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Electricity generated from nuclear power plants is generally associated with low emissions per kWh gen-
erated, an aspect that feeds into the wider debate surrounding nuclear power. This paper seeks to inves-
tigate how life-cycle emissions would be affected by including thorium in the nuclear fuel cycle, and in
particular its inclusion in technologies that could prospectively operate open Th–U-based nuclear fuel
cycles. Three potential Th–U-based systems operating with open nuclear fuel cycles are considered:
AREVA’s European Pressurised Reactor; India’s Advanced Heavy Water Reactor; and General Atomics’
Gas-Turbine Modular Helium Reactor. These technologies are compared to a reference U-fuelled
European Pressurised Reactor. A life-cycle analysis is performed that considers the construction, opera-
tion, and decommissioning of each of the reactor technologies and all of the other associated facilities
in the open nuclear fuel cycle. This includes the development of life-cycle analysis models to describe
the extraction of thorium from monazitic beach sands and for the production of heavy water. The results
of the life-cycle impact analysis highlight that the reference U-fuelled system has the lowest overall emis-
sions per kWh generated, predominantly due to having the second-lowest uranium ore requirement per
kWh generated. The results highlight that the requirement for mined or recovered uranium (and tho-
rium) ore is the greatest overall contributor to emissions, with the possible exception of nuclear energy
systems that require heavy water. In terms of like-for-like comparison of mining and recovery tech-
niques, thorium from monazitic beach sands has lower overall emissions than uranium that is either con-
ventionally mined or recovered from in-situ leaching. Although monazitic beach sands (and equivalent
placer deposits) only form 30% of the overall known thorium ore deposits, it is expected that such depos-
its would generally be utilised first if thorium becomes a viable nuclear fuel. Overall, for these four
nuclear energy technologies, the range of CO2(eq) emissions per kWh generated (6.60–13.2
gCO2(eq)/kWh) appears to be low in comparison to the majority of electricity-generating technologies.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The debate surrounding nuclear power is often clouded by
somewhat strong and divergent opinions. Electricity generated
from nuclear power plants is generally associated with low emis-
sions per kWh generated. However, issues surrounding the wastes,
economics, safety, the potential for proliferation and diversion of
nuclear materials impact the social and environmental acceptabil-
ity of such technologies.

At present open nuclear fuel cycles, i.e. those where the fuel is uti-
lised once, are generally more prevalent than reprocessing-based
closed nuclear fuel cycles. This is observed to be due to economic
costs and a tendency to greater resistance against theft and diversion
of spent nuclear fuel and separated special nuclear materials.
However, the penalty in only utilising the nuclear fuel once is that
a significant demand is placed on uranium ore reserves. From esti-
mates published in 2012, there are 5:33� 106 tonnes of uranium
recoverable for less than US $130=kgU [1]. Estimates for total
uranium ore reserves (including unconventional resources but
excluding uranium found in seawater) range from 1:92� 107 tonnes
[2] to 3:93� 107 tonnes [3]. At 2012 consumption rates of
67,990 tonnes of uranium per year [4], the reserve of 5:33� 106 ton-
nes would last for another �80 years and the reserve of
3:93� 107 tonnes would last for �600 years —although uranium
consumption rates are expected to increase over time as more
nuclear power plants are constructed. This compares to fully closed
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Fig. 1. Stages of the open nuclear fuel cycle considered within this LCA. The construction, operation and decommissioning and transport requirements of each stage are
considered.

Fig. 2. Material flow diagrams describing the mass flows (in units of kgHM) of uranium and thorium, required per kWh, for the four nuclear energy technology options
analysed in this work. Uranium mass flows are depicted by black solid lines whereas thorium mass flows are depicted by black dashed lines. Italicised text denotes the
separative work units required per kWh. Figure taken from Ref. [11]. N.B. EPR LEU/Th (S) and EPR LEU/Th (B) are individual components of the Th–U-fuelled EPR.

Table 1
Breakdown of the amounts of uranium mined and corresponding mining techniques
for 2013 (values from Ref. [20]).

Mining technique Tonnes U %

Conventional underground 17,198 29
Conventional open-pit 10,977 18
In-situ leaching 27,496 46
By-producta 3966 7

a �88% of the by-product comes from the Olympic Dam iron oxide–copper–gold
deposit in Australia.
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nuclear fuel cycles where ore resources could be extended to beyond
10,000 years [5].

Thorium, an element that is lighter than uranium, has been pro-
posed as a potential nuclear fuel of the future, with suggestions
that it could extend the supply of nuclear fuel, and have significant
economic, radiotoxicity, and proliferation resistance advantages
over conventional uranium-based fuels [6]. The most recent esti-
mates of thorium reserves range from 6:5� 106 to 7:4� 106 tonnes
(ignoring resource categories and cost classes) [7], although from a
geological standpoint thorium is expected to be 3–4 times more
abundant than uranium in the continental crust [8].



Table 2
Projected share of technology used in enriching uranium from Ref. [22].

Supply source 2000 (%) 2010 (%) 2017 (projected) (%)

Diffusion 50 25 0
Centrifuge 40 65 93
Laser 0 0 3
Highly-enriched uranium ex weapons 10 10 4

Table 3
Breakdown of present global thorium reserves, as detailed in Ref. [7].

Deposit type Relative abundance (%)

Carbonatite 37
Placer 30
Vein 20
Peralkaline rocks 10
Others 3

Fig. 3. Flow sheet for the production of monazite, adapted from Ref. [25]. [A] denotes th
and [C] denotes the normalised weight from the product of [A] and [B]. Original data used
(derived from 2011 US) values in Ref. [26]) in italic text.
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Whilst the adoption of thorium has traditionally been associated
with reprocessing-based ‘‘closed’’ nuclear fuel cycles [9], open
nuclear fuel cycles when compared to closed nuclear fuel cycles
have: (1) significantly lower fuel cycle costs; (2) lower infrastructure
requirements; (3) greater resistance against nuclear weapons prolif-
eration; and (4) enhanced protection against diversion and theft.
Therefore, an open question remains as to whether thorium can suc-
cessfully be included within future open nuclear fuel cycles. A recent
review paper [10] has highlighted a number of technology families
that could prospectively use open Th–U-based fuel cycles, including:
(1) existing light water reactors (LWRs), (2) novel
heavy-water-moderated, light-water-cooled reactors, and (3) novel
high-temperature gas-cooled reactors. Fuel cycle modelling of three
nuclear energy technologies operating with open Th–U-based fuel
cycles has recently been performed [11]. The reactor technologies
considered in Ref. [11]: AREVA’s European Pressurised Reactor
(EPR), the Indian Advanced Heavy Water Reactor (AHWR), and
General Atomics’ Gas-Turbine Modular Helium Reactor (GT-MHR),
e relative abundance of the mineral; [B] denotes the economic value of the mineral;
for the EcoInvent weighting are presented in normal text with the weightings used
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represent each of the three aforementioned technology families. A
natural extension of this modelling is to assess the life-cycle emis-
sions of these technologies together with the life-cycle impacts of
producing thorium-based nuclear fuels. In addition to these sys-
tems, novel designs of today’s nuclear energy technologies (such
as the Reduced-Moderation Boiling Water Reactor [12]) or the use
of reprocessing-based nuclear fuel cycles in advanced Generation
IV technologies [13] appear to be the only ways in which thorium
may be more advantageous on a large scale. Thorium-based fuel
may also find utility in the more niche application of the disposition
of stockpiles of separated plutonium arising from the reprocessing of
spent nuclear fuel or the decommissioning of nuclear weapons [14],
though such reprocessing-based fuel cycles are outside the scope of
this present work.

This paper looks at what the life-cycle impacts of including tho-
rium into the nuclear fuel cycle would be and includes a comparative
life-cycle assessment (LCA) of three nuclear energy systems that
could potentially utilise open thorium–uranium-based nuclear fuel
cycles. These three systems are: AREVA’s European Pressurised
Reactor (EPR), a light water reactor technology; India’s Advanced
Heavy Water Reactor (AHWR), a heavy-water-moderated,
light-water-cooled reactor technology; and General Atomics’
Gas-Turbine Modular Helium Reactor (GT-MHR), a
high-temperature gas-cooled reactor technology. The reference
technology used to compare these three thorium–uranium-fuelled
technologies is an EPR fuelled with low-enriched uranium (LEU).
Further details on the specifics of each reactor technology are con-
tained in Section 2.7 and Ref. [11]. Section 2 covers the stages of
the open nuclear fuel cycle and the relevant processes considered
for the life-cycle assessment from either the EcoInvent v2.2 database
Table 4
Bill of materials for producing 1 kg of monazite from beach sands. Input and output
materials are based on mining of beach sands for zircon as described in Ref. [24]. Plain
text denotes processes (and terminology) within the EcoInvent v2.2 database. Italic
text denotes processes that are not in the EcoInvent v2.2 database and which
therefore have been determined by the authors.

Input materials from EcoInvent Quantity and units

Thorium dioxide, 6% in monazite, in ground (AU) 6.000 � 10�2 kg
Electricity, medium voltage, production UCTE, at grid

(UCTE)
1.642 kWh

Recultivation, bauxite mine (GLO) 1:454� 10�2 m2

Transformation, to mineral extraction site 1:454� 10�2 m2

Transformation, from pasture and meadow 8:723� 10�3 m2

Transformation, from forest 5:815� 10�3 m2

Occupation, mineral extraction site 1:454� 10�1 m2a
Water, well, in ground 9:477� 10�2 m3

Hard coal, burned in industrial furnace 1–10 MW
(RER)

6.462 MJ

Diesel, burned in building machine 2.800 MJ
Natural gas, burned in industrial furnace >100 kW

(RER)
1.938 MJ

Heavy fuel oil, burned in industrial furnace 1 MW,
non-modulating (RER)

6:462� 10�1 MJ

Mine, bauxite 2:150� 10�9 number
of pieces

Output materials from EcoInvent Quantity and units

Monazite, 6% thorium dioxide, at plant (AU) 1 kg
Heat, waste 5.923 MJ
Particulates, >10 lm 7:808� 10�4 kg
Particulates, >2.5 lm, and <10 lm 4:038� 10�4 kg
Suspended solids, unspecified 2:477� 10�4 kg
Particulates, <2.5 lm 1:615� 10�4 kg
Iron, ion 1:2� 10�5 kg
232Th 1:163� 10�2 kBq
226Ra 3:085� 10�4 kBq
238U 8:990� 10�5 kBq
[15] or from other literature. The results of the life-cycle impact
assessment of these technologies are presented in Section 3 and con-
sider the main atmospheric emissions per kWh generated, namely
100-year global warming potential, acidification potential, eutroph-
ication potential, and steady-state ozone depletion potential. A dis-
cussion of the results, along with the basis for focussing on
atmospheric emissions and the limitations of this study, is presented
in Section 4. Concluding remarks are presented in Section 5.
2. LCA of open nuclear fuel cycle stages

The open nuclear fuel cycle that forms the basis of this study is
presented in Fig. 1. It should be noted that the system boundaries
include construction, operation, and decommissioning of each
stage with transportation requirements internalised for each stage;
the functional unit of per kWh generated is used to compare these
nuclear energy systems and per kg produced for heavy water pro-
duction and also for the mined/recovered uranium and thorium;
and that Stages 1–2 and 5–6 are the same for all four nuclear
energy systems that are being studied here. Differences in the fuel
fabrication processes and reactors are reported in Sections 2.6 and
2.7. The basis for the LCA model is taken from Ref. [16], and the
similarities and differences between that LCA model and the one
used in this work are presented in Sections 2.2–2.8.

Due to the large number of processes contained within each
stage of the nuclear fuel cycle and the variation in uncertainties
associated with each process, the results contained in Section 3
comprise individual values for each stage of the nuclear fuel cycle
(presented in graphical form) with a single value for each emission
type per functional unit.
Table 5
Bill of materials to produce 1 kg of ThO2 from monazite. Input materials are based on
Ref. [27] with energy requirements based on EcoInvent’s LCA for bastnasite
production, scaled by a factor of 0.01 as posited by Ref. [28]. Plain text denotes
processes (and terminology) within the EcoInvent v2.2 database. Italic text denotes
processes that are not in the EcoInvent v2.2 database and which therefore have been
determined by the authors.

Input materials from EcoInvent Quantity and units

Monazite, 6% thorium dioxide, at plant (AU) 1:762� 101 kg
Chemicals inorganic, at plant (GLO) 1:986� 10�2 kg
Chemicals organic, at plant (GLO) 1:986� 10�2 kg
Barite, at plant (RER) 2:106� 10�1 kg
Chemical plant, organics (RER) 9:000� 10�9 unit
Hydrochloric acid, 30% in H2O, at plant (RER) 8:600� 10�2 kg
Hydrogen peroxide, 50% in H2O, at plant (RER) 2:140� 10�2 kg
Nitric acid, 50% in H2O, at plant (RER) 2.157 kg
Sodium hydroxide, 50% in H2O, production mix, at plant

(RER)
4:068� 10�1 kg

Sulphuric acid, liquid, at plant (RER) 5:689� 10�1 kg
Quicklime, milled, loose, at plant (CH) 1.242 kg
Silica sand, at plant (DE) 6:150� 10�2 kg
Electricity, medium voltage, production UCTE, at grid

(UCTE)
4:560� 10�3 kWh

Disposal, non-sulfidic tailings, off-site (GLO) 9:690� 10�1 kg
Disposal, sulfidic tailings, off-site (GLO) 1.248 kg
Transport, lorry >16 t, fleet average (RER) 1.001 t km
Heavy fuel oil, burned in industrial furnace 1 MW, non-

modulating (RER)
1:920� 10�2 MJ

Water, unspecified natural origin 2:080� 10�2 m3

Output materials from EcoInvent Quantity and units

226Ra (air unspecified) 6:19� 101 kBq
228Ra (air unspecified) 4:464� 102 kBq
232Th (air unspecified) 1:016� 101 kBq
Heat, waste 1:642� 10�2 MJ
Thorium dioxide, at plant (AU) 1 kg
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Section 2.1 details the uranium and thorium material flows and
separative work requirements that interlink Stages 1–6 for the four
different options that are being studied in this work. This sum-
marises the results from Ref. [11] which are relevant for the LCA
analysis.

It is noted that within the tabulated data contained in this
paper, the following abbreviations, as adopted by EcoInvent, are
used to represent the following countries and/or regions: (AU)
denotes Australia, (CH) denotes Switzerland, (RER) denotes
Europe, (GLO) denotes global, and (UCTE) denotes the electricity
supply mix of the European network.

2.1. Material flows for uranium, thorium, and separative work
requirements

Uranium, thorium, and separative work requirements for the
four different nuclear fuel cycles have been determined using reac-
tor physics modelling techniques and the UK National Nuclear
Laboratory fuel cycle modelling code ‘‘ORION’’ [17]. Further details
on the methodologies used to calculate these material flows are
contained in Ref. [11]. The required uranium, thorium, and separ-
ative work units (per kWh generated) for each of the four systems
are presented in Fig. 2 and formed the primary structure of each
LCA. Details on how the mined uranium ore corresponds to the
required milled ore (Stages 1a and 1b) are presented in
Section 2.2, with conversion (Stage 1c) and enrichment (Stage
1d) processes described in Sections 2.3 and 2.4 respectively.
Details on how thorium-rich monazite sands are mined and pro-
cessed (Stages 2a and 2b) are contained in Section 2.5. The treat-
ment of spent nuclear fuel (Stages 5 and 6) is described in
Section 2.8.

2.2. Stages 1a & 1b: Uranium mining and milling

Within Ref. [16], three mining techniques are considered: con-
ventional open-pit mining, conventional underground mining,
and in-situ leaching (ISL) (also termed in-situ recovery). The
Table 6
Materials that comprise the total amount of fabricated fuel (and other suppor
four nuclear energy systems, the quantities of uranium, thorium, and burn
provided in Ref. [11]. Details provided in the footnotes are explained furthe

Material EPR EPR
UO2 (kg)a UO2/ThO

Uranium (heavy metal) 1.27 � 105 4.77 � 10
Thorium (heavy metal) – 7.04 � 10
Zircaloy 3.90 � 104

Inconel 1.04 � 103 1.04 � 10
SiC fuel cladding – 1.91 � 10
AISI 304L stainless steel 3.52 � 103 3.52 � 10
Aluminium oxide 1.45 � 102 1.45 � 10
Boron carbide (B4C) 4.37 � 102 4.37 � 10
Silver 1.20 � 103 1.20 � 10
Indium 2.25 � 102 2.25 � 10
Cadmium 7.49 � 101 7.49 � 10
Gadolinium (Gd2O3) 2.08 � 102 8.88 � 10
or erbium (Er2O3)
Graphite –

Carbon –

Pyroclastic carbon –

Zirconium carbide –

a All ‘‘structural’’ materials (except uranium, thorium, and Gd2O3/Er2O3
b The differences in the quantities of zircaloy and SiC fuel cladding, as e
c The quantities of structural materials required for the AHWR were calc

proportion to the assembly dimensions of the AHWR provided in Ref. [11
d The quantities of structural materials required for the GT-MHR were c
allocation of each technique is 25%, 25% and 50% respectively. In
this work, the same allocations are assumed. This compares to
the market share for each mining technique in 2013 as shown in
Table 1. The LCA data for conventional open-pit mining and con-
ventional underground mining comes from Ref. [18], whereas the
LCA data for ISL comes from Ref. [19]. A global uranium content
of 0.134% in the mined ore has been adopted in this work, with
losses in mined ore assumed to be 5%.

2.3. Stage 1c: Conversion

Only the wet uranium-nitrate-hexahydrate conversion process
to transform U3O8 (‘‘yellowcake’’) into UF6 from Ref. [18] is consid-
ered in this work. In 2013, the wet process accounted for �80% of
global uranium conversion capacity [21].

2.4. Stage 1d: Enrichment

Historically, two families of technologies have been used for
enriching uranium: (1) gaseous diffusion, e.g. USEC, Paducah (KY,
USA) and (2) gas centrifugation, e.g. URENCO (Capenhurst), UK.
Gaseous diffusion has now become obsolete: Areva’s Georges
Besse gaseous-diffusion facility in Tricastin (France) has been
replaced by the Georges Besse II centrifuge enrichment plant,
and the USEC gaseous-diffusion plant in Paducah was shut down
in mid-2013. Predictions of the future breakdown of enrichment
technologies from the World Nuclear Association are shown in
Table 2. In this work, only URENCO centrifuge enrichment is con-
sidered, the LCA for which is contained in Ref. [18].

2.5. Stages 2a & 2b: Thorium mining and milling

As mentioned in Section 1, present thorium reserves are esti-
mated to be in the range 6:5–7:4� 106 tonnes. A breakdown of
the types of deposit is shown in Table 3.

Thorium is typically treated as a waste by-product of
rare-earth-element (REE) mining and processing; hence,
ting structures) contained in the core of each reactor technology. For all
able poisons (Gd2O3/Er2O3) were calculated by the authors from data
r in Section 2.6.

AHWR GT-MHR
2 (kg)a,b UO2/ThO2 (kg)c UO2/ThO2 (kg)d

4 6.73 � 103 1.04 � 104

4 4.50 � 104 7.97 � 103

– 1.78 � 104 –
3 3.53 � 102 –
4 – –
3 2.15 � 103 –
2 4.82 � 101 –
2 2.61 � 103 7.89 � 102

3 – –
2 – –
1 – –
1 1.09 � 102 –

– – 1.00 � 105

– – 3.09 � 103

– – 4.90 � 103

– – 8.69 � 103

) were taken from Ref. [29].
xplained in Section 2.6, were calculated by the authors.

ulated by the authors by scaling the structural materials for the EPR in
]. The quantity of B4C was directly calculated using data in Ref. [11].
alculated by the authors from Ref. [11].



Table 7
Estimates of the aggregated bill of materials for the three different nuclear reactors studied in this work. Details provided in the footnotes are explained further in Section 2.7.

EcoInvent material/process Unit Location EPRa,d AHWRb,e GT-MHRc,e

Aluminium, primary, at plant kg RER 9.76 � 104 7.67 � 104 5.77 � 103

Chromium steel 18/8, at plant kg RER 1.24 � 107 1.39 � 106 1.39 � 107

Copper, at regional storage kg RER 5.38 � 105 3.95 � 105 1.01 � 105

Disposal, concrete, 5% water, to inert material landfill kg CH 6.83 � 108 4.55 � 108 6.83 � 107

Drawing of pipes, steel kg RER 1.83 � 106 5.13 � 105 —

Graphite, at plant kg RER — — 5.05 � 105

Hot rolling, steel kg RER 1.77 � 107 2.51 � 106 1.38 � 107

Polycarbonate, at plant kg RER 2.55 � 104 2.04 � 104 8.56 � 102

Polyester resin, unsaturated, at plant kg RER 6.27 � 103 5.02 � 103 1.92 � 102

Polyethylene, HDPE, granulate, at plant kg RER 1.27 � 105 1.01 � 105 8.52 � 103

Polymethyl methacrylate, beads, at plant kg RER 1.45 � 105 1.16 � 105 3.30 � 104

Polyvinylchloride, at regional storage kg RER 1.27 � 105 1.02 � 105 9.85 � 102

Reinforcing steel, at plant kg RER 5.09 � 107 9.14 � 106 4.04 � 106

Sheet rolling, aluminium kg RER 9.58 � 104 7.67 � 104 5.77 � 103

Sheet rolling, chromium steel kg RER — 6.45 � 105 —

Sheet rolling, steel kg RER 4.69 � 105 3.76 � 105 3.76 � 105

Steel, low-alloyed, at plant kg RER 5.96 � 106 5.21 � 105 3.84 � 105

Synthetic rubber, at plant kg RER 3.00 � 104 2.40 � 104 1.12 � 103

Tin, at regional storage kg RER 3.45 � 104 2.76 � 104 1.74 � 103

Wire drawing, copper kg RER 4.52 � 105 3.28 � 105 8.40 � 104

Electricity, medium voltage, production UCTE, at grid kWh UCTE 9.55 � 108 6.37 � 108 9.55 � 107

Welding, arc, steel m RER — — 5.00 � 104

Concrete, normal, at plant m3 CH 3.89 � 106 2.80 � 105 4.70 � 104

Excavation, hydraulic digger m3 RER 3.48 � 105 2.32 � 105 6.54 � 104

Excavation, skid-steer loader m3 RER 3.48 � 105 2.32 � 105 6.54 � 104

Sawn timber, hardwood, planed, kiln dried, u = 10%, at plant m3 RER 8.29 � 100 6.63 � 100 2.37 � 10�1

Diesel, burned in building machine MJ GLO 3.42 � 108 2.28 � 108 3.42 � 107

Light fuel oil, burned in industrial furnace 1 MW, non-modulating MJ RER 2.57 � 108 1.71 � 108 2.57 � 107

Transport, freight, rail tkm CH 1.47 � 107 3.96 � 106 1.14 � 106

Transport, freight, rail tkm RER 1.37 � 107 9.12 � 106 1.37 � 106

Transport, lorry > 32 t, EURO5 tkm RER 2.03 � 107 1.35 � 107 2.03 � 106

Transport, lorry 16–32 t, EURO5 tkm RER 3.39 � 107 2.05 � 107 3.88 � 106

a Quantities of construction materials shown for the EPR was based off of the LCA model used in Ref. [16], amended as appropriate by the most recent construction
estimates provided in Ref. [37].

b Quantities of construction materials shown for the AHWR were adapted from Refs. [38,39,42].
c Quantities of construction materials shown for the GT-MHR were, in part, calculated from drawings in Ref. [40], and also adapted from Ref. [42].
d Process energies required to construct the EPR were estimated by the authors from upscaling the process energy requirements used in the LCA model of Ref. [16] with

respect to the additional material requirements in Ref. [37].
e Process energies were estimated by the authors from scaling the process energy required for the EPR.

Table 8
Material required to generate 1 kg of heavy water, adapted from Ref. [45]. Italic text
denotes processes that are not in the EcoInvent v2.2 database and which therefore
have been determined by the authors.

Input materials from EcoInvent Quantities and units

Electricity, medium voltage, production UCTE, 6.04 � 102 kWh
at grid (UCTE)

Steam, for chemical processes, at plant (RER) 5.660 � 103 kg
Heavy-water plant 8.333 � 10�8 unit
Hydrogen sulphide, H2S, at plant (RER) 6.6 � 10�1 kg
Water, cooling, unspecified natural origin 24 m3

Water, river 125 m3

Output materials from EcoInvent Quantities and units

Heavy water, from distillation-GS 1 kg
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low-thorium-content ores for REE processing are presently
favoured. Two distinct approaches are taken towards mining
rare-earth elements: the first involves hard rock mining of ores,
most notably bastnasite that is mined in China; the second
involves separation of minerals from placer deposits, such as beach
sands, most notably monazite that is extracted in India. This LCA
will only consider monazite from placer deposits as the source of
thorium in these nuclear fuel cycles. The rationale for this is that
some of the largest concentrations of monazite can contain signif-
icant amounts of thorium (up to �8 wt% content [23]), and that the
co-produced rare-earth elements will offer additional economic
incentive (i.e. there would initially not be economic incentive to
mine solely thorium-based ores such as thorite). Assuming that
thorium-rich monazite ores will be mined first, the thorium con-
tent has been assumed to be 6%.

The processing of beach sands is currently performed to extract
other valuable minerals such as ilmenite, rutile, and zircon. Within
EcoInvent v2.2, an LCA exists for the processing of zircon, ilmenite
and rutile from beach sands in Australia [24]. This has been
amended to include monazite by using the weightings for mon-
azitic beach sands from India from Ref. [25] and weighting these
in relation to their economic value (using 2011 US $ values pro-
vided in Ref. [26]). A flow diagram showing the processes involved
in extracting monazite from beach sand, and the weightings used
in this work, is presented in Fig. 3. The main data included in the
LCAs for obtaining monazite from beach sands are presented in
Table 4.



Table 9
Assumed materials required to construct a heavy-water plant. Inventory based on
reported values in Ref. [46] for the decommissioning of Bruce Heavy Water Plant.
Italic text denotes processes that are not in the EcoInvent v2.2 database and which
therefore have been determined by the authors.

Input materials from EcoInvent Quantities and
units

Concrete, normal, at plant (CH) 5.00 � 103 m3

Glass fibre, at plant (RER) 2.62 � 106 kg
Aluminium, primary, at plant (RER) 5.20 � 105 kg
Chromium steel 18/8, at plant (RER) 3.56 � 106 kg
Reinforcing steel, at plant (RER) 2.37 � 107 kg
Copper, at regional storage (RER) 3.41 � 105 kg
Polyvinylchloride, at regional storage (RER) 1.59 � 105 kg
Wire drawing, copper (RER) 3.41 � 105 kg
Sheet rolling, chromium steel (RER) 3.56 � 106 kg
Sheet rolling, steel (RER) 2.37 � 107 kg
Disposal, concrete, 5% water, to inert material landfill (CH) 7.50 � 104 kg
Transport, freight, rail (RER) 3.53 � 106 tkm
Disposal, municipal solid waste, 22.9% water, to sanitary

landfill (CH)
6.00 � 105 kg

Transport, lorry 16–32 t, EURO5 (RER) 7.23 � 106 tkm

Output materials from EcoInvent Quantities and
units

Heavy-water plant 1 unit

Table 10
CML-IA characterisation factors [47] used for the life-cycle impact assessments in this
work.

CML-IA metric Abbreviation Normalised
unit

Region

100-year global warming
potential

GWP 100a kgCO2(eq) GLO

Acidification potential AP kgSO2(eq) GLO
Eutrophication potential EP kgPO4

3�(eq) GLO
Steady-state ozone

depletion level
ODPss kgCFC-11(eq) GLO

High NOx photo-chemical
ozone creation potential

High-NOx

POCP
kgC2H2(eq) RER

Human toxicity potential
(infinite time scale)

HTP1 kg1-,4-DCB(eq) GLO

Freshwater ecotoxicity
potential (infinite time scale)

FAETP1 kg1-,4-DCB(eq) GLO

Marine ecotoxicity potential
(infinite time scale)

MAETP1 kg1-,4-DCB(eq) GLO

Terrestrial ecotoxicity
potential (infinite time scale)

TAETP1 kg1-,4-DCB(eq) GLO
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To the best of our knowledge, the extraction of thorium from
monazite has not previously been covered by an LCA. Data from
an environmental impact assessment for a proposed monazite
Table 11
Results of the life-cycle impact assessment (per kWh generated) of three Th–U-fuelled nucle
with the exception of High-NOx POCP which is considered over Europe. The nomenclature

CML-IA metric EPR
(per kWh) UO2

GWP 100a [kgCO2(eq)] 6.60 � 10�3

AP [kgSO2(eq)] 4.67 � 10�5

EP [kgPO4
3�(eq)] 4.46 � 10�5

High-NOx POCP [kgC2H2(eq)] 1.99 � 10�6

ODPss [kgCFC-11(eq)] 5.25 � 10�10

HTP1 [kg1-,4-DCB(eq)] 6.94 � 10�2

FAETP1 [kg1-,4-DCB(eq)] 1.37 � 10�2

MAETP1 [kg1-,4-DCB(eq)] 2.85 � 101

TAETP1 [kg1-,4-DCB(eq)] 2.25 � 10�4
extraction facility in Australia has been used to provide input
quantities of chemicals, water and output residues to landfill
[27]. Input energy requirements have been adopted from
EcoInvent’s LCA for bastnasite production in China [24] and scaled
by a factor of 0.01, as posited by the net energy analysis for bastn-
asite and monazite production in Ref. [28]. Similarly, carbon diox-
ide emissions and waste heat have also been scaled in the same
way, as emissions data was not available. The materials required
for extracting thorium dioxide from monazite processing are
shown in Table 5.
2.6. Stage 3: Fuel fabrication

The fuel fabrication stage traditionally involves the conversion
of UF6 to UO2, sintering UO2 (and ThO2) to form fuel pellets, encap-
sulating the fuel pellets into a fuel rod, and arranging the fuel rods
to form a fuel assembly. The GT-MHR differs as UO2 and ThO2 are
made into micron-sized kernels that are encased in four layers of
three isotropic materials. The four layers are: a porous buffer layer
made of carbon; a dense inner layer of pyrolytic carbon (PyC); a
ceramic layer of silicon carbide; and a dense outer layer of PyC.
The resulting tristructural-isotropic (TRISO) fuel particles are then
encased in graphite to form a fuel compact. The quantities of mate-
rials in the finished fuel assemblies (plus other structural materi-
als) that comprise the core of each reactor technology are
presented in Table 6. For the EPR benchmark, values from Ref.
[29] were taken.

In Ref. [16] the fuel fabrication process for the benchmark EPR
was taken from Ref. [18]. This in turn takes into account a number
of approximations due to the limited information available on the
conversion of zircon to zirconium metal and its corresponding
alloying to form zircaloy. From an LCA perspective, chromium
metal was used as a proxy for zirconium. It is noted in Ref. [30] that
the process energy of chromium (590 GJ/tpr) is significantly lower
than that of zirconium (1610 GJ/tpr). In this work, we have used the
same chromium approximation for zircaloy but have added an
additional 80 MWh electricity consumption per kg fuel generated
as an upper estimate of electricity requirements. Furthermore, in
Ref. [18], burnable poisons, such as Gd2O3 and Er2 O 3, were not
accounted for. In this work, it is assumed that 25% of the assem-
blies contain 8% Gd2O3which arises from the 18-month fuel cycle
in Ref. [31]. Life cycle inventory (LCI) data for the process ‘‘samar-
ium europium gadolinium concentrate, 94% rare-earth oxide, at
plant’’ were used as a proxy for burnable poisons.

For the Th–U-fuelled EPR, it has been assumed that a
silicon-carbide composite would be used as the cladding material
due to the high burn-up of the seed fuel. Currently,
silicon-carbide composites are not commercially available as a fuel
cladding material, due to difficulties in fabricating hermetically
sealed fuel rods on an industrial scale and the lack of information
ar energy systems compared to a reference U-fuelled EPR. All impact factors are global
used for the metrics is outlined in Table 10.

EPR AHWR GT-MHR
UO2/ThO2 UO2/ThO2 UO2/ThO2

6.86 � 10�3 1.32 � 10�2 1.07 � 10�2

4.96 � 10�5 6.79 � 10�5 9.30 � 10�5

4.78 � 10�5 5.29 � 10�5 9.45 � 10�5

2.09 � 10�6 3.03 � 10�6 3.95 � 10�6

5.57 � 10�10 1.17 � 10�9 1.01 � 10�9

7.36 � 10�2 6.88 � 10�2 1.56 � 10�1

1.46 � 10�2 1.48 � 10�2 3.02 � 10�2

3.03 � 101 3.29 � 101 6.13 � 101

2.41 � 10�4 2.51 � 10�4 4.93 � 10�4
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on how silicon carbide behaves under certain accident conditions.
Further details on the use of silicon carbide as a cladding material
can be found in Ref. [32]. For simplicity, it is assumed that all zir-
caloy (density: 6.55 g/cm3) is replaced with silicon carbide (density
assumed to be 3.21 g/cm3) and that all other materials, with the
exception of burnable poisons, remain the same as for the bench-
mark U-fuelled EPR. From an LCA perspective, LCI datasets are
available for silicon carbide but may differ for the SiCf/SiCm com-
posites. In this study, the silicon-carbide LCI data from EcoInvent
v2.2 is used [33], and the same fuel fabrication infrastructure and
process energies are assumed as for the EPR benchmark.

The cladding used in the Th–U-fuelled AHWR is similar to that
in the EPR benchmark, and so numbers are changed according to
the assembly parameters in Ref. [34]. The AHWR contains nearly
twice as many fuel bundles as the number of fuel assemblies in
the EPR (444 cf. 241). Dimensionally, the AHWR fuel cluster is
shorter than the EPR (4.3 m cf. 4.8 m) and has a smaller
cross-sectional area (�109 cm2 cf. �458 cm2) [35].

The GT-MHR fuel is significantly different to that of the other
technologies. Input materials per kg of TRISO particles are taken
from Ref. [36]. No information on process energy is listed, and as
there are no current facilities producing such fuel on an industrial
scale, the existing infrastructure and energy inputs for EPR fuel
fabrication are assumed.
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Fig. 4. Breakdown of the CML-IA metric ‘‘100-year Global Warming Potential (GWP 100a
2.7. Stage 4: Reactor construction and decommissioning

Accurate estimates for all of the materials and process energies
required for constructing and decommissioning each of the differ-
ent reactor technologies has proven difficult to ascertain. The
aggregated bill of materials for each of the reactor technologies is
presented in Table 7.

For the EPR, the LCA model in Ref. [16] has been used, although
the amounts of concrete and reinforcing steel has been upscaled by
a factor of �1.5 to match the quantities reported in the UK Generic
Design Assessment [37]. Correspondingly, the process energies for
constructing and decommissioning the reactor from [16] have also
been upscaled.

For the AHWR, as construction estimates are not presently
available, numerous proxies have been needed. An assumption of
280,000 m3 has been made for the concrete. This is half the amount
of concrete required to build Tarapur 3 & 4 (two PHWRs) as
reported in Ref. [38]. We believe this is a reasonable estimate,
given that the reactor building, turbine hall and other major build-
ings on the site layout for the AHWR have the same cross-sectional
area as Tarapur 3. The amount of reinforcing steel required has also
been taken from Ref. [38]. Additional steel requirements for reactor
internals have been taken from a proposed 600 MW(e) UK Steam
Generating Heavy Water Reactor (SGHWR) [39], with the steel
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required for the turbine assumed to be the same as that used for
the GT-MHR (see below). Estimates of the process energies for con-
structing and decommissioning the reactor have been scaled to the
energy requirements for the EPR. The heavy water requirements
for the AHWR are presented in Section 2.7.1.

For the GT-MHR, concrete requirements were based on scale
drawings of the reactor building and site from Ref. [40] and are
comparable to the estimates provided in Ref. [41]. Detailed designs
for the steel requirements of the reactor pressure vessel and
turbomachinery were taken from Refs. [40,42]. As for the AHWR,
estimates of the process energies for constructing and decommis-
sioning the reactor have been scaled to the requirements for the
EPR. The initial helium requirements of 3800 kg, plus an assumed
annual loss rate of 10% were taken from Ref. [43].
2.7.1. D2O requirements for the AHWR
The AHWR uses heavy water (D2O) to moderate the neutrons

generated by fission, whereas light water, contained in pressure
tubes, is used as the coolant. The heavy water inventory required
for the AHWR (and associated losses per annum) are yet to be pub-
lished. Therefore, the inventory for the 600 MW(e) UK prototype
SGHWR of 162 tonnes has been assumed [39]. An assumed loss
rate of 3.3% per annum, akin to the annual loss rate associated with
a 220 MW(e) PHWR from Ref. [44], has been adopted.
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Fig. 5. Breakdown of the CML-IA metric ‘‘Acidification Potential (AP)’’ for each
Historically, a number of different processes have been used to
generate heavy water. These are described in further detail in Ref.
[45]. In this work, the Girdler-Sulfide (GS) process, as described in
Ref. [45], has been assumed. The material requirements to generate
1 kg of heavy water are shown in Table 8. Infrastructure require-
ments were estimated from the decommissioning of part of the
Bruce Heavy Water Plant [46] and are presented in Table 9, with
the assumption that such a plant produces 800 metric tonnes per
year and the plant life is 15 years.

2.8. Stages 5 & 6: Spent fuel repository and deep geological repository

Within this work, the Swiss NAGRA facility has been assumed,
as described in Ref. [18] and adopted in Ref. [16]. It should be noted
that the Swedish SKB-3 is currently the most up-to-date repository
design. However, a complete LCA for the associated facilities (spent
fuel storage, intermediate-level waste storage and disposition, and
high-level waste disposition) was not publically available at the
time this work was carried out.
3. Results

Results of the various life-cycle analyses that have been per-
formed as part of this work are presented in the following sections.
The life-cycle emissions per kWh generated from each of the four
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nuclear energy systems studied are shown in Section 3.1. The
life-cycle emissions per kg of heavy water produced for the
AHWR are presented in Section 3.2. The life-cycle emissions per
kg of uranium obtained by open-pit mining, underground mining,
and in-situ leaching, and per kg of thorium recovered from mon-
azitic sands are presented in Section 3.3. CML-IA characterisation
factors [47] have been used throughout this study. The nomencla-
ture used for these factors is presented in Table 10. As mentioned
in Section 2, the results contained within this Section for electricity
generation comprise individual values for each stage of the nuclear
fuel cycle (presented in graphical form) with a single value for each
emission metric per kWh generated shown in tabular form.

3.1. Life-cycle emissions per kWh electricity generated

The results of the life-cycle assessment are summarised in
Table 11. A breakdown of 100-year global warming potential, acid-
ification potential, eutrophication potential and ozone depletion
potential for the various stages of the nuclear fuel cycle for the four
nuclear energy technologies analysed in this work is shown in
Figs. 4–7. It is evident that the uranium-fuelled EPR has the lowest
emissions per kWh generated of all technologies. This is predomi-
nantly due to the increased uranium ore requirement for both the
Th–U-fuelled EPR and Th–U-fuelled GT-MHR, and the heavy water
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Fig. 6. Breakdown of the CML-IA metric ‘‘Eutrophication Potential (EP)’’ for each
requirements of the Th–U-fuelled AHWR (as described further in
Section 2.7).

In the broader context of non-nuclear electricity-generating
technologies, and using the results of a UK-centric life-cycle anal-
ysis [48], as shown in Table 12, the global warming potential of
these four nuclear technologies is comparable to off-shore wind,
and is less than solar photovoltaics (PV), combined cycle gas tur-
bines (CCGT) and coal. The acidification potential, eutrophication
potential, and ozone depletion potential are also comparable to
off-shore wind.

3.2. Life-cycle emissions per kg of heavy water generated

The calculated life-cycle emissions per kg of heavy water pro-
duced are presented in Table 13.

3.3. Life-cycle emissions per kg of thorium and uranium mined

The results for the life-cycle analysis of the four nuclear energy
systems are based on uranium sources comprising 25% from
open-pit mining, 25% from underground mining and 50% from
ISL. All thorium is assumed to be recovered from REE processing
of monazitic beach sands. To provide a comparison of these different
mining/recovery techniques, the 100-year global warming potential,
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Fig. 7. Breakdown of the CML-IA metric ‘‘steady-state Ozone Depletion Potential (ODPss)’’ for each part of the nuclear fuel cycle for the four nuclear energy systems studied.

Table 12
Comparison of selected results of the life-cycle impact assessment (per kWh generated) of the reference U-fuelled EPR in this work to the results of the life-cycle impact
assessment for various electricity generating systems in the UK from Ref. [48]. The nomenclature used for the metrics is outlined in Table 10.

CML-IA metric This work Mid-point values for UK Electricity Generating Technologies from Ref. [48]

(per kWh) EPR UO2 Pulverised Coal CCGT Nuclear (Gen II PWR) Offshore Wind Solar PV

GWP 100a [kgCO2 (eq)] 6.60 � 10�3 1.07 � 100 3.79 � 10�1 6.24 � 10�3 1.12 � 10�2 8.78 � 10�2

AP [kgSO2 (eq)] 4.67 � 10�5 1.78 � 10�3 1.48 � 10�4 4.40 � 10�5 8.29 � 10�5 4.36 � 10�4

EP [kgPO4
3�(eq)] 4.46 � 10�5 2.15 � 10�4 6.23 � 10�5 1.32 � 10�5 6.01 � 10�5 6.87 � 10�5

ODPss [kgCFC-11] 5.25 � 10�10 4.25 � 10�9 1.27 � 10�8 5.41 � 10�10 5.96 � 10�10 1.75 � 10�8

Table 13
Results of the life-cycle impact assessment for the production of 1 kg of heavy water
by the GS process. The nomenclature used for the metrics is outlined in Table 10.

CML-IA metric (per kg D2O) Quantity

GWP 100a [kgCO2(eq)] 1.66 � 103

AP [kgSO2(eq)] 4.45 � 100

EP [kgPO3�
4 (eq)] 1.35 � 100

ODPss [kgCFC-11(eq)] 1.76 � 10�4

High-NOx POCP [kgC2H2(eq)] 2.32 � 10�1

HTP1 [kg1-,4-DCB(eq)] 5.65 � 102

FAETP1 [kg1-,4-DCB(eq)] 2.21 � 102

MAETP1 [kg1-,4-DCB(eq)] 8.18 � 105

TAETP1 [kg1-,4-DCB(eq)] 8.88 � 100
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acidification potential, eutrophication potential, and steady-state
ozone depletion potential per kg of uranium (as heavy metal) and
per kg of thorium (as heavy metal) are shown in Fig. 8 and Table 14.
4. Discussion

The nuclear fuel cycle is a global enterprise. The facilities asso-
ciated with Stages 1–6 in Fig. 1 are located all over the world, and
very few countries have all of these stages of the nuclear fuel cycle
located within their borders. Therefore, there are risks that by
aggregating all of the processes to yield a single indicator highly
localised detriments may be overlooked. This is true for all electric-
ity generation technologies reliant on materials extracted and



0

20

40

60

80

100

120

Open pit

0.0

0.5

1.0

1.5

2.0

Underground

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In-situ leaching

0.0

2.0×10
-6

4.0×10
-6

6.0×10
-6

8.0×10
-6

1.0×10
-5

1.2×10
-5

Rare-earth recovery

kgCO
2
(eq)/kg

HM

GWP 100a AP

EP ODP

kgSO
2
(eq)/kg

HM

kgPO
4

3-
(eq)/kg

HM
kgCFC-11(eq)/kg

HM

Fig. 8. Comparison of ‘‘100-year Global Warming Potential (GWP 100a)’’, ‘‘Acidification Potential (AP)’’, ‘‘Eutrophication Potential (EP)’’, and ‘‘steady-state Ozone Depletion
Potential (ODP)’’ for uranium mined via open-pit mining, underground mining and ISL and thorium recovered from REE processing of monazitic beach sands.

S.F. Ashley et al. / Energy Conversion and Management 101 (2015) 136–150 147
components fabricated over the world. However, the majority of
atmospheric emissions are considered transboundary and can be
considered of global importance, most notably carbon dioxide
emissions and their relation to anthropogenic climate change, with
countries aiming to limit their emissions either as part of the
Kyoto process [49] or other directives (such as the 20% reduction
in emissions across Europe in EC Directive 2009/29/EC [50]).
Transboundary air pollution acts such as the ‘‘Gothenburg
Protocol’’ [51] and EC Directive 2001/81/EC [52] limit national
emissions with a specific focus on acidification and eutrophication.
Historically, ozone depletion has been of significant concern,
with the Montreal Protocol being adopted to limit the amount of
trading and consumption of ozone depleting substances [53].
Hence, emphasis is placed here on these particular emissions.
The remaining indicators surrounding toxicity potentials are
included for completeness and can be used to compare the relative
performance of these systems.

The decarbonisation of today’s energy mix is a significant goal
in today’s global energy policy. Nuclear energy is often described
as a low-carbon source of electricity. However, various
meta-analyses of nuclear energy have provided a significantly
diverse range of CO2(eq) emissions, including 10–130 gCO2

(eq)/kWh (mean 65 gCO2(eq)/kWh) in the comprehensive net
energy analysis by Lenzen [54], 1.4–288 gCO2(eq)/kWh (mean 66
gCO2(eq)/kWh) in the meta-analysis by Sovacool [55].

In this study, the range of estimated CO2-equivalent life-cycle
emissions for the four nuclear energy systems is 6.6–13.2
gCO2(eq)/kWh is at the lower end of the estimates in Lenzen’s
and Sovacool’s studies. We suggest four reasons as to why these
emissions are comparatively low relative to the aforementioned
meta-studies. First, today’s enrichment market is almost exclu-
sively comprised of gas-centrifuges. Meta-analyses of earlier
nuclear energy technologies would have contained nuclear fuel
enriched by gaseous diffusion, a process that had significantly
greater energy requirements than centrifuge enrichment
(�2500 kWhel/SWU cf. �50 kWh/SWU) [18]. Second, the unit size
of earlier nuclear energy technologies was lower than present
technologies, i.e. the increased plant size has lower requirements
of construction materials per MW installed than earlier technolo-
gies. Third, the capacity factors of existing nuclear power plants
have significantly increased, e.g. the average availability of the
US fleet has increased from �70% in 1990 to �90% in 2005 [56].
Fourth, the results of life-cycle assessments for nuclear power
plants based on EcoInvent v2.2 are observed to be at the lower
end of emissions’ estimates, e.g. Ref. [16].

We note that a number of processes have heavily relied on
assumptions and sensitivity testing the vast number of processes
included in these models is non-trivial. For certain approximations,
especially for ISL of uranium and the production of zircaloy for the
cladding, detailed LCA analyses are needed. A comprehensive LCA
process is also required for discharged fuel from the reactor that
is ultimately destined for an SKB-type repository. The results of
4D CAD-based project management software could also signifi-
cantly improve the estimates of the energies required to construct



Table 14
Results of the life-cycle impact assessment for the production of 1 kg of uranium (as heavy metal) by open-pit mining, underground mining, and ISL; and for the production of
1 kg of thorium (as heavy metal) by REE processing. The nomenclature used for the metrics is outlined in Table 10.

CML-IA metric (per kgHM) Open-pit Underground ISL REE processing

GWP 100a [kgCO2(eq)] 7.8 � 101 1.0 � 102 8.1 � 101 4.9 � 101

AP [kgSO2(eq)] 1.2 � 100 1.5 � 100 1.3 � 100 2.8 � 10�1

EP [kgPO3�
4 (eq)] 3.0 � 10�1 3.7 � 10�1 2.9 � 100 8.2 � 10�2

FAETP1 [kg1-,4-DCB(eq)] 8.6 � 102 8.6 � 102 1.5 � 102 1.2 � 101

HTP1 [kg1-,4-DCB(eq)] 4.7 � 103 4.8 � 103 5.8 � 102 2.7 � 101

MAETP1 [kg1-,4-DCB(eq)] 1.6 � 106 1.7 � 106 4.1 � 105 4.2 � 104

High-NOx POCP [kgC2H2(eq)] 4.5 � 10�2 5.3 � 10�2 3.9 � 10�1 1.0 � 10�2

ODPss [kgCFC-11(eq)] 8.0 � 10�6 1.1 � 10�5 9.9 � 10�6 2.5 � 10�6

TAETP1 [kg1-,4-DCB(eq)] 1.7 � 101 1.7 � 101 1.1 � 10�1 1.7 � 10�1
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and decommission the reactor. With that said, the single-value
results for each stage of the nuclear fuel cycle show that such esti-
mates would need to be orders-of-magnitude greater for them to
have a noticeable impact on the overall life-cycle emissions.

From Tables 13 and Fig. 4, the heavy water requirements for the
AHWR equate to 5.4 gCO2(eq)/kWh. Using the results derived for
the fleet of CANDU reactors in Ref. [57], with their assumption that
fossil fuels were exclusively used for heavy-water production, the
equivalent requirement would total 6.4 gCO2(eq)/kWh. This
implies that the energy requirements assumed in this work are
slightly higher than those of Ref. [57], on the assumption that
the UCTE grid used in this work comprises �50% fossil fuels.
Nevertheless the results are comparable.

From Fig. 8 and Table 14, ThO2 extraction from REE processing
has significantly lower emissions per kg extracted than the other
types of extraction, although it should be stressed that the treat-
ment of sulfidic and non-sulfidic tailings in this LCA model are
coarse estimates. The assumed ThO2 ore grade in monazite is 6%
and is high compared with the average thorium content; however,
for monazite with a significantly lower ore grade (e.g. 0.2%, a
30-fold decrease), assuming the same ThO2 price and assuming
that the allocation factor for rare-earth-oxides in monazite remains
constant (i.e. the same rare-earth-oxide content and price), the
emissions per kg of extracted ThO2 would increase by only �5%.

Figs. 4–7 highlight that the mining and milling stages generate
the largest emissions for the nuclear energy systems analysed in
this work. As shown by the example above, the decrease in ore
grade is not inversely proportional to emissions per kg extracted
and significantly depends on what is co-extracted. Towards 2030,
it is expected that the price of uranium ore will remain low; hence,
we expect the emissions associated with nuclear energy (per kWh
generated) will remain low in the near-term future. An analysis of
ore reserves that will become economically viable in the future is
needed, in order to see how the emissions from nuclear power
plants will change beyond 2030. It should be stressed that the
emissions from mining and milling are highly localised, and such
activities will consequently have greater detrimental effect in the
areas surrounding these facilities. However, this statement is
equally true for all electricity-generation technologies that require
extracted materials or whose burdens are highly localised.
5. Conclusions

This paper has sought to investigate how life-cycle emissions
would be affected by including thorium in the nuclear fuel cycle,
and in particular its inclusion in technologies that could prospec-
tively operate open Th–U-based nuclear fuel cycles. Three Th–
U-fuelled nuclear energy systems operating with open nuclear fuel
cycles were studied: (1) AREVA’s EPR, (2) India’s AHWR, and (3)
General Atomics’ (GT-MHR); and compared to a reference
U-fuelled EPR also operating with an open nuclear fuel cycle. In
the consequent life-cycle analysis, the reference U-fuelled system
had the lowest overall emissions per kWh generated: i.e. 6.60
gCO2 (eq)/kWh, 0.0467 gSO2 (eq)/kWh, 0.0446 gPO4

3� (eq)/kWh,
and 5.25 � 10�7 gCFC-11(eq)/kWh. The emissions from the Th–
U-fuelled EPR were typically �4–7% higher than the reference
U-fuelled EPR. Emissions from the Th–U-fuelled AHWR, and the
Th–U-fuelled GT-MHR were typically�20–100% higher than the ref-
erence U-fuelled EPR. The results highlighted that the requirement
for mined or recovered uranium (and thorium) ore was the greatest
overall contributor to emissions, with the possible exception of
nuclear energy systems that require heavy water. From Ref. [11],
the three Th–U-based systems considered offered negligible savings
in terms of uranium ore and had enhanced separative work require-
ments per kWh generated which contributed to the greater emis-
sions. The calculated emissions for recovering 1 kg of thorium from
monazitic beach sands are 49 kgCO2(eq)/kWh, 0.28 kgSO2 (eq)/kWh,
0.082 kgPO4

3� (eq)/kWh, and 2.5� 10-6 kgCFC-11(eq)/kWh. In
terms of like-for-like comparison of mining and recovery tech-
niques, thorium from monazitic beach sands had lower overall emis-
sions than uranium that was either conventionally mined or
recovered from ISL. With that said, monazitic beach sands (and
equivalent placer deposits) only form a fraction of the overall known
thorium ore deposits. However, it is expected that such deposits
would generally be utilised first if thorium becomes a viable nuclear
fuel (and hence a commodity). The range of CO2(eq) emissions from
these four technologies appears to be low in comparison to the
majority of electricity-generating technologies. Further work to
assess accurately the impacts of novel mining techniques, the effects
of diminishing ore grades, and the embodied and process energies
used in constructing and decommissioning facilities in the nuclear
fuel cycle will add further robustness to the claim that nuclear
energy can yield electricity with low-carbon emissions.
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