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Abstract

Agent-based modelling is an attractive way of �nding equilibria in complex problems involving

strategic behaviour, particularly in electricity markets with transmission constraints. How-

ever, while it may be possible to demonstrate convergence of learning behaviour to a Nash

equilibrium, that is not su¢ cient to establish that the equilibrium is robust against more

sophisticated strategy choices. This note examines two particular forms of agent-based mod-

elling used in electricity market models, both variants of mark-up pricing, and demonstrates

that they are robust against other strategies.

Keywords: agent-based modelling, electricity markets, mark-up equilibria, stability, oligopoly,

learning

JEL Classi�cation: C63, C73, D43, L10, L13, L94

1 Introduction

Liberalized electricity markets are frequently bedevilled by the persistence of a dominant incum-

bent generator, even if the industry has been unbundled and entry made potentially contestable.

The EU has embarked on a project to create an Integrated Electricity Market by facilitating

cross-border trade to increase competition within each Member State, although progress to-

wards e¢ cient use of interconnectors through market coupling has been until recently very slow.

With the Third Package, the creation of the Agency for the Cooperation of Energy Regulators,

ACER, and commitment to deliver the Target Electricity Model by 2014,1 progress has recently

�I am indebted to Thomas Greve for correcting some errors, and for useful comments from two EPRG referees;

those errors remaining are all my own.
1Directive 2009/72/EC Concerning common rules for the internal market in electricity, Regulation 713/2009

Establishing an Agency for the Cooperation of Energy Regulators, and Regulation 714/2009 On conditions for

access to the network for cross-border exchanges in electricity.
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accelerated, so that market coupling now extends over a wide area in Central West Europe, larger

even that the PJM2 Interconnection. It is therefore of considerable importance to examine the

impact of these various reforms on the extent of market power, to test whether the reforms have

been successful in mitigating such power, or whether further structural reforms are necessary.

This is di¢ cult, as it is hard to model generator behaviour in such markets, and even harder to

model strategic behaviour with transmission constraints (and most interconnectors are heavily

congested). Once one abandons the quest for analytic solutions, the way is open to computer sim-

ulation that can include more realistic features of markets, agent behaviour and constraints such

as those imposed by transmission capacities. It is therefore attractive to adopt an agent-based

modelling strategy that can handle such complexity.

1.1 Agent-based modelling3

Agent-based models have been used to describe the dynamic interaction of a possibly large

number of agents in a spatially well-de�ned system that will typically not start in equilibrium,

although the agents are pursuing goals that may lead to an equilibrium in which each agent

is satis�ed that he or she can make no further improvements. Until then agents acquire and

process information, often by observing their neighbours�behaviour, receiving some information

(e.g. from advertisements) and update their actions, experimenting to see if their choice delivers

improvements (for consumers in their utility net of cost, for producers in their pro�ts, etc.).

In some cases the aim is to �nd an equilibrium when analytical models may be intractable, in

others it is to test the robustness of the system, e.g. of a �nancial system facing periodic crises.

The adoption of technology provides a good example of a dynamic learning process, where the

slow rate of adoption or di¤usion (often logistic or S-shaped) indicates that the innovation is not

immediately perceived as being superior to current options. Thus Zhang and Nuttall (2007, 2011)

use agent-based models to study the adoption of smart meters by retail electricity customers, and

hence to evaluate the e¤ectiveness of various public policies to promote their use. Such models

concentrate on the interaction and learning of a large number of individually small agents, where

the focus is on the psychology of choice, rather than assuming that consumers are fully informed

about their preference and the choices available.

2Originally Pennsylvania New J ersey and M aryland but now covering a wider area.
3Wikipedia at http://en.wikipedia.org/wiki/Agent-based_model provides a concise and useful guide to the

variety of �elds, approaches and emergent behaviour that agent-based modelling encompasses.
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1.2 Agent-based modelling of wholesale electricity markets

In contrast, this paper follows the tradition of looking at the interaction of a small number of

agents, each of which potentially has market power, but operates in a system where their interac-

tions are complex and they are not initially well-informed about the decisions their competitors

or customers are making. They therefore start out of equilibrium and must learn from their

observations. Even if there is no uncertainty about demand and technology (and hence costs),

each agent is uncertain about the choices its competitors will make, and therefore what is its

own best strategy, hence the need for learning and experimentation.

There are a wealth of examples of using such models to explore learning in complex electricity

markets, where generators (and in some cases other agents such as retailers or suppliers) might

choose a variety of actions in their pursuit of pro�t or advantage. In particular, they can sign

contracts ahead of time as well as deciding at what price to o¤er electricity into the spot market.

Except for very stylized (e.g. Cournot) models, it has been analytically very di¢ cult to solve for

the optimal combination of forward contracts and spot sales in the presence of market power.

Newbery (1998) was able to do this for a supply function equilibrium model by assuming that

existing generators would choose contracts to deter entry that might otherwise lead to excess

capacity. Unless average prices can be externally speci�ed (in this case by free entry), there are

too many possible combinations of contracts and spot o¤ers to be tractable in a supply function

setting (arguably the most natural choice for modelling electricity wholesale markets).

Bunn and Oliveira (2001) adopt an agent-based model to explore the possible implications of

moving from the original Electricity Pool for England and Wales to the New Electricity Trading

Arrangements (NETA) to see how this might impact on both generators and suppliers, given

that generators may have market power and can choose to contract ahead but also be exposed to

the Balancing Mechanism. Given that their model was developed before NETA went live some

of their predictions were remarkably prescient (such as the predicted low volume of trading in

the Balancing Mechanism), and illustrate the strength of this approach for studying proposed

market design changes in a realistic setting that includes contracting.

Bunn and Oliveira (2003) extend this model to explicitly consider market power in a model

of the English wholesale market in which the regulator, Ofgem, had imposed a Market Abuse

Licence Condition that was appealed to the Competition Commission. Again, the development of

their model was motivated by a practical policy question. Veit et al (2006) also study the case in

which an oligopoly of generators sign contracts ahead of time and then compete in a transmission

constrained spot market. In this case agent-based modelling is chosen to handle the complexity

of the decision process (complicated by the transmission constraints), and con�rms the prediction

of simpler analytical models (e.g. Newbery, 1998) that forward contracting to sell leads to more

3
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competitive spot market behaviour and hence lower prices.4 These and other agent-based models

of wholesale electricity market are discussed in the excellent survey by Weidlich and Veit (2008),

who compare di¤erent learning strategies and their results.

A key question facing such modelers is whether the resulting equilibrium is indeed a Nash

equilibrium (where that is unique) in the space of actions allowed in the formulation of the game,

and indeed what happens where there are multiple Nash equilibria. This is the question that

Krause et al. (2005) address in the context of a simpli�ed power market, and answer a¢ rmatively

for unique Nash equilibria.

The obvious problem with agent-based modelling where agents are assumed to learn about

the pro�t consequences and adapt their strategies to increase pro�ts is that the action space over

which they make choices may be too restrictive and may allow other more sophisticated agents

to exploit this type of learning. In that sense the models may be dismissed as too simplistic to

model the behaviour of very sophisticated �rms (who certainly hire the brightest and best to

examine their strategic choices). A good defence of adaptive learning would be to show that the

equilibrium of the form of learning were robust against more sophisticated players choosing from a

wider set of actions. One proposed agent-based model known as Q-learning5 has agents choosing

a mark-up on their marginal cost schedule, thus departing from competitive behaviour (Krause

et al, 2005). Models in which agents choose mark-ups on marginal costs are popular among

agent-based models of electricity markets, and most of the examples surveyed in Weidlich and

Veit (2008) have this form. This paper examines the robustness of such models as a contribution

to the validity of adopting agent-based modelling more widely for studying wholesale electricity

markets. It does so by applying the standard approach to Industrial Organization (I-O) to the

new �eld of agent-based modelling. As such, the approach has much wider application than just

to electricity markets, for oligopolies are pervasive in many sectors of the economy and modelling

their behaviour faces similar problems to those of the electricity market. The next section sets

out the benchmark I-O workhorse of the Nash Cournot oligopoly model, and the following section

describes the space of actions considered in learning or agent-based oligopoly models to test their

robustness to deviations by more sophisticated agents, and hence their plausibility for �nding a

robust equilibrium. This leads to a discussion of robustness more generally, possible extensions

and a conclusion.

4 In contrast, if producers buy in the forward market they can amplify their incentive to manipulate the spot

market, as Mahenc and Salanie (2004) demonstrate in a Bertrand model.
5 set out in Watkins (1989) and further developed by Littman (1994) and Hu and Wellman (2003), and critically

compared to other reinforcement learning models in Weidlich and Veit (2008).
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2 Standard oligopoly models

The pro�t maximizing strategy for an oligopolistic �rm, which might be a generator supplying

to a power market, will depend on the actions available and the responses of its competitors.

The simplest Cournot oligopoly model has n �rms simultaneously choosing their output levels

taking the outputs of rivals as given - Nash behaviour. It has proven popular for modelling

electricity wholesale markets as it is tractable, and can be extended to incorporate contracting

(e.g. Allaz and Vila, 1993; Bushnell, 2007; Murphy and Smeers, 2010). Although Green and

Newbery (1992) argue that supply function models are more appropriate for modelling wholesale

electricity markets, Bushnell et al (2008) argue that Cournot models should not be dismissed for

the study of contracting in electricity markets.

One immediate question is whether agents do better or worse following a Cournot strategy

rather than choosing an optimal mark-up over their marginal cost. Suppose that all n �rms are

identical, each with cost function C(q) = aq + 1
2cnq

2. This has a marginal cost, MC= a + cnq,

with an zero output intercept of a. By measuring prices as the excess over a, and thus setting

a = 0, the MC becomes

MC = cnqi; (i = 1; ::; i; ::; n); (1)

(which gives an aggregate competitive supply schedule that is independent of n). Aggregate

demand is Q(p), where the slope is set equal to unity by a suitable choice of the units in which

to measure output:

Q(p) = A� p; p = A�Q: (2)

2.1 The perfectly competitive benchmark

The perfectly competitive solution is p =MC= cQ, for which the solution is

pc =
Ac

(1 + c)
; qc =

A

n(1 + c)
: (3)

In the constant marginal cost case, c = 0, pc = 0 but otherwise if c > 0 the average cost is half

the price pc (both relative to the price level normalization, a).

2.2 Oligopoly: Nash Cournot

Now consider the Nash-Cournot solution in which each identical �rm takes the output decision

of the other as given, and chooses qi to maximize pro�t, �i(q) = p(q)qi � C(qi) (where q is the
vector (q1; ::; qi; ::; qn)):

�i(q) = (A� qi �
X
j 6=i

qj)qi �
1

2
cnq2i :

5
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The �rst order condition (f.o.c.) satis�es

qi =
(A�

P
j 6=i qj)

(2 + cn)
:

The symmetric oligopoly solution is

po =
A( 1n + c)

( 1n + 1 + c)
> pc; qo =

A

n( 1n + 1 + c)
< qc: (4)

To illustrate, if c = 1, n = 2, A = 2, then pc = 1; qc =
1
2 . In this case the Cournot duopoly

solution is qd = 2=5; pd = 6=5, so that quantities are reduced and as a result the price and pro�ts

are increased. Note that as n ! 1, so po ! pc, and that in the constant marginal cost case in

which c = 0, po = A=(n+ 1), which is strictly positive.

3 Reinforcement or Q-learning

Under Q-learning, each �rm selects a speci�ed type of deviation from competitive bidding, and

will continue to adjust the size of the deviation until the resulting market outcome converges,

which, if there is a unique Nash equilibrium, should be that equilibrium. In the simple quadratic

cost, linear demand model there are two simple types of deviation from competitive bidding -

marking-up the o¤er schedule by a constant amount, or changing the slope of the o¤er schedule,

as in Hobbs et al (2000). These are each considered and their stability against sophisticated

players examined.

3.1 Q-learning with a constant mark-up

Suppose each �rm o¤ers its supply at a mark-up above marginal cost, MC, so its o¤er price p =

MC +mi, or for the present case in which MC = ncqi, the supply schedule in price space is

qi =
(p�mi)

nc
; (i = 1; ::; i; ::; n): (5)

Under the mark-up form of Q-learning the �rm keeps adjusting its mark-up mi to improve its

pro�t. The natural equilibrium in this �multi-agent system� is to �nd the value of mi that

maximizes �rm i�s pro�t, assuming the other �rm chooses its mark-up independently (mj is

treated as �xed, i.e. Nash behaviour).6 If �rm i sets mark-up mi; then the solutions for the

market clearing price, MCP, p(m) (where m is the vector (m1; ::;mi; ::;mn) solves

p(m) = A�
X

qi(m) =
(Anc+

P
mi)

n(1 + c)
:

6Grant and Quiggin (1993) examine the same problem but with constant elastic supply and demand, and �nd

similar results to those in Proposition 1 below.
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The appendix demonstrates that the symmetric solution is

m =
Ac

n(1 + c)2 � 1 ; (6)

pm = n(1 + c)m =
Ac(1 + c)

(1 + c)2 � 1
n

; (7)

qm =
(p�m)
nc

=
A(1 + c� 1

n)

n(1 + c)2 � 1 : (8)

Note that in the constant returns case in which c = 0, the Nash equilibrium is the competitive

price, pm = 0, in contrast to the Nash-Cournot case, suggesting the competition in mark-ups

is more competitive than competition in quantities. In order to prevent mark-up competition

collapsing into perfect competition marginal costs must be increasing. Note also that as n !
1; pm ! pc as with the Nash Cournot case. As a numerical example, with the numbers before

(c = 1; n = 2; A = 2) m = 2=7; pm = 8=7, which is below the Nash Cournot price (but above

the competitive price), while qm = 3=7. More generally we can check to see whether the mark-up

equilibrium is always more competitive than the Cournot equilibrium. The answer is yes, and

given in

Proposition 1 In a symmetric oligopoly with linear demand and equal quadratic costs, the Nash

equilibrium in which �rms choose their mark-up on marginal cost always has a lower equilibrium

price than the symmetric Nash-Cournot oligopoly solution.

(All proofs are given in the appendix.) This con�rms for the linear case Grant and Quiggen�s

(1994) �nding for the constant elastic supply and demand case where competition in average

mark-ups (in their model equivalent to competition in mark-ups over marginal cost) leads to more

competitive outcomes than the Nash-Cournot equilibrium. It also suggests that a sophisticated

�rm observing other �rms following a mark-up strategy might prefer to play a Cournot strategy in

order to increase pro�ts. We can explore that by supposing that the sophisticated �rm optimizes

against the mark-up �rms, following a Stackelberg strategy.

3.2 Stackelberg behaviour

The Stackelberg equilibrium concept is one in which the leader predicts the choices of the followers

as given and optimizes against this. Thus if the followers, f , o¤er the supply schedule of (5),

qf = (p�m)=(nc), then the residual demand schedule, Qr(p), facing the leader, l, at price p is

Qr(p) = Q(p)� (n� 1)qf = (A� p)�
(n� 1)(p�m)

nc
� �� �p = ql; (9)

where � = A + (1 � 1
n)
m
c , � = 1 + (1 � 1

n)=c. The leader�s optimal response is to choose

qi to maximize pro�t, pql � C(ql), where p = (� � ql)=�. The question to address is whether
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choosing the Nash mark-up given in (6) is robust against a player optimizing against this strategy.

Surprisingly, the answer is positive, and in that sense we can demonstrate

Proposition 2 In a Nash game with identical players each with a quadratic cost function facing

linear demand, if each player assumes that other players will choose the optimal mark-up on

its marginal cost, then each player will �nd it as pro�table to choose an optimal mark-up on

marginal cost or an optimal quantity to supply (the choice in the Nash Cournot game). In that

sense the Nash mark-up equilibrium is robust against Cournot deviations.

Interestingly, in this case the best Stackelberg quantity response to the Nash choice of mark-

up by followers is the symmetric Nash equilibrium in mark-ups. In that sense, Nash behaviour

in mark-ups is stable and can thus be justi�ed as the outcome of a learning process in which

players follow this strategy but a potential deviant can choose from a set of strategies that also

includes quantities.

3.3 Q-learning with a choice of slope

Suppose instead of choosing a mark-up on the linear MC schedule, whose slope is nc, �rms

choose a linear o¤er schedule which is increasingly above the true MC schedule (in quantity

space). Their supply schedule in price space can be written as

qi =
sip

n
; i = 1; :; i; :n; (10)

instead of (5), where lower values of si indicate higher mark-ups (and again in the symmetric

case aggregate supply will be independent of n). Aggregate demand now can be solved for the

MCP, p(s), where s is the vector (s1; :; si; :; sn),

Q(p) = p
1

n

X
sj = A� p; p =

A

1 + 1
n

P
sj
:

The pro�t function becomes �i(s) = qi(s)p(s)� C(qi) and the appendix demonstrates that the
symmetric equilibrium solves

0 = (n� 1)cs2 � (n� nc� 2)s� n; (11)

s =
n� nc� 2 + �
2(n� 1)c ; � =

p
(n� 2)2 + n2c(c+ 2); (12)

ps =
A

1 + s
=

2A(n� 1)c
(1 + c)(n� 2) + � ; qs =

As

n(1 + s)
: (13)

In the constant returns case in which c = 0; ps = 0, as with the mark-up case, but with a positive

slope prices can be above the competitive solution. In the limit as n ! 1; ps ! Ac
1+c or the

competitive (and Nash-Cournot) limit. In the numerical example n = 2 = A, c = 1; � = 2
p
3 =

8
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3:46; s = 0:732; ps = 1:154, compared to pm = 1:143, and po = 1:2, and the competitive solution

pc = 1, so the slope solution is between the mark-up and Nash-Cournot solution in this case.

That the slope mark-up price is higher than the mark-up over marginal cost case is a general

result:

Proposition 3 In a Nash game, if players assume that the strategy space is the choice of the

slope of its o¤er schedule, then with a quadratic cost function, linear demand and identical

players, the equilibrium yields a price that lies between the Nash-Cournot and the Nash mark-up

price, and hence yields higher pro�ts that choosing the best mark-up over marginal costs.

3.3.1 Stackelberg behaviour

Now consider the case in which the follower o¤ers a supply schedule given in (10), qf = sp=n,

and the leader optimizes against that. The residual demand, Qr, facing the leader at price p is

Qr(p) = Q(p)� (n� 1)qf = A� (1 +
rs

n
)p = ql; r � n� 1:

The leader chooses ql to maximize pro�t �l = qlp(ql)� C(ql), for which the (appendix) solution
is

pss =
A(1 + nc(1 + rs

n ))

(1 + rs
n )(2 + nc(1 +

rs
n ))

; ql =
A

(2 + nc(1 + rs
n ))

: (14)

Taking the numerical values from above (A = 2 = n; c = 1; r = 1, s = 0:732), the

Stackelberg slope price pss = 1:15 = ps, qf = 0:423 = ql. The leader has failed to improve upon

the pro�t of being a follower in with the mark-up case. Again this a general result:

Proposition 4 In a Nash game, if players assume that the strategy space is the choice of the

slope of its o¤er schedule, then with a quadratic cost function, linear demand and identical

players, that player will maximize his pro�ts regardless of whether another player (a potential

leader) chooses an optimal slope or an optimal quantity in determining its o¤er to supply, and

hence the Nash slope equilibrium is robust against Cournot deviations.

4 Wider robustness

Each of the mark-up Nash equilibria is robust against a Cournot leader deviating from the fol-

lower�s strategies, but one might argue that this is because both mark-up strategies are more

competitive than Cournot behaviour, and that the real test of robustness is whether the less

competitive slope mark-up equilibrium is robust against a more competitive �xed mark-up de-

viation. Again, somewhat surprisingly, the answer is that it is, and therefore mark-up equilibria

seem quite generally robust against choices chosen from a wider strategy set.
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Proposition 5 In a Nash game, if players assume that the strategy space is the choice of the

slope of its o¤er schedule, then with a quadratic cost function, linear demand and identical

players, that player will maximize his pro�ts regardless of whether another player (a potential

leader) chooses an optimal slope or an optimal mark-up on marginal cost in determining its o¤er

to supply, and hence the Nash slope equilibrium is robust against �xed mark-up deviations.

5 Extensions

The case for supply function equilibria is that generators need to submit their o¤ers before the

realization of (residual) demand and if these o¤ers are required to hold for the next 24 hours,

this demand will vary substantially, as Green and Newbery (1992) argued. A natural extension

would be to test robustness with variable A, and compare expected pro�ts of deviants against

followers. A more complex extension would examine the equilibria with heterogeneity of �rms�

cost functions. This is moderately tractable provided they di¤er in the slopes of their MC

schedules but not in their zero intercept (the value of a that has been set to zero by the choice of

the price intercept). It would be useful to know whether the argument that their is no incentive

to deviate holds for �rms regardless of their cost functions, or whether, for example, �rms with

lower MC schedules might be tempted to deviate.

6 Conclusion

Agent-based models are attractive in attempting to model outcomes in markets where some

agents can act strategically, and there has been considerable interest in whether adaptive or Q-

learning will lead to Nash equilibria, as these would seem natural equilibrium concepts. However,

as with all attempts to model strategic behaviour, the resulting equilibrium is sensitive to the

action space from which agents choose. Standard oligopoly models consider actions to be either

quantities (supplies to the market), as in the Cournot formulation, or prices o¤ered to the market

(the Bertrand assumption). In the presence of uncertain or varying demand, supply function

models, developed by Klemperer and Meyer (1989) and applied to electricity markets by Green

and Newbery (1992), are attractive intermediate formulations, and their linear solutions7 have

been in�uential in motivating the kind of agent-based models considered here.

While the choice of action space in optimizing models is normally guided by the market

structure and the actions that agents have, the choice of action space in agent-based models

7Supply function models typically have a continuum of solutions, one of which may be linear, providing there

are no relevant capacity constraints. Where capacity constraints are important, there may be unique but non-linear

solutions.
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is normally guided by tractability, where a choice of a single parameter (such as the mark-up

over marginal cost or the slope of the supply schedule) considerably simpli�es the problem. This

paper has shown that such equilibria are robust against deviations by �rms choosing quantities

or even other mark-up strategies instead of the chosen form of mark-up, and to that extent

mark-up equilibria are robust concepts.
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Appendix
The Nash choice of the optimal mark-up can be found from the market clearing condition

p = A�
X

qi =
(Anc+

P
mi)

n(1 + c)
;

@p

@mi
=

1

n(1 + c)
;

ncqi = p�mi =
(Anc+mi +

P
j 6=imj)

n(1 + c)
�mi:

The f.o.c. from maximizing w.r.t. mi gives

@�i
@mi

= (p�MC) @qi
@mi

+ qi
@p

@mi
;

=
�mi(1� 1

n + c)=c+ qi

n(1 + c)
:
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mi(n� 1 + nc) = ncqi = p�mi;

nmi(1 + c) = p =
(Anc+mi +

P
j 6=imj)

n(1 + c)
:

mi(n
2(1 + c)2 � 1) = Anc+

X
j 6=i

mj ;

which gives the solutions (6) - (8) in section 3.1.

Proof of Proposition 1 Evaluate

po � pm =
A(1 + nc)

n(1 + c) + 1
� nAc(1 + c)

n(1 + c)2 � 1 ;

Sign(po � pm) / (1 + nc)(n(1 + c)2 � 1)� nc(1 + c)(n(1 + c) + 1);

= n� 1 > 0:

QED.

Proof of Proposition 2 Suppose the followers adopt the Nash mark-up of (6), and the leader

then chooses his supply optimizing against this, then as before the �rst order conditions for the

leader are given by

0 = (p�MC) + ql
@p

@ql
;
@p

@ql
= � 1

�
; (15)

ql =
�

(2 + �nc)
=

�

n(1 + c) + 1
;

�p = �� ql =
�(1 + c)

1 + c+ 1
n

; p =
�c(1 + c)

(1 + c)2 � ( 1n)2
:

From (6)

� = A+ (1� 1

n
)
m

c
=
(n(1 + c) + 1)(n(1 + c)� 1)A

n2(1 + c)2 � n ;

so

ql =
�

n(1 + c) + 1
=
(n(1 + c)� 1)A
n2(1 + c)2 � n ; (16)

p =
Ac(1 + c)

(1 + c)2 � 1
n

; (17)

exactly as in the mark-up equilibrium. QED.

The choice of optimal slope

Aggregate demand now can be solved for the MCP, p(s),

Q(p) = p
1

n

X
sj = A� p; p =

A

1 + 1
n

P
sj
:

p =
A

1 + 1
n

P
sj
;
@p

@si
=

�p
n(1 + 1

n

P
sj)
;

qi =
Asi

n(1 + 1
n

P
sj)
;
@qi
@si

=

�
qi
si

�
1 + 1

n

P
j 6=i sj

(1 + 1
n

P
sj)

:
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Di¤erentiate the pro�t function �i (s) = qi(s)p(s)� C(qi) partially w.r.t. si to give

@�i
@si

= (p�MC)@qi
@si

+ qi
@p

@si
;

si
qi

@�i
@si

=
(p� ncqi)(1 + 1

n

P
j 6=i sj)� 1

npsi

1 + 1
n

P
sj

:

The f.o.c. is

p(1 +
1

n

X
j 6=i

sj �
1

n
si) = ncqi(1 +

1

n

X
j 6=i

sj);

qi =
1 + 1

n

P
j 6=i sj � 1

nsi

nc(1 + 1
n

P
j 6=i sj)

p =
1

n
sip:

There is a comparable equation for each qj so we have n equations in the n unknowns, s1; ; sn.

Proof of Proposition 3 With a constant number of �rms, if a �rm�s output under the Nash

slope equilibrium is less than under the Nash mark-up output, then the price will be higher. The

sign of the di¤erence between the Nash markup-up output and the Nash slope output is given by

Sign(qm � qs) = Sign(
1

qs
� 1

qm
) / n(1 + s)

s
� n(1 + c)

2 � 1
1 + c� 1

n

;

/ n(1 + c)(1� sc)� 1;

/ n2(1 + c)2(1� (1� ')
1
2 )� 2(n� 1);

where � = n(1+c)
p
1� ' and ' = 4(n�1)

n2(1+c)2
. But by expansion, (1�(1�') 12 ) � 
 > 1

2' =
2(n�1)
n2(1+c)2

,

so Sign(qm � qs) > 0:
The other part requires us to show that Sign(qs � qo) > 0.

Sign(
1

qo
� 1

qs
) / 1 + n(1 + c)� n� n

s
;

/ s(1 + nc)� n

/ (n� 2� nc+ �)(1 + nc)� 2nc(n� 1)

= n(1� c)� n2c(1 + c)� 2 + (1 + nc)n(1 + c)(1� ')
1
2

= 2(n� 1)� (1 + nc)n(1 + c)


= n� 1� " > 0; where " = (
 � '=2)(1 + nc)n2(1 + c)
2(n� 1) :

Thus in the case of a symmetric oligopoly it is possible to rank the equilibrium prices po > ps >

pm. QED

Stackelberg behaviour
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The residual demand, Qr, facing the leader at price p is

Qr = Q� (n� 1)qf = A� (1 +
rs

n
)p = ql; r � n� 1; (18)

p =
A� ql
1 + rs

n

;
@p

@ql
= � 1

1 + rs
n

: (19)

The leader chooses ql to maximize pro�t �l = qlp(ql)� C(ql), for which the f.o.c. is

p = MC� ql
@p

@ql
= ql(nc+

1

1 + rs
n

);

ql =
p(1 + rs

n )

1 + nc(1 + rs
n )
= A� (1 + rs

n
)p:

These can be solved to give (14).

Proof of Proposition 4 The sign of the di¤erence between the Stackelberg and the oligopoly

output levels for the slope mark-up equilibrium is

Sign(ql � qs) = Sign(
1

qs
� 1

qf
) =

n(1 + s)

s
� (2 + nc(1 + rs

n
));

= n+ (n� 2� nc)s� (n� 1)cs2 = 0;

from (11). The slope-Nash equilibrium is thus robust to Cournot deviations. QED

Proof of Proposition 5 The market clearing conditions give ql and price as functions of the

leader�s mark-up m:

ncql = p�m = nc(A� (1 + rs
n
)p;

p =
m+Anc

1 + c(n+ rs)
;
@p

@m
=

1

1 + c(n+ rs)
;

ncql = p�m; ncql =
Anc�mc(n+ rs)
1 + c(n+ rs)

;

nc
@ql
@m

= � c(n+ rs)

1 + c(n+ rs)
:

The leader chooses his mark-up m to maximize pro�t, for which the f.o.c. is

nc(p�MC)�@ql
@m

= ncql
@p

@m
;

mc(n+ rs)

1 + c(n+ rs)
=

ncql
1 + c(n+ rs)

=
Anc�mc(n+ rs)
(1 + c(n+ rs))2

m =
An

(n+ rs)(2 + c(n+ rs))

ql =
A

2 + c(n+ rs)
:

This is exactly the same output that the leader would choose under the slope mark-up Nash

equilibrium. QED.
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