
DSpace XML UI Project Technical Overview

Scott Phillips, Alexey Maslov, John Leggett

Digital Initiatives, Research and Technology

Texas A&M Libraries

{sphillip, amaslov, jleggett}@lib-gw.tamu.edu

Adam Mikeal

Computer Science Department

Texas A&M University

 adam@cs.tamu.edu

ABSTRACT

This paper describes the modifications to DSpace by Texas A&M

Libraries to support an XML-based user interface. DSpace

supports digital repositories composed of communities and

collections. Each community within DSpace typically represents

an organizational unit within an institution. To increase the appeal

of DSpace as a digital repository to these communities, this

project enables the establishment of a unique look and feel that

might extend outside of DSpace into an existing web presence.

We believe this may increase the adoption of DSpace by these

communities.

INTRODUCTION

DSpace is an open source digital repository system used by

several institutions. The DSpace Information Model [1] is similar

to the organizational structure of a university composed of

colleges, departments, schools, labs, centers, etc. These

organizational units may be mapped to communities and

collections within DSpace. When DSpace is used as the

centralized Institutional Repository, it is beneficial for individual

communities to present their own distinct look and feel, which

might integrate with an existing web presence in the organization.

There are four design goals for this XML UI project. First,

allowing each community and collection represented in DSpace to

maintain a distinct look and feel. Second, to increase support for

internationalization in DSpace. Third, to separate the business

logic from stylistic controls, increasing ease of adaptability.

Finally, to provide an alternative interface to the current JSP—

based implementation, requiring no changes to the core of DSpace

(including the database), while specifically enabling both user

interfaces to operate simultaneously.

ARCHITECTURE

The XML user interface relies on Java Servlets, an XML

Manager, many XML Objects and a Theme Manager which

operate together to deliver a web page to the end user in a variety

of unique styles.

In this project, there are six stages to process an HTTP request

sent by a user’s browser:

1. In response to the client’s request, an HTTP Request object

is generated by the servlet container.

2. This Request object is passed to the appropriate servlet,

which determines flow control and handles posted data. That

servlet identifies and creates a specific XML Object

representing the page to be rendered.

3. The identified XML Object is given to the XML Manager.

The manager constructs the DOM and inserts metadata and

site-wide navigational links.

4. The DOM is given to the identified XML Object where the

main content of the page is inserted into the DOM.

5. After the XML Object is finished, the Theme Manager

determines the correct theme to apply based upon thematic

configuration. The Theme Manager consults a configuration

file, typically themes.xml, which describes the themes that

are to be applied to a specific community or collection. If no

specific theme exists for the community or collection the

parent community is checked for a theme and so on until a

theme is found. If no theme is found then the site wide

default theme is applied.

6. Finally the XML Manager serializes the DOM to a stream

(usually XHTML) for delivery by the HTTP Response

Object.

Figure 1: Six stages of an HTTP request

Architectural Comparison

The architecture used in this project is distinct from the current

DSpace implementation and a possible Cocoon-based

architecture. The flow of data formats for these three architectures

can be expressed as:

 Current DSpace architecture:

JSP → HTML

 Cocoon-based architecture:

JSP → XML → XSL Transformations → XHTML

 Our architecture:

Java → DOM → XSL Transformations → XHTML

 DSpace

Java Servlets

XML

Objects

XML

Manager
Theme

Manager

themes.xml

HTTP Request

HTTP Response

1

2

3 4

5

6

Both our architecture and a Cocoon-based architecture offer

advantages over the current JSP-based implementation by

separating style controls from the business logic of DSpace. In our

architecture the use of a DOM allows XML Objects to change any

part of the DOM until it is finally serialized for delivery to the

user’s browser. This feature is used to modify or expand

previously generated portions of the page at any time during page

generation. With a Cocoon-based architecture this flexibility is

not present because the XML is created in stream form and SAX

events are generated immediately which can not be revoked or

modified.

XML SCHEMA

The XML schema used by this project is a specialized schema for

DSpace based upon the experience of past projects for the

Computer Science Department at Texas A&M. Several other

schemas were evaluated for decoupling style from semantic

information in web-oriented applications. Existing schemas such

as DocBook [2] provide methods of encoding most aspects of a

web page, but are lacking elements necessary for HTML form

representation. Therefore, our solution follows DocBook design

patterns when applicable, but deviates when necessary for web-

based semantics.

The schema used in this project involves three major elements:

meta, body, and options. The meta element contains meta

information about the request and page. Examples include the

user agent (browser), the user’s preferred language, the page title,

and the page’s location within the DSpace structure. The body

element contains the meat of the information to be rendered in the

browser, consisting of tables, sections, and forms. The

options element exposes the standard navigational links from

the current page, as well as available actions. Examples include

the standard “Browse by” links, login actions, access to the user’s

profile, searching, and context-sensitive links that are dependent

upon the user’s state and the current page.

Schema Internationalization

The schema supports internationalization through the use of the

lang attribute. This attribute is attached to all elements which

encode textual content, excluding user-supplied data such as

usernames, community and collection names, and collection meta-

data. The DSpace API doesn’t currently support storing this

information in multiple languages, so for our project, this data

was considered to be language-independent. The current theme

uses the lang attribute along with the specified language of the

user contained in the meta element to separate out the specific

languages for rendering.

There are two main reasons for handling internationalization at

the theme stage. First, themes are expected to generate content for

site and community-specific purposes (such as site-specific

instructions for authentication, etc.). This content will also require

language translation, and the theme must be aware of the language

being rendered in order to change behavior accordingly. Second,

this design allows for multiple language interfaces. Multiple

language interfaces may be useful in cases where the language of

the collection’s content differs from the user’s primary language.

For example, a digital library of 16th century Spanish manuscripts

could create a theme that provided both Spanish and alternate

languages in the same interface.

THEMES

Themes are XSL transformations that are applied to render the

XML schema into an HTML page for display on the user’s

browser. They may consist of the following: XSL files, images,

JavaScript, and CSS rules.

Many of the stylistic differences between styles may be achieved

solely through the use of CSS rules. However, the use of XSL

enables for more complex styles to be used. Such possibilities

include a text-only version for accessibility concerns, a HTML-

3.2 compliant version for pre-CSS browsers, WML for WAP-

enabled devices, multilingual versions, and dynamically-generated

JavaScript and PDFs.

FUTURE WORK

While this project is currently under development many

opportunities exist for future development. We hope to allow user

selected themes for specialized user tasks. It may be beneficial for

the interface to be able to highlight important information while

hiding irrelevant information tailored to the specific users needs.

Another area for future work is a library of default themes for

distribution with the DSpace XML UI. This library could be used

by DSpace out of the box and also provide a starting point for

institution’s local theme development. Further work could also be

done on extending internationalization into the DSpace API,

supporting language-based metadata on collections and

communities.

CONCLUSION

The XML UI project is currently under development at Texas

A&M University Library’s Digital Initiatives, Research and

Technology (DIRT) group. The project promises to expand the

current functionality of DSpace to allow for unique interfaces

based upon the style choices of individual communities and

collections. This functionality will benefit these communities,

allowing them to integrate their collections with a pre-existing

web presence outside of DSpace. By increasing the appeal of

DSpace to those communities, we may increase the adoption of

DSpace as a digital repository solution.

REFERENCES

1. MacKenzie Smith, “DSpace: An Institutional Repository from

the MIT Libraries and Hewlett Packard Laboratories”’,

Lecture Notes in Computer Science, 2458, September 2002.

2. OASIS DocBook Technical Committee, DocBook v4.1

[OASIS 200101], http://www.oasis-open.org/specs/, January

2001

 Visit our demonstration site at:

http://di.tamu.edu/dspace-xmlui/

	ABSTRACT
	INTRODUCTION
	ARCHITECTURE
	Figure 1: Six stages of an HTTP request
	Architectural Comparison
	XML SCHEMA
	Schema Internationalization
	THEMES
	FUTURE WORK
	CONCLUSION

	REFERENCES

