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SUMMARY

The functional impact of copy number variation in the

human genome

Ni Huang

Copy number variation (CNV) is a class of genetic variation where large segments of

the genome vary in copy number among different individuals. It has become clear

in the past decade that CNV affects a significant proportion of the human genome

and can play an important role in human disease. With array-based copy number

detection and the current generation of sequencing technologies, our ability to dis-

cover genetic variants is running far ahead of our ability to interpret their functional

impact. One approach to close this gap is to explore statistical association between

genetic variants and phenotypes. In contrast to the successes of genome-wide asso-

ciation studies for common disease using common single nucleotide polymorphism

(SNP) as markers, the majority of disease CNVs discovered so far have low popula-

tion frequencies and are mainly involved in rare developmental disorders. Another

strategy to improve interpretation of genomic variants is to establish a predictive

understanding of their functional impact. Large heterozygous deletions are of par-

ticular interest, since i) loss-of-function (LOF) of coding sequences encompassed by

large deletions can be relatively unambiguously ascribed and ii) haploinsufficiency

(HI), wherein only one functional copy of a gene is not sufficient to maintain normal

phenotype, is a major cause of dominant diseases.

This thesis explored both approaches. Initially, I developed an informatics pipeline

for robust discovery of CNVs from large numbers of samples genotyped using the

Affymetrix whole-genome SNP array 6.0, to support both the association-based and

prediction-based study. For the disease association strategy, I studied the role of
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both common and rare CNVs in severe early-onset obesity using a case-control de-

sign, from which a rare 220kb heterozygous deletion at 16p11.2 that encompasses

SH2B1 was found causal for the phenotype and an 8kb common deletion upstream

of NEGR1 was found to be significantly associated with the disease, particularly

in females. Using the prediction-based approach, I characterized the properties of

HI genes by comparing with genes observed to be deleted in apparently healthy

individuals and I developed a prediction model to distinguish HI and haplosuffi-

cient (HS) genes using the most informative properties identified from these com-

parisons. An HI-based pathogenicity score was devised to distinguish pathogenic

genic CNVs from benign genic CNVs. Finally, I proposed a probabilistic diagnostic

framework to incorporate population variation, and integrate other sources of evi-

dence, to enable an improved, and quantitative, identification of causal variants.
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CHAPTER 1

INTRODUCTION

Copy number variation (CNV) is a prevalent form of genetic variation wherein dele-

tions and duplications of large (typically greater than 1kb) segments of the genome

lead to variable number of copies of such segments among different individuals.

The functional impact of copy number variants travels along the path of manifesta-

tion of genetic information from DNA, through intermediate molecular and cellular

phenotypes, to individual organismal phenotypes, and onwards towards evolution-

ary change [1].

At the DNA level, CNVs can encompass part or all of one or multiple genes, or

regulatory elements that act in cis or trans to coding sequences, thus leading to al-

teration of structure or abundance of transcripts and proteins. Lupski et al [2] sum-

marized six types of molecular mechanism by which a CNV can affect functional

sequences (Figure 1.1), including (i) dosage changes, (ii) disruption of coding se-

quence, (iii) gene fusion, (iv) position effect, in which the CNV has effects on expres-

sion/regulation of genes near the breakpoint, potentially by removing or altering a

regulatory sequence, (v) unmasking a recessive allele or functional polymorphism,

and (vi) transvection effect, in which the deletion of a gene and its surrounding reg-

ulatory sequences affects the communication between alleles.

Gene expression is the first step on the path of manifestation, and propagates the dis-

ruption of functional DNA sequences into molecular phenotypes. Stranger et al [3]

have verified that an appreciable minority of the variation in transcript abundance

1
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Figure 1.1: Molecular mechanisms for CNV’s impact on functional sequences. Adapted from
Lupski et al [2].

in cell-lines can be explained by CNVs, but they also demonstrated that expression

at all CNV-affected loci is not equally responsive to underlying DNA dosage, and

that expression can be sensitive to disruption of regulatory sequences as well as

changes in dosage caused by full length deletion or duplication. It should be noted,

however, that the numbers and types of tissues studied, the sensitivity of transcript

profiling and the resolution and accuracy of CNV detection hinder the drawing of

robust quantitative conclusions from these kinds of studies.

The impact of CNVs at the protein level is less clear, as technologies for quantitative

profiling of protein abundance in parallel are less mature, although detailed charac-

terization of protein changes caused by individual CNVs is not uncommon. For ex-

ample, chromosome translocation that leads to truncation of DISC1 has been known

to cause Schizophrenia [4] and the truncated DISC1 has been found up-regulated in

patients of Schizophrenia at transcript level [5], however the truncated protein has
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not been detected in those patients [6], although the introduction of truncated pro-

tein in mice led to phenotypes resembling severe Schizophrenia in human [7].

Molecular phenotypes are propagated into cellular phenotypes by the perturbation

of cellular networks of interacting genes and proteins. Although the current knowl-

edge of human protein-protein or genetic interactions is far from complete and the

direction, strength and consequence of such interactions is even less well under-

stood, it is believed that some perturbations may be buffered by the network such

that there is no change in outputs, others may render the network more sensitive

to other genetic and environmental perturbations, others may perturb the network

outputs but be buffered at higher levels of physiology and others may cause funda-

mental errors in organismal function. While mapping genes disrupted by CNVs

in patients with a given disease onto such networks has identified enrichments

of CNV-affected genes in parts of a network that relate to specific, aetiologically-

relevant, pathways and complexes [8, 9], the actual network output in response to

such perturbation has not been measured directly.

The impact of CNVs on function at the level of an entire organism is the primary

focus of genetic disease and complex trait association studies. A large number of

genetic diseases, especially neurodevelopmental disorders, have been shown to be

caused by large rare CNVs (e.g. [9–11]). Conversely, common CNVs appear to ac-

count for a very small fraction of common disease susceptibility alleles [12, 13].

At a population level, the functional impact of CNVs is revealed by the imprint of

natural selection in their genomic distribution and allele frequencies. Conrad et al

showed that negative selection removing deleterious alleles from the population is

greatest for deletions that remove exonic sequences, and is much milder on duplica-

tions and deletions of non-exonic sequences[12]. In addition, dosage-sensitive genes

have been shown to be preferentially located in regions of the genome with lower

rates of deletions and duplication [14]. Population studies of individual CNVs have

suggested that a minority of genic CNVs might confer a selective advantage in cer-

tain environments (e.g. [15]), and at an evolutionary level, some copy number dif-

ferences between species have been suggested to have been adaptive (e.g. [16, 17]).

Rather than explore all possible molecular mechanisms by which a CNV might ex-
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ert a functional impact, and all levels of biology along the path to manifestation

outlined above, in this thesis I focus primarily on the causal role of CNVs in disease,

with a particular emphasis on CNVs that result in unambiguous loss of function

of encompassed genes. Each chapter is self-contained, and so most of the relevant

introductory material is presented within each chapter.

Chapter 2 describes the development of a CNV discovery and quality control (QC)

pipeline for Affymetrix 6.0 genotyping array data. The chapter first assesses the per-

formance of several existing CNV discovery algorithms on Affymetrix 6.0 data and

then describes CNV call and sample QC procedures developed to produce robust

CNV call sets for subsequent analyses.

Chapter 3 describes the functional impact of CNVs on the proportion of coding se-

quences that are most sensitive to DNA dosage alteration. The chapter first de-

scribes the computational identification of the tendency of exhibiting haploinsuf-

ficiency for human protein coding genes, which then leads to the description of a

pathogenicity scoring scheme for genic CNVs. The chapter finally describes a prob-

abilistic diagnostic framework for CNVs that can incorporate various aspects of the

knowledge of the variant and harness population distribution of variant pathogenic

scores conditioned on that knowledge.

Chapter 4 describes the investigation of the role of CNVs in severe early onset obe-

sity. The chapter is organized in two parts of which the first describes the analyses

of an initial and smaller patient cohort and the second describes the analyses of a

following and larger patient cohort. The impacts of both rare and common CNVs

were examined.



CHAPTER 2

DEVELOPMENT OF A CNV DISCOVERY

PIPELINE FOR AFFYMETRIX 6.0

2.1 Introduction

2.1.1 CNV discovery using microarrays

There are two major types of data that serve as the source of CNV discovery using

microarrays: two-channel array-Comparative Genomic Hybridization (CGH) and

genotyping arrays. The difference in the nature of the array affects data normal-

ization, the models underpinning CNV discovery algorithms and interpretation of

results.

Array-CGH hybridizes two differentially labeled DNA samples, often one test sam-

ple and one reference sample, together on the same array and the difference in DNA

dosage between the two samples is reflected by the difference in fluorescent inten-

sity between the two channel. A log ratio of the intensity is often calculated for

each probe and its significant deviation from zero is an indication of copy number

differences between the test and reference samples in regions targeted by the corre-

sponding probes in the test sample relative to the reference. For this type of data,

technical variation among different probes is internally controlled. Algorithms es-

sentially find outliers in ratio space. However, the derived copy number difference

5
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is always relative and the choice of the reference affects the translation of relative

copy number difference into absolute copy number.

Genotyping arrays are primarily composed of pairs of oligonucleotide probes that

target the same locus but different alleles of each selected SNPs. Only one DNA sam-

ple is hybridized to the array and DNA dosage is reflected by the intensity of the

probes and also partially/indirectly by the intensity ratio between the two probes

targeting the same SNP. Some genotyping arrays also contain non-variable probes

similar to array-CGH probes, which only provide intensity information that reflects

absolute DNA dosage due to the single-channel design. For this type of data, techni-

cal variation among different probes needs to be removed explicitly in data analysis.

Algorithms work in intensity space and absolute copy number can in principle be

determined once probe dosage response has been calibrated.

2.1.1.1 Affymetrix Genome-wide human SNP array 6.0

Affymetrix genome-wide human SNP array 6.0 (Affy6) is an array platform that

aims to perform both high-density SNP genotyping and high resolution CNV dis-

covery simultaneously. It was developed between Affymetrix and the Broad Insti-

tute [18]. The array has 906,600 SNP probe sets and 946,000 copy number probe

sets. The latter includes 202,000 probe sets targeting 5,677 CNV regions from the

Database of Genomic Variants at high density and the rest spread evenly along the

genome [19]. Each SNP probe set contains multiple oligonucleotide features that

are identical copies of one of the two probes targeting the two possible alleles. Each

copy number probe set contains multiple identical features targeting the same ge-

nomic location 1. For simplicity, I will use ‘probe’ to refer to ‘probe set’ when de-

scribing analyses that use only summarized probe set intensities or their derivatives.

After hybridization, washing and scanning, a .CEL file is produced for each sample

genotyped with Affy6, which contains information including probe locations and

intensities. Affymetrix developed a suite of command line tools called Affymetrix

Power Tools (APT) [20] for extracting information from the .CEL files and common

downstream analysis such as SNP calling and CNV discovery. A number of CNV

calling methods can also be applied to Affy6 data once the probe intensities have
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been extracted by APT.

2.1.2 CNV discovery algorithms

Regardless of the type of the array, the typical data summary that is input into CNV

discovery algorithms is often a sequence of values (intensity or log ratio) with or-

dered spatial coordinates along a chromosome. For genotyping arrays, a second

sequence of values (measuring the relative intensity of the two alleles, often called

‘B allele frequency’) sharing the same spatial coordinates with the first sequence

of values is available. CNV discovery aims to solve the problem of finding spatial

segments with values sufficiently different from adjacent segments as a result of be-

longing to one of a finite set of copy number states that is different between adjacent

segments.

Many CNV discovery methods have been developed. Except for a few methods

that use empirical cut-off values [21, 22] or hierarchical clustering [23], most of them

can be placed into one of the following two broad categories: segmentation-based

(change-point-finding) methods and hidden-markov-model-based (HMM-based) meth-

ods.

2.1.2.1 Segmentation-based methods

This category of methods search for change points in an ordered sequence of values

that define segments having different distribution of values (often measured by hav-

ing different means). Circular binary segmentation is a typical method belonging to

this category proposed by Olshen et al [24] that recursively test if a new segment

or breakpoint should be introduced inside an existing segment based on the differ-

ences in the distribution of values between the newly introduced segment and the

rest of the existing segment or between the two resulting segments separated by

the proposed breakpoint. Jong et al [25] proposed a method that models the values

along a chromosome as a sequence of normal distributions with different parame-

ters and used the genetic algorithm to find the spatial boundaries that maximize the

likelihood that actual values are drawn from those normal distributions. Similarly,
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Hupe et al [26] modeled segments of different copy number states along a chromo-

some as a piecewise constant function and estimated the parameters of the function

using adaptive weights smoothing. Pique-Regi et al [27] further formulated piece-

wise constant function as linear combinations of step functions and used sparse

Bayesian learning (SBL) to obtain the best linear combination that fits the data. All

segmentation-based methods have certain measures to restrict over-segmentation

during maximization of model fitting. This usually involves substituting log likeli-

hood with Akaike Information Criterion (AIC) or Bayes Information Criterion (BIC)

or similar criteria as the target function for optimization to penalize the use of more

parameters [25–27] and/or a separate pruning step after segmentation is done to

eliminate spurious breakpoints [27].

2.1.2.1.1 GADA GADA is the implementation for the method described in [27].

It has a SBL step that provides initial breakpoints of which level of sparseness is

controlled by the parameter a (the larger the more sparse) and a backward elimina-

tion step that removes spurious breakpoints of which stringency is controlled by the

parameter T (the larger the more stringent).

2.1.2.2 HMM-based methods

HMM-based methods model the ordered sequence of values as a sequence of ob-

served states that are determined by a chain of discrete hidden states, each one of

which is determined probabilistically by its previous hidden state(s). The key pa-

rameters of a HMM include the number of hidden states K, the vector of initial

state probability π, the state transition probability matrix A and collection of emis-

sion probability functions B. Fridlyand et al [28] applied unsupervised HMM to

array-CGH data. B was assumed to be a collection of Gaussian distributions, each

corresponding to a hidden state, and the initial parameters of B were estimated

through clustering. Parameters (π, A, B) were optimized using the EM algorithm.

The number of states K was chosen to minimize an AIC-like criteria to balance be-

tween model fitting and restricting the total number parameters. Finally, The states

were merged into segments with user-defined criteria. Marioni et al [29] improved
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the model by using distance-aware transition probabilities to account for hetero-

geneity in probe density. Guha et al [30] modified the model to use a fixed 4-states

HMM and incorporated Bayesian learning in which each state represented a pre-

defined copy number state, informative priors were imposed on model parameters

and MCMC was used in learning model parameters and generating copy number

states. In this way, segmentation and classification was performed simultaneously.

Shah et al [31] modeled the emission probability distribution of each state as a mix-

ture of two Gaussian distributions with one component representing values gener-

ated from the given state and the other representing outliers, which improved the

robustness of CNV calling. Methods designed for SNP genotyping arrays further

exploit the additional B allele frequency (BAF) information. QuantiSNP is an objec-

tive Bayes HMM-based algorithm highly tailored to Illumina Beadarray data [32].

Similar to Marioni et al and Shah et al, state transition probabilities were adjusted for

local probe distance and outliers were considered in modeling emission probabili-

ties. Emission probabilities for BAF were modeled alongside log R ratio. Parame-

ters were estimated using the EM algorithm with hyper-parameters of the conjugate

priors for the emission model estimated from a reference dataset with known copy

number. The program calculates a Bayes factor for each CNV called that facilitates

ranking and post-filtering of CNV calls. PennCNV is another widely used HMM-

based program for the CNV analysis of Illumina Beadarray data [33]. Its underlying

model is very similar to QuantiSNP, except it incorporates population B allele fre-

quency in the emission model for BAF and it has an a posteriori validation step using

family information if available.

2.1.2.2.1 Birdsuite Birdsuite is a software suite highly tailored to the Affy6 data

that integrates SNP and CNV calling. Its CNV discovery component, Birdseye, is an

HMM-based program. Unlike most HMM-based methods, Birdseye receives pre-

defined parameters for emission probability distributions from Canary and Bird-

seed, the components of Birdsuite that run prior to Birdseye that estimate copy

number at known CNVs and genotype SNPs respectively. Those parameters are

probe-specific and are estimated using the EM algorithm during the running of Ca-

nary and Birdseed with priors learned from samples of known genotype. The state
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transition probabilities are also pre-defined, distance-dependent and tuned to the

probe density of Affy6. Birdseye uses the Viterbi algorithm to determine the most

probable chain of states and produces a LOD score for each segment representing

the strength of evidence [18].

2.1.3 CNV calling pipeline

CNV calling algorithms solve the specific problem of identifying genomic segments

with likely aberrant copy number from input sequences of values with ordered spa-

tial coordinates. However, the process that takes raw data generated by microarray

experiments and produces CNV calls ready for downstream analysis involves many

other steps that can affect the quality of the final set of CNV calls remarkably. The

structure of a typical CNV calling pipeline is demonstrated in Figure 2.1. After raw

intensities have been extracted, a pre-processing step is usually mandatory prior to

CNV calling. In this step, various normalization procedures may be applied to re-

move technical biases or variation between channels of an array, across probes of dif-

ferent spatial location or genomic context, or across different array experiments, etc.

Normalized intensities may be organized and transformed to the format required

by the calling algorithms. Technical failures may also be identified and removed at

this stage. After intensities have been properly normalized and transformed, multi-

ple calling algorithms may be applied to complement or support one another. Next,

resultant CNV calls are subjected to post-processing that usually involves comput-

ing quality control (QC) metrics and filtering calls and samples based on those QC

metrics. Additional procedures such as merging CNV calls may be necessary de-

pending on the calling algorithm that has been applied. Various visualization tools

are often an essential part of the pipeline that facilitates quality control and the se-

lection of filtering thresholds. It is crucial to assess the performance of such pipeline

with an independent CNV dataset, ideally of higher quality and from the same sam-

ples, based on which the pipeline may be optimized.

The extent of completeness in implementing the above pipeline varies among cur-

rent CNV calling programs. Some have pre-processing capabilities, such as the APT

utility apt-copynumber-workflow, which handles intensity extraction, normaliza-
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Figure 2.1: Simplified diagram of a typical CNV calling pipeline

tion, probe set summarization and CNV calling. Some are dedicated CNV callers

that do not implement any pre- or post-processing at all, such as GADA, which

simply outputs segmentation on receiving an input sequence of log ratios. The us-

ability of output CNV calls also varies. Again taking apt-copynumber-workflow as

an example, instead of delivering genomic segments with copy number, it only out-

puts the inferred copy number state of every probe set. GADA provides genomic

segments but does not assign copy number state. Birdseye provides the most us-

able calls of the three, as it not only produces genomic segments with copy number

state, but also produces the statistical confidence of the called CNVs that facilitates

post-processing. Regardless of the above differences, current CNV programs pro-

vide little post-processing and QC functions, whereas robust and consistent post-

processing is of vital importance in producing a reliable CNV call set, especially

in studies with a large sample size and/or multiple datasets. A few simple post-

processing methods have been applied in previous CNV studies [33, 34], which were

limited to filtering CNV calls by number of probes and size or removing samples

with large variance in probe intensities or apparent mosaic chromosomes.

In the result section of this chapter, I will first compare the performance of three

CNV calling programs on Affy6 data. I will next describe a CNV pipeline I devel-

oped for Affy6 data that features an effective sample QC. Finally, I will demonstrate

the application of this pipeline to several Affy6 datasets that will be further dis-

cussed in later chapters. The implementation details are provided in the methods

section.
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2.2 Materials and methods

2.2.1 Extracting probe intensities and re-producing the scanned im-

age

Raw probe intensities and probe IDs were extracted from .CEL files using the APT

command ‘apt-cel-extract’. The positions of a probe on the array can be derived

from its probe ID using the equations provided by Affymetrix [20]:

x = (probeID− 1) mod Ncolumn

y = floor ((probeID− 1) /Ncolumn)

where, Ncolumn stands for the number of columns of the probe array, which is 2680

for Affy6 [20]. I wrote an R script to calculate the positions, re-order the probes

according to their positions and plot the scanned image using heat map colors. The

brighter the color, the higher the intensities.

2.2.2 Extracting and normalizing probe set intensities

I extracted probe set intensities from .CEL files and normalized them across samples

on the same sample plate using the APT command ‘apt-probeset-summarize’ with

the option ‘quant-norm.target=1000,pm-only,plier.optmethod=1,expr.genotype=true’.

This command first extracted probe intensities from all input sample .CEL files, then

applied quantile normalization to adjust all samples to the same distribution with

a median probe intensity value of 1000 and lastly summarize probe set intensities

from composing probes using the PLIER (probe logarithmic intensity error) estima-

tion with the ‘perfect match only’ option [20].
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2.2.3 Transform probe set intensities into log ratios

Let xi,j denotes the summarized and normalized intensity of probe set i in sample j.

The log ratio yi,j was calculated as:

yi,j = log2
xi,j

median (xi,∗)

, where median (xi,∗) is the median value of all samples on the same plate.

2.2.4 Calculating log-ratio-related sample QC statistics

Noise level and extent of spatial waviness (autocorrelation) of array data are two im-

portant factors that remarkably affect CNV analysis as will be described later. I used

median absolute deviation (MAD) of probe sets log ratios as the measure of noise

level and sum of auto-correlation (SAC) along the chromosomes as the measure of

spatial waviness. For sample j:

MADj = median
(
|y∗,j −median(y∗,j

)
|)

SACj =
n=5

∑
k=1

∣∣∣∣∣∣
E
[
(Yi,j − µyj)(Yi+k,j − µyj)

]
σ2

yj

∣∣∣∣∣∣
2.2.5 Correction for spatial auto-correlation

For each sample, correction was done by chromosomes using the method developed

by [35]. Briefly, a loess curve was fitted to the log2 ratios along a chromosome with

a window size containing 10% of the probes in the chromosome and the log2 ratios

were replaced by the residuals (Figure 2.2).

2.2.6 Storage and retrieval of normalized intensity data

Normalized probe set intensities were stored as a probe-set-by-sample table with

probe set name and chromosomal location in HDF format [36]. Each table contained
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A

B

Figure 2.2: Demonstration of correcting spatial auto-correlation, showing ilog2 ratio profile
across chromosome 1 of a sample with a SAC of 0.7766 (top 0.15%) before (A) and after (B)
correction for spatial auto-correlation. The red curve in (A) is the loess curved fitted with a
window size of 14k probes (10% of all probes targeting chromosome 1)

a plate of samples. I developed a python utility using the PyTables package [37]

to write such table in HDF format and create an index in the column containing

chromosomal locations. The resulting HDF file was similar to an in-file database.

I also wrote a python utility for retrieving probe set intensities by chromosomal

coordinates from such files.

2.2.7 The CNV call format

This is the format of plain text files in which CNV calls were recorded. Each CNV is

described in one row, of which fields are separated by tab and the first seven fields
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are required. The required fields are chromosome, start coordinate, end coordinate,

number of probes contained, average log ratio, sample ID and copy number change.

Additional fields may be appended to the end of row.

2.2.8 Merging split CNV calls

CNV calls on the same chromosome were sorted by genomic coordinates and scanned

through, each time taking a pair of adjacent calls. The two adjacent calls were

merged into one, if:

1. Both calls have the same genotype

2. The number of probes separating the two calls < 100

3. The ratio of the number of probes separating the two calls to the number of

probes in the merged call < 10%

4. The probe density between the two calls > 1 probe per 5kb

5. The absolute difference in average log2ratio between the two calls < 0.15

The scan and merge process was repeated until no CNV calls could be merged.

2.2.9 CNVE clustering

To combine CNVs called in different individuals into CNV events (CNVEs), I used

a hierarchical-clustering-like method described in [12]. Briefly, pairwise reciprocal

overlap (RO) were first calculated among CNVs overlapping at least 1bp and CNV

pairs with greatest RO were merged into a CNVE if RO>50%. Then, unmerged

CNVs having a RO>50% with all CNVs already merged into this CNVE were iter-

atively merged in order of best RO. This method guarantees that the ROs between

all pairs of CNVs belonging to a CNVE are greater than 50% and when a CNV has

RO>50% with CNVs of multiple CNVEs, it is merged to the one with better RO.

The boundaries of a CNVE were defined as those enclosing the minimum genomic

interval that encompasses 90% of belonged CNVs.
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2.2.10 Definition for different overlap criteria

Given two genomic intervals A and B on the same chromosome defined by coordi-

nates [startA, endA] and [startB, endB], the length of overlap L = min(endA, endB)−
max(startA, startB) + 1. Simple overlap is defined as L > 0. Overlap relative to in-

terval A is: OA = L/(endA − startA + 1). Overlap interval A > 50% is defined as

OA > 0.5. Reciprocal overlap > 50% is defined as: OA > 0.5 and OB > 0.5.

2.2.11 Heuristic quality score for APT and GADA CNV calls

The quality score Q is defined as Nprobe ×
∣∣∣logRatio

∣∣∣.
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2.3 Results

2.3.1 Comparing discovery programs for Affy6 data

2.3.1.1 Test pipeline for assessing CNV calling programs

To test the performance of apt-copynumber-workflow, GADA and Birdsuite, three

test pipelines were constructed.

As stated in section 2.1.3, apt-copynumber-workflow is a fairly standalone pro-

gram that handles both pre-processing (intensity extraction, normalization, probe

set summarization, transformation into log ratio) and CNV discovery. However, it

only produces copy number state for individual probe sets. Therefore, an extra step

was added to merge adjacent probe sets into one CNV call if they had the same copy

number state and their copy number were not equal to 2 and to calculate other in-

formation such as average log ratio that were required by the CNV call format (as

described in section 2.2.7). Then CNVs were filtered by size, number of probes, and

probe density and samples with excessive CNV calls were removed.

Since GADA is a dedicated CNV caller, apt-probeset-summarize was used to han-

dle intensity extraction, normalization and probe set summarization. Probe set in-

tensities were then transformed into log ratio as described in method. Unlike apt-

copynumber-workflow, wherein intervention is not possible between pre-processing

and CNV calling, an extra step that corrects spatial auto-correlation was added be-

fore running GADA, as it reduces the long range waviness in the data (Figure 2.2).

Since GADA only performs segmentation but not copy number assignment, thresh-

olds were applied to the distribution of average log ratio of segments to distinguish

CNV calls and segments with normal copy number. The resulting CNV calls were

stored in CNV call format and filtered using the same criteria as for calls made by

apt-copynumber-workflow. Samples with excessive CNV calls were also removed.

Birdsuite calls apt-probeset-summarize to handle pre-processing. Since it works

with probe set intensities instead of log ratios, transformation was not needed. Only

output from the Birdseye algorithm were passed on for downstream analyses as Ca-

nary performs CNV typing at known CNVs rather than CNV discovery. The Birds-
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eye calls were filtered using the LOD score in addition to the same criteria as above

and samples with excessive CNV calls were removed.

2.3.1.2 Comparing general characteristics of call sets

I used the above test pipelines to call CNVs in 270 HapMap1 individuals. A num-

ber of program parameters and filter parameters were tested as listed in Table 2.1. I

examined the median number of calls per sample, the median size of calls, the num-

ber of CNVEs, the fraction of singletons and overlap with published CNV datasets

[12, 34] (Table 2.1).

Table 2.1: Summaries of call sets produced by test piplines

Program

Program
or filter
parame-

ter

Median
#call
per

sample

Median
call size
(kb)

Deletion-
to-

duplication
ratio

#CNVE %Singleton
CNVE

%Overlap
rate∗

%Overlap
rate†

APT Default 64 14.6 2.82 2861 49.2 27.2 25.5

GADA
a=1
T=7

M=5‡
88 14.0 2.54 4514 49.3 23.8 23.2

GADA
a=1
T=8
M=5

73 15.2 2.61 3500 47.7 27.9 26.1

GADA
a=1
T=9
M=5

61 17.3 2.67 2833 47.2 30.0 27.9

GADA
a=1

T=10
M=5

51 19.4 2.80 2307 45.8 31.8 29.6

Birdseye LOD≥5 86 14.8 4.03 3469 48.5 30.9 24.7

Birdseye LOD≥10 59 23.4 4.20 2176 46.9 35.3 28.6

∗ Proportion of calls reciprocally overlapped by common CNVs described in McCarroll et al [34].

† Proportion of calls reciprocally overlapped by ng42M CNVs described in Conrad et al [12].

‡ For a and T see section 2.1.2.1.1; M defines the minimal required number of probes.
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There were a few characteristics that were shared by or similar among all pipelines.

For example, (i) all pipelines called 50–90 CNVs per individuals, (ii) the median call

size of the majority of call sets were all in the range of 15–20kb, (iii) the proportions

of singletons were close to 50%, (iv) one quarter to one third of the CNVEs were

found previously, (v) all three CNV calling methods were better at calling large re-

current deletions as indicated by increased call size and deletion-to-duplication ra-

tio and decreased proportion of singletons with increasing stringency (GADA T7 to

T10, Birdseye LOD5 to LOD10) of calling. The deletion-to-duplication ratio differed

remarkably between call sets produced by Birdseye and the other two programs.

This is likely due to that Birdseye calls from intensities whereas the other two calls

from log ratios (see section 2.4.2).

2.3.1.3 Benchmark by a high quality call set

Comparing with one or more independent high quality datasets generated from

the same samples can provide direct assessment of the performance of the calling

algorithms. Previously, a set of tiling resolution CNV calls were produced from

40 individuals, 19 of which were from the HapMap1 individuals, using a set of

Nimblegen CGH arrays that collectively contained 42M probes [12] (referred to as

ng42M). I used this dataset as a gold standard to benchmark GADA T9, GADA T10

and Birdseye call sets, as the rest of the call sets were apparently of lower quality.

The fraction of ng42M CNVs reciprocally overlapped >50% by test call set in the

same individual was used as a measure of sensitivity and the fraction of test call

set overlapped by ng42M CNVs in the same individual was used as a measure of

specificity (Table 2.2–2.9).

Breaking down by CNV size, sensitivity generally increased as call size increased in

all three call sets as expected. Specificity, however, was highest in the middle ranges

(10kb to 100kb) and sharply dropped to roughly 10% for CNVs above 500kb. This
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Table 2.2: Proportion of ng42M calls reciprocally overlapped by GADA T9 calls

Frequency (1kb,10kb] (10kb,20kb] (20kb,100kb] (100kb,500kb] (500kb,+∞] All Classes

(0,1] 2.35% 9.38% 19.17% 19.15% 10.00% 5.63%

(1,5%] 1.67% 11.22% 7.30% 9.09% 0.00% 3.57%

(5%,10%] 1.86% 13.25% 5.08% 4.85% 50.00% 3.67%

(10%,100%] 0.78% 5.14% 5.09% 7.26% 16.67% 2.30%

All Classes 1.10% 6.77% 6.26% 7.63% 15.63% 2.83%

Table 2.3: Proportion of GADA T9 calls reciprocally overlapped by ng42M calls

Frequency (1kb,10kb] (10kb,20kb] (20kb,100kb] (100kb,500kb] (500kb,+∞] All Classes

(0,1] 44.44% 50.00% 66.67% 77.78% 50.00% 54.64%

(1,1%] 69.57% 70.59% 42.86% 58.33% 0.00% 57.60%

(1%,5%] 45.83% 52.94% 44.83% 45.65% 0.00% 45.64%

(5%,10%] 49.25% 51.43% 48.39% 40.00% 33.33% 47.13%

(10%,100%] 31.21% 55.74% 56.61% 51.79% 4.35% 44.82%

All Classes 42.86% 55.06% 52.22% 49.37% 10.26% 47.51%

Table 2.4: Proportion of ng42M calls reciprocally overlapped by GADA T10 calls

Frequency (1kb,10kb] (10kb,20kb] (20kb,100kb] (100kb,500kb] (500kb,+∞] All Classes

(0,1] 1.73% 7.59% 17.92% 19.15% 10.00% 4.82%

(1,5%] 1.11% 10.20% 6.74% 9.09% 0.00% 3.01%

(5%,10%] 1.54% 12.05% 3.73% 3.88% 0.00% 3.00%

(10%,100%] 0.63% 4.21% 4.77% 7.04% 16.67% 2.04%

All Classes 0.86% 5.70% 5.76% 7.36% 12.50% 2.46%



2.3. Results 21

Table 2.5: Proportion of GADA T10 calls reciprocally overlapped by ng42M calls

Frequency (1kb,10kb] (10kb,20kb] (20kb,100kb] (100kb,500kb] (500kb,+∞] All Classes

(0,1] 59.26% 30.00% 65.52% 85.71% 50.00% 60.00%

(1,1%] 58.33% 63.16% 48.72% 63.64% 0.00% 55.66%

(1%,5%] 51.85% 51.16% 44.62% 50.00% 12.50% 48.12%

(5%,10%] 42.11% 53.57% 40.00% 40.48% 0.00% 41.72%

(10%,100%] 33.09% 56.86% 62.05% 54.35% 5.26% 48.56%

All Classes 43.92% 53.64% 55.32% 51.35% 8.33% 48.95%

Table 2.6: Proportion of ng42M calls reciprocally overlapped by Birdseye LOD5 calls

Frequency (1kb,10kb] (10kb,20kb] (20kb,100kb] (100kb,500kb] (500kb,+∞] All Classes

(0,1] 4.69% 18.30% 26.67% 14.89% 10.00% 9.19%

(1,5%] 3.90% 13.27% 9.55% 9.09% 0.00% 5.69%

(5%,10%] 2.67% 19.88% 5.42% 7.77% 0.00% 5.00%

(10%,100%] 1.31% 7.40% 7.45% 9.90% 16.67% 3.41%

All Classes 1.96% 10.27% 8.82% 9.87% 12.50% 4.27%

was likely caused by the resolution difference between Nimblegen 42M arrays and

Affymetrix 6.0 arrays, which has two implications: (i) Nimblegen 42M arrays have

much better power to detect small to middle size CNVs, (ii) One large Affy6 call

may be called as multiple smaller CNVs in ng42M. Actually if using ‘overlap ng42M

>50%’ as the criteria instead of ‘reciprocal overlap >50%’ (see section 2.2.10), speci-

ficity also increased as call size increased and reached close to 100% above 500kb

(data not shown). Breaking down by CNV frequency, both sensitivity and speci-

ficity decreased as frequency increased. This might reflect the enrichment of com-

mon CNVs in duplicated regions of the genome and the impaired performance of

CNV discovery algorithms in such regions, and suggests a need for different strat-

egy for calling common CNVs. Overall, Birdseye LOD10 call sets achieved the high-
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Table 2.7: Proportion of Birdseye LOD5 calls reciprocally overlapped by ng42M calls

Frequency (1kb,10kb] (10kb,20kb] (20kb,100kb] (100kb,500kb] (500kb,+∞] All Classes

(0,1] 62.00% 69.57% 51.61% 66.67% 0.00% 60.19%

(1,1%] 72.41% 61.54% 65.79% 66.67% 50.00% 67.65%

(1%,5%] 60.29% 79.63% 47.44% 39.13% 0.00% 56.96%

(5%,10%] 45.88% 69.57% 36.96% 40.63% 33.33% 45.50%

(10%,100%] 43.88% 51.32% 53.20% 48.23% 0.00% 48.91%

All Classes 52.06% 60.79% 51.63% 46.58% 18.18% 52.41%

Table 2.8: Proportion of ng42M calls reciprocally overlapped by Birdseye LOD10 calls

Frequency (1kb,10kb] (10kb,20kb] (20kb,100kb] (100kb,500kb] (500kb,+∞] All Classes

(0,1] 2.83% 12.95% 22.92% 14.89% 10.00% 6.75%

(1,5%] 1.89% 12.24% 8.43% 7.27% 0.00% 3.90%

(5%,10%] 1.46% 15.06% 5.08% 6.80% 0.00% 3.61%

(10%,100%] 0.97% 4.21% 6.29% 8.58% 11.11% 2.62%

All Classes 1.27% 6.77% 7.54% 8.62% 9.38% 3.20%

est specificity (55.59%) and the second highest sensitivity (3.20%) of the three. It was

particularly better in calling smaller events (1k to 20kb). It had lower specificity than

GADA call sets in middle to large size ranges, but it might be affected more severely

by the array difference discussed above as having a much larger median call size.

I investigated how sensitivity and specificity changes as a function of call filters. For

Birdseye calls, LOD score was a natural quality filter. As APT and GADA did not

compute a per call confidence/quality score, a heuristic formula (see section 2.2.11)

previously shown to be monotonically related to false positive rate [38] was used.

To account for the fact that ng42M calls were relative to a certain reference indi-

vidual, sensitivity and specificity was calculated based on both direct comparison

of Affy6 CNV calls to ng42M CNV calls in the same individual and comparison of
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Table 2.9: Proportion of Birdseye LOD10 calls reciprocally overlapped by ng42M calls

Frequency (1kb,10kb] (10kb,20kb] (20kb,100kb] (100kb,500kb] (500kb,+∞] All Classes

(0,1] 90.48% 70.59% 62.96% 66.67% 0.00% 72.46%

(1,1%] 73.33% 61.11% 75.86% 66.67% 50.00% 70.33%

(1%,5%] 67.16% 87.80% 55.74% 47.37% 0.00% 63.64%

(5%,10%] 54.00% 91.67% 44.44% 42.86% 0.00% 52.10%

(10%,100%] 49.74% 44.05% 54.15% 46.46% 0.00% 49.85%

All Classes 57.98% 62.21% 55.92% 47.60% 10.00% 55.59%

Affy6 CNV calls to ng42M CNVEs. Birdseye calling plus LOD score filtering out-

performed other call sets from other algorithms filtered using the heuristic score

under most stringency thresholds by yielding more calls while achieving higher

specificity (Figure 2.3).
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Figure 2.3: Sensitivity, measured by median of number of calls per sample, versus specificity,
measured by proportion of calls reciprocally overlapped by ng42M CNVs in the same sample (A)
or by ng42M CNVEs (B), under shifting call filters. LOD score (for Birdseye calls) and number of
probes times absolute log2 ratio (for APT and GADA calls) thresholds increase from right to left.
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Since calculation of specificity and sensitivity was based on the definition of over-

lap, I examined if the superior performance of Birdseye was independent of overlap

threshold. By fixing the call filter and shifting the reciprocal overlap threshold used

to define a test call as being present in the gold standard dataset, a series of speci-

ficity value were calculated. Again, Birdseye call sets out-performed other call sets

and Birdseye LOD10 had higher specificity than Birdseye LOD5, as expected (Fig-

ure 2.4).
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Figure 2.4: Specificity, measured by proportion of calls reciprocally overlapped by ng42M CNVs
in the same sample (A) or by ng42M CNVEs (B), as a function of reciprocal overlapping
threshold.

Based on the above comparisons, Birdsuite was chosen as the core CNV discovery

program around which the production pipeline was built.
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2.3.2 Implementing a CNV discovery and QC pipeline for Affy6

data

I developed a robust CNV calling and quality control pipeline for Affymetrix 6.0

data around Birdsuite. The pipeline is able to process thousands of samples auto-

matically, providing robust CNV calls ready for downstream analysis and visual-

ization for manual examination of calling quality. Below I have used the WTCCC2

control dataset as an example when demonstrating certain features of the pipeline.

2.3.2.1 Pre-calling QC

Defects in array experiment can sometimes be visually apparent when simply look-

ing at the scanned image and could lead to the exclusion of the array before en-

tering the CNV discovery process. As the actual scanned images are not available

for many array experiments, they were regenerated from the .CEL files (see sec-

tion 2.2.1). Those with defects such as contamination (Figure 2.5A) and global low-

hybridization (Figure 2.5B) can be easily distinguished from those with scanned im-

ages of typically normal experiments (Figure 2.5D). Usually, small-scale contamina-

tion has little impact on the overall quality of data, but abnormally low hybridiza-

tion often causes increased noise level. Samples with such defects could also be

identified by other QC metric at later stages. Therefore, except for some very rare

cases (Figure 2.5C), the role of scanned images generated at this step was mainly to

aid the investigation of the cause of low quality data rather than dropping samples

before CNV calling.

2.3.2.2 Pre-processing and CNV calling

CNVs were called by plate using Birdsuite with default parameters. The normalized

and summarized probe set intensities produced by apt-probeset-summarize, which

was called by Birdsuite to handle pre-processing, were stored in the form of in-file

database (see section 2.2.6). A copy of the intensities was transformed to log ratios

and were used to calculate average log ratio for each CNV call and log-ratio-related
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A B

C D

Figure 2.5: Regenerated scanned images of four samples. An Affy6 chip contains close to 7
million probes organized in a 2572 × 2680 matrix, each represented as a dot in heat colors.
Brightness is proportional to log2 intensity. The four scanned images are examples of
contamination (A, scattered abnormal low intensity regions in top right, bottom right and
bottom left zone), global low-hybridization (B, globally darker color and blurred border between
the central cross region and the rest of the chip), failed experiment (C, no hybridization signal at
all) and normal scanned image (D, bright and clear cross region with the rest of chip being
relatively homogeneous).

sample QC statistics for each sample. CNVs called from all plates were pooled and

stored in CNV call format.
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2.3.2.3 CNV call QC

A number of summary statistics were calculated and visualized to aid the decision

of filter parameters (Figure 2.6). Considering that Birdsuite does not yet correctly

segment Y chromosome and CNV calling in X chromosome is problematic due to

the presence of pseudoautosomal regions and the difference in neutral copy number

between male and female, and in order to remove the lower end tail in the distribu-

tion of call size, number of probes and probe density, I set up the following criteria

to filter CNV calls:

1. Autosomal

2. LOD score ≥ 10

3. Number of probes ≥ 5

4. Size ≥ 1kb

5. Probe density ≥ 1 per 10kb
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Figure 2.6: Summary statistics of the call set before call QC.

2.3.2.4 Sample QC

Even after the above filters, the number of CNVs called in some samples were a

few orders of magnitude greater than most of the other samples. Obviously, this

variation could not be explained solely by natural variation in the number of CNVs

carried by an individual, but were more likely technical artifacts. There can be two

types of such artifacts. The first type is caused by differential sensitivity, wherein

specificity of CNV calling is good and similar across samples, but due to some



2.3. Results 29

samples being noisier than others, fewer CNVs can be called with a level of con-

fidence that reaches a pre-defined common threshold. The second type is more

severe, wherein the data quality of some samples is so poor that CNV calling pro-

gram starts to produce large number of false calls. This was observed when running

samples with strong waviness as indicated by having high spatial auto-correlation

through the GADA test pipeline without correction. The number of apparently false

CNVs was effectively reduced after correcting for spatial auto-correlation, suggest-

ing waviness was indeed the cause of such artifact (Figure 2.7). As Birdseye works

on probe set intensities rather than log ratios, such correction could not be per-

formed, which might explain the excessive CNV calls. To account for both types

of artifact, I used a linear function to model the negative correlation between the

number of calls per sample and the sample’s median absolute deviation (MAD) of

log ratios, a measure of the level of noise in the data, wherein the parameters of the

linear model were estimated using samples with a MAD<0.3 and a SAC in the bot-

tom 90% in order to exclude the influence of samples with extreme level of noise or

spatial auto-correlation. Samples which after correction were more than four MADs

from the fitted linear model were removed (Figure 2.8).

In addition to the number of calls per sample, deletion-to-duplication ratio (DDR)

should also be relatively stable across samples given the same CNV discovery al-

gorithm and a reasonably large number of CNVs called per sample. Indeed, most

samples had a DDR between 1 and 16 with a median at about 4 (Figure 2.9). The

majority of samples that fell outside this range had a DDR below the lower bound

and many of them also had high SAC and coincided with those having excessive

CNV calls. This indicates the abnormally high number of calls per sample and

low DDR was predominately driven by over-calling of false duplications in samples

with strong spatial correlation. In practice, the median and MAD of the distribution

of log-transformed DDR were calculated and samples falling more than four MADs

from the median were removed (Figure 2.9).
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Figure 2.7: Example of over-calling due to spatial waviness along the chromosome. Black dots
are log2 ratios across chromosome 1 of a sample with a SAC of 0.78 (top 0.15%) before (A) and
after (B) correction for spatial auto-correlation. Horizontal segments are deletions (red) and
duplications (green) called by GADA. The average log2 ratios of the CNV calls are represented
by the horizontal position of the segments. Those located between -0.15 and 0.15 (light blue
dashed lines) will be filtered out.
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Figure 2.8: Number of CNV calls per sample as a function of the sample’s level of noise. Each
solid colored dot represents a sample. The sample’s level of spatial auto-correlation is coded by
terrain color, where the more greenish the lower the level of spatial auto-correlation. The blue
solid line denotes the fitted linear model. The blue dashed lines represent four times the MAD of
the residuals away from the fitted line. Dots encircled by red are samples to be removed for
falling outside the region bordered by the blue dashed lines.



32 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

0 50 100 150 200 250 300

−4

−2

0

2

4

Number of CNVs per sample

Lo
g2

(d
el

/d
up

 r
at

io
)

●
●

●

●

●

●
●

●
● ●

●

●

●

●

● ●

●

●● ●

●●●

●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●
● ●

●●

●●

●
● ●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●●

●●

●●

●
●

● ●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●
●●

●

● ●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●
●

● ●●

● ● ● ●
● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●

●
●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

● ●
●

●
●●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●●
●

●

●

●
●●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●●

●●● ●

●

●

●●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

● ●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●

●
●

●
●

●● ●●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
● ●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●
● ●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●

●
●

●●

●

●

●

● ●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

● ●

●
●

●
●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

● ● ●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●● ●●

●

●● ●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●●

●●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●
● ●

●
● ●

●

●

●

●
●

●

●

●
●

●● ●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●

●

●

●

●
● ●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●
● ●

●
●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

● ●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●● ●

●●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●●

●

●
●●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●●
●

●

●

● ●
●

● ●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●
●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●
●

●

●
●●●
●

●

● ●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

●

● ●

●●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
● ●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●
●

●

●
● ●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●
● ● ●

●

●

●

●● ●

●

●

●
●●

●

●

●

●

● ●

●●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

● ●

●
●

●

●

●

●
●

●

●●
●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●
●

●
●

●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●●

●

●
●

● ●

●

●●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●
●

●

●

●
●

●●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●
●

●●

●
●

●

● ●

●

●

●

●●

●
● ●●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

● ●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
● ●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●
●
●

●

●●

●

●

●● ●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

●

●●

●
●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
● ●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

● ●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
● ●

●

●

●●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●
●

●

● ●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●●

●

●

●
●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

● ●
●

●
● ●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

● ●
●

● ●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●●

●●

●

●
●

●●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●

4 x MAD(residuals)
Removed

Low SAC

High SAC

Figure 2.9: Distribution of deletion-to-duplication ratio. Each solid colored dot represents a
sample. The sample’s level of spatial auto-correlation is coded by terrain color, where the more
greenish the lower the level of spatial auto-correlation. The blue solid line denotes the median of
log2 deletion-to-duplication ratio. The blue dashed lines represent four times the MAD of the
residuals away from the median. Dots encircled by red are samples to be removed for falling
outside the region bordered by the blue dashed lines.
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2.3.2.5 Merge split CNV calls

Birdseye sometimes incorrectly split large CNVs into multiple smaller calls due to

just a few probes in the middle that did not meet the expected level of dosage-

responsiveness (Figure 2.10). I added an ad hoc step to merge these split calls based

on the number of probes between adjacent calls, the ratio of the number of probes

between adjacent calls to the number of probes in the merged call, the probe density

between adjacent calls and the absolute difference in log ratio between adjacent calls

(see section 2.2.8). My selection of merging parameter values was guided by the

distribution of the above metrics (Figure 2.11) and visual inspection of the merged

calls.

Figure 2.10: Birdseye split a duplication of 620kb into two duplication calls of 500kb and 110kb,
respectively. The sample carrying the duplication is highlighted in red. Other samples in the
same plate are in black. Blue vertical lines denote the boundaries of the two duplication calls.
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Figure 2.11: The distribution of variables used as metric for deciding if adjacent calls should be
merged. Vertical dashed lines mark the thresholds.

2.3.2.6 Cluster CNVE and calculate CNVE frequency

I observed frequently that CNV calls discovered in one sample had extensive over-

lap with CNV calls in multiple other samples, which likely indicate these variants

were identical and probably result from a single ancestral mutation event. Under

such a scenario, any slight differences in location were probably just technical fluc-

tuations in the precision of CNV discovery. Even if two overlapping CNV calls orig-
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inated independently in different individuals and had real slight differences in their

locations, operationally treating them as a single event was reckoned reasonable in

most analyses considering the highly similar genomic content they encompass and

the utility of knowing the frequency of a CNV of a particular genomic interval. I

used a clustering-like algorithm to merge such CNVs into CNVEs (see section 2.2.9)

and the frequency of a CNVE was calculated as the number of individuals carrying

this CNVE divided by the sample size. This call frequency is not the same as an

allele frequency, but is nevertheless useful in downstream analyses to distinguish

between common and rarer CNVs.
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2.3.3 Application of the pipeline to process Affy6 datasets

I applied the above CNV discovery pipeline to the following cohorts genotyped

using Affy6:

1. 5,989 UK individuals recruited as common controls in the Wellcome Trust Case

Control Consortium 2 project (referred to as WTCCC2).

2. 1,442 American individuals of European ancestry recruited as controls for the

GAIN study of Schizophrenia and Bipolar disease (referred to as GAIN_EA,

Genetic Association Information Network, European Ancestry)

3. 226 prenatal samples with major ultrasound abnormalities or multiple soft

markers detected by standard two dimensional ultrasonography, (referred to

as AFD, Abnormal Fetal Development)

4. 334 UK patients with sever-early-onset obesity, half of which also had develop-

mental delay (referred to as SCOOP1, Severe Childhood-Onset Obesity Project

1)

5. 1,386 UK patients with severe early-onset obesity (referred to as SCOOP2)

The biological interpretation of the CNVs identified in these cohorts is described in

other chapters in this thesis. Here I focus on the performance of the CNV discov-

ery pipeline across a range of different datasets, generated in different laboratories.

I compared the QC metrics and CNV statistics of these cohorts, examined the re-

producibility of CNV discovery using this CNV calling pipeline and investigated if

commonly adopted QC metrics for SNP genotyping are also appropriate for CNV

QC.

2.3.3.1 Comparing QC and CNV statistics

I first examined the distribution of level of noise and spatial autocorrelation in the

five datasets. Small but statistically significant differences in the distribution of the

level of noise were observed both between control cohorts and between controls
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and cases (Figure 2.12A). The level of noise (as measured by the MAD of log ra-

tios) was lower in WTCCC2 as compared to GAIN_EA (p = 2.2×10−47, two-sided

Mann-Whitney U test, same for the following), AFD (p = 8.3×10−9), SCOOP1 (p

= 8.6×10−13) and SCOOP2 (p = 1.1×10−5). These differences largely explained the

differences in the distribution of number of calls per sample among the different co-

horts (Figure 2.12B, r = -0.88, p = 0.04). Significant differences in the distribution of

spatial autocorrelation were also observed. SCOOP1 and SCOOP2 samples had sig-

nificantly greater median spatial autocorrelation (p = 6.3×10−60 and p = 2.0×10−100,

respectively, as compared with WTCCC2) and more samples with very high spatial

autocorrelation than the rest of the cohorts (Figure 2.12C). This explained their lower

sample QC pass rate (Figure 2.12D, r = -0.93, p = 0.02).

Table 2.10: Summaries statistics of CNV call sets

Cohort #Sample
pass QC

Median
#call
per

sample

Median
call size
(kb)

Deletion-
to-

duplication
ratio

#CNVE
Median
CNVE

size (kb)

%Singleton
CNVE

Average
plate
size

WTCCC2 5897 58 23.6 3.73 12295 37.9 62.8 84

GAIN_EA 1419 49 27.0 3.83 4493 42.9 63.4 85

AFD 224 50 22.3 5.13 1432 33.1 58.9 38

SCOOP1 292 55 23.5 4.09 2173 32.7 61.7 67

SCOOP2 1289 56 23.3 3.91 5277 37.9 64.5 87

Next I compared the summary statistics of the final filtered call set of the differ-

ent cohorts (Table 2.10). As discussed above, GAIN_EA and AFD produced fewer

calls per sample due to having noisier intensities (log2 ratios). GAIN_EA had larger

CNVs and CNVEs, possibly due to lower sensitivity to smaller events, but there

could be other contributing factors. The differences in the proportion of CNVEs

seen only in one sample (singletons) might be partly explained by differences in

the sizes of the cohort and possibly the impact on sensitivity of differences in aver-

age batch (plate) sizes (r = 0.97, p = 0.006), since Birdseye receive parameters of the
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Figure 2.12: Comparison of QC statistics. (A) Distribution of the level of noise. (B) The
number of CNV calls per sample as a function of the level of noise. The points represent the
median value for each cohort. (C) Distribution of spatial autocorrelation. (D) Sample QC pass
rate as a function of the level of spatial autocorrelation. The x value of each point is the median
SAC for each cohorts.

emission probability distribution from Canary and Canary could overestimate the

variance of the intensity distribution of the neutral copy state when given a smaller

number of samples, which would lead to under-calling of singletons. The disease

cohorts (AFD, SCOOP1 and SCOOP2) had greater deletion-to-duplication ratios,
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which might reflect ture biological differences, but more likely is due to technical

biases, as duplications become more difficult to call than deletions with noisier data

and smaller plate sizes.
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Figure 2.13: Proportion of large CNVs relative to all CNVs as a function of size threshold (A)
and proportion of the cohort carrying large CNVs as a function of size threshold (B). Both CNV
sizes and proportions are in log scale.

Finally, I investigated if there is difference in the distribution of large CNV calls

in the call sets. As the calling of large CNVs should be least affected by technical

issues, this could provide insights into the biological characteristics of the cohorts.

For CNVs exceeding a certain size threshold, I calculated their proportion relative

to all CNVs and the proportion of the cohort carrying such CNVs. The proportions

remained relatively similar until the threshold reached 1Mb, beyond which disease

cohorts (AFD, SCOOP1 and SCOOP2) had both greater proportion of large CNVs

and greater proportion of individuals carrying such CNVs (Figure 2.13).

2.3.3.2 Reproducibility of CNV discovery using Affy6 plus the pipeline

There were 55 SCOOP1 patients genotyped for a second time using Affy6 as part

of SCOOP2 (46 passed sample QC both times), which provided an opportunity to

investigate the reproducibility of CNV discovery using the CNV discovery pipeline

I developed. Samples of 46 of those patients passed QC in both datasets. For each
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individual, I defined a CNV called in one dataset ‘reproduced’ if it reciprocally over-

lapped >50% with a CNV called in the same individual in the other dataset. Repli-

cate rate was defined as:

Nreproduced,SCOOP1 + Nreproduced,SCOOP2

NSCOOP1 + NSCOOP2

On average, a replicate rate of 76.8% was achieved. As expected, due to differ-

ences in sensitivity and specificity, the replicate rate was much higher for deletions

than duplications (Table 2.11). I further interrogated if the concordance (‘replicate

rate’) between CNV sets called in samples from the same individual was higher

than that between CNV sets called in samples from different individuals. To do this,

for each of the 46 SCOOP1 samples, I calculated replicate rates with 100 randomly

chosen SCOOP2 samples. This verified that the observed level of reproducibility

between samples from the same individual was not a mere coincidence that could

be achieved by pairing randomly chosen samples (Figure 2.14).

Table 2.11: Replicate rate of CNV discovery using Affy6 and the Birdsuite pipeline

Type (1kb,10kb] (10kb,20kb] (20kb,100kb] (100kb,+∞] All Classes

Duplication 40.00% 63.08% 46.20% 60.97% 54.56%

Deletion 80.08% 76.15% 87.46% 81.25% 82.10%

All Classes 79.19% 74.93% 78.65% 70.82% 76.83%
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Figure 2.14: Comparing replicate rate between randomly chosen pairs of samples and samples
that are true replicates. The distributions of replicate rate between randomly paired samples are
presented by boxes whereas replicate rate between true replicates as printed in the labels are
presented by red triangles.

2.3.3.3 SNP genotyping QC metrics are not suitable for CNV QC

SNP call rate and the level of heterozygosity are sample QC metrics that are fre-

quently used in SNP GWAS where samples having low SNP call rate or being out-

liers in the distribution of the level of heterozygosity were removed [13, 39]. I inves-
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tigated if these metrics are also appropriate for identifying samples to be removed

for CNV analyses. I examined the distribution of SNP call rate and the level of het-

erozygosity against the two metrics I used for CNV sample QC, the number of calls

per sample and deletion-to-duplication ratio (DDR). As shown in (Figure 2.15), the

majority of samples having low SNP call rate or being outliers in the distribution

of the level of heterozygosity yielded similar number of CNV calls or DDR to sam-

ples with high SNP call rate and normal level of heterozygosity. Samples with ex-

treme number of calls and DDR are close to the mode of the distribution of SNP call

rate and the level of heterozygosity, implying that filtering samples for downstream

CNV analyses by using these SNP-based QC metrics would not be useful.
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Figure 2.15: Distribution of SNP QC metric against CNV QC metric.



2.4. Discussion 43

2.4 Discussion

In this chapter, I described the development of a CNV calling pipeline for Affy6

genotype data. I first compared the performance of three CNV calling programs on

Affy6 data. Next, I built a production pipeline around the selected program, Bird-

suite, which incorporated a number of QC metrics and post-processing procedures.

Finally, I applied the pipeline to several Affy6 datasets to produce filtered CNV call

sets for further analysis. I have demonstrated that the pipeline I developed gener-

ated high quality CNV call sets across a range of different datasets.

2.4.1 Storage of CNV data

The amount of data a single microarray experiment can produce increases linearly

with the increase in resolution and coverage of the array. With 6,892,960 oligonu-

cleotide features on the slide, Affy6 yields nearly seven million raw intensity values

per experiment, which are summarized to more than 2.7 million intensity values

corresponding to nearly one million copy number probe sets and one million SNP

probe sets. The summarized and normalized intensities, together with minimal an-

notations required for CNV calling, including probe set ID, type and genomic loca-

tion, take up close to 2Gb of disk space for 96 samples if stored in plain text format.

Such data are required not only for CNV calling but for QC and various visualiza-

tions as well, in which scenario fast access to intensity values of certain samples

within a genomic window of interest is needed. Due to hardware limitations, I used

a special HDF file to store and manage such data. Although the genomic coordi-

nates were indexed to facilitate fast query, the speed is still affected and limited by

disk performance. However, relationships among samples and other annotations

associated to probes and samples have to be managed separately. Ideally, all those

data should be stored in an efficiently designed database with an index loaded in

memory.
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2.4.2 Log ratio versus intensity

Birdsuite outperformed GADA and APT for CNV discovery from Affy6 data in the

comparisons I performed. Its CNV discovery component, Birdseye, is the only pro-

gram of the three that works on intensities rather than converted log ratios. In prin-

ciple, the conversion to log ratio should reduce the variation across different probe

sets. Actually, this explains why most general-purpose (multi-platform) CNV dis-

covery programs expect to work with log ratios: for segmentation-based methods,

simple piecewise constant function can be used to model log ratio profiles along a

chromosome and for HMM-based method, the same parameters for emission model

can be used for all probe sets. By comparison, algorithms working with intensities

produced from single channel genotyping arrays need special treatment to handle

the larger variance across probe sets (e.g. Birdseye uses probe-set-specific emission

parameters), which often limits their application to other types of arrays. However,

calling CNVs from intensities also has advantages over log ratios. First, strictly

speaking, log ratios can only indicate comparative loss or gain of copy number rel-

ative to a reference rather than an actual genotype. For the APT and GADA test

pipeline, log ratio were converted from intensities using a population (all samples

in a plate) median as the reference, which could deviate from diploidy in common

CNV regions and lead to a more balanced ‘deletion’ ‘duplication’ ratio, as shown in

Table 2.1, which, if taken at face value, could give a misleading view of the nature of

CNVs in an individual’s genome. Second, discriminating high copy number states

is much harder using log ratios than using intensities especially when the reference’s

copy number is greater than two.

2.4.3 CNV discovery QC filter parameters

Due to differences in array specification, CNV discovery algorithm and purpose of

investigation, there is little consensus in what filters should be applied for CNV dis-

covery. Without an independent and high quality CNV call set in the same individ-

uals, previous studies often have had to rely on simulated data or indirect measures

[24, 26, 28]. Rather than using stringent filtering, I have instead used instead fairly

permissive filters in the production pipeline, as Birdseye calls with a LOD ≥ 10 al-
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ready have reasonably high specificity even for smaller events (in the size range of

1kb to 10kb (Table 2.9) or having 5 to 10 probes (data not shown)), as judged in the

comparisons with the ng42M call set.

2.4.4 CNV discovery sample QC

The sample QC method I developed for this pipeline is relatively simple yet effec-

tive. By quantifying the two primary data quality factors that affect CNV discovery

performance, spatial auto-correlation and noise, the method is able to clearly distin-

guish samples of acceptable quality, in which the number of CNV calls per sample

follows an expected inverse correlation with the level of noise, and samples that

are apparent outliers to this trend. This pattern of separation has been consistently

observed in several Affy6 datasets, and in principle should be applicable to CNV

discovery pipelines for other arrays and sequence data as well.

The QC methods can still be improved. In analyses described in later chapters in this

thesis, I found that data quality was not equally poor throughout the entire genome

and good quality CNV calls at specific loci could still be salvaged in some of the

samples that had failed the QC thresholds described here. Therefore, a finer QC

procedure that filters by chromosomes rather than by samples might prove useful.

2.4.5 CNV clustering versus joint calling

An ad hoc CNV clustering step was deployed at the end of the discovery pipeline

to combine CNVs called from each individual that likely correspond to the same

mutation event and to calculate a lower bound on the numbers of individuals carry-

ing such events in a population. Based on reciprocal overlap, the generality of this

method ensures it can be applied to all CNV call sets produced by various CNV dis-

covery pipelines. However, a better solution would be to statistically model CNVEs

and to call CNVs jointly from multiple individuals rather than calling CNVs one

individual at a time. As pointed out by Zöllner [40], sharing information across in-

dividuals should not only increase the sensitivity of calling common CNVs but also

make estimation of the border of CNVE more accurate.
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2.4.6 Merging split CNV calls

There have been a number of reports that large CNVs are sometimes incorrectly split

by both HMM-based methods [11, 33, 41] and segmentation-based methods [12, 27].

In this pipeline, I introduced a merging step after call QC and sample QC. For some

large CNVs, since each individual split calls produced by Birdseye did not meet the

call QC thresholds, they could not be caught by the merging step and hence missed

from the final call set. An alternative design would be to merge CNV calls prior

to any call filtering. However, it would be difficult to derive a LOD score for the

merged CNV call to allow it to be filtered along with other, unmerged calls. A neater

solution would be to reduce the probability of splitting large CNVs at the discovery

stage. HMM-based methods such as Birdseye currently often use distance-aware

transition probabilities wherein the likelihood of a probe having a different copy

number state from its previous probe increases as the distance to the previous probe

increases. These distance-aware transition probabilities are independent of the loca-

tion of the probe. With the current knowledge of spatial distribution of CNVs across

the genome, location-aware transition probabilities could be introduced. With the

availability of large amount of Affy6 data, one can calculate a signal-to-noise ratio

for every probe and weight probes on their signal-to-noise ratio during CNV calling.

Such information has been used in segmentation-based method [42] and can also be

incorporated into the Viterbi algorithm for HMM-based methods.

2.4.7 Application of this pipeline

This pipeline has been successfully applied to a number of cohorts genotyped using

Affy6, ranging from apparently healthy genomes and patient genomes with subtly

different patterns of CNV from controls (see following chapters), and should be ap-

plicable to the majority of disease cohorts. However, this pipeline was not designed

for CNV discovery in cancer genomes, since (i) the emission model parameters of

Birdseye were estimated only for the pre-defined states corresponding to copy num-

ber of integer 0–5, and (ii) spatial auto-correlation and level of noise as measures of

data quality only applies to genomes with a limited amount of CNV and the as-

sumption that the number and the deletion-duplication-ratio of CNVs discovered
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in one sample should be relatively comparable among individuals does not hold for

cancer genomes.





CHAPTER 3

COPY NUMBER VARIATION AND

SEVERE EARLY-ONSET OBESITY

3.1 Introduction

3.1.1 The genetics of obesity

Obesity is a medical condition in which an excess of body fat has accumulated to

the extent that it may have an adverse effect on health. The addition to its social and

psychological effects, the incidence of obesity is highly correlated with increased

morbidity of type II diabetes, hypertension, coronary artery disease, many forms of

cancer and reduced life expectancy [43]. Today, nearly one fifth of the UK popu-

lation can be defined as being clinically obese by having a body mass index (BMI)

greater than 30 [44]. The role of ‘environmental’ factors in the development of obe-

sity is apparent, as the increasing prevalence of obesity is coupled with an increase

in dietary energy intake and a more sedentary lifestyle over past decades. How-

ever, the heritability of BMI estimated from studies of large number of monozygotic

twins adopted as infants and raised separately in unrelated families ranges from 0.4

to 0.8 [45–47], indicating a strong genetic determinant in relative body weight.

49
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3.1.1.1 Physiological basis of body weight control

Although the nature of such genetic determinants of obesity has not been fully un-

derstood, they must act through the long-term control of energy intake and ex-

penditure. Such control resides in the part of the brain called the hypothalamus

through regulation of appetite by the leptin-melanocortin signaling pathway (Fig-

ure 3.1). This pathway was largely characterized through genetic studies in mice

[48–50]. Leptin is an adipose-derived hormone that circulates through blood. It

interacts with leptin receptors on first order neurons at the hypothalamic arcuate

nucleus, activating proopiomelanocortin(POMC)-producing neurons and suppress-

ing neuropeptide-Y(NPY)/Agouti-related peptide(AGRP)-producing neurons. The

former leads to the cleavage of POMC into α-melanin stimulating hormone (α-MSH)

that exerts catabolic actions through melanocortin-4-receptor (MC4R) and melanocortin-

3-receptor (MC3R) and the latter causes decrease in food intake. The NPY/POMC-

producing neurons also project to the hypothalamic paraventricular nucleus, which

has long been identified as a ‘satiety center’ [51]. In this way, the long-term energy

balance is maintained by the feedback between body fat and regulation of appetite

and catabolism via leptin.

3.1.1.2 Monogenic and syndromic obesity

Human mutations throughout the leptin-melanocortin signaling pathway have been

found to produce Mendelian disorders in which severe obesity is the most obvious

phenotype [53–55]. The majority of those mutations are dominant. Obesity is usu-

ally developed in childhood with some patients rapidly gaining weight just weeks

after birth, and most are accompanied with hyperphagia [56]. Obesity caused by

congenital deficiency of leptin can be effectively treated by administration of leptin

[57], but defects in later steps of the pathway currently have no targeted therapy.

Apart from the monogenic form of obesity that is primarily caused by mutations

in appetite-controlling pathways, at least 20 rare syndromes are also characterized

by obesity [43]. Most of these obesity syndromes are distinguished by the presence

of mental retardation, such as Prader-Willi syndrome, Pseudohypoparathyroidism
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Figure 3.1: The leptin-melanocortin pathway. ARC: arcuate nucleus; PVN: paraventricular
nucleus. Figure taken from Walley et al [52].

type1A (PHP1A) syndrome, Bardet-Biedl syndrome (BBS), etc. The causes of these

syndromes are diverse, and both discrete point mutations and large chromosomal

abnormalities have been shown to play a role [43, 58, 59].

3.1.2 Previous discoveries of obesity related loci

Genes and mutations discovered so far only account for a small fraction of extreme

early onset obese cases. For example, mutations in MC4R, despite being the most

common known cause of monogenic obesity, is found in only 1-6% of obese indi-

viduals from different ethnic groups, and the frequency is lower in cases with a less

severe phenotype [60]. There has been continued effort to search for novel genes

and variants that might cause obesity and account for the heritability of relative

body weight. Much progress has been made in recent years, especially for popula-

tion variation in BMI.
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3.1.2.1 Family-based linkage studies

This method involves the genotyping of families of a proband using polymorphic

markers throughout the genome and calculating the degree of linkage of each marker

to the disease trait. A number of loci have been found to be linked to common or

severe obesity, such as 2p21-p23 [61, 62], 3q27 [63, 64] and 20q11-q13 [65, 66]. How-

ever, these linkage intervals are large and have proven to be difficult to replicate due

to issues in sampling, phenotyping and statistical power, and hence linkage studies

have been more or less superseded by genome-wide association studies in recent

years.

3.1.2.2 Genome-wide association studies (GWAS)

This method entails genotyping a large number of common polymorphic markers

throughout the genome in large cohorts of unrelated cases and controls and tests the

association of each marker with the trait in question. In 2007, FTO became the first

gene found to be associated with BMI by GWAS [67]. This finding was replicated

in multiple cohorts, with an estimated increase in BMI caused by one copy of the

risk allele being 0.2–0.4kg/m2 [68–70]. A year later, a second association signal, a

SNP downstream of MC4R, was found and replicated in cohorts of individuals of

European descent [71]. In 2009, a meta-analysis of 15 GWAS for BMI in cohorts of

European descent conducted by the GIANT consortium not only replicated associa-

tions at FTO and MC4R, but also discovered six new associated loci at which several

of the likely causal genes are expressed or known to act in the central nervous sys-

tem [72]. More recently, 18 more BMI-associated loci were discovered by GWAS in

even larger cohorts [73]. However, all confirmed associated loci together only ex-

plain ∼1.45% of the variance in inter-individual BMI [73], while further increasing

sample size using current genotyping chip designs is likely to find only common

variants of even smaller effect size.
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3.1.2.3 Candidate gene association testing

The candidate gene approach involves genotyping polymorphic markers or gene

resequencing in a candidate gene of putative relevance to obesity in cases and con-

trols. Such candidates can come from current knowledge of the etiology of the dis-

ease, or genomic intervals where linkage or association was found by whole genome

approaches.

3.1.3 CNV-disease association

In principle, a disease with a genetic etiology can be caused by any type of ge-

netic lesion; some of these lesions will be SNPs and some will be CNVs [1]. Large

chromosomal abnormalities have been known to cause both inherited and sporadic

diseases long before the discovery of the genome-wide prevalence of CNVs in the

general population. Some of these abnormalities are cytogenetically detectable and

many are flanked by long segmental duplications that make the region susceptible

to re-arrangements mediated by Non-Allelic Homologous Recombination (NAHR).

Well-known examples include the 22q11.2 deletion, which is responsible for the Di-

George syndrome [74], the 17p11.2 duplication, which is responsible for Charcot-

Marie-Tooth syndrome type1A [75].

Following the discovery of common CNVs in the general population [38, 76–80],

their functional impact has been fervently sought after with the hope that some

of them might explain part of the ‘missing heritability’ left by SNP GWAS. A few

disease associations with common CNVs have been reported, such as deletions up-

stream of IRGM, which is associated with Crohn’s disease [81], a multi-allelic CNV

at CCL3L1, which influences susceptibility to HIV-1/AIDS and rheumatoid arthri-

tis [82, 83] and a ∼43kb deletion upstream of NEGR1, which is associated with in-

creased BMI [72]. However, a comprehensive study of disease association of all

common CNVs >500bp undertaken by the WTCCC revealed that except for a lim-

ited number of loci, the vast majority of common CNVs that could be genotyped

using current technology do not associate with the studied diseases and are unlikely

to have substantial impact on common diseases in general. For the small number
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of loci that do exhibit association, the CNVs are typically well-tagged by common

SNPs and have been captured by previous SNP GWAS, indicating that common

CNVs are unlikely to explain the ‘missing heritability’ for common diseases [13].

Therefore, much attention has shifted towards rare CNVs in rare diseases, wherein

variants might be expected to have larger effect sizes and are unlikely to be fully

captured by common SNPs.

Studies in moderately rarer neurodevelopmental disorders, such as schizophrenia,

have been especially fruitful. In addition to observations of an increased genome-

wide burden of large and rare CNVs that disproportionally disrupt neurodevelop-

mental pathways in patients compared to controls, associations involving de novo or

recurrent CNVs at specific loci, including deletions at 1q21.1, 15q13.3 and 22q11.2

and duplications at 16p11.2 were discovered and replicated [11, 84–86]. Similar find-

ings have been reported for autism and related phenotypes, including specific as-

sociated CNVs, increased genome-wide CNV burden and functional enrichments

within CNV-disrupted genes [9, 87–90]. While some of the discovered disease-CNVs

are highly penetrant, others may act as predisposing factors and exacerbate pheno-

type in association with other large rare CNVs [91].

In this chapter, I will describe two CNV case-control studies on severe early-onset

obesity. The first one involves a relatively small patient cohort that is enriched for

patients with syndromic forms of obesity (Section 3.3.1). The second study involves

a larger cohort of patients with only severe early-onset obesity (Section 3.3.2). The

first study only investigated the role of rare CNVs, whereas both common and rare

CNVs were examined in the second study.
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3.2 Materials and methods

3.2.1 Patient and control data

The 1,656 UK obese patient samples are from the SCOOP (Severe Childhood On-

set Obesity Project) cohort, a selected subset of patients recruited to the Genetics

of Obesity Study (GOOS) on the basis of severe obesity defined as a BMI standard

deviation score (BMI sds) >3 and onset of obesity before 10 years of age [92]. They

have normal karyotype and do not have mutations in LERP, POMC and MC4R as

determined by prior sequencing conducted at the Metabolic Research Laboratories,

Addenbrooke’s hospital. Some of these patients were ascertained with develop-

mental delay in addition to obesity. The 1,656 samples were divided into three

sub-cohorts: 959 obese-only patients of self-reported European ancestry, referred

to as SCOOP1, 325 patients of self-reported European ancestry, of which 143 have

developmental delay in addition, referred to as SCOOP3, and the remaining 374 of

patients out of which 219 have developmental delay in addition and 15 self-reported

as being of non-European ancestry, referred to as SCOOP2. SCOOP3 were referred

to as SCOOP1, and SCOOP1 and SCOOP2 were referred to as SCOOP2 in Chapter

2. The initial study described in Section 3.3.1 only investigated SCOOP3, whereas

the following study described in Section 3.3.2 included all of the three sub-cohorts.

The 7,431 apparently healthy individuals are drawn from two sources. The first set

includes 5,989 UK individuals recruited as common controls in the GWAS of 13 dis-

eases undertaken by the Wellcome Trust Case Control Consortium 2 (WTCCC2), of

which ∼50% of samples are from the 1958 British Birth Cohort and ∼50% of sam-

ples are from the UK Blood Service Control Group. The second set of 1,442 con-

trol individuals, all of European-American ancestry, are from a subset of a control

cohort used in a GWAS of schizophrenia and bipolar disease undertaken by Ge-

netic Association Information Network (GAIN). Samples from both patients and

controls were previously genotyped on Affymetrix genome-wide human SNP array

6.0. Affymetrix 6.0 .CEL files for cases were obtained from the Metabolic Research

Laboratories, Addenbrooke’s hospital and the Microarray facilities, Sanger Institute,

and .CEL files for controls were from the Wellcome Trust Case Control Consortium
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2 for WTCCC2 controls and from the Database of Genotype and Phenotype (dbGaP)

through accession number phs000017 and phs000021 for GAIN controls.

3.2.2 Permutation test of CNV burden

To assess the significance of altered CNV burden in cases compared to controls, I

randomly permuted the ‘case’ ‘control’ labels of samples 10,000 times. To control

for confounding factors that might be correlated with affected status such as data

quality, measured by median of absolute deviation (MAD) of sample log2 ratio, and

number of all CNVs called per sample (NCPS), permutations were conditioned on

these factors, i.e. pooled case and control samples were stratified into MAD or NCPS

deciles and labels of affected status were only permuted within each decile.

3.2.3 Identifying ethnic outliers

I called the genotypes of ∼1M SNP probes included in the Affymetrix 6.0 array

using ‘Birdseed’, the SNP genotype calling module of ‘Birdsuite’ for all case and

control samples, together with the 270 HapMap1 samples (90 European, 90 African

and 90 East Asian) and 74 HapMap3 Indian samples. The genotypes were coded as

0, 1 and 2 for loci with homozygous reference alleles, heterozygous alleles and ho-

mozygous alternative alleles, respectively. 10,827 SNPs that are at least 20kb apart

along the genome were selected as markers to exclude strongly correlated markers

as well as to reduce computational load. A Euclidean distance between each pair

of individuals was calculated using these markers and the distance matrix was sup-

plied as the input for multidimensional scaling (MDS). Individuals were projected

using the first two dimensions that represented inter-population genetic variation.

The ‘genetic distance’ to Europeans was calculated as the distance in the projected

space between each individual and the center of the CEU cluster. An empirical ge-

netic distance threshold was adopted above which individuals were regarded as

non-Europeans.
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3.2.4 Defining CNVEs for test of enrichment

CNV calls in cases and controls were pooled together and then divided into dele-

tions and duplications. CNVEs (see Chapter 2, page 34 and 15, for definition) were

clustered from pooled deletions and duplications separately. Each deletion (or du-

plication) CNVE with a carrier frequency of <1% was treated as a locus for the test,

at which the number of cases and controls carrying deletions (or duplications) cov-

ering >50% of the bases of the CNVE were counted (Figure 3.2).

Gene

Probe

CNV calls

Figure 3.2: Illustration of the unit of test. Red horizontal lines represent deletions and green
horizontal lines represent duplications. Control CNVs are in darker colors. Green dashed lines
mark the CNVE clustered from duplications. Red dashed lines mark the CNVE clustered from
the smaller deletions. Red dotted lines mark the CNVE clustered from the larger deletions. Three
tests, each for one CNVE (two deletion CNVEs and one duplication CNVE), will be performed
for the illustrated region.

3.2.5 Performing common CNV case-control association testing

For each tested CNVE (genomic window), for each sample a single CNV measure-

ment that summarized the measurements of all probes within the window was gen-

erated to perform the test. Three probe measurements (intensities, log2 ratios rela-

tive to plate median and log2 ratios relative to cohort median) and three methods of

summarization (mean, median and first principal component) were considered. The

first principal component was calculated from the probe-by-sample matrix. This

summarization method accounts for the differences in informativeness among dif-

ferent probes (e.g. probes located within the CNVE but outside the actual CNV in
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the specific sample are less informative of the genotype of the CNV). The result-

ing principal component usually down-weights probes of which measurements are

uncorrelated with the remainder and isolates the variation across samples of differ-

ent copy number. The summarized measurements (mean, median and first princi-

pal component) were then analyzed using the R package CNVtools, which imple-

ments a likelihood ratio test that models the distribution of summarized values as

a Gaussian mixture and compares the goodness of fit with or without association

to affected status [93]. The method takes a pre-defined number of CNV genotypes,

models the parameters of the Gaussian mixture using a generalized linear model in

which the mean and variance of CNV measurements is dependent on copy num-

ber, affected status and other sources of differential errors, such as batch effects, and

uses a EM algorithm to obtain the maximum likelihood estimates of the model pa-

rameters. I considered the number of CNV genotypes ranging from 2 to 4, which

covers the majority of scenarios. Since no single combination of probe measurement,

method of summarization and pre-defined number of CNV genotypes worked best

for all CNVEs, the test was run under all combinations of settings, therefore yield-

ing 27 test results for each common CNVE (Figure 3.3). These results were subjected

to manual examination and the one with most appropriate genotype clustering was

selected as the final result. For a small proportion of CNVEs of which meaningful

genotype clustering could not be produced under all combinations of settings, the

test was re-run with manually tweaked settings. CNVEs that failed manual tweak-

ing were removed from further analyses.

3.2.6 Test of functional enrichment

A modified version of gene sets enrichment analysis developed by Raychaudhuri et

al [94] was used to test if genes functionally related to obesity were affected more

frequently in cases relative to controls. The analysis was based on a logistic model

that controls confounders by including them as cofactors. I used the model that

controls for the number of CNVs called per sample and the average size of CNVs
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called per sample:

log
[

pi,case

1− pi,case

]
= θ + β0 · ci + β1 · si + γ · gi + e

, where pi,case is the probability that individual i is affected, θ represents the back-

ground log likelihood the individual is affected, ci, si and gi is the number of called

CNVs, the average CNV size and the number of CNV affected genes belonging to a

gene set of interest in that individual and e is an error term. The analysis tests if γ,

the increase in log likelihood per CNV affected gene within the gene set is signifi-

cantly different from 0. I re-implemented this method in R.

Gene sets were obtained from the Molecular Signatures Database v3.0, which col-

lects annotated gene sets for use with gene sets enrichment analysis [95]. I down-

loaded the C2 collections which includes canonical pathways, KEGG gene sets, BIO-

CARTA gene sets, REACTOME gene sets and differentially expressed gene sets in

response to chemical and genetic perturbations collected from PubMed.
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3.3 Results

3.3.1 Initial analysis of 334 patient samples

CNVs were called from the case (SCOOP3) and control (WTCCC2 and GAIN) co-

horts using the pipeline described in Chapter 2 (with slightly different parameters

and procedures, as the pipeline continued to improve after this analysis). 15,780

autosomal CNVs from 293 patient samples (including 9 replicates) and 400,736 au-

tosomal CNVs from 7,366 control samples passed QC. For pairs of replicated sam-

ples in the cases, the ones with greater level of noise in intensities were removed.

The median number of CNVs called per sample (55 vs 55), the median size of CNVs

(23.2kb vs 23.1kb) and the deletion-to-duplication (4.09 vs 4.08) ratio were compara-

ble between cases and controls. A summary of call set statistics of cases and controls

is presented in Table 3.1.

Table 3.1: Comparison of call set statistics between cases and controls

Cohort Sample
size #CNV

Median
#CNV
per

sample

Median
CNV size

(kb)

Deletion-
to-

duplication
ratio

#CNVE %Singleton

Case 284 15,323 55 23.2 4.09 2,143 63.0

Control 7,366 400,736 55 23.1 4.08 15,399 59.8

For the analysis of this data, I considered assessing three disease models: (a) com-

mon variants each with small effect, (b) a single rare variant with large effect and

(c) multiple rare variants each with moderate effect. Model a has very limited power

with such a small patient cohort. Therefore, the analysis was restricted to rare vari-

ants (model b and c).

The frequencies of CNVs were calculated by pooling case and control CNVs to-

gether and clustering pooled CNVs into CNVEs (see Chapter2 Methods, page 15).
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‘Rare’ variants were defined as having a carrier frequency <1%. This left 14,645

rare CNVEs (clustered from 51,240 CNVs) out of the total 15,146 CNVEs (clustered

from 416,300 CNVs). After filtering out rare CNVEs clustered exclusively from con-

trol CNVs, 1,858 CNVEs (clustered from 2,551 case CNVs and 19,764 control CNVs)

were left. An overview of the genomic distribution of the CNVs belonging to these

CNVEs is shown in Figure 3.4.

Y

X

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Case
Control

Figure 3.4: Overview of rare CNVs. The lengths of the colored rectangles represent the size of
CNVs whereas the heights distinguish recurrent CNVs and singletons by which the former is taller
than the latter. No CNV is displayed on chromosome X and Y since only autosomal calls were
kept.
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3.3.1.1 Specific loci associated with obesity

3.3.1.1.1 Genome-wide testing

Under the disease model in which a single rare variant has a large effect on the

phenotype (model b), I investigated if there was any locus where rare CNVs were

specifically found in cases or significantly enriched in cases. A CNVE-based ap-

proach was adopted (see Section 3.2.4). For each locus, the number of cases and

controls that carry a CNV overlapping the CNVE >50% was used in a double-sided

Fisher’s Exact Test to assess the statistical significance of the enrichment. As dele-

tions and duplication differ in their impact on genomic features and the ability to

interpret their functional impact, they were treated separately. In total, 1,262 rare

deletion CNVEs and 935 rare duplication CNVEs were subjected to the test of en-

richment. 502 deletions corresponding to 396 CNVEs observed in 185 cases and

307 duplications corresponding to 256 CNVEs observed in 147 cases were found en-

riched in cases with a p value under 0.05. To correct for multiple hypothesis testing,

I adopted the Bonferroni method, which maintains family-wise false positive rate

under α by requiring each individual test to reach a significance level of α/n where

n is the number of independent tests. 14 loci at which deletions or duplications were

significantly enriched in cases relative to controls left after such correction with only

four found overlapping genes (Table 3.2). The deletion at 4p15.31 is located in the

first intron (1.1Mb) of some of the longer transcripts of KCNIP4, leaving duplications

at 8q24.3 and deletions at 16p11.2 the only candidates that affect coding sequence.

Considering the rarity of many of the tested CNVs, the power to detect an associa-

tion signal that reaches genome-wide significance is low. Therefore, an additional 9

genic CNVs that are case-specific and recurrent were collected (Table 3.3). Except for

deletions at 3q28 and 10q11.23 which are intronic, the rest all affect coding sequence.
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Table 3.2: Deletions and duplications significantly enriched in cases relative to controls

Loci Start
(kb)

End
(kb)

Size
(kb) Type #Case #Control P value #Overlapped

genes

3p12.2 83,228 83,401 173 dup 3 0 5.1×10−5 0

4p15.31 20,981 20,986 5 del 6 1 1.7×10−8 1∗

5p11 46,197 46,314 117 del 4 2 2.6×10−5 0

7p14.1 38,261 38,337 77 dup 3 0 5.1×10−5 0

8q23.2–
q23.3 112,106 112,213 107 dup 3 0 5.1×10−5 0

8q24.3 143,422 143,656 234 dup 3 0 5.1×10−5 2

10q21.1 54,598 54,611 14 del 7 11 2.0×10−6 0

11q14.1 79,651 79,661 11 del 4 2 2.6×10−5 0

11q14.1 80,550 80,557 7 del 4 0 1.9×10−6 0

13q21.1 56,767 56,787 20 del 4 1 9.0×10−6 0

13q21.31 62,157 62,402 245 dup 3 0 5.1×10−5 0

16p11.2 28,616 28,951 336 del 5 2 1.3×10−6 12

16p11.2 29,425 30,236 811 del 6 4 4.6×10−7 38

21q21.2 23,351 23,356 5 del 5 4 7.6×10−6 0

∗ Intronic

CNVs affecting coding sequence listed in Table 3.2 and Table 3.3 have been ex-

perimentally validated using multiplex ligation-dependent probe amplification per-

formed by E. Bochukova at Metabolic Research Laboratories at Addenbrooke’s Hos-

pital. The functional relevance of the majority of them remains unclear at this stage.

3.3.1.1.2 Candidate gene testing

To complement the above association tests, I also used a candidate gene approach

which might overcome a lack of power in a whole-genome association test setting.

A list of 12 genes (CRHR1, CRHR2, LEP, LEPR, MC3R, MC4R, MCHR1, MTCH2,
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Table 3.3: Case-specific recurrent genic deletions and duplications

Loci Start
(kb)

End
(kb)

Size
(kb) Type #Case #Control P value #Overlapped

genes

3p11.2 89,245 89,344 99 dup 2 0 1.4×10−3 1

3q28 193,437 193,452 16 del 2 0 1.4×10−3 1

6p12.1 52,875 52,892 17 del 2 0 1.4×10−3 1

8q24.3 143,250 143,600 350 dup 2 0 1.4×10−3 2

9q31.1 106,401 106,407 5 dup 2 0 1.4×10−3 1

10p15.3 432 877 445 dup 2 0 1.4×10−3 3

10q11.23 52,980 52,985 5 del 2 0 1.4×10−3 1

11q13.4 71,980 72,107 126 dup 2 0 1.4×10−3 2

22q13.33 49,246 49,349 103 dup 2 0 1.4×10−3 10

NTRK2, PCSK1, POMC and SIM1) previously implicated in monogenic obesity was

collected from the Human Obesity Gene Map [96] and a list of 8 genes (BCDIN3D,

BDNF, ETV5, FTO, GNPDA2, KCTD15, SH2B1 and TMEM18) with nearby SNPs as-

sociated with increased BMI was collected from literature [72]. The distributions

of CNVs overlapping a 2Mb window based at each above genes were examined.

No rare case CNV was found overlapping or near CRHR1, CRHR2, LEP, MC3R,

MCHR1, NTRK2, PCSK1, POMC, SIM1, BCDIN3D, BDNF, ETV5, FTO and TMEM18.

A 100kb duplication overlapping the first two exons of LEPR was found in one case

and a 40kb duplication 237kb upstream of GNPDA2 and 315kb away from the lo-

cal peak of GWAS signal (rs10938397) was found in three cases, but they are likely

to be irrelevant given their prevalence in controls. A 30kb duplication in the last

intron of CHST8, 48kb away from KCTD15 and 82kb away from the local peak of

GWAS signal (rs11084753) was found in two cases and three controls with a test p-

value of 0.013. A 235kb duplication overlapping the first exon of PTPRJ and 185kb

away from MTCH2 was found in one case and is partially (24–29%) overlapped by

duplications found in two controls. A 153kb deletion 60kb downstream of MC4R

and overlapping the local peak of GWAS signal (rs17782313) was found in one case
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and is marginally (4–11%) overlapped by deletions found in three controls. Dele-

tions of variable length with a minimal overlapping region of 250kb all encompass-

ing SH2B1 and the local peak of GWAS signal (rs7498665) were found in five cases

and the minimal overlapping region was found deleted in two controls with a test

p-value of 1.3×10−6, which was also highlighted by the genome-wide testing ap-

proach.

3.3.1.1.3 16p11.2 deletion encompassing SH2B1

Both of the above approaches pointed to the heterozygous deletions at 16p11.2 en-

compassing SH2B1 found in five unrelated cases out of 284 and two controls out

of 7,366. Closer inspection reveals that the deletions fall into two classes: a shorter

form of 220kb (28.73–28.95 Mb) and a longer form of ∼1.7Mb (28.4–30.1 Mb). The

breakpoints of both classes of deletion are embedded within complex, segmentally

duplicated regions of 16p11.2 containing directly-oriented, highly-similar (>98% se-

quence similarity) duplicated sequences greater than 15kb in length (Figure 3.5).

This observation strongly supports the hypothesis that these deletions arise through

non-allelic homologous recombination (NAHR) between duplicated sequences.

Our collaborator E. Bochukova and S. Farooqi at Metabolic Research Laboratories

at Addenbrooke’s Hospital generated additional genotype and phenotype data on

these five families. The shorter 220kb deletion was seen in three patients with se-

vere early onset obesity alone and was inherited from their respective obese parents.

The longer ∼1.7Mb deletion, which encompasses the 220kb deletion and extends

through a 593kb region (29.5–30.1 Mb) where deletions are associated with autism

and mental retardation, occurred de novo. The two carrying patients had mild de-

velopmental delay in addition to their severe obesity. These findings are consistent

with a role for the SH2B1-containing 220kb region (28.73–28.95 Mb) in severe obe-

sity and the 29.5–30.1 Mb region in brain development. Recently, the 29.5–30.1 Mb

region has been discovered to independently associate with obesity in addition to

autism and mental retardation [97].

Further experiments undertaken by S. Farooqi et al revealed a striking similarity

of the phenotype of the patients with the SH2B1-containing deletion with human
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leptin receptor deficient phenotype. Since SH2B1 encodes an adaptor protein for

several members of the tyrosine kinase receptor family including ones involved in

leptin and insulin signaling and heterozygous knock-out of Sh2B1 in mice leads to

obesity on a high fat diet, haploinsufficiency of SH2B1 may be a plausible mecha-

nism underlying the phenotype seen in these patients.
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Figure 3.5: Deletions at 16p11.2 overlapping SH2B1. Affymetrix 6.0 array data for five patients
with deletions at 16p11.2 is shown. Log2 ratios of the five samples are highlighted in dark red
with other samples in the same genotyping plate shown in grey. Annotation of the segmental
duplications was taken from the UCSC genome browser and the darkness of color coding
represents sequence similarity between the duplicated pairs. Protein-coding genes are represented
by dark blue lines; SH2B1 is highlighted in red and by blue vertical shading. The light pink
vertical shading indicates the range of a previous BMI association signal found in two genome
wide association studies and the light grey vertical shading indicates the reported autism
associated CNV region.
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3.3.1.2 Global CNV burden

Despite discovering only a couple of loci at which the locus-specific enrichment of

rare CNVs in cases relative to controls reached statistical significance, the finding

of many case-specific CNVs and rare CNVs with higher case prevalence might still

indicate their contribution to the phenotype that could not be detected individu-

ally, but might be detected collectively as a ‘burden’ of CNVs. Previous study re-

ported increased burden of large (>100kb) and rare (<1%) CNVs in patients with

Schizophrenia [11]. Following the same criteria, I explored if there was increased

burden of large rare CNVs in patients with severe-early onset obesity relative to

controls. To control for the subtle differences in data quality that might lead to

differential sensitivity and specificity of CNV calling between cases and controls

(Figure 3.6), I used a permutation-based method (see Section 3.2.2) to assess the sta-

tistical significance of global burden.
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Figure 3.6: Comparison of level of noise and number of CNV calls per sample between cases and
controls. Case samples have higher level of noise than controls (p = 1.2×10−3, Mann-Whitney
test), leading to slightly greater number of calls per sample, though such difference is
insignificant (p=0.11).

Since many of the obese patients also had developmental delay and given the previ-
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ous observation that increased CNV burden is association with neurodevelopmen-

tal disorders, I investigated whether the observed increased CNV burden in cases

relative to controls was driven by inclusion of patients with developmental delay

by performing the analysis separately on the group of patients with obesity and

developmental delay, and on the group of patients with obesity but without devel-

opmental delay. Collectively, the entire set of cases exhibit a two-fold enrichment

of >500kb rare deletions compared to controls (p = 5×10−4, Fisher’s exact test). A

stronger three-fold enrichment is observed in cases with developmental delay in ad-

dition to severe early onset obesity (p = 3×10−4), whereas the 1.3 fold enrichment in

cases with severe early onset obesity alone is not significant (p = 0.24) (Table 3.4).

Table 3.4: Global CNV burden analysis: case enrichment of >500kb rare CNVs

Samples Type Case rate Case/control
ratio PMAD

∗ PNCPS
†

Losses and
gains 0.2500 1.2996 0.0201 0.0433

All Losses 0.1127 2.0906 0.0005 0.0007

Gains 0.1373 0.9917 0.4776 0.5800

Losses and
gains 0.2089 1.0857 0.3150 0.3905

Severe early-onset obesity only Losses 0.0696 1.2917 0.2389 0.2884

Gains 0.1392 1.0055 0.4790 0.5332

Losses and
gains 0.2937 1.5417 0.0098 0.0195

Severe early-onset obesity and
developmental delay Losses 0.1667 3.1318 0.0003 0.0001

Gains 0.1270 0.9252 0.5701 0.6801

∗ Derived from permutation conditioned on MAD of sample log2 ratio

† Derived from permutation conditioned on number of calls per sample
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A more detailed analysis by type, frequency and sizes for rare CNVs >100kb yields

the following observations: (i) a significant 1.1-fold enrichment of rare CNVs >100kb

is seen in all cases collectively; (ii) cases with developmental delay in addition to

obesity generally exhibit heavier CNV burden than patients with obesity alone;

(iii) case enrichment of singleton CNVs is generally stronger compared to recur-

rent rare CNVs; (iv) case enrichment of deletions is generally stronger in larger

events (>500kb) but the trend seems reversed for duplications of which enrichment

of smaller events (100–200kb) is stronger (Table 3.5 & 3.6).
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Table 3.5: Global CNV burden analysis of >100kb rare CNVs: event type and frequency

All cases

Type Frequency Case rate Case/control
ratio PMAD PNCPS

All <1% 1.9225 1.1297 0.0015 0.0119
Losses and gains Single occurrence 0.5035 1.5966 0.0000 0.0000

Recurrent <0.1% 0.5775 1.3901 0.0001 0.0007

All <1% 0.7430 1.1085 0.0357 0.0877
Losses Single occurrence 0.1796 1.7246 0.0002 0.0011

Recurrent <0.1% 0.1937 1.2426 0.0399 0.0778

All <1% 1.1796 1.1434 0.0055 0.0344
Gains Single occurrence 0.3239 1.5335 0.0008 0.0084

Recurrent <0.1% 0.3838 1.4786 0.0004 0.0014

Severe early-onset obesity only

All <1% 1.8861 1.0965 0.0352 0.0989
Losses and gains Single occurrence 0.4937 1.5487 0.0022 0.0069

Recurrent <0.1% 0.5000 1.2095 0.0396 0.0913

All <1% 0.7595 1.1284 0.0674 0.1215
Losses Single occurrence 0.1519 1.4437 0.0646 0.0647

Recurrent <0.1% 0.2342 1.4909 0.0090 0.0178

All <1% 1.1266 1.0760 0.1203 0.2298
Gains Single occurrence 0.3418 1.6004 0.0068 0.0222

Recurrent <0.1% 0.2658 1.0371 0.3402 0.4749

Severe early-onset obesity and developmental delay

All <1% 1.9921 1.1649 0.0043 0.0238
Losses and gains Single occurrence 0.6032 1.8971 0.0000 0.0002

Recurrent <0.1% 0.5556 1.3400 0.0062 0.0250

All <1% 0.7381 1.0997 0.1280 0.2070
Losses Single occurrence 0.2143 2.0341 0.0012 0.0017

Recurrent <0.1% 0.1429 0.9182 0.5956 0.6518

All <1% 1.2540 1.2071 0.0078 0.0328
Gains Single occurrence 0.3889 1.8292 0.0016 0.0070

Recurrent <0.1% 0.4127 1.5933 0.0016 0.0062
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Table 3.6: Global CNV burden analysis of >100kb rare CNVs: event type and size

All cases

Type Size (kb) Case rate Case/control
ratio PMAD PNCPS

100–200 1.1162 1.2279 0.0000 0.0011
Losses and gains 200–500 0.5563 0.9265 0.6769 0.8509

>500 0.2500 1.2996 0.0201 0.0433

100–200 0.4190 1.0420 0.1942 0.2713
Losses 200–500 0.2113 0.9862 0.4591 0.5933

>500 0.1127 2.0906 0.0005 0.0007

100–200 0.6972 1.3753 0.0000 0.0003
Gains 200–500 0.3451 0.8934 0.7456 0.8721

>500 0.1373 0.9917 0.4776 0.5800

Severe early-onset obesity only

100–200 1.1013 1.2005 0.0077 0.0187
Losses and gains 200–500 0.5759 0.9436 0.6052 0.7298

>500 0.2089 1.0857 0.3150 0.3905

100–200 0.4241 1.0471 0.2615 0.3234
Losses 200–500 0.2658 1.2408 0.0861 0.1226

>500 0.0696 1.2917 0.2389 0.2884

100–200 0.6772 1.3218 0.0049 0.0133
Gains 200–500 0.3101 0.7829 0.9228 0.9547

>500 0.1392 1.0055 0.4790 0.5332

Severe early-onset obesity and developmental delay

100–200 1.1587 1.2570 0.0007 0.0069
Losses and gains 200–500 0.5397 0.9029 0.6792 0.8193

>500 0.2937 1.5417 0.0098 0.0195

100–200 0.4286 1.0601 0.2395 0.3048
Losses 200–500 0.1429 0.6685 0.9478 0.9688

>500 0.1667 3.1318 0.0003 0.0001

100–200 0.7302 1.4109 0.0007 0.0039
Gains 200–500 0.3968 1.0332 0.3134 0.4547

>500 0.1270 0.9252 0.5701 0.6801
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3.3.2 Analysis of 1,500 patient samples

Affy6 .CEL files of patient samples belonging to the three subsets (SCOOP1, 2 & 3)

were processed together using the pipeline described in Chapter 2, however, with

Canary calls (known common CNV genotyping calls) included, as common CNVs

were to be interrogated in the analyses. To maintain consistency with a SNP GWAS

analysis of these Affy6 data (SCOOP1, 2 & 3) conducted in parallel, only WTCCC2

controls were used for this part of the analysis and samples of patients with devel-

opmental delay or with self-reported ethnicity other than European were removed.

Replicate samples in the patient CNV set were also removed by excluding the repli-

cate with greater level of noise in array intensities. This left 135,123 CNVs from 1,167

patient samples and 693,468 CNVs from 5,899 control samples.

3.3.2.1 Identification of population ancestry outliers

As population stratification is a well-known factor that can cause spurious associ-

ation in GWAS [98], I first examined the population structure of the case and con-

trol cohorts using MDS (see Section 3.2.3). As expected, the majority of both cases

(SCOOP1,2,3) and controls (WTCCC2) are concentrated around the European ances-

try reference population (CEU) in the projected space. However, a higher propor-

tion of cases than controls apparently have more diverse population ancestry. Using

three alternative arbitrary thresholds on genetic distance to CEU with decreasing

stringency (distance to CEU = 5, 10 and 30), 6.4%, 4.8% and 1.3% of cases are re-

garded as non-European whereas the proportion of controls are only 0.54%, 0.27%

and 0.08% (Figure 3.7). The most permissive threshold (distance to CEU = 30) was

adopted to only remove cases and controls that are extremely remote in ethnicity

relative to Europeans, given that (i) all samples have gone through stringent sample

QC, (ii) systematic inflation in test statistics was very minor even with all samples

included (data not shown). This process left 132,839 CNVs from 1,152 cases and

692,256 CNVs from 5,894 controls that entered subsequent analyses of both com-

mon and rare CNVs. The summary characteristics of the case and control call set

are comparable (Table 3.7).
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Figure 3.7: Identifying ethnic outliers based on SNP genotypes and MDS projection. (A)
Each small symbol represents a sample. The European, East Asian and African
populations are well separated and serve as reference points for samples of unknown
ethnicity. As a positive control, the Indian population is located approximately at the mid
point of the European-East Asian axis, which is consistent with its ethnic and
geographical relationship with the two reference populations. All cases and controls,
including those failed sample QC or removed by various filters, are displayed. Red, green
and blue circles highlight samples regarded as non-European under thresholds of different
stringency, shown as dashed lines in (B), the distribution of the distance between the
European reference population and all samples (including the reference populations).
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Table 3.7: Call set statistics of cases and controls (Birdseye + Canary calls)

Cohort Sample
size #CNV

Median
#CNV
per

sample

Median
CNV size

(kb)

Deletion-
to-

duplication
ratio

#CNVE %Singleton

Case 1,152 132,839 115 14.6 4.09 5,101 62.0

Control 5,894 692,256 117 14.6 3.93 12,568 61.4

3.3.2.2 Common CNV analysis

With the much larger sample size of cases in this second analysis, I first explored if

there were any common CNVs associated with the phenotype.

Similar to Section 3.3.1, the approximate population frequency of CNVs were calcu-

lated by pooling case and control CNVs together and clustering pooled CNVs into

CNVEs [chapter2 method]. ‘Common’ CNVEs were defined as having a population

frequency >1%. This yields 587 common CNVEs (clustered from 775,102 CNVs) out

of the total 14,654 CNVEs (clustered from 825,095 CNVs).

Test of CNV-phenotype association can be done either directly using the quantita-

tive measure of copy number, or the integer copy number reflecting the CNV geno-

type, or indirectly through the genotypes of tagging markers that are highly corre-

lated with the CNV genotypes. As a perfectly correlated SNP could not be found on

Affy6 for every common CNVE and the total number of common CNVEs was not

prohibitively large, the first approach was adopted. For each common CNVE, I per-

formed a likelihood ratio test for association that models the distribution of quan-

titative CNV measurements as Gaussian mixtures and controls for potential differ-

ential biases between cases and controls, as implemented in the CNVtools package.

Due to the complexity and heterogeneity of the measurements of CNVs, the test was

repeated 27 times under different combinations of settings, from which the most ap-

propriate result was manually selected (see Section 3.2.5).
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Out of 587 common CNVEs, 416 could be tested for association under at least one

of the 27 automated settings. After manually curating the clustering, test results

could be recovered for another 65 common CNVEs, making a total of 481 testable

common CNVEs. Similar to frequently seen SNP GWAS results, the p values of

tests at the vast majority of loci approximately followed the distribution expected

under the null hypothesis that no association is found. There could be some minor

confounding factors (inflation factor λ = 1.03), such as residual differences in pop-

ulation ancestry, but the effect is very minor and the slight increase of type I error

rate is unlikely to affect the very top candidates (Figure 3.8A).
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Figure 3.8: Genome-wide association results for common CNVs. (A) Quantile-quantile plot of
-log10(p) of all 481 common CNVs. Concentration band represents 95% confidence interval.
Inflation factor is represented as the slope of the fitted line. (B) Quantile-quantile plot after
removal of the two CNVs upstream of NEGR1.

The most and only significant associations came from two deletions upstream of

NEGR1: a smaller ∼8kb deletion (72,528–72,536kb) with inversed association (p =

6.1×10−11) and a larger ∼43kb deletion (72,541–72,584kb) with positive association

(p = 6.6×10−7) (Figure 3.8A). No other convincing association was observed after

their removal (Figure 3.8B).

Both deletions were described in a previous GWAS of BMI in which the larger dele-

tion, but not the smaller one, was reported to associate with increased BMI with a
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p value of 9.3×10−6 by testing using a perfect tagging SNP [72]. The same study

also found that the two deletions segregate at the locus on distinct haplotypes in

the three HapMap populations, resulting in three alleles: one represented by the

reference sequence (denoted as normal), one with the smaller deletion and the one

with the larger deletion. The genotypes of the two deletions observed in this study

verified this finding (Table 3.8).

Table 3.8: Co-presence of the genotypes of the two deletions

Cases

Copy number at ∼43kb deletion locus

0 1 2

0 0 0 19

Copy number at ∼8kb
deletion locus 1 1 204 67

2 508 299 54

Controls

Copy number at ∼43kb deletion locus

0 1 2

0 0 0 220

Copy number at ∼8kb
deletion locus 1 4 1360 444

2 2160 1441 265

As the three alleles are mutually exclusive, the question arises as to whether the two

deletion alleles are independently associated with severe, early onset obesity. The

frequency of the undeleted allele is approximately the same in cases and controls

and is expectedly not associated with the phenotype (OR = 1; 95% CI 0.90–1.1; p =

0.93, two-sided Fisher’s exact test). Therefore, a conditional analysis was performed

for the larger and the smaller deletion alleles, respectively, by testing the associa-

tion of one allele conditioned on the genotype of the other. When conditioned on

the smaller deletion allele, the association of the larger deletion allele becomes in-

significant (OR = 1.09; 95% CI 0.97–1.22; p = 0.16). When conditional on the larger
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allele, the association of the smaller deletion remains significant (OR = 0.70; 95% CI

0.60–0.82; p = 6.93×10−6). This suggests that the association in this region is largely

driven by the protective effect of the ∼8kb deletion allele. A replication study using

the Sequenom platform is being undertaken by our collaborators. In this replica-

tion experiment the tagging SNPs of the two NEGR1 deletions are being genotyped,

along with other putative association signals from the SNP GWAS analysis in large,

independent obese and control cohorts.

Scale
chr1:

CNVs
NEGR1

Mammal
Vertebrate

20 kb
72550000 72600000

43kb deletion8kb deletion

RefSeq Genes

PhastCons Conserved Elements, 28-way Vertebrate Multiz Alignment

putative NKX3.1 binding siteputative NKX6.1 binding site

Figure 3.9: The two associated common deletions upstream of NEGR1. Plot taken from the
UCSC genome browser with deletions denoted by red bars and putative transcription factor
binding sites pointed by arrows.

Although the two deletions do not overlap coding sequence, they encompass a

few conserved noncoding elements, including binding sites of transcription factor

NKX3.1 (∼43kb deletion) and NKX6.1 (∼8kb deletion) (Figure 3.9). NKX6.1 can act

as both a potent transcription repressor and a potent transcription activator [99],

and is required for the development of pancreatic beta cell [100]. NKX3.1 is a pu-

tative prostate tumor suppressor that is expressed in a largely prostate-specific and

androgen-regulated manner [101]. If NKX3.1 has a trans-regulatory role in the as-

sociation between the deletions and obesity, given its male specificity, one might

expect bias in sex in the association. Indeed, by performing the conditional associ-

ation analysis in males and females separately, a marginally significant association

of the ∼43kb deletion allele was observed in males (OR = 1.21; 95% CI 1.04–1.42; p

= 0.012) but not in females (OR = 1; 95% CI 0.86–1.17; p = 1), whereas for the ∼8kb

deletion allele, no association was observed in males (OR = 0.81; 95% CI 0.64–1.03; p

= 0.087) but the association signal observed in females was very strong (OR = 0.61;

95% CI 0.49–0.75; p = 2.1×10−6) and much stronger than that of the ∼43kb deletion

allele in males (see Discussion).
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Table 3.9: Allele frequency of the three alleles at 72,528–72,584kb

Male Female Total

8kb
deletion

43kb
deletion Normal 8kb

deletion
43kb

deletion Normal 8kb
deletion

43kb
deletion Normal

Case 0.139
(134)∗

0.657
(632)

0.204
(196)

0.131
(176)

0.662
(889)

0.206
(277)

0.135
(310)

0.660
(1521)

0.205
(473)

Control 0.182
(1083)

0.599
(3560)

0.218
(1297)

0.199
(1165)

0.610
(3569)

0.190
(1114)

0.191
(2248)

0.605
(7129)

0.205
(2411)

∗ Numbers in parentheses are counts

3.3.2.3 Rare CNV analysis

Rare CNVs were analyzed with the same strategies described in Section 3.3.1: to

identify specific associated loci and assess global CNV burden.

3.3.2.3.1 Specific loci associated with obesity

Genome-wide testing

3,013 rare deletion CNVEs and 2,814 rare duplication CNVEs were subjected to the

test of locus-specific enrichment. 462 deletions corresponding to 201 CNVEs ob-

served in 313 cases and 418 duplications corresponding to 180 CNVEs observed in

281 cases were found enriched in cases with a test p value under 0.05. After correct-

ing for multiple hypothesis testing, none of deletion CNVEs and only two duplica-

tion CNVEs remained statistically significant. The two duplication CNVEs mapped

to regions that encode the variable part of the alpha and gamma chain of T cell re-

ceptor, which are likely false associations. CNVs at some of the case-enriched loci

previously identified in the earlier analysis of the SCOOP3 samples (Table 3.2) were

found in additional cases, such as ones at 5p11, 11q14.1, 16p11.2 and 21q21.2, but

failed to reach statistical significance, possibly due to (i) differences in case pheno-
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type (different case ascertainment with respect to developmental delay), and (ii) in-

adequate power caused by sharply increased number of tests.

Due to the lack of significant associations, rare case-recurrent genic deletions with a

test p value <0.05 and control occurrence≤5 were collected to enrich for pathogenic

variants. After manual examination of log2 ratio profiles, 16 deletions were kept

(Table 3.10). Although some of them have been reported to express in brain, their

functional relevance remains unclear at this stage.

Table 3.10: Case-enriched recurrent deletions

Loci Start
(kb)

End
(kb)

Size
(kb) Type #Case #Control P value #Overlapped

genes

1p21.3 97,934 98,028 94 del 3 0 4.4×10−3 1

2q21.2 133,589 133,691 102 del 2 0 2.7×10−2 1

3p22.1 40,393 40,423 30 del 2 0 2.7×10−2 1

4p12 48,427 48,460 33 del 4 2 8.1×10−3 1

4q24 106,679 106,721 42 del 3 2 3.4×10−2 1

5p13.2 37,497 37,558 61 del 2 0 2.7×10−2 1

6q25.1 150,962 150,982 20 del 3 2 3.4×10−2 1

9p24.2 2,224 2,354 130 del 3 1 1.5×10−2 1∗

9p22.2 17,801 17,890 89 del 2 0 2.7×10−2 1∗

10q21.3 70,283 70,292 9 del 2 0 2.7×10−2 1

10q21.3 71,013 71,038 25 del 2 0 2.7×10−2 1∗

11q22.3 150,962 150,982 20 del 3 3 3.4×10−2 1∗

16p12.1 21,725 22,350 625 del 4 5 4.5×10−2 10

16p11.2 28,731 28,951 220 del 5 2 1.8×10−3 10

17p13.2 4,838 4,901 62 del 2 0 2.7×10−2 3

22q11.22 21,328 21,977 649 del 2 0 2.7×10−2 7

∗ Intronic
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Candidate gene testing

No additional rare CNVs emerged from the examination of the genomic windows

encompassing and flanking the candidate genes (described above) that are impli-

cated in monogenic forms of obesity or previous discovered GWAS signals associ-

ated with BMI.

3.3.2.3.2 Global CNV burden

Previous analysis of the smaller SCOOP3 patient cohort revealed an insignificant

enrichment of large rare CNVs in patients with obesity alone (Section 3.3.1.2). With

a much large patient cohort and consequently greater power, I investigated if such

enrichment exists with the statistical significance assessed using the some permuta-

tion method. A significant 1.16 fold enrichment was observed for all CNVs >500kb

in size and <1% in frequency. This fold of enrichment is lower than that previ-

ously observed in patients with both obesity and developmental delay (1.54 fold)

and largely consistent with that observed in patients with obesity alone (1.09 fold).

The fold of enrichment in >500kb and <1% deletions is slightly higher than previ-

ously observed (1.44 vs 1.29) but still far below that observed in patients with ad-

ditional developmental delay (3.13). A few previous observations were replicated:

(i) the enrichment of singleton CNVs is stronger than that of rare recurrent CNVs;

(ii) the enrichment is stronger in larger events (>500kb) for deletions, but the trend

is reversed for duplications; (iii) the enrichment of deletions is stronger compared

to that of duplications in the range of >500kb, but trend is reversed in the range of

100–200kb. The most significant enrichment is observed in duplications in the range

of 100–200kb, which is also consistent with previous observation. Although many

tests would lose statistical significance or become only marginally significant after

multiple test correction, the consistent observations and the increase in statistical

significance suggest the 1.1–1.5 fold increase in CNV burden in patients with severe

early onset obesity alone is real (Table 3.11 & 3.12).
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Table 3.11: Global CNV burden analysis of >100kb rare CNVs: event type and frequency

Type Frequency Case rate Case/control
ratio PMAD PNCPS

All <1% 1.7439 1.1419 0.0000 0.0000

Losses and gains Single occurrence 0.4002 1.4048 0.0000 0.0000

Recurrent <0.1% 0.4627 1.1659 0.0017 0.0002

All <1% 0.5972 1.0983 0.0123 0.0035

Losses Single occurrence 0.1259 1.2574 0.0072 0.0070

Recurrent <0.1% 0.1710 1.2085 0.0094 0.0043

All <1% 1.1467 1.1661 0.0000 0.0000

Gains Single occurrence 0.2743 1.4846 0.0000 0.0000

Recurrent <0.1% 0.2917 1.1423 0.0317 0.0080

Table 3.12: Global CNV burden analysis of >100kb rare CNVs: event type and size

Type Size (kb) Case rate Case/control
ratio PMAD PNCPS

100–200 0.9731 1.1984 0.0000 0.0000

Losses and gains 200–500 0.5720 1.0504 0.1104 0.0329

>500 0.1988 1.1658 0.0205 0.0057

100–200 0.3733 1.1122 0.0165 0.0082

Losses 200–500 0.1762 1.0074 0.4438 0.3395

>500 0.0477 1.4357 0.0117 0.0076

100–200 0.5998 1.2590 0.0000 0.0000

Gains 200–500 0.3958 1.0707 0.0953 0.0339

>500 0.1510 1.1004 0.1446 0.0653
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3.4 Discussion

In this chapter, I described the analysis of copy number variants in patients with

severe early onset obesity. Under a case-control framework, the role of common

CNVs, rare CNVs at specific loci and global burden of rare CNVs were examined. In

the initial study of∼300 patients enriched with additional developmental delay and

syndromic forms of obesity, I observed a significant two-fold enrichment of >500kb

and <1% deletions in all cases, a stronger three-fold enrichment in cases with both

developmental delay and severe early onset obesity, and a insignificant 1.29-fold

enrichment in cases with severe early onset obesity only. A heterozygous ∼220kb

deletion at 16p11.2 encompassing the gene SH2B1 is identified by both genome-

wide and candidate gene approach as a pathogenic variant for the five patients in

which the deletion was found, with haploinsufficiency of SH2B1, a gene involved

in leptin and insulin signaling, being a very likely cause. In the following study

of ∼1200 patients with severe early onset obesity only, a significant 1.44-fold en-

richment of >500kb and <1% deletions was observed, suggesting that there exists

a significant burden of large rare CNVs in patients with obesity alone albeit be-

ing weaker than that observed in patients with co-present developmental delay. In

the common CNV analysis, a previously reported ∼430kb common deletion and an

adjacent ∼8kb common deletion, both upstream of the gene NEGR1, were found

associated with the phenotype. Conditional analysis revealed the ∼8kb deletion

explains most of the association signal and has a strong sex bias in effect size.

Compared to previous large-scale genome wide association studies of obesity as a

common quantitative trait, the two patient cohorts studied here are relatively small,

but the patients’ phenotype were carefully selected to represent the extremes on

the scale of severity. The first patient cohort was intentionally enriched for patients

with developmental delay in addition to severe obesity, for the investigations of

rare CNVs. This is under the expectation that rare variants each imposing a rela-

tively large effect and leading to a more severe phenotype might account for some

of the heritability missed by the common variant model. This study design has

proven to be effective at least in this case. The most significant finding of this study,

the SH2B1-containing deletion actually overlaps a previously reported GWAS sig-



3.4. Discussion 85

nal. The co-presence of both common variants influencing susceptibility to common

obesity and more highly penetrant rare CNVs associated with severe early onset

form of the disease not only suggests a link in etiology between the two, but also

suggest that looking for rare variants near common susceptibility loci may prove to

be a fruitful strategy for other common complex disease. Studies of other pheno-

types have similarly observed overlap between genes identified using monogenic

and GWAS approaches, for example, lipid traits.

In addition to deletions, heterozygous duplications were found at the ∼220k mini-

mal overlapping window encompassing SH2B1 in 9 out of 7,366 controls but none

out of 1,309 cases (combining data from both studies). Although this is not a signif-

icant observation, it may still hint that extra copies of this part of the genome might

be protective against severe early onset obesity. This mirroring of BMI phenotype

with dosage of the genomic interval has also been observed at the nearby ∼593kb

locus in 16p11.2 (29.5–30.1Mb) [102].

The ∼593kb 16p11.2 deletion (29.5–30.1Mb) previously associated with autism and

mental retardation has recently been suggested to have a causal role in a highly

penetrant form of obesity [97]. The deletion was found with significantly higher fre-

quency in cases (9 out of 1,309) relative to controls (4 out of 7,366) in the cohorts here

studied. However, 6 of the 9 patients carrying this deletion exhibit development de-

lay or autistic behavior, out of which two also carry the ∼220kb SH2B1-containing

deletion. If removing all cases with developmental delay, the deletion was left in 3

out of 1,152 cases, making it on the verge of (in)significance (p = 0.057). Although

this does not simply imply a rejection of the role of this deletion in obesity, the estab-

lished involvement of this deletion in autism and mental retardation does require a

more specific study design, such as recruiting non-obese controls with neurodevel-

opmental phenotypes matching those of cases, to allow disentangling its contribu-

tion to obesity.

With a genome-wide association test approach, 652 out of 2,197 rare CNVEs tested

in the initial study and 381 out of 5,827 rare CNVEs tested in the second study were

found enriched in cases with a p value <0.05. However, the vast majority of these

loci did not reach genome wide significance as determined by Bonferroni correction.
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The number of significant association signals is even smaller in the second study

despite the larger patient cohort. This could be due to the heterogeneity between

patients with and without additional developmental delay and the complexity of

the genetics of obesity. It may also be due to a drop of power in the second study as:

(i) it excluded patients with developmental delay, which are enriched for rare CNVs,

and (ii) the major impact of adding more obesity-only samples was not increased

occurrences of existing rare CNVEs, which boosts power as in the case of common

CNVEs, but adding a large number of private and extremely rare CNVs at addition

loci. Indeed, only 16.8% of the rare CNVEs shared by both studies had increased

case occurrences in the second study, whereas 79.5% of the additional CNVEs with

at least one case occurrence introduced by the second study were found in that case

alone. With a four times larger patient cohort and 2.6 times more tests, the power

drops both for individual tests to reach nominal significance and for those pass-

ing nominal significance threshold to reach genome-wide significance. This result

demonstrates the challenge unique to rare variant studies, wherein increasing sam-

ple size is likely to be accompanied with increasing number of tests, which may

leads to diminishing returns or even decrease of statistical power, as opposed to

common variant studies, wherein increasing sample size is always beneficial as the

number of tests is largely unchanged.

The issue of power is linked with the choice of the unit of test and the method

of multiple test correction. In this study, each CNVE was chosen as a unit of test

and Bonferroni correction was applied under the assumption that all tests are in-

dependent. Alternative units of test could be probes or genes (Figure 3.2), each

having its advantages and disadvantages. Testing on probes requires no pre-testing

procedures such as collapsing CNV calls into CNVEs and the number of tests is

fixed regardless of sample size. However, it leads to greatest number of tests of

which many are perfectly correlated due to being in the same CNV. I observed that

false associations also frequently arise at the border of common CNV calls. Test-

ing on genes does not collapse CNV calls into CNVEs but bins them by genes or

genomic windows including certain length of flanking regions of genes, which in-

creases power for small and rare CNVs affecting the same gene. The number of

tests is fixed. The number of perfectly correlated tests is reduced compared to test-
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ing on probes but still exists when multiple genes are affected by the same large

CNV. Spurious association is also likely to arise at the border of common CNV calls.

Though current functional studies usually choose to follow genic CNVs, completely

ignoring the large proportion of non-genic CNVs still seems undesirable or at least

inefficient. Testing on CNVEs, as I did in this study, avoids perfectly correlated

tests within the same CNV and spurious associations emerging from the border of

common CNV calls. However, it requires the complex pre-step of collapsing CNV

calls into CNVEs, which itself is not perfect such as the use of arbitrary call-overlap

thresholds. Correlation between tests, though greatly reduced by avoiding multi-

ple tests within the same CNV, still exists as nearby CNVEs can be correlated due

to linkage disequilibrium. LD between rare CNVs might generally be weak but is

more difficult to assess given the small numbers. Deriving the effective number of

independent tests and the proper genome-wide significance threshold for rare CNV

analysis is still challenging.

587 common CNVEs with a frequency >1% were identified from the pooled CNV

call set of the second study. This number is considerably smaller than the 1,319

copy number polymorphisms (CNPs) with allele frequency >1% discovered in the

HapMap1 populations using the same array by McCarroll et al [34]. However, such

differences are expected considering that (i) the McCarroll set included more smaller

events (median: 7.4kb, IQR: 3.7-17.9kb) that were excluded by the stringent calling

and QC pipeline used in this study (median: 31.7kb, IQR: 11.2-90.0kb), (ii) the Mc-

Carroll set consisted of CNVs found in other populations, especially African pop-

ulation which is known to have higher level of diversity, that could be rare in the

UK population, and (iii) the size of HapMap1 populations is relatively small (270 in

total) in which case accurate estimation of the frequency of less frequent CNVs is

difficult.

Population stratification, allele frequency differences between cases and controls

due to systematic ancestry differences, could cause spurious association in disease

associations. In this study, the proportion of cases having a non-European ances-

try was found to be considerably higher than that of controls, and it was partially

tackled by excluding the most extreme ethnic outliers from both cases and controls.

A minor inflation of the test statistics was still observed (λ = 1.03), which might be
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partially accounted for by the remaining ancestral differences between cases and

controls. Existing CNV disease association studies rely on either a priori exclusion

of ethnic outliers [13], as I did in this study, or on stratified analysis [9], both of

which suffer a loss of power. Methods have been developed for SNP GWAS to cor-

rect ancestral differences, such as adjusting genotypes and phenotypes individually

using the loadings of the principal component that represents the cline of geograph-

ical/ancestry distribution [103]. This provides a workaround for common bi-allelic

CNVs well tagged by common SNPs. However, similar correction is yet to be incor-

porated into direct CNV association test that handles untagged CNVs.

The comprehensive association study of common CNVs undertaken by the Well-

come Trust Case Control Consortium reported that common CNVs are unlikely to

play a major role in the genetic basis of common diseases and unlikely to account

for a substantial proportion of the ‘missing heritability’ unexplained by SNP GWAS

[13]. This seems to hold true in this study of severe early onset obesity. Only two of

the 481 tested common CNVs exhibited convincing association and yet both are well

tagged by common SNPs and the association of the larger deletion was discovered

previously through the tagging SNP [72]. The association of the smaller deletion is a

novel finding and the observed association of the larger deletion seems to be driven

by this smaller deletion, particularly in females. As both deletions are well tagged

by SNPs, existing GWAS data could be used to replicate this result.

The discordance with Willer et al [72] finding that it was the ∼43kb deletion and not

the ∼8kb deletion that was associated with BMI might be simply due to technical

reasons that the perfect tagging SNP of the ∼8kb deletion was not among the tested

markers, as the ∼8kb deletion appeared to be discovered only after their investiga-

tion of the HapMap populations. If that tagging SNP was indeed tested and did

not exhibit any association, then it might be attributed to biological differences be-

tween the genetic architecture of BMI as a quantitative trait and extreme early onset

obesity as a binary trait. As a replication study undertaken by the GIANT consor-

tium that uses the Sequenom platform to genotype tagging SNPs of both deletions

in large obese patient cohorts and controls is underway, we shall know the answer

very soon.
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The sex bias in the association of the deletions upstream of NEGR1 is intriguing.

The data suggest that there is little association with either of the deletions in males,

but in females the association is strong and is entirely driven by the smaller dele-

tion. Most sex-specific associations tend to be linked with phenotypes that have

biased distribution between the two sexes. However, it is not clear if there is signifi-

cant obesity-related phenotypic difference between male and female subjects partic-

ipating the study, at least the study was not designed to introduce such difference.

This locus was not among the reported loci that exhibit sex-specific association with

waist-hip ratio, a descriptor of body fat distribution, as discovered in a recent GWAS

[104], so it seems unlikely to be explained by the difference in body fat distribution

between male and female when gaining weight. At molecular level, as NKX3.1 is

regulated by androgen and a conserved putative binding site of NKX3.1 is found

within the larger deletion, the change in its relative position to NEGR1 at the pres-

ence/absence of the smaller deletion might alter the expression of the gene in a sex-

specific way. To examine this hypothesis, assays could be designed to monitoring

changes in expression of NEGR1 and other nearby genes on induction of NKX3.1 in

different haplotype backgrounds. Another more complex hypothesis could involve

the bifunctional transcription factor NKX6.1, of which a conserved putative bind-

ing is found within the smaller deletion. In this hypothesis, NKX6.1 might mask

the sex-specific effect of NKX3.1 by potent activation or repression of NEGR1 when

the binding site is present, and thus regulation by NKX3.1 is only revealed when

the NKX6.1 binding site is removed by the smaller deletion. To test this hypothesis,

experiments could be designed to monitor expression of NEGR1 and nearby genes

on inductions of NKX3.1 in genetic background wherein the NKX6.1 binding site

within the smaller deletion is point mutated.





CHAPTER 4

CHARACTERIZING AND PREDICTING

HAPLOINSUFFICIENCY IN THE HUMAN

GENOME

4.1 Introduction

Haploinsufficiency, wherein a single functional copy of a gene is insufficient to

maintain the normal phenotype of a diploid organism, is a major cause of human

dominant diseases.

Dominance and recessiveness are fundamental concepts of Mendelian genetics. They

describe the relationship between a pair of alleles of a gene of a diploid organism

with respect to the phenotype they manifest. An allele, A, is dominant to another

allele, a, if the corresponding phenotype of Aa is different from aa but indistin-

guishable from AA. A mutation can be described as dominant or recessive if it

is dominant or recessive to the wildtype allele. The majority of observed natu-

rally occurring (deleterious) mutations are recessive. While Fisher explained this

as the result of selection for modifier genes that increase the fitness of heterozygotes

[105], Wright viewed it as simply a physiological consequence of metabolic path-

ways [106]. Experimental and theoretical work over the years suggested Wright’s

explanation is more plausible. Kacser and Burns [107] established an excellent math-

91
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ematical framework for understanding dominance/recessiveness at the molecular

level and they showed that recessiveness emerges naturally from the kinetic prop-

erties of multi-enzyme system when most enzymes are far from being saturated.

The dominant mutations and the genes that harbor these mutations, though be-

ing the minority, contribute to a disproportionate ∼48% (965/2006) of human au-

tosomal Mendelian disorders with known molecular basis recorded to date [108].

Wilkie categorized the molecular mechanisms of dominance into eight types [109],

including haploinsufficiency, increased gene dosage, ectopic or temporally altered

expression, increased or constitutive protein activity, dominant negative effect, al-

tered structural protein, toxic protein alterations and new protein function. Among

those types, haploinsufficiency is especially interesting, since (i) it is a relatively

common mechanism for dominant diseases as a variety of mutations can lead to

heterozygous loss-of-function; (ii) the ascertainment of loss-of-function mutations

is relatively easy compared to gain-of-function mutations; (iii) the direct impact is

solely through dosage reduction, which is easier for functional interpretation than

other types of dominant mutation; (iv) it can be regarded as a property of a gene

as the mutant allele is always defunct irrespective of the specific mutation. From a

theoretical perspective, Veitia showed that haploinsufficiency is more likely to oc-

cur in systems that require the physical interaction of distinct macromolecules such

as transcription regulation and assembly of protein complexes, in which the total

output of the system is a sigmoid function of the dosage of each single entity [110].

From a more biological perspective, Wilkie suggested that genes encoding struc-

tural proteins are required in large quantities in specific tissues, and that subunits

of protein complexes assembled under strict stoichiometry and regulatory proteins

working close to a threshold level for different actions are more likely to be haploin-

sufficient [109]. Examples of these types include type 1 collagen [111], ribosomal

proteins [112] and members of the Hox gene family [113].

Around three hundred genes have been reported haploinsufficient in human so far

and Dang et al showed that they are less likely, compared to the rest of the genes,

to be located in genomic regions susceptible to structural rearrangements [14]. This

is expected, as large genomic deletions, a frequent consequence of structural re-

arrangements, are a major type of loss-of-function (LOF) mutation. Deletions en-
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compassing the entire length of a gene unambiguously reduce the number of its

functional copies. Partial deletions can also cause LOF, if key elements involved in

the initialization of transcription, splicing and translation, such as promoter, splic-

ing signals and start codon, are affected. Even if those elements are intact, prema-

ture stop codons could be introduced by frame-shifting deletions or simple trun-

cating deletions, which likely subject the transcripts to nonsense-mediated decay,

by which these transcripts are digested rather than translated into mutant proteins

[114]. Indeed, large deletions have been found to be causal for diverse dominant

developmental disorders, which, in turn, has led to the discovery of a number of

haploinsufficient genes (HI genes), for example the discovery of the CHARGE syn-

drome gene, CHD7 [115].

However, not all LOF mutations are deleterious. It is clear from sequenced genomes

[116], exomes [117] and CNV surveys [12] that every genome, including those of ap-

parently healthy individuals studied as controls in disease studies, harbors tens of

unambiguous LOF mutations, including large genomic deletions. Some LOF mu-

tations can be even advantageous [118]. Genes deleted in apparently healthy in-

dividuals seem not to be haploinsufficient, at least not to the point that carriers of

heterozygous LOF mutations in these genes are kept from being recruited as con-

trols for disease studies. Besides these haplosufficient (HS) genes, and the currently

known HI genes, the dosage sensitivity of the majority of the genome remains elu-

sive. Previous studies have shown that sets of HI genes, such as genes implicated

in dominant diseases, have biased evolutionary and functional properties with re-

spect to the rest of the genome [119–121]. However, there has not been a direct and

systematic investigation of differences in properties between known HI genes and

haplosufficient (HS) genes and it is unknown which properties are most informative

in predicting dosage sensitivity.

With array-based copy number detection and the current generation of sequencing

technologies, our ability to discover genetic variants in patients is running far ahead

of our ability to interpret their functional impact and there is a pressing need to dis-

tinguish between benign and pathogenic variants. Computational methods have

been developed to predict the molecular impact of non-synonymous point muta-

tions. Some totally depend on sequence conservation at the site of the mutation,
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such as SubPSEC [122], Align-GVGD [123] and SIFT [124]. Some also consider struc-

tural and biochemical properties of the protein (stability, solubility, active sites, etc),

such as SNPs3D [125] and PolyPhen [126]. The output of these algorithms is of-

ten a continuous score or a category label indicating how damaging the mutation is

to the encoded protein. Although, these outputs have been shown to be useful in

identifying pathogenic mutations for Mendelian diseases [127], their power to pre-

dict impact on fitness at individual level might still be limited, especially in the case

of heterozygous mutation wherein one of the alleles still functions normally, as they

do not distinguish between the heterozygous and homozygous genotypes of a vari-

ant. Computational tools for predicting the functional impact of large copy number

variants are still in their infancy [128]. The problem differs from non-synonymous

point mutations in that large CNVs can affect multiple genes as well as non-coding

regions simultaneously, and thus their interpretation requires the integration of dif-

ferent functional annotations to maximize the information on all affected entities.

Application of such computational interpretative tools in clinical settings requires

careful consideration, as these tools are usually trained on collated sets of known

damaging and benign mutations that could well be a biased representation of the

true spectrum of causal mutations found in real patients or in the general popula-

tion. The scores or classifications generated by these computation tools are rarely

calibrated to diagnostic outcomes, and only infrequently are the distributions of

such scores compared between patients and population controls. Characterizing the

distribution of such scores in patient and population cohorts has become more fea-

sible in recent years with the growth in databases of pathogenic variants [129, 130]

as well as of variants found in large population surveys [12, 34, 77, 78, 131, 132].

Additionally, pathogenicity scores are often just one of the many different types of

evidence that influence diagnostic interpretation and needs to be integrated with the

other evidence in a sensible way. Most current genetic diagnostic practices adopt a

decision-tree-like procedure [133, 134]. A probabilistic process would be desirable

which could give every diagnosis a level of confidence. Goldgar et al suggested

a naïve Bayesian framework to integrate different, typically uncorrelated, types of

information and demonstrated its application to the interpretation of variants of un-

known clinical significance in the BRAC1 and BRAC2 genes [135].
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In the work described in this chapter, I first explored the genomic, functional and

evolutionary characteristics of HI genes and then I developed a computational ap-

proach to predict which genes might exhibit haploinsufficiency. I then investigated

the utility of the gene-based HI predictions to measure pathogenicity of large copy

number variants, both deletions and duplications. Finally, I proposed a probabilis-

tic diagnostic framework that integrates population distributions of pathogenicity

scores, with additional evidence to generate a level of confidence for the diagnosis

of causal CNVs, and potentially other forms of genetic variants.

4.2 Materials and methods

4.2.1 Control data

The controls include a set of 6,000 UK individuals recruited as common controls in

GWAS of 13 disease conditions undertaken by Wellcome Trust Case Control Consor-

tium 2 (WTCCC2), of which 3,000 samples are from the 1958 British Birth Cohort and

3,000 samples are from the UK Blood Service Control Group. Another set of 2,421

US control individuals, 1,442 of which have European ancestry and the rest with

African-American ancestry, are from a control cohort used in GWAS of Schizophre-

nia and Bipolar disease undertaken by Genetic Association Information Network

(GAIN). Samples were previously genotyped on Affymetrix genome-wide human

SNP array 6.0. Affymetrix 6.0 CEL files were obtained from Wellcome Trust Case

Control Consortium 2 for WTCCC2 controls and from the Database of Genotype

and Phenotype (dbGaP) through accession number phs000017 and phs000021 for

GAIN controls.

4.2.2 Asserting of loss of function genes

To identify protein-coding genes disrupted in a LOF manner, CNV calls made by

the calling pipeline described in Chapter 2 were compared to gene annotation pro-

vided by EnsEMBL [136]. Four scenarios were considered LOF to a protein-coding

transcript:
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1. deletion of over 50% of coding sequence

2. deletion of the start codon or the first exon

3. deletion-disrupted-splicing

4. deletion-caused frame-shift

A gene was considered LOF if all of its transcripts were LOF. Under these criteria,

CNVs were identified in GWAS control individuals with a LOF impact on 2,677

genes. I defined haplosufficient genes as being those observed as LOF genes in two

or more GWAS control individuals.

4.2.3 Preparing possible predictor variables

4.2.3.1 Genomic properties

The length of gene, spliced transcript, 3’UTR and coding sequence and the num-

ber of exons were calculated on the basis of gene annotation downloaded from En-

sEMBL. The number of protein domains was retrieved from EnsEMBL build 50.

4.2.3.2 Evolutionary properties

dN/dS data was downloaded from EnsEMBL. Genomic Evolutionary Rate Profil-

ing (GERP) [137] score was downloaded from EBI. Two summed GERP values, one

for coding sequence and the other for promoter region, defined as bases within

±100bp of the transcription start site, were then calculated for all human protein-

coding transcripts according to EnsEMBL annotations and summarized by gene

using the median values. A third summed GERP value for conserved noncoding

elements around genes was calculated as the sum of GERP scores of all bases of

annotated conserved noncoding elements within an interval ±50kb of the gene. To

derive the list of conserved noncoding elements, I retrieved a list of conserved el-

ements throughout placental mammals from the UCSC genome browser (28-Way
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Most Cons track) and removed elements overlapping with exons according to En-

sEMBL gene annotation. The number and identity of paralogs were downloaded

from EnsEMBL.

4.2.3.3 Functional properties

Gene expression profiles in human were obtained from the GNF Atlas [138]. To-

tal expression levels were normalized across genes and the standard deviation of

expression across normal tissue types of each gene was used to indicate its tissue

specificity of expression. Genes over-expressed by at least 8 fold in human embry-

onic stem cells [139], fetal tissues [138] and mouse fetal tissues [140] were collectively

treated as genes expressed at embryonic stage. A binary coding was used to repre-

sent this property in which genes expressed at embryonic stage were labeled 1 and

the rest were labeled 0.

4.2.3.4 Network properties

Two interaction networks were used. One is a binary protein-protein interaction net-

work integrated from a number of sources [141–145]. Proteins were mapped to their

coding genes and interactions were not counted repeatedly if multiple proteins were

mapped to a single gene. This network included 70,632 interactions among 11,077

genes. The other is a probabilistic gene interaction network (a network of 470,217

links among 16,375 human genes calculated using methods previously described

for yeast [146] and worm [147] and derived from 22 publicly available genomics

datasets including DNA microarray data, protein-protein interactions, genetic in-

teractions, literature mining, comparative genomics, and orthologous transfer of

gene-gene functional associations from fly, worm, and yeast, where the weight of

a link is the log likelihood score of the interaction [146]. Measures of centrality (de-

gree, betweenness) and modularity (cluster coefficient) were calculated using MCL

[148]. Shortest path distance and sum of weight of interactions [147] were calculated

as measures of proximity to a group of ’seed’ genes.
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4.2.3.5 Other properties

A list of 300 genes implicated in cancer was downloaded from the COSMIC database

[149]. Growth rate of yeast heterozygous deletion strains were from Deutschbauer

et al [150].

4.2.4 Comparing predictor variables between HI and HS genes

For continuous variables, the two-tailed Mann-Whitney U test was performed to as-

sess if positive (haploinsufficient) and negative (haplosufficient) training data have

the same median value for potential predictor variables. For two-class categorical

features, Fisher’s exact tests were performed. Statistical tests were performed using

R (http://www.r-project.org).

4.2.5 Feature selection for the predictive model

I assessed different potential sets of predictor variables for input into the predictive

model using the following criteria: (i) they allow prediction for at least half the genes

in the genome, (ii) the Spearman correlation ρ2 between all pairs of predictor vari-

ables is less than 0.05, (iii) they are drawn from different broad categories (genomic,

evolutionary, functional and network) if possible, and (iv) achieve best performance

in model assessment.

4.2.6 Assessing model performance

The sensitivity of the prediction was plotted against 1 − speci f icity and the area

under the ROC curve (AUC) [151] was used as quantitative measure of the per-

formance of the model, where sensitivity = TP/ (TP + FN), and speci f icity =

TN/ (TN + FP). The other measure used is the Matthews correlation coefficients

(MCC) [152], defined as:

TP× TN − FP× FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

http://www.r-project.org
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To avoid over-fitting, the sensitivity and specificity were calculated using 10-fold

cross-validation. To overcome the variability caused by random partition involved

in 10-fold cross-validation, each such assessment was repeated 30 times and the

mean values were reported.

4.2.7 Multiple imputation

Multiple imputation was used to fill in (‘impute’) the missing values for predic-

tor variables incorporated in the model, namely ‘dN/dS ratio between human and

macaque’, ‘promoter conservation (GERP)’, and ‘gene network proximity to HI genes’,

except for ‘embryonic expression’ of which the genomic coverage is 100%. Since

‘gene network proximity to HI genes’ and ‘promoter conservation (GERP)’ are the

top two predictive variables, genes missing both values were removed. To achieve

better imputation, I included three additional gene properties, namely ‘CDS con-

servation (GERP)’, ‘spliced transcript length’ and ‘gene network betweenness cen-

trality’ in the imputation process. Twenty independent imputations of 20 iterations

were undertaken. In each iteration, imputation for each predictor variable was in

the order of increasing number of missing values using the predictive mean match-

ing method. The computation was done using the R package MICE [153].

4.2.8 Parameter estimation for the Bayesian diagnostic framework

The prior probability of a CNV being causal (p(C)) was estimated as the average

number of CNVs found per individual divided by the current diagnostic rate for

CNVs. Diagnostic rate and average number of CNVs found per individual were

taken from Buysee et al [134], which found on average 0.86 deletions and 0.73 du-

plications per individual and achieved a diagnostic rate of 0.1 using BAC array and

Agilent 44K array CGH.

The probability of a causal CNV being rare (population frequency < 1%) (p(F|C), F =

rare) was set at 1. The probability of a causal CNV being de novo (p(F|C), F =

de novo) was also taken from Buysee et al [134] in which 73% of the causal CNVs

found were de novo. The distribution of pathogenicity scores of de novo CNVs in DE-
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CIPHER [129] was used to approximate that of causal CNVs. The probability of a

causal and rare (or de novo) CNV having a pathogenicity score equals to x was taken

as the empirical estimation of probability density of the distribution of pathogenic-

ity scores of causal CNVs at x.

The probability of a benign CNV being rare (population frequency < 1%) (p(F|C̄), F =

rare) was estimated as the fraction of WTCCC2 and GAIN control CNVs with a car-

rier frequency < 1%. The probability of a benign CNV being de novo (p(F|C̄), F =

de novo) was also taken from Itsara et al [131] in which 0.44% of the CNVs found in

children of apparently healthy trios were de novo. The distribution of pathogenicity

scores of benign CNVs was generated using WTCCC2 and GAIN control CNVs after

excluding CNVs at known pathogenic loci recorded in DECIPHER. The probability

of a benign and rare (or de novo) CNV having a given pathogenicity score equals

to x was taken as the empirical estimation of probability density of the distribution

of pathogenicity scores of benign CNVs with a carrier frequency < 1% (or with an

occurrence of 1, i.e. singletons) at x. Since WTCCC2 and GAIN control CNVs were

discovered using arrays of considerably higher resolution than the CNVs discov-

ered by Buysee et al and the CNVs recorded in DECIPHER, deletions <180kb and

duplication <330kb were excluded prior to the above calculation in order to match

the number of CNVs discovered per individual.

4.2.9 Text mining through PubMed abstracts

The title and abstract of publications that contain the keyword ‘haploinsufficiency’

or ‘haploinsufficient’ were retrieved from PubMed on Aug 2010, using the search

term ‘haploinsufficient[Title/Abstract] OR haploinsufficiency[Title/Abstract] AND humans[MeSH

Terms]’. After cleaning the text, a word frequency table was compiled from all titles and

abstracts. A dictionary that maps gene names and synonyms to gene symbols was down-

loaded from HGNC [154]. For each title and abstract, the sentence containing the keyword

‘haploinsufficiency’ or ‘haploinsufficient’ was extracted and parsed by the GENIA tagger

[155] to break the sentence into chunks and tag the part-of-speech of each chunk. The chunk

immediately before the keyword, the noun chunk in front of a verb and a preposition in

front of the keyword were extracted. These chunks were first examined by GENIA tagger

to identify the named biomedical entity. If this failed, the noun in the chunk that appeared
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fewer than 10 times as recorded in the frequency table and contained numbers or capital let-

ters, or followed immediately by ‘gene’, ‘protein’ or ‘transcript’ was kept as potential gene

name. These potential gene names and named entities identified by the GENIA tagger were

looked up in the gene name dictionary to convert into unique HGNC gene symbols.
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4.3 Results

4.3.1 Characteristics of haploinsufficient genes

I first compiled a list of known human HI genes and a catalog of HS genes. Known HI

genes were collated from literature [14, 156]. The catalog of HS genes was generated from

genes disrupted in a loss-of-function manner in control individuals used in genome-wide

association studies by CNVs detected in data from the Affymetrix 6.0 chip (see Methods). I

identified 2,676 putative HS genes seen in any control individuals and 1,079 seen in two or

more controls (Figure 4.1), and used the latter set in most downstream analyses. Thus the

final list of HI and HS genes contains 301 and 1,079 genes respectively.

LOF
transcript

Deleting
>50% CDS?

Deleting
start codon/
1st exon?

Deleting
2n+1 splicing

signals?

Deleted
CDS != 3n?
(Frameshift)

Yes

No

No

NoYes

Yes

Yes

Transcripts 1

LOF pipeline LOF pipeline LOF pipeline

Transcripts 2 Transcripts N

Protein-coding
genes

. . . . . .

. . . . . .

Loss-of-function
gene

All LOF?

Yes

229805

45283

22861

1052
299001 LOF events

6302 LOF transcripts

2676 LOF genes

Figure 4.1: Procedure for LOF calling. The flow chart shows the pipeline used to identify LOF
genes. A gene with all its transcripts disrupted under any of the four considered LOF scenarios is
regarded as LOF. On the right, the numbers under each scenario denotes the number of detected
LOF events meeting that criterion. A LOF event is defined as loss of function of one transcript in
one individual.

To systematically assess the difference in properties between HI and HS genes, I gathered a

large number of annotations describing the evolutionary, functionary and interaction prop-

erties of genes (see Methods) and examined the distribution of each individual property in

HI and HS genes. I found that HI genes have consistently a more conserved coding se-



4.3. Results 103

quence (human-macaque dN/dS, p = 3.12×10−26), a less mutable promoter (p < 1×10−30),

paralogs with lower sequence similarity (p = 1.84×10−9), a longer spliced transcript (p <

1×10−30), a longer 3’UTR (p = 2.63×10−12), higher expression during early development

(p = 1.10×10−15), higher tissue specificity in expression (p = 2.29×10−6), more interaction

partners in both a protein-protein interaction network (p < 1×10−30) and a gene interaction

network (p < 1×10−30) and higher chances of interacting with other known HI genes (p <

1×10−30) and cancer genes (p < 1×10−30) (Figure 4.2). Interestingly, the growth rate of yeast

heterozygous deletion strains does not seem to differ between their HI human homologs and

HS human homologs, probably reflecting the vast functional differences between the major-

ity of yeast and human genes, except those involved in highly conserved cellular processes.
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Figure 4.2: Properties that distinguish HI genes from HS genes. The upper part of the figure
shows the comparison of the mean of each individual property between HI genes and HS genes.
The values are transformed to z-scores relative to the genome average. The error bars represent
two times the standard error of the mean. The bars in the middle part present the transformed p
value (-log10p) of the Mann-Whitney test on each property. The dashed line marks a p value of
0.05.
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Table 4.1: Genomic coverage of gene properties

Property #Genes Genomic coverage∗

Human-chimp dN/dS 15,084 79.50%

Human-macaque dN/dS 15,025 79.20%

Human-mouse dN/dS 14,386 75.80%

Coding sequence GERP 17,164 90.50%

Promoter GERP 16,807 88.70%

Number of paralogs
11,066 58.30%

Identity of closest paralog

Number of exons

Length of gene

Length of spliced transcript 17,700 93.30%

Length of coding sequence

Length of 3’UTR

Number of domains 14,722 88.50%

Embryonic expression† 18,962 (2421) 100% (12.8%)

Tissue specificity of expression 13,950 73.60%

PPI network properties‡ 11,077 58.40%

Genetic network properties‡ 14,664 77.30%

+/- Yeast growth rate 3,352 17.70%

∗ Calculated relative to the number of EnsEMBL annotated protein-coding genes that can be uniquely
mapped to HGNC symbol.

†
Since this is a binary factor where every gene is classified as either over-expressed or not in embryo
tissue, the coverage is 100%. The number and fraction of genes over-expressed in embryo is listed in
parenthesis.

‡ Including degree, cluster coefficient, betweenness, distance to known HI/cancer genes, proximity to
known HI/cancer genes.
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4.3.2 Training a model to classify HI and HS genes

The highly significant differences in genomic, evolutionary, functional and network prop-

erties between HI and HS genes suggest some combination of these properties may be pre-

dictive of haploinsufficiency. I used linear discriminant analysis (LDA) as the supervised

classifier, which, given multi-dimensional data and class labels, finds the linear combina-

tion of the given dimensions (linear discriminant) that maximizes the inter-class variance.

I trained the classifier using various sets of gene properties to obtain a classification model

and applied the model to estimate a probability of being HI (p(HI)) for all protein-coding

genes in the genome for which all the selected predictor variables were available. Finally, I

validated the predictions using external data sets.

The final result is presented below and is followed by discussion of more detailed ques-

tions: (i) which gene properties should be incorporated (Section 4.3.2.1) ? (ii) which training

dataset should be used (Section 4.3.2.2) ? (iii) does a more sophisticated classifier perform

better (Section 4.3.2.3) ? Section 4.3.2.4 presents the validation of prediction. Section 4.3.2.5

described some further improvements of the prediction of which the outcome is not in-

cluded below as they were undertaken at a later stage.

After assessing various different sets of predictor variables (see Methods, and below) my

initial classifier was trained with four predictor variables: dN/dS between human and

macaque, promoter conservation, embryonic expression and network proximity to known

HI genes. The model was obtained by training on 234 HI genes and 326 HS genes for which

the predictor variables were available. All predictor variables were scaled to the same vari-

ance before entering LDA so that their contribution can be measured by the coefficients of

the resulting linear discriminant. Proximity to known HI genes provided the most predictive

power. The model achieved an AUC of 0.81 and a MCC of 0.50 in ten-fold cross-validation

(Figure 4.3). I applied the model to estimate a probability of being HI for all 12,443 protein-

coding genes in the genome for which all four selected predictor variables were available.

The distribution of the predicted p(HI) is clearly bimodal, with a large peak near 0.2 and a

much smaller peak at 1 (Figure 4.4 left). The distributions of p(HI) for the HI and HS train-

ing sets differ significantly (p < 1×10−30, Mann-Whitney test or Kolmogorov-Smirnov test)

(Figure 4.4 right).
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Figure 4.3: Assessment of model performance. The ROC curve demonstrates the performance
of the model evaluated by 10-fold cross-validation. The lower right part shows the relative
contribution of each predictor variable to the prediction model measured by the absolute value of
the scaling factor of each predictor variable constituting the linear discriminant.
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Predicted probability of being haploinsufficient
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Figure 4.4: Predicted probability of being haploinsufficient. The histogram on the left shows the
distribution of the predicted probability of being haploinsufficient (p(HI)) of all 12,443
predictable genes. The histogram on the right shows the distribution of the predicted p(HI) of
the HI training set (light grey) and the HS training set (dark grey).



108 CHAPTER 4. CHARACTERIZING AND PREDICTING HAPLOINSUFFICIENCY

4.3.2.1 Integrating information from multiple ‘orthogonal’ predictor variables

improves classification

To assess the marginal utility of using more than one predictor variable, I trained sepa-

rate LDA models from the same set of genes (known HI genes plus HS genes) using only

one predictor variable at a time and compared the cross-validation performance with us-

ing all predictor variables. The latter out-performs models using single predictor variable

(max AUC = 0.78 for network proximity to known HI genes whereas the integrated model

achieves 0.81) (Figure 4.5), indicating that combining the predictor variables together gener-

ated a more predictive model than considering any of the individual predictor variables in

isolation.
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Since each gene property annotation is only available for a fraction of genes in the genome

(Table 4.1), there is a trade-off between the possible increase in prediction performance by

considering more gene properties as predictor variables and the decrease in the coverage

of genes one could predict. Therefore, I aimed to select a small number of most predic-

tive properties that are relatively ‘orthogonal’ in the kind of information they provide (see

Methods).

After evaluating a number of possible combinations of predictor variables, which all had

similar performance (Figure 4.6), I selected a model comprising of ‘dN/dS between human

and macaque’, ‘promoter conservation’, ‘embryonic expression’ and ‘network proximity to

known HI genes’.
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Figure 4.6: Comparison of model performance. The AUCs of each combination of predictor
variables in 10-fold cross validation repeated 30 times are shown as vertical bars with error bars
represent 2 times standard deviation. The mean AUC (red), mean MCC (green) and the overall
gene coverage (blue) are labeled on top of each bar. The bar pointed by the black arrowhead is
the chosen combination of predictor variables.
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4.3.2.2 Using HS genes as negative training set improves classification

Previous studies [119–121] have compared HI-related gene sets against the rest of the genome

to describe their characteristics. I investigated how the choice of negative training set in-

fluences the performance of my prediction model. I generated gene sets of different sizes

randomly sampled from non-HI genes with complete predictor variable information and

compared the cross-validation performance (AUC) resulting from the use of these gene sets

as the negative training set to the use of the HS gene set as the negative training set (Fig-

ure 4.7). The use of a judiciously selected HS gene set is clearly advantageous.

0 2000 4000 6000 8000 10000 12000

0.70

0.75

0.80

0.85

0.90

HS training data sample size

AU
C

Figure 4.7: Prediction performance of using HS and genome background as negative training
set. The plot compares the cross-validation performances resulted from using different gene sets
as negative training set. The triangle represents HS gene set generated from CNV data. The
squares represent different sizes of random gene sets sampled from the genome after excluding
known HI genes. For each size, the gene set was sampled 20 times and the standard deviation of
the resulting performances is shown as error bar.
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I further investigated if our model performance is sensitive to the CNV discovery and fil-

tering parameters, which determines the stringency of the HS gene set. I examined the

influence on cross-validation performance of using different confidence thresholds (Birds-

eye LOD score) in CNV discovery and population frequency when generating HS gene set.

A greater LOD score indicates higher confidence and thus a more stringent CNV set. Simi-

larly, the more frequently a gene is found LOF in apparently healthy individuals, the more

likely it is haplosufficient, and thus the negative training set is more stringent. I found that

the LOD score threshold has little influence on the model performance, within the range I

assessed (Figure 4.8). The use of recurrent LOF genes exhibits an apparent improvement of

performance over the use of all LOF genes under most LOD thresholds. Further increase in

stringency by requiring higher frequency results in further reduction of the size of negative

training set, but little if any increase in performance of the prediction model. Therefore, I

adopted the negative training set generated under ‘LOD > 10’ and ‘found in at least two

individuals’ in further analysis.
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Figure 4.8: Prediction performance under different parameters used in generation of negative
training set. The cross-validation performance (AUC) resulted from using negative training sets
generated with different parameters are represented by blue vertical bars with axis on the left.
The sizes of these negative training sets are represented by red vertical bars with axis on the
right. Bars are grouped by the CNV calling parameters, LOD score, and within each group the
darkness of coloring represent different frequency threshold used to define HS as shown in the
legend. The bar pointed by the black arrowhead represents parameters and corresponding
negative training set adopted in further analysis.

4.3.2.3 LDA achieves similar classification performance compared to a more so-

phisticated classifier

I investigated if the use of support vector machine (SVM), a more sophisticated machine

learning method, as classifier would improve prediction performance. An SVM model was

trained on the same training set as LDA with optimized parameters (gamma = 0.1, cost

= 1) and class weights. The performance was examined by self-validation, leave-one-out
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cross-validation and 10-fold cross-validation. Despite being more sophisticated and com-

putational expensive, SVM exhibits no appreciable improvement over LDA (Figure 4.9).

self−validation leave−one−out cross−validation 10−fold cross−validation
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Figure 4.9: Comparing the prediction performance of LDA and SVM. The plot shows the
comparison of prediction performance between LDA (dark bar) and SVM (light bar) using three
approaches (from left to right): self-validation, leave-one-out cross-validation and 10-fold
cross-validation. In the first two comparisons, SVM exhibits only very marginal improvement over
LDA, whereas in the third LDA is marginally better.

4.3.2.4 Validating haploinsufficiency predictions using external datasets

It is not possible to assess how well-calibrated the predicted probabilities of being HI are, as

the fraction of human genes that exhibit HI is not known. I therefore sought to validate these

predictions using indirect approaches that examined the distribution of p(HI) in indepen-

dent gene sets enriched for HI. As there is no credible estimation of the number of human

HI genes, in some of the following validation analyses I arbitrarily labeled the genes in the
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top 10% of p(HI) as being predicted HI genes. However, the results were robust against this

threshold being varied by at least a factor of at least 2.

First, I asked if genes implicated in human dominant diseases were enriched in our pre-

dicted HI genes relative to recessive-disease-causing genes. I retrieved 571 and 772 genes

implicated in dominant and recessive disease from the OMIM and hOMIM[119] database,

respectively, with no information regarding haploinsufficiency (and thus not included in our

training data), and compared the distribution of predicted p(HI) against each other. The HI

status could be predicted for 392 dominant genes and 606 recessive genes, of which 87 and

39 were predicted as being HI, respectively. This 4.14 fold enrichment of genes predicted to

be HI within the dominant disease gene set is highly significant (p = 4.46×10−13, Fisher’s

exact test). Simply comparing the distribution of p(HI) values for these dominant and re-

cessive genes also shows a highly significant shift towards high p(HI) values in dominant

relative to recessive genes (p = 4.44×10−16, Mann-Whitney U test) (Figure 4.10).

Second, I asked if heterozygous knockouts of the orthologs of predicted human HI genes

are more likely to cause severe phenotypic abnormalities in mice. For this purpose, I ex-

tracted a list of 1,523 mouse genes whose heterozygous knockout cause various abnormal

phenotypes from the MGI database, mapped them onto orthologous genes in humans, re-

moved orthologs to genes in our training gene sets and extracted the predicted p(HI) for the

remainder. HI status could be predicted for the orthologs of 1,063 of these genes and 260

(24.5%) of them were predicted HI, indicating a 2.45 fold enrichment (p < 1×10−30, Fisher’s

exact test) (Figure 4.11). If focusing on those genes of which the heterozygous LOF pheno-

types involve prenatal lethality (MP:0002080), the fold of enrichment increased to 4.38 (p =

3.60×10−12, Fisher’s exact test) (28 predicted as HI out of 64 that could be predicted).
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Figure 4.10: Enrichment of predicted HI genes in dominant genes relative to recessive genes.
This plot shows the fold of enrichment of predicted HI genes in dominant genes relative to
recessive genes (thick solid line) as a function of the proportion of predictions labeled as being
haploinsufficient. Also plotted is the transformed p value (-log10p) of the corresponding Fisher’s
exact test (thick dashed line). The horizontal dashed line marks the p value of 0.05.
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Figure 4.11: Enrichment of predicted HI genes in orthologs of mouse haploinsufficient genes and
mouse haplolethal genes. This plot shows the fold of enrichment of predicted HI genes in human
orthologs of mouse haploinsufficient genes (black solid line) and mouse haplolethal genes (black
dashed line) relative to the genome average as a function of the proportion of predictions labeled
as being haploinsufficient. The two lines in grey show the transformed p values of the
corresponding Fisher’s exact test. The horizontal dashed line marks the p value of 0.05.
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4.3.2.5 Improving prediction with expanded training data and improved predic-

tor variables

Having achieved reasonable performance with my initial predictive model of gene haploin-

sufficiency and shown that neither changing the classifier nor how the HS gene training

data are filtered, I explored different potential strategies to improve upon the performance

of this predictive model. In this section I describe two, potentially complementary strate-

gies: (i) Including new and improved predictor variables into the predictive model, and

(ii) using improved positive control training data (i.e. known HI genes).

4.3.2.5.1 Inclusion of new and improved predictor variables

In the light of the emerging role of conserved noncoding elements in regulation of gene ex-

pression, especially of developmental genes known to be dosage sensitive, I investigated

several variables that summarize the extent of conserved noncoding sequence within and

flanking a gene. I settled on the sum of GERP scores of all bases of conserved non-coding el-

ements within an interval±50kb of the gene as a candidate predictor variable. This property

differs significantly between HI and HS genes (p = 4.0×10−54, Mann-Whitney U test).

The coverage of the protein-protein interaction network was also expanded from 11,077

genes and 70,632 interactions to 16,390 genes and 1,240,972 interactions by incorporating

data from the STRING database [157]. As a result, the number of genes predictable with

the same predictor variables as selected in Section 4.3.2.1 increased to 13,030 (+5%) without

imputation or, if using the predictor variables optimized for the updated gene properties as

described in Section 4.3.2.5.2, increased to 16,017 (+29%). I also updated the gene property

annotations to EnsEMBL 53.

4.3.2.5.2 Improved HI training set through literature mining and manual cura-

tion

The known HI genes used as positive training set was initially taken from Dang et al and

Seidman et al, which reflected the current knowledge in Nov 2007. I performed a literature

searching on Aug 2010 to include more, newly discovered HI genes. Through text mining

of PubMed abstracts (see Methods), 138 genes were added to the HI set, resulting in a com-

bined set of 439 genes. 358 of these genes for which a PubMed abstract is available were
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manually curated. After curation of the entire set, 40 genes were removed, 55 were labeled

as with weak evidence (see Appendix A). 72 genes that are involved in cancer [149] were

also removed, since seemingly dominant inheritance could be the result of somatic loss of

heterozygosity instead of truly genetic haploinsufficiency in the case of cancer.

To evaluate the expanded and manually curated HI set, the model was re-trained both

with and without genes with weak evidence using the updated version of the same pre-

dictor variables as Section 4.3.2.1 and the performance were measured by two approaches:

(i) the cross-validation AUC (AUCCV) and (ii) the AUC for classifying pathogenic and be-

nign CNVs using model-prediction-based LOD scores (AUCLOD) . The model trained with

the more stringent set exhibited higher cross-validation AUC than the model trained with

more relaxed set (0.77 vs 0.75) and the two had the same variant classification AUC (0.98).

Whereas the more stringent model achieved the same cross-validation AUC as the model

trained on the initial training set after removing cancer genes, both all were noticeably lower

than the model trained on the initial training set with the earlier predictor variables (0.81).

Therefore, I explored if other combinations of predictor variables perform better with the

updated annotations and training set. A comparison of performance statistics is shown in

(Table 4.2). Based on both cross-validation AUC and variant classification AUC, I selected

the model that incorporates the predictor variables: ‘GERP score of conserved non-coding

elements’, ‘median size of spliced transcripts’, ‘identity to closest paralog’ and ‘embryonic

expression’ and ‘proximity to other known HI genes in protein-protein interaction network’,

and I trained this model using the more stringent updated known HI gene set. The new pre-

dictive model achieved higher cross-validation AUC (0.86 vs 0.81) and similar variant clas-

sification AUC (0.96 vs 0.96) to the un-updated model, while improving prediction coverage

without imputation (16,017 vs 12,443). However, when testing if genes found with LOF sub-

stitutions and indels in sequenced exomes have lower p(HI) than the genome background

as did in Section 4.3.3.4, the difference was less significant despite still being in the same

direction (0.13 vs 0.21, p = 2.2×10−12, Mann-Whitney test). The difference was even smaller

when comparing p(HI) of genes found with LOF substitutions in a larger exome-sequencing

dataset that consisted of ∼300 apparently healthy individuals (0.18 vs 0.21, p = 4.5×10−3,

Mann-Whitney test). Thus although the cross-validation seems to indicate improved per-

formance from this later model, the comparisons with external datasets of different types,

does not back this up.
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Table 4.2: Performance comparison of prediction models

HI training set Predictors #HI training #Predictable AUCCV AUCLOD

CNC_GERP
PPI_LLS2HI 237 16,017 0.866 0.915

Initial∗

CNC_GERP
PPI_LLS2HI
TRANS_SIZE
PARALOG_DIST
EARLY_DEV

237 16,017 0.869 0.945

MACAQUE_DNDS
PROMOTER_GERP
EARLY_DEV
GGI_LLS2HI

237 13,030 0.765 0.97

CNC_GERP
PPI_LLS2HI 312 16,017 0.864 0.934

Expanded

CNC_GERP
PPI_LLS2HI
TRANS_SIZE
PARALOG_DIST
EARLY_DEV

312 16,017 0.864 0.964

MACAQUE_DNDS
PROMOTER_GERP
EARLY_DEV
GGI_LLS2HI

312 13,030 0.765 0.975

∗ Cancer genes removed
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4.3.3 Using HI gene predictions to assess pathogenicity of dele-

tions

4.3.3.1 Defining a genomic-interval-based pathogenicity score

I investigated how my gene-based predictions of haploinsufficiency might be used to dis-

criminate between benign and pathogenic genic deletions. I considered that a natural way to

score the probability of a deletion of a genomic interval causing a haploinsufficiency pheno-

type is to generate a LOD (log-odds) score comparing the probability that none of the genes

covered contained in the interval will cause haploinsufficiency with the probability that at

least one of the genes will cause haploinsufficiency, as shown schematically in Figure 4.12.

This LOD score is calculated using the formula below:

LOD = ln
(

1−∏ (1− p(HI))
∏ (1− p(HI))

)
, and assumes that there is no statistical interaction between the genes. Worked examples

of this calculation are shown in the figure below. Higher LOD scores indicate deletions are

more likely to be pathogenic as a result of haploinsufficiency.

4.3.3.2 Discriminating benign and pathogenic deletions

I then considered how these deletion-based haploinsufficiency scores might be used to as-

sess whether a genic deletion observed in a patient might cause their disease. One way of

framing probabilistically this intuitively simple question is to estimate the opposing prob-

ability, that the deletion is unrelated to the patient’s disease status. This can be equated to

the probability of drawing an individual at random from a healthy control population with

a deletion at least as pathogenic as the deletion in the patient. This probability can be es-

timated empirically as the proportion of healthy controls with a genic deletion having the

same or greater haploinsufficiency LOD score.

To test this approach, and to avoid circular reasoning, I retained a subset (2,322 GWAS con-

trols used in studies of schizophrenia and bipolar disease) of the 8,458 apparently healthy

individuals from which the HS genes in the original training data were derived and gener-

ated a new set of p(HI) by training on the reduced HS gene set identified from the rest of

apparently healthy individuals using the same method as described in Section 4.3.2. After

imputation of predictor variables (see Methods), this new training set contains 287 HI genes
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Figure 4.12: Calculation of deletion-based LOD scores and the distribution of LOD score of
control individuals and pathogenic de novo deletions. The upper portion of the figure is a
schematic demonstration of the calculation of the deletion-based LOD score. The contribution of
genes with high p(HI) is accordingly weighted in a probabilistic way. The deletion with the
largest LOD score in each individual is recorded and their distribution is shown in the lower
portion of the figure. The distribution of maximal LOD scores of 2,322 control individuals are
shown in green and the distribution of LOD scores of 487 pathogenic de novo deletions from
DECIPHER are in red. Using the control distribution as the null, the probability a deletion is
pathogenic can be assessed.
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and 594 HS genes (234 HI genes and 270 HS genes before imputation). The model trained

from this reduced training set achieved a similar AUC and MCC in 10-fold cross-validation

as the model trained from the original training set (after imputation: AUC = 0.84, MCC =

0.55; before imputation: AUC = 0.81, MCC = 0.50).

The resulting predictions are also highly consistent with the original predictions (correla-

tion between p(HI) is 0.99 both before and after imputation). I used the predictions based

on the dataset that includes imputed predictor variables to allow the more reliable assertion

of haploinsufficiency of a genomic interval from the vast majority of the genes affected by

its deletion (17,456 genes with p(HI) after imputation as opposed to 12,443 before impu-

tation). Based on these predictions I determined the distribution of the maximal deletion

haploinsufficiency scores for the retained subset of 2,322 apparently healthy individuals.

To compare this distribution of ‘most pathogenic’ deletions discovered in apparently healthy

individuals with truly pathogenic deletions, I collected 487 de novo deletions identified from

array-based CNV detection and classified as being putatively pathogenic in the DECIPHER

database [129]. I focused exclusively on deletions known to be de novo variants, as I infer

that their pathogenicity has been ascribed primarily on the basis of their inheritance status,

and not their gene content. The distributions of maximal LOD scores in GWAS controls and

LOD scores of pathogenic DECIPHER deletions are shown in Figure 4.12. The pathogenic

deletions have strikingly significantly higher LOD scores than deletions observed in GWAS

controls (p < 1×10−30, Mann-Whitney U test). I observed that for 92% of the pathogenic

deletions there was a probability of less than 5% of drawing an individual at random from

our control population with a genic deletion of equal or greater LOD score, and for 83% of

pathogenic deletions there was a less than 1% probability.

I computed ROC curves to compare three different approaches for discriminating between

pathogenic deletions and deletions seen in controls: (i) LOD scores, (ii) the length of the dele-

tion, and (iii) the number of genes in the deletion (Figure 4.13). These ROC curves clearly

show that the haploinsufficiency LOD score is the best metric of the three for discriminating

between pathogenic deletions in patients and deletions seen in controls.
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Figure 4.13: Comparison of different metrics for assessing deletion pathogenicity. Three ROC
curves represent the performance of three different methods for distinguishing between
pathogenic deletions from DECIPHER and the most pathogenic deletions observed in control
individuals. The blue curve denotes using LOD score calculated from predicted probability of
exhibiting haploinsufficiency as the metric of pathogenicity. The green curve denotes using the
number of deleted genes as the metric, in which case the most pathogenic deletion per individual
is the one containing greatest number of genes in that individual. The red curve denotes using
the size of deletion as the discriminating metric.

I investigated whether the distribution of maximal LOD scores is significantly different be-

tween 1,433 European-Americans (EA) and 889 African-Americans (AA) GWAS controls,

which, if true, might suggest the necessity of using ethnicity matched population pathogenic-

ity score distributions. I observed that there was not a significant difference in median hap-

loinsufficiency scores in EA and AA populations (p = 0.71, Mann-Whitney U test). The EA
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controls have a slightly longer tail of more pathogenic deletions (e.g. a higher proportion

of EA controls have deletions with LOD scores in the top 1% in the pooled distribution,

Table 4.3), which is consistent with the previous suggestion that purifying selection is more

efficient in African populations due to their larger effective population sizes [158, 159]. How-

ever, this difference is again not significant (p = 0.24, Fisher’s exact test).

Table 4.3: Population-specific properties of LOF CNVs

Population
Average

#(LOF CNV)
per individual

Average
#(predictable
LOF gene) per

individual

Average
#(LOF gene)
in CNV with
max LOD per
individual

Average of
max LOD per
individual

Proportion
with max

LOD ≥ 99%
of the pooled
population

European
American 7.41 10.5 2.85 -0.36 1.18%

African
American 7.35 10.1 2.74 -0.38 0.79%

4.3.3.3 Extension to duplications

Since the probability of a gene being haploinsufficient partly reflects its general dosage sensi-

tivity, it might be reasonable to expect abnormally increased dosage of at least some HI genes

could also be pathogenic, as exemplified by the PMP22 gene contained in the lim1.5Mb re-

gion at 17p11.2 of which duplication causes Charcot-Marie-Tooth syndrome type 1A and

deletion causes Hereditary Neuropathy with Liability to Pressure Palsies. Therefore, I in-

vestigated if the interval-based haploinsufficiency LOD score could also be applied to clas-

sifying the pathogenicity of duplications. All computational procedures were identical to

those for deletions, except the slight difference that the LOD scores for duplications were

calculated from the p(HI) of genes contained in a genomic interval instead of LOF genes.

I again compared the ROC curves of using LOD scores, the length of the duplication, and

the number of genes in the duplication (Figure 4.14). The LOD score exhibit similar per-

formance to the size of duplication in discriminating between pathogenic duplications and

duplications seen in controls. Both LOD score and size performed better than the number

of genes.
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Figure 4.14: Comparison of different metrics for assessing duplication pathogenicity. Three ROC
curves represent the performance of three different methods for distinguishing between
pathogenic duplications from DECIPHER and the most pathogenic duplications observed in
control individuals. The blue curve denotes using LOD score calculated from predicted
probability of exhibiting haploinsufficiency as the metric of pathogenicity. The green curve
denotes using the number of duplicated genes as the metric, in which case the most pathogenic
duplication per individual is the one containing greatest number of genes in that individual. The
red curve denotes using the size of duplication as the discriminating metric.

4.3.3.4 Extension to other forms of genetic variation

I investigated whether the gene-based probabilities of haploinsufficiency that I have gener-

ated are of general utility across different forms of genetic variation. If this is indeed the

case then I should expect that genes harboring loss-of-function substitutions or small in-
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dels in apparently healthy individuals should not have a high p(HI). I identified 349 genes

as having LOF substitutions and indels in 12 recently sequenced exomes [116], of which I

could estimate p(HI) for 176 that were not also in the HS training set (and thus represent a

fair set for independent comparisons). These genes are highly significantly enriched among

genes with low probabilities of exhibiting haploinsufficiency (p = 1.06×10−20 when compar-

ing to the genome, and p < 1×10−30 when comparing to known HI genes, Mann-Whitney U

test). This result implies that there are not substantial differences between genes that tolerate

whole gene deletions and those that tolerate smaller loss-of-function variants.

Moreover, by utilizing a large gene-resequencing dataset that contains 47,576 SNPs found by

direct resequencing of 11,404 protein-coding genes in 35 individuals (20 European-Americans

(EA) and 15 African-Americans (AA)) [160], I studied the allele frequency spectrum of dif-

ferent types of genic variants with respect to p(HI) of the genes. I hypothesized that genes

under stronger negative selection should exhibit an enrichment of rare alleles in their allele

frequency spectrum relative to genes under less selective constraint. There are 14,420 non-

synonymous SNPs and 16,213 synonymous SNPs in the dataset found within genes with

predicted p(HI). I examined their derived allele frequency (DAF) spectrum as a function of

p(HI) of the genes in which they are located (Figure 4.15).

Regardless of population composition, the DAF spectrum of nonsynonymous SNPs are sig-

nificantly more skewed towards rare variants in gene sets with higher p(HI) than in those

with lower p(HI), as assessed by a one-sided Mann-Whitney U test comparing the median

of the allele frequency spectrum of nonsynonymous variants in genes with p(HI) in the top

20% with that of nonsynonymous variants in genes with p(HI) in the bottom 80%. The p

value for this test in EA was 3.95×10−3, and in AA was 2.85×10−7. As a control, the differ-

ence in DAF of synonymous SNPs between high p(HI) genes and low p(HI) genes was not

significant (EA p = 0.127, AA p = 0.057). These results suggest greater selective constraint

on genes predicted to exhibit haploinsufficiency.
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Figure 4.15: Derived allele frequency spectrum of variants in different gene sets. This figure
shows the spectrum of derived allele frequency (DAF, represented here as counts of derived allele
in the population) of nonsynonymous SNPs and synonymous SNPs discovered by resequencing of
human genes in a) 15 African Americans and b) 20 European Americans. In each plot, DAF of
variants located in genes of different p(HI) are compared side by side, where bars of decreasing
darkness represent quantiles of decreasing p(HI), such that the 0–25% quartile is that with the
highest probability of being haploinsufficient.
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4.3.4 Probabilistic CNV diagnosis

In Section 4.3.2 and 4.3.3, I demonstrated the usefulness of gene-based p(HI) and its deriva-

tive, the interval-based haploinsufficiency LOD score in discriminating between benign and

pathogenic deletions by showing that known pathogenic deletions have a LOD score dis-

tribution significantly higher than that of even the ‘most deleterious’ deletions found in ap-

parently healthy individuals. However, in clinical diagnostics the primary question is how

likely a variant is pathogenic/causal given all sources of evidence (e.g. pathogenic score).

This is a typical Bayesian problem of which the answer is affected by both prior belief and

evidence. Naturally, I modeled this problem using a Bayesian framework and tried to put

it in the context of the general diagnostic process. I applied this framework to CNV diag-

nostics and examined two frequently encountered scenarios in clinical diagnostics wherein

(i) the inheritance status of the variant is unknown or (ii) the variant is known to have arisen

de novo.

4.3.4.1 A Bayesian framework for CNV diagnostics

The diagnostic question: ‘is this variant, in this patient, sufficient to explain their clinical

phenotype?’ can be answered by assessing the posterior probability that this variant is

causal given all the available evidence, p(C|E), where C denotes that the variant is causal

and E denotes all available evidence. This probability is difficult to measure directly. In-

stead, the probability to observe such evidence given the variant is causal (and not causal),

p(E|C) (and p(E|C̄)), can be estimated directly from medical or population data and can be

used to derive p(C|E) according to the Bayes Rule:

p(C|E) = p(C)p(E|C)
p(E)

=
p(C)p(E|C)

p(C)p(E|C) + p(C̄)p(E|C̄)

, where p(C) is the prior probability a variant is causal. Evidence involved in diagno-

sis of genetic variants includes both dichotomous or categorical conditions and continu-

ous measurements. The former are often used as filters, such as ‘overlapping with known

disease-causing genes’ and ‘inherited from similarly affected parents’. The latter can be

transformed into filters with defined thresholds, such as the division of common and rare

variants based on population frequency thresholds, or used directly as numeric variables,

such as pathogenic scores. Therefore, the space of evidence can be split into S, denoting that

the variant has a measure of pathogenicity equal to x, and F, representing all other pieces
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of evidence that can be used as filters. In this way, the posterior probability and the Bayes

factor becomes p(C|S, F) and p(S, F|C), respectively. The latter can be further expanded to

p(F|C)p(S|C, F), so that

p(C|S, F) =
p(C)p(F|C)p(S|C, F)

p(C)p(F|C)p(S|C, F) + p(C̄)p(F|C̄)p(S|C̄, F)

, or in its likelihood ratio form,

LR =
p(C|S, F)
p(C̄|S, F)

=
p(C)p(F|C)p(S|C, F)
p(C̄)p(F|C̄)p(S|C̄, F)

p(C|S, F) =
LR

1 + LR

p(F|C) (or p(F|C̄)) is the probability the variant passes this filter F given the variant is causal

(or benign), and p(S|C, F) (or p(S|C̄, F)) is the probability of the variant having a measure

of pathogenicity equals to x given it is causal (or benign) and passes the filter F.

p(F|C) can be estimated as the proportion of causal variants discovered in large patient stud-

ies that pass the filter, and p(S|C, F) can be estimated as the proportion of causal variants

passing the filter that have a pathogenic measure equal to x. p(F|C̄) and p(S|C̄, F) are best

estimated from all benign variants, from both patients and healthy individuals. In practice,

benign variants are usually not reported and recorded in patient studies, and depending

on the particular filter, F, such information is sometimes not collected for variants found

in population-based or control studies (e.g. whether a variant is de novo or not). Therefore,

p(F|C̄) and p(S|C̄, F) often have to be estimated from approximate distributions. Variants

found in control individuals should be similar enough to all benign variants provided the

sample size of the control cohort is large. For certain filters, the set of variants that pass

them may be obtained through proxy properties. After the approximate variant sets are

constructed, p(F|C̄) and p(S|C̄, F) can be estimated as for causal variants. With different

F, these components need to be estimated from different sets of variants and the posterior

probability changes accordingly. Below I consider two categories of possibly causal variant

that are frequently encountered in clinical diagnostics: (i) the variant can be shown to be

rare, but is of known inheritance status, and (ii) the variant can be shown to be de novo.



130 CHAPTER 4. CHARACTERIZING AND PREDICTING HAPLOINSUFFICIENCY

Table 4.4: Estimated parameters of the diagnostic framework

Variant type Size range F p(C) p(F|C) p(F|C̄)

deletion >180k rare 0.12 1 0.34

deletion >180k de novo 0.12 0.73 0.0044

duplication >330k rare 0.14 1 0.38

duplication >330k de novo 0.14 0.73 0.0044

4.3.4.2 The variant is rare, and of unknown inheritance status

Under this scenario, often the only information on the variant is that it is not already known

to be pathogenic and is not commonly seen in the population, therefore F denotes the filter

that requires variants to be rare as defined by having a population frequency <1%. The esti-

mated value of the parameters: p(C), p(F|C) and p(F|C̄) were listed in Table 4.4 (see Meth-

ods). I considered either the LOD score or the variant size as the measure of pathogenic-

ity. The distribution of LOD scores and variant sizes for rare casual and benign CNVs,

from which p(S|C, F) and p(S|C̄, F) can be calculated, were shown in Figure 4.16–4.19. For

both deletions and duplications, the resulting posterior probability p(C|S, F) increases as

the LOD score, or the size of the variant, becomes greater. In order to achieve a confidence

level of 95%, a rare deletion of unknown inheritance status needs to be larger than 2.1Mb or

have a LOD score greater than 7.2, and a rare duplication needs to be larger than 3.2Mb or

with a LOD score greater than 15.5.

4.3.4.3 The variant is de novo

The de novo rate of causal and benign CNVs is even harder to obtain as confirming the

de novo status would require the genotype information of both the parents and the child,

i.e. the ‘trio’, and reaching a reasonable estimate requires genotyping a large number of

such trios. There are a few studies that have reported CNV diagnosis in hundreds to more

than a thousand patients including parents in which low-resolution array-CGH were used

to detect large CNVs and de novo status were confirmed where possible [134, 161]. These

studies are arguably the best sources from which one can estimate the de novo rate of causal

CNVs. However, even with this data the number of de novo CNV from any one study is
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Figure 4.16: The posterior probability of a deletion being causal as a function of pathogenicity
score. The distribution of pathogenicity score for causal (red) and benign (green) deletions are
shown in A and B. In C, the two horizontal dashed lines represent posterior probabilities of 0.95
and 0.99.

too small to generate a meaningful distribution of measure of pathogenicity. Therefore, the

distribution of pathogenicity measures for de novo CNVs was approximated using known

de novo causal CNVs recorded in DECIPHER. Studies reporting de novo CNVs discovered in

apparently healthy individuals are even scarcer. I took the benign de novo rate from Itsara

et al, which investigated the rate of de novo CNVs in 772 transmissions in pedigrees without

neurocognitive disease genotyped on median- to high-resolution SNP genotyping arrays

and I approximated the distribution of pathogenicity scores for benign de novo CNVs using

singleton CNVs found in WTCCC2 and GAIN controls.

The estimated values of the parameters are show in Table 4.4 and the causal and benign dis-

tributions of measure of pathogenicity are shown in Figure 4.16–4.19. As expected, for both

deletions and duplications, the size or the LOD score required for a variant to have a prob-

ability of being causal greater than 0.95 is much smaller than that required for a variant of

which the inheritance status is unknown. However, being de novo alone does not guarantee

pathogenicity as the probability of being a causal variant is still not convincingly high when

the variant is small (0.8 at size = 500kb) or with very low LOD score (0.7 at LOD = -2).
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Figure 4.17: The posterior probability of a deletion being causal as a function of size. The
distribution of pathogenicity score for causal (red) and benign (green) deletions are shown in A
and B. In C, the two horizontal dashed lines represent posterior probabilities of 0.95 and 0.99.
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Figure 4.18: The posterior probability of a duplication being causal as a function of
pathogenicity score. The distribution of pathogenicity score for causal (red) and benign (green)
duplications are shown in A and B. In C, the two horizontal dashed lines represent posterior
probabilities of 0.95 and 0.99.
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Figure 4.19: The posterior probability of a deletion being causal as a function of size. The
distribution of pathogenicity score for causal (red) and benign (green) deletions are shown in A
and B. In C, the two horizontal dashed lines represent posterior probabilities of 0.95 and 0.99.
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4.4 Discussion

In this chapter, I described the collection of human HI genes and HS genes, their differences

in genomic, evolutionary, functional and network properties, and a computational method

that distinguishes the two and predicts the probability of exhibiting haploinsufficiency for

human protein-coding genes of unknown dosage sensitivity. A measure of pathogenicity

for large genic copy number variants was developed on the basis of the HI predictions. A

probabilistic diagnostic framework was designed to transform evidence of pathogenicity of

a patient variant into confidence of diagnosis by taking into account the population variance

of that measure of pathogenicity.

The traditional view that recessiveness is the norm of deleterious mutations is supported by

earlier mutagenesis screen of model organisms [162]. In human, the ∼300 known HI genes

only account for ∼1.5% of the protein-coding genome. However, haploinsufficiency, like

most concepts in Mendelian genetics, is a qualitative, rather than quantitative, description

based on a phenotype-specific definition of insufficiency, Insensitive or incomplete pheno-

typing or diagnosis could lead to underestimation of the proportion of the genome that is

actually dosage sensitive. In genetics studies of model organisms, it is common that only the

most prominent phenotypic consequence of a mutation or traits that are in relation with cer-

tain prior expectation are examined and reported. Abnormalities that are subtle and require

specially designed tests to reveal or occur in completely unexpected tissues or cells can often

be overlooked. Even in human, wherein measurements of physiological and morphological

abnormalities is thought to be much more sensitive and thorough, complete phenotyping

is never guaranteed. For example, the mutant allele of the gene GJB2, which is causal for

the most frequent form of recessive congenital hearing loss, was recently found responsi-

ble for increased epidermal thickness in a dominant or semi-dominant manner [163, 164].

Thickened epiderm is obviously a less prominent trait that could not be detected without

skin ultrasonography or similar technologies. In this chapter, the definition of haploinsuffi-

ciency has focused on severe clinical phenotypes (broadly-defined) as sufficiency relates to

being qualified to be recruited as an apparently healthy control in a study of common dis-

ease susceptibility. With more complete phenotyping and hence a more stringent definition

of sufficiency, the haploinsufficient/dosage-sensitive proportion of the genome might grow

larger. In addition, most early work of Fisher, Wright and others that emphasized the dom-

inance of the wildtype allele focused on metabolic enzymes. We now know that metabolic

enzymes are less likely to be haploinsufficient whereas transcription factors, structural pro-
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teins and subunits of protein complexes are more likely to be haploinsufficient due to the

kinetic properties of the respective molecular system in which they function [107, 165, 166].

As transcription factors alone account 5–10% of the human protein-coding genome [167],

the currently ∼300 known human HI genes is likely just a tip of the iceberg.

Not surprisingly, the known HI genes were found to be larger in size, which is a general

characteristic of disease genes [168, 169], though it might be attributed to ascertainment

bias, as, all things being equal, it is easier to find multiple families with causal mutations in

the same gene if the gene is larger. HI genes were found to be more conserved in their coding

sequence than HS genes, which is consistent with previous comparison between dominant

and recessive disease genes [119]. In addition, the promoter sequences of HI genes are more

conserved as well, which might suggest transcription regulation of these genes, as a part of

dosage control mechanism, is under greater purifying selection, although this needs to be

confirmed by human variation data. HI genes were found to have fewer paralogs and/or

paralogs with lower sequence similarity than HS genes. This is consistent with a yeast study

[150] which reported that HI genes tend not to have paralogs and suggested having a close

paralog may provide a buffer against the effects of haploinsufficiency, but contradicts an-

other report by Kondrashov et al [120] that found human dominant disease genes tend to

have more paralogs than recessive disease genes and argued that such is the result of pos-

itive selection. However, the latter finding is not strictly comparable to this study, since

homozygous LOF mutation of recessive disease genes can cause severe phenotypic defects

and are hence under selection and less likely to be found in large genomic deletions, from

which the HS gene set used in this study are collected. Indeed, there is a significant under-

representation (p = 0.0023) of recessive disease genes in the HS gene set. The strong en-

richment of olfactory receptor genes in the HS set (13% compared to 2% genome-wide, p

< 2.2×10−16) could also affect the result. With respect to their spatiotemporal expression

patterns, HI genes are more tissue specific and active during early development, which is

expected since many of the haploinsufficient transcription factors play vital and tissue spe-

cific role in early developmental processes such as patterning, morphogenesis and organ

development [156]. As for network properties, HI genes are found to be more central and

closer to one another. The latter may support the view that haploinsufficiency tend to occur

in certain molecular systems (early-development-related signaling and transcription regu-

lation pathways, protein complexes), but may also be confounded by the ascertainment bias

that search for novel disease genes tends to follow interaction partners of known disease

genes.
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The prediction of HI was implemented by training a statistical classifier on known HI and

HS genes using gene properties that best distinguish the two as predictor variables. This

is not a strictly mechanism-based approach, but an approach that exploits the correlation

between haploinsufficiency and other gene properties. Though the performance of the pre-

diction, as assessed by cross-validation using the training data, is moderately good (AUC =

0.81 without imputation of predictors and 0.84 with imputation; when requiring 80% sensi-

tivity, the version without imputation has 70% specificity and version with imputation has

75% specificity), it is better than using any single gene property alone and has been validated

to be able to prioritize potential real genes. Proximity to other known HI genes within gene

or protein networks was found to be the most predictive property of which the contribu-

tion to performance cannot be fully explained by sequence conservation, tissue-specificity

of expression, or other gene properties. Incomplete coverage of all genes in the genome

by gene-gene and protein-protein networks is therefore also the major factor limiting the

genome coverage of these predictions. The predictions should be substantially improved

in both accuracy and coverage with the future generation of more complete and accurate

human genetic interaction networks.

Although haploinsufficiency can be regarded as the property of a single gene, phenotypic

manifestation of any genetic mutation, including heterozygous LOF mutation, is, strict speak-

ing, the output of a perturbed multi-layer system of interacting molecules, cells and organs.

Consequently, dosage sensitivity of a gene could vary across different genetic backgrounds.

For example, heterozygous deletion of Tbx5 causes embryonic lethality in 129S mice, but

produces viable mice on B6 background [170]. In humans, patients carrying a second large

CNV in addition to the micro-deletion at 16p12.1 exhibit much severer developmental delay

than those having the 16p12.1 micro-deletion alone [91]. Therefore, the ideal prediction of

haploinsufficiency should come from a system biology approach that models all interacting

genes and biochemical reactions in a cell mathematically similar to that of Kacers and Burns

[107] in which haploinsufficiency could be determined by numeric simulation and single

component sensitivity analysis.

The measure of pathogenicity of a CNV was defined as the log of odds that at least one

affected gene is haploinsufficient. As the likelihoods of being haploinsufficient of individual

genes are combined in such a probabilistic way, its application is not limited to individual

genomic intervals. For example, one can measure the genome-wide pathogenic burden of

an individual by calculating the odds that at least one gene is haploinsufficient out of all

genes affected by any CNV, or other LOF variants, in this individual’s genome. However,
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there are also obvious caveats of such measure. First, the measure can only be applied to

CNVs affecting protein-coding genes for which a prediction is available. Second, potential

functions of intergenic sequences are ignored. Third, the effects of each gene are assumed

to be independent. To tackle the first two limitations, one could consider features that are

not bound to genes, such as the density of repeat elements or the number of conserved

non-coding elements. However, these properties need to be combined with the likelihoods

of genes exhibiting haploinsufficiency in a meaningful way. For the third caveat, the idea

solution would again be a system biology approach as described above, substituting the

single-component sensitivity analysis with a multiple-component sensitivity analysis.

The probabilistic diagnostic framework provides a natural way to integrate both qualitative

and quantitative measures of pathogenicity and produces quantified confidence of diagno-

sis by considering the population variance of the quantitative measure of pathogenicity. Be-

ing a Bayesian method, it has the advantage of not naively assuming that different measures

are independent, but at the same time it requires knowledge of the conditional distribution

of the quantitative measure of pathogenicity, which is not always readily available. In its

application to rare and de novo CNVs in Section 4.3.4, the patient and control distribution

of pathogenicity score under the condition that the CNVs are de novo were unavailable and

were substituted with approximated distributions. Another problem, which is common for

all Bayesian inferences, is the requirement of a proper prior. The prior probability of a vari-

ant being causal can be affected by a number of factors, for example, the specific type of

disease and the filters or tests having been applied before the application of this framework.

As for CNVs, since different CNV discovery platforms vary vastly in their sensitivity and

resolution, which could have profound impact on the population distribution of the quan-

titative measure of pathogenicity, the prior should be estimated from the same or similar

platform that the population distribution of pathogenicity scores is generated.

Previously, de novo CNVs discovered in patients were highly likely to be diagnosed as being

a causal variant in clinical practice. As early CNV discovery technologies, such as cyto-

genetic methods and low-resolution array CGH could only find very large events, those

diagnoses might largely hold correct. However, in recent years, with improved CNV dis-

covery technology and accumulated CNV datasets, it is known that de novo CNVs, especially

smaller ones, arise at an appreciable rate (estimates ranging from 1×10−2 to 3×10−2 CNVs

per haploid genome per generation [89, 131, 171]) in healthy individuals. Therefore, there is

growing recommendation for not relying solely on the de novo status in the interpretation of

variant causality [133, 172]. My application of this diagnostic framework to de novo CNVs
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not only supported this view, but also provides a quantitative level of confidence as a func-

tion of the size of the variant or its pathogenicity score. However, these quantitative values

should be interpreted with caution at this stage, and are not mature enough for clinical im-

plantation, for several reasons. First, as the distribution of CNVs and functional sequences

is uneven across the genome whereas the size or the pathogenicity score of CNVs are locus-

independent measures. In addition, these results are highly dependent on the CNV discov-

ery platform and the prior. Furthermore, the use of approximate conditional distributions

of pathogenicity scores has introduced additional uncertainty. With the increasing applica-

tion of array CGH, high-resolution genotyping array and medical sequencing, and hence

ascertainment of a more complete spectrum of variants in patient genomes, this diagnostic

framework is expected to produce a more accurate estimation of confidence to aid the diag-

nosis of novel, rare variants for which detailed locus-specific information is unavailable.





CHAPTER 5

DISCUSSION

In this thesis I explored the functional impact of copy number variation using both a dis-

ease association approach and a prediction-based approach with a focus on heterozygous

LOF CNVs. Initially, I developed an informatics pipeline for robust discovery of CNVs from

large numbers of samples genotyped using the Affymetrix whole-genome SNP array 6.0, to

support both the association-based and prediction-based study. For the disease association

strategy, I studied the role of both common and rare CNVs in severe early-onset obesity

using a case-control design, from which a rare 220kb heterozygous deletion at 16p11.2 that

encompasses SH2B1 was found causal for the phenotype and an 8kb common deletion up-

stream of NEGR1 was found to be significantly associated with the disease, particularly in

females. Using the prediction-based approach, I characterized the properties of haploinsuf-

ficient (HI) genes by comparing with genes observed to be deleted in apparently healthy

individuals and I developed a prediction model to distinguish HI and haplosufficient (HS)

genes using the most informative properties identified from these comparisons. An HI-

based pathogenicity score was devised to distinguish pathogenic genic CNVs from benign

genic CNVs. Finally, I proposed a probabilistic diagnostic framework to incorporate popu-

lation variation, and integrate other sources of evidence, to enable an improved, and quan-

titative, identification of causal variants. As a demonstration, I applied the framework to

CNVs that are rare and of unknown inheritance, and CNVs that occur de novo.

CNV discovery is fundamental to all CNV-related analysis. It is worth considering the lim-

itations of the CNV discovery that underpins this thesis. With over nearly 2M probes both

targeting known common CNV regions and distributed throughout the genome, Affymetrix

6.0 is arguably one of the better commercially available single array platforms for genome-

141
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wide CNV detection. Birdseye is highly tailored to Affy6 data and, in my benchmarking,

produced the best call set compared to other tested CNV discovery algorithms. However,

CNV discovery using Birdseye is not perfect and is affected by various technical issues like

sample quality and batch size (see Chapter 2). Sensitive and robust CNV discovery is limited

to larger CNVs, which may have some impact on the subsequent analyses.

In Chapter 3, in the analysis of genomic burden of rare CNVs, the majority of the burden

was concentrated in the largest variants, greater than 500kb. However, the ability to inves-

tigate CNV burden of smaller CNVs might be confounded by the calling of smaller CNVs

being less robust and it is prone to biases between collections. In addition, the less robust

CNV calling of smaller CNVs might have caused the greater proportion of the nominally

associated rare CNVs <50kb being rejected by manual examination of intensity profile,

compared to rare CNVs >50kb (data not shown). However, it may be less a problem for

common CNVs, since they are well-tagged by SNPs irrespective of their size and the im-

pact of smaller CNVs could be investigated by imputing them using reference haplotypes

containing CNVs, such as those generated by the 1000 genomes project.

In Chapter 4, the collation of haplosufficient genes and the generation of the population dis-

tribution of pathogenicity score for non-causal variants also depend on CNV discovery. The

impact of less robust calling of smaller CNVs on the collation of HS genes is likely minor

since (i) the requirement of being found in at least two individuals should remove many

false positives and (ii) considering just the larger genic CNVs provides sufficient informa-

tion to assemble a sizeable training set. The impact of the limitations of CNV discovery on

probabilistic diagnosis is probably minor because these limitations mainly affect the lower

end of the distribution of pathogenicity scores of non-causal variants, whereas it is mainly

the high end of this distribution that overlaps with the distribution for causal variants and

thus could influence the resultant posterior probabilities.

In Chapter 4, I primarily considered the functional impact of deletions that are obviously

LOF. The gene-based predicted probability of exhibiting HI and the pathogenicity score de-

rived from such prediction is useful for interpreting LOF CNVs, and LOF sequence variants.

I also showed that these pathogenicity scores may be useful for interpreting whole gene du-

plications as many HI genes are triplosensitive as well. Intragenic duplications are harder to

interpret on the basis of that their interpretation requires knowledge of the precise variant

structure, and array data do not contain any information on the location of the duplicated

segment. These LOF-based scores are not likely to be so useful for interpreting other classes

of CNV functional impact, for example, gain of function changes. Interpreting sequence-
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based CNVs should become more straight-forward given the greater information on the

precise structure of the new allele. Interpreting the functional impact of smaller CNVs will

be challenging, but can draw upon some of the finer annotations used for predicting the

functional impact of point mutations, such as: base conservation, physical and chemical

properties of amino acids, protein domain structure, spatial location relative to the active

site. Full interpretation of individual genomes is going to require measures of functional

impact, ‘pathogenicity scores’ for all classes of variation.

The predictive framework that I developed for characterizing a set of genes/variants by

comparison with a contrasting type of genes/variants and training a classification model

using the most informative characteristics drawn from a broad range of evolutionary, ge-

nomic and functional properties could be applied to other classes of putatively functional

variants. Although current networks of interacting proteins and genes are far from com-

plete, network centrality and network proximity to other known HI genes were among the

most significantly differentiated properties between known HI and HS genes. The latter was

also the most informative predictor in the selected prediction model. Incorporating network

information is likely to be of considerable utility in the development of pathogenicity scores

for other types of variation. As an exemplar, in a recent study of LOF variants discovered in

the pilot phase of the 1000 genomes project (MacArthur et al, in press), I applied the same

strategy to distinguishing recessive disease genes and dispensable genes (those disrupted

by homozygous LOF SNPs, indels and CNVs) and the model achieved an AUC of 0.83 in

cross-validation. Critical to the success of the prediction of haploinsufficiency and recessive

LOF genes was the collation of a large body of population data. Exome sequences are only

now becoming available for sample sizes of thousands. We can expect these population data

to be invaluable for the development of improved pathogenicity scores for genic sequence

variation.

Full characterization of the role of CNV in the genetics of obesity, or indeed any trait, will

require an integrated analysis of the full range of genetic variation: sequence and structural

variation, coding and regulatory variants. For example, pooling rare CNVs and point muta-

tions in the same functional elements could increase statistical power to detecting associated

loci. Moreover, causal recessive genes harboring LOF deletions of one allele and deleteri-

ous point mutations in the other allele could be missed if considering CNVs alone. Finally,

point mutations and CNVs may also interact in cis or trans to have a functional impact that

is impossible to appreciate from study of the CNV in isolation. The generation of exome

sequences from many of the severe early onset obesity cases studied here, as part of the
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UK10K project, promises to enable these kinds of integrated analyses.
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APPENDIX A

TABLE OF MANUALLY CURATED HI

GENES

Class definition:

1. Severe dominant developmental disorder, smaller critical region, genes disrupted in

multiple patients or in a single patient with strong additional evidence.

2. Severe dominant developmental disorder, genes disrupted in a (large) deletion inter-

val in a single patient, with (or without) other evidence.

3. Recessive disorder, or multigenic diseases resulting from compound mutations, or

cancer which requires LOF or compound heterozygosity.

4. Evidence failed to support haploinsufficiency.

Gene Class Gene Class Gene Class Gene Class

ACVRL1 1 AFF3 1 ALX4 1 ANKRD11 1
APC 1 ATM 1 ATP1A2 1 ATP2A2 1
ATP2C1 1 BDNF 1 BMPR2 1 BRCA2 1
BUB1B 1 CAMTA1 1 CBFB1 1 CD2AP 1
CDKN2A 1 CDX2 1 CHD2 1 CHD7 1
CHRNA7 1 CNTNAP2 1 COL1A1 1 COL3A1 1
COL5A1 1 CREEBP 1 CYP11A1 1 DMPK 1
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continued from previous page

Gene Class Gene Class Gene Class Gene Class

DSPP 1 DYRK1A 1 EHMT1 1 ELN 1
ELOVL4 1 EXT2 1 EYA1 1 FBN1 1
FGF10 1 FGF3 1 FGF8 1 FGFR1 1
FGFR2 1 FLG 1 FOXC1 1 FOXE3 1
FOXF1 1 FOXG1 1 FOXL2 1 FOXP2 1
GATA4 1 GDF5 1 GLI3 1 GNB1L 1
GNRH1 1 GPR98 1 GRN 1 GTF2I 1
GTF2IRD1 1 HMGA2 1 HNF1B 1 HOXD13 1
IGF1R 1 INSR 1 IRF6 1 ITPR1 1
JAG1 1 KCNAB2 1 KRIT1 1 KRT14 1
LEMD3 1 LMX1B 1 MBD5 1 MBP 1
MEF2C 1 MSX1 1 MSX2 1 NF1 1
NFIA 1 NFIB 1 NFKB1 1 NKX2-1 1
NKX2-6 1 NOTCH1 1 NR2F2 1 NR5A1 1
NSD1 1 OPA1 1 PAG1 1 PAX2 1
PAX3 1 PAX5 1 PAX6 1 PBX1 1
PHOX2B 1 PITX2 1 PKD1 1 PRKAR1A 1
PRKD2 1 PTCH1 1 PTEN 1 RAI1 1
RALGAPA1 1 ROR2 1 RPS14 1 RPS19 1
RUNX2 1 SALL1 1 SCN1A 1 SERPINA6 1
SGCE 1 SHH 1 SHOX 1 SLC2A1 1
SMAD5 1 SOCS1 1 SOX10 1 SOX2 1
SOX9 1 SRGAP3 1 STK11 1 STXBP1 1
SUMO1 1 TAB2 1 TBX3 1 TBX5 1
TBX6 1 TECTA 1 TIMM23 1 TTF1 1
TWIST1 1 UFD1L 1 WT1 1 ZEB2 1
ABCA3 2 ADAR 2 ANXA7 2 APAF1 2
ARFGAP1 2 ATR 2 ATXN1 2 BAZ1B 2
BLM 2 BMP4 2 BRCA1 2 BUB3 2
C10orf11 2 CASK 2 CDC73 2 CDKL3 2
CDKN1B 2 CDKN1C 2 CELF2 2 CHEK1 2
CHRNA4 2 CNTN4 2 COL6A1 2 COMT 2
COPS3 2 CSH1 2 CTCF 2 CYFIP1 2
DFFB 2 DLL4 2 DMRT1 2 DOCK1 2
DSG1 2 EFNB2 2 EGR1 2 EME1 2
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continued from previous page

Gene Class Gene Class Gene Class Gene Class

ENG 2 ERBB4 2 ETV6 2 FECH 2
FLCN 2 FLII 2 FOXC2 2 FOXL1 2
FOXO3 2 FZD4 2 GATA3 2 GDNF 2
GNAS 2 GPC1 2 GPR35 2 HFE 2
HIC1 2 HIRA 2 HNF1A 2 ID2 2
IGF1 2 IGFBP3 2 ITGB6 2 KCNQ1 2
KCNQ2 2 KHDRBS1 2 KIAA2022 2 KLF4 2
KLF6 2 LETM1 2 MAGOH 2 MAP3K4 2
MC4R 2 MED15 2 MITF 2 MLL 2
MNX1 2 MSH2 2 MSH6 2 MUS81 2
MYCN 2 MYF6 2 MYH9 2 NBN 2
NCF1 2 NF2 2 NFRKB 2 NKX2-5 2
NKX3-1 2 NOG 2 NPAS3 2 NPM1 2
NR2F1 2 NUP98 2 P2RY12 2 PAFAH1B1 2
PAX9 2 PCGF2 2 PDX1 2 PML 2
PRM2 2 QKI 2 RAD50 2 RAD51L1 2
RAE1 2 RB1 2 REEP1 2 RET 2
RNF135 2 RUNX1 2 SALL3 2 SCN2A 2
SCN5A 2 SEMA5A 2 SHANK3 2 SIM1 2
SIX6 2 SLC1A2 2 SLC4A11 2 SMARCB1 2
STK25 2 TACR1 2 TBX1 2 TCOF1 2
TERT 2 TNXB 2 TOB 2 TP53 2
TP73 2 TSC2 2 TUBGCP5 2 WHSC1 2
WNT2B 2 YWHAG 2 ZIC2 2 ADCY9 3
ARFGAP3 3 CADM1 3 CAV1 3 CFH 3
CHN2 3 COL11A1 3 COL1A2 3 CYP2A6 3
DGKD 3 DMRT2 3 DNAJC3 3 EXOC6B 3
FADD 3 FAS 3 FAT1 3 FGFR3 3
FKBP6 3 FOXO1 3 GGCX 3 GPD2 3
GPSM2 3 H2AX 3 IFI44 3 IKZF1 3
IL3RA 3 IRF8 3 KCNRG 3 KLF2 3
LIMK1 3 MAP4K2 3 NGF 3 NR5A2 3
NTNG2 3 PACRG 3 PAPSS2 3 PAX1 3
PINK1 3 PTHLH 3 RHOBTB1 3 RNF139 3
RPS4X 3 SERPIND1 3 SHFM1 3 SLC26A4 3
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Gene Class Gene Class Gene Class Gene Class

SMAD4 3 SPI1 3 SPINK5 3 SRL 3
SSSCA1 3 SUFU 3 TNS3 3 UTP6 3
VAV3 3 WRD 3 ANGPT2 4 ATP2B2 4
COPS5 4 CRX 4 CTCFL 4 ENOSF1 4
FBXW7 4 FEN1 4 GPR172A 4 GSK3B 4
HAND2 4 HOXA1 4 IGFALS 4 MCL 4
MUTYH 4 MYOC 4 NR3C2 4 P2RY8 4
PARK7 4 PPARG 4 PRG2 4 PRODH 4
PROKR2 4 PXMP2 4 RELA 4 RORA 4
SH3PXD2A 4 SMN2 4 SMS 4 SOCS2 4
SOX18 4 SPAST 4 STAT5A 4 STK19 4
SUB1 4 TAS2R38 4 TCF7L2 4 TGIF1 4
TRPS1 4 XRCC5 4
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