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Abstract
There is a high demand around the world for the learning of En-
glish as a second language. Correspondingly, there is a need to
assess the proficiency level of learners both during their studies
and for formal qualifications. A number of automatic meth-
ods have been proposed to help meet this demand with vary-
ing degrees of success. This paper considers the automatic as-
sessment of spoken English proficiency, which is still a chal-
lenging problem. In this scenario, the grader should be able to
accurately assess the learner’s ability level from spontaneous,
prompted, speech, independent of L1 language and the quality
of the audio recording. Automatic graders are potentially more
consistent than humans. However, the validity of the predicted
grade varies. This paper proposes an automatic grader based on
a Gaussian process. The advantage of using a Gaussian process
is that as well as predicting a grade, it provides a measure of the
uncertainty of its prediction. The uncertainty measure is suf-
ficiently accurate to decide which automatic grades should be
re-graded by humans. It can also be used to determine which
candidates are hard to grade for humans and therefore need ex-
pert grading. Performance of the automatic grader is shown to
be close to human graders on real candidate entries. Interpola-
tion of human and GP grades further boosts performance.
Index Terms: spoken language assessment, Bayesian methods,
Gaussian process

1. Introduction
English is the modern-day lingua franca, and many non-native
speakers around the world are learning it. Currently, language
tests are often graded by human graders, for example, the tests
from Cambridge English, one of the largest providers of assess-
ment of spoken English. To meet demand from learners the
introduction of automatic approaches to testing would be ben-
eficial, especially for practice situations. This could be fully
automatic or combined with a human grader to boost the relia-
bility.

Assessing spoken English is a challenging problem for au-
tomatic systems. In addition to the issues seen in English text
based assessments, such as grammatical errors, depending on
the proficiency level of the learner, the speech will contain the
accent of the L1 language and pronunciations may be incorrect,
affected by the L1. To get a proper indication of ability the
speech should be spontaneous, and not simply be readings of
a known text. This introduces further challenges since sponta-
neous speech typically contains disfluencies such as hesitations
and false starts. Also whilst the question text is known e.g. “de-
scribe what is happening in the picture”, the vocabulary used in
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the answer is likely to be unknown unless significant recordings
are made of typical answers as in [1]. Finally, there is likely
to be a large variation in the quality of the audio recordings in
terms of levels of background noise and volume levels. De-
spite these issues, a number of methods have been proposed to
assess different aspects of a learner’s spoken language abilities
[2, 3, 4, 5, 1].

Automated graders are potentially more consistent than hu-
man graders. However, the validity of the grade may suffer:
not all aspects of learners’ speech can be captured by current
automated grading systems. As long as a candidate is similar
enough to speakers in the training data, the quality of the au-
tomatic grading may be sufficient. For speakers that are unlike
those seen by the automated system, however, the grade pre-
dicted can be poor. In those cases, ideally the system would
know to back off to human graders. Previous work in this
area [5] used a filter, essentially a separate classifier, to decide
whether or not a recording is gradeable. This paper introduces
a method - based on a Gaussian process - of computing a grade
and a measure of the uncertainty at the same time and from the
same data.

Gaussian processes [6] give a mathematically consistent
method for approximating an unknown function that also pro-
vides a measure of the uncertainty around this estimate. In this
case, the function maps a feature vector representing a candi-
date’s spoken English to a grade. By relating a new candidate
to the training data, a distribution over the result of the function
for the new candidate can be produced. The variance of this
distribution will be used for rejecting the grades given. Com-
bination of this automatic method with human grades is also
considered.

This paper is organised as follows. Section 2 will intro-
duce Gaussian processes. Section 3 will describe the automated
grader; section 4 will then present experimental results.

2. Gaussian processes
A Gaussian process (see e.g. [6]; for applications to speech
processing, see [7, 8]) is a model that can be used to perform
regression. One way of viewing it is as modelling a distribu-
tion over functions. The Gaussian process is a nonparametric
model, which means that the functions themselves are not pa-
rameterised. However, the covariance between any two inputs
x and x′ is given by a function k(x, x′). All training data points
are stored (though sparsification methods exist). When a pre-
diction is required for a new test point (a new candidate, in this
case), the covariance between it and each training point is com-
puted. The prediction, in the form of a Gaussian, can be com-
puted from that.

Figure 1 illustrates a Gaussian process trained on five data
points (the dots). The horizontal axis represents the input (1-
dimensional for illustration), and the vertical axis represents the
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Figure 1: A Gaussian process trained on a few data points. The
mean and variance contours are indicated. When the test point
is further away from the training data, the predicted mean and
variance revert to the prior.

target values. The bands show the predicted Gaussian distribu-
tion for any input point. The middle line indicates the mean, and
the coloured bands the variance contours at ½, 1, and 2 times the
variance around the means. Close to the data points, the predic-
tions have low variance, and the mean interpolates, and to some
degree extrapolates, between the points. The data is assumed to
be observed with noise, so the mean does not quite go through
the training points.

The key aspect for this work is that when the prediction is
requested for points further away from the training data points,
the predicted distribution increases in variance. For these points
the distribution reverts to the prior probability. This corresponds
to the intuition that when no training data points are in the vicin-
ity of the test point, there is little to base a prediction on, and
the uncertainty is great.

2.1. Mathematical description

In more detail, the Gaussian process works as follows. Func-
tions are viewed as a mapping from an infinite number of in-
puts to corresponding output values. They are assumed to be
Gaussian-distributed, that is, the joint distribution of the infinite
number of output values is Gaussian. It is impossible to deal
with an infinite-dimensional vector, so a property of Gaussians
must be exploited.

This property is that if variables (here y and y′) are jointly
Gaussian (here with zero mean),

[
y
y′

]
∼ N

([
0
0

]
,

[
A C
CT B

])
, (1a)

then any subset of the variables with the other variables
marginalised out are also Gaussian distributed, and the parame-
ters are trivially found, in this case:

[
y′
]
∼ N (0,B) . (1b)

Thus, even if the distribution of functions is theoretically char-
acterised by an infinite number of values, it is possible to con-
sider only a finite number of them by marginalising the rest out.
Once this joint Gaussian has been set up, the conditional dis-
tribution of the test data point given the training data becomes
necessary. If y and y′ are again jointly Gaussian distributed as
in (1a), then the conditional distribution of y′ given y is also
Gaussian (see e.g. [9]):

y′ | y ∼ N
(
CTA−1y,B−CTA−1C

)
. (1c)

For a Gaussian process, the values of interest are normally
the training data points and the test data points. The training
data consists of input points x = [x1 . . . xN ]T and correspond-
ing outputs y = [y1 . . . yN ]T. The observed outputs are as-
sumed to be Gaussian-distributed around the real function val-
ues f(x): The real function values f(xn) are observed as yn,
with additive observation noiseN

(
0, σ2

o

)
:

yn ∼ N
(
f(xn), σ2

o

)
(2)

Assume that the value of the function f is to be predicted at test
point x∗. The joint distribution of the observed outputs y and
the output f(x∗) to be predicted is[

y
f(x∗)

]
, N

(
0,

[
K(x,x) + σ2

oI k(x∗,x)
k(x∗,x)T k(x∗, x∗)

])
, (3a)

where I is the identity matrix, and the functions k(x∗,x) and
K(x,x) are convenience functions that apply the covariance
function k(·, ·) to each combination of elements of their argu-
ments:

k(x∗,x) ,

 k(x∗, x1)
...

k(x∗, xN )

 ; (3b)

K(x,x) ,

 k(x1, x1) . . . k(xN , x1)
...

. . .
...

k(x1, xN ) . . . k(xN , xN )

 . (3c)

Having set up the model, the posterior distribution (i.e. after
seeing the training data) over the output value of f(x∗) involves
the training outputs y, and all the covariances. Substituting (3a)
into (1c),

f(x∗) | y ∼ N
(
k(x∗,x)T(K(x,x) + σ2

oI)
−1y,

k(x∗, x∗)− k(x∗,x)T(K(x,x) + σ2
oI)
−1k(x∗,x)

)
. (4)

Thus, the prediction for the grade is a Gaussian with parameters
derived from the training outputs y and the covariance between
the training input x and the new input x∗.

The next section will discuss the form of the covariance
function k(x, x′).

2.2. Covariance function

The input, whether training or test data, only enters the Gaus-
sian process model, in (3), as arguments to the covariance func-
tion k(x, x′) (this is also often true for support vector ma-
chines). This allows something known as the “kernel trick”.
This allows the input data point to be any type of object, as long
as they can be used with a suitable kernel k(·, ·). In this work,
the input data will consist of feature vectors extracted from the
audio (see section 3).
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Figure 2: The grader system, schematically.

An often-used covariance function, used in this work, is the
radial basis function. Defined on vectors x and x′:

k(x,x′) , σ2
y exp

(
−‖x− x′‖2

2`2

)
, (5)

where ` is the length scale, which governs how much the co-
variance tails off as the points are further away from each other,
and σ2

y is the output variance, which affects the variance of the
output.

Though this work does not exploit this, it is also possible for
Gaussian processes to take other types of objects than scalars or
vectors, if a suitable covariance function is defined.

3. Grader
The automatic grader used in this work has a simple architec-
ture, illustrated in figure 2. The input to the grader is a set of
audio and fluency features. Audio features are extracted directly
from the audio signal. The fluency features are extracted from
a time-aligned hypothesis produced by a speech recogniser. A
Gaussian process is trained to map these features to grades, and
then used to predict a distribution over the grade, in the form of
a mean and a variance.

Table 1 lists the features that the system uses. The features
are similar to those used in other systems [2, 3, 10, 5]. Au-
dio features are extracted without reference to the hypothesised
transcriptions.

4. Experiments
The grader is tested on data from the BULATS (Business Lan-
guage Testing Service) corpus of learners’ speech made avail-
able by Cambridge English, the on-line version of which is de-
scribed in [11]. The BULATS test has five sections, all with
material appropriate to business scenarios. The first section con-
tains questions about the candidate and their work (e.g. “How
do you use English in your job?”). The second section is a read-
aloud section. The last three sections have longer utterances of
spontaneous speech elicited by prompts. In the third section the
prompts are generic questions about business scenarios. In the
fourth section, the candidate is asked to describe a visual such

Table 1: Grader input features, extracted from the audio.

Item Statistics

Audio features
Fundamental
frequency

mean
mean-weighted: minimum, maximum,
extent, mean absolute deviation

Energy mean, standard deviation
mean-weighted: minimum, maximum,
extent, mean absolute deviation

Fluency features
Long silence number
Long silence
duration

mean, standard deviation, median,
mean absolute deviation

Silence
duration

mean, standard deviation, median,
mean absolute deviation

Disfluencies number
Words number, number per second,

mean duration
Phones mean, standard deviation, median,

mean absolute deviation

as a pie chart or bar chart. The prompt for the last section asks
the candidate to imagine they are in a specific conversation and
to respond to questions that may be asked in that situation (e.g.
advice about planning a conference).

Each section is graded between 0 and 6; the overall grade is
therefore between 0 and 30. These can be binned into CEFR
(Common European Framework of Reference) ability levels
[12] A1, A2, B1, B2, C1, and C2. In this work, the audio from
all sections will be used to predict the overall grade. The Pear-
son correlation with grades assigned by expert human graders
will be used to measure performance. This correlation implic-
itly normalises the dynamic range.

A state-of-the-art tandem GMM-HMM recogniser is
trained on data collected from BULATS candidates using
HTK [13]. For this paper, the recogniser is trained on 58.5
hours of data from candidates with Gujarati as their first lan-
guage. This choice reflects the initial deployment focus of
BULATS which was in Gujarat. Transcriptions are obtained
through crowd-sourcing. Two crowd-sourced transcriptions
are combined using the algorithm in [14]. The input features
for the tandem models are 26-dimensional bottleneck features
and 52-dimensional PLP+∆+∆2+∆3 features. Cepstral mean
and variance normalisation are applied. A heteroscedastic lin-
ear discriminant analysis (HLDA) transform is applied to the
PLP features and global semi-tied transform to the bottleneck
features [15], reducing the dimensionality to 65. The bottle-
neck features are extracted from a 5-hidden layer neural net-
work trained using QuickNet [16] on the AMI meeting cor-
pus [17] with 1000 units per hidden layer and 6000 context-
dependent output layer targets. The AMI database was selected
for the DNN training instead of the BULATS data for robust-
ness. It is a larger corpus of (mostly) non-native speakers of En-
glish and closely manually transcribed. Discriminately trained
speaker independent and speaker adaptively trained (SAT) mod-
els are estimated using the minimum phone error (mpe) crite-
rion [18]. Speaker-adaptive training is performed using con-
strained maximum likelihood linear regression (CMLLR) [19]
followed by MPE. Each model set has approximately 4000



context-dependent states, with an average of 16 Gaussians per
state. At decoding time, the speaker-independent model with a
trigram language model is used to produce hypotheses for the
estimation of CMLLR transforms for the tandem SAT models.
The speech hypotheses for the fluency features are derived from
decoding with these SAT models and a trigram language model.
On a separate speech recogniser evaluation set, the recogniser
achieves a 37.6 % word error rate, underscoring that this is a
real-world, noisy data set with non-native speakers.

The grader is then trained and tested using the system in
figure 2: the speech recogniser is run and audio and fluency fea-
tures are extracted. These features are used as the input, with
associated grades as the targets, for the Gaussian process (GP).
The noise variance σ2

o is set to 0.2, and the hyperparameters of
the covariance function (which is the radial basis function, as
in (5)) are trained with maximum-likelihood estimation. In ini-
tial tests, a neural network grader, like the system used in [1],
was also trained, but yielded a lower raw performance than the
Gaussian process grader. A separate training set is used to train
the grader. The training data consists of 994 candidates dis-
tributed evenly over six languages (Polish, Vietnamese, Ara-
bic, Dutch, French, Thai) and over CEFR ability levels A1, A2,
B1, B2, and C (which combines C1 and C2 because of data
scarcity). The grades provided by the original local graders are
used as the GP targets. The evaluation set has 226 candidates,
distributed similarly to the training set, but in addition to the
original grades, candidates were re-graded by expert graders.
On another data set, this group of expert graders had an inter-
grader Pearson correlation around 0.96, so in this work their
grades are used as the ground truth.

The availability of expert grades makes it possible to as-
sess the performance of the original human graders as well as
schemes that combine human and automated grades. In the fol-
lowing section, 4.1, an approach to interpolate human and au-
tomated grades is presented. Section 4.2 will then discuss a
rejection scheme that automatically detects when expert grades
should be used.

4.1. Interpolation

One method of using the grades produced by the automatic
grader is to treat them as just another grader and to interpo-
late between grades of both graders. The assumption is that
the automated grader is more consistent, but less sophisticated
than the human graders. Combining the grades may exploit the
strengths of both.

Figure 3 shows the performance as the interpolation weight
changes. At the left-hand side of the graph, only the standard
human grades are used; at the right-hand side, only the auto-
mated grades. In between, each grade is interpolated with the
given weight. The optimal interpolation weight is 0.44. That
the human graders receive a higher weight is not surprising,
since their performance by themselves is better.

The interpolated grades will be used in the next section. In
a completely realistic scenario, it would be best to have a repre-
sentative development set to estimate the interpolation weight,
and an entirely separate evaluation set. However, for the current
data this is not available.

4.2. Rejection

This section will consider a situation where a number of candi-
dates are re-graded by expert graders. If it is possible to detect
lower-quality grades automatically, then it can save time (and
money) and/or improve the overall quality of the grades.
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Figure 3: Effect on Pearson correlation of interpolation be-
tween human (original) and automated (GP) grades.
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Figure 4: Envelope of performance of rejection schemes.



0 0.2 0.4 0.6 0.8 1
Fraction of grades

0

2

4

6

8

10
V

ar
ia

nc
e

Figure 5: Variances of the grades that the Gaussian process
predicts, in descending order.

Figure 4 shows baseline results for the original human
graders and the automated grader. On the vertical axis is the
Pearson correlation with the expert grades. On the left side of
the graph, all candidates are graded by the original or automated
grader, with a 0.85 and 0.83 correlation, respectively, to the
expert graders. On the horizontal axis is the fraction of can-
didates whose original grades are rejected and replaced by the
expert grades. By definition, the correlation at the right-hand
side of the graph is 1: all grades have then been replaced by
expert grades, and the Pearson correlation of these with them-
selves is 1. In between, the performance depends on the rejec-
tion scheme. Figure 4 shows the envelope of performance of
any useful rejection scheme. The straight lines indicate the ex-
pected performance if candidates are chosen for re-grading ran-
domly. The curves at the top indicate the upper bounds: grades
that deviate most from the expert grades are replaced first. This
is not a practical scheme, since it requires knowledge of the ex-
pert grades, but it indicates the best performance any rejection
scheme can reach in theory.

A simple scheme for rejecting grades is to use the discrep-
ancy between the original human grades and the automated
grades as a measure of uncertainty. The grades for which the
discrepancy (after normalising the mean and variance of both
sets of grades) is greatest are rejected first. However, this yields
no clear performance gain over using the human grades on the
evaluation set used here, which will need to have been collected
anyway. As an aside, on another evaluation set, with human
grades that were suspected to be less reliable, this scheme did
result in improvements. This suggests that this scheme may be
a good way of finding outlier grades that deserve further inves-
tigation.

The rejection scheme that this paper proposes is to use the
uncertainty measure that the grader itself provides. As dis-
cussed in section 2, a prediction from a Gaussian process is a
distribution over the result of a function i.e. the prediction is a
Gaussian distribution with a mean and a variance. The mean
is used as the predicted grade; the variance is used to indi-
cate confidence in the grade. Figure 5 shows the variances that
the grader returns, sorted in descending order. This is the or-
der in which the automatically predicted grades will be rejected
and replaced by expert grades. Figure 6 shows performance as
grades are rejected starting with the ones where the Gaussian
process returns the highest variance, i.e. where the prediction is
least certain. This produces a sizeable increase in performance:
the variance turns out to be a good indicator of reliability of
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Figure 6: Rejection of automated grades by Gaussian process
variance. By rejecting a small number of grades with highest
variance for re-grading by experts, performance increases far
more than the expected improvement from random rejection.
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Figure 7: Rejection of grades by Gaussian process variance.
The grades are the original human grades, and the interpolated
grades. That the Gaussian process variance is informative in-
dicates that it identifies candidates that are hard to grade.

Gaussian process grades. From a practical perspective, a trade-
off between cost and quality is a desideratum. By rejecting 10 %
of the grades and having them re-graded by experts, overall per-
formance can be improved from 0.83 to 0.88.

An interesting question is whether the grades that are re-
jected based on the Gaussian process variance are for candi-
dates where the problem is the automated grader, or where the
candidate was hard to grade. In the system in [5], the latter was
what the separate filter aimed to detect. For insight into this, it
is possible to take the original human grades and replace them
with expert grades in descending order of the Gaussian process
variance. In other words, the Gaussian process is used merely
as a predictor of how hard the candidate is to grade. The blue
squiggly line in figure 7 shows the result of this experiment. In-
terestingly, some of the gains that were made for the Gaussian
process are mirrored here. The very first part of the curve even
mimics the first part of the curve for the Gaussian process. This
implies that in general the candidates with the greatest variance
are those candidates which are hard to grade, rather than being
purely those that the automatic grader has difficulty with.

The good results in rejecting and re-grading both automated
and human grades based on the Gaussian process variances sug-
gest that it should be possible to apply the same strategy to the



interpolated grades from section 4.1. Figure 7 also shows the
curves for that experiment. The curve starts at the performance
of the interpolated grades, at 0.88. Rejecting grades that the
Gaussian process was less certain about again increases perfor-
mance more than random rejection. By rejecting 10 % of grades
and having them re-graded by experts, the Pearson correlation
in this case can be improved from 0.88 to 0.91.

This means that two strategies to trade off cost and quality
have been identified. In both cases a small fraction of the grades
is classified as low-confidence by the automated grader, and re-
graded by expert graders. In the first strategy, the remaining
grades are produced by the automated grader itself, with per-
formance improving from 0.83 to 0.88. In the second strat-
egy, the standard human grades were at 0.85, an interpolation
of them and automated grades at 0.88, and automated rejection
increases this to 0.91.

5. Conclusion
Automatic assessment of spoken English proficiency of second
language learners would be beneficial in helping to meet de-
mand for testing, both for practice and in formal examinations.
An automatic approach should be more consistent than human
graders. However, there are a lot of challenges in assessing
non-native spoken English and automatic approaches are less
reliable than humans when a candidate’s speech is not a good
match to the data seen in training.

This paper has proposed a Gaussian process (GP) based
automatic grader. The grades predicted by the GP grader are
close to those of human graders, measured by Pearson correla-
tion with expert graders. Its primary advantage though is that
it gives a mathematically consistent framework for estimating
not only grades, but also the uncertainty around them. The vari-
ance, the measure of uncertainty, is sufficiently accurate that it
can be used to target candidates for which the automatic process
has problems and so should be re-graded by humans. In addi-
tion, this measure is seen to be related to how hard a speaker is
to grade for human graders. It can therefore be used to decide
which candidates need to be assessed by expert graders. In-
terpolating between the automatic and human produced grades
further boosts the overall grading performance.

The current automatic GP grader does not contain any fea-
tures relating to content. This means candidates could poten-
tially game this system if run in a fully automatic mode. Learn-
ers could also benefit from being provided with feedback as to
why they were awarded a particular grade. Both of these issues
will be investigated in future work.
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