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Preface

The first part of this dissertation studies interfacial instabilities in large Weis-

senberg number viscoelastic coextrusion flow. The instabilities are due to

discontinuities in the elastic properties. We find new instabilities and show

that the understanding of a previously known instability is incomplete.

The second part of this dissertation studies the effect of elasticity on the

inertial instability of a jet. We emphasize the effect of weak elasticity on the

development of cat’s eyes. This is based on work begun at the Geophysical

Fluid Dynamics summer school at the Woods Hole Oceanographic Institution

following my second year as a PhD student.

A repeated message of the experience presented here is that serendipity

is an integral and fruitful part of research, or — more pessimistically —

where hard work and perseverance fail, blind luck triumphs. The better

part of a year’s work has been relegated to a (short) paragraph of chapter 4

while everything apart from chapter 7 was discovered by chance trying to

understand something else.

All of the work described in this dissertation is believed to be original

except where explicit reference is made to other sources. This dissertation is

my own work and no part has been or is being submitted for any qualification

other than the degree of Doctor of Philosophy at the University of Cambridge.
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Summary

This dissertation is concerned with the theoretical study of the stability of

viscoelastic shear flows. It is divided into two parts: part I studies inertialess

coextrusion flows at large Weissenberg number where the instabilities are

due to discontinuities in the elastic properties, and part II studies the effect

of elasticity on the well-known inertial instabilities of inviscid flows with

inflection points.

We begin part I with a previously known short-wave instability of Upper

Convected Maxwell and Oldroyd–B fluids at zero Reynolds number in Cou-

ette flow. We show that if the Weissenberg number is large, the instability

persists with the same growth rate when the wavelength is longer than the

channel width. Intriguingly, surface tension does not modify the growth rate.

Previous explanations of elastic interfacial instabilities based on the jump in

normal stress at the interface cannot apply to this instability. These results

are confirmed both numerically and with asymptotic methods.

We then consider Poiseuille flow and show that a new class of instability

exists if the interface is close to the center-line. We analyse the scalings

and show that it results from a change in the boundary layer structure of

the Couette instability. The growth rates can be large, and the wavespeed

can be faster than the base flow advection. We are unable to simplify the

equations significantly, and asymptotic results are not available, so we use

numerics to verify the results.
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In studying these instabilities we encounter some others which we men-

tion, but do not analyse in detail.

In part II we study the effect of elasticity on the inertial instability of flows

with inflection points. We show that the elasticity modifies the development

of cat’s eyes. The presence of extensional flow complicates the analysis.

Consequently we use the FENE–CR equations.
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Chapter 1

Introduction

This dissertation contains a theoretical study of two distinct problems in the

stability of elastic shear flow. The bulk of the thesis (part I, chapters 2–6)

investigates the linear stability of inertialess parallel flow of multiple fluid

layers where an instability is caused by discontinuities of elastic properties.

The remainder (part II, chapter 7) studies the effect of elasticity on the

inertial instability of a planar jet, as well as the effect of weak elasticity on

the nonlinear development of cat’s eyes.

Many industrial applications involve coextrusion of two or more fluids

that harden into a multi-layered solid with desirable properties. For example,

films used to wrap foods might have one side chosen for adhesive properties

while the other is chosen for permeability to water or oxygen. Many of these

flows are either very thin or very viscous (or both) so that the Reynolds

number is small. Although we use the term “coextrusion”, we consider flow

of multiple layers within the die (the channel or pipe through which the fluid

is extruded) and do not concern ourselves with the details of the entrance

or exit. Instabilities at the interface lead to distortions affecting optical or

mechanical properties, so a stable flow is needed. In other contexts these in-

stabilities may be desirable: for example in microfluidics it may be necessary
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to mix two fluids together. This is made difficult by the small length scales

and resulting low Reynolds number. An instability which mixes the entire

flow is needed. Part I of this thesis contains a discussion of such instabilities.

At the alternate limit of high Reynolds number it has been known for

nearly sixty years that the addition of a small amount of polymer signifi-

cantly reduces measured drag of turbulent flow through a pipe, a phenomenon

known as turbulent drag reduction. This has applications including fire hose

design, waste water disposal, and crude oil transport. The phenomenon is

not well understood, in part because even the simplest effects of polymers

on high Reynolds number flow are difficult to model. Some discussion of the

theory and relevant papers can be found in the review articles of Lumley [62]

and Lumley and Blossey [63]. Direct numerical simulation has captured drag

reduction, but does not offer much physical insight [9, 93]. Recent study

suggests that the mechanism behind turbulent drag reduction may be the

modification of the “exact coherent states” believed to play a role in New-

tonian turbulence [92]. Although the jet flow studied in part II is far from

a model of full-scale turbulence, it extends some earlier linear studies [3, 10]

and gives perhaps the simplest possible nonlinear model of high Reynolds

number viscoelastic flow. This analysis forms the starting point of a contin-

uing fully nonlinear computational study of elastic jets in collaboration with

Dr. Neil Balmforth and Dr. Yuan-Nan Young.

We commence this introductory chapter with a discussion of basic elastic

fluid properties in section 1.1. Section 1.2 briefly overviews some common

constitutive models. The remainder of the introduction is related to coex-

trusion flow (part I of the dissertation): we discuss experimentally observed

inertialess instabilities in section 1.3 and theoretical investigations of insta-

bilities in section 1.4. Section 1.5 classifies the various types of instabilities

we study. Finally section 1.6 outlines the remainder of the dissertation. An

introduction to the inertial instability is postponed until part II.
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1.1 Rheology of non-Newtonian fluids

We consider only simple fluids. That is: the stress Σ at a material point

depends only on the past history of the local flow at that point (in the

Lagrangian sense); if the velocity is held to zero, the stress relaxes to an

isotropic state; and finally the fluid is material frame indifferent (i.e., the

stress-strain relationship is unaffected by a rigid body motion of the entire

system).

The Navier–Stokes equations governing the flow of Newtonian fluids (dis-

cussed later) are derived under additional assumptions, most notably that the

fluid is everywhere “in equilibrium” such that the fluid elements only know

the local instantaneous velocity, velocity gradients, pressure, and forces. The

flow is weak enough that information about previous orientations has been

lost.

Generally the distinction between a Newtonian fluid and a non-Newtonian

fluid is a distinction between flow conditions. We encounter non-Newtonian

effects if the shear rate is large enough to deform the molecules from their

equilibrium configuration, so a “non-Newtonian” fluid is a fluid that has non-

Newtonian effects on laboratory scales. Examples of typical non-Newtonian

fluids include a solvent with dissolved polymer chains or a polymer melt.

1.1.1 Shear rheology

In steady simple shear with velocity U = (γ̇y, 0, 0), in Cartesian coordi-

nates, any incompressible simple fluid will have a stress tensor Σ with four

independent components of the form

Σ =









Σ11 Σ12 0

Σ12 Σ22 0

0 0 Σ33









. (1.1)
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The stress is unique up to an arbitrary constant isotropic pressure. The shear

viscosity is defined to be

µ ≡ Σ12/γ̇ . (1.2)

The first and second normal stress differences are defined to be

N1 ≡ Σ11 − Σ22 , (1.3)

N2 ≡ Σ22 − Σ33 . (1.4)

In the absence of a flow, the simple fluid stress is isotropic, and so N1(γ̇ =

0) = N2(γ̇ = 0) = 0. Due to symmetry considerations the stress differences

cannot depend on the sign of γ̇ so they are quadratic at small values of |γ̇|.
This motivates the definition of the normal stress coefficients Ψ1 ≡ N1/γ̇

2

and Ψ2 ≡ N2/γ̇
2.

For many fluids the values of Ψ1, Ψ2 and µ depend strongly on γ̇ and

are described as shear-thinning (i.e., they decrease as γ̇ increases) or shear-

thickening (i.e., they increase). However, for dilute viscous solutions (the

“Boger fluid” discussed later), these are found to be effectively constant for

a large range of γ̇.

1.1.2 Extensional rheology

We consider now the uniaxial elongation of a cylinder of fluid aligned with

the z axis. In Cartesian coordinates the flow is given by U = ǫ̇
(

−x
2
,−y

2
, z
)

where ǫ̇ is the extension rate, which we take to be constant. The resulting

stress is of the form

Σ =









−p− Σ′ 0 0

0 −p− Σ′ 0

0 0 −p+ 2Σ′









. (1.5)

The extensional viscosity is defined to be

µe ≡
−Σ11 − Σ22 + 2Σ33

2ǫ̇
=

Σ′

ǫ̇
. (1.6)
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t = 0

t > 0

x

z

F (t)

t

F (t)

polymeric liquid

Newtonian liquid

elastic solid

δx
τ

Figure 1.1: Stress relaxation.

In general polymers resist extension more than shear and so the Trouton

ratio (the ratio of the extensional to shear viscosities) for an elastic fluid can

be orders of magnitude greater than that of a Newtonian fluid, namely three.

This idealized extensional flow is difficult to realize experimentally: a

constant extension rate requires exponential growth in length. A number

of experimental techniques have been developed to measure the extensional

viscosity. However, an attempt to test these methods on a standardized fluid

(the M1 fluid) resulted in wildly differing results discussed by Sridhar [91]

and references therein. Further issues related to the extensional viscosity of

elastic fluids appear in the review by McKinley and Sridhar [67].

1.1.3 Stress relaxation

Consider a (highly viscous) fluid at rest in a channel 0 < x < Lx, −Ly < y <

Ly, and 0 < z < h, with solid walls at x = Lx, y = ±Ly and z = 0, a free

surface at z = h, and a movable piston at x = 0. The piston moves rapidly

in the positive x-direction, and then stops and remains at a new location δx

as shown in figure 1.1. There will be a restoring force as the molecules in the

fluid attempt to return to the state they were in prior to the piston motion.
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Consequently, to hold the piston in place requires a force F (t), which can be

measured experimentally.

For an elastic solid, the force exerted by the solid on the piston is propor-

tional to the deformation. A Newtonian fluid immediately adjusts to its new

location and the force exerted on the piston is purely hydrostatic. For an

elastic fluid the force is initially like a solid, but over time the molecules relax

into a new equilibrium configuration and the force becomes hydrostatic.

Although there may be multiple time scales related to this relaxation

(perhaps related to different sizes of dissolved molecules or different relax-

ation mechanisms), we typically assume only a single relaxation time. For a

polymer dissolved in a solvent, the relaxation time increases with the solvent

viscosity and the polymer length.

The Weissenberg number

In a flow with typical velocity U0 and width L for which the fluid has re-

laxation time τ , the Weissenberg number Wı ≡ U0τ/L is frequently thought

of as the ratio between the time scale of the fluid (τ) and the time scale

(L/U0) associated with the shear rate. For our purposes however, it is better

to think of Wı as the ratio between the typical length scale the fluid travels

while relaxing (U0τ) and the length scale over which the fluid flow rate varies

(L). The Weissenberg number is therefore the ratio of two length scales.

The Deborah number

The Deborah number De is the ratio between the characteristic time scale of

the fluid (τ) to the time scale associated with the flow. This is of particular

interest in oscillating flows (e.g., in a cylinder oscillating with frequency Ω)

where De = τΩ. The Deborah and Weissenberg numbers are often (incor-

rectly) used interchangeably. In many flows they are the same, but more
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generally they can differ greatly.

Wı versus De

Some examples help clarify the difference between the Weissenberg and Deb-

orah numbers.

Consider a cylinder filled with fluid undergoing high frequency but low

amplitude oscillations about its axis. The time scale of the flow is the time

scale associated with the oscillation frequency. This time scale is small,

yielding a large Deborah number. The time scale of the shear rate depends on

the amplitude of the oscillation and the depth that the oscillation penetrates

into the fluid. This time scale is large, yielding a small Weissenberg number.

In contrast we can consider fast, steady shear flow through an infinite

channel. The time scale of the flow is infinite, yielding a Deborah number

of zero whereas the time scale of the rate of strain depends on the width of

the channel and the velocity of the fluid. This time scale is small, yielding a

large Weissenberg number.

1.1.4 The Boger fluid

For the purposes of analytic study, an ideal elastic fluid has constant viscosity

µ and constant normal stress coefficients Ψ1 and Ψ2. Boger [12] developed

a class of fluids which experimental measurements show to have effectively

constant viscosity and normal stress coefficients over a range of shear rates.

A Boger fluid is created by dissolving a large molecular weight polymer in

a viscous low molecular weight solvent. The earliest were dilute solutions of

polyacrylamide dissolved in a maltose/water solvent. Aqueous solvents have

a tendency to evaporate over time, and the physical properties change over

time. The study has turned to organic solvents and polymers, usually using

a high molecular weight polymer dissolved in a low molecular weight solvent
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of the same monomer. Because the solvent is highly viscous, the polymers

cannot relax quickly back to their equilibrium state. The relaxation time for

a Boger fluid can be over a hundred seconds [52].

Magda et al. [64] studied an organic Boger fluid and found that the mag-

nitude of the second normal stress difference is approximately 1% that of the

first normal stress difference.

1.2 Constitutive equations

In this section we provide a brief overview of some constitutive models. More

comprehensive references are found at the end of this section.

We assume throughout that our fluids are incompressible and so satisfy

∇ ·U = 0 . (1.7)

The momentum equation is

ρ
DU

Dt
= ∇ · Σ + F , (1.8)

where ρ is the density, U the velocity, D/Dt ≡ ∂t + U · ∇ the material

derivative, Σ the stress tensor, and F can be any body force.

1.2.1 The Newtonian fluid

The Newtonian fluid is a special case of the simple fluid. The deviatoric stress

(the trace-free part of the stress) is linearly related to the instantaneous local

value of ∇U and it is isotropic. We take the fluid to be incompressible and

make the additional assumption that inertia is negligible, and so we arrive



1.2 Constitutive equations 9

at the Stokes equations

∇ · Σ = 0 ,

Σ = −P I + 2µE ,

E =
∇U + (∇U)T

2
,

∇ ·U = 0 ,

where µ is the shear viscosity, P the pressure, and E the rate of strain tensor.

1.2.2 The upper convected derivative

The fluids we study have an elastic strain which depends on the history of

rotation and stretching in the flow. The equations we use must save this

information. This is accomplished by the upper convected derivative of a

tensor T denoted by

`

T, and defined as
`

T ≡ ∂T

∂t
+ (U · ∇)T − (∇U)T · T − T · (∇U) . (1.9)

This derivative contains the advection associated with the material derivative

∂t + U · ∇, but also accounts for rotation and stretching with the flow like

a material element through the ∇U terms1, that is, it is codeformational. It

will be useful later to note that
`

I = −2E .

1.2.3 The Oldroyd–B fluid

The Oldroyd–B fluid [73] is commonly used as a theoretical model of a Boger

fluid. The match is not perfect, particularly at larger shear rates where other

models (with more free parameters) fit the experimental data better [78].

1The literature is not consistent on the notation ∇U . We take ∇U to denote the tensor

whose (i, j) component is given by ∂xi
Uj rather than its transpose.
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The stress in an Oldroyd–B fluid contains Newtonian and elastic compo-

nents. We use the inertialess incompressible form

∇ · Σ = 0 , (1.10)

Σ = −P I + µ

(

2βE +
1 − β

τ
A

)

, (1.11)

`

A =
1

τ
(I − A) , (1.12)

E =
∇U + [∇U ]T

2
, (1.13)

∇ ·U = 0 , (1.14)

where β measures the relative contribution of the elastic and Newtonian con-

tributions to the stress and the conformation tensor A measures the elastic

strain. The Oldroyd–B fluid has a nonzero first normal stress difference N1,

but the second normal stress difference N2 is zero.

For steady rectilinear flows such as Couette or Poiseuille flow which have

a constant history, the velocity profile of an Oldroyd–B fluid is indistinguish-

able from that of a Newtonian fluid with viscosity µ. However, the stress

will be different: energy can be stored and transported in A as elastic stress.

This energy can drive an instability, even in the absence of inertia.

In extensional flow the Oldroyd–B model predicts an infinite extensional

viscosity at a finite extension rate ǫ̇ = 1/2τ . This is unphysical and other

models have been developed to correct this (discussed in sections 1.2.5 and

1.2.6).

Derivation of the Oldroyd–B equations

We follow the derivation found in Larson’s book [51]. We model each polymer

as a pair of beads of radius a joined by Hooke’s law springs for which the

restoring force F is directly proportional to the spring extension R

F = GR , (1.15)
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where G is the spring constant. The beads move due to Brownian motion, the

spring force, and the Stokes drag force. Different bead pairs do not interact.

Performing an ensemble average (denoted 〈·〉), the polymer stress is given by

〈RF 〉 = G〈RR〉 , (1.16)

which we define to be GA.

The evolution of A can be shown to follow
`

A = −1

τ
(A − I) .

The relaxation time τ is

τ = 6πµsa/G ,

where µs is the solvent viscosity and the numerator is the Stokes drag coef-

ficient on the bead.

This yields

Σ = −P I + 2µsE +GA ,

and an appropriate definition of µ and β in terms of µs, G and τ returns us

to (1.11).

Equivalent forms of the Oldroyd–B equations

There are a number of equivalent expressions of the Oldroyd–B equations in

common use. For reference, we show the equivalence between our model and

several others.

• The most obviously equivalent form commonly used [103, 104, 105]

involves a change in the equation for Σ only:

Σ = −P I + 2µ∗
E +

C

τ
A .

This is equivalent to (1.11) under the substitution µ = µ∗ + C and

β = µ∗/(µ∗ + C).
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• A similar form [17, 84] is

Σ = −P I + 2µβE + (1 − β)T ,

T + τ

`

T = 2µE ,

which is equivalent using A = I + τT/µ.

• A third alternate form [6] is

Σ = −P ∗
I + σ∗ ,

σ∗ + λ1

`

σ∗ = 2µ∗(E + λ2

`

E) ,

where σ∗ is the deviatoric stress and 0 ≤ λ2 ≤ λ1. Setting

τ = λ1 ,

β =
λ2

2λ1 − λ2

,

µ =
2µ∗

1 + β
,

P = P ∗ + 2µ∗/λ1 ,

A =
λ1

1 − β

(

σ∗(1 + β)

µ∗
+

1 + β

λ1

I − 2βE

)

returns us to the original form.

• Other variations exist, see for example [86].

The τ → 0 limit

The Oldroyd–B equations clearly describe a Newtonian fluid in the β → 1

limit. However, it is less obvious, but frequently more useful, to note that

they yield a Newtonian fluid in the τ → 0 limit, so long as U remains order

1. The physical meaning of this is that if the fluid relaxes instantaneously, it
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behaves as a Newtonian fluid. To show this, we start from the constitutive

equation (1.11)
`

A =
1

τ
(I − A) .

As τ → 0, we expand A in τ so that A = A1 + τA2 + · · · . At order 1/τ , we

have I − A1 = 0 and so A1 = I. At next order, we get

`

I = −A2 ,

and using

`

I = −2E we conclude A2 = 2E.

Consequently the resulting stress is

Σ = −P I + 2µβE + µ
1 − β

τ
(I + 2τE) + O(τ) ,

= −
(

P − 1 − β

τ
µ

)

I + 2µE + O(τ) .

Thus redefining pressure by adding a constant everywhere, we arrive at the

standard expression for Newtonian stress as τ → 0.

1.2.4 The Upper Convected Maxwell (UCM) fluid

The Upper Convected Maxwell (UCM) equations are the β → 0 limit of

the Oldroyd–B equations where the solvent contribution to the viscosity dis-

appears. UCM fluids also become Newtonian as τ → 0. The governing

equations neglecting inertia are

∇ · Σ = 0 ,

Σ = −P I +
µ

τ
A ,

`

A =
1

τ
(I − A) ,

∇ ·U = 0 .



1.2 Constitutive equations 14

1.2.5 The Finitely Extensible Nonlinear Elastic (FENE)

fluid

The Oldroyd–B model is derived under the assumption that the polymers

are infinitely extensible Hooke’s law springs. Although this approximation

is valid when the polymers are only mildly stretched from their equilibrium

configuration, their behavior deviates from linear behavior as they are ex-

tended and unravelled. This leads to the Finitely Extensible Nonlinear Elas-

tic (FENE) models.

We consider beads joined by a spring that has a nonlinear response to

extension. We take

F = GRf(R) , (1.17)

f(R) =
1

1 − R2/l2
=

l2

l2 − R2
, (1.18)

where R2 = R ·R and l represents a maximum extension. We cannot write

a closed expression for the evolution of the elastic stress without a further

approximation.

FENE–P

If we replace 〈f(R)〉 with f(〈R〉), known as the pre-averaging approximation,

we find

F = FRf(〈R〉) , (1.19)

from which we arrive at the FENE–P [76] form of the elastic stress

〈RF 〉 = Gf(〈R〉)〈RR〉 . (1.20)
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The evolution of this stress can be written in closed form, and so we finally

arrive at the FENE–P equations

Σ = −P I + µ

(

2βE +
1 − β

τ
f(R)A

)

, (1.21)

`

A = −1

τ
[f(R)A − I]. (1.22)

This improves the extensional behavior from the Oldroyd–B model. However,

it exhibits shear-thinning viscosity (i.e., the shear viscosity µ decreases as γ̇

increases). Consequently it is not a good model for the Boger fluid.

FENE–CR

The FENE–CR model of Chilcott and Rallison [20] uses the same form for

the elastic stress, but changes its evolution. The equations are

Σ = −P I + µ

(

2βE +
1 − β

τ
f(R)A

)

, (1.23)

`

A = −f(R)

τ
(A − I) . (1.24)

This gives a constant shear viscosity.

1.2.6 Other models

A number of other models exist. Among the most popular are the Giesekus

and Phan-Thien–Tanner fluids. These have more free parameters, allow-

ing them to more accurately capture rheological behaviors such as shear-

thinning.

The models discussed so far assume that the polymers do not interact.

When instead the polymers are dense, the most successful models are based

on the concept that a polymer must move parallel to its orientation, rather

than transversely. This leads to different constitutive equations which more

accurately model polymer melts.
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More complete discussions of constitutive equations can be found in the

book by Larson [51], the review by Bird and Wiest [8], or the books by Bird

et al. [6, 7].

1.3 Observations of purely elastic instabili-

ties

A large number of instabilities have been found in low Reynolds number

elastic flows, driven by the energy stored in the elastic stress. Instabilities

whose mechanism is due to elastic effects in the absence of inertia are re-

ferred to as purely elastic. What follows is a brief summary of a few purely

elastic instabilities: more complete discussions can be found in the reviews

by Larson [52] and Shaqfeh [86].

1.3.1 Flows with curved streamlines

Most known purely elastic instabilities occur in flows with curved stream-

lines where a hoop stress drives the instability. The hoop stress is caused

by a tension in the streamlines which creates an inward force on a curved

streamline. This acts in the opposite direction to inertia and many flows

which are unstable at high Reynolds number due to centrifugal effects are

unstable at low Reynolds number due to the hoop stress. This generates new

instabilities which can develop into full-scale elastic turbulence at very small

Reynolds number [33].

A number of elastic instabilities have been found in flows with curved

streamlines. A rough criterion for instability is given by Pakdel and McKin-

ley [74]. The best-known example is Taylor–Couette flow between two rotat-

ing concentric cylinders discussed by Larson, Shaqfeh, and Muller [71, 53, 87].

In these experiments, instabilities were seen with a Taylor number as small
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as 10−7.

Perhaps the most significant instability from a rheological point of view

occurs in the cone-and-plate flow used to measure rheological properties.

These flows can become unstable rendering the measurements invalid. This

was initially mis-identified as shear-thickening behavior [45].

1.3.2 Flows with straight streamlines

Single fluid

There is little experimental evidence for a purely elastic instability in a single

fluid with straight streamlines. A study by Yesilata [108] of low Reynolds

number flow through a pipe found evidence of pressure fluctuations which

were interpreted as the result of an instability. However, the method used

to measure pressure introduces locally curved streamlines, and it is not clear

that this is not causing the instabilities being measured.

Multiple fluids

It is well-known from industrial applications that even at low Reynolds num-

ber coextrusion flow of viscoelastic fluids can be unstable beyond a threshold

extrusion rate. There are numerous experimental studies of these instabilities

in planar flows.

Han and Shetty [34, 35] considered extrusion flows of three or five sym-

metric layers of polymer melts. They found conditions for instability based

on wall shear stress and volume fraction. It is difficult to isolate the elastic ef-

fects from the viscous effects because their test fluids had different viscosities

as well as different elasticities.

Mavridis and Shroff [66] considered three-layer symmetric flow of melts.

They also found instability, but once more it is difficult to distinguish elastic

from viscous effects.
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Khomami and coworkers have performed a careful study of two-layer

flows [49, 48, 100, 101, 102]. They observe the growth of instabilities during

the flow through a transparent die. They have found that the Oldroyd–B

equations predict the qualitative stability behavior observed, both in the

linear and weakly-nonlinear regime.

Valette et al. [96, 97, 98, 99] have also performed two-layer coextrusion

studies. They primarily observe instabilities by hardening the observing the

interface after extrusion, but also use a transparent die to observe the flow.

They find that long-wave asymptotic analysis gives a good prediction of the

occurrence of instabilities, but do find some instabilities in flows predicted

to be stable.

These experiments conclusively show that viscoelastic fluids can experi-

ence instability at low Reynolds number, and the elasticity ratio, the viscosity

ratio and the depth ratio play an important role in determining whether the

flow is stable or unstable.

It is difficult to make other general conclusions from these studies. They

use a wide range of fluids which may or may not shear thin. There do not

appear to be many careful studies isolating the elastic effects.

1.4 Theoretical study of extrusion flow

A number of theoretical studies have been made of inertialess coextrusion

flow in a channel or a pipe. Most of these consider the UCM or Oldroyd–B

equations and use a linear stability analysis (discussed further in section 2.1),

although some nonlinear effects have been considered.

In studying the stability of a channel flow U = (U(y), 0, 0) in (x, y, z)

coordinates with an interface at a fixed value of y, we assume a Squire’s

theorem [90]. Squire’s theorem states that, in a two-dimensional flow of a

Newtonian fluid the most unstable disturbance is always two-dimensional



1.4 Theoretical study of extrusion flow 19

and so three-dimensional perturbations may be ignored. We assume Squire’s

theorem applies to our flow and neglect the transverse z-direction. The jump

in N2 at the interface then disappears from the analysis. However, in core-

annular pipe flow it is known to affect the growth rate [38] at least for small

k.

The assumption of a Squire’s theorem is tenuous. For the case of planar

channel flow U = (U(y), 0, 0), Squire’s theorem holds for the UCM fluid [94],

even if there is an interface [84]. However, if N2 6= 0, it fails in general [60].

Indeed a jump in N2 at an interface can create an instability in the transverse

z-direction [14]. However, the value of N2 is generally small compared to N1

(and is zero for the Oldroyd–B fluid), and so we assume that neglecting this

direction is safe.

Although it is generally assumed that linear stability follows from having

all eigenvalues decaying (with growth bounded away from zero), the usual

theorems do not apply to the Oldroyd–B fluid. M. Renardy [81] showed that

an Oldroyd–B fluid with all eigenvalues decaying is linearly stable.

1.4.1 Single fluid

Before discussing the effect of an interface on the stability problem, we briefly

discuss results for a single fluid.

The work of Ho and Denn [39] showed that channel Poiseuille flow of

an inertialess UCM fluid is linearly stable to sinuous modes. This analysis

was extended by Lee and Finlayson [55] who numerically considered varicose

modes as well as modes of Couette flow. They also found linear stability

for inertialess flows. Gorodtsov and Leonov [31] analytically studied Couette

UCM flow, showing no unstable eigenvalues at zero Reynolds number, but

claiming an instability at arbitrarily small Reynolds number. Renardy and

Renardy [82] extended their results to larger Reynolds number, but showed
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that the instability result was incorrect. Other models have also been studied,

generally showing stability (see e.g., [11]) but Grillet et al. [32] have found

an instability in Couette and Poiseuille flow of a Phan-Thien–Tanner fluid

and Poiseuille flow of a Giesekus fluid and Wilson and Rallison [105] found

an instability due to shear-thinning effects in White–Metzner fluids.

Numerical simulations by Atalik and Keunings [2] found a finite amplitude

nonlinear instability of Poiseuille and Couette channel flow for Oldroyd–B flu-

ids at small values of β. Simultaneously, Saarloos and coworkers [68, 69, 70]

have developed amplitude equations suggesting a subcritical bifurcation at

infiniteWı which allows the flow to be unstable to a finite amplitude instabil-

ity at finiteWı. This contrasts with a result of Ghisellini [30] who claimed a

rigorous proof of stability based on energy principles. However, recent work

by Doering et al. [22] suggests that no reasonable “energy” functional defined

for the Oldroyd–B fluid can be shown to decrease monotonically in time. In-

deed, Ghisellini proved only that the Couette and Poiseuille flow minimize a

functional and did not show that that functional is monotonically decreasing.

A final comment should be made about Boffetta et al. [10] who studied

Kolmogorov flow [U(y) = cos(y)] for the Oldroyd–B fluid in an unbounded

planar domain. They consider a nonzero Reynolds number and find an in-

stability that is distinct from the inertial instability. This instability persists

for arbitrarily small Reynolds numbers, but they do not report growth rates.

It is unclear if the growth rate is bounded away from zero as Re → 0.

1.4.2 Multiple fluids

It is well-known that differences in viscosity can lead to interfacial instabilities

in Newtonian shear flow at arbitrarily small Reynolds number [36, 40, 109].

In the case of matched viscosities the two fluids are indistinguishable and

the flow is stable. By modifying the temperatures of coextruded fluids, it is
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possible to match their viscosities, eliminating the viscous instability [72].

Early theoretical work of Waters and Keeley suggested that the elasticity

stratification does not affect the stability at leading order for long-waves.

However, Renardy [84] showed the incongruous result that it does affect the

leading order stability problem for short-waves. Shortly thereafter, Chen [15,

16] found a long-wave instability and showed that the original paper of Waters

and Keeley applied an incorrect boundary condition that neglects the jump in

base normal stress at the interface. Hinch et al. [38] explained the mechanism

of the long-wave instability, showing how the jump in normal stress drives

the flow when the wavelength is long compared to the channel width and the

relaxation length scale. A flurry of other papers have followed [17, 18, 27,

28, 29, 54, 57, 84, 85, 103, 104, 106], and it is now generally believed that

the driving force behind purely elastic interfacial instabilities is the jump in

normal stress (see e.g., [57]).

The available parameter space is large and has not been fully explored. As

well as having multiple flow profiles or fluid models to consider, the fluids may

have different viscosities, different elastic relaxation times, different values of

β, or different values of any other parameter in the model. In this work, we

assume that the fluids are identical except for the relaxation time. We find

that even in this reduced space, the present understanding is incomplete,

instabilities have been missed, and there are inaccuracies in the literature.

The previous short-wave and long-wave analysis has implicitly assumed

that the wavelength is short or long compared to all length scales. In the

Oldroyd–B or UCM model there is an additional length scale Uτ which

measures the distance travelled by the fluid in a relaxation time. This in-

troduces the possibility of other limits, for example Uτ ≪ k−1 ≪ L and

L ≪ k−1 ≪ Uτ . In the former case the Weissenberg number Wı = Uτ/L is

small and elastic effects are weak. The work of Renardy [84] for two UCM

fluids with matched viscosity but differing relaxation times or the work of
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Wilson and Rallison [104] for Oldroyd–B fluids both still apply to this case.

Instability is found whenever the relaxation times differ. In the latter case,

the assumptions of previous work fail, and it is on this limit that part I of

this dissertation focuses.

1.5 Instability classes

In this dissertation we extend previous work on interfacial instabilities. We

find that for Couette flow it is generally most appropriate to classify the

instabilities based on their longest length scale. This gives three regimes:

long-wave for which the wavelength is the longest, fast-flow for which the

distance travelled in a relaxation time is the longest, and wide-channel for

which the channel width is the longest. There is a further regime in Poiseuille

flow, narrow-core for which the relaxation length scale is the longest length

scale, but the interface is close to the center-line. There are a few instabilities

which we find that do not fit into any of these classes.

Under this classification, the short-wave instabilities studied previously

are broken into the fast-flow and wide-channel regimes. We find that similar

instabilities are observed in fast-flow or wide-channel even when the wave-

length is not the shortest length scale.

In this section we describe previous results for pipe and channel coextru-

sion flows in the context of this classification and briefly mention some main

results from later chapters.

1.5.1 Long-wave: k−1 ≫ Uτ, L

The long-wave limit of core-annular pipe flow is understood from previous

work by Chen [16] as well as Hinch et al. [38]. The flow is unstable to

axisymmetric long-wave modes if the core occupies less than 32% of the pipe
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volume and is more elastic or occupies more than 32% and is less elastic.

The flow is unstable to cork-screw long-wave modes if the annulus is more

elastic. As explained by Hinch et al., the result is general and applies to

fluids other than just Oldroyd–B and UCM, but the results are modified if

N2 is nonzero.

The channel flow results were found by Wilson and Rallison [103] and

Ganpule and Khomami [27]. In channel Couette flow, instability occurs if

the more elastic fluid (i.e., the fluid with the longer relaxation time and hence

the larger elastic stress) occupies less than half the channel. In contrast, for

three-layer symmetric channel Poiseuille flow, varicose instability is found

when the inner fluid is more elastic (has a longer relaxation time) and the

fraction of the channel occupied by the inner fluid is less than
√

2− 1 or the

inner fluid is less elastic and occupies more than
√

2− 1. Sinuous instability

occurs if the outer fluid is more elastic. This is qualitatively like the pipe

result.

1.5.2 Wide-channel: L≫ k−1, Uτ

Renardy [84] studied UCM interfacial flows where the wavelength is the

smallest length scale. The perturbation flow decays exponentially away from

the interface and the walls can be neglected, using instead the assumption

that the flow tends to zero at infinity. She found different behaviors for small

and large values of Wı. The large Wı limit corresponds to “fast-flow” and is

discussed below. In the smallWı limit, L≫ Uτ ≫ k−1, she found that if the

two fluids had different relaxation times, there would be instability.

Wilson and Rallison [103, 104] studied Oldroyd–B interfacial flows with

the wavelength the smallest length scale. They also found that the pertur-

bation flow decays away from the interface. In the smallWı limit they found

instability if the fluids have different relaxation times.
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We find that if L≫ k−1 ≫ Uτ , the perturbation still decays exponentially

away from the interface, although k−1 is no longer the smallest length scale.

The techniques used previously can be applied and the same results are found

(section 3.7).

1.5.3 Fast-flow: Uτ ≫ k−1, L

Renardy [84] showed that in UCM flows if Uτ ≫ L ≫ k−1 then instability

occurs if the ratio ξ of the two relaxation times satisfies ξc < ξ < ξ−1
c and

ξ 6= 1 where ξc ≈ 0.27688. Wilson and Rallison [103, 104] showed that the

range of ξ leading to instability increases as β grows. Eventually all ξ 6= 1

give instability. Both the UCM and Oldroyd–B results were derived assuming

that the perturbation flow decays away from the interface.

The assumption that the flow decays before reaching the wall does not

hold if Uτ ≫ k−1 ≫ L. The perturbation flow is as large close to the wall

as close to the interface, and so the analysis of Renardy fails. However, in

chapter 3 we show that for UCM fluids the growth rates are the same as those

found by Renardy. For Oldroyd–B we also find similar results to Wilson and

Rallison.

We further show that the mechanism of this instability does not depend on

interfacial displacement and the jump in the first normal stress, contradicting

some literature assumptions. Consequently surface tension cannot stabilize

the instability.

1.5.4 Narrow-core: Uτ ≫ k−1, L and ∆ ∼ 1/
√
Uτk

The narrow-core regime occurs in Poiseuille flow when the interface location

(relative to the center-line) ∆L is comparable to or smaller than L/
√
Uτk.

This scaling results from a balance between U ′/U ′′ and 1/U ′τk at ∆L. In

chapters 4 and 5 we find a distinct narrow-core regime when U ′′/τkU ′2 =
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O(1) at the interface in both channel and pipe flow.

In order to understand the scaling better, we consider why the fast-flow

behavior fails. In the fast-flow regime, a boundary layer with characteristic

width 1/U ′τk plays an important role. This width is derived under the

assumption that the shear rate is effectively constant. The boundary layer

structure (and hence the stability properties) changes if the local shear rate

U ′ is not effectively constant throughout the boundary layer.

The length scale U ′/U ′′ is the length over which the shear rate changes

by an amount comparable to the shear rate. If this length is comparable to

or smaller than the boundary layer width a new regime occurs. We find a

number of instabilities in this regime, some of which exist when both k → ∞
and k → 0 limits are stable, contradicting claims of [54, 85].

1.5.5 Other

There are instabilities which do not fit into any of these categories. We do

not attempt a full analysis of these instabilities, but mention them in passing

when they arise.

1.6 Scope of this dissertation

The dissertation is divided into two parts. The first studies coextrusion sta-

bility in the limit of large Weissenberg number and small Reynolds number.

For a flow with length scale L, Wı ∝ L−1 while Re ∝ L, and so this limit

is most readily found for narrow flows. The second part studies the effect of

elasticity on a high Reynolds number jet.

Part I is divided into five chapters. Chapter 2 derives the equations

used in the remaining chapters. Chapter 3 studies the stability of a single

interface in planar Couette channel flow. Chapter 4 studies the stability of
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three-layer symmetric planar Poiseuille flow. Chapter 5 studies the extension

of the planar results into a cylindrical core-annular pipe geometry. Chapter 6

concludes the discussion of coextrusion flow.

Part II has just one chapter, chapter 7. This chapter introduces the

equations of an elastic jet and briefly discusses related work in different types

of fluids, it presents results of linear stability analysis for elasticities of varying

strengths and finally discusses the weakly nonlinear evolution of cat’s eyes in

the presence of weak elasticity.



Part I

Elastic coextrusion flows



Chapter 2

Linear perturbation equations

for coextrusion flow

In this chapter we discuss and derive the linear perturbation equations needed

later in the study of coextrusion flow. We first summarize the principles of

linear stability analysis in section 2.1. We then introduce the governing

equations in section 2.2 and derive the linearized equations for the growth of

perturbations of planar Couette and three-layer symmetric planar Poiseuille

flow (section 2.3) as well as the linear perturbation equations for core-annular

pipe flow (section 2.4). We briefly discuss the structure of the continuous and

discrete parts of the spectrum in section 2.5. Finally, in section 2.6 we discuss

the numerical methods used to solve the linearized equations and the effect

of the continuous spectrum on the ability of the numerics to find nearby

discrete eigenvalues.

2.1 Linear stability analysis

To study the stability of a base flow, we assume that the flow looks like the

base flow plus a small (order ǫ) perturbation. We then derive the equations
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governing the evolution of the perturbations through expansions in ǫ. Rep-

resenting the perturbed variables by the vector φ, we derive an equation of

the form

L1[φ] +
∂

∂t
L2[φ] = N (φ) ,

where L1 and L2 are linear operators, and N is nonlinear. All of these may

depend on spatial derivatives and a control parameter (or parameters) R.

A fundamental assumption of this work is that the expansion of φ in ǫ

is well-behaved and so higher order terms N can be dropped safely. This is

not always the case, and plays a role in the failure of linear theory to predict

the Reynolds number of the onset of turbulence in Couette or Poiseuille

flow of Newtonian fluids. In this work we assume that the expansions are

well-behaved.

2.1.1 Linear analysis techniques

We choose our base flow to be steady and hence translation invariant in time.

We also take it to be translation invariant in one spatial direction x. Consid-

ering the invariance in these dimensions, we search for small perturbations

in the form of waves that travel in the x-direction.

In order to determine the stability of a base flow to arbitrarily small

disturbances, we use a linear stability analysis. If φ = ǫφ1 + O(ǫ2), then N

is O(ǫ2) or smaller. Substituting the base flow plus φ into the full equations,

we expand them in ǫ. The O(1) terms cancel exactly. We neglect O(ǫ2)

terms leaving just terms which are linear in the perturbation variables. This

gives an equation of the form

L1(R, ∂x, ∂y)[φ1] +
∂

∂t
L2(R, ∂x, ∂y)[φ1] = 0 .

This equation can be solved through separation of variables. Seeking a solu-
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tion of the form φ1(x, y, t) = ψ1(y) exp(ikx− iωt) + cc we find

L1(R, ik, ∂y)[ψ1] − iωL2(R, ik, ∂y)[ψ1] = 0 .

For fixed k only particular values of ω, the eigenvalues, yield a nontrivial

solution ψ1. The values of ω are generally found through numerical methods

described later.

If the imaginary part of ω is positive, the mode experiences exponential

growth in time for arbitrarily small perturbations: the flow is unstable. Per-

turbations grow until the nonlinear terms become important. To understand

the further growth, a nonlinear analysis is required.

Even if the imaginary parts of all eigenvalues ω are negative, we do not

have a guarantee of stability. Turbulence in a pipe or channel is well-known

to occur in flows that are linearly stable. Given sufficiently large initial dis-

turbances, the nonlinear terms may be large enough to prevent the solution

from returning to the base state, leading to finite amplitude instability. Alter-

nately, the existence of two (or more modes) with similar eigenfunctions may

result in transient growth so that even a small initial disturbance is amplified

until the nonlinear terms become important [95]. Finally, in systems with

infinitely many eigenvalues converging to a limit point, the transient growth

noted above may continue indefinitely. If the linearization does not provide

an analytic semigroup (as is the case for models of elastic fluids with mem-

ory such as Oldroyd–B) then all eigenvalues having negative imaginary part

does not guarantee linear stability (see example 4.2 of Pazy [75]). M. Re-

nardy has shown that linear stability for a single Oldroyd–B fluid follows

from all eigenvalues having negative imaginary part [81].

Note that this stability analysis assumes that the perturbation is uniform

in space, and grows in time. That is, we perform a temporal stability anal-

ysis. We could perform a spatial stability analysis, in which time and space

interchange roles. We would fix ω real and find complex values of k. If k has



2.2 The equations of motion 31

negative imaginary part, then perturbations grow downstream. We consider

only temporal stability.

2.2 The equations of motion

Our flows satisfy the inertialess incompressible Oldroyd–B equations (1.10)–

(1.14). At walls they satisfy no-slip conditions

U = Uwall . (2.1)

At interfaces they satisfy continuity of velocity

JUK = 0 , (2.2)

where J·K denotes a jump in the bracketed quantity across the interface.

There may be surface tension at the interface. The flows satisfy the condition

that there can be no net force acting on the (massless) interface

JΣK ·N = γκN , (2.3)

whereN is the unit normal into the upper (or outer) fluid, γ is the coefficient

of surface tension and κ = ∇ · N is the curvature of the interface. The

interface is a material surface, and so moves with the local velocity. Pipe

flows satisfy an additional constraint that they be regular at the center.

2.3 Planar channel flows

The base flow profiles we study in a planar channel are two-layer Couette

flow, shown in figure 2.1(a), and three-layer symmetric Poiseuille flow (the

planar analogue of core-annular pipe flow), shown in figure 2.1(b). We derive

our equations in a general form applicable to both flows before specializing

our equations to each.
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(a) Two elastic fluids in Couette flow U = U0y/L through a channel. The

fluids differ only in relaxation time τ .
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(b) Two elastic fluids in Poiseuille flow U = U0(1− y2/L2) through a channel.

The fluids differ only in relaxation time τ .

Figure 2.1: Two-dimensional base flows.

The velocity profile isU = (U(y), 0) with U(y) given by U(y) = U0y/L for

Couette flow and U(y) = U0(1−y2/L2) for Poiseuille flow, where L measures

the width of the channel for Couette flow or the half-width for Poiseuille flow

and y is the cross-channel coordinate. In steady rectilinear flow the history

of a material particle is constant and (∂t +U ·∇)A = 0. Thus equation (1.12)
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gives

A =

(

1 + 2τ 2U ′2 τU ′

τU ′ 1

)

.

From this we observe that the elastic stress includes an isotropic component

which behaves like pressure as well as a difference in the normal stresses,

A11 −A22 6= 0.

For the base flow the unit normal is N = (0, 1) and the curvature is zero.

The condition (JΣK ·N)2 = 0 implies that −P + (1 − β)µ/τ is continuous

at the interface, and so there is a jump in P across the interface to balance

the jump in 1/τ . There is a discontinuity of Σ11 at the interface, where the

value jumps by 2µ(1 − β)U ′2(τ2 − τ1).

For Couette flow, symmetry allows us to assume τ1 ≥ τ2 without loss of

generality, but we cannot make a similar assumption for Poiseuille flow.

2.3.1 Linear equations

We consider the effect of infinitesimal disturbances to the flow. These dis-

turbances change the velocity field U , the stresses Σ and (in general) the

interface location. We use lower case letters u, σ, e, a, and δ to denote

the complex perturbation to the velocity, stress, rate-of-strain tensor, elas-

tic strain, and interface location respectively. We take the corresponding

physical variables to be the real parts.

Because the base flow is independent of x and t, we make the standard

linear assumption that the perturbation quantities are small and proportional

to exp(ikx − iωt). We introduce a streamfunction, taking u = (Dψ,−ikψ)

to satisfy incompressibility automatically, where ‘D’ denotes differentiation

with respect to y.

The perturbed stress σ satisfies

σ = −pI + µ

(

2βe +
1 − β

τ
a

)

,
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where p is the perturbation to the pressure, a is the perturbation to A and

the perturbation to the rate of strain is

e =

(

ikDψ (D2 + k2)ψ/2

(D2 + k2)ψ/2 −ikDψ

)

.

The perturbed momentum equation ∇ · σ = 0 gives

ikσ11 + Dσ12 = 0 , (2.4)

ikσ12 + Dσ22 = 0. (2.5)

Taking the curl of the momentum equation and substituting for σ we find

the vorticity equation

β(D2 − k2)2ψ +
1 − β

τ
[ikD(a11 − a22) + (D2 + k2)a12] = 0 . (2.6)

The perturbation to the constitutive equation (1.12) gives

αa11 = 2U ′a12 + 2(1 + 2τ 2U ′2)ikDψ + 2τU ′D2ψ + 4τ 2U ′U ′′ikψ , (2.7)

αa12 = U ′a22 + D2ψ + (1 + 2τ 2U ′2)k2ψ + ikτU ′′ψ , (2.8)

αa22 = 2k2τU ′ψ − 2ikDψ , (2.9)

where α = −iω+ ikU +1/τ . At first glance the β → 0 limit of (2.6) appears

to lose its leading derivative of ψ. However, the D2a12 term contains (D4ψ)/α

and so the limit is not singular.

The no-slip boundary conditions (2.1) give

ψ = Dψ = 0 (2.10)

at the walls.

The interface is a material element, so δ satisfies

[−iω + ikU ]δ = −ikψ , (2.11)
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where U and ψ are evaluated at the location of the unperturbed interface.

Finally, the conditions at the interface (2.2), (2.3) give

JψK = 0 , (2.12)

JDψK = 0 , (2.13)
s
βD2ψ − 2ikU ′2τ(1 − β)δ +

1 − β

τ
a12

{
= 0 , (2.14)

s
β
i

k
D3ψ +

1 − β

τ

(

i

k
Da12 − a11 + a22

){
=
γk2

µ
δ , (2.15)

where we have used that fact that the perturbation to the normal to the

interface is n = (−ikδ, 0). These equations are equivalent to those of [104].

2.3.2 Two-layer Couette flow

The geometry of our Couette flow is shown in figure 2.1(a). For the base

flow, U ′ = U0/L and U ′′ = 0.

Non-dimensionalization

We use asterisks to denote non-dimensional variables and choose a rescaling

appropriate forWı = U0τ1/L≫ 1.

We non-dimensionalize each direction by a different length scale. In the

Wı ≫ 1 limit, the most appropriate measure of distance in the x-direction

proves to be U0τ1, the distance travelled in a relaxation time (of the lower

fluid). This gives the non-dimensional wavenumber

k∗ = U0τ1k .

For the cross-stream y-direction, we observe that fluid particles separated

by 1/kWı in the vertical will be separated by a wavelength 2πk−1 in the

horizontal after time 2πτ1. We use this length scale to non-dimensionalize
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the cross-stream direction, so

y∗ =Wı ky .

A side-effect of the y rescaling is that the wall position scales with k. This

choice of length scales differs from that used in previous work [17, 84, 104].

We rescale time with τ1 and so

τ ∗1 = 1 , τ ∗2 = ξ ≡ τ2/τ1 .

Without loss of generality 0 ≤ ξ ≤ 1. The values of ω and α become

ω∗ = τ1ω ,

α∗

1,2 = τ1α1,2 = −iω∗ + iy∗ + 1/τ ∗1,2 .

It is convenient to non-dimensionalize ψ to be

ψ∗ = ψk2τ1 = k∗2 ψ

U2
0 τ1

,

in which case

δ∗ = kδ .

Note that δ is non-dimensionalized with respect to a different length scale

from either x or y.

The corresponding pressure is

p∗ =Wı−3pτ1/µ .

The aij are already dimensionless, but they are not O(1) as Wı grows. To

ensure they appear at the correct order in the equations we set

a∗11 =Wı−3a11 ,

a∗12 =Wı−2a12 ,

a∗22 =Wı−1a22 .
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Figure 2.2: The Couette flow profile U = y/k in non-dimensional variables.

The capillary number is given by Ca ≡ U0µ/γ. We define the dimensionless

surface tension coefficient by

γ∗ = Ca−1Wı−3 .

AsWı → ∞, γ∗ tends to zero unless Ca = O(Wı−3).

Linear equations

We now drop the asterisks on the variables. The dimensionless flow profile

is given in figure 2.2.

The dimensionless momentum equations (2.4) and (2.5) are now

−p+Wı−22βDψ +
1 − β

τ
a11 − iD

(

β(D2 +Wı−2)ψ +
1 − β

τ
a12

)

= 0 ,

(2.16)

β(D2 +Wı−2)ψ +
1 − β

τ
a12 − iD

(

−Wı2p− 2iβDψ +
1 − β

τ
a22

)

= 0 .

(2.17)

The vorticity equation (2.6) becomes

β

(

D2 − 1

Wı2

)2

ψ+
1 − β

τ

[

iD
(

a11 −
a22

Wı2

)

+

(

D2 +
1

Wı2

)

a12

]

= 0 . (2.18)
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The constitutive equations (2.7)–(2.9) are

αa11 = 2a12 + 2i(2τ 2 +Wı−2)Dψ + 2τD2ψ , (2.19)

αa12 = a22 + (2τ 2 +Wı−2)ψ + D2ψ , (2.20)

αa22 = 2τψ − 2iDψ , (2.21)

with α = −iω + iy + 1/τ . The interfacial conditions (2.12)–(2.15) at y = 0

become

JψK = 0 , (2.22)

JDψK = 0 , (2.23)

−2i(1 − β) JτK δ + β
q
D2ψ

y
+ (1 − β) Ja12/τK = 0 , (2.24)

s
iβD3ψ +

1 − β

τ

(

iDa12 +
a22

Wı2
− a11

)

{
= γkδ . (2.25)

In our frame of reference, the base flow velocity is zero at the interface, so

the perturbed interface location equation (2.11) becomes

δ = ψ/ω . (2.26)

The no-slip boundary conditions (2.10) at the walls become

ψ = Dψ = 0 at y = (1 − ∆)k, −∆k . (2.27)

The wall locations explicitly depend on k. The only other appearance of the

wavenumber k is in the surface tension term in (2.25).

Equations (2.18)–(2.27) define the dimensionless eigenvalue problem. The

dimensionless parameters that remain are k, ξ, β, ∆, Wı and γ and so in

general ω = ω(k, ξ, β,∆,Wı, γ). We are primarily interested in the large Wı

limit. Equation (2.18) suggests that this is a regular limit, and that the

neglected terms are O(Wı−2). Section 3.1 shows more clearly that this limit

is regular. Because γ = Ca−1Wı−3, the surface tension is negligibly small at

largeWı unless Ca = O(kWı−3).
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Linear equations for Wı ≫ 1

At largeWı, the momentum equations become

i

(

−p+
1 − β

τ
a11

)

+ D

(

βD2ψ +
1 − β

τ
a12

)

= 0 , (2.28)

Dp = 0 . (2.29)

The vorticity equation becomes

βD4ψ +
1 − β

τ

(

iDa11 + D2a12

)

= 0 . (2.30)

We find that the y-momentum equation is satisfied provided that the pertur-

bation pressure p is uniform across the channel from (2.29). This reflects the

fact that the relaxation length scale is large compared to the channel width.

The vorticity equation (2.30) can be integrated once, the constant of inte-

gration being the x-dependent pressure gradient along the channel, and so

the flow is governed by the x-momentum equation (2.28). The constitutive

equations are

αa11 = 2a12 + 4iτ 2Dψ + 2τD2ψ , (2.31)

αa12 = a22 + 2τ 2ψ + D2ψ , (2.32)

αa22 = 2τψ − 2iDψ , (2.33)

where α = −iω + iy + 1/τ . The interfacial conditions become

JψK = 0 , (2.34)

JDψK = 0 , (2.35)

−2i(1 − β) JτK δ + β
q
D2ψ

y
+ (1 − β) Ja12/τK = 0 , (2.36)

s
iβD3ψ +

1 − β

τ
(iDa12 − a11)

{
= γkδ . (2.37)

We keep the surface tension term γkδ for use in section 3.4 where we consider

the possibility that kγ = kCa−1Wı−3 is not small. Elsewhere we take γ = 0.
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The displacement of the perturbed interface remains

δ = ψ/ω , (2.38)

and the no-slip boundary conditions at the walls remain

ψ = Dψ = 0 at y = (1 − ∆)k, −∆k . (2.39)

2.3.3 Three-layer symmetric Poiseuille flow

The geometry of our Poiseuille flow is shown in dimensional terms in fig-

ure 2.1(b). For the base flow, U ′ = −2yU0 and U ′′ = −2U0. We neglect

surface tension at the interface, so γ = 0.

If the perturbation is sinuous, ψ is an even function while ψ is odd if the

perturbation is varicose. If ψ is neither varicose nor sinuous, it can be ex-

pressed as a linear combination of a sinuous and a varicose mode. Therefore,

we can restrict our attention to the upper half of the channel, replacing the

no-slip condition at y = −L by a symmetry condition at y = 0

Dψ(0) = D3ψ(0) = 0 (sinuous),

ψ(0) = D2ψ(0) = 0 (varicose).

Non-dimensionalization

In this section we again use asterisks to denote dimensionless quantities.

We are interested in two regimes. In one, the base flow is effectively

Couette (in a sense made more precise in chapter 4), and in the other the

variation in the base flow shear rate is significant. The dimensionless cross-

stream lengths we use are

Y = τ1k[U0 − U(y)] (= τ1kU0y
2/L2) , (2.40)

η =

√
U0τ1k

L
y (=

√
Y ) . (2.41)
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Which variable is appropriate depends on whether the interface is close to the

center-line or not. The Y equations are useful for finding analytical results

when the interface is far from both the center-line and the wall so that both

boundaries can be ignored. The η equations are more useful for numerical

calculations and cases where the interface is close to the center-line.

We non-dimensionalize times by τ1 so that the inner fluid has relaxation

time τ ∗1 = 1. The outer fluid has relaxation time τ ∗2 = ξ = τ2/τ1. The

complex frequency ω becomes ω∗ = τ1ω, and α becomes α∗ = τ1α.

In the x-direction, we non-dimensionalize with the length scale U0τ1, rep-

resenting the distance the fluid travels during a relaxation time. Thus

k∗ = U0τ1k .

It is convenient to non-dimensionalize ψ so that

ψ∗ = ψk2τ1 = k∗2 ψ

U2
0 τ1

.

The interface perturbation δ is non-dimensionalized with respect to k

δ∗ = kδ .

The aij measuring elastic stress are already dimensionless, but for equa-

tions in terms of the Y variable, we rescale them as

b11 =
a11

(τ1U ′)3
,

b12 =
a12

(τ1U ′)2
,

b22 =
a22

τ1U ′
,

and in terms of the η variable we use

c11 = a11

(

kL2/U0τ1
)3/2

(= −b118η3) , (2.42)

c12 = a12

(

kL2/U0τ1
)

(= b124η
2) , (2.43)

c22 = a22

(

kL2/U0τ1
)1/2

(= −b222η) . (2.44)
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We note that ∂2
y = (τ1kU

′)2
[

∂2
Y − (U ′′/τ1kU

′2)∂Y

]

. This demonstrates

the importance of the term U ′′/τ1kU
′2 suggested in section 1.5.4. Where this

term is small, ∂2
y behaves like a scaled version of ∂2

Y , and the behavior is

locally similar to that seen in Couette flow. If this term is not small, new

effects are found. Note that regardless of the value of k, there is some region

where this term is large. For Poiseuille flow, U ′′/τ1kU
′2 = −1/2Y .

We now drop all asterisks and derive the equations in terms of both Y

and η in a form anticipating the largeWı limit.

Equations in terms of Y

The vorticity equation (2.6) becomes

β

1 − β
ψY Y Y Y +

1

τ
(−ib11,Y + b12,Y Y )

− 1

2Y

(

− β

1 − β
6ψY Y Y +

1

τ
(3ib11 − 5b12,Y )

)

+

(

1

2Y

)2(
β

1 − β
3ψY Y +

1

τ
2b12

)

+
k

Wı2Y 2

[

− 2β

1 − β
ψY Y +

1

τ
(b12 + ib22,Y )

− 1

2Y

(

2β

1 − β
ψY +

1

τ
ib22

)]

+
k2

Wı4Y 4

β

1 − β
ψ = 0 , (2.45)
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and the constitutive equations (2.7)–(2.9) become

αb11 = 2b12 − 4iτ 2ψY + 2τψY Y − 1

2Y
(−2τψY + 4iτ 2ψ)

+
k

Wı2Y 2
2iψY , (2.46)

αb12 = b22 + ψY Y + 2τ 2ψ − 1

2Y
(iτψ − ψY ) +

k

Wı2Y 2
ψ , (2.47)

αb22 = 2τψ + 2iψY , (2.48)

where α = −iω+ ik− iY +1/τ . The conditions (2.12)–(2.15) at the interface

Y = ∆2k are

JψKk∆2 = 0 , (2.49)

JψY Kk∆2 = 0 , (2.50)
s

β

1 − β
ψY Y − 2iτδ +

b12
τ

{

k∆2

+
1

2∆2k
JβψY Kk∆2 = 0 , (2.51)

s −iβ
1 − β

ψY Y Y − ib12,Y

τ
− b11

τ

{

k∆2

− 1

2∆2k

s
3iβ

1 − β
ψY Y +

2ib12
τ

{

k∆2

= − k

Wı2∆4k2

s
b22
τ

{
,

(2.52)

and the kinematic condition (2.26) becomes

[ω − k + ∆2k]δ = ψ . (2.53)

At the wall Y = k we use no-slip conditions (2.27)

ψ = ψY = 0 . (2.54)

There are difficulties translating the conditions at y = 0 into the Y variable

because ∂Y = −(1/τ1kU
′)∂y and U ′(0) = 0. This does not present an analyt-

ical difficulty because we only use Y variables when the interface is far from
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Figure 2.3: Poiseuille flow profile U = k − η2 in dimensionless variable η.

the center-line and the boundary conditions at y = 0 can be neglected. For

this reason we do not use the Y form of the equations in numerics.

If we neglect O(kWı−2) and O(Y −1) terms in (2.45)–(2.54) we arrive at

equations identical to those derived above for Couette flow (2.30)–(2.39)

except for some sign changes reflecting a different sign of the shear rate.

However, at large Wı our solution involves algebraic terms. For these terms

∂Y scales like 1/Y and so we cannot neglect the O(Y −1) terms without

changing the algebraic terms in the solution. If Y is large at the interface,

we will find that the value of ω is the same as in Couette flow. However,

there are qualitative differences in the structure of the eigenmode.

The complex frequency ω appears only in α and the kinematic boundary

condition (2.53) in the combination ω − k. If ω = k + O(1) as k → ∞,

then k disappears from α and the kinematic boundary condition. Further,

as k → ∞, the wall is far from the interface and is expected to have little

influence. Finally, if we further assume that k ≪Wı2, then the only remaining

parameters are ∆k1/2, ξ, and β.
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Equations in terms of η

We show the dimensionless flow profile in terms of η in figure 2.3. The η

variable is appropriate if the interface is close to the center-line so that η =

∆k1/2 = O(1) at the interface. The resulting equations are not significantly

simplified from the full equations. We are not able to make much analytic

progress with them, but they are useful for numerical purposes. The vorticity

equation (2.6) becomes

β

1 − β
ψηηηη +

1

τ
(c12,ηη + ic11,η)

+
k

Wı2

(

β

1 − β
(−2ψηη) +

1

τ
(c12 − ic22,η)

)

+
k2

Wı4
β

1 − β
ψ = 0 , (2.55)

while the constitutive equations (2.7)–(2.9) become

αc11 = −4ηc12 + 16iτ 2η2ψη − 4τηψηη + 16iτ 2ηψ +
k

Wı2
2iψη , (2.56)

αc12 = −2ηc22 + ψηη + 8τ 2η2ψ − 2iτψ +
k

Wı2
ψ , (2.57)

αc22 = −4τηψ − 2iψη , (2.58)

where α = −iω + ik − iη2 + 1/τ . At the interface η = ∆k1/2

JψK∆k1/2 = 0 , (2.59)

JψηK∆k1/2 = 0 , (2.60)
s

β

1 − β
ψηη − 8i∆2kτδ +

c12
τ

{

∆k1/2

= 0 , (2.61)

s
β

1 − β
iψηηη +

ic12,η

τ
− c11

τ

{

∆k1/2

= − k

Wı2

rc22
τ

z
, (2.62)

and the kinematic condition (2.26) becomes

[ω − k + ∆2k]δ = ψ . (2.63)
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Figure 2.4: Core-annular pipe Poiseuille flow U = U0(1 − r2/R2).

The boundary conditions at the wall η = k1/2 are

ψ = ψη = 0 , (2.64)

while the conditions at the center-line η = 0 become

ψη = ψηηη = 0 (sinuous) , (2.65)

ψ = ψηη = 0 (varicose) . (2.66)

At largeWı, the wavenumber k can be eliminated from the problem except

for determining the location of the interface and the walls. If η is large at the

interface, we can recover the Y equations locally and find the same stability

condition as in Couette flow.

2.4 Core-annular pipe flow

We consider core-annular flow through a pipe of radius R as shown in fig-

ure 2.4. We use (r, θ, z) cylindrical polar coordinates. For reference, we write

out the divergence of stress and velocity in cylindrical coordinates (following



2.4 Core-annular pipe flow 47

Table A.7-2 of [6]). Using the fact that Σ is symmetric, ∇ · Σ = 0 becomes

1

r
∂r(rΣrr) +

1

r
∂θΣrθ + ∂zΣrz −

Σθθ

r
= 0 , (2.67)

1

r2
∂r(r

2Σrθ) +
1

r
∂θΣθθ + ∂zΣθz = 0 , (2.68)

1

r
∂r(rΣrz) +

1

r
∂θΣθz + ∂zΣzz = 0 . (2.69)

For U = (Vr, Vθ, Vz), incompressibility ∇ ·U = 0 becomes

1

r
∂r(rVr) +

1

r
∂θVθ + ∂zVz = 0 . (2.70)

The inner fluid occupies the region 0 ≤ r ≤ ∆R and the outer fluid ∆R <

r < R. For the base flow, U = (0, 0, U(r)) where U(r) = U0(1− r2/R2), and

A is given by

A =









1 0 τU ′

0 1 0

τU ′ 0 1 + 2τ 2U ′2









.

We assume that the perturbation flow is proportional to exp(ikz+imθ−iωt).
The value of m must be an integer, and can be assumed non-negative. The

pipe analogues of varicose and sinuous modes in a channel are axisymmetric

(m = 0) and cork-screw (m = 1) modes respectively. We do not consider m >

1. As before, we use lower-case letters to denote the perturbed quantities.

In particular, vr, vθ and vz denote the r, θ and z components of velocity. For

axisymmetric perturbations, the azimuthal components decouple and may be

neglected or considered separately (see section 5.1). We can then introduce

a streamfunction. For cork-screw perturbations, all components of velocity

are coupled, and there is no streamfunction.

We choose our non-dimensionalization motivated by the η equations of
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channel Poiseuille flow. We take

t∗ =
t

τ1
, z∗ =

z

U0τ1
, r∗ =

(U0τ1k)
1/2

R
r ,

v∗r = vrτ1k , v∗θ = vθτ1k , v∗z = vz
Rk2τ1

(U0τ1k)1/2
,

τ ∗ =
τ

τ1
, ω∗ = ωτ1 , α∗ = τ1α = −iω∗ + ik∗ − ir∗2 +

1

τ ∗
,

δ∗ = kδ , k∗ = U0τ1k , p∗ = p
τ1
µ

(

R2k

U0τ1

)3/2

.

We scale the components of the perturbed elastic stress by

a∗rr = arr

(

R2k

U0τ1

)1/2

, a∗rθ = arθ

(

R2k

U0τ1

)1/2

, a∗θθ = aθθ

(

R2k

U0τ1

)1/2

,

a∗rz = arz
R2k

U0τ1
, a∗θz = aθz

R2k

U0τ1
,

a∗zz = azz

(

R2k

U0τ1

)3/2

.

The Weissenberg number isWı = U0τ1/R and so R2k/U0τ1 = k∗/Wı2.

We drop asterisks and set D ≡ ∂r. The perturbation of the incompress-

ibility condition (2.70) becomes

1

r
D(rvr) +

im

r
vθ + ivz = 0 (2.71)

The components of the perturbation of the momentum equation (2.67)–(2.67)

become

D

(

−Wı2

k
p+

arr

τ

)

+
1

r

arr

τ
+ im

arθ

τ
+ i

arz

τ
− 1

r

aθθ

τ
= 0 , (2.72)

1

r2
D
(

r2arθ

τ

)

+
im

r

(

−Wı2

k
p+

aθθ

τ

)

+ i
aθz

τ
= 0 , (2.73)

1

r
D
(

r
arz

τ

)

+
im

r

aθz

τ
+ i
(

−p+
azz

τ

)

= 0 . (2.74)
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The perturbation constitutive equations become

αarr = 2Dvr − 4irτvr , (2.75)

αarθ =
im

r
vr + Dvθ −

vθ

r
− 2iτrvθ , (2.76)

αaθθ =
2

r
(imvθ + vr) , (2.77)

αarz = −2rarr − 2τrDvr + 8iτ 2r2vr (2.78)

+ Dvz − 2iτrvz + 2τvr +
k

Wı2
ivr ,

αaθz = −2rarθ − 2τrDvθ + 8iτ 2r2vθ +
im

r
vz + 2τvθ +

k

Wı2
ivθ , (2.79)

αazz = −4rarz − 4τrDvz + 16iτ 2r2vz − 16τ 2rvr +
k

Wı2
2ivz , (2.80)

where α = −iω + ik − ir2 + 1/τ . At the interface we have continuity of

velocity

JvrK∆k1/2 = 0 , (2.81)

JvθK∆k1/2 = 0 , (2.82)

JvzK∆k1/2 = 0 , (2.83)

as well as the condition that no net force acts on the massless interface
s
−p +

k

Wı2
arr

τ

{

∆k1/2

= 0 , (2.84)

rarθ

τ

z
∆k1/2

= 0 , (2.85)
r
−8iτδr2 +

arz

τ

z
∆k1/2

= 0 . (2.86)

Note that this is independent ofm. If the constitutive equation had a nonzero

second normal stress difference N2, then there would be m dependence. The

perturbed interface location is given by the kinematic condition

[−iω + ik − ir2]δ = vr . (2.87)
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Boundary conditions

At the walls we apply no-slip boundary conditions, and so at r = k1/2

vr = 0 , (2.88)

vθ = 0 , (2.89)

vz = 0 . (2.90)

The boundary conditions we apply at the origin differ for m = 0 or

m = 1. These conditions are discussed in more detail by Preziosi et al. [61].

For m = 0, incompressibility (2.71) implies

vr(0) = 0 (m = 0) . (2.91)

Assuming the streamwise perturbation velocity is smooth at r = 0, we find

Dvz(0) = 0 (m = 0) . (2.92)

This condition can also be derived by assuming that the solution is regular

and matching powers of r as r → 0. We take an additional constraint on vθ

that

vθ(0) = 0 (m = 0) . (2.93)

For m = 1, the incompressibility condition (2.71) gives

∂vr

∂r
= −vr + ivθ

r
− ivz

and so

vr(0) = −ivθ(0) (m = 1) . (2.94)

This condition may be derived alternately by considering uniform flow across

the center-line in polar coordinates. Since both vz and p represent physical

variables which cannot depend on θ at r = 0, we can further conclude

vz(0) = 0 (m = 1) , (2.95)

p(0) = 0 (m = 1) . (2.96)
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As in Poiseuille channel flow, we can eliminate k from the problem except

for determining the location of the interface and the cylinder wall. Assuming

that the location of the wall is unimportant, we can use the substitution

Ω = ω − k and then k and ∆ both appear only in the combination ∆k1/2.

2.4.1 Axisymmetric (m = 0) linear equations

If m = 0, the equations involving vθ, arθ and aθz [equations (2.73), (2.76),

(2.79), (2.82), (2.85), (2.89), and (2.93)] have no effect on the remaining

equations. Consequently we can drop these from equations (2.71)–(2.92).

We introduce a streamfunction to automatically satisfy incompressibility,

rvz =
∂

∂r
ψ ,

rvr = −iψ .

TakingWı2/k times the derivative of equation (2.74) and subtracting i times

equation (2.72) eliminates the pressure and yields the vorticity equation

D

(

1

r
D(rarz)

)

+ iDazz −
k

Wı2
i

(

1

r
D(rarr) + iarz −

1

r
aθθ

)

. (2.97)

The perturbed constitutive equations (2.75)–(2.80) become

αarr = −2iD

(

ψ

r

)

− 4τψ , (2.98)

αaθθ = −2i

r2
ψ , (2.99)

αarz = −2rarr + 2iτrD

(

ψ

r

)

+ 8τ 2rψ + D

(

1

r
Dψ

)

− 2iτDψ

− 2iτ
ψ

r
+

k

Wı2
ψ

r
, (2.100)

αazz = −4rarz − 4τrD

(

1

r
Dψ

)

+ 16iτ 2D(rψ) +
k

Wı2
2i

r
Dψ . (2.101)
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Boundary conditions

At the interface r = ∆k1/2 the equations of continuity of velocity (2.81)

and (2.83) become

JψK = JDψK = 0 . (2.102)

The force balances (2.84) and (2.86) become

s
−azz

τ
+
i

τ

(

Darz +
arz

∆k1/2

)

+
k

Wı2
arr

τ

{

∆k1/2

= 0 , (2.103)

r
−8iτδ∆2k +

arz

τ

z
∆k1/2

= 0 . (2.104)

and the kinematic condition (2.87) gives

[ω − k + ∆2k]δ =
ψ

∆k1/2
. (2.105)

At the walls we have no-slip conditions (2.88) and (2.90)

ψ = 0 , (2.106)

Dψ = 0 . (2.107)

The conditions at the center-line (2.91) and (2.92) are more intricate.

We need two boundary conditions, and it is easily shown (by considering vz)

that both ψ and ψ′ are zero. This is not sufficient to uniquely determine the

solution for either a Newtonian or an elastic fluid, though it has been used

(incorrectly) in the literature [23, 69] without significantly affecting results.

There is a singular solution which has Dψ ∼ r ln r as r → 0, and so the

correct conditions at the origin are frequently given as: ψ/r and (Dψ)/r

remain finite as r → 0 [25]. We find it simpler to apply the equivalent

condition that

ψ = a2r
2 + a4r

4 + · · · (2.108)

at small r. This is discussed further in appendix A.2.5.
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2.4.2 Cork-screw (m = 1) linear equations

When m is nonzero, we do not have a simplification analogous to a stream-

function. Consequently, we must solve the full set of equations (2.71)–(2.90)

with m = 1 and the conditions at the origin (2.94)–(2.96).

2.5 The spectrum

The spectrum is defined (for our purposes) to be the set of eigenvalues ω.

The structure of the spectrum for inertialess UCM and Oldroyd–B fluids in

one and two-layer flow at finiteWı has been discussed in detail by Wilson et

al. [107] and Kupferman [50]. We briefly summarize their results here.

For UCM fluids there is a continuous spectrum consisting of those points

at which α = 0, along with a finite number of discrete eigenvalues. The

continuous spectrum results from a singularity in the constitutive equations.

It has negative growth rate, with two distinct branches satisfying ℑ[ω] = −1

and ℑ[ω] = −1/ξ corresponding to the two different fluids. Both continuously

differentiable and distribution-valued eigenfunctions have been found in the

continuous spectrum. The number of discrete eigenvalues changes with k, as

eigenvalues enter or leave the continuous spectrum.

For the Oldroyd–B fluid the spectrum consists of a UCM part as above,

along with an additional continuous spectrum and some new discrete eigen-

values. The new part of the continuous spectrum also has two branches, but

results from a singularity in the momentum equation. Its location can be

found by substituting for the stresses in the momentum equation in terms of

ψ and setting the coefficient of the leading derivative of ψ to zero. We find

ℑ[ω] = −1/β and ℑ[ω] = −1/βξ for these branches.
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2.6 Numerical methods

We use two methods to solve the linear eigenvalue problem: shooting and

a Chebyshev spectral method. We use parameter continuation to follow

modes as k, ∆, ξ, or β change. Because eigenvalues can enter (or leave) the

continuous spectrum, it is therefore possible that some eigenvalues have not

been considered.

The two algorithms give results consistent with asymptotic results at

small and large k, with calculated results from previous work, and with each

other. The details of the implementations and tests of the numerics are

described in appendix A. In this section we focus on issues that affect our

ability to find or follow modes.

2.6.1 The shooting algorithm

The shooting algorithm uses a variable step-size Runge–Kutta integration

routine combined with Newton–Raphson iteration, both from Numerical

Recipes [77]. It has several weaknesses. The code can fail by reporting a

false result, by failing to converge, or by converging to a different eigenvalue.

We eliminate the false eigenvalues by testing the eigenvalue with an addi-

tional calculation at higher resolution. Where the algorithm fails, we are

unable to follow that eigenvalue. The results of losing the most dangerous

mode (i.e., the mode with most positive or least negative growth) are seen

in a number of our figures (e.g., figures 3.5, 4.5, and 4.9). We describe below

the regions of parameter space for which shooting fails.

At large values of k, the problem has multiple length scales. Small inac-

curacies affect the integration and convergence fails. For ξ < 1 the algorithm

fails first as k → ∞ when ∆ is large. When k is small, the eigenvalue of

the most dangerous mode tends to zero like k2. Its basin of attraction in

the Newton–Raphson algorithm shrinks and so if k is small the initial guess
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must be very close to avoid converging to a different value. For ξ < 1 the

algorithm fails first as k → 0 when ∆ is small.

Consequently, for some parameters we do not find the most dangerous

eigenvalue, and could potentially misreport some regions of parameter space

as stable when in fact they are unstable.

2.6.2 The spectral algorithm

In our spectral method we express each physical variable as a sum of ap-

proximately (see appendix A.1.2) N Chebyshev polynomials. The system of

governing equations can then be written in the form C1x = iωC2x, where

C1 and C2 are square matrices, C2 is non-negative and diagonal, and x is

the vector of coefficients. The eigenvalues are found using Matlab’s eig and

eigs routines which use the QZ algorithm from LAPACK and the Implicitly

Restarted Arnoldi Method from ARPACK respectively. The spectral meth-

ods can generally handle larger and smaller values of k than the shooting

algorithm.

The continuous spectrum appears as a balloon of eigenvalues which shrinks

as the number of polynomials per variable is increased [107]. This can be

seen in figure 2.5. If a discrete eigenvalue lies within the balloon, it becomes

difficult to identify. We must increase the number of polynomials in order to

see it. In some of our calculations we have needed C1 and C2 to be 2000×2000

in order to resolve the unstable modes. Some parameter values require higher

resolution, but we are limited by computer memory.
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Figure 2.5: The spectrum for UCM Couette flow with ξ = 0.5, k = 200

and ∆ = 0.5 at infiniteWı. The continuous spectrum is composed of the line

segments between −100 − 2i and −2i and between −i and 100 − i. Each

branch is surrounded by a balloon whose width decreases as N increases.

The discrete eigenvalues do not move significantly, but may be obscured by

the balloon until N is large.



Chapter 3

Stability of Couette flow

In this chapter we study instabilities of inertialess Couette flow with a single

interface. The dimensionless flow profile is given in figure 3.1. This problem

has received considerable attention, particularly in the short-wave limit [104,

84] in which the wavelength is short compared to the channel width, and also

in the long-wave limit [103, 27] in which the wavelength is long compared to

the channel width. These studies implicitly assume that the wavelength is

also short or long compared to the relaxation length scale Uτ . In this chapter

we investigate alternate scalings in which the wavelength is intermediate

between the channel width and the relaxation length scale.

The chapter is organised as follows. In section 3.1 we give the analytic

solution for the streamfunction for an Oldroyd–B fluid at arbitraryWı, as well

as the limiting cases ofWı → ∞ and/or β → 0 (a UCM fluid). In section 3.2

we asymptotically solve the stability problem for two UCM fluids in the

fast flow regime Wı ≫ k ≫ 1 for which the relaxation length scale is long

compared to the wavelength which is in turn long compared to channel width,

and numerically solve the problem at finite values of k. In section 3.3 we show

numerically that Oldroyd–B fluids also have instability for Wı ≫ k ≫ 1. In

section 3.4 we find a simple corollary of our result for large Wı UCM flow,
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Figure 3.1: Couette flow profile U = y/k. Without loss of generality we take

0 ≤ ξ ≤ 1.

showing that arbitrarily large surface tension does not affect the growth of

the instability. We verify this numerically for UCM and Oldroyd–B fluids.

We find a similar result at finiteWı. Section 3.5 gives a physical explanation

of some of the unusual features of this instability. In section 3.6 we discuss

a new instability found for the Oldroyd–B fluid at intermediate values of k,

which does not fit cleanly into any of our classifications. Finally, in section 3.7

we briefly investigate the limit in which the channel width is long compared

to the wavelength, which in turn is long compared to the relaxation length

scale and show that the analysis of other authors [84, 104] may be extended

to this case.

3.1 Analytic solutions

We use this section to derive the analytic form of the streamfunction in

general and in various asymptotic limits which will be needed later.

For the UCM fluid (β = 0) Gorodtsov and Leonov [31] explicitly found

the streamfunction ψ solving (2.18)–(2.21) by substituting for the aij into
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the vorticity equation (2.18). They found that the resulting operator factors

as
(

α2D2 − 2iαD − 2 − α2

Wı2

)(

D2 + 2iτD − 2τ 2 − 1

Wı2

)

ψ = 0 ,

where α = −iω+ iy+1/τ . For the Oldroyd–B fluid we have additional terms

and the operator becomes

α3sτ

(

D2 − 1

Wı2

)2

ψ

+

(

α2D2 − 2iαD − 2 − α2

Wı2

)(

D2 + 2iτD − 2τ 2 − 1

Wı2

)

ψ = 0 , (3.1)

where s = β/(1 − β).

Remarkably, the Laplacian squared which gives rise to the differential

operator (D2 −Wı−2)2 is not uniquely factorizable. It can be factored in

a variety of manners, one of which allows us to re-express the Oldroyd–B

operator as

(

α2D2 − 2iαD − 2 − α2

Wı2

)(

[sτα + 1]D2 + 2iτD − 2τ 2 − sτα + 1

Wı2

)

ψ = 0

(3.2)

(recall Dα = i). It is clear from this equation that the Wı → ∞ limit is

regular. We use this form to find the explicit solution

ψ(y) = C1(y − ω) exp(y/Wı) + C2(y − ω) exp(−y/Wı)

+ C3 exp(y/Wı)M
(

1

s
(1 + iτWı),

2

s
,
2i

Wı
(α+ 1/sτ)

)

(3.3)

+ C4 exp(y/Wı)U
(

1

s
(1 + iτWı),

2

s
,
2i

Wı
(α+ 1/sτ)

)

,

where M and U are Kummer’s functions [1]. This solution is equivalent to

one found by Wilson et al. [107]. In practice we do not find this solution to

be useful for our stability problem and turn instead to numerics to solve the

equations (2.18)–(2.27).
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The solution of (3.2) in the β = 0 limit found by Gorodtsov and Leonov [31],

ψ(y) = C1(y − ω) exp(y/Wı) + C2(y − ω) exp(−y/Wı)

+ C3 exp

[

τy

(

−i−
√

1 +
1

τ 2Wı2

)]

(3.4)

+ C4 exp

[

τy

(

−i+
√

1 +
1

τ 2Wı2

)]

,

is more useful for asymptotic analysis. From this solution we see that the

different terms have different dependence onWı. IfWı is large (but less than

the dimensionless channel width k) there are two boundary layers at the

interface, one with width of order unity and another with width of orderWı.

If Wı is large compared to k and 1, the exponentials exp(±y/Wı) are re-

placed by algebraic terms, reflecting the fact that the corresponding bound-

ary layer has become large compared to the channel width. The solution at

largeWı for the Oldroyd–B fluid is

ψ(y) = C1(y − ω) + C2y(y − ω)

+ C3

(

α +
1

sτ

)
s−2

2s

J s−2

s

(

2i
√

2
(−1 − α)1/2

s

)

+ C4

(

α +
1

sτ

)
s−2

2s

Y s−2

s

(

2i
√

2
(−1 − α)1/2

s

)

, (3.5)

where J and Y are Bessel functions [1]. For a UCM fluid (β = 0) at large

Wı we find

ψ(y) = C1(y − ω) + C2y(y − ω) + C3e
(−1−i)τy + C4e

(1−i)τy. (3.6)
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3.2 UCM fluids (β = 0) at large Weissenberg

number

We first consider the UCM fluid neglecting both surface tension (i.e., setting

γ = 0) and O(1/Wı2) terms from (2.18)–(2.27). The solution for ψ from (3.6)

is

ψ(y) = C±

1 (y − ω) + C±

2 y(y − ω) + C±

3 e
(−1−i)τ1,2y + C±

4 e
(1−i)τ1,2y (3.7)

where ± denotes the solution on either side of the interface.

3.2.1 Asymptotic results for Wı ≫ k ≫ 1

When k is also large, we can approach the problem asymptotically.

The exponential terms in (3.7) have a length scale of order unity, but the

walls are at asymptotically large distances of order k from the interface. In

consequence, for the upper fluid (y > 0) the coefficient C+
4 must be exponen-

tially small otherwise the corresponding term would be exponentially large

near the wall. Thus it is negligible close to the interface. Similarly, the C+
3

term is negligible close to the wall.

We now find C+
2 in terms of C+

1 . As k → ∞, the two boundary conditions

at the wall ψ = Dψ = 0 are satisfied by

C+
1 (y − ω) + C+

2 y(y − ω) + C+
4 e

(1−i)ξy

at y = (1 − ∆)k ≫ 1. Some algebra shows that at leading order in k

C+
1 = k(∆ − 1)C+

2 ,

and a similar argument at the bottom wall gives

C−

1 = k∆C−

2 .
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Thus C±

2 are much smaller than C±

1 .

Applying the interfacial conditions (2.24)–(2.26) and neglecting the ex-

ponentially small terms involving C−

3 and C+
4 , we find Mv = 0 where v =

[C−

1 , C
−

4 , C
+
1 , C

+
3 ]T and

M =













0 2ω2+2iω+ω+i
ω(ω+i)2

0 2ξ ξ2ω2+2iξω−ξω−i
ω(ξω+i)2

− 2
∆

0 2ξ
∆−1

0

1 (1 − i) −1 (1 + i)ξ

−ω 1 ω −1













, (3.8)

to leading order in k. The first and second rows arise from the x- and y-

components of the force balance respectively while the third and fourth rows

come from the x- and y-components of continuity of velocity respectively.

We seek ω such that det(M) = 0. We replace the fourth row of M with the

sum of the fourth row and ω times the third row. The rows are linearly de-

pendent if and only if the first and (new) fourth rows are linearly dependent.

That is, det M = 0 if and only if det(N) = 0 where

N =

(

2ω2+2iω+ω+i
ω(ω+i)2

2ξ ξ2ω2+2iξω−ξω−i
ω(ξω+i)2

1 + ω(1 − i) −1 + ωξ(1 + i)

)

. (3.9)

The combination of rows used to arrive at the second row of N represents

continuity of the material derivative of the x-component of velocity at the

interface, henceforth referred to as the continuity of tangential acceleration

condition. The flow generated by ψ = C±

1 (y − ω) has the unusual property

that the x-component of velocity for a material particle does not change: the

Eulerian derivative at a point is balanced by the change in the base flow due

to advection in the y-direction

D(U + u)

Dt
=
DU

Dt
+
Dψ′

Dt

= ikψU ′ + ik(U − c)ψ′

= 0 ,



3.2 LargeWı UCM instability 63

0  0.2 0.4 0.6 0.8 1  
−0.15

−0.1 

−0.05

0    

0.05 

0.1  
Linear Growth Rate at k=∞

ξ

Im
[ω

]

ξ
c
 

(a) Linear growth rate.

0 0.2 0.4 0.6 0.8 1
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

ξ

R
e[

ω
]

Re[ω] at k=∞

(b) Real part of ω.

Figure 3.2: Imaginary and real parts of ω solving equation (3.10) as ξ changes.

where c = ω/k. Because ψ is proportional to U − c, we will see in chapter 4

that this result holds even in different flow profiles.

Consequently the coefficients C±

1 cancel exactly and do not appear in the

second row of N. They similarly drop out of the tangential force balance

and thus do not affect the condition for stability. The two terms that decay

exponentially away from the interface (C−

4 and C+
3 ) are the only terms that

can be used to satisfy the pair of tangential interfacial conditions.

We can arbitrarily set C−

4 , leaving two conditions to be satisfied by a

single unknown C+
3 , which is possible when ω is an eigenvalue. The remaining

coefficients are used to satisfy the other interfacial and boundary once C−

4 and

C+
3 are fixed. The C±

1 algebraic terms fix the normal interfacial conditions,

and the remaining algebraic (C±

2 ) and exponential (C−

3 , C+
4 ) terms are used

to satisfy the conditions at the walls. Significantly, this means that the

stability is entirely determined by effects within the boundary layer at the

interface. Thus when k is large, ω is independent of ∆ and depends only on

ξ.
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After some algebra the determinant of N yields:

2ξ3ω5 + (ξ3 + 4iξ3 − ξ2 + 4iξ2)ω4 + (−2ξ3 − 8ξ2 − 2ξ)ω3

+ (−2ξ − iξ3 − 3iξ2 − 3iξ − i+ 2ξ2)ω2 (3.10)

+ (2ξ2 − 2ξ + ξ2i+ 2 − i)ω − ξ + 1 = 0 .

Because this is a quintic equation there are five modes which have the same

asymptotic scaling. Equation (3.10) is identical to the large Wı limit of Re-

nardy’s [84] result which assumes the perturbations decay before reaching

the wall. This assumption is inappropriate for the channel flow studied here.

The fact that the result is unchanged is remarkable because it implies that

the growth rate of the instability is unaffected by the presence of the channel

walls even though the mode structure is changed.

The neutral stability boundary occurs when ω is real. The only ξ allowing

real ω are ξ = 1 and ξ = ξc ≈ 0.27688. Between these values the imaginary

part of ω is positive, and below this range it is negative. The zero at ξ = 1

occurs because this corresponds to the two fluids having identical properties.

It is a quadratic zero because there is a symmetry in the problem: ξ > 1

corresponds to interchanging the two fluids and so in the large k limit, the

growth rate must have the same sign on either side of ξ = 1. The real and

imaginary parts of the most dangerous root for ω are plotted in figure 3.2.

For ξ = 0.5, equation (3.10) gives ω ≈ −.30544 + .06603i. Thus at large

k we expect an instability with growth rate about 0.06603 and wavespeed

about −0.30544/k. Both limits are clear in figure 3.3 where we have solved

the Wı → ∞ problem (2.30)–(2.39) numerically with ξ = 0.5 and ∆ = 0.7

for a range of k. The growth rate overshoots the prediction for moderate

k but decreases towards it as k → ∞. Figure 3.4 shows the corresponding

perturbation flow at k = 30. Note that it occupies the full width of the

channel with boundary layers at the interface and the wall.
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Figure 3.3: Growth rates and wave speeds calculated from (2.28)–(2.39) com-

pared with the large k asymptotic predictions (dotted) for ξ = 0.5, ∆ = 0.7.
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Figure 3.4: Unstable mode for ξ = 0.5, ∆ = 0.7, and k = 30. The value of

ω is −0.3000 + 0.0766i. There are boundary layers close to the interface and

the walls. The magnitude of the flow is comparable throughout the channel.
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(b) ξ = 0.2. Just below ξc short-

waves are stable, but the unstable

tongue has grown much larger.
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(c) ξ = 0.3. Just above ξc, short-

waves are unstable and the insta-

bility persists down to k ≈ 5.
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unchanged from ξ = 0.3.

Figure 3.5: Marginal stability curves in (∆, k) space for Wı → ∞ at fixed

values of ξ. The noisy areas for large k or small ∆ correspond to regions of

numerical difficulties.

3.2.2 Stability for Wı ≫ 1 and general k

To illustrate the stability boundary for general k, we fix ξ and allow ∆ and k

to vary. Figure 3.5 shows the marginal stability curves in (k,∆) space. For
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k → 0 the wavelength is long compared to both the width and the relaxation

length scale, so this is a special case of previous long-wave analysis [103, 27]

with instability if ∆ < 0.5. If ξ > ξc ≈ 0.28 we have shown there is an

instability as k → ∞. Both limits are clear in figure 3.5. For ξ < ξc, there

is an unstable tongue for moderate k which grows as ξ → ξc, filling most of

the plot for ξ = 0.2.

The overshoot in figure 3.3 and the tongues in figures 3.5(a) and (b) both

show that the growth rate overshoots the large k prediction when k is mod-

erate. This suggests that the next correction in k as k → ∞ is destabilizing.

3.3 Oldroyd–B fluids (β > 0) at high Weis-

senberg number

We consider here whether the Wı ≫ k ≫ 1 interfacial instability we have

found for UCM fluids persists for Oldroyd–B fluids. In section 3.6 we discuss

the existence of another instability at largeWı for intermediate values of k.

Because C1(y − ω) remains part of solution (3.5) even in the presence

of Newtonian viscosity the remarkable coincidence that C1 drops out of the

tangential force and tangential acceleration condition at the interface remains

true regardless of β. Thus if C2 is small the algebraic terms again drop out

and the stability is determined entirely by the two tangential conditions in

the interfacial boundary layer.

Wilson and Rallison [104] asymptotically studied the k → ∞, β → 1

limit for Oldroyd–B fluids with moderate Wı. In this limit the perturbation

flow decays away from the interface and the walls can be neglected. They

showed that for β close to 1 there is instability for all ξ, with the growth rate

tending to zero like (1 − β)3 as β approaches 1. It is known from the UCM

results of Renardy [84] that there are values of ξ with stability if β = 0 and
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Wı is large enough. Using a shooting algorithm Wilson and Rallison found

stability for β as large as 0.11, and postulated that this is the critical value

of β at which stability is no longer possible.

When Wı is larger than k, their analysis breaks down because the walls

lie within the boundary layer. Asymptotics become difficult, and so we have

turned to numerics instead. The governing equations we use are (2.30)–

(2.39).

Setting ∆ = 0.5 we fix k = 30, 60, 120 and follow the growth rate in (β, ξ)

space in figure 3.6. At k = 30, there is stability if both ξ and β are small,

shown in figure 3.6(a). As k grows, this region increases in size marginally.

The stable region exists for β up to (at least) 0.2. This extends the stable

region found by Wilson and Rallison [104].

If either β or ξ is sufficiently large, the flow is unstable. For fixed β and

ξ, the growth rate tends to a finite limit as k → ∞, but as β grows, the value

of k at which the limit is seen increases.

In the limit β → 1, the fluids become identical Newtonian fluids and so

the growth rate must tend to zero. That is, for fixed k and ξ, limβ→1 ℑ[ω] = 0.

Our calculations suggest that the growth rate scales like (1 − β)3. However,

figure 3.6 suggests that for fixed ξ limβ→1 limk→∞ℑ[ω] 6= 0: the limit is

singular. This is different from theWı ≪ k case in [104].

To observe the structure of the unstable mode when the fluids are almost

entirely Newtonian, we take ξ = 0.5, ∆ = 0.7, β = 0.99 and k = 2000.

The perturbation flow is shown in figure 3.7. The boundary layers at the

wall have effectively disappeared. There are still boundary layers close to

the interface, but their structure has changed.



3.4 The effect of surface tension 69

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

β

ξ

Marginal stability curve for ∆ = 0.5,  k=30

Unstable 

Stable 

(a) The marginal stability curve at

k = 30.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

β

ξ

Linear growth rates for ∆ = 0.5,  k=30

0 

0.1 

0.2 

(b) The growth rate at k = 30.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

β

ξ

Linear growth rates for ∆ = 0.5, k=60

0.3 

0.2

0.1 

0 

(c) The growth rate at k = 60.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

β

ξ

Linear growth rates for ∆ = 0.5, k=120

0.1 

0.2 

0.3 

0.4 

0 

−0.1 

(d) The growth rate at k = 120.

Figure 3.6: Growth rate contours in the (β, ξ) plane for Oldroyd–B fluids

with ∆ = 0.5, for k = 30, 60, and 120. The lower left corner is the only

region of stability. If either ξ = 1 or β = 1, the two fluids are identical, and

the growth rate is zero. For β = 0 (UCM) the k → ∞ asymptotic results

from equation (3.10) are in good agreement.

3.4 The effect of surface tension

A physical interface will have surface tension, which acts to reduce the interfa-

cial curvature. Insofar as instability requires a displacement of the interface,
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Figure 3.7: Unstable perturbation flow of Oldroyd–B fluid with β = 0.99, ξ =

0.5, ∆ = 0.7, and k = 2000. For these parameters ω = −0.0261 + 0.3330i.

Compare with figure 3.4 where β = 0, ∆ = 0.7, k = 30, and ξ = 0.5.

surface tension is expected to suppress the instability, especially for large k.

3.4.1 The effect of surface tension at high Weissenberg

number

In this section we assume that Ca ∼ Wı−3 so that surface tension is still

dynamically important at largeWı.

We consider equations (2.30)–(2.39), with γ 6= 0. In the limit kγ → ∞,

the normal force balance (2.37) reduces to δ = 0. With δ = 0, the kinematic

equation for the interface (2.38) becomes ψ(0) = 0 and δ disappears from

the problem. The only remaining terms involving time derivatives are in the

evolution of a, equations (2.31)–(2.33). Thus any instability manifests itself

only in the growth of the fluid velocity and elastic stresses and not in an

interfacial perturbation.
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Figure 3.8: The effect of surface tension on growth rate for ξ = 0.3, ∆ = 0.5

and Wı ≫ 1. As k → ∞ all growth rates tend to the limit, approximately

0.019.

UCM fluids (β = 0) with nonzero surface tension

In the limit where Wı ≫ k ≫ 1, we have an analytic representation of the

streamfunction in both fluids, and we can proceed exactly as in section 3.2.1.

The addition of surface tension affects only the second row of the matrix

M in equation (3.8). This row plays no role in the construction of N in

equation (3.9), and so the linear stability of the system is unchanged by

the addition of surface tension (although the perturbation flow is changed).

The remarkable conclusion is that a perturbation with the same growth rate

occurs regardless of the size of the surface tension wheneverWı ≫ k ≫ 1.

To see the effect of surface tension at modest k we solve the equations

numerically. In figure 3.8 we plot the growth rates with ξ = 0.3 and ∆ = 0.5

for different values of the surface tension measured by γ. The infinite surface

tension (γ = ∞) curve was calculated by replacing the normal force balance

with the condition ψ(0) = 0. As expected, the growth rate of the disturbance

is everywhere reduced by the addition of surface tension. For small k and

γ finite, the growth rates are close to the zero surface tension limit. As k
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Figure 3.9: Perturbation flow for the same parameters as in figure 3.4: ξ =

0.5, ∆ = 0.7, k = 30, and β = 0, but with γ = ∞. The value of ω

is −0.2855 − 0.0227i. As k increases it destabilizes and tends to the same

growth rate as for the zero surface tension case.

increases, they approach the infinite surface tension limit. As k → ∞, both

zero and infinite surface tension limits tend to the same (positive) growth

rate, about 0.019.

In figure 3.9 we show the perturbation flow for the same parameters as

in figure 3.4 except that the surface tension is infinite. Boundary layers exist

at the interface with the same length scale as before.

The fact that surface tension does not affect the growth rate as k → ∞
has significant consequences for our understanding of the physical mechanism

driving this instability. It cannot depend on interfacial displacement, con-

tradicting previous claims [29, 43], instead it must rely on effects tangential

to the interface that are not directly affected by surface tension. We do not

have a physical explanation for the instability mechanism, but it seems that

advection of stresses by the base flow combined with relaxation plays a role.
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Figure 3.10: Plot of growth rate at β = 0.99 as k changes for ξ = 0.1 and

∆ = 0.5 fixed. The top curve corresponds to zero surface tension, while the

bottom curve assumes it is infinite. Curves for finite values of γ lie between

the two.

Oldroyd–B fluids (β > 0) with nonzero surface tension at high Weis-

senberg number

We have not performed a complete study of Oldroyd–B fluids with surface

tension. Because of the observation in section 3.3 that tangential effects

appear to determine the stability for Oldroyd–B fluids at largeWı, we expect

surface tension to have no influence at large k ifWı is large.

In figure 3.10 we plot the growth rates for ξ = 0.1, ∆ = 0.5 and β = 0.99.

We see that the infinite surface tension growth rate is positive as k → ∞,

and appears to approach the same limit as the zero surface tension growth

rate.
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Figure 3.11: The effect of surface tension on the large k growth rate for finite

Wı.

3.4.2 The effect of surface tension for UCM fluids at

general Wı and k ≫ 1

SettingWı = O(1) and k ≫ 1 corresponds to a disturbance wavelength much

shorter than the channel width as well as the relaxation length, that is, the

standard short-wave limit, which has been studied in the absence of surface

tension by Renardy [84] and Chen and Joseph [17].

Upon adding surface tension, Chen and Joseph [17] state that at suffi-

ciently large k the flow is stable. This contrasts with our results at largeWı.

To resolve this difference, we consider the effect of surface tension at finite

Wı. We first reproduce the results of [17, 84] without surface tension and

then consider the infinite surface tension limit.

As k → ∞ at finiteWı, the walls become irrelevant and k disappears from

the problem. The solution from (3.4) is a sum of exponentially growing and
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decaying terms. The growing terms must vanish, so the solutions take the

form

ψ(y) = C+
1 (y − ω) exp

( y

Wı

)

+ C+
4 exp

[

ξy

(

−i+
√

1 +
1

ξ2Wı2

)]

y < 0 ,

ψ(y) = C−

2 (y − ω) exp

(−y
Wı

)

+ C−

3 exp

[

y

(

−i−
√

1 +
1

Wı2

)]

y > 0 .

Without surface tension, the four interfacial conditions define a 4 × 4

matrix. Setting the determinant to zero provides a quintic equation in ω

found by Renardy [84] which reduces to (3.10) at large Wı. Figure 3.11(a)

plots the growth rate of the most dangerous mode in (Wı, ξ) space. This figure

is equivalent to figure 1 of Chen and Joseph [17] and figure 1 of Renardy [84],

with different axis scalings.

In the case of infinite surface tension, we replace the normal force balance

by ψ(0) = 0. That is, we set the perturbation to the interface (and hence

the cross-stream velocity) equal to zero. The same method as above gives a

(significantly simpler) quintic equation for ω:
(

[Rξ3 + ξ2Q]Wı − iξ2Q+ iRξ2
)

ω5

+
(

[2iξ2Q+ 2iRξ3 + 2iRξ2 − ξ2 + ξ3 + 2iξQ]Wı

+ 2iξ2 − 2Rξ2 + 2ξ2Q+ 2ξQ− 2Rξ
)

ω4

+

(

[−2ξ2Q− iRξ2Q− 4Rξ2 − 2Rξ − iξ + iRQ− 4ξQ+ iξ3]Wı

+2iξ2Q− 4iRξ − 3ξ2 + 4iξQ− 3ξ − ξ3 − 2iR− 1 +
i− iξ2

Wı

)

ω3

+

(

[iQ+ iRξ2 − iR − 4iRξ − iξ2Q− 2RQ+ 2RξQ− 4iξQ]Wı

−4iξ2 − 4iξ + 4R− 4i− 4ξQ+
2ξ − 2

Wı

)

ω2

+
(

[−Rξ + 2ξQ−Q+ iξ2 + 2R− i]Wı − iQ+ 4 + iR + 4ξ
)

ω

+ [1 − ξ]Wı + 2i = 0 ,
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where Q =
√

ξ2 + 1/Wı2 and R =
√

1 + 1/Wı2. At leading order forWı → ∞
this also reduces to equation (3.10). On solving this quintic we find a region

of parameter space where the system is unstable, seen in figure 3.11(b). As

Wı increases, figures 3.11(a) and (b) become identical.

The fact that instability persists with a growth rate of order unity even

at infinite surface tension contradicts results of Chen and Joseph [17], where

it is assumed that the instability is caused by displacement of the interface.

This assumption leads to an inappropriate ansatz that the stabilizing effect of

surface tension on the growth rate is O(k) as k → ∞, and hence an incorrect

conclusion (at largeWı) that surface tension stabilizes the flow.

3.5 Physical interpretation

Figures 3.4, 3.7 and 3.9 show that the perturbation flow in the bulk of the

fluid is as large as in the boundary layer close to the interface. However,

we have seen that the growth rate of the instability is independent of the

position of the walls.

This implies that the instability arises at the interface and that the re-

mainder of the flow, whether in the bulk or the wall boundary layers, has

no effect. In this section we offer an explanation for how the outer region

remains dynamically passive despite having a flow of comparable magnitude.

3.5.1 The UCM fluid

For clarity we focus on the infinite surface tension limit of the UCM fluids

for which ψ = 0 at the interface and β = 0.

Because the wavelength is long compared with the channel width, the

perturbation fluid velocity is parallel to the channel walls at leading order,

the fluid pressure is constant across the channel, and the y-component of the
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momentum equation (2.29) is automatically satisfied. The x-component of

the momentum equation (2.28) becomes

a11 − iDa12 = G , (3.11)

where G = pτ is a (constant in y) rescaled perturbation pressure gradient.

The evolution of the perturbation stresses in equations (2.31)–(2.33) is

controlled, through α, by the base advection y, growth ω, and relaxation τ−1.

In the boundary layer at the interface y = O(1). Outside the boundary layer

y = O(k). It follows that α = O(1) in the boundary layer and thus aij ∼ ψ,

but outside the boundary layer α = O(k) and |aij| ≪ |ψ|.
By equation (3.11), the pressure G must be at most comparable to a11

and a12 outside the interfacial boundary layer. In the interfacial boundary

layer the stresses are larger and the pressure is negligible. Equation (3.11)

is thus a third-order ordinary differential equation having three solutions.

We find D ∼ 1. One solution grows unphysically and is discarded, leaving

two solutions whose coefficients can be chosen freely. We take the y-velocity

zero at the interface to satisfy the infinite surface tension assumption. The

x-velocity is arbitrary, but fixed. These two conditions uniquely determine

ψ throughout the interfacial boundary layer.

The solutions in the bulk are algebraic and D ∼ 1/y. At the edge of

the boundary layer, the x-velocity is of comparable magnitude to its velocity

in the interior. The flux of fluid in the x-direction in the boundary layer is

negligible. To conserve mass, the outer region must have no net flux, but

it must simultaneously satisfy an x-velocity set by the boundary layer at its

edge. The pressure G is determined so as to fix the flux in the bulk.

Close to the wall the flow must satisfy the no-slip boundary condition.

This forces the existence of the wall boundary layer, where D ∼ 1. There is

no appreciable flux in this layer.

In this scenario there is no feedback mechanism whereby the flow in the
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bulk can influence the flow in the interfacial boundary layer.

3.5.2 The effect of β

Including Newtonian viscosity changes the x-momentum equation to the form

a11 − iDa12 − i
βτ

(1 − β)
D3ψ = G . (3.12)

In order for the structure in each region to be affected we need: β/(1−β) ∼ 1

in the interfacial boundary layer, β/(1−β) ∼ k in the bulk, and β/(1−β) ∼
1/k in the wall boundary layer. Thus at large k, the wall boundary layer will

be affected, the bulk region will be unaffected and the interfacial boundary

layer will be affected only if β is large enough. The bulk region is unaffected

and does not feed back into the interfacial layer. The stability is again

determined only by effects in the interfacial boundary layer.

The structure shown in figure 3.7 (β = 0.99, k = 2000) suggests that

the wall boundary layer expands and has the same length scale as the bulk

region.

3.6 An additional instability of Oldroyd–B

fluids

In figure 3.12 we plot the growth rates for two unstable modes for β = 0.99,

ξ = 0.5, and ∆ = 0.7. As k → ∞ one of the modes has fixed growth rate.

This is the mode discussed earlier in section 3.3. The other mode has higher

growth rate at intermediate values of k, but stabilizes as k → ∞.

We do not study this mode in detail. The perturbation flow for k = 200

is shown in figure 3.13. The real part of ω has a different sign from the

earlier fast-flow instability, and so this mode travels in the opposite direction

relative to the interface.
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Figure 3.12: Growth rates for Oldroyd–B fluids with β = 0.99, ξ = 0.5 and

∆ = 0.7.
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(a) Streamlines.
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(b) Horizontal perturbation flow. Note

the boundary layers at the interface

but not at the walls.

Figure 3.13: Unstable perturbation flow of Oldroyd–B fluid with β = 0.99,

ξ = 0.5, ∆ = 0.7, and k = 200. For these parameters ω = 1.6084 + 1.0262i.

Compare with figure 3.4 where β = 0, ∆ = 0.7, k = 30, and ξ = 0.5.
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3.7 Small Wı instability

The only remaining asymptotic limit not covered by our work or previous

work is 1 ≫ k ≫ Wı, where the channel width is large compared to the

wavelength, which in turn is large compared to the relaxation length scale.

For the UCM fluid, we use solution (3.4). The walls are at y = O(k) from

the interface. The value of k is much larger than Wı, so two solutions grow

and two solutions decay away from the interface. Requiring decay returns us

to the analysis of Renardy [84] where she found instability at smallWı when

ξ 6= 1.

In the Oldroyd–B case, we again require decaying solutions, and so we

obtain the results of Wilson and Rallison [103, 104] for small Wı. They also

found instability for ξ 6= 1 at small Wı, but with small growth rate of order

Wı6.

3.8 Discussion

There are two surprising features of the fast-flow instability: the first is

that the growth rate is determined entirely within a boundary layer at the

interface, but the perturbation flow fills the entire channel. The second is

that the instability persists even with asymptotically large surface tension.

Section 3.2.1 shows that the growth rate depends only on continuity

of tangential acceleration and the tangential force balance at the interface.

Close to the interfacial boundary layer, the streamfunction of the outer flow

is proportional to ikU − iω in dimensional variables. This term drops out of

the tangential conditions and so the flow in the outer region has no influence

on the stability. We will see in the study of Poiseuille flow (chapter 4) that

this is a more general result for largeWı flows. When the form of U changes,

ψ changes accordingly, and the outer solution again drops out of the tangen-
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tial conditions. Consequently this instability is found in more general flows

in different geometries.

The fact that the instability exists for infinite surface tension happens

because the normal force balance at the interface decouples from the rest of

the analysis and plays no role in the instability. This observation conflicts

with a widely-held assumption about the driving force behind purely elastic

interfacial instabilities namely [57]:

the mechanism of purely elastic interfacial instabilities has been

demonstrated to be the coupling of the jump in base flow normal

stresses across the interface and the perturbation velocity field.

The jump in normal stress does not enter into our analysis, and so a distinct

mechanism is involved, which we have not determined.

Throughout this analysis we have assumed that the Reynolds number is

zero. However, even with non-zero Reynolds number, the boundary layer

thickness can be made arbitrarily small by choosing a large enough value of

k so that inertial effects are unimportant. Consequently the instability is

expected to persist in the presence of inertia.

We end the chapter with a brief comment on the assumption ξ < 1.

The symmetries of Couette flow allow us to rescale time with the largest

relaxation time without loss of generality. In other flows (in particular the

flows of chapters 4 and 5) we cannot assume that ξ < 1. For such flows, our

result implies that the flow is unstable to the fast-flow instability if either

ξc < ξ < 1 or 1 < ξ < ξ−1
c .



Chapter 4

Stability of three-layer

symmetric channel Poiseuille

flow at large Wı

In this chapter we consider three-layer symmetric channel Poiseuille flow, the

two-dimensional analog of core-annular flow through a pipe. Throughout

this chapter we assume the non-dimensionalization of section 2.3.3. The

dimensionless base flow profile is shown in figure 4.1. The symmetries of the

problem no longer allow us to assume that ξ < 1.

In section 2.3.3 we developed two equivalent forms of the perturbation

equations in the dimensionless variables η [equations (2.55)–(2.66)] and Y =

η2 [equations (2.45)–(2.54)]. We consider the largeWı limit, using the leading

order (asWı → ∞) equations. Our numerics solve the η form of the equations.

As k → 0, the longest length scale is the wavelength, and the results

of [103, 27] show that if both ξ < 1 and ∆ <
√

2 − 1 or both ξ > 1 and

∆ >
√

2 − 1, the flow is unstable to long-wave varicose modes. If ξ > 1 the

flow is unstable to long-wave sinuous modes, regardless of ∆.

For k → ∞, the fast-flow results from chapter 3 suggest stability if either
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Figure 4.1: Poiseuille flow profile U = k− η2 in the dimensionless variable η.

ξ < ξc ≈ 0.28 or ξ > ξ−1
c ≈ 3.6. We postpone until later some potential

complications in applying the Couette results directly to Poiseuille flow with

two interfaces (e.g., the perturbation flow found earlier does not decay, so the

interfaces may interact). The fast-flow growth rate depends on an interfacial

boundary layer much thinner than the channel width. Its width is determined

by the local shear rate at the interface and is given in dimensional variables

by 1/U ′τk. In section 4.1 we see that so long as the shear rate is effectively

constant over the boundary layer thickness, the growth rates limit to the

Couette values as k → ∞. If, however, the dimensional value of U ′/U ′′ at

the interface is comparable to or smaller than 1/U ′τk, then the shear rate

changes over the boundary layer length scale and the stability results change.

This occurs whenever the central fluid occupies a sufficiently small fraction

of the flow. The resulting narrow-core behavior leads to new instabilities and

is the main subject of this chapter.

Using the results of chapter 3 and the long-wave analysis we can choose ξ

and ∆ to make the k → 0 and k → ∞ limits stable or unstable independently.

In particular choosing ξ < ξc and ∆ >
√

2−1 stabilizes varicose and sinuous

modes both as k → 0 and k → ∞. It is frequently assumed (and has been

explicitly claimed for this flow profile [54, 85]) that stability at all wave-
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numbers follows from stability in these two limits. Consequently relatively

little study has been done at intermediate wavenumbers. To motivate a more

complete study, we consider some sample dispersion relations for UCM fluids

withWı ≫ 1 that contradict this assumption due to narrow-core effects.

0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

0.5

k

Im
[ω

]

Varicose modes: ξ = 0.2, ∆ = 0.5

(a) Growth rates of varicose modes for

ξ = 0.2, ∆ = 0.5 with Wı ≫ 1.

There is instability only for intermediate

wavenumbers.
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Sinuous modes: ξ = 0.2, ∆ = 0.3

(b) Growth rates of sinuous modes for

ξ = 0.2, ∆ = 0.3 withWı ≫ 1. A similar

instability exists. (Note that a mode en-

ters the continuous spectrum at k ≈ 20.)

Figure 4.2: Dispersion relations for sample UCM flows.

Figure 4.2(a) shows the growth rates of varicose modes for ξ = 0.2 and

∆ = 0.5, a set of parameters for which both sinuous and varicose modes

are stable as k → 0 and k → ∞. Figure 4.2(b) shows the growth rates

of sinuous modes for ξ = 0.2 and ∆ = 0.3, for which sinuous modes are

stable as k → 0 and k → ∞. Both cases have instability at intermediate

k, showing that we must perform a more complete analysis to be assured

of stability at all wavenumbers. Figure 4.3 shows that the behavior can

be more complicated, with multiple unstable modes or regions appearing.

These instabilities frequently (but not always) travel faster than the center-

line of the base flow, so effects beyond advection of material are needed to

understand how the wave travels.
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Varicose modes: ξ = 0.08, ∆ = 0.58

(a) Growth rates of varicose modes for

ξ = 0.08, ∆ = 0.58. Two distinct ranges

of k are unstable.
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Sinuous modes: ξ = 0.025,  ∆ = 0.25

(b) Growth rates of sinuous modes for ξ =

0.025, ∆ = 0.25. Two distinct modes are

unstable.

Figure 4.3: Dispersion relations for sample UCM flows.

To demonstrate the distinct families of instabilities, we plot contours of

the growth rate in (k,∆) space for different values of ξ in figures 4.4–4.6. We

see the long-wave varicose instability (k → 0, ∆ <
√

2−1) and the Couette-

like fast-flow instabilities (∆ fixed, k → ∞, ξ > ξc) as well as evidence of a

k−1/2 scaling, corresponding to the new narrow-core instability.

The chapter is organized as follows: we first consider the fast-flow regime

in section 4.1. In section 4.2 we present results about the narrow-core regime.

Section 4.3 briefly discusses some additional instabilities which appear, but

cannot be explained by the analysis presented here.

For simplicity, we focus on the UCM fluid and consider the Oldroyd–

B fluid only briefly to show that the behavior is qualitatively similar. The

symmetries no longer allow us to assume that the ratio of the outer relaxation

time to the inner relaxation time ξ is less than 1 without loss of generality.

For the majority of the chapter we take ξ < 1 for which sinuous long-wave

modes are stable, but when we study the narrow-core instability at large k,

we also look at ξ > 1.
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(a) Varicose: ξ = 0.2.
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(b) Sinuous: ξ = 0.2.

Figure 4.4: Growth rate contour plots of the most dangerous mode in (k,∆)

space for ξ = 0.2 < ξc. For fixed ∆, the flow is stable as k → ∞, with the

same growth rate for sinuous and varicose modes. The narrow-core regime

is observed where ∆ ∼ k−1/2.

4.1 Fast-flow instability (k → ∞)

In this section we show that the fast-flow instability found for Couette flow

in chapter 3 persists in Poiseuille flow with the same growth rate, although

the mode structure changes qualitatively. In Couette flow the growth rate

is determined by effects within a boundary layer about the interface. In

Poiseuille flow with ∆ fixed, at large enough k the shear rate is effectively

constant over the boundary layer length scale, and so we expect similar be-

havior. However, the result in Couette flow depends on the algebraic terms

cancelling out of the tangential interfacial conditions in the construction of

the matrix N (3.9). The structure of the algebraic terms changes in Poiseuille

flow, so it is not obvious a priori that this same cancellation occurs.
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(a) Varicose: ξ = 0.3.
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(b) Sinuous: ξ = 0.3.

Figure 4.5: Growth rate contour plots of the most dangerous mode in (k,∆)

space for ξ = 0.3 > ξc. For fixed ∆, the flow is unstable as k → ∞, with the

same growth rate for sinuous and varicose modes. We again see the narrow-

core regime where ∆ ∼ k−1/2. Some numerical problems can be observed

in the lower left and upper right corners where parameter continuation with

the shooting method has difficulties.

4.1.1 The UCM fluid

Figure 4.7 shows the perturbation flow for sinuous and varicose modes with

ξ = 0.5, ∆ = 0.7 and k = 30. In both cases, the flow decays exponentially

in the less elastic outer fluid, but is everywhere large in the inner fluid. This

mode structure differs from the Couette result where the perturbation flow

is large in both fluids. After accounting for the change in frame of reference,

the value of ω predicted from the results of section 3.2.1 is ω = (1− ∆2)k +

0.30544 + 0.06603i+O(1/k) which gives ω = 15.60544 + 0.06603i+O(1/k).

Our calculated results are in good agreement: for the varicose mode ω =

15.6203 + 0.0598i, while ω = 15.6208 + 0.0590i for the sinuous mode.

In the velocity plots in figure 4.7 there is a hint of a boundary layer
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(a) Varicose: ξ = 0.4.
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Figure 4.6: Growth rate contour plots of the most dangerous mode in (k,∆)

space for ξ = 0.4 > ξc. For fixed ∆, the flow is unstable as k → ∞, while

the narrow-core regime is seen where ∆ ∼ k−1/2.

close to the center-line. This boundary layer plays a role in preventing the

interfaces from interacting. We can see this by eliminating the lower interface

to consider a single interface. The resulting perturbation flow is shown in

figure 4.8 for ξ = 0.5, ∆ = 0.7 with k = 30 and k = 500. For k = 30, the

value of ω is ω = 15.6205 + 0.0594i, close to the prediction above, while for

k = 500, it is ω = 255.3063 + 0.0657i, which matches the predicted value

of ω = 255.30544 + 0.06603i + O(1/k) well. The boundary layer close to

the center-line allows for a return flow which keeps the net flux zero. This

permits the flux to decay in the outer fluid and the lower half of the channel.

The width of this boundary layer is found by balancing U ′/U ′′ with 1/U ′τk

(in dimensional variables) and is given by y ∼ L/
√
U0τk or η ∼ 1.

In order to study the growth rate analytically, we follow the analysis of

section 3.2.1, and show that the stability condition becomes identical to the

condition for Couette flow. We re-express the Y form of the vorticity and
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Figure 4.7: Perturbation flows of the sinuous and varicose modes for ξ = 0.5,

∆ = 0.7 and k = 30.
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x-velocity with k = 500.

Figure 4.8: Perturbation flows with a single interface for ξ = 0.5, ∆ = 0.7.
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constitutive equations (2.45)–(2.54) in terms of ψ

ψY Y Y Y + 2i(α−1 − τ)ψY Y Y − 2(α−1 − τ)2ψY Y + 4iτ(α−1 − τ)ψY + 4
τ 2

α2
ψ

3

Y

(

ψY Y Y +
3

2
(α−1 − τ)ψY Y − (α−1 − τ)2ψY +

iτ

α
(α−1 − τ)ψ

)

+
3

4Y 2

(

ψY Y + i(α−1 − τ)ψY +
τ

α
ψ
)

= 0 .

If the interface lies outside the boundary layer at the center-line, then Y =

∆2k is large at the interface. For large Y we solve the vorticity equation using

an ansatz based on the correspondence with the Couette equations. The

Couette solution can be expressed as the sum of two exponential terms, one

proportional to exp[(1+i)τY ] and the other proportional to exp[(−1+ i)τY ],

together with two algebraic terms. For the Poiseuille flow, we therefore

anticipate a solution in each layer of the form

ψ(Y ) = C1f1(Y ) + C2f2(Y ) + C3g1(Y )e(1+i)τY + C4g2(Y )e(−1+i)τY , (4.1)

and find that

f1(Y ) = Y τ + ωτ ,

f2(Y ) =
f1(Y )√
Y τ

(

1 +
i

4Y τ
− 9

80Y 2τ 2
− 27i

448Y 3τ 3
+

11 + 64iωτ

768Y 4τ 4
+ · · ·

)

,

g1(Y ) = (Y τ)−3/4

(

1 +
15/32 − 3i/8

Y τ
+

273/2048− 237i/256

Y 2τ 2
+ · · ·

)

,

g2(Y ) = (Y τ)−3/4

(

1 +
−15/32 − 3i/8

Y τ
+

273/2048 + 237i/256

Y 2τ 2
+ · · ·

)

.

As in Couette flow [equations (3.8) and (3.9)] the algebraic terms drop out

of the interfacial conditions for tangential force balance and tangential accel-

eration: the coefficient C2 is too small to affect the equations and C1 exactly

cancels from the equations. The disappearance of C1 follows by the same ar-

gument as in section 3.2.1: f1 is proportional to U−c, and so its contribution
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to the tangential interfacial conditions is zero. The tangential force balance

and continuity of tangential acceleration conditions are therefore satisfied

only by the exponential terms.

The terms which grow exponentially away from the interface must be

small at the interface compared to the terms which decay away from it. So

the only terms which can satisfy the two tangential conditions at the interface

are the exponentially decaying solutions on either side, g1(Y ) exp[(1 + i)τY ]

for Y < ∆2k and g2(Y ) exp[(−1 + i)τY ] for Y > ∆2k. To leading order

in Y , we can treat g1 and g2 as constant at the interface compared to the

exponentially decaying terms.

We have reduced our conditions at the interface to be the same as in

Couette flow. The conditions must be satisfied by ψ of the same form as in

Couette flow. Consequently the growth rates found in UCM Poiseuille flow

with the interface at large Y must be identical to those of Couette flow.

4.1.2 Oldroyd–B fluids

In section 3.3 we saw that for Couette flow of an Oldroyd–B fluid, the flow is

unstable at large k if β is large enough. We find the same effects in Poiseuille

flow. We have not found any new behavior of this instability in Oldroyd–B

Poiseuille flow.

4.2 Narrow core instability (∆ ∼ k−1/2, k →
∞)

Figures 4.4–4.6 show an asymptotic scaling with ∆ ∼ k−1/2 as k → ∞ in

the UCM fluid. This indicates the presence of a class of instabilities distinct

from fast-flow. These instabilities exist for both sinuous and varicose modes.

The appropriate equations are expressed in terms of η (2.55)–(2.66).
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4.2.1 UCM fluids

Stability at moderate k

Although these modes are most distinct at large values of k, they are present

for k as small as 5.

We look first at varicose modes. The plots of figures 4.4–4.6 have an

unstable “tongue” in the marginal stability curve at k ≈ 5. In figure 4.9

we show similar plots for smaller ξ showing multiple unstable tongues. Our

results suggest that the maximum number for UCM fluids is three. As ξ

increases, the tongues progressively disappear until at ξ ≈ 0.56 they no

longer exist and so there is no instability at moderate k for ∆ >
√

2− 1 (the

k → 0 stability boundary).

These tongues are of particular significance because they can give values

of ∆ for which both k → 0 and k → ∞ limits are stable, but instability

exists at moderate values of k. We see this in figure 4.4(a). This contradicts

claims [54, 85] that stability as k → 0 and k → ∞ implies stability at all

wavenumbers in the absence of a destabilizing viscosity difference.

In figure 4.9 we see that as ξ increases past about 0.09 the second tongue

merges with the first, while if ξ becomes small it retreats to larger values

of k. The location of the local maxima of the marginal stability curve gives

us information about the tongues. We plot the first two local maxima in

figure 4.10(a). When ξ = 0.069 the first two tongues are marginally stable

at ∆ = 0.6023. As ∆ decreases past 0.6023 two instabilities with different

wavenumber arise, shown in figure 4.10(b).

We turn now to sinuous modes. For moderate k, figures 4.4–4.6 show that

if ξ is too large, no instability exists. However, when ξ is small, more than

one unstable mode can exist. In figure 4.11 where ξ = 0.025, two modes are

unstable, both with the ∆ ∼ k−1/2 scaling. The two modes have substantially

different growth rates, shown in figure 4.12. The faster growing mode has
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(c) At ξ = 0.09 the new tongue has al-

most merged with the primary tongue.
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Figure 4.9: Varicose modes. More than one unstable tongue exists at small

ξ, while the tongue at k ≈ 5 disappears for larger ξ. The shooting method

used has difficulties with k and ∆ both small or with large k. Figure (b) was

created using the spectral method.

a wavespeed greater than 1, the base flow velocity at the center-line of the

channel. Removing that mode in figure 4.11(b) we get a better picture of the

less unstable mode.
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Figure 4.10: We followed the maxima of the first two tongues using shooting.

The second tongue only has a local maximum for a short range of ξ. At

ξ = 0.069, ∆ = 0.6023 both tongues are marginally stable.

Stability at large k

When k is large, the narrow-core modes are more distinct. The location

of the walls (η = k1/2) have no influence on the instability. The complex

frequency ω scales like k + O(1), and so ω − k is independent of k in α and

the kinematic boundary condition. The only other appearance of k (or ∆)

in the problem is in the combination ∆k1/2. Consequently the growth rate

depends only on ξ and ∆k1/2.

Figure 4.13 explicitly shows that ∆ ∼ k−1/2 for the fastest growing mode.

Choosing ξ = 0.2 and letting k change, we plot the value of ∆ giving the

largest growth rate. Once k is larger than 10, the scaling is clear.

Because η = O(1) at the interface, the equations cannot be simplified

and we cannot find an asymptotic expression for ψ close to the interface. To

study the large k asymptotics, we turn to numerical methods.

In figure 4.14 we show growth rates of varicose modes at k = 1000 and k =
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Figure 4.11: When ξ = 0.025 we see more than one unstable sinuous mode

at the same interface location. One mode travels faster than the center-line.

The other travels slower than the center-line (and slower than the interface).

The numerics could not resolve large values of ∆k1/2.

4000, keeping ∆k1/2 moderate. The figures are almost identical, suggesting

that they accurately represent the k → ∞ behavior.

Figures 4.15(a) and (b) show the growth rate of varicose modes at large

k but moderate ∆k1/2 as a function of ξ. The first shows growth rates for

0 < ξ < 1, while the second shows 1 < ξ < ∞ with a scaled horizontal axis.

Figure 4.15(c) shows the marginal stability curves for 0 < ξ < ∞, with the

same scaling of the axis for ξ > 1.

As ξ → 0 the varicose narrow-core instability exists for any value of

∆k1/2. If ∆k1/2 ≈ 1, the growth rates become large. There is a small island

of stability for ξ ≈ 0.06, ∆k1/2 ≈ 2. As ξ is increased past ξc ≈ 0.28 a

further instability appears for sufficiently large ∆k1/2. This is the fast-flow

instability discussed in the previous section, and is clearly distinct from the
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∆ is chosen independently for each mode to maximize the growth rate. The

growth rates tend to a constant at large k. Figure 4.17 shows the growth

rates for fixed large k as ξ changes.
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wavenumber with ξ = 0.2. For large k, the fastest growing mode has ∆ ∼
k−1/2.
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Figure 4.14: The difference between growth rates when k = 1000 and k =

4000 is small.

narrow-core instability. For ξ sufficiently close to 1, the fast-flow instability

becomes stable. As ξ → 1 (identical fluids), the growth rate approaches zero.

The growth rate generically crosses zero as ξ passes through 1, and so in

figure 4.15(c) stability reverses moving from ξ → 1− to ξ → 1+. That is,

if the flow is stable [unstable] with a slightly more elastic inner fluid, then

making the outer fluid slightly more elastic destabilizes [stabilizes] the flow.

When 1 < ξ < ξ−1
c ≈ 3.6 the fast-flow instability is present at sufficiently

large ∆k1/2. As ξ increases past ξ−1
c , the unstable region shrinks rapidly, but

does not disappear as ξ → ∞. The distinction between the fast-flow and

narrow-core instability is less clear here. For sufficiently small ∆k1/2 there is

stability for any ξ > 1.

We consider the stability to sinuous perturbations at large k in figure 4.16.

We find the fast-flow instability at sufficiently large ∆k1/2 if ξc < ξ < 1 or

1 < ξ < ξ−1
c , but there is another instability for small ξ. This narrow-core

instability is qualitatively different from the varicose narrow-core instability

in that it has much higher growth rates and a maximum value of ξ of about
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(c) Varicose marginal stability curves, k = 4000.

Figure 4.15: Contour plots of growth rates of varicose modes in (ξ,∆k1/2)

space. U and S denote unstable and stable regions respectively. For ξ > 1

the horizontal axis has been rescaled.

0.25. When ξ is greater than 1, a similar picture emerges to the varicose

modes, except that there is no stable region at small ∆k1/2.

We compare the growth rates of the unstable varicose and sinuous modes

in figure 4.17. At small values of ξ the varicose growth rate diverges like ln(ξ),

while the sinuous growth rates diverge like 1/ξ, with a (divergent) correction
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(b) Sinuous: ξ > 1, k = 4000.
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(c) Sinuous marginal stability curves, k = 4000.

Figure 4.16: Contour plots of growth rates of sinuous modes in (ξ,∆k1/2)

space. U and S denote unstable and stable regions respectively. For ξ > 1

the horizontal axis has been rescaled.
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(b) 0 < ξ < 0.2.

Figure 4.17: Growth rates of unstable modes as ξ changes with k = 4000.

For each mode, the value of ∆ is chosen to maximize the growth rate. There

are two unstable sinuous modes at sufficiently small ξ. Growth rates increase

sharply as ξ → 0, but the sinuous growth is larger.

which appears to be logarithmic in ξ.

The apparently unphysically large growth rates indicate that when the

outer relaxation time is small compared to the inner relaxation time, the

instabilities grow on the shorter timescale of the outer fluid. If we rescale time

by ξ such that the outer relaxation time becomes 1 and the inner relaxation

time becomes ξ−1, then the sinuous growth rates tend to positive constants

(approximately 0.35 and 0.017) as the new inner relaxation time goes to

infinity. In contrast, the growth rate of the varicose mode tends to zero.

This is shown in figure 4.18.

Perturbation flow

Outside the central boundary layer, the solution ψ can be expressed in terms

of the Y variables as in (4.1). There are two algebraic terms as well as a

growing exponential and a decaying exponential.
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Figure 4.18: Growth rate times ξ. This corresponds to the growth rate in

terms of the outer fluid’s relaxation time.

In figure 4.19 we plot the perturbation flow for a varicose mode. There are

boundary layers close to the walls whose widths are O(k−1/2) (in terms of η),

and a boundary layer around the center-line containing both interfaces with

width O(1). The flow does not decay between boundary layers, indicating

that the algebraic terms have non-zero coefficient.

In contrast, the perturbation flow for the sinuous modes shown in fig-

ure 4.20 decays outside the central boundary layer. Because these flows de-

cay in the outer region, the algebraic terms (which do not decay) must have

zero coefficient. The exponentially growing term must also vanish to satisfy

the wall boundary conditions. Thus the structure of the eigenfunction must

look like the decaying exponential. Consequently, figure 4.20 shows that the

perturbation flow for both sinuous modes appears similar in the outer fluid,

although the growth rate and wave speeds differ substantially. This is par-

ticularly surprising because the instabilities grow on the faster time scale of

the outer fluid where their perturbation flows are similar.

The distinction between the behavior of sinuous and varicose modes in
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(c) Horizontal perturbation velocity. The wall bound-

ary layers are almost too small to be seen.

Figure 4.19: The perturbation flow in a varicose mode at k = 400 with

ξ = 0.2 choosing ∆ = 0.058 to maximise the growth rate. Note the lack of

decay as η → k1/2 = 20. For these parameters, ω = 400.16 + 0.808i.

the outer fluid is related to the mass fluxes in the inner region. In the varicose

modes, the mass flux is in the same direction on either side of the center-line,

and so the central region has nonzero net flux. The outer fluid must have a

comparable flux in order to satisfy mass conservation. In the sinuous modes,

the mass flux within the inner fluid cancels, and no outer flow is needed to

correct the fluxes.
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mode for ξ = 0.025.
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mode for ξ = 0.025.
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(d) Horizontal perturbation velocity.

Figure 4.20: The perturbation flow for sinuous modes with k = 400, ξ =

0.025 and ∆ = 0.043 and ∆ = 0.064 chosen to maximise the growth rate of

each mode. In contrast to varicose modes, these modes decay away from the

central boundary layer. For the fast mode ω = 418.58 + 7.66i and for the

slow mode ω = 395.30 + 0.0985i.

Wave speed

In terms of η we find α = −iω+ ik− iη2 +1/τ . We expect α to remain O(1)

in the central boundary layer, requiring that ω be k plus an O(1) correction.



4.2 Narrow core instability (∆ ∼ k−1/2, k → ∞) 105

Hence, the mode travels with velocity 1 (equal to the base flow at the center)

plus an O(1/k) correction. Remarkably this correction can be positive, so

that the wave travels faster than any point in the base flow. This is shown

in figure 4.21. As a consequence of this, we conclude that advection cannot

account for the mechanism.

For varicose modes with ξ = 0.2 there is one unstable mode. In fig-

ure 4.21(a) we compare the wave-speed with the corresponding interfacial

velocity and the center-line velocity. The wave travels faster than the center-

line. For each value of k, we have selected ∆ to maximise the growth rate.

For sinuous flow we can have multiple unstable modes. We take ξ = 0.025

and consider two unstable modes separately. We again select ∆ to maximise

each growth rate, plotting the same quantities in figure 4.21(b), (c) as in

figure 4.21(a). In this case one mode moves slower than the center-line and

interface, while the other moves substantially faster than both.

Finite Wı effects

The leading order corrections to the equations of section 2.3.3 are all O(kWı−2).

Consequently the correction terms are small even for more moderate values

ofWı, particularly if k is small. The convergence is illustrated in figure 4.22.

4.2.2 Oldroyd–B fluids

The addition of a Newtonian component of viscosity does not stabilize the

flow as is shown in figure 4.23. The ∆ ∼ k−1/2 scaling is still present in (at

least) two distinct tongues. As β → 1, the fluids become identical Newtonian

fluids, and so the growth rates at fixed k must approach zero. However, this

limit is not approached uniformly in k. As β → 1, one tongue moves to

larger values of k, as its prefactor of k−1/2 grows. Another tongue appears

to keep the same size prefactor, but its growth rate reduces.
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Figure 4.21: For the varicose instability and one of the sinuous instabilities

the wavespeed moves considerably faster than the center-line, even when the

interface is travelling considerably slower than the center-line. The other

sinuous mode travels slower than the interface.

In figure 4.23(d) we see that the marginal stability curve with ∆ →√
2 − 1 as k → 0 has a nearly constant value of ∆ until k is of order at
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Figure 4.22: Convergence to the Wı = ∞ growth rate. As expected, con-

vergence is quicker for smaller k. The sinuous instability for Wı = 5 where

k ≫ Wı is the finite Wı instability found by Renardy [84], repeated in fig-

ure 3.11(a).

least 100. Although k is large, and the wavelength is not long compared

to the relaxation length scale, this matches the predictions of the long-wave

analysis [103, 27]. The long-wave analysis used the assumption that the fluids

behave like Newtonian fluids on the scale of the wavelength, with the elastic

stress having effect only at the interface. Because the fluids are effectively

Newtonian as β → 1, the analysis still applies even at shorter wavelengths.

4.3 Other instabilities

We have observed some instabilities for Wı ≫ 1 that do not fall into the

fast-flow, long-wave, or narrow-core regimes. Generally in these instabilities

the interface is close to the wall and the wall and interfacial boundary layers
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(d) β = 0.99.

Figure 4.23: The effect of changing β for varicose flow with ξ = 0.2.

overlap.

4.3.1 UCM fluids

Figure 4.24 shows a varicose instability for UCM fluids at a small value of

ξ with ∆ apparently approaching 1 as k → ∞. The existence of this mode

has been confirmed with both shooting and spectral methods. The shooting

method could not resolve the behavior for k > 30, and the remaining results

are from the spectral method.
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Figure 4.24: For UCM fluids with small ξ a new mode appears at large ∆.

It cannot be explained by any of the previous analysis.

Because ξ is quite small, the interfacial boundary layer in the outer fluid

is large and reaches the wall. The shear rate variation within the boundary

layer is small (and decreases as k grows), and so the flow around the interface

is effectively Couette. However, we have not found a similar instability in

Couette flow with the interface close to the wall, and so it seems that the

shear rate variation may play some role. We have not performed an complete

search for a similar Couette flow mode, so this is not definitive.

In figure 4.24 some contour lines appear to peel off the marginal stability

curve at large k and then jump back. The points where the curves jump back

correspond to places where the number of Chebyshev polynomials retained

per variable was increased (from 70 successively to 240). The exact stability

boundary should be regarded with some suspicion.

4.3.2 Oldroyd–B fluids

In figure 4.23(c) there is a local maximum of the growth rate at k ≈ 50,

∆ ≈ 0.8. As k increases the value of ∆ for the mode associated with this

maximum appears to approach 1. It is not clear from the figure whether
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Figure 4.25: Growth rates for ξ = 0.2, β = 0.9 and ∆ = 0.8. In addition to

the fast-flow mode having constant growth rate as k → ∞, there is another

instability which exists for moderate k.

this is distinct from the fast-flow behavior predicted in chapter 3 which ap-

proaches a constant growth rate as k → ∞. However, figure 4.25 clearly

shows that this instability is distinct. In fact, this is the same instability

discussed in section 3.6.

4.4 Discussion

The stability of fast-flow modes for largeWı Poiseuille channel flow with an

interface is similar to that of large Wı Couette channel flow. We find the

same growth rates and limiting behavior as for Couette flow. However, when

the interface is close to the center-line, the Couette-based analysis fails. We

have found a new class of purely elastic interfacial instabilities in pressure-

driven flow in a channel in this regime. These narrow-core instabilities occur

if the interface is close enough to the center-line and can exist at intermediate

wavenumbers when the k → 0 and k → ∞ limits are both stable.

The fast-flow modes depend on a boundary layer at the interface with

a length scale proportional to the inverse shear rate. Close to the center-
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line the inverse shear rate becomes large, while simultaneously U ′/U ′′, the

distance over which the shear rate changes by an amount comparable to itself,

becomes small. Hence there is a region for which the length over which the

shear rate changes becomes comparable to (or shorter than) the boundary

layer length, and the fast-flow regime breaks down.

It is in this regime that we find the narrow-core instabilities for three-layer

channel Poiseuille flow. In fact, we can conclude the existence of narrow-core

instabilities without any recourse to calculations through a simple argument.

When ξ = 1 the growth rate of the interfacial mode must be zero because the

fluids are identical. Generically the derivative of the growth rate with respect

to ξ must be non-zero. Consequently there exists stability and instability on

alternate sides of ξ = 1. This argument fails for unbounded Couette flow due

to a symmetry which is absent in Poiseuille flow.

From this argument it also follows that if there are only two layers and

the interface is sufficiently close to the center-line there must be narrow-core

instabilities (although the name is a misnomer in this case as there is no

core fluid). Further, any constitutive model which predicts a boundary layer

dependent on the shear rate at the interface must have instabilities for some

parameters when the interface is close to the center-line.

We observe that the narrow-core instability may persist to relatively large

values of the Reynolds number, with similar properties to those found in this

chapter, so long as the flow remains laminar. We find the instability for flows

with the interface close to the center-line and so the local Reynolds number

(based on the relative velocity and distance of the interface and center-line)

will be small even if the global Reynolds number is not. Consequently inertia

should be unimportant in the region that determines the growth rate.

In addition to the narrow-core instability, we have found some other

purely elastic instabilities for which the interface is close to the channel walls.

These instabilities are not explained by our analysis at present, but appear
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to occur for small values of ξ for which the boundary layer in the outer fluid

is large and includes the interface.

The results of this chapter suggest a wealth of possible future weakly

nonlinear study. The method for constructing a weakly nonlinear analysis

of flows with interfaces can be found in Renardy and Renardy [83]. It is

necessary to consider the moderate k instability as well as the k = 0 mode.

Figure 4.10 shows that two separate moderate k modes are important for

some parameters.



Chapter 5

Stability of pressure driven

core-annular pipe flow at large

Wı

In this chapter we compare the stability of core-annular Poiseuille pipe flow

with the three-layer symmetric Poiseuille flow in a channel of chapter 4. We

only consider UCM fluids at largeWı. As noted in the introduction, a jump

in the second normal stress difference N2 affects the growth rate for small

k. It is expected to play a role at larger k as well. However, the Oldroyd–B

fluid has N2 = 0, and so these effects are not included in our analysis.

For either m = 0 orm = 1 we can use equations (2.71)–(2.90). The condi-

tions at r = 0 are different: when m = 0 we take the conditions (2.91)–(2.93)

while we use (2.94)–(2.96) for m = 1. When m = 0 we can eliminate the

azimuthal velocity and corresponding stresses, which allows us to introduce

a streamfunction. We can then use the reduced system of equations (2.97)–

(2.108), but this assumes there is no mode with only azimuthal components.

For ξ = 0.2 and ξ = 0.3 we plot growth rates of axisymmetric modes in

figure 5.1 as k and ∆ change. The results are similar to figures 4.4–4.6 for
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Figure 5.1: Contour plots of growth rates for m = 0 axisymmetric mode with

ξ = 0.2 and ξ = 0.3 and the dispersion relations fixing ξ = 0.2, ∆ = 0.58

and ξ = 0.3, ∆ = 0.54.

channel Poiseuille flow. When ξ = 0.2 we again find values of ∆ for which

both k → 0 and k → ∞ limits are stable, with an instability at moderate
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values of k, due to a narrow-core instability.

Most other results are also qualitatively similar to those found in channel

flow. However, there are some notable differences, particularly in the m = 1

cork-screw modes.

The chapter is organized as follows: in section 5.1 we compare the fast-

flow regime of pipe and channel flow. In section 5.2 we consider the long-wave

cork-screw (m = 1)and axisymmetric (m = 0) limits numerically, reproduc-

ing earlier asymptotic results of Hinch et al. [38]. In section 5.3 we consider

the narrow-core regime.

5.1 Fast-flow (k → ∞)

Holding ∆ fixed and increasing k corresponds to the fast-flow limit in which

the relaxation length scale is large compared to the wavelength, which is

in turn large compared to the pipe width. In chapter 3 we found that the

growth or decay of two-dimensional modes depends on a boundary layer much

thinner than the channel width. The curvature of the pipe is negligible over

this length scale and so the same modes exist, regardless of the value of m.

In channel flow the quintic equation (3.10) gives the growth rates of five

distinct fast-flow modes. Only one is unstable, and only for ξc < ξ < 1 or

1 < ξ < ξ−1
c . We calculate the eigenvalues ω for pipe flow with m = 1,

∆ = 0.3, k = 100, and ξ between 0 and 1. The results are plotted in

figures 5.2(a) and (b); we find all five modes expected as well as one additional

unexpected stable mode.

For m = 0 we do not find an additional mode using the streamfunction

formulation. However, using the full equations we do find an additional mode

with similar growth to the new m = 1 mode. This new m = 0 mode has

vr = vz = 0 and travels with the exact velocity of the interface. It is a

solution to equations (2.73), (2.76), (2.79), (2.89), and (2.93) which decouple
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Figure 5.2: Dots represent the modes for k = 100, ∆ = 0.3 matching

the asymptotic prediction (solid). There is an additional mode depicted by

circles. One mode could only be calculated for ξ in a limited range due to

interference from the balloon around the continuous spectrum in the spectral

method.
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and are discarded in deriving the streamfunction formulation. The m = 0

growth rates are shown in figures 5.2(c) and (d).

5.2 Long-wave

The long-wave m = 0 asymptotic limit was initially studied numerically by

Chen [16] who found instability if both ξ < 1 and ∆ < 0.562 or both ξ < 1

and ∆ > 0.562. Subsequent asymptotic work by Hinch et al. [38] explained

the physical mechanism of the instability and predicted the growth rate.

The small k growth rates were found by Hinch et al. [38] to be (when

specialized to the UCM fluid)

ℑ[ω] = 2k2∆4(−∆4 + 3∆2 − 2 − 2 ln∆)(ξ − 1) (m = 0) ,

ℑ[ω] = k2∆4(∆4 − 1 − 4 ln∆)(ξ − 1)/2 (m = 1) .

This result is derived with the assumption that N2 is zero, N1 is nonzero and

the wavelength is long compared to the relaxation length scale. The growth

rates depend on the jump in N1 (which appears as ξ − 1), the interface

location ∆, and are otherwise independent of the particular details of the

model. The jump in N1 at the interface drives a flow, but because of the

long wavelength the fluid responds like a Newtonian fluid.

The difference between our calculated growth rates and those derived by

Hinch et al. are O(k4) for small k.

5.3 Narrow-core

The narrow-core regime of section 4.2 persists in pipes. However, the inner

core is narrow enough that its curvature is no longer negligible. So while the

behavior is different from the fast-flow and long-wave regimes, there are new
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effects and so it is not clear that the behavior must be the same as in channel

flow.

We follow the large k analysis of section 4.2.1 for channel Poiseuille flow,

plotting the growth rates and stability in figures 5.3 and 5.4. Both of these

plots show some odd bumps on the marginal stability curve for ξ just below

one. This is a result of the fact that there is a quadratic minimum to the

growth rate close to the marginal stability curve, and so the interpolation

used to plot the contours does not fit well.

5.3.1 Axisymmetric (m = 0) modes

Figure 5.3 plots the growth rate at k = 1000 for m = 0 modes. The growth

rates of m = 0 modes are qualitatively similar to varicose channel modes.

Figures 5.3(b) and 4.15(b) are nearly indistinguishable and so for ξ > 1

the behaviors are practically identical. When ξ < 1 there are some small

differences. In channel flow [figure 4.15(a)] there is a small band of sta-

bility between the fast-flow and narrow-core instabilities. In pipe flow the

two regions of instability overlap [figure 5.3(a)]. At smaller ξ, the island of

stability found in channel flow is larger. Whereas in channel flow there is

varicose instability for fixed ∆k1/2 as ξ → 0, axisymmetric modes are stable

if ∆k1/2 is large enough. There is a thin island of instability with ξ → 0 and

∆k1/2 → ∞.

5.3.2 Cork-screw (m = 1) modes

Figure 5.4 plots the growth rate at k = 1000 for m = 1 modes. The quali-

tative behavior for ξ > 1 is similar to sinuous channel modes (figure 4.16),

however when ξ is small, the qualitative behavior changes. At small ξ there

are two sinuous instabilities in channel flow whose growth rate scales like

1/ξ. In m = 1 flow, there is no corresponding instability.
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Figure 5.3: Contour plots of growth rates of m = 0 modes in (ξ,∆k1/2) space

with k = 1000. U and S denote unstable and stable regions respectively.

Compare with figure 4.15.

5.4 Discussion

Our results show that the stability of core-annular flow is generally like that

of three-layer symmetric Poiseuille flow. The fast-flow instability criterion

is the same. The long-wave instability criterion is similar and known from
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Figure 5.4: Contour plots of growth rates of m = 1 modes in (ξ,∆k1/2) space

with k = 1000. U and S denote unstable and stable regions respectively.

Compare with figure 4.16.

previous work [38]. Most of the narrow-core stability is the same.

However, there are some significant exceptions. In the fast-flow regime

there is a (stable) mode which which does not exist in planar channel flow. It

is possible that this mode would be found in channel flow if we had considered

the transverse direction.
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In the narrow-core regime, the axisymmetric modes are similar to the

varicose channel modes. The cork-screw modes however give substantially

different behavior at small ξ from sinuous channel modes. In the channel,

two sinuous modes are unstable with growth rates tending to infinity as ξ

tends to zero. We do not find any unstable cork-screw modes at small ξ.



Chapter 6

Coextrusion conclusions and

future work

This part of the dissertation considered the stability of coextrusion flow at

largeWı both in channels and in pipes. The behavior of UCM and Oldroyd–B

fluids is generally similar. We have substantially extended the understanding

of an interfacial instability previously found only in short waves at largeWı.

We have shown that it can exist even if the wavelength is longer than the

channel width and that the previously proposed mechanism cannot apply.

We have discovered and systematically investigated a previously unknown

instability. As a result of this mode, intermediate wavenumbers can lead

to instability even when the k → 0 and k → ∞ limits are both stable,

contradicting claims in the literature. In the course of this investigation we

have found other previously unknown instabilities which appear when the

interface is close to the wall.

In this chapter we return to dimensional variables. The channel width is

L, the wavelength is 2π/k and the relaxation length scale is U0τ1.
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Fast-flow channel instabilities

In chapter 3 we showed that the UCM short-wave result of Renardy [84] (and

similar results of Chen and Joseph [17]) contains two distinct instabilities, one

at small Wı and another at large Wı. The large Wı instability persists (with

the same growth rate) even if the wavelength is as large as or larger than the

channel width, so long as U0τ is large compared to both. Consequently this

is more properly termed a fast-flow instability.

The perturbation flow of the fast-flow modes fills the channel when k−1 ≫
L, but the stability is determined by a boundary layer close to the interface.

The width of the boundary layer scales like 1/kτU ′. The instability persists

for Oldroyd–B fluids even as the parameter β measuring the proportion of

the viscosity due to Newtonian effects approaches one.

Intriguingly, the fast-flow instability persists even if the normal force bal-

ance is dropped and replaced with the alternate condition that the normal

velocity at the interface is zero. That is, we can take the surface tension to

be asymptotically large so that the normal stress jump disappears from the

analysis and does not affect the growth rate. The prevailing belief that all

purely elastic interfacial instabilities are caused by the normal stress jump is

false for this flow: a new mechanism is needed.

Narrow-core channel instabilities

In chapter 4 we showed the existence of another class of instabilities occurring

for three-layer symmetric Poiseuille channel flow. This occurs if the interface

is close to the center-line, so that the boundary layer thickness associated

with fast-flow 1/kτU ′ is comparable to or larger than U ′/U ′′.

These narrow-core instabilities can appear in flows for which both the

k−1 ≪ L,U0τ1 and k−1 ≫ L,U0τ1 limits are stable. This contradicts pub-

lished claims [54, 85] for the three-layer symmetric geometry of chapter 4.
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The instabilities can travel faster than the base flow, and so advection alone

is not enough to explain their mechanism. When the outer fluid has much

smaller relaxation time than the inner fluid, the instability grows on the

shorter time scale of the outer fluid.

Instabilities of core-annular pipe flow

In chapter 5 we found that core-annular pipe flow is qualitatively similar in

most respects to the corresponding three-layer symmetric channel flow. For

fast-flow this follows from the fact that the length scales associated with the

instability are too small to be affected by the curvature of the pipe. For long-

waves, the similarity is already known from previous numeric and asymptotic

studies [16, 38, 103, 27]. However, there are some significant differences in

the narrow-core regime if the outer fluid has much smaller relaxation time

than the inner fluid.

In channel flow there are unstable sinuous modes if the outer fluid has

much smaller relaxation time. No analagous instabilities are found in pipe

flow. The length scale associated with the narrow-core instabilities is large

enough that the curvature of the pipe has a leading order effect on the in-

stability.

Other instabilities

We have found some other new interfacial instabilities. These generally ap-

pear to exist when the interface is close to a wall. In this case the wall lies

within the interfacial boundary layer, and so previous asymptotic analysis

breaks down. We have not attempted any detailed analysis.
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Future work

A number of unanswered questions are raised by this work and should be

addressed in the future.

Both the fast-flow and narrow-core instabilities have features which sug-

gest that the mechanisms behind them are unusual. The fast-flow instability

depends only on tangential effects and the narrow-core instability travels

faster than the base flow. Despite considerable effort, we have not been able

to find a physical mechanism for either.

We have found some instabilities which we did not investigate closely.

Figures 4.23(c) and 4.24 hint at a scaling for ∆ as k → ∞, and so it should

be straightforward to extend the analysis.

The narrow-core instability could be extended into a weakly nonlinear

analysis. This is complicated by the fact that the long-wave limit is neutrally

stable and so must be considered as well. Amplitude equations for parallel

flows with an interface appear in a coupled pair. Their structure is derived

by Renardy and Renardy [83], though the specific coefficients are model-

dependent. The analysis is complicated further by the fact that more than

one mode may become unstable simultaneously, shown in figure 4.10. In such

a situation, three coupled equations are needed.

Of course, having predicted a new instability, we would like to see it ex-

perimentally verified. Although our analysis assumes largeWı, we have found

the narrow-core instability to exist for Wı as small as five for a UCM fluid.

The instability persists for Oldroyd–B fluids, and so it should be possible to

perform an experiment with Boger fluids. Our analysis may provide an ex-

planation for some instabilities observed experimentally by Valette et al. [97]

in flows their long-wave analysis predicted to be stable. More work would be

needed to clarify this.



Part II

Elastic jets



Chapter 7

Critical layers in planar

viscoelastic jets

In this chapter we turn to high Reynolds number flows and consider a pla-

nar jet of elastic fluid. Much is known about the inertial instabilities that

occur in the absence of elasticity. However, adding even a small amount of

elasticity can qualitatively change the linear stability properties: with weak

elasticity, Rallison and Hinch [38] found a new instability apparently driven

by a discontinuity in the first normal stress. We want to study the effect of

elasticity on the development of the inertial instability, and so we choose our

base profiles to avoid the discontinuity of Rallison and Hinch.

This chapter is structured as follows: in section 7.1 we discuss related

work in Newtonian, magnetohydrodynamic, and elastic fluids. In section 7.2

we describe the base flows we study and the full nonlinear UCM equations

governing the flow. Section 7.3 contains the linearized perturbation equations

for the largeWı UCM jet and describes the numerical methods used to study

the linear eigenvalue problem. Section 7.4 discusses the Rallison and Hinch

linear instability caused by elastic effects and shows that the flows we study

only have inertial instabilities. Section 7.5 describes how elasticity modifies
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the inertial instability for our flow profiles. Section 7.6 introduces the weakly

nonlinear amplitude equations (derived in appendix B) for the UCM fluid.

The poor behavior of the UCM fluid in extensional flows affects the results,

and so we also introduce amplitude equations based on the FENE–CR model.

Section 7.7 contains the results and a discussion of numerical calculations

with the amplitude equations.

Many of the results in this chapter depend on matching the wavespeed

of the instability with the base velocity of the jet or with travelling waves in

the jet. Hence, rather than using the complex frequency ω, we express our

results in terms of the complex wavespeed c = ω/k.

7.1 Related work

7.1.1 Newtonian fluids

The instabilities of inviscid parallel Newtonian flows have been studied for

over a century. Much of the original work was performed by Rayleigh [80].

We give a brief discussion here.

We consider a two-dimensional shear flow U = (U(y), 0) and define

Umin = inf U(y) and Umax = supU(y). The governing equations are the

incompressible Euler equations for inviscid Newtonian fluids

ρ
DU

Dt
= −∇P ,

∇ ·U = 0 .

This is a lower order system than the full Navier–Stokes equations, and so

rather than applying no-slip boundary conditions, we can only apply no-

penetration conditions at walls.
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The Rayleigh equation

We consider a small perturbation to the base flow and linearize the equations

assuming normal modes. Thus the streamfunction of the perturbation flow

is ψ(y) exp[ik(x− ct)] + cc. If the shear rate U ′ is continuously differentiable

we arrive at the Rayleigh equation for the perturbation streamfunction

(U − c)(ψ′′ − k2ψ) = U ′′ψ . (7.1)

This can be written in the alternate (self-adjoint) form

[(U − c)2φ′]′ = k2(U − c)2φ , (7.2)

where φ = −ψ/(U − c) measures the vertical displacement of a particle in

the linearized system from its position in the base flow. This is simply a

generalization of δ used in the coextrusion flow as the displacement of the

interface.

It is easily seen by conjugating this equation that if c and φ form a solution

pair to the Rayleigh equation, then so do their complex conjugates c∗ and φ∗.

Consequently, finding any c with nonzero imaginary part implies instability

of the system.

Rayleigh’s criterion

Rayleigh [80] showed that a flow whose base velocity profile is continuous

and piecewise continuously differentiable is stable, provided that the shear

rate is monotonic. If U ′′ is continuous, then Rayleigh’s criterion states that

if U ′′ never vanishes the flow must be stable. A heuristic argument based

on physical principles for why the flow is stable if U ′′ is of constant sign is

given by Lin [58]. Summarized it is: the action of a vorticity gradient on a

displaced fluid element is to move it back to its original position; however, if

the gradient vanishes (i.e., U ′′ = 0), this effect is weakened or eliminated, so

other mechanisms have an opportunity to act.
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A number of improvements of Rayleigh’s criterion are known [24]. How-

ever, no general necessary and sufficient stability criterion has been found.

Howard’s semi-circle theorem

Howard’s semi-circle theorem [41] for inviscid parallel shear flow gives a sim-

ple bound on the location of any unstable eigenvalue. Given a base flow

profile U and an unstable mode with complex wavespeed c = cr + ici, the lo-

cation of c in the complex plane is within the upper half of the circle centered

at (Umax + Umin)/2 with radius (Umax − Umin)/2. That is,

[cr − (Umax + Umin)/2]2 + c2i ≤ [(Umax − Umin)/2]2 . (7.3)

This theorem has been generalized for a number of different flows, some of

which are discussed below.

The critical layer

For this discussion, we assume that the base flow profile is twice continuously

differentiable.

If c is real and Umin ≤ c ≤ Umax, then the coefficient of the leading order

derivative in (7.2) vanishes for some y. The line segment Umin ≤ c ≤ Umax

defines a neutrally stable continuous spectrum.

If there is an inertial instability, then in general there is instability for

0 < k < kc for some kc dependent on the flow profile. As k increases to kc, the

unstable eigenvalue c disappears by entering into the continuous spectrum.

The limiting value of the wavespeed as k → k−c is c = U(yc) where yc is the

location of the inflection point of U . As the eigenvalue enters the continuous

spectrum, dci/dk 6= 0, a fact that affects our weakly nonlinear analysis.

Modes in the continuous spectrum are generally singular where the base

flow velocity matches the wavespeed. However, for the mode which is the
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limit of the unstable mode at k = kc, both U − c and U ′′ vanish at yc, and so

φ′′ = −2φ′/(y− yc) at leading order. Consequently φ ∼ 1/(y− yc) and there

is a simple pole in φ at yc. Multiplication by U − c makes ψ regular.

Within an O(ǫ) distance of the inflection point, both sides of (7.1) are

O(ǫψ). The nonlinear terms neglected in the derivation of this equation first

become comparable to the linear terms in this critical layer.

If the faster growing modes at smaller k are somehow damped so that

only the slowly growing modes close to k = kc exist, then there is linear

growth until the nonlinear terms are large enough to affect the critical layer.

At this point the flow in the critical layer rolls up into a cat’s eye [4]. It is

the effect of the elasticity on the development of this cat’s eye that is the

primary focus of this chapter.

7.1.2 Magnetohydrodynamic fluids

For the inviscid Newtonian fluid the critical layer is found where the wave-

speed of the perturbation matches the base velocity. However, when the fluid

can support traveling waves, the position of the critical layer changes to where

the wavespeed of the perturbation matches the velocity of the travelling

waves.

We consider a magnetohydrodynamic (MHD) fluid experiencing parallel

shear flow in the presence of a magnetic field B = (B(y), 0) aligned with

the flow. Alfvén waves travel with velocity (relative to the base flow) cA =

|B|µ0/ρ where µ0 is the magnetic permeability of free space and ρ is the fluid

density. These waves can travel in either direction parallel to the base flow.

A modified Rayleigh equation exists found by Kent [47]

[

[(U − c)2 − c2A]φ′
]′

= k2[(U − c)2 − c2A]φ . (7.4)

The term (U − c)2 in (7.2) has been replaced by (U − c)2 − c2A. This is zero

for yc such that the wavespeed of the perturbation matches the local Alfvén
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wavespeed, and so the continuous spectrum is given by the set of c such that

cA = ±(U − c) at some y.

When cA is zero (the Newtonian case), the mode in the continuous spec-

trum which is the limit of the unstable mode at kc is regular. As cA grows,

two zeros of (U − c)2 − c2A emerge on either side of where U = c, separated

by a distance of order cA. Around each of these φ′′ = −φ′/(y− yc) at leading

order. Consequently φ ∼ ln |y−yc|. This is not regularized on multiplication

by U − c and so ψ has a logarithmic singularity at each zero. This results in

two singularities for ψ, with ψ = 0 somewhere between them.

The proof of Rayleigh’s criterion no longer holds for this flow. Indeed, it

has been shown [46] that the addition of a (continuous) magnetic field can

destabilize a flow even if U ′′ has constant sign. Various sufficient conditions

for instability have been found [46, 19]. A strengthened semi-circle theorem

applies for this case [44]: any unstable eigenvalue lies in the intersection of

the two distinct semi-circles

c2r + c2i ≤ (U2 − c2A)max , (7.5)

[cr − (Umax + Umin)/2]2 + c2i ≤ [(Umax − Umin)/2]2 − (c2A)min . (7.6)

If these semicircles have an empty intersection, the flow is stable. In the limit

cA → 0, the first semi-circle contains the second and the theorem reduces to

the standard Newtonian result.

Some study of the nonlinear development of the MHD critical layer has

been done by Shukhman [88, 89]. He studied two regimes. In the first,

cA ∼ ǫ2U ′

c where U ′

c is the value of the shear rate at the inflection point and ǫ

is a small parameter measuring the critical layer thickness. At leading order

the linear problem reduces to the Newtonian Rayleigh equation. The modes

are unstable for 0 < k < kc, and at kc there is a regular neutrally stable

mode with a single critical layer at the inflection point where the wavespeed

matches the local velocity. The size of cA is chosen such that the mode grows
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like the Newtonian mode and cA first becomes important in the critical layer

at the same time as the nonlinear terms. In the second regime cA ∼ U ′

c

and appears in the leading order equations. The Newtonian critical layer is

replaced by two separate critical layers, each centered at a singularity of the

neutrally stable mode. The nonlinear terms must be considered separately

in each layer. An intermediate regime exists for which the critical layers are

separated by a distance comparable to the critical layer width. No significant

simplification of the equations is possible here, and this regime has not been

studied.

7.1.3 UCM fluids

Similarly to the MHD fluid, the UCM fluid also supports waves. The velocity

of an elastic wave (relative to the base flow) is

cE = ±|U ′|
√

2E , (7.7)

where E (defined in section 7.2.2) measures the strength of elastic effects.

The elastic Rayleigh equation is similar to the MHD Rayleigh equation (7.4).

It takes the form

(

[(U − c)2 − c2E]φ′
)′

= k2[(U − c)2 − c2E]φ . (7.8)

This is derived under the assumption that the Reynolds number and the

Weissenberg number are both large. As before, the neutrally stable modes

that are the limits of the unstable modes have logarithmic singularities. The

elastic Rayleigh equation was first derived by Azaiez and Homsey [3] who

considered a shear flow profile U(y) = tanh y. They found the effect of

elasticity to be stabilizing, through a mechanism explained by Hinch [37]

whereby the elasticity behaves like surface tension close to the shear layer.

Rallison and Hinch [79] considered a submerged elastic jet with parabolic
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profile

U(y) =







U0(1 − y2/L2) |y| ≤ L

U(y) = 0 |y| > L
. (7.9)

There is a jump in the derivative of U at y = L, the interface between the

jet and the quiescent fluid. This jump induces a jump in the first normal

stress difference which drives a new instability we refer to as the RH mode

and discus in section 7.4.1.

It is unclear whether a flow that is stable for Newtonian fluids can be

destabilized by the addition of elasticity if the normal stress differences are

continuous. Although such instabilities exist for the MHD fluid, the exam-

ples of Kent [46] make use of the fact that the magnetic field is imposed

independently of the base flow. Consequently the Alfvén wavespeed is inde-

pendent of the base flow. In contrast, the elastic wavespeed depends on the

local shear rate and is not independent of the base flow.

The proof of the strengthened MHD semi-circle theorem [equations (7.5)

and (7.6)] immediately extends to UCM flow with the elastic wavespeed cE

replacing the Alfvén wavespeed cA. However, the analogous theorem is not

useful. The elastic wavespeed relative to the base flow is zero when U is a

maximum [see (7.7)]. Thus the bounds we reach are those of the Newtonian

version of Howard’s semi-circle theorem. It is possible to slightly reduce the

size of the semi-circle as noted by Rallison and Hinch [79].

7.2 Formulation of the problem

In this section we introduce the base flows. We nondimensionalize and derive

the full nonlinear equations governing the evolution of perturbations.

We assume that the fluid satisfies the UCM equations, which are (in
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Figure 7.1: The flow profiles.

dimensional form)

ρ
DU

Dt
= −∇P +

µ

τ
∇ · A + F , (7.10)

`

A =
1

τ
(I − A) , (7.11)

∇ ·U = 0 . (7.12)

The body force F is needed to maintain the base flows.

7.2.1 Base flow

In order to concentrate on the inertial instability we consider flows that avoid

a jump in first normal stress difference. We use two flow profiles, shown in

figure 7.1. The first is

U(y) =







U0(1 − y2/L2)2 |y| ≤ L

0 |y| ≥ L
, (7.13)
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which we refer to as the submerged jet. It is proportional to the square of

the parabolic profile (7.9) considered by Rallison and Hinch. At y = ±L
both U and U ′ are continuous, but U ′′ is not. The length scale of the flow

is characterized by the width W = L. The second profile we consider is the

Bickley jet for which

U(y) = U0 sech2(y/W ) , (7.14)

where W is a characteristic width of the flow. The Bickley jet was originally

derived by Bickley [5] as a solution to the Prandtl boundary layer equations

for an incompressible viscous jet. The flow he found travels in the x-direction

with a sech2 profile in y. The amplitude decays slowly in x while the width

increases, conserving momentum. Under the assumption of constant width,

this jet has become a standard profile for the study of inviscid instabilities,

particularly on the β-plane. A number of linear stability results have been

found [59, 42, 65, 26]. Most of these are summarized by Balmforth and

Piccolo [4].

For the computations in the linear stability analysis we need a finite

domain. For the submerged jet we will see that the quiescent fluid can be

treated analytically and so the calculations can be restricted to the jet. For

the Bickley jet we will apply periodic boundary conditions at |y| = L≫W .

This introduces a discontinuity for U ′ at ±L, but |U ′| remains continuous.

In light of the RH mode, we must consider whether the discontinuities

seen in U ′′ for the submerged jet and U ′ for the Bickley jet can generate new

instabilities. In section 7.4.2 we attempt to show that they do not introduce

any instability. We have not been able to give a rigorous argument, but use

a parameter search with some canonical examples.
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7.2.2 Nondimensionalization

We use a different nondimensionalization from that which we used for the

coextrusion flow. We nondimensionalize all lengths using the typical width

W and nondimensionalize time using a characteristic shear rate U0/W . Using

asterisks to denote the dimensionless variables we have L∗ = L/W , U ∗ =

U/U0, P ∗ = P/ρU2
0 and ∇∗ = W∇. We define the Weissenberg number by

Wı ≡ U0τ/W

and set A∗ =Wı−2
A. Dropping the asterisks we arrive at

DU

Dt
= −∇P + E∇ · A + F , (7.15)

`

A = (Wı−3
I −Wı−1

A) , (7.16)

∇ ·U = 0 , (7.17)

where the elasticity E ≡ τµ/ρW 2 measures the ratio of elastic to inertial

stresses. The Reynolds number is Re ≡ ρWU0/µ and so E =Wı/Re. Note

that E is independent of the magnitude of the flow rate and depends only

on fluid properties and the flow geometry.

The base flows become

U(y) =







(1 − y2)2 |y| ≤ 1

0 |y| ≥ 1
, (7.18)

and

U(y) = sech2 y . (7.19)

The history of every fluid element is constant, so DA/Dt = 0. Using equa-

tion (7.16) we find

A =

(

2U ′2 +Wı−2 Wı−1U ′

Wı−1U ′ Wı−2

)

.
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7.2.3 Perturbation equations

We take the perturbed velocity to be Ũ (x, y, t) = U(y) + u(x, y, t) and

the perturbed elastic stress to be Ã(x, y, t) = A(y) + a(x, y, t). To satisfy

incompressibility automatically we introduce a streamfunction ψ such that

u = (ψy,−ψx). We substitute Ũ and Ã into equations (7.15) and (7.16).

We eliminate pressure by taking the curl of the momentum equation (7.15),

yielding an equation for the perturbation vorticity ζ . We reach

∇2ψ = −ζ , (7.20)

ζt + Uζx + U ′′ψx − J(ψ, ζ) = E [−∂xya11 + (∂2
x − ∂2

y)a12 + ∂xya22] , (7.21)

at + Uax − J(ψ, a) − ψxA
′ − U ′

(

2a12 a22

a22 0

)

− H − h = −Wı−1
a , (7.22)

where prime denotes differentiation with respect to y and the Jacobian J

satisfies J(q, r) = qxry − qyrx. The tensors H = A · (∇u) + (∇u)T · A and

h = a · (∇u) + (∇u)T · a are given by

H =

(

2A11ψxy + 2A12ψyy A22ψyy −A11ψxx

A22ψyy −A11ψxx −2A12ψxx − 2A22ψxy

)

,

h =

(

2a11ψxy + 2a12ψyy a22ψyy − a11ψxx

a22ψyy − a11ψxx −2a12ψxx − 2a22ψxy

)

.

For the submerged jet (7.18) we apply decay conditions for large y. For

the Bickley jet (7.19) we apply periodic boundary conditions at y = ±L
where L ≫ 1. When we study the weakly nonlinear problem later, we will

use amplitude equations derived for E ≪ 1 for which the linear problem has

an analytic solution for L→ ∞.
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7.3 The linear problem for Wı ≫ 1

For the linear analysis we drop the nonlinear terms J(ψ, ζ), J(ψ, a) and h

from the governing equations (7.20)–(7.22) and seek modes proportional to

exp[ik(x − ct)]. We derive the linearized perturbation equations at largeWı

in section 7.3.1 and discuss the numerics we use to solve the equations in

section 7.3.2.

7.3.1 The linearized equations

The linearized equations are

(−k2 + ∂2
y)ψ = −ζ ,

ik(U − c)ζ + ikU ′′ψ = E [−ik∂ya11 + (−k2 − ∂2
y)a12

+ ik∂ya22] ,

ik(U − c)a − ikψA
′ − U ′

(

2a12 a22

a22 0

)

− H = −Wı−1
a .

We assume thatWı ≫ 1 and find

H =

(

4ikU ′2ψy 2k2U ′2ψ

2k2U ′2ψ 0

)

+ O(Wı−1) .

We conclude that a22 = O(Wı−1). Taking leading order terms in Wı, the

equations simplify to

(−k2 + ∂2
y)ψ = −ζ , (7.23)

ik(U − c)ζ + ikU ′′ψ = E [−ik∂ya11 + (−k2 − ∂2
y)a12] , (7.24)

ik(U − c)a11 = 4ikU ′U ′′ψ + 2U ′a12 + 4ikU ′2ψy , (7.25)

ik(U − c)a12 = 2k2U ′2ψ . (7.26)

Combining these we arrive at the elastic form of Rayleigh’s equation

[Γφ′]′ = k2Γφ , (7.27)
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where Γ = (U−c)2−2EU ′2 and φ = −ψ/(U−c). There is a neutrally stable

continuous spectrum consisting of those c for which Γ(y) = 0 at some value

of y.

For the submerged jet (7.13) we can explicitly find the perturbation flow

for |y| > 1, following Rallison and Hinch [79]. In this region U and U ′ both

vanish, and Γ is constant. The equations become

φ′′ = k2φ ,

so φ is either a growing or decaying exponential. Enforcing decay as y → ±∞,

we find

Γφ′ + kc2φ = 0 y = 1 , (7.28)

Γφ′ − kc2φ = 0 y = −1. (7.29)

We use these conditions to act as boundary conditions on the jet and no

longer consider the quiescent fluid.

For the Bickley jet, the periodic conditions state φ(L) = φ(−L) and

φ′(L) = φ′(−L). However varicose perturbations must satisfy φ(L) = −φ(−L)

and sinuous perturbations must satisfy φ′(L) = −φ′(−L). Consequently for

the Bickley jet we have

φ(L) = 0 varicose , (7.30)

φ′(L) = 0 sinuous . (7.31)

For both flows we have symmetry conditions at the center-line

φ(0) = 0 varicose ,

φ′(0) = 0 sinuous ,

and so we can restrict our attention to y ≥ 0.
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Simple observations

As in the Newtonian case, complex eigenvalues of the elastic Rayleigh equa-

tion (7.27) appear in conjugate pairs. We can further show that when c is

real, it must lie in the continuous spectrum, that is, there exists a y such

that Γ(y) = 0. To see this we assume c is real, multiply equation (7.27) by

φ∗ and integrate from −L to L (L = 1 for the submerged jet and L ≫ 1 for

the Bickley jet). Using integration by parts we find

[Γφ′φ∗]L
−L −

∫ L

−L

Γ|φ′|2 dy = k2

∫ L

−L

Γ|φ|2 .

For the submerged jet, the first term gives a contribution of −kc2(|φ(−1)|2 +

|φ(1)|2) which is at most zero. For the Bickley jet, the contribution is exactly

zero because of periodic boundary conditions. Thus
∫

(|φ′|2+k2|φ|2)Γ dy ≤ 0.

For both flows, U ′(0) = 0 and so Γ(0) ≥ 0. However, |φ′|2 + k2|φ|2 > 0 so Γ

must be zero somewhere. Thus c is in the continuous spectrum.

7.3.2 Numerical method for the linear problem

As for the coextrusion flow, when we use a spectral method the modes close

to the continuous spectrum are not well-resolved. For coextrusion, we simply

increase the number of Chebyshev polynomials until the balloon lies in the

stable half plane. Because the continuous spectrum for the inviscid elastic jet

is on the real axis, the balloon always lies partly in the unstable half plane.

In practice, we are unable to resolve the unstable eigenvalues spectrally.

Instead, we employ a shooting algorithm using an adaptive step-size

Runge–Kutta integration routine provided by Numerical Recipes [77]. For

fixed c, there is only one free condition (either φ or φ′ depending on the

symmetry) at y = 0. We fix its value and integrate from zero to L. For each

c we calculate an error E at L [from whichever of equations (7.28)–(7.31)

is appropriate]. The error is zero if and only if c is an eigenvalue. We use
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a Newton–Raphson algorithm (also from Numerical Recipes) to find c such

that E = 0. The Numerical Recipes routines have some flaws encountered in

the coextrusion flow and discussed in appendix A.1.1. The same workarounds

apply in this case.

It is difficult to obtain a good initial estimate of the eigenvalues for the

shooting algorithm. The eigenvalues are close to the continuous spectrum and

the semi-circle theorem does not give tight bounds for their position. If the

initial guess is not sufficiently close, then the continuous spectrum disrupts

the convergence and we do not find the eigenvalue. This is particularly

problematic because there is no systematic method to determine the existence

of the eigenvalue a priori. The failure of the shooting algorithm is insufficient

to establish that the eigenvalue does not exist.

We turn to a “carpet bombing” method to find a good approximation for

the eigenvalue. We systematically test possible unstable eigenvalues. The

semi-circle theorem bounds the location of any unstable eigenvalue. We take

a fine mesh of values of c over this region. For each value of c we integrate

from y = 0 to L as in the shooting algorithm. We take ‖E‖ = |ℜ[E ]| +

|ℑ[E ]|. Plotting log10(‖E‖) against c, the eigenvalues appear as logarithmic

singularities. Once we have located the eigenvalues, shooting with parameter

continuation can be used to follow them as parameters change.

Testing the linear calculation

We test our calculations with the flow profile of Rallison and Hinch [79]. We

reproduce their results in figure 7.2.

7.4 RH-like instabilities

The instability of Rallison and Hinch [79] is due to a discontinuity in the first

normal stress difference. Its existence raises the possibility that discontinu-
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Figure 7.2: Comparison between our calculations and those of Rallison and

Hinch for their jet profile. The calculations are in agreement (note their

curve for E = 0.02 is mislabelled as 0.025).

ities in some other elastic property of the base flow might result in a new

instability. In particular the base flow profiles we have chosen both have a

discontinuity in the derivative of the first normal stress difference.

In this section we discuss the RH instability in more detail, largely follow-

ing the original analysis [79]. We show its existence in a simplified base flow.

We then consider simplified base flows containing the same discontinuities as

the submerged jet (7.18) and the Bickley jet (7.19).

7.4.1 The RH instability

The flow profile used by Rallison and Hinch [79] becomes

U(y) =







1 − y2 |y| ≤ 1

0 |y| > 1
, (7.32)

after nondimensionalization. The jump in normal stress at y = 1 gives rise to

an instability for small values of E at large values of k, as seen in figure 7.2.
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We see two distinct peaks in the growth rates in this figure, one at k = 2,

which comes from the inertial instability and another at successively larger

values of k as E decreases which is the new RH instability.

When E is small, the forward traveling elastic wave at y = 1 has the same

velocity as the backward traveling elastic wave at y = 1−2(2E)1/2. The shear

rate in the thin layer between the two elastic waves is effectively constant.

The only length scale present is the width of the layer, so we expect the

most unstable wavelengths to scale like E 1/2, giving k ∼ E−1/2. Rallison and

Hinch found that ℑ[c] ∼ E 1/2 and so the growth rate is O(1) as E → 0, but

the wavenumber tends to infinity. Figure 7.2 shows an additional qualitative

difference from the inertial results: there is no kc at which the flow stabilizes.

We demonstrate our numerical methods with this instability. In fig-

ure 7.3(b) we plot log10(‖E‖) for each value of c as described in section 7.3.2.

The logarithmic singularity at the eigenvalue is clear in figures 7.3(c) and (d).

We use this to seed the shooting algorithm and turn to shooting and param-

eter continuation to follow the eigenvalue. The resulting growth rates are

shown in figure 7.2.

To make it clear that the RH instability is due to the jump in normal

stress at y = 1, we consider a different flow profile

U(y) =







2(1 − y) y < 1

0 y > 1
, (7.33)

with the perturbation flow satisfying a no-penetration boundary condition

at y = 0, and decay as y → ∞. At y = 1 this has the same jump in

normal stresses as the RH profile, but U ′ is monotonic so there is no inertial

instability. The results are plotted in figure 7.4. For sufficiently small values

of E with k ∼ E−1/2, the growth rates are similar to figure 7.2, as expected.

The instability also does not stabilize at large k.
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Figure 7.3: The stability behavior of (7.32). It is clear that when E = 0.005

and k = 5 there is an unstable mode with ℜ[c] ≈ 0.2 and ℑ[c] ≈ 0.03.
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Figure 7.4: Results for (7.33). Given the same jump in normal stress as in

the RH jet, a similar instability occurs.
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7.4.2 Eliminating the RH instability

In this section we consider simplified flow profiles that reproduce the discon-

tinuities of the submerged jet and the Bickley jet. We seek to show that there

is no instability introduced by these boundary conditions. Our argument is

not rigorous, but depends on an incomplete parameter search.

At y = 1 the velocity profile of the submerged jet (7.18) has a quadratic

zero, with a discontinuity in U ′′. In contrast at y = ±L the Bickley jet (7.19)

has a jump in U ′, but not in the first normal stress difference which depends

on |U ′|.
We consider two simplified flows. The first is

U(y) =







(1 − y)2 0 ≤ y ≤ 1

0 y > 1
, (7.34)

with a no-penetration boundary condition at y = 0 and decay as y → ∞. At

y = 1 there is a discontinuity in U ′′, but not U ′. This mimics the boundary

of the submerged jet at y = 1. The second test flow is

U(y) = 1 − |y| for |y| < 1 , (7.35)

with no-penetration boundary conditions at |y| = 1. At y = 0, U ′ jumps

but |U ′| does not, mimicking the the Bickley jet condition at |y| = L.

The shear rate U ′ is monotonic in both of these flows and so they are

stable to the inertial instability. We do not find any new instabilities for the

parameters searched. The results of carpet bombing for E = 0.005 and k = 5

are shown in figures 7.5 and 7.6.

7.5 Linear results

Having shown that the boundary conditions of the submerged jet and the

Bickley jet are unlikely to introduce new instabilities, we now turn to the
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Figure 7.5: There is no singularity with ℑ[c] > 0 for the base flow (7.34),

although there appears to be a singularity as ℑ[c] → 0.
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Figure 7.6: There is no singularity with ℑ[c] > 0 for the base flow (7.35),

although there appears to be a singularity as ℑ[c] → 0.
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L = 10.

Figure 7.7: Growth rates for E = 0. There is simultaneously a stable mode

with opposite growth rate.

effect of elasticity on the growth of the inertial mode.

We first consider the Newtonian limit E = 0. Growth rates for the two

flows are shown in figure 7.7. For both base flows the growth rate is positive

for 0 < k < kc, for some kc, and the sinuous modes are more unstable than

the varicose modes.

We plot the growth rates for different values of E in figure 7.8. The

growth rate reduces as E increases, and the value of kc for which it stabilizes

decreases as well.

We plot the maximum growth rate as a function of E in figure 7.9. At

small values of E the sinuous mode is more unstable, but as E increases, it

is completely stabilized and the varicose mode is the only instability.

The submerged jet and the Bickley jet have shown qualitatively similar

behavior. From here on, we focus our attention on the Bickley jet. We

consider the marginally stable mode at k = kc where the flow stabilizes. At

E = 0 the mode is continuous and smooth. For the Bickley jet Lipps [59]
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Figure 7.8: Growth rates as E changes. The effect of E is stabilizing.
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Figure 7.9: Maximum growth rates as E changes. Sinuous modes are com-

pletely stabilized at large enough E .

showed that kc = 2 for infinite L, and the mode is given by ψ(y) = sech2(y).

This is clear in figure 7.10 where we take L = 10 and k slightly less than 2.

As E grows, two singularities emerge out of the critical location where

U ′′ = 0. They are separated by a width which is O(E 1/2). When this width

is less than the critical layer thickness, the elasticity plays no role outside

the critical layer: it only modifies the nonlinear equations for the critical

layer evolution. As E increases further, the singularities must be treated

separately in the nonlinear analysis.

We show the emergence and separation of the singularities for the Bickley

jet in figure 7.11. It is difficult to calculate the marginally stable mode at kc

explicitly, and so instead we calculate the slowly growing mode for k slightly

less than kc.



7.6 Weakly nonlinear equations for small E 153

−5 0 5
0

0.2

0.4

0.6

0.8

1
E=0

y

|ψ
(y

)|

(a) The magnitude of ψ.

0 0.5 1 1.5 2
0

0.5

1

1.5

2
E=0

y

|ψ
(y

)|
/s

ec
h2 (y

)

(b) The magnitude of ψ normal-

ized by sech2(y).

Figure 7.10: The slowly growing mode for E = 0, k = 1.99 with L = 10. No

singularities are present

7.6 Weakly nonlinear equations for small E

The linear results for the two flow profiles are qualitatively similar, and so

for the weakly nonlinear analysis we focus on just the Bickley jet. We take

the L → ∞ limit for which we have analytical linear results. Our analysis

follows Balmforth and Piccolo [4] who considered the Newtonian problem

with a Coriolis effect.

We change to a frame of reference moving with the marginally stable

linear mode

x̂ = x− ct ,

Û = U − c .
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Figure 7.11: Plots of magnitude and magnitude normalized by the E = 0,

k = 2 neutrally stable mode ψ = sech2(y) for slowly growing modes. Two

singularities appear at small E and separate as E increases. At k = kc, the

value of ψ goes through zero between the two singularities.
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Dropping hats, (7.20)–(7.22) become

∇2ψ = −ζ , (7.36)

ζt + Uζx + U ′′ψx − J(ψ, ζ) = E [−∂xya11 + (∂xx − ∂yy)a12 + ∂xya22] , (7.37)

at + Uax − J(ψ, a) − ψxA
′ − U ′

(

2a12 a22

a22 0

)

− H − h = −Wı−1
a , (7.38)

where U(y) = sech2 y − 2/3, and at y = yc both U and U ′′ are zero.

7.6.1 The amplitude equations

We take E = O(ǫ4) andWı−1 = O(ǫ). We set Wı−1 = ǫλ, so λ measures the

relaxation rate1. The elastic stresses drop out of equation (7.37) at leading

order, so the linear results are the same as for an inviscid Newtonian fluid.

We summarize the linear results: the flow is unstable for small values of

k. Varicose modes stabilize with k = 1 while sinuous modes stabilize with

k = kc = 2. For sinuous modes at kc, the wavespeed is c = 0 (in our new

frame of reference) and the streamfunction of the perturbation is ψ = sech2 y.

We choose our domain to be periodic with length 2π/k with k = k0 − ǫk1

[taking k0 = kc = 2, k1 > 0, k1 = O(1), and ǫ≪ 1]. The perturbation with

wavelength equal to the domain length is unstable. As k1 → 0 the growth

rate goes to zero with non-zero derivative. Consequently the most unstable

wavelength that fits in the domain has O(ǫ) growth rate, and the resulting

long time scale is T = ǫt. It is generally found for an inviscid Newtonian jet

that the amplitude of the mode grows until it is O(ǫ2), at which point the

nonlinear terms stop the growth and the amplitude saturates [4].

Within the critical layer we introduce the inner variable Y = (y − yc)/ǫ.

The dynamic growth of the marginally stable mode is controlled by the non-

linear terms, which are only significant in the critical layer. We need a new

1We use λ for the relaxation rate, and it should not be confused with a relaxation time.
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system of governing equations for the flow in the critical layer, which will be

matched to the linear solution at the edge of the critical layer.

The UCM equations

For the UCM fluid we arrive at a reduced system of equations governing the

critical layer, derived in appendix B.1 starting from (7.36)–(7.38). Following

rescalings, we can write the equations in the canonical form

L[Θ] = −Ψx + κΨT + E (a12,Y Y + a11,xY ) , (7.39)

L[a11] = 2a12 − λa11 , (7.40)

L[a12] = a22 + a11Ψ + 2Ψ − λa12 , (7.41)

L[a22] = 2a12Ψ + 2λΨ − λa22 , (7.42)

Ψ = B(T ) exp(ix) + cc , (7.43)

iBT = − 1

2π

∫ 2π

0

∫

∞

−∞

Θ exp(−ix) dY dx , (7.44)

where L[Θ] = ΘT + YΘx −ΨxΘY . The operator L[Θ] is linear in Θ, but has

the a nonlinear term ΨxΘY . The variables Θ, Ψ, a11, a12, and a22 are rescaled

versions of the vorticity, streamfunction, and elastic stresses respectively,

and B is the amplitude of the perturbation. The parameters E and λ are

rescaled versions of the elasticity and the relaxation rate (large λ implies

fast relaxation). The new parameter κ is determined by the base flow and

is independent of material parameters; for the Bickley jet κ = 0.470607

(section B.1.1).

As discussed in chapter 1 the extensional viscosity of the Oldroyd–B

model (and hence its UCM limit) in strong extensional flows has unphysical

behavior. The limitations of the UCM model in extensional flow becomes

apparent in the calculations in the critical layer. To improve the model, we

turn to the FENE–CR equations.
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The FENE–CR equations

The dimensional form of the FENE–CR equations (in the limit of zero solvent

viscosity) is

ρ
DU

Dt
= −∇P +

µ

τ
∇ · [F (A − I)] + F , (7.45)

`

A =
F

τ
(I − A) , (7.46)

∇ ·U = 0 , (7.47)

F =
l2

l2 − tr(A)
, (7.48)

where the parameter l measures the maximum extension of the polymers

creating the elastic stress. In the limit l → ∞, F tends to 1 and we recover

the UCM equations. In the limit l → 0, F tends to zero and we recover the

Euler equations for an inviscid Newtonian fluid.

After performing the same rescalings as for the UCM fluid, we obtain

the corresponding canonical form of the critical layer governing equations in
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appendix B.2. The result is

L[Θ] = −Ψx + κΨT + E [fxa11,Y + fY (a11,x + 2a12,Y )]

+ E [fxY (a11 + 2/F 2) + fY Y (a12 + λ/F )] (7.49)

+ E [(F + f)(a11,xY + a12,Y Y )] ,

L[a11] = 2a12 − λ[(F + f)a11 + 2f/F 2] , (7.50)

L[a12] = a22 + (a11 + 2/F 2)Ψ − λ[(F + f)a12 + fλ/F ] , (7.51)

L[a22] = 2(a12 + λ/F )Ψ − λ[(F + f)a22 + fλ2] (7.52)

Ψ = B(T ) exp(ix) + cc , (7.53)

iBT = − 1

2π

∫ 2π

0

∫

∞

−∞

Θ exp(−ix) dY dx , (7.54)

F + f =
l2

l2 − 2/F 2 − a11
, (7.55)

F = (1 +
√

1 + 8/l2)/2 , (7.56)

where L is defined as for the UCM fluid. The value of κ remains 0.470607.

7.6.2 Linearization of the critical layer equations

The reduced UCM system (7.39)–(7.44) can itself be linearized and studied

with normal modes. We assume a normal mode proportional to exp(ix+σT ).

After a series of substitutions to eliminate the aij we find

(σ + iY )Θ = B

(

−i+ κσ +
4E

(iY + σ + λ)3

)

,

and from (7.44)

σ = i

∫

∞

−∞

−i+ κσ

σ + iY
+

4E

(iY + σ + λ)3(σ + iY )
dY ,

=



















iπκ+1
1+π2κ2π ℜ[σ] > 0

iπκ−1
1+π2κ2π − 8πE(i+πκ)

λ3(1+π2κ2)
0 > ℜ[σ] > −λ

iπκ−1
1+π2κ2π 0 > ℜ[σ] + λ

,
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Figure 7.12: The linear growth rate is correctly found for Newtonian, UCM,

and FENE–CR fluids.

using residue theory. The residue of the second term in the integrand is

4iE/λ3 at Y = i(σ+λ) and −4iE/λ3 at Y = iσ. Thus, the only appearance

of E in the growth rate occurs when the poles are on opposite sides of the

real axis, which can only happen if σ has negative real part. In particular,

if the mode is unstable, E and λ do not affect the linear growth rate. For

κ = 0.470607, we find a linear growth rate of 0.986.

A similar analysis holds for the FENE–CR equations (7.49)–(7.56), and

so the growth rate of the mode at early times does not depend on the elastic

parameters. We observe the linear growth rates in figure 7.12.

7.6.3 Cat’s eyes

In the following sections we study the effect of elasticity on the development

of cat’s eyes. In order to be consistent with the calculations of Balmforth

and Piccolo [4] for the Newtonian fluid we take B(0) = −0.001. Θ and aij

are taken to be zero at T = 0.
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Figure 7.13: The vorticity Θ at T = 10, showing two periods of the Newto-

nian cat’s eye.

Our full calculation domain [shown in figure 7.13] is much larger than

the width of the cat’s eyes, and is left out of the remaining figures. The

calculations are performed in a box that is periodic with length 2π in the

horizontal direction and use large Y asymptotics for the boundary conditions

at the bottom and top boundaries Y = −35 and Y = 35. We use a 1500×1500

grid for the Newtonian and UCM calculations and an 800 × 800 grid for

the FENE–CR calculations. The 800 × 800 calculations give qualitatively

the same results as 1500 × 1500, but at later times the solution has small

quantitative differences. The FENE–CR calculations are too slow to run at

higher resolution. The numerical method is described in appendix B.3. The

plots show two periods in the x-direction.
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7.6.4 The Newtonian fluid

For comparison purposes, we first analyse the jet in the absence of elasticity.

We study equations (7.39), (7.43), and (7.44) with E = 0. There are no free

parameters in this system.

We plot the amplitude and maximum value of |Θ| for the Newtonian cat’s

eyes in figure 7.14, along with Θ for T = 5, 10, 15, and 20. We also plot

Θ in the top picture of the flipbook at the bottom right of each page, with

the time corresponding to 0.1 times the page number. At early times the

mode amplitude |B| grows according to the linear theory. When T is close

to 10, the nonlinear terms stop the linear growth. Cat’s eyes form and the

amplitude begins to oscillate.

As the cat’s eyes develop, they move from right to left in an apparent

rolling motion. They have clearly defined top and bottom edges and are

nearly symmetric under a rotation of π. The amplitude grows and begins

to oscillate about |B| ≈ 4, consistent with [4]. As time progresses, the cat’s

eyes keep roughly constant width. They continue to roll over and develop

successively finer scales, which eventually reach the numerical grid spacing.

While the linear analysis of the critical layer applies, the growth rate

is approximately 0.986. This can be seen in figure 7.12. Shortly after the

nonlinear terms become important, there is a maximum in |B|, which we

denote B1. We use B1 as a measure of when the nonlinear terms become

important. A smaller value of B1 indicates that the nonlinear terms become

significant sooner. For the Newtonian fluid B1 = 5.194, and is the first

maximum of 7.14(a). Its value is reduced in the presence of elasticity.

7.6.5 The UCM fluid

Including elastic effects alters the cat’s eye structure as well as the dynamic

behavior from the Newtonian E = 0 case. There are two parameters to



7.6 Weakly nonlinear equations for small E 162

0 5 10 15 20 25
0

1

2

3

4

5

6

T

|B
(T

)|
B

1
 

(a) Amplitude |B|.

0 5 10 15 20 25
0

1

2

3

4

5

6

T

|Θ
| m

ax

(b) Maximum value of |Θ|.

x

Y

0 pi 2pi 3pi 4pi
−10

−5

0

5

10

(c) Θ at T = 5.

x

Y

0 pi 2pi 3pi 4pi
−10

−5

0

5

10

(d) Θ at T = 10.

x

Y

0 pi 2pi 3pi 4pi
−10

−5

0

5

10

(e) Θ at T = 15.

x

Y

0 pi 2pi 3pi 4pi
−10

−5

0

5

10

(f) Θ at T = 20.

Figure 7.14: Newtonian cat’s eyes. The amplitude grows and saturates

around |B| = 4 where nonlinear terms become important.
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Figure 7.15: Value of B1, the first maximum of |B|, for the UCM fluid.

study, E and λ.

At early times, the amplitude has the growth predicted by linear theory.

The nonlinear terms affect the growth rate sooner if E is large or λ small.

Figure 7.15 shows the value of B1 as λ and E change. As either E → 0, or

λ→ ∞, the value asymptotes to the Newtonian limit, 5.194. As E increases

or λ decreases, B1 decreases.

Once the nonlinear terms become important, the amplitude begins to os-

cillate, with higher frequency than the Newtonian fluid, as seen in figure 7.16.

The amplitude may diverge if λ is small. Divergence of the amplitude im-

plies that the mode leaves the O(ǫ2) scaling assumed in the derivation of the

amplitude equations. Whether the amplitude diverges depends strongly on

whether the elastic stress relaxes quickly and only weakly on the strength

of the elasticity, as seen in figure 7.17. In general we find that the solutions

diverge if the stress is unable to relax quickly.

For large enough relaxation rates, the amplitude apparently saturates,

but the dynamics are more complicated than for a Newtonian fluid. The

cat’s eyes form, but they are are much less symmetric, as seen in figure 7.18
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Figure 7.16: Plot of |B|. If E is small or λ large the behavior is roughly

Newtonian. If λ is too small the amplitude diverges.
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Figure 7.17: Long-term behavior of UCM solutions. If |B| exceeds 500 be-

fore T = 25 the solution is considered divergent. Otherwise it is considered

bounded. For small enough λ the solutions appear to diverge for any positive

E . The left-most points are for E = 0.01.
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for E = 20.01 and λ = 9. They move from right to left faster than the

Newtonian cat’s eyes. As they roll, the material from the top of one eye

stays in place while the next eye rolls under, and so material at the top stays

approximately in place while the eyes move past. Over time, considerable

material builds up above the cat’s eyes and they migrate down. The center

of the eyes remains largely isolated from the remainder of the flow.

The fact that some material stays in place while the eyes roll past has

the additional effect of creating considerable stretching of the material. This

results in large elastic stresses, particularly close to stagnation points, the ‘×’

points of the cat’s eyes. Difficulties appear at these points where the exten-

sion is large and the UCM model breaks down. Although this does not affect

much of the fluid, close to the stagnation points the stresses and vorticity

grow unreasonably. We see this in figure 7.19(b) which shows the maximum

value of |Θ| as a function of T for E = 5.01 and λ = 5. Although the magni-

tude becomes large, the effect is localized and it does not significantly affect

the global integral of Θ: the amplitude B is largely unaffected.

It is clear in figure 7.19(b) that the numerics are not able to accurately

determine the largest value of |Θ|. To improve this we need better resolution

of the stagnation points. For flows which relax quickly enough, the gradi-

ents of the stress remain small and we do not have numerical difficulties.

Qualitatively the evolution of the cat’s eyes remains similar.

7.6.6 The FENE–CR fluid

To resolve the difficulties caused by extensional flow, we turn to the FENE–

CR equations (7.49)–(7.56). These equations require the calculation of a

number of additional derivatives. This slows the code considerably, and so

we have used a lower resolution for the calculations, 800 × 800.

The FENE–CR parameter l keeps the polymer strain from exceeding a
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(f) Θ at T = 20.

Figure 7.18: Cat’s eyes in a UCM fluid with E = 20.01, λ = 9.
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(f) Θ at T = 20.

Figure 7.19: Cat’s eyes in a UCM fluid with E = 5.01, λ = 5.
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Figure 7.20: Divergence of amplitudes for λ = 0, E = 5.01, and different

values of l.

finite limit by increasing the rate of relaxation as the maximum strain l is

approached. In the limit λ = 0, there is no relaxation to increase, and so the

stresses aij are not prevented from reaching (and exceeding) this maximum.

Simultaneously the elastic effect in the momentum equation diverges, and so

the model fails if the maximum is reached or crossed. This happens sooner

for smaller values of l, as seen in figure 7.20. This can also happen for small

λ if the time step is too large in the numerics and the stretching reaches or

crosses its maximum, which will be addressed later.

At large values of l we still see the poor extensional behavior found in

the UCM fluid. As l decreases, the extensional behavior improves. When l

becomes small, the behavior becomes Newtonian.

l = 0.1

A small value of l models the case where the polymers do not stretch much.

In our calculations we have not taken any measures to avoid overstepping
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Figure 7.21: Amplitudes for l = 0.1, E = 10.01, and different values of

λ. The behavior depends only weakly on E and is effectively Newtonian

[compare to figure 7.14(a)]. For small values of λ, the amplitude diverges if

the elastic strain grows too large

the maximum strain. In figure 7.21 we see that for l = 0.1 all curves have

similar behavior until the elastic strain exceeds the maximum. The amplitude

diverges almost immediately afterwards. If λ is large enough, the strain does

not exceed this maximum, and the cat’s eyes develop much as in a Newtonian

fluid [see figure 7.14(a)].

Figure 7.22 shows how the cat’s eyes evolve for l = 0.1, E = 5.01,

and λ = 5. There is little difference between these results and those of the

Newtonian fluid in figure 7.14.

l = 1

At a moderate value of l, the numerical difficulties causing divergence for

l = 0.1 no longer appear except when λ is very small. In our calculations,

we only observe them for λ = 0.
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(f) Θ at T = 20.

Figure 7.22: Cat’s eyes in a FENE–CR fluid with l = 0.1, E = 5.01, and

λ = 5. Compare with figures 7.14 and 7.18.
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Figure 7.23: The value of B1 is qualitatively similar to that of UCM fluids

seen in figure 7.15.

The value of B1 follows similar behavior to that of the UCM fluid, as

shown in figure 7.23 for l = 1, E = 5.01, and λ = 5.

Our results are clearly distinct from the Newtonian fluid and do not have

the same difficulties found in the UCM fluid. Figure 7.24(b) shows that the

maximum of |Θ| remains small. However, the development of the cat’s eyes

in figures 7.24(c)–(d) remains similar to the UCM fluid: in particular they

retain the feature that the top of the eyes remains in place while the bottom

rolls past. These parameters are also shown in bottom picture of the flipbook

in the bottom right of each page. Again the time is equal to 0.1 times the

page number.

l = 10

When l becomes large, the behavior is very much like the UCM equations.

Although the maximum value of |Θ| is smaller than for the UCM fluid, it

still grows to an unreasonably large value. Figure 7.25 shows that cat’s eyes

develop similarly to the UCM cat’s eyes in figure 7.19.
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Figure 7.24: Cat’s eyes for l = 1, E = 5.01, and λ = 5. The cat’s eyes

have similar qualitative behavior to the UCM cat’s eyes, but do not have the

unphysical growth of Θ.
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Figure 7.25: Cat’s eyes for l = 10, E = 5.01, and λ = 5. The development

has the same failures as the UCM cat’s eyes.
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7.7 Discussion and future work

In this chapter we have studied the effect of elasticity on the inertial instabil-

ity of a planar jet. We considered two test flows, both of which are symmetric

and contain an inflection point, but do not have the jump in normal stress

known to introduce a new elastic instability.

Our linear results show that as the elasticity grows, the growth rate of

the inertial instability decreases. At large enough elasticity the sinuous mode

stabilizes for all k in both of our test flows. When E is small, the neutrally

stable mode has two pairs of logarithmic singularities, one pair on either side

of the center-line, and so the critical layer splits into two layers. We do not

attempt further analysis of the multiple critical layers.

If E = O(ǫ4) just one critical layer exists. The elasticity affects the

critical layer when the mode amplitude is O(ǫ2). The nonlinear terms also

appear at this time. If the relaxation is too small, the mode amplitude grows

and leaves this regime. If the relaxation is large enough, the mode amplitude

remains O(ǫ2). There is strong extensional flow, and this causes the UCM

model to fail, so we turn to the FENE–CR equations.

The structure of the critical layer changes from the Newtonian flow. Cat’s

eyes develop as before, but the elasticity inhibits the roll-up, and so less

material is brought into the center of the cat’s eye. Over time the cat’s eyes

migrate across the vorticity gradient, leaving a mixed region behind them.

This analysis has a flaw in that the base stress is assumed to be in equi-

librium. It takes time for the flow to establish a base stress, during which

time instabilities may set in. Our base state may not accurately represent

the true base flow.

This study leaves many unanswered questions. It forms the basis of a

continuing fully-nonlinear simulation of elastic planar jets in collaboration

with Dr. Neil Balmforth and Dr. Yuan-Nan Young which will address some
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of them.

In particular we would like to address the issue raised above that the

elastic stress in the base state cannot generally be considered to be in equilib-

rium. We also intend to investigate the existence of turbulent drag reduction

in this model and the behavior of the new critical layer when the elasticity

is increased.



Appendix A

Numerical methods for the

coextrusion flow

In this appendix we describe more details of our numerical methods as well

as the tests we used to validate the code used for the coextrusion flows of

part I.

A.1 Methods

We use a shooting method based on Runge–Kutta integration and a spectral

method based on Chebyshev polynomials to solve the coextrusion eigenvalue

problems. We did not develop both methods for all flows; the method used

for each flow is summarized in figure A.1.

We outline the shooting and spectral methods for the case of Couette

flow. We are solving the fourth-order system of equations (2.18)–(2.27). At

each wall [y = −∆k and y = (1 − ∆)k] we have two no-slip conditions and

two free conditions. At the interface (y = 0) there are four conditions plus

an additional equation for the interfacial perturbation δ.
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Flow shooting spectral

Couette x x

Channel Poiseuille x x

Pipe m = 0 streamfunction x

Pipe m = 0 primitive variables x

Pipe m = 1 x

Figure A.1: Summary of the numerical methods developed for each flow.

A.1.1 Shooting

We eliminate aij from equations (2.18)–(2.27) and then the streamfunction

ψ satisfies a fourth order differential equation (3.1). At each wall both ψ and

ψ′ must vanish to satisfy the no-slip conditions, but ψ′′ and ψ′′′ are free. We

take an initial guess for ω and choose ψ′′

1(−∆k) = 1 + i, ψ′′′

1 (−∆k) = 1 + i

and ψ′′

2(−∆k) = 1 + i, ψ′′′

2 (−∆k) = −1 − i to serve as initial conditions

for two independent solutions1. We integrate ψ1 and ψ2 from y = −∆k

to y = 0, apply the interfacial conditions and then integrate from y = 0

to y = (1 − ∆)k. This gives two solutions of the ODE satisfying the no-

slip boundary conditions at the wall y = −∆k: ψ1(y) and ψ2(y). Any linear

combination C1ψ1(y)+C2ψ2(y) is also a solution satisfying no-slip conditions

at y = −∆k. In order to satisfy the boundary conditions at (1−∆)k we seek

Mc = 0 where

M =

(

ψ1([1 − ∆]k) ψ2([1 − ∆]k)

ψ′

1([1 − ∆]k) ψ′

2([1 − ∆]k)

)

,

and c = (C1, C2). The value of the determinant det(M) depends on ω only.

We require det(M) = 0 for ω to be an eigenvalue of the linearized equations.

1We choose our two initial conditions so that they are orthogonal and so that the

real and imaginary parts are nonzero. We take them both non-zero since the integration

routine has an adaptive step size which becomes small if a variable is zero.
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We perform the integrations using an adaptive Runge–Kutta algorithm

and use a Newton–Raphson method to find the values of ω giving zeros of

det(M). Both algorithms are from Numerical Recipes [77]. The Newton–

Raphson method occasionally returns values for ω which do not yield zeros

of the determinant. Consequently, we always run an additional integration

at higher accuracy with the calculated value of ω to ensure that the result is

correct.

Most previous studies [39, 103, 104] have used an orthogonalization step

during the integration as initially suggested by Conte [21]. We have not

found this to be necessary, presumably because our calculations use a higher

accuracy requirement.

A.1.2 Spectral

For the spectral method, we largely follow the method presented in Dongarra

et al. [23] (see also the book by Boyd [13]). We map the interval of the lower

fluid y ∈ [−∆k, 0] to z ∈ [−1, 1] by z = 1 + (2y/∆k). The equations can be

translated into the z variable using ∂y = (2/∆k)∂z. A similar transformation

is used in the upper fluid. Unlike shooting, we do not eliminate the aij from

the equations. This makes the coding easier, but increases the time and

memory requirements. We take

ψ(z) =

N+3
∑

i=0

piTi(z) ,

a11(z) =

N
∑

i=0

qiTi(z) ,

a12(z) =
N+1
∑

i=0

riTi(z) ,

a22(z) =

N+1
∑

i=0

siTi(z) ,
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where pi, qi, ri and si are constants and Ti is the i-th Chebyshev polynomial.

Note that the sums do not have the same upper limit. This is discussed in

section A.2.7. Each variable is thus defined by a vector of coefficients. We

repeat this in the upper fluid and add the scalar δ to the system. This gives

8N + 19 unknowns. We combine these into a single vector x.

The streamfunction is represented by a vector of length N+4. Its deriva-

tive is then a vector of length N + 3. This vector can be found by multipli-

cation by a suitable truncation of the infinite matrix D

D =

























0 1 0 3 0 5 0 7 · · ·
0 0 4 0 8 0 12 0 · · ·
0 0 0 6 0 10 0 14 · · ·
0 0 0 0 8 0 12 0 · · ·
0 0 0 0 0 10 0 14 · · ·
...

...
...

...
...

...
...

...
. . .

























.

We can also represent multiplication by z as a multiplication by the matrix

Z

Z =
1

2





























0 1 0 0 0 0 · · ·
2 0 1 0 0 0 · · ·
0 1 0 1 0 0 · · ·
0 0 1 0 1 0 · · ·
0 0 0 1 0 1 · · ·
0 0 0 0 1 0 · · ·
...

...
...

...
...

...
. . .





























.

After performing these substitutions, we match coefficients for each Cheby-

shev polynomial Ti in each equation, up to the maximum index for which all

terms are included (for example in an equation including both ψ and ψ′, we

would not match coefficients of TN+3 because ψ′ is accurate only to TN+2).

From equation (2.18) we get N equations, from (2.19) we get N+1 equations,
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and from (2.20) and (2.21) we get N +2 equations each. Combined with the

conditions in the upper fluid, this gives a total of 8N + 10 equations.

To apply the conditions at the interface and at the walls we note that

Tn(±1) = (±1)n, so the values at the boundaries of each domain can be

easily found from the coefficients of the vector, expressed as a dot product

with (1,−1, 1,−1, . . .) at the lower boundary and (1, 1, 1, 1, . . .) at the up-

per boundary. This gives 8 more equations. We apply the one remaining

condition on the value of δ to give a total of 8N + 19 equations.

The full system can then be expressed in the form

C1x = iωC2x ,

where C1 and C2 are (8N+19)×(8N+19) matrices. By appropriately ordering

the equations, we can make C2 positive symmetric. This can be solved using

the eig command of Matlab which uses the LAPACK implementation of the

QZ algorithm. It finds all eigenvalues of the system. Alternatively, we use

the eigs command which is faster, but finds only a single eigenvalue at a

time and needs an initial guess. In practice we find the eigenvalues with eig

and follow them through parameter continuation with eigs or the shooting

algorithm.

It is known that this spectral algorithm occasionally returns spurious

eigenvalues. These can be identified by the fact that they do not converge

well as the number of polynomials is increased [23]. To avoid these we perform

our calculations with different values of N and, whenever possible, compare

with the shooting algorithm and analytic results.

A.2 Tests

To validate the algorithms, we compare with the k → 0 limit [16, 38, 103]

and the k → ∞, β → 0 limit of Renardy [84] and chapter 3 as well as
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with published calculations at finite k. In all cases for which we have both

a shooting and a spectral algorithm the algorithms are consistent with each

other.

A.2.1 Poiseuille flow, finite Wı

For Poiseuille flow with finite Wı, we use equations (2.55)–(2.66). We can

compare our results with those of Wilson and Rallison [103, 104, 105]. We

get agreement in all cases, one of which is shown in figure A.2. We find

agreement with the k → 0 asymptotics [103, 27] and the k → ∞, β → 0

asymptotics of [84].

A.2.2 Poiseuille flow, infinite Wı

For infiniteWı we use the leading order terms of equations (2.55)–(2.66). To

test the corresponding code, we check that it matches the results of the finite

Wı code as Wı increases. We also compare with the k → 0 and k → ∞,

β → 0 limits.

A.2.3 Couette flow, finite Wı

For Couette flow, we do not have many published results to compare with.

However, the spectral code requires only a few changes from the Poiseuille

code. The shooting code was entirely rewritten. The two methods give

consistent answers and agree with the asymptotic k → 0 and k → ∞, β → 0

limits [84, 103, 104].

A.2.4 Couette flow, infinite Wı

To test this code, we compare with our finite Wı code at large values of Wı,

and our asymptotic results in chapter 3.
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Figure A.2: A comparison of our numerical calculations with those of Wilson.

The outer fluid is Newtonian and the inner fluid is UCM (ξ = 0), withWı = 5

and ∆ = 0.5. Lines represent sinuous modes and points varicose modes.

Our calculations use a different nondimensionalization (hence different axis

scalings) and cannot solve for ξ = 0, so we use ξ ≪ 1. Our asymptotic

k → ∞ calculations (see section 3.4.2) find a mode whose decay rate scales

like −1/ξ instead of the mode predicted (but not found) by Wilson with

decay rate −0.2.
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A.2.5 Pipe flow, m = 0, finite and infinite Wı

In pipe flow with m = 0 we consider only the UCM fluid, setting β = 0. Our

shooting method uses the streamfunction formulation of the equations, but

the spectral method does not.

Shooting

To test our shooting method, we compare with the results of Meulenbroek et

al. [69] for a single UCM fluid. Meulenbroek et al. use a different shooting

algorithm from ours. They do not take advantage of the linearity to reduce

the problem to a determinant. Instead they set ψ′′(1) = 1 and thus have

three free parameters at the wall: ψ′′′(1) and the real and imaginary part of ω,

which they set arbitrarily. They assume that ψ has a Taylor series expansion

about r = 0 and integrate inwards from r = 1 to r = rc ≪ 1, attempting to

match the value of ψ and its first three derivatives at r = rc. This system is

overdetermined, and so has solutions only when ω is an eigenvalue.

The boundary condition applied at r = 0 is incorrect. It may be shown

by considering vz = ψ′/r that as r → 0 both ψ and ψ′ must vanish. So

they assume that ψ = a2r
2 + a3r

3. Taking this condition, we are able to

reproduce their results. However, by modifying the location of rc, we find

that a3 = O(rc), and so ψ does not have the assumed form. The boundary

conditions ψ(0) = 0 and ψ′(0) = 0 have also been applied by Dongarra et

al. [23] for stability of Newtonian fluid in a pipe. These conditions are not

enough to specify the solution because there is a singular solution which

has ψ′ ∼ r ln r as r → 0. The correct condition is ψ′/r remains finite as

r → 0 [25]. We can alternately use ψ′′′(0) = 0, that is, we attempt to match

our solution to ψ = a2r
2+a4r

4 and its first three derivatives at r = rc. When

we correct the condition, the results change slightly, but not significantly. We

can reproduce the k → 0 results of [16, 38] and the k → ∞ results of Wilson
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and Rallison [104].

To test the infinite Wı code, we compare with the finite Wı code at large

Wı.

Spectral

Our spectral method does not use the streamfunction formulation. We solve

the full equations, including the vθ, arθ, and aθz terms. We find the same

results as in the shooting method, but there is an additional (stable) mode

(seen for Wı → ∞ in figure A.3). The mode corresponds to flow in the vθ

direction only, and so does not appear in the streamfunction form of the

equations.

A.2.6 Pipe flow m = 1, infinite Wı

For m = 1 flows we again consider only UCM fluids. We have not developed

a shooting algorithm for this case. Our spectral code is the same code as in

the m = 0 case, except for changes to the boundary condition and the value

of m.

We are unaware of any published calculations which solve the m = 1 flow

of UCM fluids through a pipe. Consequently we show more details of our

tests for these modes.

We compare with our asymptotic results of chapter 3 for large k based

on the assumption that the flow is effectively Couette on the relevant length

scales. The comparison is shown in figure A.3. We find all of the predicted

eigenvalues. There is an additional mode not seen in Couette flow. This mode

corresponds to the mode found for axisymmetric pipe flow whose velocity was

entirely in the azimuthal direction.

Our calculations for m = 1 and k small are shown in figure A.4(a). They

agree with the predictions of Hinch et al. [38]. The error between the calcu-
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(c) Imaginary part of ω for

m = 1 mode.
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Figure A.3: (Reproduction of figure 5.2). Dots represent the calculation at

k = 100 and ∆ = 0.3. Solid lines represent the asymptotic k → ∞ prediction

from UCM Couette channel flow. There is an additional mode depicted by

circles.
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mation [38].

Figure A.4: For ξ < 1 the long-wave m = 1 growth rates are negative. The

error in the prediction of [38] for k = 0.001 is of order 10−15, while the growth

rates are O(10−8). When ξ > 1 (not pictured) the growth rate is positive

and the error also small.

lated results and the asymptotic prediction is shown in figure A.4(b).

We perform a final test that the results are identical when m = −1.

A.2.7 Complications with the QZ algorithm

In section A.2.5 we mention the need to use different accuracy for different

physical variables. This is not a universal practice (e.g., [29] keep all variables

to N places), but is done by some authors (e.g., [84]).

We are forced to use different accuracies due to difficulties encountered

with the LAPACK implementation of the QZ algorithm as used by Matlab’s

eig command. We illustrate the problems here. For definiteness we consider

the varicose eigenvalue problem for UCM fluids with ξ = 0.5, ∆ = 0.3, and

k = 10 in three-layer symmetric channel flow. We set N = 100 and expand

all variables to N Chebyshev polynomials. For each value of the Weissenberg
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(b) Convergence of eigenvalues.

Figure A.5: The matrices C1,Wı and the eigenvalues ωWı converge.

number, we calculate the matrices C1,Wı and C2,Wı for the eigenvalue problem

C1,Wıx = −iωC2,Wıx .

The matrix C2 is independent of Wı, but the matrix C1 changes. For finite

values of Wı we get accurate results. However, in the infinite Wı case the

results are wrong.

The eigenvalues ω calculated at finiteWı converge to ω∞ asWı → ∞, and

the matrices C1,Wı converge to C1,∞ as shown in figure A.5. The eigenvectors

must have (at least) one limit point x∞ because they come from a compact set

(vectors of norm 1 in a finite dimensional Euclidian space). As the product

of limits is the limit of the products, C1,∞x∞ = ω∞C2x∞ and so the limit of

ωWı is an eigenvalue of the problem at infiniteWı. However, the QZ algorithm

does not find the same eigenvalues, seen in figure A.6. In theWı = ∞ limit,

the algorithm returns false results, without any warning.

Using the correct number of polynomials for each variable eliminates these

difficulties. The algorithm again gives correct results, seen in figure A.7
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(c)Wı = 10000.
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(d)Wı = ∞.

Figure A.6: Eigenvalues of UCM varicose modes with ξ = 0.5, ∆ = 0.3,

and k = 10 calculated keeping each variable accurate to N = 100 Chebyshev

polynomials. The Wı = ∞ calculation does not match the limit of the finite

Wı calculations. There is an error in the calculation.
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Figure A.7: The corrected calculation forWı = ∞.



Appendix B

Amplitude equations and

numerical methods for the

elastic jet

In this appendix we derive the amplitude equations for the UCM [(7.39)–

(7.44)] and FENE–CR [(7.49)–(7.56)] weakly-elastic planar jets of Chapter 7.

We also give details of the numerical method used to solve the equations. Our

derivation follows Balmforth and Piccolo [4], but our numerical method is

distinct.

We consider a (symmetric) planar jet for which E = ǫ4E 4 and is negligible

at leading order. The linear problem predicts instability for 0 < k < k0. We

take yc to be the (positive) value at which both U and U ′′ are zero. The

mode corresponding to k = k0 is stationary in the frame of reference moving

with the fluid at yc. We assume that the mode is sinuous so that ψ is an even

function. We take the flow to be periodic in the x-direction with period 2π/k

for k = k0−ǫk1. The mode with wavelength k is unstable with a growth rate

of order ǫ. This defines the slow time scale T = ǫt.

We study two regions of the jet: an outer region where the solution looks
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like the neutrally stable linear mode with an amplitude that varies slowly

in time, and an inner region, the critical layer, centered around yc where

the nonlinear terms are important and cat’s eyes develop. It is the critical

layer that determines the growth rate of the amplitude of the linear mode.

This appendix focuses on the derivation and solution of the critical layer

equations.

B.1 Derivation of the UCM amplitude equa-

tions

Derivation of scalings

We consider the evolution of a small perturbation to the base flow. Equa-

tions (7.36)–(7.38) become

∇2ψ = −ζ , (B.1)

ǫζT + Uζx + U ′′ψx − J(ψ, ζ) = ǫ4E 4[−∂xya11 + (∂xx − ∂yy)a12 + ∂xya22] ,

(B.2)

ǫaT + Uax − J(ψ, a) − ψxA
′ − U ′

(

2a12 a22

a22 0

)

− H − h = −ǫλa . (B.3)

Far from yc the O(ǫψ) and nonlinear terms are neglected, and we have ∇2ψ =

−ζ , Uζx + U ′′ψx = 0. This breaks down in the critical layer y − yc = O(ǫ)

for which both U and U ′′ are O(ǫ). This motivates the definition of an inner

variable Y = (y − yc)/ǫ for the critical layer.

In the critical layer the y-derivative in the nonlinear term J(ψ, ζ) be-

comes O(ǫ−1). This term is comparable to the linear terms of (B.2) when

ǫψ ∼ ψζ/ǫ, which leads to the conclusion that ψ and ζ are both O(ǫ2) when

nonlinear terms become significant. We have chosen the scaling of E so that
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the elastic stresses affect equation (B.2) at the same time as the nonlinear

terms.

Outer solution

In the outer region, away from the critical layer, ψ and ζ are expanded as

ψ = ψ2ǫ
2 + ψ3ǫ

3 + hot ,

ζ = ζ2ǫ
2 + ζ3ǫ

3 + hot .

We take ψ2 = B(T )ψ̂2(y) exp(ikx) + cc and ζ2 = B(T )ζ̂2(y) exp(ikx) + cc,

where the hat notation ·̂ denotes the projection onto the Fourier mode

exp(ikx) and ψ̂2(y) and ζ̂2(y) solve the linear problem ∇2ψ = −ζ , Uζx +

U ′′ψx = 0 for k = k0 − ǫk1.

Up to O(ǫ3) we can neglect the nonlinear terms and the elasticities. Our

equations become

∇2ψ = −ζ ,
ǫζT + Uζx + U ′′ψx = 0 .

Combining these, we obtain

−ǫζT + U∇2ψx − U ′′ψx = 0 . (B.4)

At O(ǫ2) this equation yields

−U(ψ̂2,yy − k2
0ψ̂2) + U ′′ψ̂2 = 0 ,

and at O(ǫ3)

−ζ2,T = −U(2k0k1ψ2 + ∇2ψ3)x + U ′′ψ3,x . (B.5)

It is from this equation that we obtain the evolution equation for B. The

k0k1ψ2 term comes from the cross term 2ǫk0k1 in the ∂2
x derivative of ψ2.
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Multiplying by ψ∗

2/U and integrating in x and y we find

k

2π

∫

∞

−∞

∫ 2π/k

0

−ζ2,Tψ
∗

2

U
+ 2k0k1ψ

∗

2ψ2,x dx dy

=
k

2π

∫

∞

−∞

∫ 2π/k

0

ψ∗

2

(

−∇2 +
U ′′

U

)

ψ3,x dx dy . (B.6)

From our definition of ψ2, it follows that (−∇2 + U ′′/U)ψ∗

2 = 0. Hence

integrating by parts allows us to simplify the right-hand side at the expense

of introducing boundary terms.

When we integrate by parts in x, the boundary terms cancel because the

domain is periodic. We can only integrate by parts in y if ψ3 is well-behaved

in the integration domain. This will not hold if U = 0 somewhere in that

domain which it does at y = ±yc. We break the y-integral on the right-hand

side of (B.6) into three regions, (−∞,−yc−δ), (−yc+δ, yc−δ) and (yc+δ,∞)

where δ → 0. Equation B.6 becomes
∫

∞

−∞

−B∗BT
ζ̂2ψ̂

∗

2

U
+ 2ik|B|2k0k1|ψ̂2|2 dy

= ikB∗

(

−ψ̂∗
′

2,c

r
ψ̂3

z
−yc

− ψ̂∗
′

2,c

r
ψ̂3

z
yc

+ ψ∗

2,c

r
ψ̂′

3

z
−yc

+ ψ∗

2,c

r
ψ̂′

3

z
yc

)

,

where ψ̂3 is the projection of ψ3 onto the exp(ikx) Fourier mode. We use the

fact that ψ2 and its derivative are continuous to move them outside of the

jump, and use the subscript c to denote its value at yc. The jump in ψ̂3 can

be shown to be zero. Heuristically we see this by arguing that the vertical

velocity of the outer solution should be continuous across the horizontal line

y = yc. A rigorous argument follows from consideration of the equations

within the critical layer and is postponed until the discussion of the inner

solution.

We use decay conditions to eliminate the boundary terms at infinity.

Dividing through by ikB∗, we find

2iI0BT + 2k1I1B =

(

ψ̂∗

2,c

r
ψ̂′

3

z
−yc

+ ψ̂∗

2,c

r
ψ̂′

3

z
yc

)
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where

I0 =

∫

∞

0

ζ̂2ψ̂
∗

2/kU dy ,

I1 = 2k0

∫

∞

0

|ψ̂2|2 dy

(we can change the domain of integration to positive y by symmetry argu-

ments). These integrals are independent of T .

To complete the amplitude equation, we need to find the jump in ψ̂′

3.

From (B.5) we have

U ′

cψ̂
′′

3 = − iBT

k(y − yc)
ζ̂2 + O(1) .

The solution may be written in the form

ψ̂3 = −(y − yc)BT Q̂ ln |y − yc| + γ|y − yc| +R ,

where Q̂ = iζ̂2,c/kU
′

c and R is a regular function of y. The γ|y − yc| term

reflects the fact that the coefficient of the linear term need not be equal on

either side of yc. The jump in ψ̂′

3 across yc is 2γ, and must be found from

the solution in the critical layer. The critical layers at yc and −yc give the

same value for γ.

We finally arrive at an ordinary differential equation governing the evo-

lution of B

iI0BT + k1I1B = 2γψ̂∗

2,c , (B.7)

with an as-yet-unknown parameter γ.

Inner solution

We use the inner variable Y = (y− yc)/ǫ and assume that the inner solution

is valid for Y in (−∆,∆) where ∆ = δ/ǫ ≫ 1. The inner solution must

match the outer solution at Y = ±∆, for which y = yc ± δ = yc ± ǫ∆.
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At y = yc + δ the outer solution is

ψ̂ = ǫ2ψ̂2,c + ǫ2δψ̂′

2,c + ǫ2
δ2

2
ψ̂′′

2,c(yc) + ǫ3ψ̂3 + · · ·

= ǫ2ψ̂2,c + ǫ3∆ψ̂′

2,c + ǫ3R̂c − ǫ4BT Q̂∆ ln ∆

− ǫ4∆BT Q̂ ln ǫ+ ǫ4(∆γ + ∆2ψ̂′′

2,c/2) + · · · ,
ζ̂ = ǫ2ζ̂2,c + · · · .

To match this, we anticipate

Ψ = ǫ2Ψ2(x, T ) + ǫ3[Ψ3(x, T ) + Y Φ3(x, T )]

+ ǫ4(ln ǫ)Y Φ4(x, T ) + ǫ4Ψ4(x, Y, T ) + · · · ,
Z = ǫ2Z2(x, Y, T ) + · · · .

The relation between the vorticity and the streamfunction (B.1) in the Y

variable is

(ǫ−2∂2
Y + ∂2

x)Ψ = −Z . (B.8)

This is consistent with the assumed form of Ψ above where Ψ has at most

linear dependence on Y until Ψ4.

We now show that ψ̂3 cannot have a jump across the critical layer. We

first note that the jump cannot depend on the value chosen for ∆. The

O(ǫ3) terms of Ψ are either constant or linear in Y in order to satisfy (B.8)

[as otherwise Z = O(ǫ)]. The change in the O(ǫ3) part of Ψ from −∆ to

∆ must match with 2∆Bψ̂′

2,c +
r
ψ̂3

z
. However, this change is 2∆Φ̂3(x, T ).

Consequently, the jump in ψ̂3 must be zero in order that it not depend on

∆.
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We can easily match a number of terms

Ψ̂2 = Bψ̂2,c ,

Ψ̂3 = R̂c ,

Φ̂3 = Bψ̂′

2,c ,

Φ̂4 = −BT Q̂ ,

Ψ̂4(Y, T ) =
ψ̂′′

2,c

2
Y 2 + γ|Y | + · · · at large |Y |.

We turn to the jump in ψ̂′

3. We have

2∆Bψ̂′′

2,c +
r
ψ̂′

3

z
yc

=
r
Ψ̂4,Y

z∆

−∆
,

From (B.8) Ψ2,xx + Ψ4,Y Y = −Z2. Thus we find

r
ψ̂′

3

z
yc

= −2∆(−k2Ψ̂2 +Bψ̂′′

2,c) −
∫ ∆

−∆

Ẑ2 dY ,

= −
∫ ∆

−∆

(

Ẑ2 +
U ′′′

c

U ′
c

Ψ̂2

)

dY ,

where we have used the fact that ψ̂2 is a solution to the linear problem, the

relationship between Ψ̂2 and ψ̂2, equation (B.4), and L’Hôpital’s rule.

We perform the change of variables

Θ = Z2 +
U ′′′

c

U ′
c

Ψ2 ,

so that
r
ψ̂′

3

z
yc

= −
∫ ∆

−∆
Θ̂ dY . Letting ∆ → ∞ we have

2γ = − k

2π

∫ 2π/k

0

∫

∞

−∞

Θ exp(−ikx) dY dx .

Thus our amplitude equation (B.7) takes the form

iI0BT + k1I1B = −ψ̂∗

2,c

k

2π

∫ 2π/k

0

∫

∞

−∞

Θ exp(−ikx) dY dx .
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We turn now to equations (B.2) and (B.3) in the critical layer. We find

that

ǫZT + ǫY U ′

cZx + ǫY U ′′′

c Ψx −
1

ǫ
JY (Ψ, Z)

= ǫ4E 4[−
1

ǫ
∂xY a11 + (∂xx −

1

ǫ2
∂2

Y )a12 +
1

ǫ
∂xY a22] , (B.9)

ǫaT + ǫY U ′

cax −
1

ǫ
JY (Ψ, a) − ΨxǫY

(

4U ′

cU
′′′

c ǫλU ′

c

ǫλU ′

c 0

)

− U ′

(

2a12 a22

a22 0

)

− H − h = −ǫλa , (B.10)

where JY (a, b) = axbY − aY bx. On the left-hand side of the first equation

all terms are O(ǫ3). This suggests that a11 is O(1), and we set a11 = b11.

From the second equation, it then follows that a12 = ǫb12 and a22 = ǫ2b22.

We substitute at leading order for Z = ǫ2(Θ − U ′′′

c Ψ2/U
′

c) and recall that

Ψ2,Y = 0. The vorticity equation (B.9) becomes

ΘT + Y U ′

cΘx − Ψ2,xΘY =
U ′′′

c

U ′
c

ψ2,T + E 4[−∂xY b11 − ∂2
Y b12] + O(ǫ) ,

while the constitutive equation (B.10) gives

bT + Y U ′

cbx − Ψ2,xbY − U ′

c

(

2b12 b22

b22 0

)

−
(

0 −2U ′

c
2Ψ2,xx

−2U ′

c
2Ψ2,xx −2λU ′

cΨ2,xx

)

−
(

0 −b11Ψ2,xx

−b11Ψ2,xx −2b12Ψ2,xx

)

= −λb + O(ǫ) .

The ΨxA
′ term is too small in ǫ to appear in this equation.
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Canonical form

We introduce some rescalings to arrive at a canonical form. By appropriate

shift in x, we can assume that ψ̂2,c is real, and so ψ̂∗

2,c = ψ̂2,c. Then

I =
k1I1
kI0

,

x̃ = −k(x+ IT ) , T̃ = T/T0 , Ỹ = −(Y + I/U ′

c)/Y0 ,

B̃ = [B exp(−ikIT )/B0]
∗ , Ψ̃ = Ψ2/B0 , Θ̃ = −Θ/Θ0 ,

b̃11 = b11/β11 , b̃12 = b12/β12 , b̃22 = b22/β22 ,

Y0 =
1

U ′
ckT0

, B0 =
1

U ′
ck

2T 2
0

, Θ0 = − U ′′′

c I

U ′
ckT0

, T0 =
U ′

c
2I0

ψ̂2,cU ′′′
c I

,

β11 = U ′

c
2
, β12 = U ′

c/T0 , β22 = 1/T 2
0 , λ̃ = T0λ ,

Ẽ = −T
3
0U

′

c
5k3

U ′′′
c I

E 4 .

After dropping the tildes, the vorticity and constitutive equations reduce to

ΘT + YΘx − ΨxΘY = −Ψx + κΨT + E (b12,Y Y + b11,xY ) , (B.11)

b11,T + Y b11,x − Ψxb11,Y = 2b12 − λb11 , (B.12)

b12,T + Y b12,x − Ψxb12,Y = b22 − b11Ψxx − 2Ψxx − λb12 , (B.13)

b22,T + Y b22,x − Ψxb22,Y = −2b12Ψxx − 2λΨxx − λb22 , (B.14)

Ψ = B exp(ix) + cc , (B.15)

where

κ =
1

kIT0

.

The amplitude equation becomes

iBT = − 1

2π

∫ 2π

0

∫

∞

−∞

Θ exp(−ix) dY dx . (B.16)

The parameter κ depends only on properties of the base flow profile and

the marginally stable mode (which itself depends only on the base flow). In
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contrast, E and λ depend on material properties. Hence, once we choose the

base flow, our parameter space is two-dimensional.

Noting that Ψxx = −Ψ, we may simplify equations (B.11)–(B.16) further,

arriving at equations (7.39)–(7.44). The operators acting on the left hand

side of equations (7.39)–(7.42) are identical. When E = 0, these equations

are equivalent to (4.7) and (4.8) of Balmforth and Piccolo [4] in the inviscid

limit, with their φ, A and γ replaced by −Ψ, −B and −1 respectively [and

on correction of a typo in their equation (4.8)].

B.1.1 Calculation of κ

The value of κ is determined by the base flow values. We have

κ =
1

kIT0

=
ψ̂2,cU

′′′

c

kU ′
c
2I0

.

For the Bickley jet ψ̂2 = sech2(y) and k0 = 2. Consequently, U = sech2(y)−
2/3, ψ̂2,c = 2/3, and

I0 =

∫ 0

−∞

ζ̂2ψ̂
∗

2/k0U dy

=

∫ 0

−∞

3 sech6(y)

sech2(y) − 2/3
dy

= 4 − 2
√

3

3
ln

(√
3 − 1√
3 + 1

)

,

using the substitution X = sech2(y). So

κ =
3
√

3

2I0
≈ 0.470607 .
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B.2 Derivation of the FENE–CR amplitude

equations

The UCM model has some unphysical behavior in extensional flow which is

evident in the calculations using the equations derived above. To correct this,

we return to dimensional variables and consider the FENE–CR correction.

The derivation is similar to that done for the UCM fluid. We assume that

the elasticity is again small and so the linear problem is unchanged from the

Newtonian result.

We start from equations (7.10)–(7.12) with the FENE–CR correction

ρ
DU

Dt
= −∇P +

µ

τ
∇ · [F (A − I)] + F , (B.17)

`

A =
F

τ
(I − A) , (B.18)

∇ ·U = 0 , (B.19)

F =
l2

l2 − tr(A)
. (B.20)

We repeat the nondimensionalizations of section 7.2.2, with U = U0U
∗,

P = ρU2
0P

∗, t = Wt∗/U0, ∇ = (1/W )∇∗, τ = Wτ ∗/U0, Wı = U0τ/W and

A =Wı2A∗. We set l = l∗Wı. Dropping the asterisks we arrive at

DU

Dt
= −∇P + E∇ · [F (A −Wı−2

I)] , (B.21)
`

A = F (Wı−3
I −Wı−1

A) , (B.22)

∇ ·U = 0 , (B.23)

F = l2/[l2 − tr(A)] , (B.24)

where E is again given by τµ/ρW 2 =Wı/Re.

Assuming steady flow with unchanging history we find

A =

(

2U ′2

F 2 +Wı−2 Wı−1 U ′

F

Wı−1 U ′

F
Wı−2

)

.
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B.2.1 Perturbation equations

We substitute Ũ = U +u, Ã = A + a and F̃ = F + f into equations (B.21)

and (B.22) and introduce a streamfunction for the perturbation flow. After

taking the curl of the momentum equation, the resulting equations are

∇2ψ = −ζ , (B.25)

ǫζT + Uζx + U ′′ψx − J(ψ, ζ) = ǫ4E 4[−∂xy[(F + f)b11 + fC11]

+ǫ(∂xx − ∂yy)[(F + f)b12 + fC12] (B.26)

+ǫ2∂xy[(F + f)b22 + fC22] ,

ǫb11,T + Ub11,x − J(ψ, b11) − ψxC11,y − ǫ2U ′b12 −H11 − h11 = (B.27)

ǫλ[−(F + f)b11 − fC11] ,

ǫb12,T + Ub12,x − J(ψ, b12) − ψxC12,y − ǫU ′b22 + ǫ−1(−H12 − h12) = (B.28)

ǫλ[−(F + f)b12 − fC12] ,

ǫb22,T + Ub22,x − J(ψ, b22) − ψxC22,y + ǫ−2(−H22 − h22) = (B.29)

ǫλ[−(F + f)b22 − fC22] ,

where

H =

(

2C11ψxy + 2ǫC12ψyy C22ǫ
2ψyy − C11ψxx

ǫ2C22ψyy − C11ψxx −2ǫC12ψxx − 2ǫ2C22ψxy

)

,

h =

(

2b11ψxy + 2ǫb12ψyy ǫ2b22ψyy − b11ψxx

ǫ2b22ψyy − b11ψxx −2ǫb12ψxx − 2ǫ2b22ψxy

)

,

with the same notation as in the UCM fluid and the additional variable

changes A11 = C11, A12 = ǫC12, and A22 = ǫ2C22.

Using the same analysis and scalings as for the UCM fluid and the addi-

tional rescalings

C̃11 = C11/β11 , C̃12 = C12/β12 , C̃22 = C22/β22 ,

l̃ = l/U ′

c ,
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we arrive at the canonical form of the FENE–CR critical layer equations

ΘT + YΘx − ΨxΘY = −Ψx + κΨT + E [fxb11,Y + fY (b11,x + 2b12,Y )]

+ E [fxY (b11 + 2/F 2) + fY Y (b12 + λ/F )]

+ E [(F + f)(b11,xY + b12,Y Y )] ,

b11,T + Y b11,x − Ψxb11,Y = 2b12 − λ[(F + f)b11 + 2f/F 2] ,

b12,T + Y b12,x − Ψxb12,Y = b22 − (b11 + 2/F 2)Ψxx − λ[(F + f)b12 + fλ/F ] ,

b22,T + Y b22,x − Ψxb22,Y = −2(b12 + λ/F )Ψxx − λ[(F + f)b22 + fλ2] ,

Ψ = B exp(ix) + cc ,

iBT = − 1

2π

∫ 2π

0

∫

∞

−∞

Θ exp(−ix) dY dx ,

F + f =
l2

l2 − 2/F 2 − b11
,

F =
(

1 +
√

1 + 8/l2
)

/2 .

The parameters are l, E , λ and κ. The value of κ is the same as for the UCM

fluid. The value of l depends only on the material properties. E and λ come

from a mixture of material properties and the base flow. The parameter

space is three-dimensional.

B.3 Numerical method

To solve the nonlinear systems (7.39)–(7.44) and (7.49)–(7.56), we turn to

numerical methods. We use a finite volume method. For definiteness, we

describe the algorithm in terms of equations (7.39)–(7.44).

B.3.1 Algorithm

Our computational domain is (x, Y ) where x ∈ (0, 2π) and y ∈ (−D,D). In

each direction we use a uniform step size dx or dY .
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We break the calculation into four steps using Godunov splitting. We first

solve the hyperbolic terms in the x-direction [ΘT +YΘx] for the operator L on

the left-hand side of (7.39)–(7.42). We next solve the hyperbolic terms in the

Y -direction [ΘT −ΨxΘY ]. Following that, we calculate the integral for (7.44).

We finally solve the source terms on the right hand side of (7.39)–(7.42) and

evolve B.

Hyperbolic terms

We use a high resolution finite volume method with a superbee limiter to

solve the variable coefficient linear hyperbolic equation

ΘT + YΘx − ΨxΘY = 0 ,

following LeVeque [56].

We restrict our time step so that the CFL number c < 1 where

c =
ū(dT )

(dx)

and ū = max(|Y |, |Ψx|). This has the practical implications that a larger

domain implies a smaller time-step, and that the time step is controlled by

a region far from the cat’s eyes, where little of interest happens. Ideally an

adaptive mesh would be useful, but we have not developed one.

We place rows of ghost cells around the domain in order to apply the

boundary conditions. In the x-direction we set the ghost cells to have values

based on the periodic boundary conditions. In the Y -direction we use an

asymptotic approximation.

Integral

To perform the double integral
∫ 2π

0

∫

∞

−∞

Θ exp(−ix) dY dx ,
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we simply sum over all cells

(dx)(dY )
∑

j,k

Θj,k

(

cos[j(dx)] − i sin[j(dx)]
)

.

In this summation, we truncate the Y direction at ±D. This introduces an

error of size 1/D into the calculation. We can reduce this to a 1/D3 error as

described below.

From equations (7.40)–(7.42) we find that a22 ∼ 1/Y , a12 ∼ 1/Y and

a11 ∼ 1/Y 2 at large Y . Thus they are too small to enter into equation (7.39).

We take

Θ =
q1(x, T )

Y
+
q2(x, T )

Y 2
+ · · · .

Substituting this into (7.39), we find that at leading order in Y

q1,x = −Ψx + κΨT ,

and hence

q1 = −Ψ − κΨxT ,

where we have taken advantage of the fact that Ψxx = −Ψ. At next order,

q2,x = −q1,T ,

and

q2 = −ΨxT + κΨTT .

When we calculate BT , we can now approximate (7.44) as

2πiBT = −
∫ D

−D

∫ 2π

0

Θe−ix dxdY −
(
∫

−D

−∞

+

∫

∞

D

)
∫ 2π

0

q2
Y 2

e−ix dxdY

+ O(D−3)

= −
∫ D

−D

∫ 2π

0

Θe−ix dxdY +
2

D
2π(iBT − κBTT ) + O(D−3) ,
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and so

2πiBT

(

1 − 2

D

)

≈ −
∫ D

−D

∫ 2π

0

Θe−ix dxdY − 4π

D
κBTT .

We can approximate BTT using values of BT from the previous time step.

Whether we keep this term or neglect it (as was done by Balmforth and

Piccolo [4]) makes no noticeable difference in the calculations.

Source terms

To solve the source terms and evolve B we use a simple Euler forward explicit

method for the Θ and B evolution and a trapezoidal implicit method for the

a evolution equations.

B.3.2 Numerical tests

In this subsection, we discuss the tests we used to ensure that our numerical

method gives accurate results.

Reproducing earlier work

We set E to zero and solve the Newtonian problem, attempting to match

the calculations of Balmforth and Piccolo [4], who studied the Bickley jet in

the β̃-plane with weak viscosity. Their value of κ depends on β̃ (the Coriolis

parameter). Viscosity appears at leading order in the inner region in their

problem. We do not have viscosity, so the only direct comparison we have

is with their figure 4, for which they set their coefficient of viscosity to zero

and additionally take κ = 0.

In their figure 4, reproduced in figure B.1, Balmforth and Piccolo plot

Θ−Y at T = 2, 4, and 6 as well as the magnitude of the amplitude, B (which

they call A), with an initial condition of B = −0.001. Their calculations

were performed with a different set of variables, and then transformed into
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Figure B.1: Figure 4 reproduced from [4].

the plotted variables. However, there is an error in their transformation:

the symmetries noted in their section 5.3 show that the figure should be

symmetric under the mapping x 7→ −x, Y 7→ −Y with Θ 7→ −Θ. The only

consequence of the error is that the cat’s eye should be centered about zero

rather than π/2. Our plot in figure B.2 shows the correct variables. The

agreement for the vorticity is observed to be good, and the only discrepancy

between the amplitude plots is at T ≈ 6. We achieve a better correspondence

at lower resolution.

Because κ is zero in this comparison, we want an additional comparison to

test our calculations. Unfortunately all other results presented by Balmforth

and Piccolo [4] include viscosity, which we neglect. However, we find good

comparison for nonzero κ between their calculations with a small value of

viscosity and our own with zero viscosity.

This establishes that the code works correctly in the Newtonian limit and

that we accurately solve the operator L in (7.39)–(7.42).
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Figure B.2: Our calculations for the same parameters as figure 4 of [4]. The

domain size is 1500 × 1500 grid points.

Simple tests of the elastic terms

As a test of the elastic terms in (7.39), we solve the UCM system neglecting

the constitutive equations (7.40)–(7.42), setting Ψ = 0, a11 = c1xY , and

a12 = c2Y
2. Starting with a uniform initial condition for Θ, the solution

is Θ = (c1 + 2c2)ET + Θ(0). This agrees with the calculations, so we are

solving (7.39) correctly.

As a test of the constitutive equations (7.40)–(7.42), we next solve the

UCM system with Ψ held constant in space and time. The aij are then

independent of space, so L[a] = aT for a = (a11, a12, a22)
T . The resulting

system can be written as the constant-coefficient driven linear system

aT = Ma+ c ,

where

M =









−λ 2 0

Ψ −λ 1

0 2Ψ −λ









, c =









0

2Ψ

2λΨ









.
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Choosing Ψ and λ such that M is invertible, the solution is

a = −M
−1c+ exp(MT )(a0 + M

−1c) ,

where a0 is the initial value of a. Our calculated solution agrees with this

analytic result.

Thus far we have tested all terms in the UCM equations (7.39)–(7.44).

Although the FENE–CR equations (7.49)–(7.56) involve a large number of

additional terms, they are all equally straightforward to check.

We can make some further observations. We correctly calculate the initial

linear growth rate for Newtonian, UCM, and FENE–CR fluids as shown in

figure 7.12. The various limits of large λ, small E , and small l give effectively

Newtonian behavior as expected. The l → ∞ limit of the FENE–CR code

reproduces the UCM results. Finally the FENE–CR code has the expected

failures in the λ = 0 limit.
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