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Abstract

This paper presents a new approach to portfolio optimisation, which we call generalised
mean-variance (GMV) analysis. One important case of this approach is based on what we
call the stocks m-tile but which is often referred to as its quantile. If m = n, where n is the
number of stocks, m-tile membership becomes rank. We consider our rank based GMV
analysis to be in effect, the rank equivalent of conventional Markowitz Mean Variance
analysis. The first stage of this process is to generate rank probability statistics using,
historic data, Monte Carlo analysis or direct user input. The second stage is optimisation
based on those rank statistics to calculate recommended portfolio weights.

The approach we take to optimisation uses state preference theory to derive an
objective function that can be minimised using standard quadratic programming techniques.
The paper outlines a number of advantages of this method which include, a more intuitive
fully diversified ( or minimum risk ) position on the efficient frontier with all the portfolio
holdings equally weighted. It also results in more stable portfolios due to reduced sensitivity
to the perfect substitute problem, as well as the well-known robustness of rank statistics to
the presence of outliers in the data. We also introduce a very intuitive set of summary
statistics which provide some protection against undetected concentrations of risk such as
those that can occur when working with assets which have a very non normal forecast
return distribution.

The disadvantage of the approach, is that if we use ranked mean and ranked
variance in the search for robustness, it throws away some of the information available in
the conventional analysis. Also there is as yet little practical experience of using this
approach, hence additional care must be taken with the design of the forecasting and
portfolio construction process until sufficient confidence has built up in its use. It is worth
noting that our GMV approach could use a mix of a ranked mean and a conventional
variance to construct portfolios, or indeed other combinations, so that the above
disadvantage can be reduced.
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Generalised Mean-Variance Analysis and Robust Portfolio Diversification
Stephen M. Wright' and S.E. Satchell®

1. Introduction

Mean Variance (MV) Analysis 1s widely accepted as the best way of analysing
and explaining the benefits of diversification of holdings across a portfolio of
assets at least in principal. In addition the MV framework 1s tractable and allows
us to incorporate constraints, tilts, inequalities, and indeed all the features of
linear and quadratic programming. Together these benefits make MV analysis
popular both with teachers of financial market theory and with system
implementers within the investment technology industry.

At the same time, among practitioners, and specialists in financial market
theory, MV analysis and the portfolios that result from MV optimisation
continue to attract a steady flow of detailed criticism. To quote R.O. Michaud
(1998), “the basic problem is that MV portfolio efficiency has fundamental
investment limitations as a practical tool of asset management”. Four major
problems that occur in practice are discussed next:-

Firstly, it 1s often difficult for practitioners to produce forecasts in the
form required for MV optimisation. They will often prefer to forecast relative
return between assets, or wish to restrict their forecasts to those assets currently
impacted by “big picture” issues. Also many fund managers prefer to forecast
rank rather than linear return. Turning these alternative forms back into the
format required by standard mean variance analysis can be an inelegant and error
prone compromise.

Secondly, our MV optimal portfolio can be highly sensitive to the exact
value of the return forecasts. This problem is magnified by the fact that the
forecasting process is known to usually produce results which are highly
inaccurate and noisy. This leads to undesirable instability in recommended
portfolio holdings .see Merton (1981) among many others. This instability is
then further compounded by the fact that, the correlation coefficients used in
standard mean variance analysis can themselves be worryingly unstable over

time.
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Thirdly, many investors feel uneasy about the use of variance as a risk
measure. The most counter intuitive feature is its equal penalisation of gains and
losses, see Sortino and Foresey (1996). However, it is also possible for returns
on a minimum variance portfolio to be dominated by a nominally riskier
portfolio which while more volatile, still always produces a higher return. Also,
depending on the choice of asset set, if one of the assets has much less volatile
returns than the others, then a minimum risk portfolio in a mean variance sense
will be heavily concentrated in this one asset rather than diversified across a
wide range of holdings.

Finally, it is usual when using MV optimisation to exclude assets with a
highly non normal distribution of return (e.g. options, or some of the dynamic
trading strategies executed by hedge funds) as the conventional summary
statistics do not fully capture the distribution of the return on these assets and
hence the portfolio statistics could conceal undesirable concentrations of risk.
Similarly less liquid assets such as property or private equity show artificially
low volatilities which lead to an over allocation in mean variance analysis.

Given these problems, it is not clear which aspects of MV analysis to
retain and which one should jettison. It is desirable to use the linear quadratic
framework of the MV world without limiting ourselves to the specific choice of
mean return and variance or tracking error of return as the parameters which
drive the investor decision function. This approach has already been adopted in
the literature. Wang (1999) uses a MV model to solve multiple benchmark
problems. Chow and Kritzman (2001) convert MV analysis into value at risk
based capital allocations. We plan to take this further by putting all these cases
into a general framework. In particular, we show how non-parametric statistics
can be incorporated into this framework. The approach we use is based on state
preference theory, see Copeland and Weston (1988), we derive an objective
function which can be minimised using standard quadratic programming
techniques.

We will then show how this generalisation of the mean variance
framework allows a more robust portfolio construction process that is less
sensitive to noise in the input parameters and we will introduce an innovative set
of summary statistics that provide a very intuitive representation of downside

risk.



At the heart of the investment management process is a simple question
“In what proportion should I hold this range of assets given my expectations
about future risk and return on each one”. In principal, the process for arriving at
this optimal set of portfolio weights has been firmly established since Markowitz
introduced mean variance analysis, see Markowitz (1959).

As one might expect, this deceptively simple question hides a vast range
of complications. In practice, in order to apply classical mean variance analysis
you have to make a number of simplifying assumptions. Many of these
assumptions are routinely violated in practice.

The first assumption is that risk and standard deviation of expected return
are synonymous. In reality investors appetite for upside and downside risk are
very different! If the forecast return on all your assets can be adequately
modelled by a normal distribution then upside and downside risk are equal and
this 1s merely a semantic quibble. However, investors are becoming increasingly
concerned about the asymmetric behaviour of return on many asset types, hence
alternative approaches have been developed to address this problem, see Sortino
and Forsey (1996). Usually these approaches require accurate modelling of the
higher moments of the return distribution hence they are extremely sensitive to
limitations in the next assumption.

The next problem is that estimating the parameters used in mean variance
optimisation (expected return, standard deviation and correlation of return on all
assets) is a process which is plagued by data problems. In particular, correlation
estimates can be quite unstable with the diversification effect calculated in
normal times reducing dramatically when most needed as the markets go through
a turbulent period! Suggested improvements involve separately modelling normal
and abnormal market behaviour and the mixing the results in some way, see
Chow et al (1999), or employing less summarised risk statistics see Embrechts
(1999), or Gardner (2000). Equally, the return forecasts used will typically be
subject to estimation error. This can lead to further instability in the
recommended holdings in fact the process of optimisation has been referred to as
one of error maximisation! . See Jorion (1992).

The final problem is that providing an excess return forecast for each
asset 1s not a very effective format for capturing the insight of professional
investors into likely market movements. Usually investors will feel more

confidence in some forecasts than others. Typically, they will feel more



confident about relative return forecasts than absolute return forecasts, and they
would prefer to only forecast return for that limited range of assets currently
being affected by “the big picture” while leaving the remainder to set to a neutral
value. This has lead to use of Bayesian approaches to building up a forecast
from multiple partial views; see Black and Litterman (1992). While this can be
very effective, the mathematics involved can be intimidating, and the detailed
implementation decisions made are critical to achieving well-behaved intuitive
results.

From an investment practitioner’s perspective, our initial simple question
has turned into a vast specialist subject where the best approach is highly
dependent on the detailed circumstances in which the optimisation is done. In
the many investment organisations who can afford to develop (or commission)
the correct level of specialist expertise, this is not a problem. For many others, a
two-culture situation develops. Practical fund managers distrust and dislike the
black box characteristics of the usual diversification approaches. Specialist
quantitative analysts dislike and distrust the apparently “ad hoc” nature of many
investment decisions. For a final group, the value added by formal risk
management is so outweighed by the costs and complexities of implementation
that they adopt one of a range of alternative heuristic approaches to
diversification.

Most attempts to date to make the assumptions inherent in mean variance
analysis more closely reflect day to day realities of the investment world have
usually involved ever more sophisticated mathematics. Unfortunately, for many
people the complexity of the mathematics is a barrier to acceptance in its own
right. An alternative is to use a diversification technique which 1s based on
mathematics which is inherently less sensitive to noise in the data, less
dependant on the assumed form of the forecast return distributions, and with
built in assumptions which are essentially simple to understand. Robust statistics
addresses all of these issues with the potential penalty of not being able to use all
available information. In addition this approach builds on and formalises the
established practice among a subset of fund managers who actively use ranking
approaches in their forecasting and portfolio construction processes,

In Section 2, we present a discussion on what we call generalised mean-
variance analysis which attempts to put the above problems and approaches into

a general framework. The procedure we advocate to replace expected returns is



m-tile membership. The concept of m-tile membership means what m-tile does
the stock belong to when ranked over the Universe of stocks. If m = 10, for
example, we are asking what decile the stock belongs to.

In Section 3 we detail our “mean-variance” approach whilst in Section 4
we present details of more Monte Carlo investigations and empirical

implementations. Conclusions follow in Section 5

2. Generalised Mean—Variance Analysis
In modelling decision making for an organisation, we can afford to be a little
more hazy than in modelling the decision making of an individual, where the
accepted wisdom is to use a variant or generalisation of expected utility theory.
The reason for this laxity is the fact that we have very little clear guidelines as to
how to aggregate the preferences of individual stakeholders into the decision
function of the organisation. To take a simple example of a company with an
employee pension plan, the interest of the average shareholder typically conflicts
with the interests of the pension plan members. Conflicting interests may be
resolved via the use of game-theoretic notions, but such resolutions usually
depend upon a set of auxiliary assumptions describing the behaviour of the
individuals playing the game.

The preliminary remarks above justify, in our view, presenting a firms
decision function in terms of an (nx1) vector of positive attributes a associated
with the »n investible assets in the Universe, together with a positive definite

matrix C(nxn). Then, for a given set of portfolio weights w(nx1), the firm

maximises
o'a—loCo (1)

where A represents the trade-off between the attribute of the portfolio (w'a)
versus the risk of the portfolio (@'Cw®). For obvious reasons, we call such an

analysis generalised mean-variance analysis. Together with some additional
constraints, such as w'e=1 or 0, where e =(1,1,1,LLL1), or @, >0 (long-only
positions) we have a conventional quadratic programming problem.

We next turn to the choice of attribute and the choice of 7 xn measure C .

Necessary features for a would be that more w'a is desirable for the firm and



that a is approximately linear so that if r, =47 +4r,, then a, ~{a, +fa,. We

say approximately linear because an attribute that is almost linear but reasonably
easy to measure and/or forecast should lead to better portfolios than an attribute,
such as the expected rate of return, which is exactly linear and very difficult to
forecast.

One attribute of considerable interest is m-tile membership where m is a
divisor of #n, the number of stocks in the Universe. If m = 10, for example, this
tells us what decile of the Universe of stocks we expect the stock to lie in. If m =
n, then the attribute is the expected rank. At first glance, it might seem that the
theory of order statistics might help us advance our analysis. Sadly, that theory is
based on the assumptions that the » returns are a random sample, i.e.
independent identically distributed random (iid) variables. Equity, returns are
anything but 1id. To illustrate the type of mathematical issues set m=2 and n = 4,
then for stock 1 we can compute the probability stock 1 is in the top two of the

four stocks. Denoting R, as the return of stock 7, call this event A, then denoting

Probabilities by P( ),

P(A)= PR, >R, and R, > R,)+ P(R, > R, and R, > R,)
+P(R, >R, and R, > R),)

Now analogously, we calculate P(4,), =14, and retain the two stocks with the
largest P(4,)'s then, in the population rather than the sample, we would have

defined what we mean by top-half stocks. If we took many samples from our

Universe then we could construct sample estimators of P(4,), thus we could

identify and estimate top-half membership. Of course with real data the changing
time varying nature of return distributions inhibits this.

In the population, decile (or m-tile) membership will be partly linear. For

weights o,, Zw, =1, 1if assets (1,..,k) belong to m-tile j, then,

max(R) =Zo, fgf‘__),({(Ri) >R, >Zo, mj}n(Rl.) =min(R,) so that R also lies in m-tile
j. By the same argument if (1,..,k) lie between m-tiles j, and k so will
R, =Zw,R; also lie between m-files j and k. It should also be clear that m-tile

membership is not fully linear as the following example demonstrates.



Consider stocks 1 to 6 with returns 10, 9, 8, 7.5, 7.4 and 0 and m = 3,
thus stocks 1 and 2 are in the top ter-tile, stocks 3 and 4 are in the second ter-tile
and stocks 5 and 6 are in the third ter-tile. Suppose we construct a portfolio of .8
stock 2 (rank 1) plus .2 stock 6 (rank 3), the portfolio rank is 8x1+.2x3=14,
thus the portfolio 1s a rank 2 asset according to linearity. However, its return is
8x9+.2x0=72 which is in the third ter-tile, since assets 5 and 6 have returns 0
and 7.4

3. The state preference theory approach to portfolio construction.
In conventional mean variance analysis, we use correlation matrices as a key
intermediate variable when calculating the optimum. When we do this, we are
assuming that knowing the mean, standard deviation, and correlation of the
return on all the constituents of the portfolio is all that is needed to fully describe
the risk characteristics of any portfolio built from these constituents. In practice,
the real distribution of return may often be fat tailed, skewed, and/or
discontinuous as will the multivariate probability distributions.

Unfortunately it is not obvious that the mean variance results derived for
conventional correlation apply equally to rank correlation statistics. Even worse,
there are alternative non parametric statistics that we might think of using. (i.e.
Spearman’s rank order correlation or Kendall’s Tau) Hence the need to go back
to first principals in order to prove our method.

In the state preference model, uncertainty takes the form of not knowing
what the state of nature will be at some future date. To the investor, each
security 1s a set of possible payoffs each one associated with a mutually
exclusive state. Once the uncertain state of the world is revealed, the payoff on
each security is determined exactly. This 1s a very flexible way of modelling
complex valuation and decision taking processes. This very flexibility is also its
main problem. There are usually an infinite number of states (high/low) hence
the usual assumption of normal distribution of return in order to make the
mathematics tractable.

When considering m-tiles, we can consider all cases fromm = 2tom = n
(rank). We shall investigate the rank case next. If we assume that the states of
nature are adequately represented by the rank order of the portfolio then for an
“n” asset problem the number of states of nature has reduced from infinite to “n”

factorial.! This total falls even further as we reduce the resolution of the



calculation from rank to m-tile. If we then further assume that the actual
probabilities observed are a sample drawn from a distribution which is
continuous and with limited magnitude of first derivative then we do not need to
exhaustively evaluate all “n” factorial states in order to optimise our weights.
However, by sampling repeatedly, the probability that stock 7 belongs to m-tile ;
can easily be determined with any degree of accuracy. In effect this generates a
time series for which we can find a formula for the “mean” and “variance”.

For values of m that are reasonably large, it is clear that conventional
historic data cannot be simply applied to compute rank probabilities as there are
not enough degrees of freedom. However, as mentioned above, given
assumptions about the data-generating process (DGP), for example, that returns

r are multi-variate normal with mean vector ¢ and covariance matrix X,

r~N(uz) 2)

we can employ Monte-Carlo methods to compute rank probabilities by
simulation. The benefit of the above approach is that we can replace (2) by more
complex assumptions, i.e. we can model non-normality, extreme returns,
conditional volatility etc. without complicating matters unduly; all we need to be
able to do is to simulate the DGP.

Once we have evaluated the p,, we can set up our quadratic optimisation.

x 18 the return (i.e. rank) of the portfolio on each of “m” possible states. p; is
the probability) of each of the “m™ possible states. w,1s the weight of each of the

(Y9982

n” assets. 1y 1S the rank of each asset in each state
X, = 2 or, (m-tile value)

i=l.n

*= k}.m(izlz_n(wirikp ¢ /m) (average m-tile value)

¥ =( 2 (T (or,p,/m))

k=1.m i=1.n

(squared m-tile value)

2 p—
Yo T z-:lz_n( j:zl;.n(a)irik @,75)) (squared root value)

v=( 32 (x,/p,)—mx)/(m-1) (rank variance)



6=x—-1v (objective function)

O=x-A( T (x,’p,)—me*)/(m—1) (substituted for variance)

k=1.m

0= 2 (2 (@fp/m)=A( 2 (x. p)/(m=1)
+mA( 2 (I (orp,/m)* [(m—1)

0= 3 (3 (@np/m)-A(E (X (3 (@r07,)p)/m=1)

k=l.m i=l.n k=1.m i=l.n

+mA(E (E (@7,p, /m)) (m-1)

As this 1s a standard quadratic objective function, it can be minimised using all
the conventional quadratic programming algorithms.

In the above we consider m-tile rank as our “return” and rank variance as
our “risk”. Actually, hybrid procedures could be used. For example, if we
thought that tracking error/conventional variance was a sensible risk measure,
then we could use this in conjunction with a ranked return. In mixing different
characteristics, care needs to be taken in the determination of A. This is not,
however, an insurmountable problem as we can take the A of the market
portfolio based on the mix assumed much as is done in conventional mean-
variance analysis where you choose the A4 which makes the FTALL share
optimal. Then by varying 4 we can assume that we are more or less risk-tolerant

than the market representative agent.

4. Implementation and Simulation

In order to test the properties of the ranking approach to mean variance analysis,
a number of simulations were run to demonstrate different aspects of the
approach. The first test was to look at the “perfect substitute” problem. This
occurs where some assets in a portfolio have such similar forecast risk
characteristics that the optimiser sees little extra risk in moving a holding from
fully in one of the pair into fully in the other as the relative forecast return for
the pair of assets changes sign. Unconstrained, this results in large long short
bets for such asset pairs, and sharp changes in recommendation over small

change in forecast return.



To demonstrate this, we chose a three asset portfolio containing French
equity, and French and German bonds. Historically the latter two assets have
been closely correlated. The first plot below shows the changing holdings
recommended by conventional mean variance analysis (at a constant tracking
error) as the forecast return varies over half a percentage point. The second chart
below shows the same test done with rank optimisation. (Tracking error in this

case 1s only approximately constant hence the slight “wobble” in the lines)

Conventional Mean Vanance Optirmisation

TO0 %4
Haldings
0.0 %

025 a0 0.25
Forecast of German bond return Relative to Franch bond retaen
Ranl Maan Variance aptirmisation

TO0 %4

Holdings
0.0 %

-0.25 a0 0.2
Forecast of German bond return Relative to French bond raten

The second issue with mean variance analysis 1s the problem of defining
risk. Taking a typical global asset allocation portfolio of European, Asian and
American equities and bonds looked at from a US dollar perspective, the
efficient frontier calculated using five years of return history from 1986 to 2001
shows recommended holdings which vary along the efficient frontier as shown in
the first chart below. The minimum risk portfolio is in reality not very well
diversified, consisting as it does largely of US bonds. This represents a very

concentrated exposure to forecasting errors.
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The same exercise undertaken using rank optimisation (the second chart
below) results in a minimum risk portfolio with equally weighted holdings as by
definition placing the same bet on every asset must result in zero volatility of
average rank return. This is intuitively a much more diversified position than the

standard mean variance analysis above.

Conventional Efficient Frontier

100 %

0 Getran_Bond 3 & year raturity
5 Bond 3 9 year_raturity
O.Japaneze_Bond 3 & vear rmaturity
O Gerran_d 3 C_Eouiby

B Japanese MEC_Eaty
mAmerican_M3CLEouity

Holdings

0.0 %

Min Risk Max Retum

Rank Efficient Frontier

100 %

mGerman_Bomd_3 & year ALty
mUE_Bond 3.5 year_rmaturty
OJapanese Bond 3 5 year maturity
O German_hSC_Eouity
mJapanesa MSCI_Edquity

DA merican MECI Equity

Holdings

0.0 %

Min Risk Max Return

The third issue is volatility of recommended holdings caused by noise in the
correlation matrix over a period of time. The chart below shows the same set of
assets with constant forecast returns but now at a fixed tracking error position
recalculated monthly over the period 1998 to 2001. This was calculated using
three years of monthly data, exponentially weighted with a weighting half life of
one year)  This can be seen to routinely produce substantial short-term
movements in recommended holdings that are highly undesirable from a

practical investment perspective.



Volatility in optimurn portfolio due to Carrelation matrix changes over time

100 %

oGeman_Bond_3_&_vear_maturity
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oJapanese_Bond_3_5_wear_maturity

Holdings oGeman M5 G Equity
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0.0 %

169495 1969 2000 2001

Volatility of coefficients in the calculated correlation matrix is an
inevitable consequence of the stochastic nature of the time series being
compared. In an idealised world, where there is an underlying “true” value of
correlation, the distribution of the estimated values around that “true” value can
itself be estimated using a knowledge of the method used to calculate the
correlation coefficients. The width of this distribution is then usually taken as a
measure of the significance of the estimated coefficient.

In linear correlation, occasional large values of return ( fat tails, ) and
uncertainty about the form of the joint probability distribution create uncertainty
as to the formula to use to calculate the significance of the correlation estimate.
In rank correlation, there is no uncertainty over the distribution of returns from
which any given sample is drawn ( it 1s always drawn from the set of integers 1
to n ). Hence the correct formula to calculate the significance of the correlation
1s known. As the joint probability distribution of the underlying variables
approaches a bivariate normal distribution, the significance of the linear
estimates becomes as good as those produced from the rank correlation. In fact
the significance formula becomes the same. Viz:- T =1 * sqrt( (N-2) / (1-12)).
We shall delay discussion of the properties of significance tests for ranked data
to a later paper.

Another way of saying the same thing is that for any given level of
underlying real correlation, and sample size, as the underlying distribution
deviates more and more from bivariate normal, the volatility of the estimated
linear correlation coefficient increases relative to the volatility of the rank
correlation. Given that these deviations from normality are unknown and
potentially large and time varying, the implicit use of rank correlation rather than

linear correlation must reduce this source of volatility in recommended holdings.
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Given a hypothetical samples size of a hundred data points and historic
distribution of return for the above asset set, this could reduce the volatility of
correlation coefficients very significantly.

The final problem with traditional mean variance analysis is forecasting
return in a way that is intuitive to a typical fund managers. Capturing this
insight into likely market movements is an art not a science. In due course, a
range of alternative methods are likely to be developed to capture this
information. However all of these methods need to convert the managers input,
in whatever form it is most conveniently entered, into a standard set of summary
statistics used for analysis. In mean variance analysis these summary statistics
are the means, and covariance of return. The equivalent summary statistics in our
approach is the rank (or m-tile) probability matrix illustrated below.

This m-tile probability matrix is a very simple way of describing
intuitively the likely rank of each asset. There is one column per asset and in
each column the probability of that asset being in each quantile is indicated in
the relevant row. In the rank case the matrix 1s a matrix of probabilities, hence all
the rows and all the columns must sum to 100% Such a matrix is called bi-

stochastic. We give an example below.

Rank Probability Matrix

USB CVB  EAFE R1000 R2000
16.47 2396 594 17.19 36.44
16.65 2318 1144 2999 18.74
16.23 2341 26.66 20.14 13.56
19.74  19.64 2724 1988  13.50
3091  9.81 28.72 1280 17.76

The above matrix, which details an m =n=1s case, tells us for example, the
probabilities that R2000 is ranked first is 36.44 per cent. The row sum adding to
one simply means that the sum of probabilities that different stocks could be first
should add to 1. Likewise the 2™ row is the sum of probabilities that different
stocks could be second, which again adds to 1. The column numbers, say the
second column, CVB, tells us the rank probabilities of CVB, which again add to

1. One can deduce immediately from such a column the expected rank of CVB.

13



An alternative graphical representation is shown below where the height of each

band of grey is proportional to the probability of that asset being in that quantile.

Asset Rank Probability

As with covariance matrices, these m-tile probability matrices provide summary
statistics that give a valuable insight into likely investment out turn. They
implicitly contain joint probability information. They are straightforward to
calculate from the state probability values, and are easily interpreted.

Any optimisation process, inherently optimises an average expected
value. Given that return is frequently highly non normal (even if we choose to
ignore this fact in the interests of tractable computation), this average could hide
concentrations of downside risk which are highly undesirable. The m-tile
probability matrix allows this downside probability to be observed in a very
direct way.

When combined with the fact that the significance of rank correlation is
much more robust to non normality in the return distributions, the presence of
this safeguard makes it practical to include assets in a portfolio being diversified
which have a very non normal distribution of forecast return.. This considerably
extends the range of asset types and forecasting methods which can be reliably
employed in this type of diversification exercise.

In particular, scenario forecasts are more naturally handled in this

environment as unlike standard mean variance analysis which requires that you
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forecast a single vector of mean returns. This approach allows you to postulate a
range of alternative scenarios and allocate probabilities to each. Monte carlo
simulation enables you to combine these scenarios to generate a forecast of the

probability of different assets outperforming each other.

5. Conclusion and suggested further work

It can be seen from the preceding section that the recommended holdings
produced using GMV analysis are more stable than those calculated using
standard mean variance analysis.

Choosing an appropriate definition of risk is ultimately a matter of your
particular circumstances and preferences. Defining, the minimum risk portfolio
such that it is the equally weighted set of holdings has the attraction that it is
more consistent with our intuitive ideas of full diversification than are portfolios
produced using the minimum volatility criteria.

In addition, this approach 1s much less sensitive to problems caused by
non normal forecast return distributions than classical mean variance analysis.
The ability to display the rank (or m-tile) probability matrix provides an easily
interpreted safeguard against hidden concentrations of risk. The fact that the
significance level of the rank correlation i1s independent of the return
distribution, avoids the problem with classical mean variance which can lead to
unreliable recommended portfolios if the significance of the calculated linear
correlation coefficient proves to be particularly low.

As we have retained the linear quadratic framework of the MV world, we
can incorporate constraints, tilts, inequalities, and indeed all the other
operationally convenient features of linear and quadratic programming. However
we have also retained the simplifying assumption that the return distribution is
adequately represent by its (rank) mean and standard deviation. Hence if users
have a marked preferences for the shape of the probability distribution of
forecast portfolio rank return as well as for its mean and standard deviation, they
should compare this GMV approach to those based on optimising downside
deviation, value at risk, or stochastic dominance. Simple extensions of our
approach can allow optimisation based on the m-tile equivalent of these criteria.

The main problem using this approach is the other side of the robustness
coin. The standard mean variance model has beatified excess return and tracking

error as measures of performance and risk. It will take considerable effort to
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establish alternative non parametric risk and return measures in general use.
However, in practice this may not be the major problem that it first appears.
While the holdings are optimised on the basis of the m-tile (or rank ) statistics,
the results can still be reported in terms of tracking error, excess return etc.

hence achieving the best of both worlds.
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