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Abstract: The three-dimensional structure of salt marsh plant canopies, amongst other marsh surface 
characteristics, is of critical importance to the functioning and persistence of coastal salt marshes. 
Together with plant flexibility it controls the contribution of vegetation to the tidal flow and wave 
energy dissipation potential of marshes. However detailed information on these two key biophysical 
properties of salt marsh canopies is scarce.  
In this paper we present biophysical properties of four plants commonly occurring in NW European 
salt marshes. We measured stem flexibility, diameter and height of the grasses Spartina anglica, 
Puccinellia maritima and Elymus athericus and above ground biomass and canopy height in stands of 
Elymus athericus and the dwarf shrub Atriplex portulacoides. Further we compared the performance 
of two methods for the non-destructive assessment of above ground biomass, such that they may be 
used during field assessments of marsh surface vegetation structure (i) Measurement of light 
availability within the canopy and (ii) side-on photography of vegetation. All data were collected on a 
salt marsh on the Dengie Peninsula, eastern England, UK, in summer (July).  
We found significant differences in stem flexibility both between species and between the different 
parts of their stems. P. maritima was found to be the species with the most flexible stems, and, as a 
result of their relatively large stem diameter, S. anglica the species with the stiffest stems. Above 
ground biomass and hence potential canopy resistance to water flow could be estimated more 
accurately by side-on photography of vegetation than from measurement of light availability within the 
canopy.  
Our results extend the existing knowledge base on plant properties with relevance to studies of habitat 
structure and ecosystem functioning as well as wave energy dissipation in salt marsh environments 
and can be used for the development of a more realistic representation of vegetation in numerical 
models and laboratory flume studies of plant-flow interactions. 
 
 
 
 
 



Highlights 

 Paper reports quantitative data on plant flexibility and above ground biomass (a proxy for 

vegetation structure), in salt marsh canopies. Both these biophysical properties of salt marsh 

canopies need to feed into flow and wave dissipation models, if the predictive capacity of 

such models is to be improved. 

 Stem flexibility of salt marsh plants differs significantly both between different species and 

between the different stem parts of specimens of one species. 

 Side-on photography of vegetation is an appropriate technique for non-destructive 

assessment of above ground biomass and vegetation structure in structurally complex salt 

marsh canopies. 

 Above ground biomass and its vertical distribution within the canopy can be estimated more 

accurately by side-on photography than by measurement of light availability in the canopy. 

 

*Highlights (for review)
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Abstract  34 

The three-dimensional structure of salt marsh plant canopies, amongst other marsh surface 35 

characteristics, is of critical importance to the functioning and persistence of coastal salt marshes. 36 

Together with plant flexibility it controls the contribution of vegetation to the tidal flow and wave energy 37 

dissipation potential of marshes. However detailed information on these two key biophysical properties 38 

of salt marsh canopies is scarce.  39 

In this paper we present biophysical properties of four plants commonly occurring in NW European 40 

salt marshes. We measured stem flexibility, diameter and height of the grasses Spartina anglica, 41 

Puccinellia maritima and Elymus athericus and above ground biomass and canopy height in stands of 42 

Elymus athericus and the dwarf shrub Atriplex portulacoides. Further we compared the performance of 43 

two methods for the non-destructive assessment of above ground biomass, such that they may be used 44 

during field assessments of marsh surface vegetation structure (i) Measurement of light availability 45 

within the canopy and (ii) side-on photography of vegetation. All data were collected on a salt marsh on 46 

the Dengie Peninsula, eastern England, UK, in summer (July).  47 

We found significant differences in stem flexibility both between species and between the different 48 

parts of their stems. P. maritima was found to be the species with the most flexible stems, and, as a 49 

result of their relatively large stem diameter, S. anglica the species with the stiffest stems. Above ground 50 

biomass and hence potential canopy resistance to water flow could be estimated more accurately by 51 

side-on photography of vegetation than from measurement of light availability within the canopy.  52 

Our results extend the existing knowledge base on plant properties with relevance to studies of 53 

habitat structure and ecosystem functioning as well as wave energy dissipation in salt marsh 54 

environments and can be used for the development of a more realistic representation of vegetation in 55 

numerical models and laboratory flume studies of plant-flow interactions. 56 

 57 

Key words:  58 

Wave attenuation, vegetation structure, drag, flexural rigidity, Young’s bending modulus 59 

 60 

 61 
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1 Introduction 62 

Vegetation is an important factor affecting both the functioning and form of salt marsh ecosystems 63 

at the coast. The often structurally complex plant canopies provide a key habitat and food source for a 64 

wide range of bird and athropod species as well as contributing to the dissipation of wave energy and 65 

tidal flow over salt marsh surfaces directly, via plant-flow interactions, and indirectly, through causing 66 

spatially varying sediment accumulation and thus the formation of topographic roughness (Zedler et al. 67 

2005, Gedan et al. 2011; Duarte et al. 2013; Möller et al. 2014). Under wave motion, and when water 68 

depths are low enough to allow wave-induced orbital flow to penetrate into the canopy layer, vegetation 69 

interacts with this flow by forming an obstruction. In return it experiences drag and re-orientation by 70 

wave forces (Mullarney et al. 2010). At the scale of the vegetated landform (e.g. a coastal salt marsh), 71 

these plant-flow interactions have been shown to be affected by the spatial configuration of vegetation 72 

patches as well as by the ratio of water depth to canopy height (Kirwan and Murray 2007; 73 

Vandenbruwaene et al. 2011). At the scale of individual plants, however, the magnitude of flow 74 

resistance provided, and drag force experienced, is governed by plant architecture and by mechanical 75 

characteristics such as stem flexibility and buoyancy (Paul et al. 2014a). 76 

The flexibility of plant stems, often reported as Young’s bending modulus or flexural rigidity (see also 77 

section 2.3), is critical for plant behaviour and flow resistance provided under wave-generated orbital 78 

flow as well as being a potentially important ecological adaptation mechanism linked to ecosystem 79 

resilience. While highly flexible stems bend and take a flattened posture for part of the wave cycle, less 80 

flexible stems tend to remain in an upright posture and the flow must travel through, rather than over, 81 

the canopy. Peralta et al. (2008) have shown that for a specific range of stem spacings, the capacity of 82 

plant canopies to provide flow resistance and dissipate hydrodynamic energy increases with decreasing 83 

stem flexibility. A more recent flume study of the salt marsh grasses Elymus athericus and Puccinellia 84 

maritima also highlighted the importance of plant flexibility for wave dissipation during storm surge 85 

conditions (2 m water depth above the marsh surface and waves of 40-80 cm in height) (Möller et al. 86 

2014).  87 

While the importance of plant stem flexibility has begun to be recognized through the studies 88 

mentioned above, field studies on plant stem flexibility are still scarce and limited to only a few species 89 

(see, for example, Feagin et al.’s 2011 study on Spartina alterniflora). Laboratory flume studies providing 90 

a controlled environment to investigate vegetation-induced flow and wave dissipation often use artificial 91 

plant mimics instead of real plants. Quantitative data on plant flexibility can aid to develop more realistic 92 
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plant mimics and hence a more realistic representation the interaction between vegetation and 93 

hydrodynamics in flume studies. 94 

A realistic representation of the interactions between flow and vegetation is also needed for 95 

accurately modelling coastal hydrodynamics. While some models approximate vegetation with higher 96 

bottom friction factors (Möller et al. 1999, Augustin et al. 2009), the majority of numerical models 97 

capture vegetation effects in a vegetation factor that consists of e.g. plant stem height, stem density and 98 

diameter and a empirical bulk drag coefficient CD (e.g. Kobayashi et al. 1993, Mendez and Losada 2004, 99 

Paul et al. 2011, Möller et al. 2014). CD is a function of both flow regime and plant characteristics and 100 

accounts for the ignorance of varying responses of different plant species to hydrodynamic forcing, that 101 

means it can be calibrated to different plant architecture or flexibility. The inclusion of a vertical layer 102 

schematization for the vegetation as proposed by Suzuki et al. (2011), enables the calibration of CD for 103 

vertical variations in canopy density. In general the value of CD reflects the flow resistance provided by 104 

vegetation, for example canopies composed of flexible plants with low amounts of above ground 105 

biomass can be expected to yield lower values of CD than stiff plants and large amounts of above ground 106 

biomass.  107 

Salt marshes present a great diversity in plant architecture and a significant degree of flow 108 

resistance might be achieved by branching upper stems and their leaves in addition to the basal stems 109 

(Möller and Spencer 2002; Möller 2006; Paul et al. 2014a). As above ground biomass varies with volume 110 

and density of plant material present, it can be regarded as a useful proxy for these more complex 111 

structural canopy bulk properties, if not necessarily for flexibility and buoyancy. At the scale of plant 112 

stands, a positive correlation between canopy density, above ground biomass and wave dissipation has 113 

been observed (Koch and Gust 1999, Bouma et al. 2005, Möller 2006). As branches and leaves can 114 

constitute a significant proportion of the overall plant above ground biomass (Russell et al. 1990), these 115 

non-stem components may contribute significantly to wave dissipation. Canopies with the same total 116 

above ground biomass, however, can differ in stem flexibility, buoyancy, canopy architecture and the 117 

amount of biomass present at different levels within the canopy. Apart from affecting the canopy’s flow- 118 

and wave-dissipation capacity above ground biomass and the arrangement of plant elements within the 119 

canopy (canopy structure) also play an important role for sediment dynamics and carbon stocks in salt 120 

marshes and constitutes an important habitat factor for arthropod and breeding-bird communities 121 

(Temmermann et al. 2005, Van Klink et a. 2013, Mandema et al. 2013).  122 

The dependence of a range of ecosystem services (e.g. coastal protection, carbon stocks and habitat 123 

provisioning) on a complex set of salt marsh vegetation canopy attributes calls for a critical assessment 124 

of methods that can be used to measure not only above ground biomass but also canopy structure, and 125 
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the vertical distribution of both, which cannot be captured as such by traditional biomass harvesting 126 

methods (Neumeier 2005).  127 

As a method of capturing the more complex structure of vegetation canopies in non-destructive 128 

ways, side-on photography of vegetation (Zehm et al. 2003; Möller 2006), hereafter referred to as the 129 

photo-method), has been trialled. Observed wave and flow dissipation by simple salt marsh canopies 130 

composed of Salicornia europaea, Suaeda maritima and Spartina anglica has been found to reflect 131 

variations in both above ground biomass and projected surface area of the canopy as determined by the 132 

photo-method (Möller 2006). A difficulty of this methodology is that flow resistance by dense canopies 133 

could be underestimated. Beyond a critical threshold value of biomass, plant elements may shade one 134 

another and a further increase of biomass may thus no longer be reflected in an increase in the 135 

projected surface area. The relationship between projected surface area and biomass, however, has not 136 

yet been established for a wider range of canopy densities and for different types of canopy architecture.  137 

Furthermore, there has so far been no comparison between the photo-method and other non-138 

destructive ways of assessing above ground biomass and canopy structure such as the measuring of light 139 

availability in the canopy (Schrautzer and Jensen 2006). The light measurement approach originates from 140 

the field of agricultural science, where it has been used to estimate crop yields (Webb et al. 2008). In 141 

comparison to the photo-method, measurements of light availability offer several advantages. The above 142 

ground biomass estimates are derived by analysing a larger surface area and can be calculated directly 143 

from the light availability recorded, while the photo-method requires the complex processing of 144 

vegetation photographs that can be affected by subjective interpretation (Neumeier 2005). Moreover, 145 

damage to the vegetation is minimized as the slim light measuring probe can be easily inserted into even 146 

the densest canopies. 147 

In this study we consider plant flexibility and above ground biomass, two biophysical properties of 148 

salt marsh canopies that both need to feed into wave dissipation models, if the predictive capacity of 149 

such models is to be improved; furthermore we evaluate two methodologies to assess above ground 150 

biomass as a proxy for more complex canopy bulk properties such as canopy structure and density:  151 

 152 

(i) we present field observations of stem flexibility as well as stem diameter and stem length of 153 

S. anglica, Puccinellia maritima and E. athericus, three grasses that form large stands in 154 

many salt marshes of NW Europe; and  155 

(ii) we compare the performance of the photo-method with that using measurements of light 156 

availability for non-destructive assessment of above ground biomass in canopies of two salt 157 
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marsh species with different canopy structure: Atriplex portulacoides, a dense low growing 158 

dwarf shrub and E. athericus, a tall upright growing grass. 159 

 160 

Our study thus presents the first data set with systematically collected information on biophysical 161 

properties of salt marsh canopies acquired by using a series of alternative methodologies. In this 162 

way it provides critical input not only for the study of the ecological importance of canopy structure 163 

but also for a greater insight into the reasons why an approximation of hydrodynamic drag based 164 

solely on incident flow regime and plant stem density, diameter and height, remains elusive. 165 

 166 

2 Methods 167 

 168 

2.1 Study site 169 

 170 

Field measurements were undertaken in a macro-tidal (MSTR = 4.8 m (Reed 1988)) salt marsh of the 171 

UK east coast (Southern North Sea), near Tillingham on the Dengie Peninsula in Essex (Fig.1). The Dengie 172 

marshes lie between the estuaries of the Rivers Blackwater and Crouch and form a narrow belt with a 173 

maximum of 700 m in marsh width between low lying agricultural land and extensive intertidal mudflats. 174 

Over the past 100 – 150 years the marshes have experienced several phases of advance and retreat 175 

(Harmsworth and Long 1986; Pye 2000). Marsh surfaces are composed of clayey silts and are 176 

approximately horizontal, with elevations of between 2.4 – 2.7 m ODN (Ordnance Datum Newlyn, which 177 

approximates to mean sea level; Fig. 1b, 1c). Current rates of relative sea level rise for the Dengie 178 

Peninsula have been estimated at 2 - 3 mm a-1 (Burningham and French 2011). The vegetation of the 179 

Dengie marshes is typical of UK east coast salt marshes (Adam 1988). Marsh edge erosion has all but 180 

removed the low marsh communities near Tillingham, but near the seaward marsh edge, plant 181 

communities occur at elevations ≤ 2.5 m ODN; Fig. 1b, 1c) and are characterized by Aster tripolium, 182 

S. anglica, Suaeda maritima and pioneer Salicornia europaea. Mid to high marsh plant communities 183 

occur at elevations > 2.5 m ODN (Fig. 1b, 1c) and are characterized by a canopy of P. maritima and A. 184 

portulacoides with E. athericus occurring on levees along creek margins. These species form mixed 185 

canopies but also exist in distinct mono-specific patches of several square metres in size, such that 186 

approximately uniform vegetation types can be found in close proximity to each other. Over an annual 187 

time scale, offshore wave heights have been estimated as averaging 1.09 m (on Long Sand Head, 42 km 188 
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NE of Tillingham), while winter (January) mean monthly maxima reach 1.45 – 1.70 m (Herman 1999). 189 

Over the vegetated marsh edge (at an elevation of 2.4 m ODN) at Tillingham (Fig. 1b, 1c), water depths 190 

have been observed to vary between 0.12 and 0.84 m (mean of 0.43 m) over 236 tidal inundations 191 

recorded within one year. For the same tides and time period, significant wave heights were less than 192 

0.87 m on all occasions over the tidal mudflat (Möller and Spencer 2002). 193 

 194 

# Fig. 1 195 

 196 

2.2 Species 197 

 198 

S. anglica C.E. Hubbard 199 

S. anglica is a perennial grass typically occurring in the pioneer zone and the low marsh (Adam 200 

1993). Throughout the last century, S. anglica has spread from its original site (southern coast of UK), 201 

both naturally and through deliberate transplantation, to salt marshes all over Europe. The main reason 202 

for the planting of S. anglica was the perceived stabilization of mudflats as a precursor to land claim or 203 

for coastal protection.  204 

 205 

P. maritima Huds. Parl.  206 

The perennial grass P. maritima has its typical habitat in the low marsh, although at Tillingham, it 207 

extends into the mid marsh and in salt marshes with sandy substrates it can also be found in the pioneer 208 

zone. P. maritima is a common grass of European salt marshes and especially of grazed salt marshes, as 209 

the species is tolerant to trampling, biomass loss and waterlogging.  210 

 211 

A. portulacoides (L.) [syn. Halimione portulacoides Aellen, Obione portulacoides (L.) Moq.] 212 

A. portulacoides is a perennial dwarf shrub occurring in European salt marshes, but also in salt 213 

marshes along the coasts of North Africa and South-West Asia (Redondo-Gomez et al. 2007). The 214 

distribution of A. portulacoides within salt marshes depends on soil drainage as the species is lacking 215 

aerenchyma and needs aerated substrates. It thus often colonizes creek bank levees on mid- to upper 216 

marshes (Cott et al. 2013). In salt marshes of the Wadden Sea on the Eastern fringes of the North Sea 217 

A. portulacoides often forms monospecific stands in the low marsh. Moreover, the species is sensitive to 218 

grazing and trampling. 219 

 220 
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E. athericus (L.) 221 

The tall grass E. athericus occurs in European salt marshes from northern Portugal to southern 222 

Denmark and along the southern and south eastern coasts of the British Isles (Veeneklaas et al. 2013). 223 

Like A. portulacoides, E. athericus needs aerated substrates and is sensitive to grazing. In recent decades 224 

E. athericus has rapidly colonized mainland salt marshes along the North Sea coast, its expansion being 225 

related to the abandonment of grazing, high vertical accretion rates and high marsh age (Rupprecht et al. 226 

2014). 227 

 228 

2.3 Measurements of plant stem flexibility 229 

 230 

To study plant stem flexibility under bending forces orthogonal to the plant stem, as occurs in 231 

vegetation canopies under wave forcing, we conducted three-point-bending tests with bottom, middle 232 

and top stem sections of S. anglica, P. maritima and E. athericus. These tests yielded information on 233 

Young’s bending modulus, E, a measure describing how much force has to be applied to bend the stem 234 

to a defined displacement. The higher the value for E, the less flexible the plant stem. The second 235 

moment of area I describes the effect of stem morphology (considering stem diameter) on its flexibility. 236 

The value of I increases with stem diameter. The product of E and I, known as flexural rigidity, gives a 237 

measure of overall stem flexibility. High values of flexural rigidity indicate low stem flexibility.  238 

Samples were collected in the study area in July 2013. For each plant species a small salt marsh 239 

section (around 25 cm2) was excavated, placed in a bucket and transferred to the laboratory. The three-240 

point-bending tests (hereafter referred to as bending tests) were conducted within 14 days of excavating 241 

the plants and soil base in the field. Within this time period, plants were kept outside and watered with 242 

fresh water.  243 

In total 15 stems of each species were harvested and used for bending tests. Prior to performing the 244 

tests, stem length up to the onset of the youngest leaf was measured and stems were divided into three 245 

equal parts (bottom, middle, top). The test section was cut from the middle of each part. To minimize 246 

the effect of shear stress, a maximum stem-diameter-to-length ratio of 1:15 was chosen. At each end of 247 

the stem sections, two diameters were measured with an electronic caliper (precision ± 0.5 mm). 248 

Bending tests of S. anglica were conducted with a standardized stem section length of 50 mm and, for 249 

P. maritima and E. athericus, a length of 36 mm.  250 

The bending tests were performed with an INSTRON 5544 mechanical testing machine (precision ± 251 

0.5%) using a 100 N load cell (INSTRON Corporation, Canton, MA, USA). The stem test section was placed 252 
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centrally onto two support bars and a metal bar was lowered from above at a displacement rate of 10 253 

mm min-1 (Fig. 2). The vertical deflection of the stem, D, and the corresponding force, F, were recorded. 254 

Flexural rigidity was calculated from the slope of the force deflection curve F/D as EI = (s3F)/(48D), where 255 

s is the horizontal span of the stem between the two support bars (Fig. 3) (Usherwood et al. 1997).  256 

The second moment of area was calculated as  257 

 258 

Ic = πd4/64          [1] 259 

 260 

for circular cross sections (S. anglica, P. maritima and E. athericus) and as  261 

 262 

Ich = π(d4
inner- d

4
outer)/64           [2] 263 

 264 

for circular hollow cross sections (as occurring for some bottom stem sections of S. anglica), where 265 

d = stem diameter (Niklas 1992). From the flexural rigidity, EI, and the second moment of area, I, the 266 

Young’s bending modulus, E, was calculated as  267 

 268 

E=EI/Ic = (4 s3 F)/3Dπ d4)         [3] 269 

 270 

for stem sections with a circular cross section and as  271 

 272 

E=EI/Ich           [4] 273 

 274 

for stem sections with a circular hollow cross sections. To analyse the differences in flexural rigidity 275 

between species and between stem sections within each species, Kruskall-Wallis tests were performed 276 

using R software version 3.1.0 (R Development Core Team, Vienna, AT) as the data did not meet the 277 

assumptions required for an Analysis of Variance (ANOVA).  278 

 279 

#Fig. 2 280 

# Fig. 3 281 

 282 
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2.4 Non-destructive assessment of above ground biomass by the photo-method and by 283 

measurements of light availability 284 

 285 

Field measurements were undertaken in July 2013. In both stands of A. portulacoides (hereafter 286 

referred to as Atriplex) and E. athericus (hereafter referred to as Elymus) 10 plots of 1 x 1 m size were 287 

chosen to represent a range of various canopy densities. Canopy height was measured at 10 randomly 288 

chosen locations within each plot using a folding rule. In the case of Elymus, the stem length was 289 

recorded whilst for Atriplex the height of the youngest leaf or branch tip was measured. At each plot, 290 

light availability in the canopy was recorded initially, followed by the application of the photo-method as 291 

described below. To calibrate both methods by identifying the relationship between light availability and 292 

dry above ground biomass (hereafter referred to as biomass) as well as between canopy density on the 293 

photograph and biomass, the vegetation contained in the plot sections used for the photo-method 294 

(0.6 m x 0.2 m) was harvested and the dry biomass determined, after drying for 48 h at 60oC.  295 

 296 

2.4.1 Measurement of light availability 297 

Light availability in the canopy was recorded by measuring photosynthetically active radiation (PAR) 298 

with a Sunscan Canopy Analysis System (Delta T Devices Ltd. Cambridge, UK). The method uses a 0.015 m 299 

x 1 m probe containing 64 photodiodes that is inserted into the canopy (Fig. 4a). Light conditions were 300 

clouded skies at noon. On each of the 1 m2 plots five measurements were taken in the x- and five in the 301 

z-dimension of the plot. All measurements were taken on the soil surface above the litter layer. PAR 302 

measurements were expressed as relative irradiance (RI) which characterizes the light intensity within 303 

the canopy relative to that existing above the canopy. PAR above the canopy was measured with a 304 

incident solar radiation sensor mounted on a tripod immediately above the canopy. RI decreases with 305 

increasing canopy density from the top of the canopy towards the soil surface. For a better comparability 306 

of RI with results of the photo-method, we converted the RI-values into values of ‘RI absorbed’ (RIA) 307 

where RIA = 100 - RI. 308 

 309 

#Fig. 4  310 

2.4.2 Photo-method 311 

On each plot a digital photograph of a 0.6 m wide by 0.2 m deep strip of salt marsh vegetation was 312 

taken against a red background board using a portable photo-frame (Fig. 4b).  313 
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The digital images were processed using Erdas Imagine 10.1 image processing software and a series 314 

of programme routines written in Matlab R2012a software to achieve: 315 

1) Rectification and cropping of the image to the size of the background board, thus excluding all 316 

other elements besides vegetation and background from the digital photograph (Matlab); 317 

2) Unsupervised classification of each image into 20 classes and subsequent manual class 318 

attribution to two classes, yielding binary images with the two classes “vegetation” (0, black 319 

pixels) and “background” (1, white pixels). Figure 5 shows a binary picture of the Atriplex and the 320 

Elymus canopy (Erdas Imagine);  321 

3) Further analysis to provide detail on the projected surface area of vegetation expressed as the 322 

overall area of vegetation pixels (m2) per m horizontal image dimension or vegetation pixel 323 

density (Matlab).  324 

#Fig. 5  325 

2.4.3 Non-destructive assessment of vertical distribution of biomass  326 

In Elymus we also applied measurements of light availability and the photo-method to estimate the 327 

vertical distribution of biomass within the canopy (hereafter referred to as vertical biomass distribution). 328 

Three 1 m2 plots of Elymus similar in canopy density, height (around 0.6 m) and above ground biomass 329 

(0.6 ± 0.01 kg/m2) were chosen. At these plots, light availability was recorded as described in section 330 

2.4.1, on top of the litter layer and at two further canopy heights, 0.2 m and 0.4 m above the litter layer 331 

respectively. Subsequently, the photo-method was applied as described in section 2.4.2 three times on 332 

each plot. Vegetation pixel density was calculated separately for the vertical canopy layers > 0.4 – 0.6 m 333 

(top layer), > 0.2 – 0.4 m (middle layer) and 0 – 0.2 m (bottom layer; 0 m refers to the top of the litter 334 

layer, approximately 5 cm above the soil surface). To identify the relationship between light availability 335 

and the vertical biomass distribution as well as between vegetation pixel density and vertical biomass 336 

distribution, the vegetation contained in the top, middle and bottom canopy layer of the photographed 337 

sections of each plot was harvested, transferred to the laboratory, dried for 48 h at 60°C and weighed.  338 

 339 

3 Results  340 

 341 
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3.1 Plant stem flexibility 342 

 343 

Measurements of stem length and diameter (Table 1) showed that S. anglica and P. maritima were 344 

comparable in stem length. The stem length of E. athericus exceeded that of S. anglica and P. maritima 345 

by a factor of 2. The stem diameter of P. maritima and E. athericus was on average around half that of 346 

the stem diameter of S. anglica.  347 

Flexural rigidity of the three salt marsh grasses under investigation ranged from 0.17 x 10-3 Nm2 348 

(P. maritima top stem part) to 3.51 x 10-3 Nm2 (S. anglica bottom stem part; Fig. 6, Table 1).  349 

Flexural rigidity was significantly different between all three species (Kruskall-Wallis test, H = 59.33, 350 

2 d.f., p < 0.01) and decreased from the bottom to the top of plant stems. In all three species a significant 351 

difference was found between the top third and the rest of the stem (Kruskall-Wallis test: S. anglica, 352 

H = 22.50, 2 d.f. 2, p < 0.01; P. maritima H = 24.60, 2 d.f. 2, p < 0.05; E. athericus H = 13.12, 353 

2 d.f. 2, p < 0.01). 354 

Values of the Young’s bending modulus E ranged from 118.28 MPa (S. anglica bottom stem part) to 355 

4081.79 MPa (E. athericus, bottom stem part; Table 1).  356 

 357 

#Table 1 358 

# Fig. 6 359 

 360 

3.2 Assessment of biomass with measurements of light availability and the photo-method 361 

 362 

3.2.1 Total biomass 363 

The canopy types under investigation, Atriplex and Elymus, varied in mean biomass and height. The 364 

biomass of Atriplex was 1.2 ± 0.5 kg/m2 with a mean canopy height of 33.1 ± 6.5 cm. Mean biomass of 365 

Elymus was 0.6 ± 0.2 kg / m2, corresponding to around half the biomass of Atriplex while the canopy 366 

height of Elymus (70.8 ± 7.5 cm) exeeded that of Atriplex by a factor of 2.  367 

Results from the calibration of measurements of light availability revealed that in both the Atriplex 368 

and the Elymus canopy biomass increased with RIA in a non-linear way. A clear relationship between RIA 369 

and biomass could not be identified. In dense stands of vegetation a further increase of biomass resulted 370 

only in minor increases in RIA (Fig. 7a, 7b). In the canopy of Atriplex, the amount of biomass beyond 371 

which no further increase in biomass could be detected (hereafter referred to as biomass threshold 372 

value) was well below the mean biomass of Atriplex, at around 0.85 kg/m2. In the Elymus canopy, the 373 
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biomass threshold value was around 0.68 kg/m2, close to the mean biomass (0.6 kg/m2). In both the 374 

Atriplex and the Elymus canopies, values of RIA showed high standard deviations (± 5 – 12 %) when 375 

biomass was equal or less than 0.6 kg/m2. 376 

Results from the calibration of the photo-method showed an exponential relationship vegetation 377 

pixel density (area of vegetation pixels in m2 per m horizontal image dimension) and biomass, in the 378 

Atriplex and Elymus canopy, although in Atriplex this relationship was somewhat less clear when biomass 379 

exceeded 1.0 kg m-2 (Fig. 7c, 7d). In both the canopy of Atriplex and Elymus the biomass threshold value, 380 

beyond which a further increase of biomass would no longer result in an increase of vegetation pixel 381 

density, does not appear to have been reached in this study.  382 

 383 

# Fig. 7 384 

3.2.2 Vertical biomass distribution  385 

Our results suggest an exponential relationship between RIA in the Elymus canopy at heights above 386 

the ground of 0.4 m, 0.2 m and on top of the litter layer (0 m) and the amount of biomass in the top 387 

canopy layer, the top and the middle canopy layer and of the whole canopy (Fig. 8a). Rates of increase in 388 

RIA became smaller with an increase in biomass and conversely with a decrease in height above the 389 

ground within the canopy. Measurements of light availability at a defined canopy height represent the 390 

cumulative amount of irradiation absorbed by the canopy above. Hence it remains unclear whether this 391 

pattern was caused by increase in biomass weight per unit volume or by an increase of canopy density 392 

and shading effects. 393 

By contrast the photo-method allowed analysis of vegetation pixel density and biomass in the top, 394 

middle and bottom canopy layer alone. We found an exponential relationship between both variables 395 

(Fig 8b). This suggests that there was an increase in biomass weight per unit volume with decreasing 396 

height within the canopy of Elymus. 397 

 398 

# Fig. 8 399 

 400 

4 Discussion 401 

 402 

4.1 Plant stem flexibility 403 

 404 
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This study presents the first quantitative data of stem flexibility for the common salt marsh grasses 405 

S. anglica, P. maritima and E. athericus, building on a previous study of a single related species, 406 

Spartina alterniflora (Feagin et al. 2011). Except for the very flexible species P. maritima (with low values 407 

of flexural rigidity), the flexural rigidity values of salt marsh grasses recorded in this study were one to 408 

four orders of magnitude higher than those described for seagrasses or freshwater plants (Fonseca and 409 

Koehl 2006; Miler et al. 2012). Flexural rigidity of bottom and middle stem sections of S. anglica and 410 

E. athericus were within an order of magnitude of flexural rigidity found in stems of brown macroalgae 411 

(Paul et al. 2014b).  412 

The fact that flexural rigidity of all three species shows high variability (Fig. 6) may be attributed to 413 

differences in the stage of life cycle or vitality of plant stems. Environmental factors as a cause for 414 

intraspecific variability may be of minor importance in this study, as all analysed plant stems were 415 

harvested from one turf of 25 x 25 cm in size. Very high intraspecific variability of flexural rigidity has also 416 

been reported for freshwater plants (Miler et al. 2012) and, independent of sample size, for brown 417 

macroalgae (Paul et al. 2014b).  418 

Values of Young’s bending modulus, E, were much higher than those reported so far for aquatic 419 

plants (Table 2). S. anglica yielded the smallest values of E, in spite of the fact that the species is known 420 

for its stiff and upright growing shoots (Bouma et al. 2005). The high values of flexural rigidity which 421 

identify S. anglica as the stiffest of the considered plant species, result from high values of the second 422 

moment of area I, i.e. the large stem diameter. This highlights the importance of considering plant size 423 

and morphology (here stem diameter) when determining plant biomechanical characteristics 424 

(Niklas 1992). For the related species S. alterniflora, Feagin et al. (2011) derived values of E of 425 

1410 ± 710 MPa which is five to ten times higher than the values reported here for S. anglica. However, 426 

Feagin et al. (2011) measured E with an improvised 3-point-bending test apparatus and, thus their data 427 

may not be strictly comparable to the results from this study.  428 

Biophysical properties of salt marsh plants such as stem flexibility, biomass and vegetation density 429 

are key parameters controlling their capacity to dissipate wave and tidal flow energy and hence their 430 

ability to establish and grow in coastal environments (Bouma et al. 2005; Bouma et al. 2010). Considering 431 

stem flexibility alone, S. anglica, the species with the strongest and stiffest shoots of all species 432 

investigated here, would be expected to be more effective in dissipation of wave energy than species 433 

with very thin and flexible stems such as P. maritima. Bouma et al. (2010) compared S. anglica and 434 

P. maritima in their ability to dissipate wave energy and found both species to be equally effective due to 435 

much higher values for stem density in stands of P. maritima. The fact that stem density may 436 
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compensate for stiffness illustrates that trade-offs between different biophysical properties needs to be 437 

considered when estimating the capacity of marsh surface plant canopies to dissipate wave energy.  438 

Future research should focus on plant movement and breakage in response to various wave 439 

conditions as a function of stem flexibility, stem density and biomass. Moreover the values of plant 440 

biophysical properties reported here refer to the summer season. Further studies are needed to quantify 441 

their seasonal as well as geographical variability. 442 

 443 

4.2 Non-destructive assessment of biomass  444 

 445 

Our results suggest that the non-destructive assessment of biomass as a proxy for the relative degree of 446 

canopy resistance to water flow is possible both with measurements of light availability and the photo-447 

method, albeit with a required species-specific calibration and within set biomass limits. The non-linear 448 

relationship between light availability (expressed as percentage of relative irradiation absorbed by the 449 

canopy (RIA)) and biomass reported here is in accordance with results of Schrautzer and Jensen (2006), 450 

who estimated biomass of fen grasslands by measuring light availability. The high standard deviations of 451 

light availability in the canopies of Atriplex and Elymus when biomass was equal or less than 0.6 kg/m2 452 

suggest that the position of the irradiation measuring probe had a great effect on records of light 453 

availability if the canopy density was low. With respect to the photo-method, the clear exponential 454 

relationship between projected surface area of vegetation (expressed as vegetation pixel density) and 455 

biomass apparent in the Elymus canopy, supports the findings of Möller (2006) who estimated biomass 456 

with the photo-method at various canopy densities in stands of S. anglica (Fig. 7d). In the structurally 457 

complex Atriplex vegetation type, more samples are needed to verify the exponential increase of 458 

biomass with vegetation pixel density (Fig. 7c).  459 

Two main reasons account for the non-linear trend between absorbed relative irradiation and 460 

biomass as well as vegetation pixel density and biomass reported here. First, when canopy density 461 

increases plant elements in the different horizontal and vertical canopy layers may shade one another, 462 

causing saturation in absorbed relative irradiation and in vegetation pixel density. According to our 463 

results, measurements of light availability are more sensitive to saturation and an underestimation of 464 

biomass due to shading effects than the photo-method. 465 

Second, the space occupied by a plant element in the canopy is not directly related to its weight per 466 

volume unit (Neumeier 2005). Consequently, an increase of biomass due to an increase of woody plant 467 

elements is not necessarily reflected by a decrease in light availability or an increase in vegetation pixel 468 
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density. This applies particularly to assessments of the vertical biomass distribution in the canopy, as in 469 

stands of many plant species the percentage of woody plant elements increases near the soil surface. 470 

Our results suggest that the photo-method is more appropriate to assess the vertical distribution of 471 

biomass in the canopy than measurements of light availability at different heights within the canopy. 472 

Light availability recorded at a defined height within the canopy represents the cumulative absorption of 473 

relative irradiation by the canopy layers above. Light penetration from one canopy layer through to the 474 

next is strongly affected by variation in spatial arrangement and orientation of plant elements within the 475 

canopy. Consequently, it is difficult to establish a relationship between the amount of irradiation 476 

absorbed by the top, middle and bottom canopy layer alone and the biomass present in the respective 477 

layers.  478 

By contrast, the photo-method allowed for the analysis of vegetation pixel density and biomass in 479 

the bottom, middle and top canopy layer. The increase in biomass weight per unit volume with 480 

decreasing height in the canopy found in this study implies an increase of lignifications and stiffness of 481 

Elymus stems near the soil surface – an assumption that is confirmed by the results of the stem flexibility 482 

measurements reported in this paper. 483 

Future studies that aim to quantify vegetation canopy resistance to water flow must also address 484 

the complication that arises when the submergence of the canopy results in a vertical biomass 485 

distribution within the canopy that differs from that measured when the canopy is dry. Once again, the 486 

need to consider such canopy buoyancy effects may be species specific, with stiff and upright growing 487 

species, such as Spartina spp., being less affected than species with more flexible stems, such as 488 

Puccinellia spp. or Elymus spp..  489 

 490 

 491 

5 Conclusions 492 

 493 

This study is the first to provide systematically acquired information on biophysical properties with 494 

application to wave dissipation of four typical plant species of NW European salt marshes. It is also the 495 

first to compare the performance of two methods for the non-destructive assessment of biomass in salt 496 

marshes. Our results show significant differences in stem flexibility, both between different species and 497 

between the different stem parts of specimens of one species. This underlines the fact that 498 

biomechanical properties often vary not only between, but also within, the individuals of a plant species 499 

(Feagin et al. 2011; Miler et al. 2012; Paul et al. 2014a). Flexibility of plant stems and its vertical 500 
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distribution affects the bending angle and re-orientation of stems under wave forcing (Feagin et al. 501 

2011).  502 

The comparison of methods for the non-destructive assessment of biomass and canopy structure 503 

showed that the photo-method is a more appropriate technique than the measurement of light 504 

availability. While measurements of light availability showed saturation at low biomass values, analysis 505 

of digital photographs of vegetation allowed for the estimation of biomass over the whole range of 506 

biomass values and in both types of canopy architecture tested. Moreover, it was more suitable for the 507 

estimation of vertical biomass distribution and, given that it measures the area of the vegetation 508 

elements projected into horizontal flow (rather than obstruction to light coming from above), could be 509 

considered a more meaningful parameter in relation to flow and wave dissipation.  510 

Our study suggests a way forward for the measurement/quantification of biophysical properties of 511 

salt marsh canopies with high relevance to studies of habitat structure and ecosystem functioning as well 512 

as flow and wave energy dissipation in salt marsh environments. Considering the application of our 513 

findings in numerical models dealing with the interaction between flow and vegetation, data on canopy 514 

biomass and structure as well as plant flexibility should now be combined with measurements of flow 515 

regime and wave dissipation, to investigate whether it is possible to quantify the currently empirically 516 

derived relationship between flow regime, plant spacing (height and diameter), drag, and wave 517 

dissipation, a priori. This would mean that models for wave dissipation over such structurally complex 518 

canopies could be applied without the requirement for empirical calibration of drag against observed 519 

dissipation. 520 

 521 
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Figure and Table captions 681 

 682 

Fig. 1. Study site at the Dengie marshes, Essex, England, UK. Along the transect from X (sea 683 

defenceboundary) to Y (intertidal mudflat) across the marsh platform mid marsh plant communities 684 

occur at elevations > 2.4 m ODN (Ordnance Datum Newlyn, which approximates mean sea level) and low 685 

marsh and pioneer plant communities at elevations ≤ 2.4 m ODN. 686 

 687 

Fig. 2. Three-point-bending test apparatus and bending test of a stem section of Elymus athericus. 688 

 689 

Fig. 3. Force-displacement curve (solid line) from a middle part of a stem of Elymus athericus. Young’s 690 

bending modulus and flexural rigidity were calculated from the slope of the initial linear part (dotted 691 

line). The curve shape is representative for all species and stem parts in this study.  692 

 693 

Fig. 4. a) Sun scan canopy analysis system used to measure light availability in and above the canopy; b) 694 

portable digital photograph frame used to capture side-on photographs of salt marsh vegetation.  695 

 696 

Fig 5. Classified binary black and white digital images of the canopy of a) Atriplex portulacoides and b) 697 

Elymus athericus used to estimate above ground biomass from vegetation pixel density from side-on 698 

photographs of vegetation.  699 

 700 

Fig. 6: Median and variability in flexural rigidity for bottom (Bo), middle (Mi) and top (To) stem parts of 701 

three salt marsh grasses. The bottom and top of the box represent the first and third quartiles, ends of 702 

whiskers represent the minimum and maximum values. Flexural rigidity was significantly different 703 

between all species (Kruskall-Wallis-test, H = 59.33, p < 0.01, d.f. = 2). Significant differences in flexural 704 

rigidity between bottom (Bo), middle (Mi) and top (To) stem parts of S. anglica, P. maritima and E. 705 

athericus are marked with A and B. 706 

 707 

Fig. 7: Relationship between light availability (expressed as mean ± 1 SD of relative irradiance absorbed 708 

by the canopy) in the canopy of a) Atriplex and b) Elymus and above ground biomass (dry weight), the 709 

horizontal black line indicates the threshold beyond which a further increase of biomass did not result in 710 

an increase of irradiance absorbed. Relationship between density of vegetation pixels as derived from 711 

side-on photography of vegetation in stands of c) Atriplex and d) Elymus and above ground biomass (dry 712 

weight).  713 
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Fig 8. Assessment of vertical biomass distribution in the canopy of Elymus. a) Relationship between light 714 

availability (expressed as relative irradiance absorbed by the canopy) at heights of 0.4 m (top canopy 715 

layer), 0.2 m (top and middle canopy layer) and 0 m (whole canopy) and the cumulative amount of above 716 

ground biomass present at the corresponding canopy heights. b) Relationship between vegetation pixel 717 

density derived from the analysis of side-on photographs for the top (> 0.4 m– 0.6 m), the middle > 0.2 – 718 

0.4 m) and the bottom canopy layer (0 – 0.2 m) and biomass of the respective canopy layers. All values 719 

represent mean ± 1 SD from measurements on three plots with a similar amount of above ground 720 

biomass (0.6 ± 0.01 kg/m2). 721 

 722 

Table 1. Mean values (±1 standard deviation) for biomechanical properties of three salt marsh grasses. 723 

 724 

Table 2. Young’s bending modulus and flexural rigidity (mean ±1 standard deviation) of selected species 725 

from seagrass, brown macroalgae, freshwater and salt marsh plants. 726 

 727 
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Table 1. Mean values (±1 standard deviation) for biomechanical properties of three salt marsh grasses. 

 
Stem diameter 

[cm] 
Stem length [cm] 

Flexural rigidity 
[x10

-3
 Nm

2
] 

Young’s bending 
modulus [MPa] 

Sample 
size n 

S. anglica  27.87 ± 4.66   15 

Bottom 0.45 ± 0.06  3.51 ± 0.58 118.28 ± 49.94 15 

Middle 0.48 ± 0.05  3.29 ± 1.14 122.90 ± 36.05 15 

Top 0.23 ± 0.07  0.69 ± 1.10 310.86 ± 136.93 15 

P. maritima  23.93 ± 6.94   15 

Bottom 0.14 ± 0.01  0.40 ± 0.14 1995.35 ± 648.70 15 

Middle 0.15 ± 0.02  0.45 ± 0.17 1764.90 ± 354.44 15 

Top 0.15 ± 0.02  0.17 ± 0.07 736.54 ± 280.60 15 

E. athericus  46.00 ± 12.30   15 

Bottom 0.16 ± 0.02  1.23 ± 0.64 4081.79 ± 1386.30 15 

Middle 0.17 ± 0.02  1.01 ± 0.42 2755.09 ± 694.03 15 

Top 0.16 ± 0.02  0.61 ± 0.32 1952.07 ± 667.63 15 

 

Table 1
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Table 2. Young’s bending modulus and flexural rigidity (mean ±1 standard deviation) of selected species 1 

from seagrass, brown macroalgae, freshwater and salt marsh plants. 2 

 
Flexural rigidity 

[x10
-3
 Nm

2
] 

Young’s bending 
modulus [MPa] 

Source 

Seagrass    

Zostera marina 0.00018  Fonseca et al. 2006 

    

Brown macro algae (stems)    

Aliaria esculenta 2.46 ± 0.62 16 ± 4 Paul et al. 2014b 

Fucus serratus 2.89 ± 0.89 11 ± 4 Paul et al. 2014b 

Laminaria digitata 1.95 ± 0.70 29 ± 13 Paul et al. 2014b 

    

Freshwater plants    

Glyceria fluitans 0.68 ± 0.27 90 ± 33 Miler et al. 2012 

Myriophyllum alternifolium 0.025 ± 0.11 89 ± 38 Miler et al. 2012 

Ranunculus penicillatus 0.022 ± 0.14 12 ± 7 Miler et al. 2012 

    

Salt marsh plants    

Spartina alterniflora  1410 ± 710 Feagin et al. 2011 

 3 

Table 2
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