, Stephen
Cooper, and Laun Middleton for providing us with information on warrant/executive stock option issuing firms.
T. Darsinos e-mail: td222@econ.cam.ac.uk. S.E. Satchell e-mail: Steve.Satchell@econ.cam.ac.uk.
1 Other minor differences between call options and warrants could regard adjustment for dividends or the
possibility that expiration dates of certain warrants may be changed.
2 In other words a warrant is to be regarded as a call option on a share of the total equity of the firm, where
equity is defined as the sum of the value of its shares and the value of its warrants (originally suggested by Black
and Scholes (1973)).
3 The same observation is made by Sidenius (1996).
4 In this case the debt of the firm should be also incorporated in its capital structure.
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(1996)) the value of a warrant is equal to the value of a call option on the stock of the warrant-

issuing firm. In fact this lack of knowledge of the distribution of the stock price was one of the
motivations that led Galai and Schneller to price a warrant by reference to the value of a call
option on the stock of an identical firm without warrants, adjusted by a dilution factor. Or
putting this last statement in another way where no reference to "identical" firms is made, the
state variable is nothing else than the total equity value of the warrant-issuing firm, which for
simplicity and tractability can be assumed to be lognormally distributed (see for example
Schulz and Trautmann (1994)).

Over the past decade, empirical literature on warrant pricing (see for example Bensoussan,
Crouhy, and Galai (1992), Schulz and Trautmann (1994), Sidenius (1996)) has suggested that
there is no need to follow the textbook treatment to value warrants (i.e. the equity value
approach). Instead, based on their empirical results and simulations these studies recommend
“option-like” warrant valuation. This simply means valuing the warrant as if it was identical
to a call option, without involving in the valuation process the (typically unobservable) value
of the firm and ignoring any dilution. Surprisingly, such an approximation works very well
for a large number of cases (see Section 2.2 for more details). Indeed Cox and Rubinstein
(1985) and Ingersoll (1987) have long ago recognised that when dilution is sufficiently small
then it may me ignored. Moreover, in harmony with the findings of Schultz and Trautmann
(1994), we illustrate in this paper that dilution can often also be ignored when the dilution
potential is high. Note however that this result is not universal and we present a few cases
where the practice of “option-like” valuation will lead to overpricing. Regarding now the size
of the dilution factor, there appear to be no specific limits placed upon the total number of
options granted by corporations. In fact, over time, the total granted can rise to a considerable
percentage, often well in excess of 10% (or 15%) of the issued capital.

In relation to the above paragraphs, it is important to stress here that warrant valuation
theory does not state that “option-like” valuation is wrong. On the contrary it states that such
an approach is equivalent to the equity value approach. However in order for this to be exact,
one should use the process of the stock price of the warrant-issuing firm. This process is not
the same as, for example, the process of the stock price of an otherwise identical non-warrant-

issuing-firm. Thus the nature of the so-called “option-like” warrant valuation approximation is
that it takes the distribution of the stock price of a non-warrant-issuing-firm as an
approximation to the distribution of the stock price of a warrant-issuing firm.

Moreover, the processes followed by the stock price and the total equity of the warrant-
issuing firm cannot, in general, be of the same form. Indeed as put by Sidenius (1996), once
the total equity process is given, the stock process is completely fixed and vice-versa and one
cannot independently specify the form of both processes. In particular, to assume that they are
both Geometric Brownian Motion is inconsistent, except in special cases (e.g. no outstanding
warrants). In this paper we show that the initial assumption that the equity value of the firm is
lognormal leads to a process for the stock price with stochastic drift and variance parameters.
Moreover the volatility of the stock process depends on the “moneyness” and time to maturity
of the warrants and exhibits a “smile or smirk” similar to the one observed in options markets.
This agrees with Schulz and Trautmann (1994) where they suggest that even if the volatility
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of the equity value is constant the stock volatility will be non-stationary. Note however an
exception: For the special case where the warrant is at-the-money, as is sometime the case
with executive stock options,5 an interesting result lurks. We show that both the equity value
and the stock price are driven by Geometric Brownian Motions and are thus lognormally
distributed. Although convenient, the result is nonetheless quite restrictive since it is only
locally (instantaneously) applicable or requires the warrant to be permanently at-the-money.
Departures from that assumption imply that the lognormal distribution will be just an
approximation for the true distribution of the stock price and in fact an increasingly bad one as
the warrant moves progressively away from the money. We therefore go on next to derive the
"true" distribution for the stock price of a warrant-issuing firm. This distribution must already
reflect the potential dilution of equity thus making the warrant identical to a call option on the
stock price of the warrant-issuing firm.

To sum up, we are faced with two phenomena. On the one hand we have Galai and
Schneler (1978) indicating that the distribution of the stock price of a warrant issuing firm is
not lognormal. On the other hand we have empirical studies suggesting that assuming
lognormality for the stock price distribution gives a very good approximation for the value of
a warrant. Surely something interesting is going on and requires investigation. This is the gap
in the literature that this paper sets out to fill.

The structure of the paper is as follows. In section 2 we set up a framework for warrant
pricing. We start with a discussion of the theoretical approaches that exist for valuing
warrants. In particular, we show that the value of a warrant can be written either as an option
on a share on the total equity value of the firm or as an option on its stock price and we
elaborate on some interesting insights that arise from this relationship. We also present some
approximations that have been suggested for the valuation of warrants. We then go on to
derive the process that governs the stock price of a warrant-issuing firm (based on the fact that
we have previously assumed that the value process is a Geometric Brownian Motion).
Following is a subsection that illustrates how the unobserved value and volatility, (and drift)
of an executive stock option issuing firm can be inferred by solving a system of simultaneous
equations. We end the section with a note on the non-tradability of the value of an executive-
stock-option-issuing firm and the implications of this on no-arbitrage pricing and hedging
arguments. In section 3 we go on to derive the "true" distribution of the stock price for our
warrant-issuing firm. We do this not by solving the stochastic process that governs the firm’s
stock price, but by exploiting the monotonicity of the stock price with the equity value of the
firm and applying a non-linear transformation. In section 4 we relax an assumption that we
made in section 3. The assumption was that the volatility of the equity value of the firm is
observable/inferable. We relax this assumption by utilising a Bayesian approach where the
diffusion parameters for the value process are treated as random variables and can therefore
be integrated out or eliminated via non-linear transformations. Section 5 illustrates empirically

                                                          
5 See for example Noreen and Wolfson (1981) where they state that executive stock options are typically issued
with the exercise price equal to the stock price. (p. 385, Footnote 2). For the economic rationale behind this
practice see Hall and Murphy (2000) where the authors show that by setting the exercise price at or near the
grant-date market price corporations maximise the incentives of their employees and executives.
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what has been said in the previous sections. Concluding remarks and issues for further
research follow in section 6.

2. A FRAMEWORK FOR WARRANT PRICING

2.1 The Textbook Treatment for the Valuation of Warrants

Warrants and executive stock options are written by companies on their own stock. When
they are exercised, the company issues more stock and sells them to the option holder for the
strike price. This subsequently dilutes the equity of existing shareholders. A way out of this,
illustrated below and originally suggested by Black and Scholes (1973) and also discussed in
Lauterbach and Schultz (1990), Schulz and Trautmann (1994) is to regard a warrant as a call
option on a share of the total equity of the firm where equity is defined as the sum of the value
of its shares and the value of its warrants. In this case the underlying state variable is the total
equity value of the firm and in the absence of arbitrage, the value of a warrant is shown to be
equal to the value of a call option on the equity of the firm multiplied by a dilution factor

equal to )1/(1 λ+ 6. One difficulty that arises with this approach is that the value and volatility

of the firm’s equity is not directly observable. It is possible however, as we illustrate later, to
infer these values using numerical routines.

An alternative way is to price a warrant as a call option on the stock of the warrant-issuing
firm. This of course requires knowledge of the distribution of the stock-price of the warrant-
issuing firm. In this case the potential dilution should already be reflected in the stock price
and thus there is no need for a specific dilution adjustment. Hence the warrant is identical to a
call option on the stock price of the firm. Although this approach has never been used in
empirical work for valuing warrants (due to the lack of knowledge of the stock price
distribution) it raises important issues in option pricing and suggests that using for example
the Black-Scholes model to price exchange-traded stock options on firms that happen to issue
warrants may result in mispricing since the wrong process (i.e. the lognormal) is assumed for
the state variable (i.e. the stock price). Or in other words, two stock options, one on a firm
with warrants and the other on an identical firm without warrants should normally sell for
different prices since their price processes will typically be different.7 Looking at the bigger
picture, this implies that when pricing a stock option, the capital structure of the firm should
be modelled and reflected in the stock price process. We leave an investigation on the impact
of the capital structure of a firm on its stock price distribution for a forthcoming paper.

The distinction we make in this paper between warrants and executive share options is
simply a matter of whether the contract is traded or not. Moreover we take the term executive
stock options to contain the popular subset of employee share option schemes which have
been successfully introduced amongst corporations during the past few years. Issues of non-

                                                          
6 λ  represents the ratio of the total number of new shares issued upon exercise of the warrants to the total
number of existing shares.
7 Note though that it is possible for different processes for the state variable to have the same distribution.
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transferability, delayed vesting and exercise policies of Executive Stock Options (ESO’s) are
not discussed in this paper. For these (and a few other) differences between exchange-traded
options and ESO’s we refer the reader to Rubinstein (1995). Here it suffices to say that the
reduction in value of an executive option due to the non-transferability constraint is usually
handled my multiplying the value that would otherwise be obtained (i.e. the value of a traded
warrant) by one minus the probability that the executive/employee will leave the firm before
exercise is possible. The default in this study will be that the probability of “premature leave”
is zero (it is straightforward however to modify this assumption).

Regarding now the delayed vesting constraint or exercise policy of ESO’s in general, it is
indeed the case that most option plans do not permit employees to exercise their granted
options until after a predefined period of time has elapsed (for example, an executive option
has typically a maturity of 10 years; however through delayed vesting, exercise is usually not
permitted for a period after grant, typically 3 years). In other words ESO’s are neither
European nor American. In its Exposure Draft, “Accounting for Stock-based Compensation,”
FASB allows valuing ESO’s as European but requires using the so called “expected life of the
option” instead of the actual time to expiration. Carpenter (1998) defines the cost of an ESO
as the market value of the option to an unrestricted outside investor and examines the exercise
policies of managers who are subject to transferability and hedging constraints. She shows
that early exercise of an ESO is not consistent with exercise patterns observed in the data.
Executives hold options long enough and deep enough into the money before exercising to
capture a significant amount of their potential value. In another note now, ESO’s are
particularly popular amongst high-tech firms. Such corporations promise rapid growth but
also pay little or no dividends. (see amongst many others Microsoft Corporation, Oracle,
Cisco Systems, AoL Time-Warner, etc). This has the advantage that American ESO’s can be
valued as European. Generally, in this study we shall use the term warrant to cover all cases
(i.e. warrants, executive options and employee options). We start first with a simplifying
assumption:

ASSUMPTION 1: The warrant-issuing firm is an all equity firm with no outstanding debt. 8

Assumption 1 implies that stocks and warrants are the only sources of financing that the
company is using. Hence, the company has a current total equity value V of:

         )(SnWNSV +=                                                     (2.1.1)

where
N: The number of outstanding shares.
S: The price per share at time t.
n: The number of outstanding warrants

)(SW : The price of a warrant on a share at time t. (Occasionally we will just write W to

                                                          
8 We make this assumption for simplicity. Note however that this approach can be extended to the more realistic
 case where the firm also has debt in its capital structure.
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            denote the value of the warrant).

Similarly the value of the firm per share (total equity per share) NVv /=  is:

)(SWSv λ+=                                                        (2.1.2)

where Nn /=λ  is the dilution factor.
Suppose now that each warrant entitles the holder to purchase one share of the firm at time

T for a strike price of K per share.9 If the warrants are exercised the company receives a cash

inflow of nK and the total equity value increases to nKVT + . This value is then distributed

among N + n shares so that the price per share immediately after exercise becomes

)/()( nNnKVS TT ++=                                                 (2.1.3)

Hence, if the warrant is exercised, the payoff to the warrant holder is
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                (2.1.4)

Of course the warrant will be exercised only if KvT > . Hence the payoff to the warrant

holder at maturity is

+−
+

)(
1

1
KvTλ

                                                     (2.1.5)

We have therefore shown that the value of the warrant )(SW  is equal to the value of )1/(1 λ+

call options on a share on the total equity value of the firm v:

),,,,(
1

1
)(

1

1
)( rKvCvCSW vστ

λλ +
≡

+
=                                   (2.1.6)

where (...)C  denotes a call option valuation function, vστ   , , K, and r represent the (non-

stochastic) time to maturity, equity volatility10, strike price, and risk-free rate respectively.

LEMMA 1: As noted in Galai and Schneller (1978) the value of a warrant is also equal to the

value of a call option on the stock of the warrant-issuing firm. The exercise value of such a

call at maturity is

++ −
+

=− )(
1

1
)( KvKS Tλ

                                            (2.1.7)

                                                          
9 We make this assumption for simplicity. It is straightforward to amend it and assume that each warrant entitles
the holder to purchase p numbers of shares.
10 For clarity we should note here that when we refer to equity volatility or stock volatility we don’t really mean
the absolute volatility of the equity or the stock but rather the volatility of the rate of return on the equity or stock
respectively.
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which is the same as the maturity value of the warrant.

However in this case the valuation procedure requires knowledge of the distribution of
the stock price S of the warrant-issuing firm. Moreover since the process for the stock price is
not, in general, lognormally distributed the Black-Scholes valuation formula will no longer be
valid. Assuming no arbitrage, the value of the warrant W is given in this case by

∫
∞ +−+− −=ℑ−=
K

TtTRNT
r

tT
Qr dSSSfKSeKSEeSW )\()()\)(()( ττ             (2.1.8)

or  

),,,,()()( rKSDSDSW Sστ≡=                                         (2.1.9)

where

(...)D  denotes a call option valuation function, not necessarily the Black-Scholes.

Sσ  denotes the stock return  volatility.

Q is the risk-neutral (martingale) measure for the discounted stock price (if it exists; we show
later that it does).

tℑ is the filtration of the stock price at time t.

)\( tTRN SSf  is the risk-neutral conditional distribution of the stock price TS  given the

security price at time t.

Note that we have not yet made any distributional (or process) assumptions for v or for S.
We have shown however that the value of a warrant W can be written either as an option on a
share on the value of the firm v:

)(
1

1
)( vCSW

λ+
=

or as an option on its stock price S:
)()( SDSW =

It is worth noting that (...)C  and (...)D  represent two different option pricing functions: (...)C

is derived based on the process followed by v, while (...)D  depends on the process followed

by S. Of course as already mentioned and as it will be shown below once one of the processes
is specified, the other will be derived as a by-product and thus be completely fixed as well.

2.2. Some Suggested Approximations for the Valuation of Warrants

To value warrants via the formula ),,,,())1/(1()( rKvCSW vστλ+=  one needs to estimate

the value v and volatility Vσ  of the firm. For the case of traded warrants this is a

straightforward task. For the case of executive stock options however this can be tricky, since
v is unobservable, and requires numerical inference. (We discuss this issue in Section 2.6
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below). Similarly valuing warrants via the formula )()( SDSW =  requires knowledge of the

process or the distribution of the stock price. The latter has not so far been available.
As a result, academics and practitioners have proposed approximation techniques, not all

necessarily correct. For example, as noted by Galai (1989) and Crouhy and Galai (1991) a
common mistake that is often made in practice is that warrant prices are calculated as

),,,,(
1

1
)( rKSCSW Sστ

λ+
=                                           (2.2.1)

This procedure, which is based upon a misinterpretation of the Galai and Schneller (1978)
result, is incorrect and will lead to (downward) biased warrant values. Galai and Schneller
(1978) suggested that a warrant can be priced by reference to the value of a call option on the
stock of an "identical" firm without warrants, adjusted by a dilution factor. Since however
"identical" firms hardly ever exist, the correct interpretation is that (in the absence of
"identical" firms) the state variable should not be the stock price but the total equity value of
the warrant-issuing firm.

An alternative approximation that seems to work quite well is what has come to be known
as "option-like" warrant valuation: A number of empirical studies (see for example
Bensoussan, Crouhy and Galai (1992), Schulz and Trautmann (1994), Sidenius (1996)) have
suggested that there is no need to follow the textbook treatment to value warrants. Instead,
based on their empirical results (and simulations) they suggest that warrants could just as well
be valued as

),,,,()( rKSCSW Sστ=                                                (2.2.2)

For example Schulz and Trautmann (1989) conclude: "To obtain warrant values with
acceptable accuracy, adjustments to the Black/Scholes formula are not needed except perhaps
for deep-out-of-the-money warrants." (In their study C(…) is assumed to be the Black-
Scholes option pricing formula). Along the same lines is the conclusion of Sidenius (1996):
"… the warrant prices obtained using the stock price method are identical to the results arising
from the textbook method."

Although "option-like" warrant valuation is only an approximation and has no theoretical
foundation it appears to work quite well. According to Veld (1994):

"This result can be explained by looking at the modifications of the precise warrant
valuation model in relation to the original Black-Scholes formula:
1) The stock price S is replaced by the equity value per share of common stock v.

2) The standard deviation of the returns on common stock (Sσ ) is replaced by the standard

deviation on the firm's equity (Vσ )

3) The entire formula is multiplied by the dilution factor.
The fact that only marginal differences exist can be attributed to the fact that the effects from

replacing S by v (modification 1) and Sσ  by Vσ  (modification 2) are outweighed by the

multiplication by the dilution factor (modification 3)."



9

But is there a theoretical justification to support this approximation? The theoretical
prerequisite for "option-like" warrant valuation to work well is not hard to infer. Simply the

underlying (risk-neutral) distributions behind the option pricing functions ),,,,( rKSC Sστ  and

),,,,( rKSD Sστ  (i.e. behind the processes of the stock price of a non-warrant-issuing and a

warrant-issuing firm respectively) should behave in such a way so that taking expectations of
the discounted payoff of the warrant (over the two risk-neutral distributions) should produce
near identical values. Indeed, later in the paper (Section 5) we will illustrate that despite of the
fact that the risk-neutral distributions of a warrant-issuing firm and a non-warrant issuing firm
are different, valuation by taking expectations of the discounted payoff over the two different
distributions produces warrant prices very close to each other for a large number of cases.
Note however that we will also provide counter-examples as a word of caution, where
“option-like” approximation might not always work well and result in “poor” warrant prices
and large mispricing errors.

2.3 Insights arising from the Textbook Treatment Valuation of Warrants

THEOREM 1: Assuming no arbitrage, the following relationship between the two option

pricing functions C(…) and D(…) must hold:








+
−+= )(

1
)1()( vCvDvC

λ
λλ                                           (2.3.1)

or rearranging (2.3.1) and writing it in terms of S:

( ))(
1

1
)( SDSCSD λ

λ
+

+
=                                               (2.3.2)

This relationship is independent of distributional assumptions.

PROOF: Equating equations (2.1.6) and (2.1.9) we get:

)(
1

1
)( vCSD

λ+
=                                                    (2.3.3)

or

)()1()( SDvC λ+=                                                   (2.3.4)

Now equations (2.1.2) and (2.1.6) imply:

)(
1

vCSv
λ

λ
+

+=                                                    (2.3.5)

Similarly equations (2.1.2) and (2.1.9) imply:

)(SDSv λ+=                                                       (2.3.6)

Then (solving (2.3.5) and (2.3.6) in terms of S)



10

)(
1

)( vCvSDvS
λ

λλ
+

−=−=                                          (2.3.7)

Substituting (2.3.7) in (2.3.4) we get (2.3.1). Similarly substituting (2.3.6.) in (2.3.3) we get
(2.3.2).

EXAMPLE 1: Consider an option pricing formula linear in (a share on) the equity value of

the firm v; i.e. bvavC +=)( . Then from equation (2.3.2)
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)( SDSbaSD λ
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+
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Solving for )(SD  we get:
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Hence )(SD  is also linear in S. Similarly if we start from an option pricing formula linear in

S; i.e. bSaSD +=)( , using equation (2.3.1) we get
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Solving for )(vC  we get
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Hence )(vC  is also linear in v.

This example might seem out of place at this point, but it isn’t. For example as is well
known the Black-Scholes formula for an at-the-money option is a linear function of the
underlying (for more details see Remark 1 below). Moreover the value of an option on a stock
that follows a binomial process is a linear function of the stock price (i.e. the binomial model).

For the general case, (i.e. a non-linear (differentiable) option pricing formula), given )(vC

or )(SD , one can use Taylor series expansions to find an option pricing function for )(SD  or

)(vC  respectively, as a power series (see for example Butler and Schachter (1986) and Knight

and Satchell (1997)11). Assume for example that we know )(vC . Then provided that the

regularity conditions are satisfied we can write )(vC  as a convergent Taylor series; i.e.

∑ ′−= i
i vvvC )()( β , where v′  is the point of expansion (assume for simplicity it is zero).

Now the unknown )(SD  can also be written as a polynomial function, i.e.

∑ ′−= j
j SSdSD )()( , where S ′  is the point of expansion (assume for simplicity it is zero)

                                                          
11 In both these cases, expansions are written in terms of the standard deviation.
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and the jd ’s are the unknown coefficients of )(SD  that we need to calculate. Then from

equation (2.3.2) we have:

( )∑ +
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k
Sd )(

1

1 λβ
λ

Equating coefficients we obtain )(SD  as a (convergent) Taylor series in S.

2.4 Specifying a Process for the State Variable

It is now time to become more specific. To value the option whose payoff is given in

equation (2.1.5) (i.e. whose payoff is: +−+ ))](1/(1[ KvTλ ) one must assume a process for v.

The literature on warrant pricing has mainly concentrated on three processes for the value of
the firm. Appart from Black and Scholes's Geometric Brownian Motion which assumes
constant volatility, Cox and Ross's (1976) Constant Elasticity of Variance (CEV) model (see
Noreen and Wolfson (1981), Lauterbach and Schultz (1990), Schulz and Trautmann (1989))
and Merton's (1976) Jump diffusion model (see Kremer and Roenfeldt (1993)) have also been
used to model the value process. In this paper we will not go into a detailed review of the
literature on warrant pricing. An exhaustive study that reviews the empirical research under
alternative processes has already been conducted by Veld (1994). Here it suffices to quote one
of the conclusions of Veld: "There is no conclusive evidence to replace (dividend corrected)
models in which a constant volatility is assumed (i.e. Black/Scholes (1973) like models) by
more complicated models such as the Jump Diffusion or the CEV model."12

                                                          
12 In the Constant Elasticity of Variance model (CEV), the assumption of a constant volatility is replaced by the
assumption of a constant elasticity of variance. In this model it is generally assumed that the elasticity factor is
defined in a way that the volatility decreases as the stock price increases. Special cases of the CEV model are the
Square Root model, which assumes that the volatility is inversely related to the square root of the stock price and
the Absolute model, which assumes that the volatility is inversely proportional to the stock price.
The Jump Diffusion model, developed by Merton (1976), also drops the assumption of constant volatility. The
model assumes a two part stochastic process generating stock returns: (a) small continuous price movements
generated by the same process as assumed by Black and Scholes and (b) large infrequent jumps generated by a
Poisson process.
Of course when these models are used for warrant valuation the state variable is the equity value of the firm and
not the stock price.
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ASSUMPTION 2: The (unobservable) share on the total equity value v of the firm follows a

Geometric Brownian Motion:

vdZvdtdv VV σµ +=                                                  (2.4.1)

where

Vµ : The expected rate of return on the value of the firm’s assets.

Vσ : The standard deviation of the rate of return on the value of the firm’s assets.

Z: A standard Brownian motion.

Assumption (2) and equations (2.1.5) - (2.1.6) then imply that:

),,,,(
1

1
),()( rKvCvWSW V

BS
V στ

λ
σ

+
=≡                                (2.4.2)

where (...)BSC  denotes the Black-Scholes option price and v a share on the total equity value

of the firm. Specifically:

)()(),,,,( 21 dKedvrKvC r
V

BS Φ−Φ= − τστ                                (2.4.3)

where

τσ

τσ
τ

V

V
rKe

v

d











+

=
− 2

)ln(
2

1    and   τσ Vdd −= 12                            (2.4.4)

Also

tT −=τ : The time to maturity of the outstanding warrants
K: The exercise price of the warrants
r:    The risk-free rate of interest.

(...)Φ : The standard normal cumulative distribution function.

REMARK 1: If the warrant is currently at-the-money (i.e. τrveK = ), as is often the case with

executive stock options (see Noreen and Wolfson (1981), then some considerable

simplifications occur in the valuation formula: Equation (2.4.4) reduces to

21

τσ Vd =

and the Black-Scholes valuation formula (2.4.3) simplifies to:

)1)
2

(2(),,,,( −Φ=
τσστ V

V
BS
ATM vrKvC .
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NOTE 1: Remark (1) can be interpreted as a special case where the exercise price is

“stochastic” so that the relationship τrveK =  holds currently. In other words the result is

only locally (instantaneously) applicable or alternatively applicable at discrete random times.

2.5 The Process Governing the Stock Price of the Warrant-Issuing Firm

In the previous section we assumed that Geometric Brownian Motion is the process
governing the equity value of the firm v. What is then the process governing the stock price S?
Solving equation (2.1.2) for S we get:

)(SWvS λ−=                                                        (2.5.1)

Also from equation (2.4.2) we have

),,,,(
1

1
)( rKvCSW V

BS στ
λ+

=

Then the following representation for the stock price S must hold:

),,,,(
1

rKvCvS V
BS στ

λ
λ
+

−=                                            (2.5.2)

Now since

0)(
1

1
1

1 1 >Φ
+

−=
∂

∂
+

−=
∂
∂

d
v

C

v

S BS

λ
λ

λ
λ

,

there is a unique one-to-one relationship between S and v and therefore equation (2.5.2) can be
inverted for v via a straightforward numerical method (e.g. Newton-Raphson). We write

)(Sv Ψ=                                                             (2.5.3)

where )   (Ψ  is the inverse function of the relationship given in (2.5.2). In general )   (Ψ  is not

known explicitly. However, when the warrant is at-the-money the above equation can be
written in analytic form:

)2/(221

)1(
)(

τσλλ
λ

V

S
Sv

Φ−+
+=Ψ=

LEMMA 2: Given that the equity value of the firm v follows a Geometric Brownian Motion,

then the process for the stock price S is given by

dZSddtdrKeSddS V
r

V 




 ΨΦ

+
−+





 Φ

+
+ΨΦ

+
−= − )())(

1
1()(

1
)())(

1
1( 121 σ

λ
λ

λ
λµ

λ
λ τ      (2.5.4)
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where        
τσ

τσ
τ

V

V
rKe

S

d











+Ψ

=
− 2

)
)(

ln(
2

1    and   τσ Vdd −= 12

(...)Φ′=φ  denotes the standard normal probability density function.

PROOF: See Section 1 in the Appendix.

COROLLARY 1: Suppose we have an at-the-money warrant (i.e. τrKev −= ).13  Then given

that the equity value of the firm follows a Geometric Brownian Motion, the process for the

stock price is also governed by a Geometric Brownian Motion:

SdZSdtdS VV σµ +=

PROOF: See Section 1 in the Appendix.

The process given in Lemma (2), represents the process for the stock price. It is a process
with stochastic drift and variance parameters. Note however that although the parameters of
the process are stochastic they should only exhibit the stochastic behaviour allowed by the
functional dependence on the stock price S (and time). In other words the underlying process

for the stock price is of the form: dZtSdttSdS ),(),( σµ += . This equation describes the most

general set up that goes beyond the case of a purely deterministic (time-dependent) volatility
and drift, but still allows risk-neutral valuation without introducing other hedging instruments
apart from the underlying itself. Thus the process given in Lemma (2) belongs to the popular
class of stochastic volatility models called "restricted stochastic volatility models" (see for
example Rebonato (1999)) or "level-dependent volatility models". These models have of
course the advantage that they preserve market completeness. Hence a risk-neutral measure
for the discounted stock price exists and as stated in Lemma (1) the value of the warrant will
be given by:

∫
∞ +−+− −=ℑ−=
K

TtTRNT
r

tT
Qr dSSSfKSeKSEeSW )\()()\)(()( ττ                 (2.5.5)

From this it is obvious that knowledge of the risk-neutral density )\( tTRN SSf  is sufficient to

value the warrant. To obtain the risk-neutral density one needs first to apply the Cameron-
Martin-Girsanov change of measure to make the discounted stock price a martingale (see
Duffie (1996), Baxter and Rennie (1997), Bjork (1998)).

One can in theory obtain the transition probabilities for the stock price by solving the
stochastic differential equation (SDE) of Lemma (2) (the risk-neutral transition probabilities
can similarly be obtained by solving the stochastic differential equation arising under the risk-
neutral measure that makes S a martingale). This is however too hard a task. Alternatively one

                                                          
13 This corollary is of theoretical interest only and should be interpreted in conjunction with Note 1 in the
previous page.
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can make do without solving the SDE. Instead shifting from it to a second order partial
differential equation (PDE) is also possible. Indeed under some regularity conditions for the
stock price’s drift and diffusion coefficients, the transition probabilities can be obtained as
fundamental solutions of Kolmogorov’s backward equation or indeed Kolmogorov’s forward
(Fokker-Planck) equation.14 Still however, the backward and forward equations have been
explicitly solved only in a few simple cases (e.g. Black-Scholes, Ornstein-Uhlenbeck, or Cox
and Ross’s Constant Elasticity of Variance processes). These have usually been found by
taking the Fourier and Laplace transformation of the transition probabilities. In general, one
must rely on numerical methods such as solving numerically the PDE (i.e. the Kolmogorov’s
equations), or performing Monte Carlo integration of the SDE (i.e. equation (2.5.4)).

Finally a number of approximations have also been suggested. For example Jarrow and
Rudd (1982) have proposed replacing the unknown density of the SDE by an approximate
density, typically adding free skewness and kurtosis to the lognormal density, so as to allow
for departures from the Black-Scholes formula. However, the disadvantage of this approach is
that the approximate density ignores the underlying process of the state variable. More
recently Ait-Sahalia (1999) proposed a method for obtaining a closed form approximation for
the transition density. In particular he proposes transforming (standardising) the SDE of say

equation (2.5.4) to an SDE with unit diffusion (say dZdttPdP p += ),(µ ). The point of making

the transformation from S to P is that it is possible to construct an expansion for the transition
density of P. Ait-Sahalia then suggests approximating the transition density of P by using a
Hermite polynomial expansion around a Normal density function. Once this is done one
obtains an approximation to the transition density of S as a non-linear transformation of that
of P.

What we intend to do in Section 3 to derive the distribution of the stock price of a
warrant-issuing firm can be viewed as similar in spirit to Ait-Sahalia (1999). However in our
case we take advantage of the relationship between the stock price of a firm and its equity
value per share so that our "standardised" SDE is the equity value process. By assumption this
is Geometric Brownian Motion (thus there is no need to transform to unit diffusion) and
therefore the transition densities of our standardised SDE are available in the well known
lognormal form. Note however that although our analysis assumes lognormality for the value
process, it is obvious that other cases can also be discussed.

2.6 Inferring the Value, Volatility, and Drift of the Firm

In Section (2.4), equation (2.4.2) we have shown that the value of a warrant can be
calculated as:

),,,,(
1

1
)( rKvCSW V

BS στ
λ+

≡

                                                          
14 For further details and for the regularity conditions see for example Arnold (1974).
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Let us briefly illustrate how v and Vσ  can be inferred so that they can be used in the valuation

formula. We start with equation (2.1.2) (i.e. )(SWSv λ+= ). Clearly, if the warrants are traded

(i.e. )(SW  is observed) and one believes that the traded price conveys information one can

infer v (and Vσ ) directly from the above equation. However if the warrants are not traded (e.g.

the case of executive share options) or one wants to use the "theoretical" value of the firm to
find the "theoretical value" of the warrant the following procedure is employed:

From equation (2.5.2) above we have that the following representation for the stock price
S must hold:

),,,,(
1

rKvCvS V
BS στ

λ
λ
+

−=                                          (2.6.1)

The paper by Schulz and Trautmann (1994) presents a methodology for arriving at both the

unobserved equity value v and volatility Vσ  of a warrant-issuing firm. The authors use

equation (2.6.1) together with the fact that the elasticity of a stock gives the percentage change
in the stock’s value for a percentage change in the firm’s equity value; i.e.

VSVS ,εσσ ⋅=                                                        (2.6.2)

where Sσ  is the observable/estimable stock volatility and VS ,ε  represents the stock elasticity

with respect to the value of the firm. (Relationship (2.6.2) is a standard result in option pricing

theory where the stock’s elasticity, VS ,ε , gives the percentage change in the stock’s value for a

percentage change in the firm’s value; see Jarrow and Rudd (1983), p.110). They then
approximate the elasticity by

S

v

v

W

S

v

v

S
VS )1(, ∂

∂−=
∂
∂≡ λε .

Where )(
1

1
1d

v

W Φ
+

=
∂

∂
λ

. Hence they obtain a system of two equations

),,,,(
1

rKvCvS V
BS στ

λ
λ
+

−=

  VS S

v
d σ

λ
λσ ))(

1
1( 1Φ

+
−=                                                (2.6.3)

which can then be solved simultaneously for the two unknown arguments v and Vσ . We are

able to independently verify/derive equation (2.6.3) from our results of the previous section.
Remember that we have shown that the process for the stock price is of the form:

dZtSdttSdS ),(),( σµ += . Then the process for the return of the stock price will be given by:

dZ
S

tS
dt

S

tS

S

dS ),(),( σµ +=
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where 
S

tS
S

),(σσ =  is the stock return volatility. In particular from equation (2.5.4) we have

that:

dZSddtdrKeSddS
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V

tS

r
V
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11 Φ
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But this is identical to equation (2.6.3) above.
It is worth repeating here that such a specification for the stock price process and

subsequently volatility implies that the stock return volatility of a warrant-issuing firm will be
stochastic and will depend (among other things) on the level of the stock price S and on time.
Or put a bit differently the stock return volatility will depend on the “moneyness” of the
warrants and on their time to maturity. In fact our derived process for the stock price
implies/produces a volatility “smile or smirk” similar to the one observed in options markets.
Thus, just incorporating warrants/executive options on the stock price process of the firms that
happen to issue them, could help reduce some of the observed biases between theoretical and
observed options prices. For a detailed discussion on the non-stationarity and general
behaviour of stock volatility we refer the reader to Schulz and Trautmann (1994).

Finally it is worth noting that after having obtained values for v and Vσ  it is

straightforward to also obtain the growth rate (drift) of the firm Vµ . We know that

S

drKeSd

S

tS
r
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S
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Hence solving for the drift of the firm we get:

vd

drKeS r
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.

2.7 The Non-Tradability of the Value of the Firm

For the general case where the warrants of the firm are not traded (i.e. the popular case of
executive share options) the value of the firm v is clearly a non-tradable quantity. Does this
mean that parts of our analysis that have been based on no-arbitrage arguments are invalid?
Clearly not. We illustrate below why this is the case (see also the seminal papers of Harrison
and Kreps (1979) and Harrison  and Pliska (1981)):
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We have that the non-tradable v is modelled with the stochastic differential:

vdZvdtdv VV σµ += . Although v is non-tradable, a deterministic function of v, )(vfS =  is

tradable15. In particular

),,,,(
1

rKvCvS V
BS στ

λ
λ
+

−=

          ( ))()(
1 21 dKedvv r Φ−Φ

+
−= − τ

λ
λ

In Lemma (2) above we have shown using Ito’s formula that S has differential increment:
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As S is tradable we can write down its market price of risk θ . Assuming that the discount rate
is constant at r we have that
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This is the market price of risk θ  for the stock price of a warrant-issuing firm. Note that θ  is
a constant and therefore the Cameron-Martin-Girsanov boundedness condition

∞<∫
T

tP dtE
0

2 )]
2

1
[exp( θ  is automatically satisfied. This is sufficient for the existence of the risk-

neutral measure that makes the discounted equity value a martingale (the risk-neutral measure
is the measure under which the discounted stock price is a martingale (i.e. a tradable)). In
other words what we are saying is that using the martingale representation theorem we can
construct v out of S and a riskless cash bond. Indeed the market price of risk is simply another
way of writing the change from nature’s measure P to the risk neutral measure Q. The
behaviour of S under the risk neutral measure Q is

                                                          
15 We also acknowledge the dependence of S on time. For clearness of the argument however we ignore that
dependence for the time being.
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which of course makes the behaviour of the discounted stock price a martingale as required.

Since θ  is the change of measure from P to Q we can also write the behaviour of v under
the risk-neutral measure:

dtdtrvdt
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dZvdv VV
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V
V µµ

σ
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+= )()(

⇒                 Zvdrvdtdv V
~σ+=

Thus if we have claims on v, they can be priced via the normal expectation route, using this
risk neutral SDE for v.

3. THE DISTRIBUTION OF THE STOCK PRICE FOR A WARRANT-ISSUING
FIRM

In this section we derive the "theoretical" distribution for the stock price of a warrant-
issuing firm when the underlying distribution for the total equity value of the firm is assumed
to be lognormal. We do this by exploiting the monotonicity of the stock price with respect to
the equity value of the firm and applying a non-linear transformation:

From Assumption 2 we have that: vdZvdtdv VV σµ += . From this it follows that a share

on the value of the firm v is lognormally distributed. Its probability density function is then
given by:
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where 0v  represents the value of the firm per share at time 0.16

Remember now from equation (2.5.2) that the following representation for the stock price

must hold: ),,,,())1/(( rKvCvS V
BS στλλ +−= . Since there exists a one-to-one relationship

between S and v (see the arguments presented for the derivation of equation (2.5.3)) we can

solve the above equation for v, thus obtaining v as a function of S; i.e. )(Sv Ψ= .

If we now start from the distribution of the equity value, i.e. ),,\( 0 VVvvf σµ , and

consider the transformation )(Sv Ψ=  we obtain
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This is the "theoretical" distribution for the stock price of a warrant-issuing firm. It
reflects the potential for dilution from the outstanding warrants and although the parameters

vv σµ ,  are usually not directly observable, they can be inferred using numerical routines. To

infer the drift and volatility of the firm we will use the procedure of Section (2.6).

PROPOSITION 1: The risk-neutral distribution for the stock price exists, and can be shown

to be equal to:
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In particular for the case when τ=t , the risk-neutral distribution has the following simple

form:
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This distribution can be used to value warrants via equation

∫
∞ +−+− −=ℑ−=
K

TtTRNT
r

tT
Qr dSSSfKSeKSEeSW )\()()\)(()( ττ

                                                          
16 Note here that we will use f(…) to denote probability density functions generally and not one specific
probability density. The argument of f(…) as well as the context in which it is used will identify the particular
probability density being considered.
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PROOF: See Section 2 in the Appendix.

THEOREM 2: As the time to maturity of the warrants tends to infinity, the stock price of the

warrant-issuing firm converges in distribution to the lognormal distribution:
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),( 2σµΛ  denotes the lognormal distribution with parameters µ  and 2σ .

PROOF. By assumption we have that: ),)
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 (follows directly from )1( λ+= Sv ). Note of course

that the result also follows from our derived distribution of equation (3.2). Just evaluate

),,\(lim 0 VVSSf σµτ ∞→  to confirm the result.

The importance of theorem (2) is that, ceteris paribus, firms that offer long-horizon executive
share options are less likely to suffer initially from “non-normal” distributions than those with
short horizon options.

Now according to corollary (1), (and example (1)), we must have that the distribution for
the stock price of an at-the-money warrant-issuing firm must also be lognormal. Let us
confirm that this is indeed the case:

If the warrant is at the money (i.e. τrveK = ) we have:
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3.1 The distribution of the warrant value W

Let us now obtain an expression for the distribution of the warrant value W. We start from
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Again, if the warrant is at-the-money, it is not hard to show that the distribution of the
warrant value W will also be lognormal with
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Note that so far we have conditioned on Vσ  and Vµ . However these parameters are

typically unobservable and there are arguments that the numerical routines presented in
section (2.6) are not adequate to correctly infer the “true” values of these parameters. In the
following section we present a methodology where we can relax the assumption that the
diffusion parameters for the equity value process should be observable/estimable.

4. A BAYESIAN FRAMEWORK

We now develop a Bayesian framework where we relax the assumption that Vσ  and Vµ
are observable. Employing a Bayesian approach allows us to account for the unobservability
of the drift and diffusion parameters since these parameters are treated as random variables
which can eventually be integrated out or eliminated via a non-linear transformation. Let us
first identify prior distributions for the drift and the volatility parameters of the unobservable
value process of the firm. In identifying these distributions we follow standard Bayesian
methodology as presented in Raiffa and Schlaifer (1961), Zellner (1971) and more recently in
Bauwens, Lubrano, and Richard (1999) and Darsinos and Satchell (2001):

ASSUMPTION 3. When the variance 2
Vσ  of an independent normal process is assumed

known but the mean Vµ  is a random variable, the most convenient distribution for Vµ  (the

natural conjugate of the likelihood of the sample) is the normal distribution. The conditional

distribution of the expected rate of return Vµ  is therefore given by:
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where m is a hyperparameter.
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ASSUMPTION 4. We can assign an Inverted-Gamma-1 distribution with hyperparameters

θλ,  as the prior distribution for 2
Vσ . Its prior probability density function is then given by:
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Although θη,,m  are hyperparameters which are also unobservable, it is much easier to obtain

estimates for these from analysts forecasts (from long-run values of company data, growth
targets set by each company, etc) than obtaining directly estimates for the drift and diffusion
parameters of the value process. Note here that when the distributions are conditional on any

prior parameters (i.e. θη,  and m) and/or on 0v  we will not explicitly condition on them and

we shall refer to them as unconditional.  (e.g. we will write )(),\( VV ff σθησ ≡ ).

4.1. Derivation of the Unconditional Distribution for the Stock Price of a Warrant-
Issuing Firm

Let us first obtain the joint density of drift and volatility. Directly from Assumptions (3)
and (4) we get:
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Now multiplying the above equation with equation (3.1) we get:
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where )   (
1−BSCσ  denotes the inverse function of the Black-Scholes option price with respect to

equity volatility. (This is the so-called implied volatility of the option price). In general

)   (
1−BSCσ  is not known explicitly. However, when the warrant is at-the-money the above

equation can be written as
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4.2 Derivation of the Distribution for the Value of a Warrant W

To derive the distribution of the value of the warrant W there are a number of

alternatives. In section (4.1) above we derive both ),( WSf  and ),( Wvf . It is therefore

obvious that ∫= dWWSfWf ),()(  or ∫= dWWvfWf ),()( . However for speed and simplicity

in the numerical calculations that need to be performed we recommend the following:
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4.3 Derivation of the conditional distribution of the stock price

To derive the conditional (on the warrant value) distribution of the stock price we need
one final calculation:
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where the numerator is derived in section (4.1) and the denominator in section (4.2). Of
course the cost of removing the dependence on the latent parameters by employing the
Bayesian approach is that most calculations must be performed numerically based on the
quasi-analytic expressions provided above.
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5. EMPIRICAL BEHAVIOUR OF THE STOCK PRICE DISTRIBUTION

5.1 Comparing the Stock Price Distribution of a Warrant-Issuing and a Non-Warrant-
Issuing Firm: An Illustration for Risk Management

In Section 3, equation (3.2), we have derived the theoretical distribution of a warrant-
issuing firm. We reproduce it here for reference:
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We also have by assumption, that the stock price of a non-warrant-issuing firm is lognormally
distributed:
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In Table 1 below we compare the two distributions by means of reporting summary
statistics (i.e. mean, standard deviation, skewness, and kurtosis) for the daily, weekly, and
monthly stock price distributions of a non-warrant-issuing firm (i.e. a lognormal distribution)

and of warrant-issuing firms with different dilution factors =λ 5%, 50%, and 100% and
different degrees of “moneyness” for their warrants. The calculations are based on parameters

values: current stock price: 1000 =S , stock return volatility: %25=Sσ , time to maturity of

warrants: 2=τ , years risk-free rate: %5=r , drift rate: %5=Sµ , dividend yield: 0=d . The

equity volatility Vσ  and equity drift Vµ  of the warrant-issuing firms are calculated using the

procedure outlined in Section (2.6).
We are particularly interested to observe how the skewness and kurtosis values of the

stock price distributions of the warrant-issuing firms deviate from the respective benchmark
values of skewness and kurtosis of the lognormal distribution. We define the so-called
“percentage deviation” from the benchmark skewness and kurtosis values of the lognormal
distribution as:

                                   Warrant-issuing firm’s Skewnes orKurtosiss value - Lognormal Skewness or Kurtosis value

Percentage Deviation =   ---------------------------------------------------------------------------------------------------------

                          Lognormal Skewness or Kurtosis value

Our results are exhibited in Table 1.
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TABLE 1
Summary statistics for the daily, weekly, and monthly stock price distributions of:

_______________________________________________________________________________________________________________________________________________________

1. A firm with no warrants (i.e. the underlying stock price distribution is lognormal)
2. A warrant/executive option issuing firm with dilution factor %5=λ  and different degrees of moneyness.
3. A warrant/executive option issuing firm with dilution factor %50=λ  and different degrees of moneyness.
4. A warrant/executive option issuing firm with dilution factor %100=λ  and different degrees of moneyness.
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________

The numbers in parentheses denote the percentage deviation of the skewness and kurtosis values of the warrant-
issuing-firm’s stock price distribution from the respective benchmark values of the lognormal distribution.
_____________________________________________________________________________________________________________________________________________________________________________________

Stock Price Distribution: Mean Std. Dev. Skewness   (% Dev.) E. Kurtosis  (% Dev.)
Daily
Lognormal 0=λ 100.02 1.575 0.0473 0.0040
In-the-money warrants

%5=λ , 80=K 100.02 1.576 0.0472        (-0.2%) 0.0041           (2.5%)
%50=λ , 80=K 100.02 1.576 0.0474         (0.2%) 0.0048         (20.0%)
%100=λ , 80=K 100.01 1.576 0.0493         (4.2%) 0.0057         (42.5%)

Near-the-money warrants
%5=λ , 100=K 100.02 1.575 0.0461        (-2.5%) 0.0038          (-5.0%)

%50=λ , 100=K 100.02 1.575 0.0384      (-18.8%) 0.0032        (-20.0%)
%100=λ , 100=K 100.00 1.578 0.0338      (-28.5%) 0.0031        (-22.5%)

Out-of-the-money warrants
%5=λ , 120=K 100.02 1.575 0.0455        (-3.8%) 0.0037          (-7.5%)

%50=λ , 120=K 100.02 1.575 0.0334      (-29.4%) 0.0019        (-52.5%)
%100=λ , 120=K 100.01 1.575 0.0244      (-48.4%) 0.0011        (-72.5%)

Weekly
Lognormal 0=λ 100.10 3.526 0.1057 0.0199
In-the-money warrants

%5=λ , 80=K 100.10 3.528 0.1055        (-0.2%) 0.0203           (2.0%)
%50=λ , 80=K 100.10 3.527 0.1060         (0.3%) 0.0240         (20.6%)
%100=λ , 80=K 100.09 3.527 0.1104         (4.5%) 0.0286         (43.7%)

Near-the-money warrants
%5=λ , 100=K 100.10 3.525 0.1030        (-2.6%) 0.0192          (-3.5%)

%50=λ , 100=K 100.10 3.525 0.0860      (-18.6%) 0.0161        (-19.1%)
%100=λ , 100=K 100.08 3.531 0.0756      (-28.5%) 0.0155        (-22.1%)

Out-of-the-money warrants
%5=λ , 120=K 100.10 3.530 0.1019        (-3.6%) 0.0184          (-7.5%)

%50=λ , 120=K 100.09 3.525 0.0750      (-29.0%) 0.0098        (-50.8%)
%100=λ , 120=K 100.09 3.525 0.0547      (-48.3%) 0.0050        (-74.9%)

Monthly
Lognormal 0=λ 100.40 7.080 0.2119 0.0799
In-the-money warrants

%5=λ , 80=K 100.40 7.084 0.2115        (-0.2%) 0.0820           (2.6%)
%50=λ , 80=K 100.40 7.081 0.2134         (0.7%) 0.0973         (21.8%)
%100=λ , 80=K 100.39 7.083 0.2225         (5.0%) 0.1164         (45.2%)

Near-the-money warrants
%5=λ , 100=K 100.40 7.078 0.2065        (-2.6%) 0.0773          (-3.3%)

%50=λ , 100=K 100.40 7.076 0.1725      (-18.6%) 0.0651        (-18.5%)
%100=λ , 100=K 100.38 7.086 0.1520      (-28.3%) 0.0632        (-20.9%)

Out-of-the-money warrants
%5=λ , 120=K 100.40 7.080 0.2040        (-3.7%) 0.0740          (-7.4%)

%50=λ , 120=K 100.40 7.075 0.1511      (-28.7%) 0.0394        (-50.7%)
%100=λ , 120=K 100.39 7.073 0.1095      (-48.3%) 0.0210        (-73.7%)

_____________________________________________________________________________________________________________________________________________________________________________________
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It is clear from table 1 that the existence of warrants in the capital structure of a firm does
affect its stock price distribution, particularly so for firms with moderate to high dilution
factors. In particular, regarding the mean and standard deviation of the stock price, there is no
significant difference between warrant-issuing firms (of any dilution and moneyness) and
non-warrant-issuing firms. However when it comes to the skewness and kurtosis values, we
observe a clear pattern. Firms with in-the-money warrants tend to have similar (or slightly
higher) values of skewness and significantly higher values of excess kurtosis when compared
with the lognormal distribution. Firms with near-the-money warrants tend to have lower
values of skewness and excess kurtosis than their respective non-warrant-issuing counterparts.
Finally firms with out-of-the-money warrants tend to have significantly lower values of
skewness and excess kurtosis when compared with non-warrant-issuing (lognormal) firms.
Needless to say, these effects are magnified for all cases, the higher the dilution factor.

An intuitive interpretation of these results is that firms with out-of-the-money warrants
tend to be riskier than firms with in the money warrants. Indeed our results suggest that the
log-price (and return) of a firm with out-of-the-money warrants will have a longer and thinner
left tail than the normal distribution while a firm with in-the-money warrants a shorter and
fatter tail. (To obtain the log price or log return distribution of a warrant-issuing firm one need

only take the tSlog  or 1/log −tt SS  transform of the distribution of equation (5.1.1)). For

Value-at-Risk calculations this is crucial. For example if a normal approximation is used for
the log-price (and return) distributions of all firms we will tend to calculate a VaR that is too
low for firms with out-of-the money (and near-the-money) warrants and too high for firms
with in the money warrants.

Indeed, practitioners often interpret a firm with in-the-money executive stock options as a
good indication that the firm has been meeting its growth targets and ceteris paribus is
expected to do so in the future. On the other hand, the presence of out-of-the money executive
options can be interpreted as a signal of underperformance or financial distress.

 Typically warrants are issued out-of-the-money and executive stock options are issued
near-the-money. Both instruments are issued with very long maturities (for example executive
stock options last for as long as 10 – 15 years). We do not present distributional results for
firms with very long maturity warrants/executive options since based on Section 3, Theorem
2, we have that the distribution of the stock price of these firms converges to the lognormal as
the time to maturity increases indefinitely. Instead, we model the stock price distribution of
these firms when their warrants are within a few years to maturity.
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5.2 Comparing the Risk-Neutral Stock Price Distribution of a Warrant-Issuing and a
Non-Warrant-Issuing Firm: An Application to Executive Option/Warrant Valuation

In Section 3, Proposition 2, we have derived the risk-neutral distribution of a warrant-
issuing firm. We reproduce it here for reference:
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This distribution can be used to value warrants via equation
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To date, this approach has never been used to value warrants due to the lack of knowledge of

)\( 0SSf RN τ . Valuation of warrants has been of course carried out using the standard value of

the firm approach:
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Needless to say that equations (5.2.2) and (5.2.3) produce identical warrant values. They are
after all equivalent approaches to warrant valuation.

Now “option-like” warrant valuation suggests that instead of using the distribution of
equation (5.2.1) one can obtain a very good approximation for the value of the warrant by
using a Black-Scholes framework and valuing the warrant as if it was identical to a call option
on the stock of the firm. (This basically means using the lognormal risk-neutral distribution in

equation (5.2.2) above or equivalently using ),,,,()( rKSCSW S
BS στ= ). The lognormal risk

neutral distribution (i.e. the risk-neutral distribution of a non-warrant-issuing firm) is given
by:
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In Table 2 below we compare the two risk-neutral distributions by means of reporting
summary statistics (i.e. mean, standard deviation, skewness, and kurtosis) for the stock price
distributions of a non-warrant-issuing firm (i.e. a lognormal distribution) and of warrant-

issuing firms with different dilution factors =λ 5%, 50%, and 100%, different degrees of

“moneyness” for their warrants, and different maturities (2=τ  years and 3=τ  months).
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TABLE 2
Summary statistics for the risk-neutral distributions of the stock price of:

_______________________________________________________________________________________________________________________________________________________

1. A firm with no warrants (i.e. the underlying risk-neutral distribution is lognormal)
2. A warrant-issuing firm with dilution factor %5=λ , different degrees of moneyness and different maturities
3. A warrant-issuing firm with dilution factor %50=λ , different degrees of moneyness and different maturities
4. A warrant-issuing firm with dilution factor %100=λ , different degrees of moneyness and different maturities
_____________________________________________________________________________________________________________________________________________________________________________________

Stock Price Distribution: Mean Std. Deviation Skewness Excess Kurtosis

Lognormal 0=λ  ( 2=τ  years) 110.52 40.33 1.14 2.41

In-the-money warrants:
%5=λ , 80=K 110.67 40.16 1.18 2.58

%50=λ , 80=K 111.59 39.08 1.48 4.12
%100=λ , 80=K 112.09 38.70 1.77 6.01

Near-the-money warrants:
%5=λ , 100=K 111.00 39.76 1.18 2.55

%50=λ , 100=K 113.89 36.30 1.44 3.92
%100=λ , 100=K 115.56 34.32 1.71 5.64

Out-of-the-money warrants:
%5=λ , 120=K 111.53 39.37 1.17 2.52

%50=λ , 120=K 117.56 33.32 1.37 3.50
%100=λ , 120=K 121.00 29.54 1.57 4.66

Deep-out-of-the-money warrants:
%5=λ , 180=K 113.91 38.64 1.15 2.44

%50=λ , 180=K 134.19 28.17 1.19 2.64
%100=λ , 180=K 145.90 21.77 1.23 2.79

----------------------------------------------------------------------------------- ------------------------------- ------------------------------------------ ---------------------------------- ------------------------------------------

Lognormal 0=λ  ( 3=τ  months) 101.26 12.71 0.38 0.255

Close-to-maturity-out-of-the-
money-warrants:

%5=λ , 120=K 102.18 12.16 0.38 0.258
%50=λ , 120=K 107.65   8.79 0.39 0.275
%100=λ , 120=K 110.81   6.75 0.40 0.287

________________________________________________________________________________________
The calculations are based on parameters values: Current stock price: 100=S , Stock return volatility:

%25=Sσ , Time to maturity of warrants: 2=τ  years (for the last case of “Close-to-maturity-out-of-the-money

warrants” a time to maturity of 3=τ  months was used instead),  Risk-free rate: %5=r , Dividend yield: 0=d .

The risk-neutral lognormal distribution is given in equation (5.2.4)

The parameter specific (i.e. specific on dilution, moneyness, time to maturity, etc) risk-neutral distribution for
the stock price of a warrant-issuing firm is given in equation (5.2.1).

It is obvious from Table 2 that the risk-neutral distributions of warrant and non-warrant-
issuing firms are markedly different. Generally the log-stock price distribution of high
dilution warrant-issuing firms exhibits higher mean, lower standard deviation and marked
skewness and excess kurtosis when compared to the log-stock price of a non-warrant-issuing
firm (i.e. a normal distribution). Thus, the next question that naturally arises is how much this
will affect the pricing of warrants. In Table 3 below we report the warrant values obtained
using the theoretical approach and the “option-like” approximation approach. We compare
these values by what we call the “percentage mispricing error”. This is calculated as:
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                                                     (“option-like” warrant valuation approximation – theoretical value of warrant)
Percentage Mispsricing Error = ------------------------------------------------------------------------------------------------

       Theoretical value of warrant

TABLE 3
Comparison of the theoretical value of a warrant with the “option-like warrant valuation approximation” for a
variety of dilution factors and degrees of moneyness.
_____________________________________________________________________________________________________________________________________________________________________________________

Total
Equity
Value: v

Equity
volatility:

Vσ

Theoretical
Value of
Warrant

Option-Like
Warrant
Valuation
Approximation

Percentage
Mispricing
Error

_________________ _________________ ___________________ ________________________ ___________________

In-the-money warrants
%5=λ , 80=K 101.53 25.7% 30.54 30.53   -0.03%

%50=λ , 80=K 115.26 30.9% 30.53 30.53          0%
%100=λ , 80=K 130.46 35.6% 30.46 30.53     0.23%

Near-the-money warrants
%5=λ , 100=K 100.93 25.6% 18.66 18.65   -0.05%

%50=λ , 100=K 109.34 30.4% 18.68 18.65   -0.16%
%100=λ , 100=K 118.64 34.8% 18.66 18.65   -0.05%

Out-of-the-money warrants
%5=λ , 120=K 100.54 25.5% 10.71 10.73   0.19%

%50=λ , 120=K 105.27 29.1% 10.55 10.73   1.71%
%100=λ , 120=K 110.39 32.5% 10.39 10.73   3.27%

Deep-out-of-the-money warrants
%5=λ , 180=K 100.08 25.1% 1.670 1.711   2.46%

%50=λ , 180=K 100.69 26.0% 1.379 1.711   24.1%
%100=λ , 180=K 101.16 26.6% 1.162 1.711   47.2%

Close-to-maturity-out-of-the-
money-warrants:

%5=λ , 120=K 100.03 25.1% 0.531 0.546   2.82%
%50=λ , 120=K 100.22 25.9% 0.432 0.546   26.4%
%100=λ , 120=K 100.36 26.5% 0.360 0.546   51.7%

__________________________________________________________________________________________
The calculations are based on parameters values: Current stock price: 100=S , Stock return volatility:

%25=Sσ , Time to maturity of warrants: 2=τ  years (for the last case of “Close-to-maturity-out-of-the-money

warrants” a time to maturity of 3=τ  months was used instead), Risk-free rate: %5=r , Dividend yield: 0=d .

The total equity value and volatility of the firm are calculated by solving numerically the system of simultaneous
equations of section (2.6) (i.e. equations (2.6.1) and (2.6.3)).

The theoretical value of the warrant is calculated either by taking the expected value of the discounted payoff of
the warrant over the respective risk-neutral distribution for the stock price (see equation (5.2.1); summary
statistics for the respective risk-neutral distribution for the stock price for each case are given in table 1) or
equivalently using equation (5.2.3).

The “option-like warrant valuation approximation” ignores any dilution and is calculated either by taking the
expected value of the discounted payoff of the warrant over the lognormal risk-neutral distribution for the stock
price (see equation (5.2.4)) or equivalently using equation (2.2.2). (This approach is of course identical to
valuing an ordinary call option on the stock of the firm).

The percentage mispricing error is calculated as:
 (“option-like” warrant valuation approximation – theoretical value of warrant) / theoretical value of warrant.
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The message from table 3 is clear. For in- and near-the-money warrants option-like
valuation is a viable and convenient alternative to the textbook treatment valuation. However
it is also clear that option-like valuation will result in a large mispricing error for deep-out-of-

the-money warrants and for close-to-maturity-out-of-the-money warrants in general.17 For
such cases one is advised to follow the “theoretical” approach to warrant valuation. We would
now like to draw to the attention of the reader that such cases might not be as infrequent as it
might at first appear. Note that this paper has assumed that the warrant-issuing firm under
investigation is debt free. Suppose we consider a simple extension were the firm issues both
debt and warrants. Suppose for example an “idealised” scenario where the firm has also issued
a zero-coupon bond with the same maturity as the warrant. Let the face value of that debt be
F. In this case we have to take into account the fact that debt is senior to both stock and
warrant. Hence at exercise of the warrant, equation (2.1.4) of section (2.1) must be modified
by subtracting the face value of the debt from the value of the firm. In this case equation
(2.1.4) becomes:
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where 
N

F
f =  is the face value of the debt per share. Thus in the presence of debt a warrant

with an exercise price of K, is valued as a warrant with an exercise price of  f + K. In other
words, if the warrant is at any moment in time at-the-money or out-of-the-money,
incorporating a high face value of debt makes it immediately a deep-out-of-the-money
warrant.

6. CONCLUDING REMARKS AND ISSUES FOR FURTHER RESEARCH

6.1 Concluding Remarks

In this paper we have derived the stock price distribution of a firm with warrants and/or
executive stock options in its capital structure. We have illustrated that the existence of
moderate to high dilution warrants in the corporate structure of a firm does make its stock
price distribution markedly different from the stock price distribution of say a non-warrant-
issuing firm (warrants/executive options with high dilution potential are typically encountered
in high-tech firms; see for example amongst many others Microsoft Corporation, Intel
Corporation, Oracle, Cisco Systems, AoL Time-Warner, etc). Indeed, for risk-management
calculations we argue that the lognormal distribution for the stock price is not appropriate.
Our simulations suggest that a normal approximation to the log-stock price (or return) will
lead to a Value-at-Risk that is too low for firms with out-of-the-money and near-the-money
warrants and too high for firms with in-the- money warrants. Regarding now the valuation of
                                                          
17 Similar findings have also been reported by Schulz and Trautmann (1994).
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warrants and executive stock options we find that “option-like” valuation will price
“correctly” and efficiently in-the-money, near-the-money and long maturity out-of-the-money
warrants. However for deep-out-of-the-money and near-maturity out-of-the-money warrants
in general, we find that “option-like” valuation will significantly overprice warrants, with the
percentage mispricing error exceeding in some highly diluted cases 50% the theoretical price.
This can be significant since (traded) warrants are typically issued very deep-out-of-the-
money.

6.2. Issues for Further Research

The way is now open for deriving the distribution of the stock price for a firm with debt
(or debt and warrants) in its capital structure. We believe that the implications of this will be
significant not only for Value-at-Risk calculations but also for credit management purposes
since it will be possible to estimate the probability of default from a stock price distribution
that explicitly incorporates esoteric capital structures of firms (i.e. equity, debt, warrants, etc).
Moreover using a similar approach with the one employed in section (2.6) it will be possible
to infer all the unobservable parameters of the derived distribution (i.e. the drift and volatility
of the value of the firm).

Regarding now option valuation in general, we saw that just incorporating warrants in the
stock price distribution is a first step to the right direction. We know that the Black-Scholes
model overprices deep-out-of-the-money stock options. We illustrated that by incorporating
warrants in the stock price distribution some of this bias was eliminated. Remember that a
warrant is identical to an ordinary call option when the “correct” distribution is used. Thus the
textbook treatment to warrant valuation applies also to option valuation. Indeed we believe
that more attention should be paid to valuing options using the “value of the firm” approach.
Geske (1979) was the first to develop the compound option model. He showed that the stock
in a levered firm can be viewed as a call option on the value of the firm. Thus a call option on
the stock can be viewed as a compound option on the value of the firm. The advantage of this
approach is that it eliminates a number of Black-Scholes biases since it captures the pattern of
implied volatilities observed for equity options. Conceptually the “value of the firm” approach
is very appealing since it provides a unified framework for stock option, warrant, and debt
valuation.
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7. APPENDIX

SECTION 1

Proof of LEMMA 2: From equation (2.5.2) we have the following representation for the stock
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Proof of COLLORARY 1: Let us first start with the general case, (i.e. when the warrant is not
necessarily at-the-money). This time the general case is different from the general case of
Lemma 2 because K is stochastic. Then from equation (2.5.2):
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Then applying Ito calculus we get:
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Hence the process for the stock price S is also a Geometric Brownian Motion.

SECTION 2

PROPOSITION 1: The risk-neutral distribution for the stock price exists (see section (2.7))
and can be shown to be equal to:
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PROOF: In Section (2.7) we have shown that the market price of risk for the stock price of a
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Indeed the risk-neutral distribution of the stock price follows directly by applying the non-

linear transformation )(Sv Ψ=  to the risk-neutral distribution of the equity value. This is the

well-known lognormal distribution of Geometric Brownian Motion with Vµ  replaced by r.

Now when τ=t , then 0=−τt . Hence ),,,,(
1

rKtvCvS V
BS στ

λ
λ −
+
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+−
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Å
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Also

1)( 1 =Φ d .

Therefore the risk-neutral distribution takes the simple form:
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