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Abstract

We give results on when a finitely generated torsion free group does
or does not embed in SL(2,C). For instance if we glue two copies of
the figure 8 knot along its torus boundary then the fundamental group
of the resulting closed 3-manifold sometimes embeds in SL(2,C) and
sometimes does not, depending on the identification, whereas a graph
of free groups with maximal cyclic edge groups need not embed, even
if it is word hyperbolic.
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1 Introduction

The group SL(2,C) plays an important role in both algebra and geometry.
In particular we obtain on quotienting out by {±I} the group PSL(2,C)
of Möbius transformations which acts as the group of orientation preserving
isometries on the hyperbolic space H3. A discrete subgroup Γ of PSL(2,C)
is a Kleinian group and these have been much studied because the quotient
Γ\H3 is a 3-orbifold, and even an orientable 3-manifold if Γ is torsion free,
with a complete hyperbolic metric. Now if an abstract group G with no
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elements of order 2 is a discrete subgroup of PSL(2,C) then [7] shows that
G lifts to a discrete subgroup of SL(2,C).

However we can approach this question from a group theoretic point of
view and ask when a given finitely generated torsion free group does or
does not embed in SL(2,C), with no reference to discreteness. Of course
there are many finitely generated, torsion free groups which do not embed
in SL(2,C). The first obstruction which comes to mind is that of being
commutative transitive: a group G is commutative transitive (CT) if the
relation of two elements commuting is an equivalence relation on G − {e}.
It is straightforward to show and well known that a torsion free subgroup of
SL(2,C) (again this generalises to not containing an element of order 2) will
be commutative transitive.

Meanwhile there are two well known sufficient conditions: being the fun-
damental group of an orientable hyperbolic 3-manifold as mentioned above,
and being a limit group which here is defined to be a finitely generated group
which is fully residually free. In this paper we show that this necessary con-
dition is far from being sufficient and that these two sufficient conditions are
far from being necessary, even within very restricted and well behaved classes
of groups. One well behaved class that we consider consists of the fundamen-
tal groups of closed orientable irreducible 3-manifolds. Here we show that
the fundamental group of any torus bundle embeds in SL(2,C) provided it
is CT, whereas the closed orientable 3-manifolds obtained by identifying two
copies of the figure 8 knot complement along their boundary tori have fun-
damental groups that almost never embed in SL(2,C). This is despite the
latter groups having the property CSA which is strictly stronger than being
CT, whereas the former groups do not.

We also look at the class of graphs of non abelian free groups with max-
imal cyclic edge groups. Here we have the Bestvina - Feighn combination
theorems which tell us when such a group is word hyperbolic. Now all tor-
sion free word hyperbolic groups are both CT and CSA, so we might expect
that if the fundamental group of a graph of non abelian free groups with
maximal cyclic edge groups happens to be word hyperbolic then it embeds
in SL(2,C). However we give an example to show that the answer to this is
no, along with an example which does embed in SL(2,C) but which is not a
limit group, nor is the fundamental group of any orientable 3-manifold.

We introduce basic properties of CT and CSA groups in Section 2, includ-
ing a characterisation of the CSA subgroups of SL(2,C) in Proposition 2.1,
then mention results in the literature that are known to preserve embeddings
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in SL(2,C). It goes back to Nisnevic̆ in 1940 that (on avoiding the element
−I) a free product of subgroups of SL(2,C) also embeds in SL(2,C). This
result of Nisnevic̆ was rediscovered by Wehrfritz in [15] and by Shalen in
[14], where each author also gives conditions for a free product with cyclic
amalgamation of two subgroups of SL(2,C) to embed in SL(2,C).

In Section 3 we examine graphs of non abelian free groups with maximal
cyclic edge groups. If this graph is a tree then it is known by results men-
tioned above that the resulting fundamental group is word hyperbolic and
embeds in SL(2,C). We first look at a very special case of this - the cyclically
pinched groups, where we have a single amalgamation. We can therefore ask
whether these groups are always limit groups. Although it is folklore that
the answer is negative, no concrete example has been given. We prove in
Theorem 3.2 that any cyclically pinched group formed by amalgamating a
commutator on one side with a product of two proper powers of distinct
commutators on the other side is not a limit group if the powers differ by at
least 3. The proof is short and uses standard facts about stable commuta-
tor length, including the lower bound for stable commutator length in a free
group. This means we can then give in Corollary 3.4 an explicit example
of such a group which is also not the fundamental group of any orientable
3-manifold.

Graph of groups constructions also involve HNN extensions, but this case
is less well behaved. For instance the Klein bottle group, which is an HNN
extension of Z over maximal cyclic groups, is not even CT. We show in
Proposition 3.5 that there is a construction using only HNN extensions of a
graph of free groups with maximal cyclic edge groups where the fundamental
group is word hyperbolic but which does not embed in SL(2,C), as opposed
to the case where only amalgamations are used.

In Section 4 we consider closed 3-manifolds which have a fundamental
group that embeds in SL(2,C). In particular, along with orientable hyper-
bolic 3-manifolds where the fundamental group will embed discretely, we give
in Theorem 4.1 the complete list of torus bundles fibred over the circle with
such fundamental groups: as well as the trivial bundle it is precisely those
with Sol geometry. Therefore one might hope that the fundamental group
of a closed orientable 3-manifold admitting a JSJ decomposition along tori
with all pieces hyperbolic might embed, given that we would be amalgamat-
ing groups embedding in SL(2,C) over abelian subgroups. However we show
in Theorem 4.2 that if we glue two copies of the figure 8 knot along each
boundary torus such that the meridians are identified then the fundamen-
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tal group of the resulting 3-manifold does not embed in SL(2,C) unless the
longitudes are also glued to each other. In this latter case the group does
embed, giving a genus 2 surface bundle fibred over the circle with fundamen-
tal group embedding in SL(2,C) even though the homeomorphism is not
pseudo-Anosov. This work utilises a result of Whittemore from 1973 giving
all representations of the figure 8 knot group in SL(2,C).

2 Embedding and non embedding results

We say that a group G is commutative transitive or CT for short if the
relation of two elements commuting is transitive on G − {e}. The finite
CT groups are known but there are many interesting examples of infinite
CT groups. For instance Corollary 1 of [1] states that the free Burnside
groups of sufficiently large odd period are also CT groups. However here
our focus is on torsion free groups, in which case we have as examples free
groups, limit groups and torsion free word hyperbolic groups. Moreover it
is straightforward to see that any subgroup of SL(2,C) not containing −I
(thus in particular a torsion free subgroup) is CT by looking at canonical
forms of 2 by 2 matrices. Thus we can regard the absence of CT in a torsion
free group as the first obstruction to having an embedding in SL(2,C).

There is a condition that is stronger than being CT but which is often
useful. We say that a subgroup H of a group G is malnormal (or conjugate
separated) in G if gHg−1 ∩ H = {e} for all g ∈ G − H. A group G is
then called CSA (standing for conjugate separated abelian) if every maximal
abelian subgroup is malnormal, and this implies CT. Again free groups, limit
groups and torsion free word hyperbolic groups are CSA, and both the CSA
and the CT properties are preserved under taking subgroups, but now the
situation for subgroups of SL(2,C) not containing −I is slightly different.

Proposition 2.1 If G is a subgroup of SL(2,C) such that the only element
of G with trace in {−2, 2} is I then G is a CSA group.

More generally a non abelian subgroup G of SL(2,C) is CSA if and only if
it does not contain −I and for any non identity element g with trace(g) = ±2

and γg ∈ SL(2,C) such that γggγ
−1
g = ±

(

1 x
0 1

)

, the conjugate group

γgGγ−1
g contains no elements with bottom left hand entry 0 other than those

with trace ±2.
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Proof. On being given an element g of G with trace not equal to ±2 we can
assume by conjugation that g is a diagonal matrix not equal to ±I. Clearly
the centraliser CG(g) is equal to the abelian subgroup of diagonal elements
in G and does not contain −I. Now it is easy to check that in a subgroup
H of SL(2,C) missing −I, the set of diagonal elements of H is a malnormal
subgroup of H which completes the first case.

Now suppose (conjugating if necessary) that g = ±
(

1 x
0 1

)

for x 6= 0.

Then CG(g) is also an abelian subgroup, consisting of all matrices in G with
trace ±2 and bottom left hand entry 0. However an element of SL(2,C)
can only conjugate one (non identity) element of this form into another if
its bottom left hand entry is 0 as well. If this element is in G then it lies in
CG(g) if and only if its trace is ±2, by the given condition.

2

There is a useful situation which implies both the CSA and the CT con-
ditions, which is when G is a group such that the centraliser of each non
trivial element is infinite cyclic. Clearly G is CT and it is not hard to show
that G is also CSA, for instance see [14] Lemma 3.3. In this case we say that
an element g of G is primitive if it generates its own centraliser.

Two classes of (countable torsion free) groups which are known to embed
in SL(2,C) are the fundamental groups of orientable hyperbolic 3-manifolds
and limit groups. However it has long been clear that there are various
operations we can perform on subgroups of SL(2,C) which will preserve the
property of embedding in SL(2,C). Using the direct product is doomed to
failure because G1×G2 is not CT unless both G1 and G2 are abelian (or one
is trivial). However there are known results concerning the free product.

Theorem 2.2 (Nisnevic̆ 1940 [12]) If k is a field of characteristic zero and
G1, G2 ≤ GL(n, k) then G1 ∗ G2 ≤ GL(n + 1, k′) for some other field k′ of
characteristic 0 and we can replace n+ 1 with n if there are no (non trivial)
scalars in G1 or in G2.

Similar versions were rediscovered in [15] Theorem 3 and in [14] Theorem 1,
with any of these telling us

Corollary 2.3 If we have two countable subgroups G1 and G2 of SL(2,C),
neither of which contain −I then the free product G1∗G2 embeds in SL(2,C)
as well.
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Thus on taking closed orientable hyperbolic 3-manifolds M1 and M2 with
G1 = π1(M1) and G2 = π1(M2), we have that G1 ∗ G2 embeds in SL(2,C)
(and is word hyperbolic as the free product of two word hyperbolic factors)
but is not the fundamental group of an orientable hyperbolic 3-manifold,
as such a manifold is irreducible, but the Mayer-Vietoris sequence for the
homology of a free product gives a contradiction for H3(M ;Z). Moreover
it is not a limit group (since this latter property is preserved on passing to
finitely generated subgroups but G1 and G2 are not limit groups, as it was
shown in [17] using work of Sela that the fundamental group of a closed
orientable hyperbolic 3-manifold cannot be a limit group).

Given that linearity behaves well under free products, we now consider
free products with amalgamation. However there would need to be restric-
tions on the factors and amalgamated subgroup because we might not even
have residual finiteness in general. As we are concentrating here on torsion
free groups, the first candidates for amalgamated subgroups ought to be those
that are infinite cyclic. This is a fruitful pursuit for SL(2,C), as we have:

Theorem 2.4 (Wehrfritz 1973 [15] Theorem 5) If A and B are finite rank
free groups with a a primitive element of A and b a primitive element of B
then the amalgamated free product A ∗a=b B embeds in SL(2,C).

This was rediscovered by Shalen in [14] using a very similar proof, but re-
sulting in a statement that can be applied recursively:

Theorem 2.5 Let A and B be subgroups of SL(2,C) with transcendental
traces (meaning that every non identity element has a trace which is tran-
scendental over Q) and such that both groups satisfy the following property:
the centraliser of every non identity element is infinite cyclic. Then the the
amalgamated free product A ∗a=b B for any primitive a ∈ A and b ∈ B has
an embedding into SL(2,C) with transcendental traces and such that every
non identity element has centraliser which is infinite cyclic.

However we have no such result for HNN extensions with associated sub-
group equal to a maximal infinite cyclic group, which can be seen just by
looking at the Klein bottle group 〈a, t|tat−1 = a−1〉 which is not CT, so
certainly will not embed in SL(2,C).
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3 Graphs of non abelian free groups with max-

imal cyclic edge groups

By [3] due to Bestvina and Feighn we have that if A and B are torsion free
word hyperbolic groups with a ∈ A and b ∈ B both non trivial elements
then the amalgamated free product G = A ∗a=b B is word hyperbolic if and
only if G contains no Z×Z subgroup, which is shown to occur if and only if
either 〈a〉 is malnormal in A or 〈b〉 is malnormal in B. This is also the same
as saying that either a or b is a primitive element in A or B respectively,
because A and B are both word hyperbolic, hence CSA.

Thus the groups mentioned in Theorem 2.4 are all word hyperbolic. More-
over, as any finite rank free group embeds in SL(2,C) with transcendental
traces, we can take free groups Fr1 , . . . , Frn for any ranks ri at least 2 and
form repeated amalgamated free products over arbitrary cyclic subgroups
generated by primitive elements to obtain word hyperbolic groups embed-
ding in SL(2,C) by Theorem 2.5.

A well studied similar construction is that of a graph of groups with non
abelian free vertex groups and maximal cyclic edge groups. From this we
obtain the fundamental group of a graph of groups by forming the amalga-
mated free product where an edge joins two distinct vertices, then contract
this edge and continue until we are left with self loops which then give us
HNN extensions. Consequently if the graph is a tree then only free product
amalgamation occurs. The Bestvina - Feighn result mentioned above can
be applied repeatedly to show word hyperbolicity of the resulting graph of
groups (we also require that primitive elements remain primitive after each
amalgamation, which can be shown easily using normal forms). Therefore
by Theorem 2.5 and this we have:

Corollary 3.1 If Γ is a graph of non abelian finite rank free groups with
infinite cyclic edge groups which are maximal in each vertex group (namely
generated by a primitive element on each side) and Γ is a tree then the fun-
damental group of Γ is word hyperbolic and embeds in SL(2,C).

We mentioned in the introduction that limit groups embed in SL(2,C),
for instance see Window 8 of [10] for a proof. Indeed [2] by B.Baumslag
shows that a finitely generated residually free group is either a limit group
or contains F2 × Z. This last group is clearly not CT so limit groups are
exactly the finitely generated residually free groups which embed in SL(2,C).
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Moreover limit groups can contain Zk for k ≥ 2 and so need not be word
hyperbolic but a limit group which does not contain Z×Z is word hyperbolic.
Therefore we should consider whether the groups in Corollary 3.1 are limit
groups, in which case we already have the existence of an embedding into
SL(2,C).

A special case of the graph of free groups construction with Z edge groups
is the amalgamated free product G = Fr1 ∗w1=w2

Fr2 for Fr1 , Fr2 non abelian
free groups and w1, w2 any two non trivial elements. This is called a cycli-
cally pinched group if neither wi is part of a free basis for Fri (otherwise we
obtain the free group Fr1+r2−1). If neither element is primitive, say wi = uni

i

for ni ≥ 2, then it is well known that G cannot be a limit group. A quick
way to see this is to note that G is not CT because u1u2u

−1
1 u−1

2 is non trivial
but wi commutes with u1 and u2. However if we let one or both of the wi

be primitive elements, it is still not known exactly when G is a limit group.
Some cases are known, for instance doubles (where r1 = r2 and w1 = w2)
have been shown to be limit groups but if only one element is primitive then
examples of non limit groups go back to Lyndon in 1959. He showed that
any solution to the equation x2 = y2z2 in a free group has the property that
x, y and z all commute. This means that if G = Fr1 ∗u2=v2w2 Fr2 for u, v, w
any non trivial words then any homomorphism from G onto a free group F
sends u, v, w to commuting elements in F . Thus if v and w do not commute
in Fr2 then all homomorphisms from G to a free group send the commutator
[v, w] to the identity. Moreover the same property was shown in [11] to hold
for the equation xl = ymzn for l,m, n ≥ 2 so that an element of the form
ymzn is not a proper power in a free group if y and z do not commute, and
thus G = Fr1 ∗ul=vmwn Fr2 is a word hyperbolic group which is not residually
free.

Let us now assume that both w1 and w2 are primitive elements, so that
we are in the case of Corollary 3.1 with a single edge. It is not true that we
always obtain a limit group, as can be shown by the use of R-trees. However
we are unaware of any method in the literature that gives concrete examples,
so will give the first ones here. Our reference on this question is [13] where it
is mentioned in Part I (3) that “if the element w1 is a commutator in the first
free group and w2 is a product of two “high” powers in the other free group
then G is not a limit group” but no further details are given. However this is
not true in full generality, even for any definition of “high”: if G1 is free on
x, y; G2 free on a, b and G = G1 ∗w1=w2

G2 is formed by setting [x, y] = ambn

for m,n 6= 0 with highest common factor d then consider the homomorphism
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from G onto the free group F (t, u) on t, u given by x 7→ t, y 7→ umn/d and
a 7→ tun/dt−1, b 7→ u−m/d. This sends both rank 2 free groups G1 and G2 to
rank 2 free subgroups of F (t, u), thus the restriction to each Gi is injective.
Consequently G is an example of a generalised double over F (t, u) as in
Definition 4.4 of [6], with Proposition 4.7 of [6] showing that a generalised
double over a limit group is also a limit group.

In fact the quote above becomes true if we change “powers” to “powers
of commutators” with a suitably weak definition of “high”. To prove this we
will use stable commutator length, as described in [5]. This can be explained
briefly as follows: a length on a group G is a function l : G → R such that
for g, γ ∈ G we have

l(gγ) ≤ l(g) + l(γ) and l(g) = l(g−1).

(Sometimes l(e) = 0 is required but this will not affect any of our results
here.) From any length function l we obtain stable length σ : G → R

defined by σ(g) = limn→∞ l(gn)/n. As for any g ∈ G the sequence an = l(gn)
is subadditive (meaning that an+m ≤ am + am for n,m ∈ N), this limit
exists provided only that there is K ≤ 0 with an ≥ Kn for all n. It is
straightforward to show using only the above properties that σ is constant
on conjugacy classes, that σ(gk) = |k|σ(g) for all k ∈ Z and g ∈ G, and that
σ(gh) ≤ σ(g) + σ(h) if g and h commute (although not in general). Given a
group G, commutator length cl is a length on the commutator subgroup
G′ of G with cl(g) defined to be the minimum number of commutators needed
to form a product equal to g and stable commutator length is defined
to be the stable length that results, denoted by scl(g). A non trivial fact
about scl in free groups F which we will need here is that every non identity
element w ∈ F ′ has scl(w) ≥ 1/2 by [5] Theorem 4.111. Combining this
with the point that in general a commutator [w1, w2] has scl([w1, w2]) ≤ 1/2,
we see that non trivial commutators in free groups have stable commutator
length exactly 1/2.

Theorem 3.2 If F1 and F2 are free non abelian groups then the cyclically
pinched group G = F1 ∗γ=δmηn F2, where γ is a non trivial commutator in F1

and δ, η are both non trivial commutators in F2 with δ 6= η±1, is not residually
free whenever |m| − |n| ≥ 3 and |m|, |n| 6= 0 or 1, even though G embeds in
SL(2,C).

Proof. We can assume by changing elements to inverses that m,n > 0. We
know that γ 6= e in G so suppose we have a homomorphism θ from G to a
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free group F where θ(γ) = a 6= e. This gives us a non trivial commutator
in F which is equal to bmcn for two (possibly trivial) commutators b = θ(δ)
and c = θ(η) in F . First suppose that b is trivial in F then a = cn but
in a free group a non trivial commutator cannot be a proper power. (This
is due to Schützenberger but can also be seen here because in a free group
scl(a) = 1/2 = |n|scl(c) ≥ |n|/2 ≥ 1, using the fact that c must be in the
commutator subgroup F ′ too.) The same holds if c is trivial. As γ is primi-
tive and we mentioned that δmηn is also primitive, Theorem 2.4 tells us that
G embeds in SL(2,C). Therefore we are done by the next Proposition.

2

Proposition 3.3 If the equation a = bmcn holds in a free group F where
a, b, c are all non trivial commutators in F then we cannot have |m|−|n| ≥ 3.

Proof. By Theorem 2.70 in [5] using Barvard duality, we have that for any
g in G′,

scl(g) =
1

2
supφ∈Q(G)

|φ(g)|
D(φ)

where Q(G) is the space of homogeneous quasimorphisms on G and D(φ)
is the defect of φ. This means that for all a, b ∈ G and k ∈ Z we have
|φ(ab) − φ(a) − φ(b)| ≤ D(φ) (the definition of a quasimorphism φ with
defect D) and (homogeneity) φ(ak) = kφ(a).

Thus we can take a homogeneous quasimorphism φb ∈ Q with |φb(b)|/D(φb)
arbitrarily close to 1 as scl(b) = 1/2. By rescaling, let us say that D(φb) = 1
and we can assume mφb(b) > n + 2 because m − n ≥ 3. (In fact in a free
group this supremum is obtained but we will not need to use that here.)
Now for any homogeneous quasimorphism q on any group G we have that
|q(γ)| ≤ D(q) if γ is a commutator in G. But as a = bmcn holds in F we see
that

mφb(b)−n− 1 ≤ mφb(b)−n|φb(c)| − |φb(a)| ≤ |mφb(b)+nφb(c)−φb(a)| ≤ 1

so mφb(b) ≤ n+ 2, giving us a contradiction.
2

We note here that there exist explicit examples which are not the funda-
mental group of any orientable 3-manifold. For this we borrow an argument
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from the last section of [8]. Suppose we have an amalgamated free prod-
uct Γ = Fr1 ∗w1=w2

Fr2 as above, where w1 and w2 are primitive words. If
Γ = π1(M) for M an orientable 3-manifold (assumed compact without loss
of generality by the Scott compact core theorem) then we can take M to
be prime as Γ is one ended. This means here that M is irreducible so the
splitting over Z of π1(M) can be induced geometrically, giving orientable
3-manifolds M1,M2, which are irreducible because M is, with fundamental
group free of rank r1, respectively r2. Now results in [9] imply that M1

and M2 must each be a cube with one handle, joined to form Mi by at-
taching along a neighbourhood of the curve wi embedded in each boundary.
But we can attach a thickened disc along an annulus neighbourhood of ei-
ther of these curves as in [8]. Thus we obtain two orientable 3-manifolds
with fundamental group 〈Fri |wi〉. Now it is a pre-Geometrization fact that
if we have an infinite order element x in the fundamental group of any 3-
manifold M with xi conjugate to xj in π1(M) then we must have |i| = |j|.
Thus on taking |m| − 3 ≥ |n| ≥ 2 in Theorem 3.2 with F2 = F (a, b) and
δ = [a, b], η = [b−1, a] = b−1δb, along with γ any non trivial commutator in
F1, we see that if the cyclically pinched group G were the fundamental group
of an orientable 3-manifold then so is the group 〈a, b|δmb−1δnb〉 which is a
contradiction. We summarise these results as

Corollary 3.4 There is a free product of two free groups of rank 2 amalga-
mated over a maximal cyclic subgroup on either side which is word hyperbolic
(thus CT and CSA) and which embeds in SL(2,C) but which is not a limit
group, nor the fundamental group of an orientable 3-manifold.

We now give a non embedding result for graphs of groups of non abelian
free groups with maximal cyclic edge groups. Examples of such groups which
are not subgroups of SL(2,C) are easy to construct by making them contain
the Klein bottle group. However these will fail the CT condition whereas we
would like examples that are CT, CSA or even word hyperbolic.

We have a result in [4] giving conditions on when an HNN extension over
a virtually cyclic group is word hyperbolic, alongside the theorem already
mentioned in [3] for amalgamated free products. For a torsion free word
hyperbolic group G, this states that if A,B are infinite cyclic subgroups of G
then an HNN extension formed by identifying A and B is word hyperbolic if
and only if for all g ∈ G we have gAg−1∩B = {e} and where at least one of A
and B is generated by a primitive element. This is also equivalent to saying
that the HNN extension does not contain a Baumslag Solitar subgroup. (This
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result is false if the primitive condition is removed, as was originally stated in
[3], hence necessitating the appearance of [4].) We repeat this construction
until too many elements are forced to be conjugate to each other.

Proposition 3.5 Let F2 be free on a, b and let Γ be the triple HNN extension
formed using stable letters t, s, r so that tat−1 = b, sas−1 = ab and rar−1 =
aba−1b−1. Then Γ does not embed in SL(2,C) but is a graph of non abelian
free groups with maximal cyclic edge groups which is word hyperbolic.

Proof. Suppose that G is a group where the centraliser of every non trivial
element is infinite cyclic, and that a and b are primitive elements of G where
no conjugate of A = 〈a〉 intersects B = 〈b〉 apart from in the identity.
Then any primitive element of G is also primitive in the HNN extension
Γ = G∗tat−1=b where t is the stable letter of the HNN extension. This can
be seen directly using normal forms, whereupon we also have that if two
primitive elements of G are conjugate in Γ then either they are conjugate in
G or one is conjugate in G to a±1 and the other to b±1.

Now if Γ did embed in SL(2,C) then a and b would generate a rank two
free group where a, b, ab and aba−1b−1 all have the same trace, z ∈ C say.
But using the well known trace identities in SL(2,C) which go back to Fricke
and Klein, we have that

tr2(a) + tr2(a) + tr2(ab)− 2 = tr(a) tr(b) tr(ab) + tr(aba−1b−1)

so (z−2)(z2− z−1) = 0, but z = 2 would imply that 〈a, b〉 is metabelian. If
z = (1±

√
5)/2 then, as cos(π/5) = (1+

√
5)/4 and cos(3π/5) = (1−

√
5)/4

we have on diagonalising that any matrix in SL(2,C) with trace either value
for z has order 10, but Γ is torsion free.

Now Γ is formed using a graph of groups consisting of one vertex repre-
senting F2 and three loops for the three pairs of edge groups, all of which are
maximal cyclic in F2. To see that Γ is word hyperbolic, we apply Bestvina
and Feighn’s result above each time, noting that a, b, ab, aba−1b−1 are non
conjugate primitive elements of F2 and using the comment at the start of
this proof.

2
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4 2 Dimensional linearity of 3-manifold groups

Following Perelman’s positive solution to Thurston’s Geometrization Con-
jecture, there has been very recent progress, using results of Wise and others
on virtually special groups, which means that nearly all finitely generated 3-
manifold groups are known to be linear: indeed the only compact orientable
irreducible 3-manifolds for which this question is open are those closed graph
3-manifolds which do not admit a Riemannian metric of non positive curva-
ture.

However we can ask which closed 3-manifolds have fundamental groups
that embed in SL(2,C). Clearly this holds for closed orientable hyperbolic
3-manifolds as their fundamental groups are discrete subgroups of SL(2,C),
but we can look at torus bundles, none of which have fundamental groups
that embed discretely, or which are limit groups apart from Z3.

Theorem 4.1 If M3 is a closed 3-manifold which is a 2 dimensional torus
bundle over the circle, so that π1(M

3) = Z2⋊αZ where α is the automorphism
of Z2 induced by the gluing map, then π1(M

3) is a subgroup of SL(2,C) if
and only if α is the identity or is a hyperbolic map (that is all powers of α
fix only 0).

Proof. Let G = π1(M
3) and Z2 = 〈a, b〉, with conjugation by the stable

letter t giving our automorphism α. If this is the identity then G = Z3

embeds in SL(2,C). If some positive power αn fixes x ∈ Z2 − {0} and G
embeds in SL(2,C) then t commutes with x becauseG is CT, but x commutes
with all of the fibre subgroup Z2 so t does too and so we have the identity
automorphism.

Otherwise the eigenvalues of α are not roots of unity and so not of modu-
lus 1, because they satisfy a monic integer quadratic with constant term ±1.
Say α(a) = tat−1 = aibj and α(b) = tbt−1 = akbl. We set

a =

(

1 1
0 1

)

, b =

(

1 x
0 1

)

and t =

(

µ 0
0 µ−1

)

where λ and µ are non zero complex numbers to be determined. For the above
two relations to be satisfied, we require µ2 = i+ λj and µ2λ = k + λl. This

just corresponds to the matrix

(

i j
k l

)

∈ GL(2,Z) having an eigenvalue

µ2 with the eigenvector

(

1
λ

)

which does occur, and λ is not zero because
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(

1
0

)

or

(

0
1

)

being an eigenvector implies that there was an eigenvalue

of ±1. Moreover λ ∈ Q implies that µ2 ∈ Z but the determinant being ±1
would give µ2 = ±1 too, which has been eliminated. Therefore µ2 not being
a root of unity implies that the matrix t has infinite order, and the matrix

apbqtr =

(

µr µ−r(p+ λq)
0 µ−r

)

can only be the identity if p = q = r = 0, so

this representation of G in SL(2,C) is faithful.
2

Note it does not matter here if α was orientation preserving or reversing and
hence if M3 is orientable or not. This result shows just how much varia-
tion there can be in the geometry of a 3-manifold and still the fundamental
group embeds in SL(2,C). For instance we can take the connected sum of a
Lens space (with finite cyclic fundamental group of odd order), the 3-torus
(with fundamental group Z3), a closed orientable hyperbolic 3-manifold and
a torus bundle with a hyperbolic automorphism as in Theorem 4.1. The fun-
damental group of the resulting 3-manifold embeds in SL(2,C) by Corollary
2.3 but there are pieces of this manifold which are positively curved, have
zero curvature, have negative curvature and which do not admit a metric of
nonpositive or of nonnegative curvature.

Based on this, one might hope that any finitely generated torsion free
3-manifold group π1(M

3) which is CT embeds in SL(2,C). However this
turns out not to be the case even if π1(M

3) is a CSA group, in spite of the
fact that the groups in Theorem 4.1 are all (except when α = id) not CSA
by Proposition 2.1.

Theorem 4.2 Let M3
1 ,M

3
2 be two copies of the figure eight knot complement

with each boundary ∂M3
1 , ∂M

3
2 a torus, and let M3 be the closed orientable

irreducible 3-manifold formed by gluing the boundary tori together using any
orientation reversing homeomorphism which identifies the two meridians,
with the exception of the homeomorphism which also identifies the two longi-
tudes. Then π1(M

3) does not embed in SL(2,C) although it is CT and even
a CSA group.

Proof. Although M3
1 has only one discrete faithful embedding in SL(2,C)

(because it has finite hyperbolic volume so Mostow rigidity applies), up to
conjugation in SL(2,C), replacing matrices with their negative and taking
complex conjugates, there is a whole curve of representations. This curve was
found in [16] where it was shown that if A and B are two non commuting
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elements of SL(2,C) satisfying

r(A,B) = B−1A−1BAB−1ABA−1B−1A = I

then we can conjugate A and B so that either

A =

(

1 1
0 1

)

and B =

(

1 0
−ω 1

)

where ω = e2πi/3 or e−2πi/3 (1)

(or A and B are both minus the above) or we can take

A =

(

λ 0
0 λ−1

)

and B =

(

µ 1
µ(x− µ)− 1 x− µ

)

(2)

(or both minus this) where λ ∈ C− {0,±1}, x = λ+ λ−1,

z =
1

2

(

1 + x2 ±
√

(x2 − 1)(x2 − 5)
)

and µ =
λz − x

λ2 − 1
.

The figure eight knot complement can also be thought of as the once
punctured torus bundle given by taking the free group of rank 2 on a, b and
forming the HNN extension

〈t, a, b|tat−1 = aba, tbt−1 = ba〉

with stable letter t. Then 〈t, aba−1b−1〉 = Z × Z which forms the boundary
torus with t the meridian and aba−1b−1 the longitude. That this is isomorphic
to the group 〈A,B|r(A,B)〉 given above can be seen by setting a = BA−1,
b = B−1ABA−1 and t = A, so that A = t and B = at which is also equal
to b−1tb. This means that the meridian m is equal to A and the longitude is
l = BA−1B−1A2B−1A−1B.

We can use the standard identities to find the trace τ of l in terms of the
traces of A,B and AB, which here are equal to x, x and z respectively. The
answer is τ(x, x, z) = 2+x2(z−2)(x4+(z+2)(z+2−2x2)) but we also have
the equation z2 = (1 + x2)z − 2x2 + 1 holding which is quadratic in z. If we
now substitute this expression for z2 into τ we find that z vanishes with the
trace of l being a function just of x, namely x4 − 5x2 + 2.

We now suppose that we have an embedding of G = π1(M
3) in SL(2,C)

where G = G1 ∗Z×Z G2 for Gi = π1(M
3
i ) and Z×Z is the fundamental group

of the boundary torus. We can conjugate G in SL(2,C) so that without loss
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of generality we have G1 = 〈A1, B1〉 with A1, B1 matrices in the form above,
giving rise to the meridian m1 = A1 and the longitude l1(A1, B1).

First suppose that A1 and B1 are of the form in (2) for some parame-
ter λ1 6= 0,±1 (and other parameters x1, z1, µ1 depending on λ1). As the
longitude l1(A1, B1) commutes with M1, it will also be a diagonal matrix
(

d1 0
0 d−1

1

)

say, with tr(l1) = d1 + d−1
1 . We also have the meridian m2 and

longitude l2 of G2 and we are forcing m2 to be equal to m−1
1 = A−1

1 , so that
the two figure 8 knot complements are joined on either side of the bound-
ary torus. Moreover the homeomorphism must identify the longitude l2 of
M3

2 with the curve mn
1 l1 in ∂M3

1 to obtain an orientation reversing homeo-
morphism between the two boundary tori so as to match the orientations of
the 3-manifolds and make M3 orientable. In particular the longitude l2 of

G2 must be a diagonal matrix

(

d2 0
0 d−1

2

)

say, because it commutes with

m2 = m−1
1 , where tr(m1) = tr(m2) = x1. Now although 〈A2, B2〉 is not

now in the form (2), we have tr(l1) = x4
1 − 5x2

1 + 2 = tr(l2), giving us that
d2 = d±1

1 . But as l2 = mn
1 l1 is a product of diagonal matrices, we obtain

d2 = λn
1d1. Thus we either have d21λ

n
1 = 1, which is a contradiction because

〈l1,m1〉 = Z× Z, or λn
1 = 1 which is also a contradiction unless n = 0.

The case in (1) is similar. We can assume by conjugating G in SL(2,C),
as well as taking minus signs and complex conjugation if necessary, that
A1 = A and B1 = B in (1) for ω = e2πi/3 so a quick calculation tells us

that l1 =

(

−1 −2
√
3i

0 −1

)

. Also we again have X ∈ SL(2,C) so that

XG2X
−1 = 〈A2, B2〉 for A2, B2 as in (1) but with ω = e±2πi/3 (we can rule

out having to put minus signs in front of A2 and B2 because A2 = XA1X
−1

so A2 has trace 2). Thus Xl2X
−1 is equal to l1 or its complex conjugate.

Now l2 = mn
1 l1 =

(

−1 −2
√
3i− n

0 −1

)

but we know A2 = m2 = m−1
1 = A−1

1

so X conjugates A1 into its inverse and therefore can only be ±
(

i 0
0 −i

)

.

But on comparing Xl2X
−1 and l1, we again see that n can only be zero.

As for the last part, it is well known that discrete torsion free subgroups
of SL(2,C) are CSA groups. For instance this can be seen quickly by using
Proposition 2.1 along with the straightforward fact that any group containing
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±
(

1 x
0 1

)

for x 6= 0 and any infinite order element of the form

(

λ y
0 λ−1

)

for λ 6= 0,±1 and y ∈ C is non discrete. Thus G1 and G2 are CSA, so we are
done by [6] Corollary A.8 which states as a special case that if G = G1 ∗H G2

for G1, G2 CSA and H maximal abelian and malnormal in both G1 and G2

then G is CSA.
2

In the case where the longitudes are glued to each other we do in fact
have an embedding of G in SL(2,C), giving an example of a closed orientable
3-manifold M fibred over the circle with fibre a genus 2 surface and with a
non pseudo-Anosov gluing homeomorphism but such that π1(M) still embeds
in SL(2,C). This follows from [14] Proposition 1.3, provided we can show
that there are faithful embeddings of the fundamental group of the figure 8
knot complement of the form (2) in Theorem 4.2:

Proposition 4.3 For any transcendental number λ ∈ C, the matrices in
(2) provide a faithful embedding in SL(2,C) of the fundamental group of the
figure 8 knot complement G.

Proof. On taking λ to be any transcendental number, we have that x
and z will be transcendental too (for either choice of z). Now it is well
known that the trace of any element in 〈A,B〉 is given by a triple variable
polynomial in the trace of A, of B, and of AB, having coefficients in Z.
Therefore if there is an element g in G which has trace ±2 for this value
of λ then we know that some polynomial f in Z[u, v]/〈r(u, v)〉 is zero at
(u, v) = (x(λ), z(λ)) for one of the choices of z, where r(u, v) is the irre-
ducible polynomial v2−(1+u2)v+2u2−1. Using this relation we can assume
that f(u, v) is of the form vp(u)+ q(u) = 0 for p, q ∈ Z[u] which implies that
q2−p2+2u2p2+(1+u2)pq is zero when evaluated at x. As x is transcendental,
this polynomial must be identically zero and so (pz+q)(pz−p(1+x2)−q) = 0
holds for all values of x and z satisfying f(x, z) = 0. Thus it must be a mul-
tiple of r(x, z), which is an irreducible degree 2 polynomial in z, giving a
contradiction unless p = q = 0. Hence the trace of g is constant in all rep-
resentations. But on setting x = 2 so that z = (5 ±

√
−3)/2 = 2 − ω, we

have the faithful discrete representation in (1). In this case we know that
the elements with trace ±2 can all be conjugated to lie in the Z × Z sub-
group 〈m(A,B), l(A,B)〉. Now m(A,B) = A and l(A,B) are both diagonal
matrices in all other representations we are considering. Hence if milj has
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(without loss of generality) trace equal to 2 when λ is transcendental, this el-
ement must be the identity and hence the identity for any λ. But on putting
say λ = 2 we find that this cannot hold unless i = j = 0.

2

In particular the faithful representations are dense in all representations
of the fundamental group of the figure 8 knot complement and there exist
faithful embeddings in SL(2,R) by taking λ to be a real transcendental bigger
than 2, say.
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