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Summary

This thesis presents a time domain finite element method for the solution of microwave
heating problems. This is the first time that this particular technique has been applied
to microwave heating. It is found that the standard frequency domain finite element
method is unsuitable for analysing multimode applicators containing food-like materials
due to a severe ill-conditioning of the matrix equations. The field distribution in mul-
timode applicators loaded with low loss materials is found to be very sensitive to small
frequency changes. Several solutions at different frequencies are therefore required to
characterise the behaviour of the loaded applicator. The time domain finite element
method is capable of producing multiple solutions at different frequencies when used
with Gaussian pulse excitation; it is therefore ideally suited to the analysis of multi-
mode applicators. A brief survey of the methods available for the solution of the linear
equations is provided. The performance of these techniques with both the frequency
domain and time domain finite element methods is then studied.

Single mode applicators are also analysed and it is found that the frequency domain
method is superior in these cases. Comparisons are given between the calculated results
and experimental data for both single mode and multimode systems. The importance
of experimental verification being stressed.

The choice of element type is an important consideration for the finite element
method. Three basic types of element are considered; nodal, Whitney edge elements
and linear edge elements. Comparisons of the errors with these elements show that
Whitney elements produce a consistently lower error when post-processing is used to
smooth the solution.

The coupled thermal-electromagnetic problem is investigated with many difficulties
being identified for the application to multimode cavity problems.
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Chapter

1 Introduction

1.1 Microwave Energy: Volumetric and Selective Heating

The last twenty years has seen a consolidation of the use of microwave energy as an

effective source for the volumetric and selective heating of dielectric materials. It has

found successful application in many areas; industrial, commercial, domestic and medi-

cal. The largest area of use is for the processing of food, the tempering of fruit, meat,

fish and dairy produce, for the heating and cooking of meals and for sterilisation and

pasteurisation. The domestic microwave oven is now a common household appliance

throughout the world and many food producers are turning to microwave heating as

a means of achieving the high quality products demanded by todays consumers. The

sizes of these systems can range from a few hundred watts for a domestic oven to over

250 kilowatts for a recent industrial oven designed for the dry frying of snack foods. As

well as food applications microwave heating has also seen use for the processing of tex-

tiles and ceramics. It has also been used extensively for the hyperthermia treatment of

tumours and for the warming of blood prior to transfusion into humans. It can be seen

from the range of applications that microwave heating is a very versatile and powerful

method for the heating of dielectric materials.

All of these uses have one thing in common: they all require some form of applica-

tor to transfer the microwave energy from the source into the material being treated.



2 Introduction

Figure 1.1: A typical microwave system.

Figure 1.1 shows a typical set up for a industrial system, where a magnetron supplies

energy to a cavity applicator via a waveguide feed. An iso-circulator [Metaxas & Mered-

ith, 1983] is used in the feed to absorb any reflections from the cavity. This prevents

damage to the magnetron from occurring. Domestic ovens follow exactly the same de-

sign except that the expensive iso-circulator is not used since only low power levels are

present. The feed waveguide is also much shorter in domestic ovens. For large ovens, the

cavity may be several meters long with several magnetrons feeding it at different points.

Often a conveyor belt is employed to carry the product through the oven. The design of

these applicators governs both the efficiency with which the material can be heated and

the degree of heating uniformity that is produced. Simulation can aid in the design of

these applicators by allowing the heating pattern to be determined in advance. There

are several different techniques that may be used to analyse the applicator structures.

These are described later in this chapter, however, this thesis will concentrate on the

application of the finite element method. The simulation methods described provide an

extra weapon in the armoury of designers of microwave systems. As well as allowing

designs to be tested without the need for the construction of expensive prototypes they
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can give further insights into the nature of the heating process.

Two basic types of applicator are considered in this thesis; the single mode resonant

cavity and the multimode cavity. The former type is ideal for special purpose applica-

tions, such as the heating of textile fibres, liquids [Metaxas, 1974] or webs [Metaxas &

Meredith, 1978] where the size and shape of the product allows the use of special appli-

cator designs. The multimode type, by way of contrast lends itself to general purpose

applications since it is capable of heating a wide range of loads of differing geometries

and material properties in either batch and continuous operation [Metaxas & Meredith,

1983]. The wide application of the multimode cavity has lead to its dominance, with

single mode applicators comprising only few percent of the systems in use in industry.

The multimode applicator is, however, considerably more complex to model than the

single mode type and as a consequence their design has relied almost entirely upon the

experience of the designer and on trial and error. These two classes of applicator are

described in the next section. Other applicator types do exist, such as the meander

applicator, but their usage is extremely limited and is therefore not considered here.

This chapter outlines the basic principles of these applicators and the current meth-

ods of design. By considering them from a qualitative standpoint initially an insight

into potential problems that may be encountered during a numerical analysis is gained.

This influences the choice of method that will be used for the analysis.

1.2 Microwave Applicators

The applicator forms the focus for the modelling effort since its design will ultimately

determine both the heating pattern and the efficiency of the system. If heating is

concentrated in a small area of the load then considerably more energy will be required

to heat the whole product to the desired temperature than if the heating was uniform.

Two types of applicator design are considered, the single mode type being described

first followed by the multimode applicator.
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Figure 1.2: TM010 single mode resonant cavity

1.2.1 Single Mode Resonant Cavities

The single mode cavity, as its name suggests, is an applicator designed to operate in a

single resonant mode. The dimensions of the cavity are chosen such that the resonant

frequency of this mode coincides with the frequency of the source when the applicator

is loaded. The field distribution within the cavity can often be determined analytically,

so the cavity can easily be designed to provide the desired heating characteristics. Two

typical cavities are shown in Figures 1.2 and 1.3. These types of cavities are limited to

filament type loads, such as textile fibres, cylindrical ceramic samples, or liquids flowing

in small bore tubes. For these types of application single mode cavity designs are ideal.

While the field distributions can be calculated analytically, there are still certain

parameters that are difficult to determine in this way. It is possible that the loading

will cause some higher order modes to be excited in which case the field pattern will

deviate from that of the dominant mode. In most cases this will be undesirable and steps

can be taken to suppress these extra modes. The cavities are generally connected to the

waveguide system via an aperture, as shown in Figure 1.3, the size of which determines

the impedance matching between the source and the cavity, and therefore the amount of

power that can be transferred. A numerical technique can be used to analyse the effect

of different aperture dimensions and so aid the design of the system. Also, in cases of



1.2 Microwave Applicators 5

Figure 1.3: TE103 single mode resonant cavity

inhomogeneous loading, the field pattern may not be obtainable analytically, in which

case a numerical method will provide useful information.

The design of the cavities is such that higher order modes, for example the TM020

mode in a cavity designed for TM010 operation occur at frequencies considerably greater

than that of the operating frequency. This means that the resonant modes are well

separated unless the cavity is very heavily loaded. The pattern will not, therefore, vary

greatly as the frequency is changed. However, the magnitude of the field inside the

cavity is likely to vary significantly with frequency, especially when the Q-factor of the

cavity is high. This means that it is necessary to calculate the response of the system at

a range of different frequencies. A time domain solution with Gaussian pulse excitation

(described in §4.4) allows this to be done using a single calculation whereas solution

in the frequency domain will require multiple calculations, one at each frequency of

interest. Chapter 5 presents results for single mode cavities and compares the time

domain and frequency domain approaches.

1.2.2 Multimode Cavities

A multimode cavity, depicted in Figure 1.4, is simply a metal enclosure, generally rect-

angular in shape, which is capable of supporting a large number of resonant modes.
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Figure 1.4: Multimode cavity, showing a rectangular load placed inside the cavity.

A feed system is incorporated to couple the cavity to the source of microwave energy.

Multimode cavities are capable of accepting a wide range of loads with different ge-

ometries and material properties. This flexibility has made them the most widely used

type of applicator, with the standard domestic oven being of this type. The applicator

derives its name from its ability to support a large number of resonant modes near to

the operating frequency, these combine to give some degree of uniformity of heating

within the applicator. However, the large number of possible modes makes this type of

applicator particularly difficult to analyse. The analysis of the heating of dielectrics in-

side a multimode system is far from simple, however, many ideas have been put forward

to qualitatively account for the behaviour. These generally rely the concept of resonant

cavity modes to account for the field distribution inside the cavity, however, many other

effects are present which can significantly alter the power distribution that is produced

in the load [Risman, 1993; Meredith, 1994].

Resonant Cavity Modes

Attempts are often made to describe the heating effects in terms of various resonant

modes. For an empty cavity the modes are clearly defined and if the cavity geometry is

rectangular or cylindrical their computation becomes trivial. For an empty rectangular
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2.2 2.3 2.4 2.5 2.6 2.7

Frequency,  GHz.

(a) Position of the modes near to 2.45 GHz

Frequency, GHz l n m

2.4012 3 0 3

2.4186 4 1 2

2.4459 2 4 1

2.4602 3 1 3

2.4695 0 3 3

2.4808 0 4 2

(b) Mode indices for 6 modes

Figure 1.5: Position of the resonant modes of a multimode cavity with dimensions 300

x 280 x 240 mm.

cavity the modes obey the relationship [Metaxas & Meredith, 1983],

(
lπ

a

)2

+
(

mπ

b

)2

+
(

nπ

d

)2

=
(

ωlmn

c

)2

, (1.1)

where l, m and n are integers corresponding to the number of half-wavelengths of quasi-

sinusoidal variation of the field along the x, y and z axes respectively, while ωlmn is the

resonant frequency of the mode and c is the speed of light.

For example, consider a small cavity typical of many multimode applicators, with

dimensions 300 × 280 × 240 mm, which supports several modes near to the operating

frequency of 2.45 GHz. These are shown in Figure 1.5. Since most computational

methods generally assume that the walls of the cavity are perfect conductors the Q-

factor of the modelled cavity will be very high. The only load on the empty cavity

being due to the feed system. This means that in order to excite a resonance the source

frequency must coincide with the resonant frequency. At source frequency of 2.45 GHz,

we would expect the only field in the cavity to be that emanating from the waveguide

aperture. As the frequency is increased we would expect a resonance to be observed at

2.4602 GHz and again at 2.4695 GHz. The shapes of three of these modes are given in

Figure 1.6. It is worth noting that the percentage change in frequency between the 3,1,3
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(a) 42x mode (b) 13x mode (c) 30x mode

Figure 1.6: Field patterns of three different resonant modes

mode and the 0,3,3 mode is only 0.37 %, however, the field patterns at these frequencies

are very clearly different. This would suggest that the field distribution in an empty or

lightly loaded multimode cavity will be extremely sensitive to small changes in frequency.

Also, since the resonant frequencies are dependent on the dimensions, a small change

in the size of the cavity will shift the position of the modes and consequently lead to a

large change in the field pattern. This sensitivity of the system to small perturbations

has important implications for the modelling of multimode cavities. Results presented

in Chapter 6 show how this sensitivity can manifest itself in real situations during the

heating of low loss materials.

Loaded Cavities

The discussion above assumed that the cavity was not loaded in any way, giving rise to

very high Q-factors. In practice, since we are investigating microwave heating phenom-

ena, the cavities will be loaded with lossy dielectrics. When ceramics are being heated

this loading may be very slight, whereas food-like materials which have a much higher

loss factor will produce much lower Q-values. In a loaded cavity many more modes are

present and they are no longer sharp resonances but have a broad frequency response,

shown qualitatively in Figure 1.7. Furthermore, the modes cannot be easily calculated

using an expression such as equation (1.1). If the cavity is loaded with an arbitrar-

ily shaped dielectric then a numerical technique is required to calculate the resonant
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Figure 1.7: Resonant modes in an unloaded and loaded cavity, after Metaxas & Meredith

[1983]

frequencies and field patterns of the modes [Collin, 1991].

A common practice for designing multimode applicators is to simply produce a cavity

which has the largest number of modes when empty. Since more modes will be present

when loaded it is argued that the large number of modes will overlap to produce uni-

formity. This approach, however, is is far too simplistic. Edge overheating for example

is often caused by modes whose electric field is parallel to the edges of the load which

gives highly efficient transfer of energy into the load [Risman, 1993]. Consequently one

or two modes can dominate the transfer of energy into the load. Also, the above ar-

gument does not take into account the method of excitation. While the cavity may be

capable of supporting a large number of modes it is by no means certain that they will

all be excited. Here the nature of the feed system plays a vital role. This qualitative

approach, while allowing a certain insight into the possible causes of problems, such as

edge over-heating, cannot fully describe the field distribution in a given applicator unless

all the modes are accurately calculated. The use of a numerical technique is therefore

required.

The large number of modes present in a loaded multimode applicator allows it to

couple power into a very wide range of loads. The loads vary greatly in shape, size and
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dielectric properties. It is this flexibility which makes multimode applicators so popular.

The price for this versatility is, however, a degree of non-uniformity of heating. One

way in which this non-uniformity manifests itself is in localised overheating.

The phenomena of localised heating, or hot spots, in multimode applicators is fa-

miliar to anyone who has used a domestic microwave oven. In food applications the

lack of uniformity of heating can cause burns when food is too hot or allow bacteria to

remain if areas have not reached a sufficient temperature to destroy them. In non-food

application the results of non-uniform heating can be extremely detrimental. Materials

such as ceramics often have a loss factor that increases exponentially with temperature.

Uneven heating can, therefore, produce a thermal runaway leading to the destruction of

the sample being heated [Metaxas & Meredith, 1983]. Uniform heating is therefore the

goal of many applicator designers, whereas in certain situations non-uniform or selective

heating is highly desirable, an example being the drying of web-like materials were the

energy is targeted in areas of high moisture.

Risman [1993] proposes several different causes for the non-uniformity of heating.

These provide an explanation for the effects when they occur but do not provide the

applicator designer with firm information as to the possible performance of a particular

design. Furthermore, for a load which has a complex geometry or regions with different

material properties, they can do no more than provide the most general guide to the

effects that may be observed.

1.3 Applicator Design

The careful design of applicators is essential if one is to avoid the type of localised over-

heating described previously for multimode applicators or to achieve a good impedance

match in single mode systems. However, the current design process for many systems is

very empirical, often relying entirely on the designers experience, trial and error and the

construction of expensive prototypes. The reason for this approach lies in the fact that

multimode applicators are notoriously difficult to analyse. Single mode resonant cavity

applicators on the other hand, where there is only one dominant field pattern can be

described in relatively simple terms by analytical expressions. Even so, when they are
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coupled to a waveguide feed via an aperture, or are heavily loaded so that higher order

modes start to become significant, the use of analytical expressions becomes increasingly

difficult. The purpose of this thesis is to present a numerical method for analysing dif-

ferent applicator structures rather than to present novel designs for microwave systems.

These techniques will hopefully allow the designers of microwave applicators to remove

some of the trial and error in the design process.

The field pattern in a multimode applicator is determined by both the nature of

the load and the size of the cavity. It is therefore impossible to predict the exact field

pattern for an arbitrary load without carrying out a full solution of Maxwell’s equations

for the loaded cavity. Since it is often the case that no two loads are identical, especially

when dealing with food products, this solution will apply only to the load that has

been modelled. The position of the load in the cavity will also effect the field pattern,

a change of only a few millimeters being sufficient to alter the distribution. Given

these difficulties it is still possible to gain useful insights from simulations of loaded

multimode cavities. One can, for example, determine the degree of sensitivity of the

system to various parameters, such as the source frequency, feed position, load position

or dielectric properties. It is also possible to test different applicator designs against

a set of loads, varying the dimensions and observing the effects. The feed system is

another area that can be addressed since small changes in the feed can produce large

changes in the way the cavity modes are excited. Simulation can then allow the designer

to experiment with various changes to a feed design, while keeping all other factors

constant. This would be difficult to do in an experimental situation. The behaviour is

also dependent on the source of the microwaves. It will be seen from results presented

in Chapter 6 that a small change in frequency can lead to large changes in the field

distribution inside the applicator, especially when loaded with a low loss dielectric. A

further complication arises because the behaviour of the source is generally dependent

upon the load to which it is connected. Fortunately, many industrial systems employ

an iso-circulator, as shown in Figure 1.1 that isolates the source from the applicator

allowing for this effect to be discounted in many applications.

Microwave heating attempts to efficiently couple power from the source of microwaves

into the load being heated. It is therefore of obvious interest to determine the amount
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of power dissipated inside the load. When the system is fed via an iso-circulator the

load impedance will determine the fraction of the supplied power, P0, absorbed by the

cavity, P and the amount reflected back into the water load of the iso-circulator, since

P = P0(1− |ρ|2), (1.2)

where the reflection coefficient, ρ, is a function of the impedance. Determination of the

impedance of the loaded applicator as seen from the waveguide feed is an extremely

important aspect of the calculation which is often neglected in numerical simulations. If

the magnetron is coupled directly to the cavity then this impedance will be seen by the

magnetron and will therefore determine its output power and the efficiency with which

it will operate. A knowledge of the absolute value of the power absorbed is necessary

to correctly determine the temperature rise. The calculation of the impedance and the

reflection coefficient are discussed in Chapter 4. Comparisons of the calculated values

and experimentally determined ones for single mode cavities are then given in Chapter 5.

Frequency of Operation

The microwave frequencies allocated for industrial use are 896 MHz (915 MHz in the

USA) and 2.45 GHz. The sources that produce the microwave energy, invariably a mag-

netron for heating applications, will not operate exactly at these frequencies. The regu-

lations allow a tolerance of ±10 MHz at 896 MHz and ±50 MHz at 2.45 GHz [Metaxas

& Meredith, 1983]. Variations in construction and in the power supply to the mag-

netron mean that every magnetron will operate at a slightly different frequency. The

frequency of operation is also dependent on the impedance of the load to which it is

supplying power. This thesis will give results that show how very small changes in

frequency ( < 0.5 %) can significantly alter the field distributions with some load con-

figurations. This variation in frequency is therefore an important consideration when

modelling microwave applicators, a fact which is appreciated by very few workers [Ma

et al., 1994]. One of the advantages of the scheme that will be presented in this thesis is

its ability to provide information over a range of different frequencies. This immediately

provides an indication to the systems sensitivity to frequency and to the nature of the

changes that are likely to occur.
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1.4 Computational tools

The advent of powerful computational tools has led to the rapid development of numeri-

cal techniques for solving complex problems. As the availability of high speed computers

has become more widespread so has the range of applications to which these techniques

have been applied. Microwave heating systems have only recently started to receive

attention in terms of numerical analysis [Lorenson & Gallerneault, 1991]. One of the

major causes of this slow start has been that very few assumptions can be made that will

reduce the size of the problem to a manageable level. Whereas waveguide problems can

be solved in two dimensions and produce useful results, multimode applicators require

a full three dimensional vector field solution. Some two dimensional models have been

proposed, [Desai et al., 1992; Audhuy-peaudecerf et al., 1993], however, unless some

special symmetry can be exploited these cannot yield meaningful results. Consider, for

example, the case of a rectangular block heated in a multimode cavity. It is often the

case that the power density is concentrated in the corners of the block, a two dimen-

sional model consisting of a vertical slice through the centre of the block would fail to

indicate this, demonstrating the necessity of three dimensional models.

Many recent papers that allude to microwave heating in their introduction turn

out to be disappointing in their application often referring only to relatively simple

waveguide problems and then concluding with a statement along the lines of “this is

easily extended to cavity problems and three dimensions”. As examples in this thesis

will demonstrate the transition from waveguide problems and small cavities with one or

two dominant modes to large multimode resonant cavities is far from straight forward.

It is not simply a case of discretising the larger problem using more elements and solving

as before. Other difficulties have to be overcome and it is these that are addressed here.

Full three dimensional models are extremely expensive computationally, particularly

when most applicators are at least two to three free space wavelengths in each dimension.

Assuming a working value of, say, 10 grid points per wavelength, this produces 303 =

27, 000 grid points and given that there are three components of the field at each grid

point we have 81, 000 unknown quantities1 when using a numerical method based on

1Boundary conditions will reduce this number slightly.
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a regular lattice of points. When a dielectric is placed in the cavity the wavelength

inside the dielectric will be considerably shorter requiring a finer discretisation so further

increasing the number of unknowns. If a method that requires a uniform lattice is used

then the number of variables can very quickly become unmanageable. In the past the

number of unknowns exceeded the computational resources of the majority of computers.

Now, however, these problems can be solved on workstation sized computers and in the

near future on desktop personal computers.

Even with today’s computing resources it is still necessary to carefully consider the

algorithms used for computing the fields. There are many obstacles to be overcome

before a successful solution can be obtained. Work carried out by many workers in

the field of computational electromagnetics in the last couple of decades has provided

many successful techniques for overcoming these obstacles. The development of edge

elements, for example, has allowed analysts to overcome what Bossavit [1990] refers

to as the “plague of spurious modes” that prevented the accurate solution of many

high frequency electromagnetic problems. The state of the art in computational elec-

tromagnetics is advancing rapidly with hundreds of papers being published every year

describing new techniques, enhancements to old techniques, new implementations and

new applications of existing methods. Described below are some of the methods that

are currently employed to solve microwave heating type problems. This thesis will con-

centrate on the application of the finite element method. Although this is by no means

the only choice, the author considers it to be best suited to the particular problem of

microwave heating when compared to other available numerical techniques.

Numerical models are an extremely useful tool for the study of heating effects in

microwave systems. The ability to analyse the effect of small changes in geometry or

dielectric properties gives an idea of the sensitivity of the system to a variety of pa-

rameters. While this may mean running repeated solutions to a particular problem it

is greatly preferable to repeated experimentation. To effect a significant change in the

cavity dimensions, for example, may be the work of an instant for the computational

model whereas for the experimentalist it may require the construction of a new cavity

which is both expensive financially and time consuming. With this in mind an alter-

native approach to the numerical solution has been presented by Chaussecourte et al.
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[1991]; if the modes were known for a given system then it may be possible to quickly

optimise certain parameters such as feed position and to identify the sensitivity of the

system to changes in frequency. Having determined the eigenvectors of each mode it is

necessary to calculate the degree to which they are excited by the source. The calcula-

tion of the eigenvalues and eigenvectors of a very large system is a non-trivial problem

[Parlett, 1980]. The situation can be alleviated somewhat by calculating only the higher

eigenvalues [Lee & Mittra, 1992], however, many will need to be found and stored which

this makes this method unattractive.

Another possible way of determining the sensitivity of the system to frequency is to

perform the calculation in the time domain. By exciting the system with a Gaussian

pulse, a technique long established in FDTD and TLM calculations [Ma et al., 1994], the

simultaneous calculation of the field pattern at a number of frequencies can be carried

out. The use of finite elements rather than finite differences or TLM allows the full

advantages of recent developments in mesh generation [George, 1991] to be taken rather

than being restricted to cartesian grids. For multimode cavities this technique is consid-

erably more efficient than performing multiple solutions in the frequency domain. Both

the time domain and frequency domain methods are presented here and comparisons of

their effectiveness given in Chapters 5 and 6.

It is also worth noting here that we have to consider the accuracy to which the

resonant modes are being calculated. This applies to both calculations that find the

resonant frequencies of the modes explicitly and to methods that find field distributions

which will be a summation of the modes. In three dimensional problems the mesh size

will be ultimately limited by computational constraints: the mesh cannot be refined

indefinitely. Many workers involved in calculating the eigenvalues directly produce solu-

tions for which two to three percent accuracy is considered to be acceptable. However,

if we specify a single operating frequency, say 2.45 GHz, and somehow calculate the

field distribution it can be seen that a small error in the resonant frequencies will cause

a completely different set of modes to be excited, thus producing a distinctly different

answer. When dealing with empty or lightly loaded cavities extreme care needs to be

taken if the results are to be at all meaningful.
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1.4.1 Analytical Methods

It is sometimes possible to gain some information about a system by using an analytical

method, which provides a quick and easy means of evaluation. Applicators with simple

geometries, such as single mode resonant cavities, can be studied analytically. However,

since the majority of real systems have complex geometries the amount of information

that can be obtained is very limited indeed. For example, inhomogeneously loaded multi-

mode cavity applicators cannot be analyzed this way. The special case of a slab loaded

rectangular cavity has seen attempts at an analytical solution. If the slab extends across

the whole cross section of the cavity, so the inhomogeneity is only in one dimension,

then analytic expressions for the resonant modes can be found [Paoloni, 1989]. It is

then assumed that the source field distribution can be expanded as a Fourier like sum

of the modes. However, in his approach no account of the effect of the aperture itself

was taken, nor of the evanescent modes present. This configuration, of a slab loaded

cavity is unusual in real situations and so the method is of very limited value.

1.4.2 Numerical Methods

There are many numerical methods that can be used to solve Maxwell’s equations in

three dimensions, each having its own advantages and disadvantages being better suited

to particular types of problem [Yamashita, 1990]. This thesis considers the particular

case of microwave heating where lossy dielectrics of arbitrary shape and often with high

permittivities will be placed inside a metal enclosure. The surrounding cavity may

have a regular shape or it may be irregular. The method must therefore be capable

of dealing with complex geometries and wide variations in material properties. Each

of the methods considered below has different strengths and limitations, some may be

numerically efficient but lack versatility. The important requirements are high speed,

low cost and good accuracy. If the method is to be used as an efficient design tool then

accurate solutions must be obtained within a reasonable time, without requiring the use

of a super-computer.

The differences between the methods are not as clear cut as might at first appear. It

is often the situation that a particular method can be seen as a special case of another.

For example, it is possible to represent the TLM node as a finite difference expression
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[Chen et al., 1991]. The boundary between the finite difference method and the finite

element method is similarly blurred [Monk, 1993]. Yee’s finite difference time domain

scheme, described below, can be derived by considering the problem either as a finite

difference one or as a finite volume one. The importance here is to note that it is

the underlying assumptions, common to all the numerical methods that are the crucial

factor. The finite element method was chosen, although it is more complex to implement

than many other methods, because of the greater flexibility that it allows.

Finite difference

The finite difference time domain (FDTD) method [Yee, 1966] has proved to be ex-

tremely popular for the solution of Maxwell’s equations. This stems from the ease with

which it can be programmed, since it uses a regular grid and does not require storage for

large matrices. The FDTD method divides the region into two meshes of small cuboids

offset from each other, one is used to model the electric field the other the magnetic

field. The differential equations are then approximated by replacing the differential op-

erators with difference expressions. The electric and magnetic fields are then solved for

alternately in time: the electric field at a time t is used to find the magnetic field at

time t + ∆t/2 which in turn is used to find the electric field at t + ∆t and so on. The

solution can then proceed from some initial condition to a steady state solution. The

“leap-frogging” scheme is an explicit one and no matrix inversion is required, however,

the time step, ∆t, needs to be very short in order to ensure stability, which is governed

by the Courant condition [Taflove, 1988];

1

c∆t
≥

√
1

(∆x)2
+

1

(∆y)2
+

1

(∆z)2
(1.3)

where ∆x, ∆y and ∆z are the spatial divisions in the x, y and z directions respectively

and c is the local speed of light. Solution in the time domain requires that the excitation

of the system is via a current sheet placed in the waveguide feed, consequentially it is

necessary to place an absorbing boundary behind the source plane in order to absorb

reflected waves [Iskander et al., 1994]. This is also true for finite element time domain

methods and is discussed further in §2.5.

One of the biggest advantages of the FDTD method, namely its simplicity due to the
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regular nature of the grids, is also its biggest disadvantage. It has been demonstrated

that to achieve good accuracy with a non-conforming mesh, that is one that does not

follow the boundary of the problem exactly, requires considerably finer meshes than

when the mesh conforms to the boundary [Holland, 1993]. Since all objects have to

be modelled using rectangular blocks a circular load will have a circumference that is

made up of a series of steps. These steps can produce reflections that do not occur in

practice. Also, it is difficult to get sufficient spatial accuracy when regular grids are

used. If a cell size of, say, 1cm is used (which corresponds to one twelfth of a free

space wavelength at 2.45 GHz) then the cavity and load geometry must conform to this

grid. However, it is well known that a change in dimension of a few millimeters can

significantly change the results in a multimode cavity [Sundberg, 1994]. Thus to ensure

good spatial accuracy it may be necessary to use a discretisation that is considerably

finer than that required if just a criteria of points per wavelength were considered. This

has a further consequence that can be seen from equation (1.3), the finer mesh will

require a shorter time step further increasing the computation time. When modelling

microwave heating it is desirable to use a fine mesh in the dielectric region where the

wavelength may be one tenth of that in the air. Since the dielectric forms only a small

fraction of the volume being meshed the use of a fine mesh everywhere adds considerably

to the computational cost. While techniques have been developed that allow irregular

grids to be used with the FDTD method these increase the complexity of the method

enormously [Huang et al., 1994].

The FDTD method has been used by several workers to model microwave heating.

Iskander [1993], Huang et al. [1994] and Iskander et al. [1994] have all used this method

extensively for the analysis of the sintering of ceramic materials. More recently Liu

et al. [1994] and Sundberg [1994] have applied it to the general problem of microwave

heating.

Method of lines

The method of lines is a variant of the finite difference method. Maxwell’s equations

are combined to form the wave equation then the difference operators are applied to the

spatial derivatives, leading to a set of time dependent ordinary differential equations.
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These are then solved by a numerical procedure, such as explicit fourth order Runge-

Kutta. It still suffers from many of the same drawbacks as the standard finite difference

techniques that were mentioned above. This method has been used by Fu & Metaxas

[1994] for modelling a microwave applicator.

Transmission Line Matrix (TLM) method

In this method the field problem is converted to an equivalent three dimensional network

problem. The volume is divided into a lattice where each cell consists of a transmission

line connecting the nodes at its corners [Akhtarzad & Johns, 1975; Hoefer, 1985]. The

circuit representation seems to be particularly convenient for certain type of numerical

simulations. For microwave cavities, however, a very fine lattice is required in order to

model the frequency range correctly. This method has very large memory requirements

for three dimensional calculations. Some two dimensional analysis of multimode ovens

has been carried out with this method [Desai et al., 1992; Flockhart et al., 1994]. This

method again suffers from some of the restrictions of the FDTD method; irregular grids

cause problems and fine meshes require very small time steps.

Finite Element

The finite element method is one of the most versatile methods available to the numerical

analyst. The region being considered is divided up into a number of small elements, each

of which has a simple geometry [Silvester & Ferrari, 1990]. The elements are generally

tetrahedra or hexahedra for three dimensional problems. Since a regular grid is not

required the mesh can conform to the boundaries of the problem. This means that the

very fine meshes required with the FDTD and TLM methods are no longer required

when modelling complex geometries. Furthermore, the boundaries can be positioned

precisely rather than having to be an integer multiple of the spatial step so problems

of dimensional accuracy are not encountered. As always there is a price to be paid for

this flexibility, in this case the finite element meshes are considerably more complex to

construct than the simple ones used for the finite difference technique. Mesh generation

is a topic in its own right that has received a great deal of attention [George, 1991], with

many commercial mesh generators being available although these are often not ideally
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suited to microwave heating problems.

For electromagnetic problems the finite element method is normally formulated in

the frequency domain, producing a large set of simultaneous equations that require

solution. It will be seen that for multimode cavities these equations are often extremely

ill-conditioned and so solution is either very time consuming or impossible. This has

restricted some workers [Jia & Jolly, 1992] to very coarse meshes that allow a direct

solver (see §3) to be used. The coarse meshes, however, produce results that are of very

low accuracy. This thesis presents a time domain approach that does not suffer from

these problems and is therefore considerably more efficient. The finite element method

has also been used [Ayappa et al., 1991] to investigate the temperature dependence of

material properties in microwave heated loads. However, only a simple one dimensional

approach is taken, where it is assumed that a plane wave is incident on the surface of

the material. This situation is unrealistic for practical problems in multimode cavities.

With the finite element method there is a choice of the field variable that is used for

the calculation: the electric E, magnetic field H or the magnetic vector potential A in

conjunction with a scalar electric potential, ψ. Microwave heating requires a knowledge

of the power density, which can be determined directly from E. If either H or A were

used for the calculation then the solution would require differentiation. This is a process

that is both prone to error and reduces the rate of convergence on mesh refinement. It

is therefore desirable to solve for the electric field directly.

Other problems with the finite element method, such as spurious modes (see §2.1.2)

have now been overcome [Bossavit, 1990] making this method extremely attractive for

the solution of microwave heating problems. Its ability to use irregular conformal meshes

was one of the overriding reasons for the choice of the finite element method in this work.

It was seen that if the FDTD or the TLM methods were chosen then a great deal of

effort would be required in order to allow them to use irregular grids, whereas the

finite element method already allows this in a simple and elegant manner. A further

consideration was the ability of the finite element method, when edge elements (see

§2.2.2) are used, to model the sharp metal corners that occur around the waveguide

aperture. The finite element method is discussed in more detail in Chapter 2.

The finite element method has been used by several authors for modelling multimode
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cavities. Jia & Jolly [1992] and Jia [1993] use a simple nodal element based approach to

analyse multimode applicators, however, they take no account of spurious modes and use

very coarse meshes. The results must therefore be treated with caution. Chassecourte

et al. [1993] used edge elements to model the cavity in the frequency domain, with

a Cray computer being used to obtain the results. Other papers comment that their

methods can be extended to microwave heating problems without giving any results for

multimode cavities.

1.5 Experimentation and Verification

The purpose of the numerical modelling of the applicators is to predict the heating

pattern that will be produced in the load. The ultimate validation of the method must

therefore lie in comparisons of the predicted distribution with experimental evidence,

however, such a comparison presents a number of difficulties. Microwave systems are

often very sensitive to small changes in the dimensions, frequency and dielectric prop-

erties so it is vital to ensure that the system being modelled accurately corresponds

to the experimental system. While the precise measurement of the geometry may be

straight forward, irregularities such as seals around openings or internal fixings may be

impossible to incorporate into the model so providing a potential source of discrepancy.

Dielectric properties pose more of a problem. Two different methods were used for the

purpose of this thesis: a cavity perturbation technique [de Jongh, 1989] and a commer-

cial dielectric measurement probe. The former method being suitable for materials with

a low value permittivity while the latter was used for high loss food-like materials.

A further difficulty with experimental systems is associated with the ability to accu-

rately measure the quantities of interest. The measurement of the electric field distribu-

tion inside the cavity is a notoriously difficult problem, for which many suggestions have

been made. Fibre optic probes are available to measure the magnitude of the electric

field at a given point, however, a large number of measurements need to be taken in

order to obtain the field distribution. The time taken for each measurement may be as

long as ten seconds during which time the field distribution may change. Also if the

measurement is carried out at high power then after a couple of measurements the load
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will have heated sufficiently to change its dielectric properties. This makes these probes

unsuitable for distribution measurements. Other methods include placing temperature

sensitive material such as liquid crystal coated plastic film or thermal paper into the

cavity. These are then heated, either directly or indirectly, by the microwave energy and

indicate by means of a colour change the presence of strong field concentrations. While

providing a better method of obtaining the distribution than a single probe they suffer

from the disadvantage of perturbing the field. Whether this perturbation is significant

or not depends heavily on the particular details of the method used.

Another approach that is commonly taken and will be used later in this thesis, is to

measure the temperature rise in the load that is being heated. This can be done using

fibre-optic probes that are microwave transparent while the load is being heated in the

applicator or alternatively by using infra-red thermography to measure surface temper-

atures after the load has been heated. These techniques provide useful information but

are limited in scope. The fibre optic probes are limited to measuring the temperatures

at only a few points within the material. The thermal camera can only record surface

temperatures and taking measurements while the load is being heated is difficult.

1.6 Computer Implementation

The algorithms in this thesis have been implemented as a computer program written in

C++. The program is designed to run on a Sun Sparc-10 workstation and is capable of

using either the time domain or frequency domain finite element methods that will be

described in Chapter 2. C++ was chosen because it allows an object oriented approach

to program design. The finite element method is particularly suitable for this approach.
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2
Finite Element Method:

Electromagnetic Field Calculation

2.1 Introduction

The finite element method is a powerful tool for solving partial differential equations

over irregularly shaped regions [Silvester & Ferrari, 1990]. The solution domain is

divided into a number of sub-domains or elements each having simple geometry. The

dependent variable is then represented within that element by a simple function. An

equivalent discretized model for each element is constructed and the contributions from

all elements to the system are assembled. The overall solution is therefore approximated

by a summation of simple functions. The use of elements having a variety of shapes and

sizes allows for irregularly shaped boundaries to be modelled accurately. Each element

is treated individually so inhomogeneous regions can be handled in a straight forward

manner: each element is assigned a material property and the material is assumed to

be homogeneous inside the element.

Considerable attention has been paid by workers in the field to the finite element

analysis of high frequency electromagnetic systems. The work carried out on closed

problems generally falls into three categories:

• Two and three dimensional analysis of waveguides with complex geometries.

• Three dimensional eigen-analysis to predict modes in waveguides and cavities.
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• Prediction of power density in lossy dielectrics.

The first two categories constitute the majority of work that has been carried out to

date, for a survey see Davis [1993] or Rahman et al. [1991]. The work generally deals

with waveguide systems containing lossless and irregularly shaped dielectric insertions,

one of the primary interests being to determine the propagation constant of the various

modes. Calculations in cavities have been carried out, but again this has mainly been to

find the resonant modes, eigenvalues, of lossless resonators. Microwave heating requires

a knowledge of the total field pattern produced rather than simply the frequencies of the

individual modes. However, many of the techniques that have been developed in other

areas of computational electromagnetics can be applied directly to microwave heating

problems. Webb [1981] outlines the basic method for calculating the magnetic field for a

microwave system using elements with node based expansion functions in the presence of

lossy dielectrics, however, computational restrictions confine his attention to waveguide

problems. The problem of spurious modes is common to many finite element solutions

of electromagnetic problems. Section 2.1.2 discusses the origin of these modes and the

techniques that can be used to either suppress or to eliminate them.

One of the major difficulties encountered when studying large cavities is the sheer

number of unknowns than must be used in order to accurately represent the field, pro-

ducing a very large system of algebraic equations. In the conventional frequency domain

approach their efficient solution is made virtually impossible for some multimode cavity

problems because of ill-conditioning. This dissertation presents a time domain finite

element method that overcomes this problem of ill-conditioning. To the author’s knowl-

edge this is the first time that the time domain finite element method has been applied to

microwave heating. For multimode resonant cavities this proves to be considerably more

efficient as well as providing other benefits, such as the ability to solve for more than

one frequency simultaneously. The two approaches, frequency domain and time domain

are outlined in this chapter. Only a brief description of the theory for the frequency

domain method is given here as there are numerous detailed descriptions elsewhere, see

for example Silvester & Ferrari [1990]. The time domain method is discussed in greater

depth since the particular application is new.
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2.1.1 Governing Equations

The time dependent Maxwell’s equations that govern the electromagnetic fields in the

applicator are,

∇×H =

(
ε

∂

∂t
+ σe

)
E + Js, (2.1)

∇× E = −µ
∂H

∂t
, (2.2)

∇ ·D = ρc, (2.3)

∇ ·H = 0, (2.4)

where Js is the current density due to sources in the domain, E and H are the electric

and magnetic field strengths respectively and D is the electric flux density. These equa-

tions are then supplemented by appropriate boundary conditions, the simplest essential

boundary condition being,

n× E = 0 on Γ, (2.5)

corresponding to a perfect electrical conductor over the surface Γ.

By eliminating H from equations (2.1) and (2.2) the wave equation is obtained;

∇× 1

µ
∇× E + σe

∂E

∂t
+ ε

∂2E

∂t2
= −∂Js

∂t
, (2.6)

on which the time domain formulation is based.

If the fields are assumed to be time harmonic, such that E = E0e
ωt, then equations

(2.1) and (2.2) become,

∇×H = ε∗ωE + Js, (2.7)

∇× E = µωH. (2.8)

where ε∗ = ε0(ε
′ − σe/ε0ω). Elimination of H from (2.7) and (2.8) gives the vector

Helmholtz equation;

∇× 1

µ
∇× E− ω2ε∗E = −ωJs. (2.9)

which is used for the frequency domain discretisation.
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2.1.2 Spurious modes

Spurious modes are non-physical solutions that can occur in numerical calculations and

corrupt the true result. Their presence in numerical solutions to electromagnetic prob-

lems has been known for some time and has prompted the development of a multitude

of different techniques for their elimination or suppression1. The reasons for the occur-

rence of these spurious modes, which are characterized by a non-zero divergence, is now

well understood [Wong & Cendes, 1988; Pinchuk et al., 1988; Lynch & Paulsen, 1991;

Schroeder & Wolff, 1994]. Their presence stems from the improper approximation of the

null-space of the curl operator. The double curl equation (2.9) has an infinite number

of solutions at zero frequency, that is ∇×E = 0 which have the form E = −∇φ, where

φ is a scalar field.

When traditional elements with node based expansion functions are used to model

the field, many of the −∇φ modes are very poorly approximated, consequently they

no longer have zero frequency and become mixed with the true modes. They are then

indistinguishable from the physical modes in eigenvalue computations and corrupt the

solution in driven problems. For elements with node based expansion functions the most

popular method of eliminating these modes is to add a penalty term p∇(∇ · E) to the

weak form (2.16), where p is a parameter to be chosen [Hara et al., 1983]. This enforces

the divergence condition in a least squares way, thereby reducing the number of zero

frequency modes. Paulsen & Lynch [1991] analyse this method and conclude that the

only correct choice for p is unity, which corresponds to solving the Helmholtz equation

∇2E + ω2µε∗E = 0, (2.10)

in homogeneous regions where Js = 0. Since the divergence condition is then explicitly

included the spurious modes are eliminated. A simple example given by Collin [1991]

shows that enforcing the divergence removes the spurious modes but the new functional

gives a poorer approximation to the physical modes because of the extra constraint

imposed. This is further demonstrated by results at the end of this chapter.

An alternative method of eliminating the problem of spurious modes is to model

the null space of the curl operator more accurately. The −∇φ modes are then approxi-

1See for example Koshiba et al. [1987] and Davis [1993] for a summary of methods.
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mated correctly, i.e. with zero frequency, and so are not mixed with the physical modes.

This can be achieved by the use of a C1 mesh or C1 finite elements [Wong & Cendes,

1988]. These two methods are undesirable for general problems since they increase the

complexity of the problem considerably. Edge elements, which are described in the next

section, have also been shown to provide a good approximation to the null space of the

curl [Webb, 1993; Zhu et al., 1994]. Spurious modes have not been observed when they

are used for the discretisation. However, the many zero frequency modes are present in

an eigen analysis but these are easily identified [Zhu et al., 1994]. If these modes are

well sorted from the physical modes then they should not occur in driven solutions. The

results in this thesis suggest that they do not appear in the solutions of driven problems.

Edge elements have been chosen for use in this work partly because of this ability to

suppress the spurious modes found when other elements are used.

2.2 Finite Element Discretisation

In order to permit solution of equation (2.16) on a computer it is necessary to approx-

imate the infinite dimensional space by a finite dimensional one. The degree to which

the approximation succeeds depends upon how closely the discrete structure mimics the

infinite dimensional continuous one [Bossavit, 1988a]. This section discusses some of

the choices for the discretisation.

2.2.1 Traditional Nodal Elements

The common approach to the discretisation has been to use standard finite elements

with node based expansion functions. These have been found to work well for scalar

fields and have consequently been adapted to vector fields by simply replacing the single

degree of freedom at each node by three [Silvester & Ferrari, 1990]. These conventional

elements, however, suffer from a number of disadvantages:

• Normal continuity is enforced, even when the field should be discontinuous, such

as at an interface between two materials with differing material properties.

• The essential boundary condition n × E = 0 is difficult to implement when the

boundary is not parallel to one of the co-ordinate axis, or at convex corners.
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Figure 2.1: Interface condition at the boundary between two dielectrics.

• Special precautions have to be taken to avoid spurious modes, as discussed previ-

ously (see §2.1.2).

• Problems are encountered when sharp metal corners are present, such as those

that occur around the waveguide feed where it enters the cavity.

The rigorous enforcement of the normal continuity prevents solution in H when µ

is discontinuous and in E when ε∗ is discontinuous. For most heating applications µ is

constant so it would be possible to solve for H, which has been done by Jia & Jolly

[1992]. It is then necessary to differentiate the solution to obtain E since the power

density, given by

pv =
1

2
σe|E|2, (2.11)

is ultimately required. The differentiation process, however, may introduce extra er-

rors into the solution and is therefore undesirable [Silvester & Omeragić, 1993]. It is

preferable to solve for E directly, however, as ε∗ will almost certainly be discontinuous

a special treatment is needed at dielectric interfaces if nodal elements are to be used.

Paulsen et al. [1987] suggest that two variables can be used for the normal com-

ponent of the field at dielectric interfaces. These are related by the continuity relation

ε∗1E
n
1 = ε∗2E

n
2 , where the subscripts 1 and 2 refer to quantities on either side of the

boundary, as shown in Figure 2.1. When the normal does not lie along one of the co-

ordinate axis it is necessary to rotate the co-ordinate system local to the node. This

method has the obvious disadvantage that the normal is multiply defined at corners and

that it cannot take account of boundaries between more than two different dielectrics.

In two dimensions a method has been proposed for implementing boundary conditions

at the interface between several dielectrics, however, it does not appear to be easily
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extensible into three dimensions [Paulsen et al., 1987]. In materials which have temper-

ature dependent properties and the electromagnetic field is being solved in conjunction

with the thermal field, every element may have slightly different material properties.

This method is therefore not suitable for the problems considered in this thesis. It has

been suggested [Webb et al., 1983] that nodal elements be used without any modifi-

cation, which effectively smooths the transition between dielectrics. Unfortunately, if

this approach were taken then convergence with successive mesh refinement cannot be

guaranteed [Bossavit, 1990]. Furthermore, the food-like materials being heated often

have very large permittivities which cause large reflections from the surface of the load.

If the transition between dielectrics were “blurred” in this way it would reduce these

reflections in an artificial way.

An alternative method has been proposed by Mur [1988], who uses linear edge el-

ements along dielectric interfaces to allow the normal component of the field to jump

while still using nodal based elements in homogeneous regions. This approach is claimed

to provide the flexibility of edge elements coupled with the accuracy and economy of

nodal elements. The use of edge elements is discussed in the next section. Both of

these approaches require the divergence to be specified in the formulation as a penalty

function in order to suppress spurious modes.

A further disadvantage of elements using node based expansion functions is their

inability to model sharp metal corners. To overcome this it has been suggested that

the polynomial expansion functions are supplemented by singular ones near to a metal

corner [Webb, 1988]. These can then accurately model the field distribution, however,

the extension to three dimensions appears to be less than straightforward. An alternative

proposed by Bardi et al. [1994a] is to use edge elements near to sharp metal corners and

nodal elements in the body of the domain. This approach is similar to that of Mur’s for

dealing with dielectric discontinuities.

2.2.2 Edge Elements

The unsatisfactory performance of elements using node based expansion functions in

many electromagnetic applications has prompted the search for an alternative repre-

sentation of the field within an element. Such elements exist and are generally termed
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Figure 2.2: Degrees of freedom for Whitney and linear edge elements

vector elements or edge elements because the degrees of freedom are associated with the

circulations of the field along the edges of the element rather than with the nodes. Vec-

tor finite elements were first proposed by Raviart & Thomas [1977] for the solution of

two dimensional fluid flow problems, and were subsequently extend to three dimensional

Maxwell’s equations by Nédélec [1980]. Bossavit [1988b] related Nédélec’s elements to

the differential forms proposed by Whitney [1957] which have a structure closely resem-

bling that of Maxwell’s equations when the field quantities are expressed as differential

forms. It has been argued that differential forms provide a more natural representation

of Maxwell’s equations than the more common vector field approach [Deschamps, 1981;

Baldomir, 1986; Hammond & Baldomir, 1988]. These elements are therefore well suited

to the solution of Maxwell’s equations.

Edge elements differ from nodal elements in that the degrees of freedom are associ-

ated with the edges of the element rather than with the nodes, a consequence of which

is that they only impose tangential continuity at the element boundaries leaving the

normal component free to jump. This allows edge elements to model either E or H

when both µ and ε∗ are discontinuous throughout the domain. At sharp corners the

normal component of the field is not explicitly prescribed. This extra freedom allows

edge elements to correctly model the behaviour surrounding a corner Webb [1993].
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For first order tetrahedral elements the basis function associated with an edge having

vertices i and j is given by,

wi,j = λi∇λj − λj∇λi (2.12)

where λi is the barycentric function associated with node i [Bossavit, 1988b], as shown

in Figure 2.2. The elements proposed by Nédélec have basis functions that vary linearly

within the element, however, they are constant along an edge. This lack of first order

completeness has caused suspicions about the accuracy of edge elements among some

workers [Mur, 1994] and has prompted the design of consistently linear edge elements

[Mur & Dehoop, 1985; Nédélec, 1986] which have two degrees of freedom per edge,

wi,j = λi∇λj and wj,i = λj∇λi. (2.13)

While the interpolation function is now linear along each edge as well as in the body

of the element, it is at the expense of doubling the number of degrees of freedom.

Furthermore, linear edge elements approximate the curl in an identical way to Whitney

elements. This can be seen by rewriting the two basis functions for the edge i, j as,

wa
i,j = wi,j −wj,i = λi∇λj − λj∇λi,

wb
i,j = wi,j + wj,i = λi∇λj + λj∇λi = ∇(λiλj). (2.14)

wa
i,j is identical to the Whitney element basis function, while wb

i,j has a curl which

is identically zero. Linear edge elements are claimed to be more accurate than the

Whitney elements, and to have a local approximation error of O(h2) compared to O(h)

for Whitney elements [Mur, 1994], a claim which has recently been challenged [Bossavit,

1994]. Monk [1992] shows that Whitney elements do have a linear dependence upon h

compared to a quadratic dependence for linear edge elements when measured with the `2-

norm, however, when the discrete maximum norm is used instead both types of elements

produce O(h2) convergence with Whitney elements being consistently more accurate

for a given number of unknowns. Results comparing the accuracy of the two types of

elements are given in §2.7, where Monk’s observations are confirmed. It has recently been

shown [Bossavit, 1994] that while first order completeness gives nice smooth solutions

it is not a prerequisite for achieving accurate answers.
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The form (2.14) is that given by Webb & Forghani [1993] who proposed a family

of hierarchal edge elements. This allows Whitney elements to be used in some regions

and higher order edge elements in others where a greater accuracy is required. The

family proposed by Webb extends to elements that are complete to degree two. This

representation, which for the first order element is the same as (2.14), is therefore more

convenient than (2.13) in certain situations. Alternative implementations of edge ele-

ments have been proposed [Barton & Cendes, 1987], which use a different representation

of the interpolation function, namely

wi,j = α× r + β, (2.15)

where α and β are constant vectors chosen so that the tangential component of wi,j

vanishes on all edges other than i, j while r is the position vector inside the element.

The basis function (2.15) is mathematically equivalent to Whitney elements, however,

it is not as convenient to programme.

It is often convenient to use shapes other than tetrahedrons for discretising the

problem. This is often due to constraints imposed by the mesh generating software

which is often not capable of generating tetrahedral meshes directly. One answer, of

course, would be to use software that has this facility but when this is not available other

methods must be found. A mesh consisting of hexahedra can be broken up so that each

hexahedron is replaced by five tetrahedra [Webb, 1981]. However, this requires that the

hexahedral mesh is fairly regular, otherwise conflicts at element faces are encountered

where elements on either side do not match. An alternative is to break each hexahedron

into twelve tetrahedra by inserting an extra node in the centre of the hexahedron.

This has the disadvantage of creating considerably more elements. It can therefore be

desirable to use hexahedral edge elements so that the hexahedral mesh can be used

unmodified. When the geometry is suitable it is possible to extrude a two dimensional

triangular mesh into three dimensions so producing prism elements. This technique is

used for the TM010 cavity analysed in Chapter 5. The method for creating hexahedral

elements was outlined by van Welij [1985], however, this author has not seen a complete

listing of the shape functions for hexahedral and prismatic edge elements so these are

given in Appendix A.
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2.3 Frequency Domain Finite Element Method

Solution of Maxwell’s equations in the frequency domain via the finite element method

is now a well established technique [Silvester & Ferrari, 1990]. The frequency domain

discretisation using edge elements is briefly repeated here for clarity before proceeding

to the time domain formulation.

To derive a weak formulation suitable for solution by the finite element method

equation (2.9) is multiplied by an arbitrary function ψ ∈ H′(curl) and integrated over

the volume of the domain Ω. Integration by parts of the curl term then leads to,

∫

Ω

1

µ
∇×E · ∇×ψ dΩ− ω2

∫

Ω
ε∗E ·ψ dΩ = −

∫

Ω
ωJs ·ψ dΩ ∀ψ ∈ H′(curl). (2.16)

It then remains to find E ∈ H′(curl). This weak form (2.16) is identical to the variational

functional used by many workers, for example [Silvester & Ferrari, 1990]. This expression

has been extensively analysed [Leis, 1977; Bossavit, 1990; Monk, 1992]. To discretise

(2.16) using edge elements the continuous field, E is replaced by

E =
N∑

i=1

wiei. (2.17)

where ei corresponds to the circulation of the field along edge i. This leads to the matrix

equation,
(
[S]− k2[T]

)
e = 0 (2.18)

where e is the vector of values corresponding to the circulations of the field along each

edge and k2 = ω2ε0µ0. The matrices corresponding to an individual element are;

[S]e i,j =
∫

Ωe

{∇ ×wi · ∇ ×wj} dΩe (2.19)

[T]ei,j = εr

∫

Ωe

{wi ·wj} dΩe. (2.20)

These matrices are given explicitly for tetrahedral Whitney elements by Lee & Mittra

[1992]. The electric field distribution can then be obtained directly from a solution of

(2.18) after the appropriate boundary conditions (see §2.5) have been applied. Methods

for solving the set of simultaneous equations are discussed in Chapter 3.
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2.4 Time Domain Finite Element Method

2.4.1 Introduction

The time domain finite element method is generally only used when transient behaviour

is being investigated otherwise the fields are assumed to be time harmonic so the fre-

quency domain approach is used. The development of fast iterative solution techniques

such as the pre-conditioned conjugate gradient method has made the frequency do-

main approach even more attractive for many problems [Paulsen et al., 1992]. However,

multimode cavities which possess many resonances, often produces a system of very

ill-conditioned equations in the frequency domain. It is therefore desirable to switch to

the time domain in order to circumvent the problems associated with solving systems

of very ill-conditioned equations.

The finite element method is well suited to solutions in the time domain. When

applying it to Maxwell’s equations there are two approaches that can be taken:

• Solve the wave equation (2.6) in the time domain for a single field variable, in the

present case this will be E.

• Use a “leap-frogging” scheme which alternately calculates E and H from equations

(2.1) and (2.2). This method is the finite element equivalent of Yee’s scheme with

finite differences [Madsen & Ziolkowski, 1988; Ambrosiano et al., 1994].

For modelling microwave applicators the power density is required, so a knowledge of

the magnetic field is not necessary. The first option of solving the wave equation for E

was therefore chosen. The use of edge elements allows the electric field to be modelled

in the presence of inhomogeneities. At this point it must be noted that there are a few

methods in the literature that use a time domain scheme with edge elements, however,

none specifically for microwave heating problems. Chan et al. [1994] propose a finite

difference scheme that uses Whitney element interpolation functions, this method will

have greater restrictions on the meshes used than the finite element method that will

be presented here. Monk [1993] analyses a time-domain method based on hexahedra

which is then related to Yee’s finite difference scheme, however, it is a purely theoretical

analysis rather than a practical application and dielectrics are not considered. Lee [1994]
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presents a time domain method for finding the eigenvalues of a cavity resonator using

edge elements, however, lossy dielectrics are not considered.

2.4.2 Formulation

The formulation used for the calculations in this thesis proceeds by applying Galerkin’s

procedure to the equation wave equation (2.6): pre-multiplying by a weighting function

ψ ∈ H′(curl) and integrating over the volume Ω, gives

∫

Ω
{ψ · ∇ ×∇× E} dΩ + µ0

∫

Ω
σe ψ · ∂E

∂t
dΩ + ε0µ0

∫

Ω
ε′ψ · ∂2E

∂t2
dΩ

= −
∫

Ω
ψ · ∂Js

∂t
dΩ. (2.21)

The using Green’s vector identity and the divergence theorem yields

∫

Ω
(∇× ψ) · (∇× E) dΩ + µ0

∫

Ω
σeψ · ∂E

∂t
dΩ + ε0µ0

∫

Ω
ε′ψ · ∂2E

∂t2
dΩ

+
∫

Ω
ψ · ∂Js

∂t
dΩ =

∫∫

Γ
ψ · (n×∇× E) dΓ

= −µ0

∫∫

Γ
ψ ·

(
n× ∂H

∂t

)
dΓ. (2.22)

Since both H and ∂H/∂t are continuous, the surface integral on the right of equation

(2.22) will cancel at all inter-element boundaries. The system is discretized in the same

fashion as before, with the field quantities and weighting function replaced respectively

by,

E =
N∑

i=1

wiei and ψ =
N∑

i=1

wi. (2.23)

This leads to the matrix equation

[S]e + [Tσ]
∂e

∂t
+ [Tε]

∂2e

∂t2
= b, (2.24)

where the element matrices are defined by

[S]ei,j =
∫

Ωe

(∇×wi) · (∇×wj) dΩe, (2.25)

[Tσ]ei,j = σeµ0

∫

Ωe

(wi ·wj) dΩe, (2.26)
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[Tε]
e
i,j = ε0ε

′µ0

∫

Ωe

(wi ·wj) dΩe. (2.27)

Matrices (2.25) to (2.27) are similar to the matrices (2.19) and (2.20) obtained for

the frequency domain discretisation of the vector Helmholtz equation. The matrix [S]

is identical, whereas [Tε] is the real part of (2.20) multiplied by µ0 and [Tσ] is the

imaginary part multiplied by −µ0ε0ω. Finally, the vector b in equation (2.24) is the

forcing vector which represents the surface integral term of equation (2.22) and the

source current density terms. In practice the surface integral is only evaluated where

an absorbing boundary condition is required (see §2.5.1).

To solve the equations (2.24) it is necessary to discretise the temporal derivatives.

Lee [1994] uses the θ–method when using the time domain finite element method to

find the resonances of a lossless cavity. This method produces a system which is only

conditionally stable, which makes it necessary to choose a very small time step in order

to obtain convergence. If an implicit scheme is used for the discretisation a much greater

choice over the time step is allowed. The Newmark method, which is commonly used for

the solution of the dynamic vibration equation [Wood, 1990], was chosen because the

algorithm can be controlled through two parameters, γ and β to give either an implicit

or an explicit scheme. With an appropriate choice of these parameters the system is

unconditionally stable and has second order accuracy in time. This allows the time step

to be chosen in order to give a particular accuracy without being constrained by the

stability criteria. It is to be noted that the time domain finite element method requires

the solution of a set of simultaneous equations at each time step for both implicit and

explicit methods unless lumping (see §2.4.4) is used. The use of an implicit scheme does

not significantly increase the computational effort required at each time step over that

required for an explicit scheme. This is contrary to the FDTD methods based on Yee’s

scheme which do not require any matrix inversions when used with an explicit method,

consequently an implicit scheme is rarely used with such methods.

The choice of γ = 0.5 and β = 0.25 produces a system that is unconditionally

stable with an accuracy of O(∆t2) (see §2.4.3). The time step, ∆t, can then be chosen

to provide the accuracy required. With γ = 0.5 and β = 0 the Newmark method is

equivalent to using central differences for the temporal derivatives which have second

order accuracy but only conditional stability, however, since the method is explicit
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lumping can be used to diagonalize the matrices [Tσ] and [Tε] so reducing the effort

required at each time step.

The Newmark method uses the following approximations,

en+1 = en + ∆t fn +
∆t2

2
(1− 2β)gn + ∆t2βgn+1, (2.28)

fn+1 = fn + ∆t (1− γ)gn + ∆t γ gn+1, (2.29)

where fn and gn are the approximations to the first and second order temporal derivatives

of en at time t = n∆t, and where γ and β are the Newmark parameters. Substituting

the derivatives in (2.24) by f and g at time t = (n + 1)∆t produces

[S]en+1 + [Tσ]fn+1 + [Tε]gn+1 = bn+1. (2.30)

Substitution of (2.28) and (2.29) into (2.30) gives

{[Tε] + γ∆t[Tσ] + β∆t2[S]}gn+1 =

bn+1 − [Tσ]{fn + ∆t (1− γ)gn}

−[S]{en + ∆t fn +
∆t2

2
(1− 2γ)gn}.

(2.31)

which relates g at time step n + 1 to quantities at the previous time step. Once gn+1

has been found fn+1 and en+1 can be determined from (2.28) and (2.29). This method

is a single step, three stage algorithm and requires the first and second derivatives to be

carried at each time step. It is also necessary to specify f0 and g0 as initial conditions.

In practice it is more desirable to use a single stage algorithm which only uses values of

the field, e. This is given by the two step recurrence relation2,

{[Tε] + γ∆t[Tσ] + β∆t2[S]}en+1 =

{2[Tε]− (1− 2γ)∆t[Tσ]− (0.5 + γ − 2β)∆t2[S]}en

+{−[Tε]− (γ − 1)∆t[Tσ]− (0.5− γ + β)∆t2[S]}en−1

+∆t2{βbn+1 + (0.5 + γ − 2β)bn + (0.5− γ + β)bn−1}.

(2.32)

2A full derivation of (2.32) is given by Wood [1990].
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As mentioned previously it is necessary to solve a matrix equation at each time step,

with the matrix being given by {[Tε] + γ∆t[Tσ] + β∆t2[S]}. This is of the same order

as the number of degrees of freedom. For a small number of unknowns an initial LU

factorization means that only a single forward and backward substitution is required at

each time step, however, in practical cases the number of unknowns makes factorization

of the matrix unworkable so an iterative method is called for. Unlike the matrix pro-

duced by the frequency domain discretisation (2.18) this matrix is both real and well

conditioned so that the pre-conditioned conjugate gradient method can be used to solve

the matrix equation in as few as 10 iterations, even for systems which have in excess of

100,000 unknowns. It is found that diagonal pre-conditioning works extremely well in

this case [Wathen, 1987]. The number of iterations required by the conjugate gradient

method is dependent upon the eigenvalues of the system, a mesh having elements of

roughly equal shape will produce a matrix with very few distinct eigenvalues, enabling

very fast solution. The Gauss-Seidel method has also been used to solve the equations

at each time step. A good approximation to the solution can be obtained from the field

values at previous time steps,

en+1 ≈ 2en − en−1, (2.33)

for use as an initial guess which allows rapid solution with this technique. Also, since

the matrix is well-conditioned it can be stored using single precision numbers, reducing

the computer memory requirements. The different techniques that were used to solve

(2.32) are described more fully in Chapter 3.

2.4.3 Stability

The characteristic equation for the recurrence relation (2.32) can be obtained by setting

en+1 = ren and fn+1 = rfn [Wood, 1990];

{m + γ∆tµ + β∆t2k}r2

+{−2m + (1− 2γ)∆tµ + (0.5 + γ − 2β)∆t2k}r

+{m + (γ − 1)∆tµ + (0.5− γ + β)∆t2k} = 0, (2.34)
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where m, µ and k correspond to the eigenvalues of the matrices [Tε], [Tσ] and [S]

respectively. For the system to remain stable the modulus of the roots of the character-

istic equation (2.34) must be less than or equal to unity. By using the transformation

r = (1 + z)/(1− z) the unit circle in the r-plane is mapped onto the imaginary axis in

the z-plane. This produces an equation

a0z
2 + a1z + a2 = 0, (2.35)

where

a0 = 4m + 2(2γ − 1)∆tµ + 2(2β − γ)∆t2k (2.36)

a1 = ∆tµ + (γ − 0.5)∆t2k (2.37)

a2 = ∆t2k. (2.38)

The roots of (2.35) must then lie in the left half of the z-plane for the system to be

stable. The Routh-Hurwitz stability conditions can then be used, which correspond to

a0 > 0, a1 ≥ 0 and a2 ≥ 0. If m,µ and k are all positive then the system will be stable

for

2β ≥ γ ≥ 0.5. (2.39)

However, if we choose to use an explicit scheme so that β = 0 we will no longer have

unconditional stability. In this case, for γ = 0.5 equation (2.36) becomes,

m−∆t2k > 0 (2.40)

so that,

∆t2 <
m

k
. (2.41)

This imposes a restriction on the choice of ∆t so that many more time steps will be

needed, however, there is a compensation since lumping (see §2.4.4) can be used to

render the “mass” matrix diagonal and significantly reduce the amount of work required

at each time step. In practice the quantities m and k are given by the eigen-values of

the of the [Tε] and [S] matrices respectively. The stability condition therefore becomes

∆t2 <
λTε

min

λS
max

, (2.42)
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where λTε
min and λS

max are the minimum and maximum eigenvalues of the [Tε] and [S]

matrices respectively. When lumping is used λTε
min is simply the smallest diagonal element

of [Tε] since it is diagonal. λS
max can be found by using a standard method for solving

eigen-value problems. Alternatively it is noted by Lee [1994] that,

λTε
min

λS
max

=
1

κmax

(2.43)

where κ is a solution of the generalised eigenvalue problem [Parlett, 1980]

[S]x = κ[Tε]x. (2.44)

2.4.4 Lumping

The lumping of the “mass” matrix is a standard technique for problems in structural

dynamics, where nodal elements are used. Lumping corresponds to diagonalising the

matrices [Tε] and [Tσ]. If β is then chosen to be zero, the matrix to be inverted at each

time step becomes diagonal. The saving in computational effort is generally thought to

outweigh the marginal loss in accuracy that results. This choice of β, however, means

that the algorithm is now only conditionally stable (see §2.4.3). This has the result of

requiring considerably more time steps.

The nature of edge elements makes lumping more difficult than for nodal elements.

Lumping techniques, however, have been developed for edge elements by Haugazeau

& Lacoste [1993]. With nodal elements, one loses accuracy as the size of the element

increases, since for lumping it is assumed that the field value is constant over the element

when calculating [T]. With tetrahedral edge elements the shape of the element is also

crucial, with the error increasing significantly as the shape is distorted from a regular

tetrahedron. Thus, for lumping to work satisfactorily it is necessary to ensure that the

elements of the mesh are of a high quality. In practice this means ensuring Delaunay

conformity of the mesh, failure to do so can lead to negative entries on the diagonal

of the assembled [Tε] matrix which, from equation (2.42), will cause the method to

become unstable. This puts a much more stringent set of conditions on the mesh

generation program. Lumping has been implemented for the present code and used for

some problems, however, the restrictions that are imposed upon the mesh have meant

that its use has been limited.
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2.5 Boundary Conditions

The solution of the finite element equations can only proceed once the boundary con-

ditions have been correctly applied. The walls of the cavity and feed waveguide, shown

in Figure 2.3, are assumed to be perfect conductors. Thus on the walls we have,

E× n = 0. (2.45)

This condition can be applied by setting the values of the electric field corresponding

to edges that lie on the boundary to zero [Silvester & Ferrari, 1990]. For boundary

value problems, such as the one described in this paper, it is also necessary to specify

a source term. It is assumed that only a TE10 mode exists in the waveguide, which

makes it necessary to model a sufficient length of waveguide, as shown in Figure 2.3, to

ensure that disturbances caused by the aperture are not present at the point where the

excitation is applied. For frequency domain problems it is simply necessary to specify

the tangential components of the field at the terminating plane in the waveguide [Webb,

1981]. This can be carried out since the distribution of the transverse field across the

waveguide is known;

Ey = E0 sin
(

πx

a

)
,

Ex = 0, (2.46)

where a is the width of the waveguide. E0 is normally chosen to be 1 and the fields can

then be rescaled after the normalised distribution has been found (see §4.3).

The amplitude of the field at the terminating plane is the vectorial sum of both

forward and reflected waves. In the time domain the amplitude of the reflected wave

will vary as the system moves from a transient to a steady state condition. Consequently

the amplitude of the field at the terminating plane cannot be determined in advance.

It is therefore not possible to prescribe an inhomogeneous Dirichlet boundary on this

plane in the time domain. To overcome this problem the waveguide is excited by a

current sheet some distance from the terminating plane and the mesh terminated by an

absorbing boundary, Figure 2.3. This technique has previously been used with the time

domain finite difference method [Iskander, 1993]. In practice this approach has a good
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Figure 2.3: Multimode cavity with waveguide feed and absorbing boundary plane for

time domain calculation.

physical basis when the applicator is supplied via an iso-circulator which has the effect

of absorbing the majority of reflected energy.

2.5.1 Absorbing boundary conditions (ABCs)

Having determined that an ABC is required to terminate the waveguide feed in the

time domain its implementation needs to be considered. Development of high quality

ABCs has seen intensive effort for open problems, such as finding the scattering cross

section of objects. Engquist & Majda [1977] proposed a method for generating good

approximations to an ABC. This was extended by Mur [1981] explicitly for use with

the finite difference method. Mur’s ABC has become a standard for finite difference

calculations, however, other methods which appear greatly superior to Mur have been

suggested such as Liao’s ABC [Liao et al., 1984; Chew, 1990] and the Berenger ABC

[Katz et al., 1994]. These methods, while offering extremely good approximations to

a perfect absorber are designed for open problems and are of a complexity that is

unnecessary for this application. Second order Engquist-Majda and Mur ABCs lead to

unsymmetric matrices while Liao’s method requires the field at several time steps to

be stored for points near to the boundary plane. For a simple waveguide we have a
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x

y
z

Figure 2.4: Rectangular waveguide.

considerable advantage: the field distribution is known a priori. This enables a simple

but effective ABC to be derived that can be implemented with very little effort and that

does not increase the computational effort during the time stepping. The ABC employed

here simply involves terminating the waveguide with its characteristic impedance, which

can be done by evaluation of the surface integral term of equation (2.22) [Dibben &

Metaxas, 1994b]

In a rectangular waveguide, as shown in Figure 2.4, the transverse components of

the field for the TE modes are related by [Collin, 1992]:

Ex = Z(ω)Hy,

Ey = −Z(ω)Hx, (2.47)

where Z(ω) is the characteristic impedance of the waveguide for a given mode. For the

TE10 mode

Z(ω) = Z0
λg

λ0

, (2.48)

where λg and λ0 are the waveguide and free space wavelengths respectively and Z0 is

the impedance of free space. Equation (2.47) enables us to evaluate the surface integral

of equation (2.22) over the terminating plane of the waveguide, where the cross product

may be written as,

n× ∂H

∂t
= −∂Hx

∂t
ĵ
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Figure 2.5: Magnitude of the reflection coefficient, ρ, for a waveguide terminated by the

simple ABC, Z(ω) chosen at ω = 2.45 GHz.

=
1

Z(ω)

∂Ey

∂t
ĵ, (2.49)

since for the TE10 mode, Hy = Ex = 0. The surface integral term therefore becomes

µ0

∫

Γ
ψ ·

(
n× ∂H

∂t

)
dΓ → µ0

Z(ω)

∫

Γ
ψ · ∂Ey

∂t
dΓ. (2.50)

This integral can now be discretised in the same fashion as before, using equations

(2.23). Only ∂Ey/∂t is involved here, so the terms can be added directly into the

matrix [Tσ] during the matrix assembly process. The connectivity remains unchanged

so the sparsity of the matrix is not reduced and the matrix remains symmetric. This

ABC can be seen as equivalent to adding a layer of lossy material at the terminating

plane.

Z(ω) is frequency dependent, therefore this boundary will only be strictly valid at

a single frequency, for which Z(ω) is specified. However, in practice we are interested

in a narrow spectrum of frequencies and this method appears to provide a satisfactory

approximation to an absorbing boundary when a mean value of Z(ω) is chosen. Figure
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2.5 shows the magnitude of the reflection coefficient (see §4.2) for a length of waveguide

with a cross section of 100 mm × 50 mm and terminated by an ABC of this type.

Minimum reflection is produced at 2.45 GHz the frequency for which Z(ω) was specified.

While this ABC is seen to be far from perfect it provides a satisfactory approximation

for the type of problems considered here.

2.6 Post-Processing of Edge Element Results

The degrees of freedom associated with Whitney elements correspond to the circulations

of the field along an edge, however, vector field values at points throughout the domain

are often required. It is therefore desirable to convert the edge values into vector field

values which are more convenient for graphical display. When a temperature calculation

is performed, following the electromagnetic field calculation, it is necessary to know

power density values. These can be obtained directly from the electric field values at

each node of the finite element mesh used for the calculation. Since the mesh used for

the temperature calculation may not be the same as that used for to determine the field

it must also be possible to determine the electric field at any arbitrary point within the

domain.

Determination of the field values is not as straightforward as it might first appear.

Some of the large errors reported using Whitney elements [Bandelier & Rioux-Damidau,

1990] have originated not in the underlying field solution but in inadequate attention

to the post-processing of the data. Whitney elements have a constant value of the

tangential field along their edges while giving rise to linear variation within the element.

This means that each element connected to a node P, as shown in Figure 2.6, will

give a slightly different value of the field at that node. It is clear that if the Whitney

basis functions are used to interpolate the field at any arbitrary point within the mesh

then a point close to the border between two elements could have significantly different

values depending upon which side of the border it lies. This is obviously unsatisfactory

since, with the exception of dielectric interfaces, the field solution should be smooth.

The linear edge elements do not suffer from these problems since they provide linear

interpolation along the edges of the element.
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Figure 2.6: A portion of a triangular mesh.

To overcome the difficulty of jumps in the solution at edge boundaries there are a

number of options available; one could simply calculate field values at the centroids of

the elements. This, however, would not allow calculation at an arbitrary point unless

a method of interpolating between centroids was available. A better approach is to

average the contributions to the field at each node. These nodal values can then be

interpolated throughout the mesh using the simple nodal based expansion functions as

used for nodal elements. This method poses two questions: how is the averaging to be

carried out and what happens at dielectric interfaces.

In order to average the field values at the nodes of the mesh we can borrow some of

the ideas used for the differentiation of field values [Silvester & Omeragić, 1993]. The

summation,

EP =

n∑

i

ξiE
i
P

n∑

i

ξi

, (2.51)

is performed for all elements, i, connected to node P where Ei
P is the value of the field

at node P due to element i. It remains to chose the form of the weighting functions ξ.

The basic choices are;

• Simple average: Values from each element connected to a node have an equal
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weighting, i.e. ξi = 1.

• Volume weighted average: Contributions from an element at a node are weighted

by the volume of that element.

• Distance to the centroid: contributions from an element are weighted by the dis-

tance from the node to the centroid of the element

At dielectric interfaces the normal component of the electric field is discontinuous.

The simple averaging techniques outlined above should therefore be applied with care. It

would be possible to average the value while taking into account the continuity equation

for the normal field at the boundary, in a similar manner to that proposed by Paulsen

for nodal elements (see §2.2.1). This requires the definition of a normal at all interface

nodes. A simpler alternative is to simply perform the averaging described above for

elements of each material separately. Different values of the field will then be obtained

in each material.

2.6.1 Error calculation

In order to assess the error from a given discretisation it is necessary to define some

measure of this error. The one that is used here is the `2-norm, which for a vector space

y is defined by,

‖ y ‖2=

√∫

Ω
y2 dΩ (2.52)

The error is then given by,
‖ E− Eh ‖2

‖ E ‖2

(2.53)

where E is the true solution and Eh is the solution obtained from the finite element

method. This gives the error over the whole problem domain. In order to apply (2.53)

it is necessary to know the correct solution for a problem. Consequently a short circuit

waveguide has been modelled where the analytical solution is known. The integral

(2.52) is evaluated in each element using quadrature integration, evaluating the field at

4 points within the tetrahedron, and 8 points in a hexahedron [Hammer, Marlowe, &

Stroud, 1956; Ciarlet, 1978].
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Figure 2.7: Mesh used for comparison of post processing techniques (Mesh 2).

2.6.2 Comparison of Techniques

To examine the effect of using the different techniques described above they were applied

to the problem of a short circuit waveguide, which had a cross section of 86 × 43 mm

and was 400 mm in length. Table 2.1 shows the errors obtained for two different meshes.

Mesh 1 was constructed by dividing the waveguide into a structured mesh of 8 × 4 × 40

hexahedra and the dividing each hexahedra into 5 tetrahedra, which produced a mesh

containing 9,268 edges. The second mesh, shown in Figure 2.7, was constructed by

taking mesh 1 and refining the elements in the central region. This gave elements of

different shapes and sizes in the central region and produced a mesh with 33,338 edges.

Post-processing Mesh 1 Mesh 2

None 0.1357 0.1143

Simple Average 0.0545 0.0384

Volume Weighted 0.0571 0.0468

Centroidal Distance 0.0550 0.0401

Table 2.1: Comparison of the errors obtained with different post processing techniques.

The figures in Table 2.1 show that the post processing significantly reduces the error



2.7 Comparison of Element Types 49

when measured in the `2-norm. When a mesh containing elements of roughly equal

size (mesh 1) is used there appears to be little to choose between the methods. When

the sizes of the elements vary, the difference between the techniques is greater with the

simple averaging method giving the lowest error. Consequently this method was the

one adopted for this work.

2.7 Comparison of Element Types

Having outlined the finite element formulation that will be used for the field calculation

there still remain a number of topics that need to be addressed before the method can

be applied with confidence to problems of electromagnetic heating. It is necessary to

gain some estimate for the possible errors that may be encountered when using a given

element size to model the process. How fine does the mesh need to become before

a suitable accuracy is obtained? This section compares both the element types and

the different shapes, tetrahedra, hexahedra and prisms for accuracy. There are several

different element types available for the computation of the electric field via the finite

element method. These are,

• Whitney edge elements.

• Linear edge elements.

• Nodal elements.

So far it has been assumed that the first type, Whitney elements, would be used for the

discretisation as they have many advantages over the other types.

2.7.1 Comparison of Whitney Elements and Linear Edge Elements

There is still some debate about the relative merits of linear edge elements compared

to Whitney elements. The lack of first order completeness for Whitney elements has

produced doubts about their use. Most specifically in their convergence rate on mesh

refinement. Mur [1994] states that linear edge elements are to be preferred since they

posses a local approximation error of O(h2) compared to O(h) for Whitney elements
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where h is some measure of element size. This gives them better convergence properties

on mesh refinement. Bossavit [1994] on the other hand states that the asymptotic rate

of convergence of the two elements are the same. The problem here lies in the definition

and method of calculating the error. Whitney elements have basis functions that are

constant along an edge so calculation of the field at a point just inside an element from

the basis functions of that element will produce a large error compared to that produced

by linear elements. This, however, is the wrong way of interpreting the field (see §2.6).

Conversion of the space spanned by the Whitney forms to a vector field representation

convenient for graphical display must be carried out with care.

In order to asses the relative errors of the two elements an empty waveguide (WG9A)

was modelled. The waveguide had a cross section of 86 × 43 mm and a length of 400 mm.

The problem was solved in the frequency domain at a frequency of 2.45 GHz. For this

particular problem the analytical solution is known [Metaxas & Meredith, 1983]. Several

different meshes were used producing successive orders of refinement. The meshes were

based on regular hexahedra which were then broken into five tetrahedra. The error

between the calculated solution and the true analytical solution is presented in Figures

2.8 to 2.10. Two results are presented for Whitney elements, the first shows the error

calculated by performing the integration of equation (2.52) from the edge values of each

element directly, the second smoothed solution is where the error has been calculated

from the post-processed solution. The simple method using equal weighting for each

element was used for post-processing (see §2.6).

These graphs explain some of the unfavorable reviews received by edge elements.

When the `2-norm error is calculated directly form the edge values then a lower rate

of convergence is obtained with the Whitney elements. This is the cause of many of

the high errors reported using Whitney elements. However, when the post processing

is carried out then the rates of convergence of the two elements become very similar

and Whitney elements give a consistently lower error than the linear elements. This

clearly demonstrates the importance of post-processing. Linear elements produce an

error which is identical before and after post-processing due to the linear nature of the

basis function along an edge.

The time taken for a given solution is dependent upon the number of non-zeros in the
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Figure 2.10: `2-norm error vs number of elements for Whitney elements and linear

elements.

assembled matrix rather than the number of unknowns. This is because the heart of the

iterative solution method is a matrix–vector multiplication. From Figure 2.9 it is clear

that for a given error the Whitney elements produce a significantly smaller coefficient

matrix than the linear elements providing much greater efficiency.

It was noted that in this particular problem the electric field is aligned with many

of the edges since the mesh used was derived from regular hexahedra. In order to test

the effect of a more irregular tetrahedral mesh a series of meshes were constructed using

the GEOMPACK software [Joe, 1993]. This produces tetrahedra directly, as shown in

Figure 2.11. The error produced by the irregular mesh is slightly larger than that of the

regular mesh, depicted by Figure 2.12, however, the convergence properties remain the

same.

2.7.2 Comparison of Whitney Elements and Nodal Elements

A further comparison that can be made is between edge elements and nodal based ele-

ments. Nodal elements have many problems, not least spurious modes and problems at
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Figure 2.11: The unstructured mesh for waveguide calculation.
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Figure 2.15: Comparison of errors for tetrahedral Whitney elements and hexahedral

edge elements vs number of unknowns.

dielectric interfaces, they are, however, favoured by many workers [Mur, 1988; Paulsen

& Lynch, 1991]. Since nodal elements are first order complete, they have a local approxi-

mation error of O(h2). However, these produce coefficient matrices with far fewer entries

than the linear edge elements. Mur [1988] has therefore concluded that nodal elements

are the most efficient choice in homogeneous regions. The use of a penalty function to

explicitly enforce the divergence is thought sufficient to eliminate any spurious modes.

Results for the waveguide problem are given in Figure 2.13 and 2.14. The very simple

geometry means that spurious modes are not present in this particular problem even

when the penalty function is not used. It is clear from the graphs that Whitney ele-

ments are superior to nodal elements, the good convergence after post processing being

comparable to that of nodal elements. Furthermore, we see that the addition of the

penalty function has a detrimental effect on the accuracy of the solution.
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Figure 2.16: Comparison of errors for tetrahedral Whitney elements and hexahedral

edge elements vs number of elements.

2.7.3 Comparison of Edge Element Shapes

It was stated earlier that it is often desirable to use element shapes other than tetrahedra.

This may be due to limitations in the available mesh generation software. It is therefore

important to assess the relative merits of the different element types. Starting with the

same structured hexahedral mesh that was used above, the waveguide was modelled

using hexahedral edge elements and prismatic edge elements. The prismatic elements

were formed by splitting each hexahedron into two, with the triangular faces lying on

the x-z plane. The relative errors produced are shown in Figures 2.15 and 2.16. The

rate of convergence appears to be marginally faster for hexahedral elements than for

tetrahedral elements. For a particular mesh the number of unknowns is much lower for

hexahedral elements, however, for a given number of unknowns hexahedral elements will

produce a denser coefficient matrix. So for a given error hexahedral elements need a

similar number of unknowns to Whitney tetrahedra but the coefficient matrix will have

twice as many non-zero entries. Thus they are not as efficient as Whitney elements

but superior to linear edge elements. Prismatic elements appear to give a very similar
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convergence to Whitney tetrahedral elements. The raw edge values giving a slower rate

of convergence than the post-processed values.

2.8 Conclusions

This chapter has introduced the time domain finite element method that will be used

for many of the problems considered in this thesis. The time domain method requires

the solution of a linear system at each time step, which contrasts to the single solution

required for the frequency domain method. For the time domain finite element method

to be competitive with the more traditional frequency domain approach it is necessary

for the solution of this system to be considerably easier in the time domain compared

to the frequency domain. The solution of this system of linear equations is the subject

of the next chapter.

It was clear from the results presented for the short circuit waveguide that Whitney

elements, when coupled a with post-processing technique, are the superior choice for the

discretisation. The method of post processing using simple averaging at the element’s

nodes was seen to be the most effective of the three methods discussed here. This

allowed Whitney elements to produce consistently lower errors than the other element

types and to show a similar rate of convergence on mesh refinement.
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Chapter

3 Solution of Linear Equations

3.1 Introduction

The most computationally intensive part of obtaining a finite element approximation is

the solution of the set of linear simultaneous equations produced by the discretisation.

In the frequency domain only a single solution is required at each frequency of interest,

whereas in the time domain the system has to be solved at each time step. However, it

will be seen that the system to be solved in the time domain is considerably easier than

the corresponding frequency domain one. When modelling a multimode applicator in

three dimensions there are often more than 100,000 unknowns, which will be complex

for the frequency domain problem when lossy material is present. The matrices are,

however, very sparse with a non-zero structure which reflects the complexity of the

region being modelled and the irregular nature of the mesh used. The solution method

should be able to take full advantage of this sparsity to optimize both the number

of arithmetic operations and the amount of computer memory that is required. The

matrices arising from the frequency domain method are often indefinite [Webb, 1981]

which makes solution more difficult. It is also found that systems arising from multimode

cavities containing a dielectric with a large value of permittivity generally have a high

condition number. This has the effect of slowing the convergence of iterative methods

and increasing the possibility of numerical errors in the solution. The problems of
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ill-conditioning are discussed in §3.4.

Methods for the solution of the linear system,

Ax = b (3.1)

where A is large and sparse can be divided into two categories; direct and iterative. The

former perform a fixed number of steps to generate the solution, the accuracy of which

is limited by the accumulation of round off errors caused by the finite precision of the

arithmetic. Iterative methods generate successive refinements to an initial guess until

the required accuracy is reached. The purpose of this chapter is to describe some of the

methods that can be used for the solution of (3.1) and to compare their performance.

Initially the methods that are suitable for the finite element problem are discussed then

various preconditioning techniques that can be used to accelerate the convergence of the

iterative techniques are outlined. Finally the performance of these methods for both

frequency domain and time domain problems are compared.

3.2 Direct Methods

The most common direct method for solving the system (3.1) is Gaussian elimination,

of which there are several variants [Duff et al., 1986]. The matrix is factored into two

triangular matrices such that

A = LU, (3.2)

where L is a lower triangular matrix and U is an upper triangular matrix. For symmetric

matrices U = LT and the process is usually referred to as Cholesky factorization. After

factorization the solution can easily be obtained by substitution. The methods are

implemented so that they can take advantage of the sparsity of the matrix.

During the factorization process entries in the matrix which are initially zero become

non-zero, i.e. they are “filled in”. The resulting reduction in the sparsity of the matrix

increases the amount of storage1 required to hold the matrix. This increase can be very

significant. However, there are several algorithms available for reducing the fill in by

1Storage in double precision, so one complex value requires 2× 8 = 16 bytes of memory. Only half

of the matrix is stored since it is symmetric.
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Original Factored

Unknowns, n Non Zeros, τc Size Mbytes Non Zeros, τf Size Mbytes

2,415 34,686 0.3 173,050 1.3

6,196 93,432 0.8 749,546 5.8

22,542 354,996 2.0 5,969,700 45.7

79,821 1,291,266 10.5 41,023,244 313.0

Table 3.1: Number of non-zeros and storage requirement for the coefficient and factored

matrices for some three dimensional waveguide problems.

reordering the variables [George & Liu, 1981]. One of the most effective methods for

finite element computations is the minimum degree algorithm. Table 3.1 compares the

number of non-zero entries in the original matrix , τc, and the factored matrix, τf , for

several three-dimensional short circuit waveguide problems when reordering using the

minimum degree algorithm has been employed. These results are shown graphically in

Figure 3.1. The size of the coefficient matrix increases as O(n) whereas the factored

matrix increases as ∼ O(n1.6) in this case. The tetrahedral meshes used were based

on a structured hexahedral mesh, when an irregular unstructured mesh is used the

connectivity will be different and may give rise to a different dependence on n. Without

reordering the number of non-zero entries in the factored matrix would be considerably

higher, with the exact number being dependent on the actual ordering. If the matrices

were to be held as dense matrices then the storage would grow as O(n2), with the largest

problem of Table 3.1 requiring a massive 95 G bytes of memory.

Even when the minimum degree algorithm is used the increase in storage requirement

is very large. For realistic three-dimensional cavity problems this increase in storage is

beyond the resources available in the majority of workstation computers. This makes

“in core” Cholesky factorization unsuitable for solving this type of problem. To over-

come this large storage demand Irons [1970] proposed a frontal method which combines

the matrix assembly and factorization phases. The idea being to eliminate a variable

as soon as possible and to write the associated equation to a secondary storage device.

In this way only a small portion of the matrix, the wave front, need be kept in mem-
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Figure 3.1: Number of non-zero entries in the coefficient and factored matrices from the

short circuit waveguide problem.

ory. Secondary storage is considerably slower than main memory so using this method

immediately increases the solution time.

Direct methods generally scale poorly with increasing numbers of unknowns, with

the number of arithmetic operations required for factorization being O(n.τf ). Since τf

depends upon both the mesh connectivity and the renumbering algorithm used precise

operations counts are not available for the general case. However, as shown in Table

3.1 the number of non-zeros in the factored matrix and therefore operations increases

rapidly with the number of unknowns.

When the matrices are indefinite the Cholesky decomposition can fail unless pre-

cautions are taken. Pivoting is nearly always used when dealing with dense matrices

to prevent both breakdown and to minimise round off errors caused by small pivot

elements. The re-arrangement of the rows and columns during pivoting, however, de-

stroys the symmetry of the matrix. This will have the adverse effect of doubling both

the storage requirement and the computational cost of the factorization and following

substitutions as it is now necessary to work with both the upper and lower triangular
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matrices. Without pivoting, however, the method may fail to give accurate solutions or

indeed any solution at all. A block pivoting method has been proposed that preserves

symmetry and allows a stable factorization, see for example Duff, Erisman, & Reid

[1986]. This would allow the direct methods to be used for general problems without

doubling the storage, however, the use of this method has not been investigated.

In the time domain a solution of equation (3.1) is required at each time step. The

main cost of a Cholesky factorization is associated with the the factorize phase, the so-

lution at each time step can then be carried out in O(τf ) operations. For small problems

the Cholesky decomposition is well suited to the time domain problem, however, stor-

age requirements preclude its use for larger problems. It will also be seen that iterative

methods are particularly well suited to the time domain problem. For large problems

τf À τc so if the number of iterations, k, of an iterative method required for solution

satisfies kτc < τf then the iterative method will be faster at each iteration. Of course

the Cholesky method also has a large cost associated with the factorization.

Direct methods are only suitable for small problems such as waveguides where the

number of elements and hence the number of unknowns, can be kept small. For larger

problems such as three dimensional cavities the memory requirements are too great

for them to be useable. This is true for both the time domain and frequency domain

problems. However, incomplete factorizations can be used as preconditioners to the

iterative methods described below.

3.3 Iterative Techniques

3.3.1 Introduction

The development of iterative techniques for the solution of linear systems arising from

discretized partial differential equations is a vigorous branch of numerical analysis. It-

erative methods produce a sequence of approximations to the solution of equation (3.1),

which is terminated when the error has been reduced to a satisfactory level. The meth-

ods often operate directly on the coefficient matrix A via a matrix-vector multiplication.

When the matrix is large and sparse the cost of such a multiplication is O(n) compared

to O(n.τf ) for the sparse Gaussian elimination. So as long as the number of iterations
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is not too large the iterative solver can be considerably faster than direct methods. Fur-

thermore, the matrix-vector product is easily vectorized allowing easy implementation

on fast parallel architectures, the development of which has given further impetus to

the drive towards better iterative solution techniques [Saad, 1989]. Since the coefficient

matrix is used directly the storage requirement is considerably smaller than for the

direct methods. Assuming that, as the mesh is refined each edge remains on average

connected to an equal number of elements then the number of non-zero entries in each

row will remain constant. The storage requirement will therefore grow as O(n) which

is a considerable improvement over the direct methods. The lower storage overhead is

often the overriding reason for the use of iterative methods in finite element solutions.

Many different iterative techniques exist, each being suited to a particular class of

problem. When the matrix A arises from the frequency domain discretisation it is

complex and indefinite. Consequentially many of the classical iterative methods such as

Gauss-Seidel or Successive Over Relaxation (SOR) [Barret et al., 1993] do not converge

and are therefore unsuitable. They are suitable, however, for use for the time domain

discretisation. The performance of several methods will be compared in section 3.6.

The iterative method that is currently favoured by the finite element community and

which is receiving wide attention is the conjugate gradient (CG) method and the related

family of Krylov subspace methods. The CG method was developed independently by

Hestenes and Stiefel and presented in a joint paper [Hestenes & Stiefel, 1952]. Initially

it was considered a direct method, requiring n steps before terminating2 with the exact

solution. Reid [1970] noted that in many cases a satisfactory approximation to the

solution was obtained in far fewer than n steps so the CG method should be viewed as a

true iterative method which was particularly applicable to large sparse systems. The CG

method is only suitable for real positive definite systems and is therefore unsuitable for

the present frequency domain problem, however, subsequent extensions have produced

related algorithms that are applicable to a wide range of unsymmetric and indefinite

complex systems.

In order to extend the CG method to unsymmetric indefinite systems Fletcher [1976]

proposed the use of the bi-conjugate gradient (Bi-CG) method which was originally de-

2The finite termination property of the CG method holds only in exact arithmetic.
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veloped by Lanczos [1950]. This method no longer satisfies the minimization property

of the conjugate gradient algorithm [Barret et al., 1993]. Indeed it has been shown that

the minimization property of the CG method cannot be ensured for non-Hermetian

matrices when short recurrences are used [Faber & Manteuffel, 1984]. The generalized

minimum residual (GMRES) algorithm [Barret et al., 1993] which satisfies the mini-

mization property for general matrices does so at the expense of storing all residual

vectors, so that the storage requirement and operations count grows linearly at each

iteration. In practice this makes it necessary to periodically restart the algorithm once

storage has been exhausted, which can result in slow convergence [Freund & Nachtigal,

1991].

The Bi-CG method suffers from extremely erratic convergence and can suffer break

down under certain circumstances. The erratic convergence is problematic because it

makes the determination of convergence difficult since it is possible for a low value of

the residual to be obtained while the error remains high. Several techniques have been

proposed to deal with this; a stabilized version of the Bi-CG algorithm, (Bi-CGSTAB),

was developed by van der Vorst [1992] which has smooth convergence and Weiss [1994]

uses a smoothing method to ensure a monotonic decrease in the norm of the residual.

The problem of breakdown, caused by a division by zero is more serious and has led

to the development of alternative algorithms. Paige & Saunders [1975] give details of

such an alternative method for solving symmetric indefinite systems and more recently

Freund & Nachtigal [1991] describe a Quasi-Minimum Residual (QMR) algorithm that

is suitable for unsymmetric indefinite systems and which does not suffer from breakdown

and has smooth convergence.

3.3.2 Complex Systems

When the matrix coefficients are complex the standard CG algorithm cannot be used

even when the matrix is complex symmetric [Jacobs, 1981]. There are several approaches

that can be taken in order to solve equation (3.1). Firstly, it would be possible to solve

the real system


 <e(A) −=m(A)

=m(A) <e(A)





 <e(x)

=m(x)


 =


 <e(b)

=m(b)


 (3.3)
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using one of the methods suitable for unsymmetric systems such as GMRES, CGS or

Bi-CG. This approach has been considered unsatisfactory due to slow convergence

[Jacobs, 1981; Freund, 1992]. An alternative is to form the normal equations,

AHAx = AHy (3.4)

where the subscript H denotes the conjugate transpose of the matrix. The matrix

(AHA) is now real and symmetric positive definite and so suitable for solution by the

CG method. The rate of convergence of the CG method is proportional to the square

root of the condition number [Axelsson, 1980] and since forming the normal equations

has the effect of squaring the condition number it is clear that this method will have an

adverse effect on the convergence which may already be slow for ill-conditioned systems.

In view of the above remarks it is preferable to use a method developed specifically

for complex systems. Jacobs [1981] presents a complex bi-conjugate gradient algorithm,

which is an extension of the work by Fletcher [1976] to complex systems. When the

matrix to be solved is symmetric, the Bi-CG algorithm can be reduced so that only a

single matrix vector product is required during each iteration. In fact the steps that

are performed are the same as those for the CG algorithm, however, the algorithms

are different since the minimization property no longer holds for the Bi-CG method

which satisfies Galerkin’s condition instead [Freund, 1992]. A better approach than the

Bi-CG method is to use the QMR algorithm developed by Freund [1992] specifically

for complex symmetric matrices. This method has smooth convergence and does not

suffer from the breakdown associated with the Bi-CG method. Furthermore it does not

require the use of the normal equations so there is no squaring of the condition number.

3.3.3 Preconditioning

Iterative methods often converge fairly slowly so it is desirable to find some method of

speeding them up. Preconditioning the matrix is one method that has been extremely

successful at this in many applications. Instead of solving equation (3.1) directly an

equivalent system that has more favourable convergence properties is solved. For exam-

ple, the system is preconditioned using a matrix M by forming

M−1Ax = M−1b. (3.5)
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Here M is chosen so that it approximates A in some way but also so that its inverse can

be found with little effort. The iterative method is then applied to the matrix (M−1A).

Many different preconditioning methods have been suggested for a variety of classes

of matrix. The simplest is diagonal scaling, in this case M = D where D is the diagonal

of A. By applying it in the form

(
D− 1

2AD− 1
2

) (
D

1
2x

)
=

(
D− 1

2b
)
, (3.6)

then if A is symmetric
(
D− 1

2AD− 1
2

)
will also be symmetric. This technique of pre-

serving symmetry is used for all the preconditioners considered here. Preconditioning

using (3.6) is no more than symmetrical scaling of the coefficient matrix so that its di-

agonal elements are ones. Although simple this method is not very effective for general

problems, however, it can be extremely effective for the matrices arising from the time

domain discretisation.

Another type of preconditioner, suitable for symmetric matrices, uses an SSOR

decomposition, where the matrix is factored as

M =
1

(2− ω)

(
1

ω
D + L

) (
1

ω
D

)−1 (
1

ω
D + L

)T

(3.7)

where ω is the over-relaxation parameter and where the original matrix is given by

A = D + L + LT , The diagonal matrix D contains the diagonal entries of A while L

contains the lower triangular entries. The choice of the parameter ω is not as critical

when SSOR is used as a preconditioner compared to its use as an iterative solver in

its own right [Evans, 1967]. One advantage of this method is that it requires no extra

storage and there is no construction cost since D and L are already available. One can

also use the procedure given by Eisenstat [1981] to reduce the amount of computation

at each iteration to be only slightly greater than that for the unpreconditioned system.

Preconditioners based on an incomplete factorization were first3 proposed by Varga

[1960]. A factorization is incomplete if during during the factorization process some

of the zero entries that would normally be filled in are ignored. The degree to which

M = LU approximates A determines the effectiveness of the preconditioner. Since

some fills have been ignored it is possible that the factorization may break down, due

3Nicolaides & Choudhury [1986] state that a paper by Buleev [1960] also contains this idea.
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Figure 3.2: Effect of α on convergence for the SIC-QMR algorithm for a multimode

cavity loaded with mashed potato (n = 51, 506).

to a division by zero or result in an indefinite matrix M, having negative diagonal

entries, that will result in the iterative method failing to converge. The application of

incomplete factorization as a preconditioner for the CG method was first carried out

by Meijerink & van der Vorst [1977] who also proved that if the coefficient matrix is

an M-matrix4 then the incomplete factorization is guaranteed to exist. Kershaw [1978]

applied the technique to a wider class of matrices from laser fusion problems, proposing

that if the pivot entry became negative then it should be replaced by a positive number

to prevent the breakdown of the factorization. Manteuffel [1980] suggested the use of

shifted incomplete Cholesky factorization (SIC). If the original matrix is split A = D−B

where D is the diagonal of the matrix then the factorization is applied to the system

(1 + α)D−B. (3.8)

The quantity α is chosen so that the factorization is positive. Since constructing the

incomplete factorization is generally very fast compared to the overall solution time

4A matrix A = (aij) is an M-matrix if aij ≤ 0 for i 6= j, A is nonsingular and A−1 ≥ 0.
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the process can be repeated with different values of α until a positive factorization is

obtained. Figure 3.2 shows the value of the relative residual norm against iteration,

i, for two values of α. When α = 1.7 the factorization contains one pivot that has

a negative real part and convergence stops after ∼ 22, 000 iterations, whereas when

α = 2.0 is chosen all pivots have positive real parts and the method converges slowly.

Several possible techniques for generating the incomplete factorization exist. The

most common, which is used here, is to force L to have the same sparsity pattern as

the original matrix. This has the immediate advantage of not requiring further storage

to hold the structure of L since it is the same as that of A with only the values being

different. The factorization is constructed as a normal Cholesky factorization [George

& Liu, 1981] except all elements that are zero in A remain zero in L. An alternative,

often called ICCG(0) or ILU(0) [Meijerink & van der Vorst, 1981] is to write M as

M =
(
D̃ + L

) (
D̃

)−1 (
D̃ + LT

)
(3.9)

where L is the lower triangular part of A. This approach is similar to the SSOR

preconditioner except that now D̃ is chosen such that

diag(M) = diag(A). (3.10)

As well as only requiring storage for D̃ this technique also allows the use of the procedure

given by Eisenstat [1981] to reduce the amount of computation at each iteration to be

similar to that required for the unpreconditioned system.

Gustafsson [1978] developed a further modification to the factorization process; in-

stead of using (3.10) the matrix D̃ is chosen so that the row sums of M are equal to the

row sums of A. This factorization is known as modified incomplete Cholesky (MICCG)

and has the property of reducing the condition number from an O(h−2) dependence to

O(h−1) for certain problems arising from 5-point and 7-point finite difference discretisa-

tions, where h is a measure of the size of the discretisation. The method does, however,

increase the likelihood of breakdown. If the SIC method is used to prevent breakdown

then the row sum criteria cannot apply.

Many other preconditioners exist, for example the polynomial preconditioner which

can be effective with parallel machines that have a very large number of processors
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Figure 3.3: Comparison of two methods of determining convergence (x0 = 0).

[van der Vorst, 1989]. Multigrid [Nicolaides & Choudhury, 1986] and domain decom-

position [Cai & Widlund, 1992] methods are currently the subject of much research,

however, as Ramage & Wathen [1994] point out most of these are developed and tested

on problems using regular grids, often in two dimensions. Their performance in this

environment can be exceptional but extending this to irregular tetrahedral meshes in

three dimensions is often very difficult. Multigrid methods require a series of meshes and

functions to interpolate and extrapolate values from one to another. This is a difficult

requirement for general problems where many geometries may require a fine mesh simply

to represent the dimensions of the problem accurately. Domain decomposition methods

require the problem to be broken into a number of separate regions. In some cases the

splitting is obvious from the geometry of the problem [Ise et al., 1990], however, for the

general case this is not so.

3.3.4 Terminating Criteria

The iterative techniques described above need some measure of the error to determine

when a suitable accuracy has been reached. The true error ‖δxi‖ is generally unavailable
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so it is usual to base the terminating criteria on the residual norm ‖ri‖ instead. Some

method of normalising ‖ri‖ is required since its absolute magnitude will depend upon

the nature of the problem. One of the more common choices is to monitor the ratio

‖ri‖/‖r0‖ where ‖r0‖ is the norm of the initial residual. When x0 = 0 is chosen initially

then this is also equivalent to ‖ri‖/‖b‖, another common measure. An alternative, given

by Barret et al. [1993] is to choose

‖ri‖
‖A‖ · ‖xi‖+ ‖b‖ . (3.11)

Figure 3.3 shows the behaviour of both criteria for a typical problem using the SIC-QMR

algorithm. The shapes of the two curves is very similar with the second method giving

a value which is consistently smaller. This would suggest that either method can be

used to determine convergence with the stopping tolerance being chosen appropriately.

3.4 Ill-Conditioning

The magnitude of the condition number κ(A) of the matrix A has important conse-

quences for the solution of the linear system (3.1). The condition number, which is

defined by

κ(A) = ‖A‖ · ‖A−1‖, (3.12)

has two main effects. Firstly it measures the sensitivity of the system to small changes.

If the right hand side of (3.1) is perturbed by δb and the matrix A is changed by a

small amount δA then the relative change in x is bounded by [Duff et al., 1986]

‖δx‖
‖x‖ ≤ κ(A)

1− κ(A)
‖δA‖
‖A‖

(‖δb‖
‖b‖ +

‖δA‖
‖A‖

)
. (3.13)

Small changes in the excitation frequency or in the boundary conditions of the finite

element system will produce small changes in both A and b. If the condition number

is large then these small changes can produce very large changes in the solution vector

x. In practice multimode cavities often show large variations in field patterns when

subject to small perturbations which would suggest that the matrices arising from the
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discretisation of multimode systems are likely to possess large condition numbers (see

§1.2.2).

The condition number also gives an upper bound on the relative error in the com-

puted solution, x, for a given residual r = b−Ax, we get

‖δx‖
‖x‖ ≤ κ(A)

‖r‖
‖b‖ . (3.14)

For ill-conditioned matrices the error in the solution may be large even when the residual

is small. This is an important observation when considering the stopping criteria for

iterative methods where the actual error in the solution ‖δx‖ is unavailable and the

criteria has to be based on the residual. As the condition number increases it is necessary

to lower the level to which the residual must be reduced in order to ensure an accurate

solution.

The condition number also affects the rate of convergence of conjugate gradient

type methods. Barret et al. [1993] give the following result for the convergence of the

standard conjugate gradient method,

‖δxi‖A ≤ 2

(√
κ2 − 1√
κ2 + 1

)i

‖δx0‖A (3.15)

where ‖δxi‖A is the error in the solution at iteration i and ‖y‖A ≡ (y,Ay). The rate

of convergence is therefore dependent upon
√

κ. A large condition number has the dual

effect of producing slow convergence and requiring the residual to be reduced to a lower

level to ensure an acceptable accuracy.

3.4.1 Estimation of the Condition Number

The calculation of the condition number for a general matrix cannot be carried out

cheaply. The exact calculation would require the formation of the inverse, a process

which is computationally very expensive. Many alternative methods of estimating the

condition number have been proposed that avoid the formation of the inverse. These

often require the solution of several sets of linear equations (3.1) with different right

hand sides [Hager, 1984]. An alternative is the LINPACK estimator [Cline et al., 1979]

which requires the construction of a special vector during the back substitution phase of
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Gaussian elimination. If Gaussian elimination is used for the solution of (3.1) then the

condition number can be found at little extra cost using Hager’s algorithm, however,

if iterative techniques are used then this method will be very slow unless the matrix is

very well conditioned.

For real symmetric positive definite matrices the condition number can also be found

from

κ2(A) =
λmax(A)

λmin(A)
. (3.16)

So if the extremal eigenvalues are known then the condition number can be found. The

Lanczos process, which is closely related to the conjugate gradient method can be used

to find these eigenvalues during the solution of the linear system at the cost of a few

extra vector operations. However, in the frequency domain the matrices are not, in

general, positive definite so equation (3.16) does not apply. It would still be possible to

use the Lanczos method by applying it to the normal equations AHA which are real

symmetric positive definite and using the relation [Barret et al., 1993],

(κ2(A))2 =
λmax(A

HA)

λmin(AHA)
. (3.17)

However, while an accurate value of λmax is available from the Lanczos method after

only a few iterations, a good estimate of λmin is not obtained until the algorithm has

converged. Since the normal equations are involved convergence will be very slow for

large ill-conditioned problems which makes this method unattractive. Consequently

values for the condition number of the large frequency domain systems considered in

this thesis are not given.

3.5 Application to the Frequency Domain Method

The convergence behaviour of the iterative techniques, when applied to frequency do-

main problems, shows significant differences for multimode cavities and single mode

cavities. The performance for single mode systems is generally very good whereas con-

vergence sometimes is often very slow for multimode cavities. This section is therefore

split into two, with the systems being discussed separately.
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Figure 3.4: Condition number of the coefficient matrix and number of iterations required

for the SIC-QMR method against the number of degrees of freedom for a short circuit

waveguide, (WG9A 400 mm long).

3.5.1 Single Mode and Waveguide Problems

The condition number is dependent upon both the mesh discretisation and the nature of

the problem being modelled. Figure 3.4 shows the increase in the condition number as

the mesh is refined for a simple short circuit waveguide problem. The condition number

in this problem remains relatively small and so no accuracy difficulties are encountered

when the system is solved using double precision arithmetic. The number of iterations

required to solve these problems are shown in Table 3.2, very rapid convergence being

obtained with the number of iterations required being considerably less than the order

of the matrices. Also shown are the results for a TM010 cavity problem (see §5). The

times for solution on a Sparc-10 workstation are also given. They should be treated as

a rough indication only since they are very dependent on both the machine used for

the computation and the degree to which the code has been optimised. Generally, the

number of iterations for the solution provides a better indication of the efficiency of the

method since it will be machine independent.
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Problem Degrees of Freedom Iterations Time

S/C Waveguide 2,415 157 40 seconds

S/C Waveguide 6,196 206 1.5 minutes

S/C Waveguide 22,542 310 7 minutes

S/C Waveguide 79,821 454 38 minutes

TM010 cavity 21,976 1,144 26 minutes

Table 3.2: Number of iterations required for the SIC-QMR method to reduce the residual

below 5× 10−10.

The waveguide problem is relatively simple, there are no resonant modes and the

solution varies as a smooth function of frequency giving a small condition number.

A consequence of which is the very rapid convergence seen for these systems. Even

for the single mode system loaded with high permittivity material, such as the TM010

cavity containing a tubular water load, the rapid convergence is still apparent. The

frequency domain method is therefore ideally suited to solving this type of problems

as the SIC-QMR method provides a very fast technique for solving the resulting set of

linear equations.

3.5.2 Multimode Cavity Problems

Multimode cavity problems by their very nature possess many resonant modes. This

has the effect of significantly increasing the condition number of the system, even when

the mesh is relatively coarse. In practice this manifests itself by producing very slow

convergence of the conjugate gradient method. The performance of both the Bi-CG

method and QMR methods were tested for the linear system arising from the frequency

domain discretisation of a cavity loaded with a tray of mashed potato. One quarter of

the problem was modelled. The field results for this problem are discussed in §6.4 along

with a more detailed description of the geometry. Figure 3.5 shows the comparative

rates of convergence for the two methods with and without preconditioning using shifted

incomplete Cholesky factorization. The convergence rates are very similar for both the

QMR and Bi-CG algorithms, with the QMR giving smoother convergence as expected.
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Figure 3.5: Convergence of the QMR and Bi-CG algorithms with and without precon-

ditioning for a multimode cavity containing a mashed potato load. (Mesh 1 of Table

3.3)

The preconditioner is effective at reducing the number of iterations, however, a large

number of iterations were still needed to produce a satisfactorily small residual.

The mesh used for Figure 3.5 was very coarse so further tests were carried out using

a total of three different meshes with differing degrees of refinement. Table 3.3 gives the

number of degrees of freedom and the number of non-zeros in the coefficient matrix for

the three meshes. The first mesh was a coarse mesh with a small amount of refinement

near the waveguide aperture and in the potato. The second mesh had more refinement

inside and around the dielectric while the third mesh was refined throughout the whole

domain. It can be seen from Figure 3.6 that the first two meshes produce systems that

converge in a number of iterations approximately equal to half the number of degrees of

freedom whereas the third shows much slower convergence. Since the rate of convergence

is dependent upon the condition number this would suggest meshes 1 and 2 produce a

system with a moderate condition number giving fairly slow convergence. Mesh 3 would

appear to have a much higher condition number that causes the very slow convergence
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Figure 3.6: Reduction in the residual using the SIC-QMR algorithm with three different

meshes for the mashed potato problem.

of the SIC-QMR algorithm.

The major difference between meshes 2 and 3 is the discretisation of the air in the

cavity. The former has a very coarse discretisation with the largest elements being ap-

proximately one fifth of a wavelength in size while mesh 3 has elements of approximately

one tenth of a wavelength. Meshes 1 and 2 cannot be expected to give good accuracy

because of this coarse discretisation: a coarse mesh being able to only represent a small

number of mode patterns accurately so artificially restricting the solution, and therefore

the accuracy. The finer mesh allows considerably more modes to be represented by the

discretisation, some of these modes may have high Q-factors, and indeed as suggested

by Bossavit [1995] may be “air modes”, that is, ones with an infinite Q-factor. The

presence of these modes near or at the excitation frequency may cause a loss of unique-

ness of the solution in the discrete problem and result in a very ill-conditioned system

even though the continuous problem is well posed. This very slow convergence seems

to be characteristic of multimode cavities when loaded with a dielectric having a high

permittivity.
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Mesh

Degrees of

Freedom Non Zeros Final Residual Iterations Time

1 22,600 365,148 4.9× 10−10 11,270 4 hours

2 39,278 649,246 5.0× 10−10 20,316 10 hours

3 51,388 832,002 3.7× 10−7 67,000 43 hours

Table 3.3: Comparison of performance of SIC-QMR for three meshes used for the mashed

potato problem.

To determine the effect of the permittivity of the load on the convergence, the prob-

lem was re-run using mesh 3 but with different values of the permittivity and the results

are shown in Figure 3.7. As the permittivity of the load increases the convergence of the

SIC-QMR method becomes progressively slower. The increase in condition number with

increasing variation in material properties has been noted previously [Vavasis, 1993]. In

multimode cavities this may be due to the higher number of modes that are capable of

being supported by the more heavily loaded cavity. The higher permittivity will also

cause more energy to be reflected from the surface of the load, in some cases this will

reduce the coupling of a particular mode to the load. This is a serious computational

problem since for microwave heating it is common to have a large cavity loaded with

a large block of dielectric which has both a high permittivity and high loss factor, the

example of mashed potato being typical.

At each iteration of the SIC-QMR it is necessary to perform two substitutions (one

forward, one backward) plus a matrix-vector multiplication which will require a total

of ≈ 2τc complex floating point operations. The use of ICCG(0) preconditioning in

conjunction with Eisenstat’s procedure may allow this to be reduced to ≈ τc, halving

the work per iteration. Even so when the number of iterations required for realistic

loads of food like materials is > n the solutions will take a considerable amount of time

as shown in Table 3.3 unless a supercomputer is used.

The problems examined here are relatively small, with the largest having 51,000

unknowns. Many problems will be considerably larger making the slow convergence even

more problematic since the work per iteration will increase. The larger problems are also
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Figure 3.7: Effect of the permittivity on the convergence of the SIC-QMR algorithm

using mesh 3.

likely to have larger condition numbers to further exacerbate the problem. These small

examples were chosen since convergence could be achieved while still demonstrating the

problems of using the frequency domain method for multimode cavities. The use of

other preconditioners, such as multigrid, may improve the situation but a considerable

amount of research is required for this to be realizable for microwave heating problems.

3.6 Application to the Time Domain Method

The time domain finite element method produces a matrix A which is both real and

symmetric so that the CG method can be used. Furthermore, it is found that the

condition number of this matrix is generally very small so that an accurate solution

can be found after only a few iterations. As stated in §2.4 a good initial guess, x0 is

also available which can be used to reduce the solution time. This section compares the

performance of various methods and preconditioning strategies for the solution of the

time domain system. The matrices from the time domain discretisation for multimode

cavities and single mode systems show very similar behaviour so are dealt with together
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in this section.

3.6.1 Diagonal Scaling

Condition Number

Problem n Diagonal Scaling No Scaling

S/C Waveguide 6,196 4.83 11.08

S/C Waveguide 80,334 3.73 9.00

S/C Waveguide (irregular mesh) 13,525 9.35 28.46

TM010 cavity (Prism elements) 22,174 241.78 3223.36

Mashed Potato loaded cavity 51,506 31.3 1439.24

Table 3.4: Condition number, κ1(A) of the matrices from the TDFE discretisation of

various three dimensional problems (30 time steps/cycle).

Table 3.4 compares the condition numbers, calculated using Hager’s algorithm, for

several problems with and without diagonal scaling. Since the condition numbers are

very low the solution of the linear systems required by the algorithm can be carried

out very quickly. It is interesting to note that for the waveguide problem the condition

number actually reduced slightly as the mesh was refined, the complete reverse of the

frequency domain case. The first two waveguide problems have meshes produced by

dividing the domain into a regular hexahedral mesh and then splitting each hexahedron

into five tetrahedra. This produces a mesh with only ten distinct shapes and orientations

of the elements. The irregular mesh was produced using GEOMPACK which produces

the tetrahedra directly using a Delaunay technique. The irregular mesh has a larger

number of element sizes and orientations which produces a higher condition number. If

nodal elements were used then the condition number of the mass matrix ( [Tε]) becomes

independent of both element size and shape and the size of the mesh [Wathen, 1987].

This is not the case for edge elements, and when an implicit time stepping scheme is

used A contains contributions from [S] and it does not hold for nodal elements either.

The TM010 cavity mesh was constructed from prism elements the size of which varied
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greatly throughout the mesh (see §5). This is the cause of the relatively large condition

number.

The mesh used for the cavity loaded with mashed potato has localised refinement

near the aperture and in the dielectric which produces elements with different sizes and

orientations. This, coupled with the large variation in material properties causes the

condition number, prior to scaling, to be significantly larger than for the waveguide

problems which have uniform dielectric properties. Scaling has the effect of removing

the dependency of the condition number on material properties. Since diagonal scaling

is so effective at reducing the condition number it has been used for all the calculations.

The equations being scaled before the application of any further preconditioning.

3.6.2 Direct Methods

Direct methods suffer from exactly the same memory problems when applied to the time

domain solution as for the frequency domain problem. This makes them applicable only

to very small problems where they may be competitive with iterative methods. In §3.2

it was suggested that if the number of iterations, k, required for an iterative solution

of (3.1) satisfied kτc < τf then the iterative method would be faster. For the smallest

problem considered in Table 3.1 we see that τf ≈ 5τc, however, the very low condition

number means that only 2–3 iterations of the SSOR-CG method is required, so even for

this small problem the iterative method should be faster. For the larger problems the

difference is much greater.

3.6.3 SOR Iteration

The time domain method permits the solution of equation (3.1) using SOR or Gauss-

Seidel iteration. This method is very simple and can give good results when the initial

guess is chosen according to (2.33). The SOR algorithm has a performance which is very

dependent upon the choice of the over relaxation parameter ω. However, since we are

solving many systems in succession, one at each time step, it is possible to continually

vary ω and therefore dynamically optimise its value during the calculation.

Table 3.5 shows the performance of the SOR method for various problems along with

the value of ω used. The systems were diagonally scaled prior to starting the SSOR
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Problem n Iterations ω

S/C Waveguide 2,532 8 1.29

S/C Waveguide 22,812 8 1.27

S/C Waveguide 80,388 11 1.26

TM010 cavity 22,174 11 1.24

Mashed potato loaded cavity 51,506 11 1.21

Table 3.5: Performance of SOR iteration for different TDFE problems.

iteration.

3.6.4 Preconditioned Conjugate Gradients

The preconditioned conjugate gradient method was applied to the mashed potato loaded

cavity problem. Table 3.6 shows the number of iterations required to reduce the residual

to 1×10−6 both with and without SSOR preconditioning and for different initial guesses

for x0. The system of equations was diagonally scaled prior to starting the solution for all

problems. SSOR preconditioning was chosen since it allows Eisenstat’s procedure to be

used which means the work per iteration for the preconditioned and unpreconditioned

systems is about the same and no extra storage is required. Table 3.6 clearly shows

the effectiveness of this preconditioner for this particular problem. The use of x0 = 0

has the advantage that, since r0 = b no matrix-vector multiplication is required prior

to starting the iteration. This is not the case for the other two initial guesses where

it is necessary to calculate the residual. The first and third options for choosing x0

appear equally good, however, it is found that option three is slightly better because it

causes the number of iterations at each time step to be reduced slightly as the solution

approaches the steady state condition. The results in Table 3.6 show that the SSOR

preconditioned conjugate gradient method, when coupled with diagonal scaling, gives a

very effective method of solving the system in the time domain.
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Initial Guess No Preconditioning SSOR Preconditioning

x0 = 0 11–12 4

x0 = b 10 4

x0 = 2en − en−1 6 3

Table 3.6: Average number of iterations required for mashed potato loaded cavity prob-

lem for different preconditioners and initial guesses.

3.7 Conclusions

This chapter has investigated the various techniques that can be used for the solution

of the linear system of equations arising from the finite element discretisation. Direct

methods are applicable only to small matrices and so are generally unsuitable for micro-

wave heating problems. The equations arising from the frequency domain finite element

method can be solved using the QMR algorithm with shifted incomplete Cholesky pre-

conditioning. Convergence for the multimode cavity problems, however, is very slow.

When applied to single mode applicators the finite element method produced a system

of equations which is very amenable to solution with this method.

The system arising from the time domain discretisation can be solved in very few it-

erations. The combination of SSOR preconditioning and the conjugate gradient method

was seen to be particularly efficient, allowing solution in as few as 3 iterations. The effect

of different starting values was investigated and the most effective choice being found

to be that obtained from values of the field at previous time steps.
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Chapter

4
Calculation of the Reflection

Coefficient and Absorbed Power

4.1 Introduction

A simple determination of the normalised electric field distribution inside the cavity and

the load is in itself insufficient to determine the temperature rise that will be produced

in the load. It is also necessary to calculate the power density distribution and then

to solve the heat flow equation to obtain the temperatures. Discussion of the heat flow

equation will be postponed until Chapter 7. This chapter discusses the determination

of the reflection coefficient and the power density.

Some of the energy supplied to the applicator will be reflected back to the source.

The calculation of the amount of reflected energy is necessary in order to determine the

amount of energy that will be absorbed by the load being heated.

4.2 Calculation of Reflection Coefficient

The reflection coefficient for a multimode applicator can be found by considering the

field in the feed waveguide. It is assumed that only the TE10 mode is present in the

guide, so by considering the magnitude and phase of the field at two planes inside the

waveguide, as shown in Figure 2.3, the reflection coefficient can be found [de Pourcq,

1984]. When using a modulated Gaussian pulse to excite the system, the instantaneous
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Figure 4.1: Planes in waveguide for the calculation of reflection coefficient

values of the field at these planes are recorded at each time step. Then either a fast

Fourier transform (FFT) or a discrete Fourier transform (DFT) can be performed in

order to obtain the field values at a range of frequencies either side of the modulating

frequency [Ma et al., 1994]. These values are then used to find the reflection coefficient

over the frequency range.

The reflection coefficient can be calculated from the field inside the waveguide. If

we assume that only a TE10 mode exists in the waveguide, then the transverse field is

described by [de Pourcq, 1984],

Etr = (Ae−βz + Beβz)

√
2

ab
sin

πx

a
ĵ (4.1)

Htr = − 1

Zw

(Ae−βz −Beβz)

√
2

ab
sin

πx

a
î (4.2)

where A is the amplitude of the forward travelling wave and B the amplitude of the

reflected wave travelling in the opposite direction. The constant β is the phase constant,

which for the TE10 mode in an air filled waveguide is given by,

β =

√
ω2µ0ε0 −

(
π

a

)2

. (4.3)

The
√

2
ab

term appears in equations (4.1) and (4.2) so that the integral over the wave-

guide cross section, S, of the TE10 mode eigenvector ~e is normalised [de Pourcq, 1984]
∫

S
|~e|2 dS = 1. (4.4)
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The reflection coefficient is given by the ratio of reflected to forward waves,

ρ =
B

A
e 2βz, (4.5)

and the impedance as seen looking towards the applicator from the reference plane is

given by [Collin, 1992]

Z = Zw
1 + ρ

1− ρ
, (4.6)

where Zw is the intrinsic characteristic impedance of the waveguide, given by

Zw = Z0
λg

λ0

. (4.7)

where λg is the waveguide wavelength,

λg =
λ0√√√√1−
(

λ0

2a

)2
(4.8)

Considering the transverse component of the field at two planes z1 and z2 in the

waveguide, as shown in Figure 4.1, we get from equation (4.1)

A =

√
ab

2

1

sin πx
a

[
Ey(x, y, z1)e

−βz1 − Ey(x, y, z2)e
−βz2

e−2βz1 − e−2βz2

]
(4.9)

B =

√
ab

2

1

sin πx
a

[
Ey(x, y, z1)e

+βz1 − Ey(x, y, z2)e
+βz2

e+2βz1 − e+2βz2

]
(4.10)

where Ey(x, y, z1) and Ey(x, y, z2) are point values of the electric field.

de Pourcq [1984] notes that better results can be obtained for the reflection coefficient

if Ey(x, y, z1) and Ey(x, y, z2) in equations (4.9) and (4.10) are replaced by integrals over

the cross section of the guide:

I1 =
∫

S1

{Ey(x, y, z1) · ~e} dS1, (4.11)

I2 =
∫

S2

{Ey(x, y, z2) · ~e} dS2. (4.12)

This ensures that only the field values corresponding to the TE10 mode are used: it also

solves the problem of where on the cross section to select Ey(x, y, z1) and Ey(x, y, z2).
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Substituting from (4.1) into (4.11) produces,

I1 =
∫

S






(Ae−βz1 + Beβz1)

√
2

ab
sin

πx

a


 ·




√
2

ab
sin

πx

a






 dS

= Ae−βz1 + Be βz1 (4.13)

and similarly for I2. Therefore, rearranging gives

A =
I1e

−βz1 − I2e
−βz2

e−2βz1 − e−2βz2
(4.14)

B =
I1e

+βz1 − I2e
+βz2

e+2βz1 − e+2βz2
(4.15)

In order to simplify the calculation of the integrals (4.11) and (4.12) the mesh used

for the discretisation is constructed such that there are a number of x-y planes in the

waveguide formed by element faces: that is no elements are cut by these planes. The

tangential field on these planes is therefore described entirely by the edges of the mesh

that lie on the plane. For each triangular face that lies on the plane the integral over

that face is found using quadrature integration [Ciarlet, 1978]. If the midpoint of an

edge, i, belonging to a triangular face, f , is given by (xi, yi, zi) then the integral (4.11)

over that face is given by

If =
A

3

3∑

i=1

{
wi(xi, yi, zi) · ĵ

}
sin

(
πxi

a

)
ei, (4.16)

where A is the area of the face. The integrals (4.11) and (4.12) are then calculated from

the summation of the integrals over each face on two different planes respectively. Four

points inside the face are used for the integration over the faces of hexahedral elements.

As an alternative it would be possible to calculate the integrals from the smoothed

solution (see §2.6) rather than from the edge values.

4.3 Power Calculation

The power density can be obtained directly from the electric field using the simple

expression [Metaxas & Meredith, 1983],

pv =
1

2
σe|E|2 W m−3. (4.17)
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The electric field values calculated by the finite element method, however, will be nor-

malised to some value depending on the technique used to apply the boundary condi-

tions. To proceed with a temperature calculation it is necessary to know absolute values

of the power density. This can be achieved in one of two ways. One approach is to find

the absolute values of the electric field from which the power density can be found. This

requires knowledge of the magnitude of the field at some point in the domain, say in

the waveguide feed. This can be calculated if the power flowing in the guide is known.

The other method is to consider the total power dissipated inside the cavity and match

that to the total power that is supplied.

4.3.1 Power Calculation by E-Field Scaling

The power flowing in the waveguide is given by the integral of the Poynting vector over

the cross section of the waveguide,

P =
1

2
<e

∫ a

0

∫ b

0
E×H∗ · ẑ dy dx. (4.18)

Substituting the E and H fields for the TE10 mode using equations (4.1) and (4.2) and

considering only the forward wave gives,

Pf =
1

2
<e

∫ a

0

∫ b

0
−Ey H∗

x dy dx,

=
1

2Zw

<e
∫ a

0

∫ b

0
Ey E∗

y dy dx,

=
|A′|2
2Zw

(4.19)

where A′ is the magnitude of the forward wave at power Pf . If the supplied power Pf

is known then the electric field can be scaled using the magnitude of A obtained from

equation (4.14),

E = Ê

√
2ZwPf

|A| , (4.20)

where Ê is the normalised value of the electric field obtained directly from the finite

element solution. The power density calculated from this E field will be absolute values.
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Figure 4.2: Power flows when an iso-circulator is used

4.3.2 Power Calculation by Scaling Total Power

The absolute values of the power density can also be found by calculating the total

power dissipated in the material and relating this to the power being supplied to the

cavity. Having found the reflection coefficient in the feed waveguide the power dissipated

in the cavity, Pdis, can be determined from,

Pdis = Pf (1− |ρ|2), (4.21)

where Pf is the forward power supplied by the magnetron, as shown in Figure 4.2. The

field inside the cavity can now be scaled so that the power calculated from the integral

of equation (4.17) over the cavity,

P =
1

2

∫

Ω
σe|E|2dΩ, (4.22)

is equal to the power calculated from equation (4.21). A scaling factor, ξ, is defined

such that

ξ =
Pdis∫

Ω
p̂v dΩ,

(4.23)

where p̂v is the power density obtained from the normalised electric field. All values of

p̂v can then be scaled by this factor,

pv = ξp̂v, (4.24)



4.4 Gaussian Pulse Excitation 91

to give the absolute values of the power density. The electric field may also be scaled

by

E =
√

ξ Ê. (4.25)

to give actual values of the electric field. This technique has the advantage that the

actual power dissipated in the material can be controlled exactly. However, this form of

scaling can only take place when lossy materials are present in the cavity. The method

uses ρ rather than the wave amplitudes A and B which may improve the accuracy

slightly. If the calculated values of A and B are both in error by a constant factor then

this will cancel when ρ is formed. This could occur if the integrals I1 and I2 which are

calculated from the field solution contain such an error.

4.4 Gaussian Pulse Excitation

Gaussian pulse excitation is a commonly used technique for obtaining the response of

a system at a range of frequencies from a single time domain calculation. The pulse is

modulated with a frequency at the centre of the range of interest. Figure 4.3 shows a

typical pulse in both the time and frequency domains. This particular pulse has been

modulated at 2.45 GHz and produces a 3 dB bandwidth of approximately 300 MHz.

This is significantly larger than the allowable tolerance on the magnetron operating

frequency of ±50 MHz.

Application to microwave heating was suggested by Ma et al. [1994] who used this

method of excitation conjunction with the FDTD technique. For the TDFE method

described in this thesis the excitation is applied via a current sheet in the feed waveguide

(see Figure 2.3). The system is then time stepped until either the fields have all decayed

to zero or a sufficient number of cycles has been reached. For simple, non-resonant

systems the fields die away quickly, especially when a lossy material is present. Figure 4.4

show the results of applying a Gaussian pulse excitation to a short circuited waveguide,

shown in Figure 4.4(a). The open end of the waveguide was terminated in an ABC

(see §2.5.1) and a current sheet placed 20 mm into the guide. Figures 4.4(b)–(d) show

the amplitude of the field at a point 40 mm into the guide. When the waveguide is

empty, that is with no dielectric present, the trace shows two pulses. The first pulse
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Figure 4.3: Typical Gaussian pulse modulated at 2.45 GHz.

is due to the forward travelling wave while the second is the reflection from the end of

the guide. When the end of the guide is filled with a glass dielectric the trace shows

different characteristics due to the reflections from the air-glass interface. When a

wooden dielectric is used which contains substantially more loss, then the oscillations

die away more quickly. After 25 or so cycles the fields in the waveguide have decayed

practically to zero with all the loadings and the calculation is terminated.

Once the system has settled a discrete Fourier transform (DFT) [Ludeman, 1987]

can be taken of the time domain fields in order to obtain the response at individual

frequencies. In practice, however, storing all the values of the field at each time step

would require an enormous amount of disk space so the DFTs at selected frequencies

are accumulated during the time stepping process.

Similarly, it is often required to calculate the reflection coefficient at a range of

frequencies instead of storing all the field values required for this, the integrals (4.11)

and (4.12) are found at each time step so that only one value per integration plane per

time step needs to be stored. A DFT is then performed on these values so that the

reflection coefficient can be found at the desired frequency. In order to speed up the

calculation a series of weights are determined before the time stepping begins, so that
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(b) Glass Dielectric (ε = 4.0−0.001)
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Figure 4.4: Time history of the field at a point inside a waveguide for different termi-

nations and excitation with a Gaussian pulse.

the integrals (4.11) and (4.12) can be calculated from

I =
p∑

i=0

wiei (4.26)

where ei is an edge on the integration plane and wi is the corresponding weight.

The fields in Figures 4.4 settled very quickly so the calculation could be stopped

after only a few cycles, however, this is not always the case. When the system contains

resonances with a high Q-factor the fields take considerably longer to settle. Collin

[1992] defines a damping factor δ given by,

δ =
ω

2Q
. (4.27)
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Figure 4.5: Field inside the waveguide feed of a multimode cavity loaded with a plastic

slab (80 time steps per cycle, 300 cycles).

This determines the rate of decay of the stored energy, W , in the system after any

excitation has been removed,

W = W0e
−2δt. (4.28)

The inverse dependence of the damping factor on the Q shows that a large number of

cycles will be required for the fields to fall to a level which can be taken as zero when

modelling high Q-factor systems. The damping factor also determines the time the

fields take to build up in the cavity [Collin, 1992]. Therefore, steady state conditions

will take a long time to be reached for high Q systems. For the FDTD method Taflove

[1988] suggests that a number of cycles equal to the Q-factor are required to achieve a

steady state solution.

Figure 4.5 shows the field at a point in the waveguide feed of a multimode cavity

loaded with a slab of plastic (see §6.6). The field does not decay to zero in the same

way that it did for the waveguide examples above. This has important consequences
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when carrying out the DFT, which is given by

Fi(ω) =
p∑

n=0

ei(n∆t)e−ωn∆t (4.29)

where ei(n∆t) is the value of the field on edge i at a time n∆t. If ei(n∆t) = 0 for

n ≥ p then the summation (4.29) can effectively be carried out to n = ∞. The degree

to which individual frequencies can be resolved is given by

∆f =
1

p∆t
=

f0

s
, (4.30)

where s is the number of cycles at frequency f0 for which system has been time stepped.

It can be seen that when p remains finite there is a limit to the frequency resolution

that can be obtained. For example, if we modulate the pulse at 2.45 GHz and time step

for 300 cycles then the frequency resolution, ∆f , will be 8.16 MHz.

For cavity problems, where the fields take a long time to decay, a large number of

cycles are required in order to accurately determine the field at a given frequency. It will

be seen in Chapter 6 that for a lightly loaded cavity the system can be very sensitive to

small changes in frequency so that it is necessary to be able to discriminate between two

frequencies close together. For more heavily loaded cavities the field pattern is much

less sensitive to frequency so good frequency resolution is less of a requirement.

4.5 Signal Processing Techniques

The large number of cycles required to achieve good frequency resolution is common to

all time domain methods. Recent work by several authors has attempted to reduce this

requirement by using signal processing techniques such as linear predictors or system

identification methods. Chen et al. [1994] claim improvements of up 90% in efficiency

when using linear and non-linear predictors with the FDTD method. A number of cycles

of the FDTD solution are used to train the predictor which is then used to generate

further time domain information. Eswarappa & Hoefer [1994] have used autoregressive

and spectral estimation techniques in conjunction with the TLM method to gain a five

times speed increase for the analysis of microwave circuits.



96 Calculation of the Reflection Coefficient and Absorbed Power

Another alternative, the system identification method, has been proposed by Kümpel

& Wolff [1994]. The time domain information from a number of cycles is used to deter-

mine the coefficients of an equivalent digital filter that is used to represent the system.

Once the coefficients have been found the filter can be used to generate further time

domain data or alternatively, the frequency response of the system can be determined

directly from the coefficients. Other techniques, such as Prony’s method [Ko & Mittra,

1991] or the MUSIC algorithm [Bi et al., 1992] may also be used.

The problems given as examples in the above papers tend to be considerably simpler

than the case of a large multimode cavity loaded with a lossy dielectric. It remains to be

seen whether these techniques may be successfully applied to the problem of microwave

heating. For systems that require many time steps at present these methods would

appear to offer a considerable saving in computational cost.



Chapter

5 Results: Single Mode Cavities

5.1 Introduction

This chapter presents results for single mode resonant cavities. While the use of these

applicators is not as widespread as the multimode type they still play an important

role for specialist applications. The field pattern can often be obtained analytically

for the isolated cavity, however, when coupled to a waveguide system via an aperture

this is not the case. Both cylindrical and rectangular cavities will be considered with

comparisons to experimental data being made in order to assess the accuracy of the

solution. Two of the problems, the waveguide loaded cavity (§5.2.1) and the cylindrical

cavity (§5.3) are TEAM1 problems. This allows the results obtained here to be compared

to solutions by other workers using different methods. Comparison with empirically

obtained data often poses certain difficulties due to the inability to accurately model the

experimental geometry or to measure accurately material properties. Comparison with

other numerical methods therefore allows the method to be tested against a solution

for which exactly the same geometry and material properties were used. Ultimately,

however, comparison with experiment is necessary to verify the underlying assumptions.

1TEAM (Testing Electromagnetic Analysis Methods) problems started as a means of aiding in the

development and validation of 3D eddy current problems but have now expanded to include other

electromagnetic problems [Bossavit & Chaussecourte, 1994].
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Figure 5.1: Cutaway diagram of waveguide loaded cavity.

5.2 Rectangular Cavities

Two different rectangular cavities were modelled, both being of TE101 type. Firstly

TEAM problem 19 was studied allowing the method to be compared to another compu-

tational method. Then an experimental TE101 was modelled so that comparisons with

empirical data could be made.

5.2.1 Waveguide Loaded Cavity: TEAM Problem 18

TEAM problem 18 consists of a waveguide containing an iris so that the end section

forms a cavity, as shown in Figure 5.1. This is not, strictly speaking, a microwave

heating problem. It does not involve lossy dielectrics and the frequency of interest for

this problem is 9.15 GHz, which is well above that normally used for heating applications.

However, it is a microwave problem for which results have been published so that results

can be compared. It is for this reason that it is included in this study. This problem

has been solved by Bardi et al. [1994b] using an A − ψ formulation with curvilinear

brick elements. Nodal shape functions were used for the scalar field and the longitudinal

component of the field while edge based shape functions were used for the transverse

component. They only provide graphical results for the particular case of t = a/32 and

d = 2a/8, (c.f. Figure 5.1) so it is this situation that is looked at first.

The mesh used, shown in Figure 5.2, consisted of 13,200 tetrahedral elements which
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Figure 5.2: Mesh used for TEAM problem 18, with t = a/32 (see Figure 5.1).

gave rise to a total of 18,135 edges of which 13,523 were free to vary. The problem was

solved in the frequency domain since a good frequency accuracy is required in order

to accurately calculate resonant frequency. A TE10 mode was prescribed on the open

end of the waveguide and the reflection coefficient calculated as from the field solution

(§4.2). The SIC-QMR method required approximately 260 iterations to reduce the

residual norm to 5 × 10−7 · ‖b‖, the exact number varying slightly with the excitation

frequency. The small number of iterations meant that a single solution at one frequency

took only a few minutes to complete. The calculated phase of the reflection coefficient

at the input plane is shown in Figure 5.3(a). The calculations were performed for 50

different frequencies and took a total of 109 minutes on a Sparc-10 workstation. This

gives an average of 2.18 minutes per frequency. Figure 5.3(a) also shows the results due

to Bardi et al. [1994b] which show the resonance at a slightly lower frequency. The field

distribution is shown in Figure 5.4. The peak magnitude of the field inside the cavity

is nearly 30 times the value of the field applied at the input plane.

The magnitude of the reflection coefficient is unity at all frequencies since the system

is lossless. The phase, however, varies with frequency undergoing a 360◦ shift as the

resonance is passed. The reflection coefficient is measured at a plane in the waveguide

but because of the intrinsic impedance of the waveguide the phase will be dependent

upon the position of this plane. Since the position of the input plane is somewhat

arbitrary Bardi et al. [1994b] suggest the use of a reference plane, see Figure 5.5, which is

positioned such that the phase angle of the reflection coefficient, measured at this plane,
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Figure 5.4: Magnitude of the electric field at the resonance, t = a/32 and d = 2a/8.

ρ ρ

Figure 5.5: One port model of the waveguide and cavity (after Bardi et al. [1994b]).
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is symmetric about the zero axis. This makes identification of the resonant frequency of

the cavity straightforward. Finding the position of this plane is computationally cheap

since it does not require any further field calculations. Having found the reflection

coefficient at the input plane using the techniques described in Chapter 4 the phase at

any plane, z, can be found from

ρref = ρinpe
2βz. (5.1)

It can be seen from equation (5.1) that there will be series of planes, λg/2 apart for

which the reflection coefficient will have zero phase at the resonant frequency of the

cavity. Figure 5.3(b) shows the phase of the reflection coefficient at two different planes,

one at z = 3.98 mm and the other at z = 27.44 mm. The latter is actually inside

the iris, so it is debatable whether this is a valid choice of plane since it is no longer

in the waveguide. Bardi et al. do not give the position of the reference plane used

for their results, which are also shown in Figure 5.3(a). One can note from the graph

that when the plane at 27.44 mm is chosen the frequency response either side of the

main resonance is flat. This is to be expected since here only the cavity is affecting the

response. At 3.98 mm the phase angle away from the parallel resonance reduces with

increasing frequency due to the impedance of the waveguide. The calculated resonant

frequency for this problem is 9.180 GHz, whereas Bardi et al. [1994b] give 9.1685 GHz,

which corresponds to a difference of only 0.125% indicating good agreement between

the two methods.

A second problem was modelled, this time with t = 0 and d = 2a/8, the results

are shown in Figure 5.6. Here the resonant frequency was calculated as 9.1734 GHz

whereas Bardi et al. [1994b] give 9.1519 GHz in this case, a difference of 0.235%. In

addition to the frequency domain method this problem was also solved using the time

domain technique in order to compare the results and observe the effect of changing

the size of the time step. Three different time steps were used, corresponding to 20, 40

and 60 steps per cycle at 9.15 GHz. Figure 5.6 compares the time domain results with

the frequency domain results for the phase at both the input plane and the reference

plane. The time domain solution was excited by a Gaussian pulse modulated at 9.15

GHz and then run for 500 cycles at this frequency. This allows a frequency resolution of

18.3 MHz, giving 16 different frequencies in the range 9.0 to 9.3 GHz. One of the major
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problems with solving this type of problem in the time domain is that the fields decay

very slowly, requiring a large number of time steps to get good resolution. It is clear

from Figure 5.6 that as the time step is reduced the accuracy of the solution is increased,

which is to be expected. Table 5.1 shows the discrepancy between the frequency domain

solution and the time domain solution, even at 20 time steps per cycle the difference

between them is less than one percent. It is interesting to note that as the number of

steps per cycle is increased the number of iterations required per time step is reduced

significantly. This is due to the reduction in the contribution from the [S] matrix to

the matrix that requires solution. This has the effect reducing the solution time for the

smaller time steps: doubling the steps per cycle does not double the solution time.

Steps / cycle Iterations per Resonant Discrepancy Solution Time

time step Frequency (minutes)

Frequency Domain — 9.1734 — 109

20 8 9.1035 0.762% 253

40 4 9.1589 0.158% 341

60 3 9.1706 0.031% 445

Table 5.1: Comparison of frequency domain (50 frequencies) and time domain calcula-

tions (500 cycles).

5.2.2 Experimental TE101 Applicator

This cavity is similar to TEAM problem 18 but the dimensions are such that the res-

onance occurs near to 2.45 GHz and the cavity is loaded with a lossy dielectric. The

applicator, shown in Figure 5.8, was used to obtain empirical values for the reflection

coefficient. The cavity had a plunger which can be moved by virtue of being connected

to a screw thread. The iris was formed by using two thin metal plates sandwiched

between the flange at the open end of the cavity and the adjoining waveguide, with a

width of 28.6 mm. The applicator itself had a cross section of 86 × 43 mm, which is

a standard waveguide size (WG9A) for this frequency. Two different plunger positions

were used, giving cavity length of 75 mm and 80 mm. The cavity was loaded with a
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Figure 5.7: Magnitude of reflection coefficient for the TE101 cavity loaded with a tufnel

rod for two different cavity lengths.
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Figure 5.8: Photograph of the experimental TE101 cavity.

tufnel rod, 10 mm in diameter and placed so that its axis was 50 mm from the aper-

ture. The dielectric properties of the tufnel were measured using a cavity perturbation

technique to be εr = 3.275− 0.193.

Figure 5.7 compares the magnitude of the reflection coefficient for the experimental

and calculated results for both plunger positions. The calculated values of the resonant

frequency are ∼ 1.6% higher than the empirical ones. A possible reason for this discrep-

ancy is the presence of wall losses in the real system. Figure 5.9 shows the magnitude of

the reflection coefficient for the empty cavity, where a significant dip is recorded at 2.5

GHz. The finite element method will always give a magnitude of unity for the reflection

coefficient of the empty cavity when the walls are assumed to be perfect conductors. The

low value of the reflection coefficient at 2.50 GHz would suggest that, for this applicator,

the wall losses are significant. The calculated magnitude of the reflection coefficient is

significantly higher than the experimental value. This may again be be due to either
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Figure 5.9: Experimental value of the magnitude of the reflection coefficient for the

empty TE101 cavity with the plunger set so the cavity length was 80 mm.

the wall losses or the inaccurate modelling of the iris. The iris plays a crucial role in

determining the impedance match between the feed and the cavity. Small changes in

the iris size can have a large effect on the coupling efficiency. This will be seen in the

next section when a TM010 cavity is studied.

This example clearly shows the sensitivity that a microwave system can have to

changes in dimensions. If a good accuracy is required then the system geometry must

be modelled accurately. This is one of the great strengths of the finite element method

for this type of problem.

5.3 Cylindrical TM010 Cavity

Two different TM010 cavities have been analysed; the TEAM problem number 19 [Dyczij-

Edlinger, 1994] and a cavity for which experimental results could be obtained. This

allowed comparisons to be made against both experimental data and published results

from different analysis techniques.
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Figure 5.10: Geometry of TEAM problem 19

5.3.1 TM010 Cavity: TEAM Problem 19

TEAM problem 19 consists of a cylindrical TM010 cavity coupled to a waveguide via

an iris. The geometry is shown in figure 5.10. Unlike TEAM problem 18, this is a true

microwave heating problem since the cavity is loaded with lossy material. The mesh

that was used to model the problem is shown in Figure 5.11, with only one half of the

problem being modelled. The mesh consisted of 5,080 prismatic elements producing

12,007 edges of which 8,415 were free to vary. The SIC-QMR took 340 iterations to

reduce the residual to 5× 10−6 of its starting value, corresponding to approximately 1.5

minutes per frequency on a Sparc-10.

The phase angle and magnitude of the reflection coefficient at the input plane for the

empty cavity is shown in Figure 5.12 for an iris width of 15 mm. The iris modelled was

assumed to be the full height of the waveguide feed. The resonant frequency being cal-

culated as 2.572 GHz. For this iris width Dyczij-Edlinger [1994] calculates the resonant

frequency as 2.545 GHz, which is 1.05% lower, however, the wall losses have not been

accounted for in the calculation given here whereas Dyczij-Edlinger includes them. The

insertion of extra loss into the system can be expected to reduce the resonant frequency

of the system slightly. Slight differences between the methods and the meshes used for

the calculation may also account for the difference, which is small.
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Figure 5.13: Phase and magnitude of the reflection coefficient of the TM010 cavity (iris

width = 1 5mm, load = 9 mm diameter plexiglass rod).

Figure 5.14: Magnitude of the electric field in the TM010 cavity near the resonance (iris

width = 15 mm, load = 9 mm diameter plexiglass rod).
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Figure 5.15: Phase and magnitude of the reflection coefficient of the TM010 cavity for

two different iris widths (load = 9 mm diameter PVC rod).

A calculation was then performed for the cavity loaded with a 9 mm diameter plexi-

glass rod, a problem which has also been solved by Sekkak et al. [1994]. The magnitude

and phase of the reflection coefficient at the input plane are shown in Figure 5.13 and

the electric field distribution at resonance in Figure 5.14. The resonant frequencies

calculated by various authors for a 15 mm iris and plexiglass load are tabulated below,

Source fr GHz

This study 2.498

Dyczij-Edlinger [1994] 2.465

Sekkak et al. [1994] 2.480

The three values are all very close being within 1.4% of each other.

Finally, the cavity was loaded with a PVC rod, also of 9 mm diameter and the

reflection coefficient calculated. This time however, two different iris sizes, 15 mm and

22 mm, were used. The results are shown in Figure 5.15. When an iris of 15 mm is

used the coupling to the cavity is very poor, giving rise to a large reflection coefficient.

The situation improves considerably when an iris width of 22 mm is used, however, the

reflection coefficient is still large with 40% of the incident power being reflected. If this

cavity was to be used for a real microwave heating problem then further optimisation
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Figure 5.16: Photograph of TM010 cavity showing connection to the network analyser

for measurement of the reflection coefficient.

of the iris width would be required to reduce the amount of reflected power. The larger

iris width also has the effect of reducing the resonant frequency slightly.

5.3.2 Experimental TM010 Cavity

The dimensions of the cavity are shown in Figure 5.17. This cavity is smaller than that

used for the TEAM problem since it has been designed specifically for the heating of

liquids which have a strong loading effect on the cavity. The unloaded resonant frequency

of the cavity is 3.28 GHz which allows the frequency of the loaded cavity to be close

to 2.45 GHz. The waveguide flange of the cavity was connected to a tapered section

of waveguide 208 mm long that increased the waveguide cross section to 86 × 43 mm

(WG9A). This was so that the cavity could be connected to the rest of the experimental

system that uses WG9A. The cavity was meshed using prismatic elements, as shown in

Figure 5.18 which enabled the available commercial mesh generation software to be used

[Femsys Ltd., 1993]. The electric field solution is shown in Figure 5.19 for excitation

at 2.45 GHz and where the cavity is loaded by a quartz glass tube (εr = 4− 0.001) of



5.3 Cylindrical TM010 Cavity 113

Figure 5.17: Dimensions of TM010 cavity

external diameter 6 mm and internal diameter 2 mm containing water (εr = 77−12). A

strong resonance can be observed inside the cavity and a low standing wave ratio in the

waveguide feed showing that the energy is being effectively coupled into the water load.

Figure 5.20 shows the magnitude of the reflection coefficient at a number of different

frequencies and compares the calculated and empirical values. In order to determine

the reflection coefficient experimentally the cavity was connected to a Hewlett Packard

network analyser, as shown in Figure 5.16. The network analyser was calibrated, using

a waveguide calibration kit, so the reference plane was located on the flange of the co-ax

to waveguide transition.

The calculated reflection coefficient has a minimum which is both at a lower fre-

quency and lower in magnitude than the experimental system. The resonant frequency

is approximately 1.8% too low whereas the percentage difference in the magnitude at

resonance is much greater. For the purpose of the calculation it was assumed that water

has a relative permittivity of 77−12, which is that of pure water [Metaxas & Meredith,

1983], whereas ordinary tap water was used for the experiment. The difference in ma-

terial properties may account for some of the difference. A more probable cause for this

discrepancy is the nature of the iris. The cavity used for the experiment had an iris with
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Figure 5.18: Prismatic mesh used for modelling TM010 cavity.

Figure 5.19: Electric field amplitude TM010 cavity, normalised so that |E| = 1 at the

input plane.
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Figure 5.20: Calculated reflection coefficient for TM010 cavity loaded with a glass tube

containing water

rounded corners whereas the model assumed the iris to be rectangular. This assumption

was made because the mesh generation software available was incapable of modelling

the curved iris. This may make the iris in the model appear larger, so increasing the

loading on the cavity due to the iris and consequently reducing the resonant frequency.

5.4 Conclusions

The results in this chapter have indicated that the resonant frequency of single mode

applicators loaded with lossy material can be calculated to within 2% of the true value

using the finite element method. For lightly loaded cavities the wall losses may be

significant in determining the behaviour of the cavity so for future calculations their

inclusion should be seriously considered. The results have also shown that a simple

treatment of the iris, with only slight mesh refinement in its vicinity, will produce

reasonable results. However, to improve the accuracy it will be necessary to improve

the quality of the meshes, particularly around the iris.

It is clear that, for most solutions, the frequency domain method is to be preferred

for single mode applicators. The time taken to obtain a solution at a single frequency is

considerably less than for the time domain method. In certain situations, where results
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at a large number of frequencies over a fairly wide range are required, then the time

domain method starts to look more attractive. The results do show that as the time

step is reduced in size the results for the time domain method approach those of the

frequency domain, with a difference of only 0.03% when 60 steps per cycle are used.

Comparisons with other numerical methods show differences as low as 0.125%,

whereas comparisons with experiment show errors of 2% for the resonant frequency.

This suggests that the numerical method implemented here is performing as well as

other methods, however, discrepancies between calculation and experiment still remain.



Chapter

6 Results: Multimode Cavities

6.1 Introduction

The modelling of multimode cavities has many difficulties and it is vital therefore that

the solutions obtained from any numerical model are compared to experimental work. It

also useful in many cases to compare the results from different numerical techniques since

many quantities cannot be measured accurately experimentally. There is a noticeable

lack of published results for field patterns in multimode cavities. Several papers have

outlined methods that are claimed to be applicable to multimode cavities but either show

no results or restrict their work to problems other than multimode systems [de Pourcq,

1984; Sekkak et al., 1994] Of the papers that do publish results they often do not include

experimental verification for their work [Jia & Jolly, 1992], so that it is difficult to assess

the applicability of their results to real multimode cavities.

This chapter presents some results for multimode cavities produced using the time

domain finite element method described in Chapter 2. Wherever possible verification

with experimental data has been made. This takes the form of either comparisons

between thermal images take of a heated load or the comparison of reflection coefficients

measured using the network analyser. Firstly, food-like materials are modelled since they

are representative of the major use for microwave heating with multimode applicators.

The results for the plastic block demonstrate some of the problems encountered with low



118 Results: Multimode Cavities

loss materials. The results are seen to be very sensitive to small changes in frequency

and to changes in the dielectric properties of the material.

6.2 Mesh Generation

The mesh generation for problems in the previous chapter was carried out using a

commercial package designed for problems in structural mechanics. This was found to

be unsuitable for many multimode cavity problems since it did not allow the localised

refinement in regions of a three-dimensional mesh. A very simple mesh generation

program was written specifically to overcome this problem. It is, however, restricted

to roughly rectangular geometries but allows localised refinement. A brief description

is included here since mesh generation is an integral part of the solution of multimode

cavity problems using the finite element method.

Quality mesh generation is a fundamental requirement for all finite element methods.

One of the major benefits of using the finite element method over simpler finite differ-

ence schemes is its ability to use an unstructured mesh. As well as conforming to the

geometry, unstructured meshes allow a fine mesh to be used in specified regions. This

is particularly important when modelling food like materials, which can have dielectric

constants with real parts in the range 30 – 80 at 2.45 GHz giving wavelengths of 1 – 2

cm inside the material. The free space wavelength inside the material being given by

λε =
λ0√

ε
. (6.1)

The smaller wavelength inside a dielectric material means that variation of the field with

distance is greater. In multimode cavities the wavelength gives only a rough guide to the

variation of the field since many other factors play an important role in determining the

distribution. Furthermore, a large effective conductivity will produce rapid attenuation

of the field near the surface of the dielectric. These two factors mean that the mesh

discretisation inside the food load needs to be much finer than in the air for a comparable

accuracy. If the whole cavity volume is filled using a fine grid the computational cost

becomes enormous. The use of an unstructured mesh allows a fine mesh to be used in

the dielectric and a coarse mesh elsewhere.
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Figure 6.1: Typical mesh for a microwave cavity, one quarter of the cavity is modelled

Many commercial mesh generation programs are available, however, they are of-

ten not well suited to producing the three dimensional meshes required for microwave

heating problems. Consequently a simple mesh generation program has been written

that combines the multi-block [Dawes, 1992] and octree approaches to mesh generation

[George, 1991]. The region to be meshed is divided into a number of blocks, a structured

mesh is then constructed using an octree method for each block. The structured mesh

is then warped to conform the real world geometry of the problem. This method has

many disadvantages, being restricted to very simple geometries, however, it is very fast

and allows refinement in specified areas and is thus superior to the commercial programs

that were available. Figure 6.1 shows a typical mesh that can be generated for a cavity

problem containing a dielectric load. For this problem only one quarter of the cavity

has been modelled. Note that the mesh has been refined around the load and around

the aperture where the waveguide enters the cavity.

The octree mesh generation technique based on the method proposed by Mitchell

& Vavasis [1992] was initially used to divide each octree block into tetrahedra. Their

method is designed in order to produce a mesh of guaranteed quality, that is the elements
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so generated have an aspect ratio which is the best possible up to a constant. In order

to ensure compatibility between adjacent octree boxes, nodes are inserted on the centre

of each face and in the centre of the box. In this way all faces appear identical ensuring

compatibility between boxes of the same size. This method does, however, suffer from

a major disadvantage. The insertion of these extra nodes means that each octree box

is divided into 24 tetrahedra, each of which have an edge equal in length to the size

of the box on that face. The method used by Webb [1981] divides a hexahedron into

five tetrahedra, the longest edge being equal to
√

3 of the box size. The former method

obviously will produce considerably more elements for given edge length. Therefore the

mesh will contain more edges and substantially increase the amount of work required

to obtain a solution of a given accuracy. Another difficulty with Mitchell & Vavasis’s

method is that at the boundary between an octree box and four of half its size several

poorly shaped elements elements can be produced. The major advantage being ensured

compatibility between octree boxes. Webb’s scheme was adopted to reduce the number

of unknowns for a given discretisation.

Better schemes are available for generating meshes, most notably those based on the

Delaunay property. These meshes have particular advantages for edge element based

calculations [Haugazeau & Lacoste, 1993]. However, these approaches while being more

flexible are considerably more complicated and research into effective algorithms for

three dimensional fully automatic mesh generation is continuing. The development of

more general tools was considered to be outside the scope of this work.

6.2.1 Adaptive meshing

When considering the degree of mesh refinement necessary in different regions it was

suggested above that a finer mesh is required inside the dielectric. This comes form a

consideration of the underlying equations. It is also possible to let the field solution

drive the mesh generation: a process known as adaptive mesh refinement. The problem

is solved on a coarse mesh to obtain an approximate solution from which the error can

be estimated. The mesh is then refined in those areas where the error is deemed to be

too high and the process repeated. Since the true solution is unknown the errors can

only be estimated, for example Golias et al. [1994] use the discontinuity in the flux
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between two adjacent elements as a measure of the error.

The simple case of a finer mesh being used in regions of higher dielelectric properties,

as dictated by equation (6.1), can produce an unnecessarily large number of elements.

When the load has a high loss factor then the field in a large portion of it will often be

close to zero, with large variations in the field confined to the surface. It is unnecessary

therefore to use a fine mesh in the centre of such a load. This is the advantage of using

an adaptive technique: the fine areas of mesh can be targeted to where they are most

effective.

More work is required in the field of adaptive refinement applied to microwave heating

problems as it has the potential for producing significant gains in accuracy while reducing

the computational cost of the problem. The time domain method described in this thesis

would appear ideally suited to the adaptive process because an approximate solution

can be obtained very quickly: it will be unnecessary to allow the field to fully settle

before estimating the refinement required.

6.3 Experimental Setup

The experimental apparatus used is as shown in Figure 6.2. A magnetron source operat-

ing at a nominal frequency of 2.45 GHz supplies power to the cavity via an iso-circulator.

The iso-circulator is used to absorb any reflections from the cavity. The cavity used has

internal dimensions of 391 mm × 292 mm × 300 mm and is centrally fed from the top

by a waveguide 86 mm × 43 mm in cross section (WG9A). The cavity is of a size com-

parable with the smaller industrial microwave applicators used for batch processing of

loads. To determine the power density distribution within the heated plastic a thermal

image of the surface was taken after heating. The heating period was kept short to limit

the temperature rise and so prevent a significant change in dielectric properties.

A directional coupler was placed in the waveguide feed to the cavity, as shown

in Figure 6.2, the output from which was connected to a Hewlett Packard spectrum

analyzer. The coupler is described in Appendix B.
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Iso-Circulator

Microwave
source

Cavity
Coupler

Spectrum Analyser Thermal Imaging System

Figure 6.2: Experimental setup

6.3.1 Thermal Imaging Technique

In order to determine the surface temperature of the heated loads an Agema infra-red

camera was used. The cavity set up was such that it was not possible to take an image

during the heating process, rather it was necessary to remove the load form the cavity

and place it beneath the camera which was mounted on a tripod, as shown in Figure

6.3. The process of transferring the load from the cavity to a position suitable for

taking the thermal image was fast, only requiring a few seconds. However, because the

image could not be taken in situ, loads with low thermal conductivities were chosen to

minimise the temperature changes during transit. The camera was connected directly

to a host computer where the images were stored for later retrieval. Since the images

were stored in an electronic form it was possible to use the same graphics package for

displaying both the thermal images and calculated results. This gives a uniformity of

representation that makes comparisons easier.

6.4 Mashed Potato Loaded Cavity

Multimode cavities are often used for the heating or re-heating of food-like materials

which generally have both large permittivities and large effective conductivities due to
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Figure 6.3: Infra red camera used to obtain the thermal images.
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°

°

Figure 6.4: Thermal image of upper side of mashed potato after heating for 20 seconds.

a combination of high water content and dissolved salts. The load that was selected

had to have certain properties to allow an accurate comparison between experiment and

theory. A liquid load, for example water, was ruled out because of the convective mixing

that would occur. This would make it impossible to determine the power density distri-

bution from the temperature rise. A material with a low thermal conductivity was also

required so that the surface temperature would be representative of the surface power

density. The load also had to be a homogeneous material and of a simple geometric

shape, in order that geometrical factors could be discounted in any discrepancies be-

tween numerical and experimental results. Mashed potato was selected as fitting these

requirements. The dielectric properties of several samples were measured using a HP

dielectric measurement probe and was found to have an average value of εr = 65−20 at

room temperature. The instant mashed potato used was reconstituted with hot water,

thoroughly stirred to ensure its homogeneity, and allowed to cool before being heated

in the cavity. The dry form of the potato is a fine powder enabling good homogeneity

to be obtained. The potato is liquid enough to easily conform to the boundaries of the

container in which it is put and viscous enough to prevent any convective mixing from

occurring.

The mashed potato was placed into a thin plastic tray 210 mm long by 90 mm
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Figure 6.5: Cavity geometry showing the position of mashed potato.

wide to a depth of 30 mm. This was then placed centrally inside the cavity, the longer

edge of the tray being aligned with the longer side of the cavity, as shown in in Figure

6.5. The cavity had dimensions of 391 mm × 292 mm × 300 mm and was fed from a

waveguide of dimensions 86 mm × 43 mm placed centrally at the top of the cavity with

the longer edge of the waveguide aligned with the longer edge of the cavity. The sample

was then heated using different powers and for various lengths of time. The heating

pattern was found not to change with either heating duration or power. A thermal

image of the top surface is shown in Figure 6.4. The power is concentrated at the ends

of the tray where very strong heating occurred. Localized boiling occurred here if the

heating continued for more than 25 seconds. The power density pattern produced is

clearly highly non-uniform.

The loaded cavity was modelled using a mesh which contained 45,364 tetrahedral

elements producing 59,111 edges. This mesh produces systems which have 51,388 un-

knowns in the frequency domain and 51,473 in the time domain. The slight difference is

due to the different treatment of the open end of the waveguide feed. Only one quarter

of the cavity was modelled, with two planes of symmetry being used [Webb, 1981]. The

frequency domain discretisation of this problem was discussed at in Chapter 3 where

it was seen that the SIC-QMR algorithm took 67,000 iterations to reduce the residual
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Figure 6.6: Percentage change between successive cycles against cycle number for the

time domain solution of the mashed potato loaded cavity.

to 3.7 × 10−7 of its original value, taking 43 hours to complete. The problem was also

solved in the time domain with the SSOR-CG method requiring 5 iterations per time

step to reduce the residual to below 5 × 10−6 when solving equation (2.32). This gave

a solution time of 3 hours 40 minutes when the field was time stepped for 100 cycles at

2.45 GHz using 30 time steps per cycle. After 100 cycles the change between successive

cycles had fallen to 1.3%. Figure 6.6 shows the percentage change between successive

cycles of the field. Initially there is a large change as the fields inside the cavity become

established then the change becomes much smaller, however, in order to obtain good

accuracy many cycles are needed.

The electric field distribution on a vertical slice through the centre of the cavity is

shown in Figure 6.7. The standing wave pattern in the waveguide feed is clearly visible

along with a strongly non-uniform distribution inside the cavity. The position of the

tray of mashed potato is indicated at the bottom of the cavity and it can be seen that

the field inside the potato is very small compared to that inside the cavity. This is to be

expected given the high loss factor and high permittivity of the dielectric. The power

density at the top of the potato and for a vertical slice through the centre of the tray is
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Figure 6.7: Magnitude of the electric field at y=146 mm in the cavity loaded with

mashed potato.

Figure 6.8: Normalised power density on the topside and in the centre of the mashed

potato
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shown in Figure 6.8.

This example demonstrates the advantage of using the time domain method for

multimode cavities containing a lossy dielectric with a high permittivity. A solution

was achieved in under 4 hours compared to in excess of 40 hours for the frequency

domain method. Each of the time steps requires 2 matrix-vector products to assemble

the right hand side of equation (2.32) and then a quantity of forward and backward

substitutions equal to the number of iterations plus 2. For the mesh used here only

5 iterations per time step were required so that 2 matrix multiplications and 7 sets of

substitutions were needed per time step. Assuming that the matrix multiplications and

substitutions require a similar amount of work and that the additional vector operations

required at each time step are fast in comparison, this leads to a total cost equivalent of

27,000 matrix-vector multiplications for 100 cycles at 30 steps per cycle. This compares

in excess of 67,000 complex matrix-vector multiplications required for the frequency

domain solution. The complex matrix-vector multiplication requires 4 multiplication

and two addition/subtraction operations for each complex multiply. This accounts for

the very large difference in solution time, the time domain solution is over 11 times

faster, compared to the fairly small difference, only 2.5 times, in the number of matrix

vector multiplications. As noted earlier the number of matrix-vector multiplications is

generally a better indication of the efficiency of the method than simply the time taken.

This is because it is both machine independent and does not depend upon the degree

of optimisation obtained in the coding of the algorithm.

Time stepping could not be carried out with the lumped mass matrix (see §2.4.4)

for this mesh since negative entries on the diagonal of the [Tε] matrix were present in

the lumped matrix. This suggests that some elements in the mesh did not conform to

Delaunay’s empty sphere criteria. It was found impossible, with the mesh generation

routines available, to produce a mesh that contained the required localised refinement in

the potato and which allowed lumping to take place. If lumping is to be used for this type

of problem then better mesh generation algorithms will have to be employed. However,

even without the potential reduction in computation time that lumping will provide, the

time domain method still shows a considerable improvement over the frequency domain

method for this type of problem.
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° °

Figure 6.9: Thermal images and normalised power density at two x-y slices through the

pastry block.

6.5 Pastry Block

A second food like material was studied to look at the effects of a different geometric

configuration. A paste of wheat flour and water was formed into 8 mm thick layers which

were then stacked to form a block 110 × 100 × 40 mm. The layers were separated by

P.V.D.C. film (“cling” film) so that they could be separated easily after heating. The

dielectric properties of the block were measured as εr = 28− 8 using a Hewlett Packard

open-ended co-axial probe. The block was placed against the long wall of the cavity

such that it was 50 mm from the base of the cavity. The cavity used was the same as

that for the mashed potato experiment, shown in Figure 6.5. The mesh used for the

numerical calculation consisted of 143,520 tetrahedral elements, a finer mesh being used

in and around the pastry block.

The thermal images obtained from the experiment are compared to the finite ele-
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Figure 6.10: Reflection coefficient for the pastry block as a function of frequency.

ment solution in Figure 6.9. There are distinct similarities between the calculated and

empirical results, however, the match is not as good as that obtained for the mashed

potato. At the top of the block the heating is concentrated in the four corners, which is

correctly predicted by the model. The heating along the edge at the front of the block

(shown as the top side in Figures 6.9), however, is larger in the experimental result

than in the numerical one. Results at 2.4 GHz and 2.5 GHz were also calculated but

they showed no significant differences to the results presented in Figure 6.9. The large

loading that the pastry block represents will mean that the cavity is likely to have a low

Q-factor making it insensitive to small changes in the frequency.

The reflection coefficient was obtained for this problem by connecting the Hewlett

Packard network analyser to the cavity, via a calibrated co-axial to waveguide transition.

The value obtained in this way is compared to the numerically calculated value in Figure

6.10. The numerical result was obtained by exciting the system with a Gaussian pulse

and the taking a FFT of the resulting time domain fields. The two curves in Figure

6.10 show many similar features. The model assumed a perfectly rectangular cavity,

whereas in reality the experimental cavity had a number of surface irregularities in
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the walls of the cavity. These will cause a certain amount of discrepancy between

the measured and calculated values of ρ. The wall losses have also not been taken into

account in the numerical calculation. It is expected that these losses will be insignificant

compared to the losses associated with the pastry block. They do, however, constitute

a further difference between the experimental and model systems. This analysis shows

the potential of this method for calculating the reflection coefficient and field patterns

for multimode cavities loaded with food-like materials.

6.6 Plastic Block

6.6.1 Introduction

The heating of a slab of plastic material inside a multimode cavity has different charac-

teristics to the case of the mashed potato or pastry loaded cavities that were described

previously. It highlights many of the problems associated with both microwave heating

and the modelling of the heating process. Firstly, the temperature distribution pro-

duced inside the block is highly non-uniform. Secondly, since the plastic is a low loss

material the resonances inside the cavity are fairly sharp: that is the Q-factor of the

cavity is large. This leads to a system that is extremely sensitive to small changes in

the frequency, dimensions or material properties. This imposes tough demands on any

numerical method.

The cavity used was the same as that for the mashed potato, the dimensions of

which are shown in Figure 6.5. The plastic block had dimensions of 200× 200× 25 mm

and was placed centrally at the base of the cavity.

6.6.2 Experimental Results

The dielectric properties of the plastic were measured using a cavity perturbation tech-

nique [de Jongh, 1989]: a piece of the plastic was machined into a 4 mm diameter rod

which was then inserted into the centre of a TM010 cavity. The relative dielectric prop-

erties were determined as εr = 2.5 − 0.01 at 2.7 GHz1. The block was heated in the

1This frequency is determined by the size of the cavity which was already constructed and used

specifically for cavity pertubation techniques.
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Figure 6.11: Thermal image of the underside of the plastic block after 20 seconds of
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Figure 6.12: Spectrum of the magnetron source used for the experiments
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cavity for 20 seconds and then a thermal image, which is shown in Figure 6.11, was

taken of the underside of the block. Six hot spots are clearly visible, showing the highly

non-uniform heating that can be obtained in multimode cavities.

Since it was expected that the temperature distribution will be sensitive to small

changes in frequency the spectrum of the magnetron that supplied the power was mea-

sured to determine the actual operating frequency. The spectrum obtained is shown

in Figure 6.12 using the coupler described in Appendix B. There is a significant peak

at 2.455 GHz with a spectrum of frequencies below this. The lower frequencies have a

significantly lower power associated with them. However, it would still be possible for

them to affect the field distribution. If one of these frequencies coincides with a mode

that possesses a high Q factor, then only a small signal will be required to produce a

very large excitation of that mode. It is also to be noted that the dominant frequency

is not exactly 2.45 GHz, the nominal operating frequency of the magnetron. The small

difference in frequency may be sufficient in some cases to change the relative excitation

of the resonant modes, thereby altering the field distribution, which is indeed seen to

be the case for the plastic block.

6.6.3 Solution at a Single Frequency

In order to model the plastic loaded cavity a mesh containing 64,887 edges was used,

giving rise to 56,064 unknowns. The mesh had elements of roughly uniform size through-

out the whole domain since the plastic has a dielectric constant which is similar to that

of air. Unlike the mashed potato problem the matrices arising from the frequency do-

main discretisation are comparatively easy to solve. This is due in part to the smaller

variation in material properties that occurs with the plastic load. A single frequency

domain solution for this problem took 4 hours and 10 minutes to complete, requiring

4,784 iterations of the SIC-QMR algorithm to reduce the residual to 5×10−7 of its initial

value. This is an order of magnitude faster than the mashed potato problem which had

a similar number of unknowns. This reinforces the observation made in Chapter 3 that

large variations in material properties over the domain have a detrimental effect on the

condition number.

The problem was then solved using the time domain method with Gaussian pulse
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Figure 6.13: Comparison of four solutions for the normalised power density using the

same mesh for the plastic loaded cavity at 2.45 GHz.

Figure 6.14: Comparison of solutions for the normalised electric field magnitude on an

x-z plane through the centre of the cavity for excitation at 2.45 GHz.
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Figure 6.15: Reflection coefficient for two calculated solutions for the plastic loaded

cavity.

excitation (see §4.4) modulated at 2.45 GHz with 30 time steps per cycle. The solution

was time stepped for 300 cycles taking a total of 9 hours 15 minutes on the Sun Sparc-10

workstation. An average of 4 iterations per time step of the SSOR-CG method being

required. A further solution where 80 time steps per cycle were used was also carried

out, a calculation which required 23 hours and 40 minutes to complete. Figure 6.13

compares the power density in the plastic block obtained using the time domain and

frequency domain methods. The three patterns for the power density are all very similar,

the result for the time domain calculation at 80 steps per cycle being slightly closer to

the frequency domain one than that for 30 time steps per cycle. The magnitude of the

electric field on an x-z plane through the centre of the cavity is shown in Figure 6.14

for both the time domain and frequency domain solutions. The peaks in the centre of

the cavity are slightly higher for the frequency domain calculation but otherwise the

solutions are identical. These results raise several points.

• The predicted power density patterns at the nominal operating frequency of 2.45

GHz obviously do not match the experimental result. The thermal image in Figure

6.11 has six hot spots in the central region of the block whereas the calculated
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results show eight peaks, four along each side of the block.

• The results in Figures 6.13 and 6.14 are all very similar. This suggests that the

time domain and frequency domain methods give comparable results, that is no

accuracy is lost in performing the calculation in the time domain rather than in

the frequency domain.

• For a single solution the time domain method appears to be significantly slower

than the frequency domain technique when applied to this particular problem.

If we were content to settle for a solution at a single frequency then it would appear

that the finite element method produces the wrong result for this problem. This, how-

ever, does not do justice to the method: a closer look at the numerical solution is called

for. Figure 6.15 show the magnitude of the reflection coefficient against frequency for

the two time domain solutions. The two curves show very similar features but are offset

in frequency from each other. Increasing the number of time steps per cycle from 30 to

80 has the effect of shifting the curve to the right by approximately 10 MHz or 0.4%.

The curves show several sharp dips corresponding to sharp resonances. This confirms

the observation made in the introduction that the system is sensitive to small changes in

frequency. This also suggests that it would be worthwhile to look at the power density

distributions at a range of frequencies other than 2.45 GHz. This is carried out in the

next section. It is worth commenting here that at a couple of frequencies the predicted

magnitude of the reflection coefficient is greater than unity. In reality this would corre-

spond to more energy being reflected from the cavity than is supplied, which of course

is impossible for passive systems. It must be concluded therefore that the values which

greater than unity are due to numerical error in the calculation.

6.6.4 Multiple Frequency Solution

It is common in the literature for results to a particular problem to be given only at a

single frequency [Jia & Jolly, 1992], however, when low loss materials are being heated

the system is very sensitive to small changes in frequency. This makes it essential

that solutions at a range of frequencies are calculated and possible variations identified.

Figure 6.16 shows the power density distribution at frequencies from 2.44 GHz to 2.50
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Figure 6.16: Numerical results for normalised power density inside plastic block for

several frequencies using the coarse mesh and 30 steps per cycle.
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GHz calculated using the mesh described above with 30 time steps per cycle. This

range corresponds to only a 2.5% variation in frequency yet very distinct changes in

field pattern are observed. At 2.47 GHz the distribution corresponds well with the

thermal image shown in Figure 6.11.

The patterns shown in Figure 6.16 when coupled with the curves in Figure 6.15 would

suggest that there are two different modes which play an important role in determining

the power density distribution in the plastic block. Firstly, there is a mode that produces

the four strong central peaks present at 2.45 GHz. Secondly, there is a mode at a slightly

higher frequency that produces the two central peaks that appear at 2.49 GHz. The

thermal image shows that the experimental solution contains a roughly even balance

of these two modes, which occurs between 2.47 GHz and 2.48 GHz in the numerical

solution. The error in the frequency between numerical and experimental solutions

is therefore only 0.8%. The calculation presented here has clearly demonstrated the

importance of considering the solution at multiple frequencies when modelling low loss

materials. The different distributions obtained in Figure 6.16 shows immediately that

the system is sensitive to small changes in frequency.

The result at a given frequency is therefore likely to be effected by small errors in the

calculated modes which can then be taken into account when interpreting the results. A

solution at a single frequency does not provide this information and is consequentially

of very limited value. Solution in the time domain took twice as long as the frequency

domain method, however, the frequency domain method only provides information at

a single frequency compared to the large frequency range provided by the time domain

calculation. The time domain method produced results at seven frequencies in this

instance so can effectively be considered to be over three times faster than the frequency

domain method for this problem.

Even though the time domain method is faster for multiple frequency solutions than

the frequency domain method it still took 9 hours to produce a solution with a mesh

containg 56,064 unknowns. Any method therefore, that can speed up this solution

should be investigated. Lumping, as described in §2.4.4, has this potential and the

application of which is described in the next section. Speeding up the solution also

allows a finer mesh to be used without prolonging the solution time, which will hopefully
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reduce the discrepency between the calculated and empirical results.

6.6.5 Effect of Lumping

Lumping has the potential to significantly reduce the solution time by removing the need

for a matrix solution at each time step. The mesh used for the above calculations was

based on hexahedra which were approximately cubic, these were subsequently divided

into tetrahedra. The elements that were generated were consequently of high quality

and lumping could be carried out. Figure 6.17 shows the result for the power density

when lumping is used. It is immediately noticed that the solution at 2.45 GHz matches

the experimental distribution. Figure 6.18 which shows the magnitude of the reflection

coefficient for the lumped and consistent mass matrices against frequency provides an

explanation for this similarity: lumping has had the effect of shifting the curve to the

left so that the frequency at which the calculated and experimental solutions match is

now at 2.45 GHz. This corresponds to lumping having reduced the calculated values

of the resonant frequencies by some 40 MHz or 1.6%. In many situations such a small

variation will have little effect, however, for this problem, which is sensitive to very

small frequency changes, the effect on power density distribution is considerable.

The lumped calculation took 3 hours and 19 minutes to time step for 245 cycles at 80

steps per cycle. The number of time steps per cycle required in order to ensure stability

was found empirically. Lumping has had the effect of reducing the solution time by a

factor of 2.8, however, a significant shift in resonant frequency is also observed. Since

the solution will contain errors, which ever method is used, lumping may provide a very

useful means of reducing the calculation time although the interpretation of the results

must be carried out even more careful than before.

6.6.6 Solution with a Fine Mesh

In order to investigate the effect of mesh refinement on the solution the problem was

solved using a considerably finer mesh. This time the mesh had 204,183 edges of which

184,971 were free to vary. The solution was run both with and without lumping and

required 16 hours and 25 hours respectively for the calculation. As previously 80 time

steps per cycle were used for the lumped calculation and 30 time steps per cycle with
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Figure 6.17: Numerical results for normalised power density inside plastic block when

lumping is used with the coarse mesh.
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Figure 6.18: Reflection coefficient with and without lumping for the plastic loaded

cavity.

the consistent mass matrix. The power density patterns in the block at a number of

frequencies are shown in Figure 6.19 and in Figure 6.20 for the lumped solution. Figure

6.21 shows the reflection coefficient for the fine mesh and compares it to that obtained

with the coarse mesh without lumping. It can immediately be noted that lumping has

much less effect on the solution when a fine mesh is used. The solutions produced on the

fine mesh and the coarse mesh when lumping is not used show very good similarities.

This suggests that both meshes are sufficiently fine to give a satisfactory approximation

to the field: that is the results are not dependent upon the discretisation.

6.6.7 Effect of Variation in Dielectric Properties

Figure 6.22 shows the effect on the solution of changing the dielectric properties. The

power density distribution is different to all of the previous results. This shows that ac-

curate measurement of the dielectric properties is essential if good comparisons between

experiment and simulation are to be carried out.
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Figure 6.19: Numerical results for the normalised power density inside plastic block at

several frequencies using the fine mesh and 30 time steps per cycle without lumping.

Figure 6.20: Numerical results for the normalised power density inside plastic block at

several frequencies using the fine mesh with lumping.
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Figure 6.21: Comparison of the reflection coefficient for the coarse mesh at 30 time steps

per cycle and the fine mesh with and without lumping.

Figure 6.22: Normalised power density in plastic block when εr = 3.0− 0.01 at several

frequencies.
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6.6.8 Discussion of Results

This result has shown, for low loss materials, that not only is the system very sensitive

to small changes in frequency but also that it is vital in any numerical calculation to

take full account of this sensitivity. A single frequency domain solution at 2.45 GHz

would have given a different answer to the experimental one and no further clue as to

why this should be so. Further more, the frequency at which the calculated distribution

matches the experimental one of 2.455 GHz is only 0.6% in error for the coarse mesh and

0.2% for the fine mesh when lumping is used. These results also show that it is possible

to use the finite element method to produce accurate solutions for low loss materials

heated inside multimode cavities although care must be exercised in interpreting these

results.

Results with or without lumping on the coarse and fine meshes have all shown similar

results but at slightly different frequencies. This would suggest that altering the mesh

or using lumping does not change the field distribution of a given mode in a significant

manner rather it changes the frequency at which it occurs. The changes in frequency

can be very small, less than 2%, yet the resulting changes in field pattern can by very

large. If the numerical method was able to calculate the resonant frequencies with no

error it may still be difficult to exactly match the experimental solution. The expression

given in the introduction for the modes in an empty cavity, equation (1.1), shows that a

small change in one of the dimensions can have a corresponding change in the resonant

frequency of the mode. The solution for the plastic slab loaded cavity has been shown

to be sensitive to changes as small as 0.4%, a change which corresponds to only 1.56

mm on the longest side of the cavity. Unless the cavity has been constructed to a high

level of precision, which is unnecessary for normal operation, the the walls of the cavity

may vary by this much over the length of the cavity. This shows, once again, that when

comparing experimental data to numerical solutions it is essential that the model is an

accurate representation of the real system.

6.7 Conclusions

The results given in this chapter can be sumarised as follows,
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• For multimode cavities the time domain finite element method described in this

thesis is considerably faster for problems involving food-like materials than the

more traditional frequency domain method.

• Multimode cavities containing low loss materials can be very sensitive to small

changes in frequnecy. The ability of the time domain method, in conjunction

with Gaussian pulse excitation to produce solutions at multiple frequencies from

a single calculation makes it faster than the frequency domain method. This is

true even for systems where a single frequency domain solution is faster than a

time domain calculation.

• Cavities with a high Q-factor, which occurs when low loss materials are heated,

require field solutions at several frequencies in order to determine the degree of

sensitivity of the system to frequency changes. Changes in the mesh can produce

small changes in the calculated resonant frequencies, which in turn can have a

large effect on the field pattern.

It can also be noted that the solution time for the time domain method scales linearly

with increasing refinement: the number of time steps is dependent purely on the desired

frequency resolution and the number of iterations per time step is dependent upon the

element shapes. This makes it particularly attractive for large problems where the

condition number in the frequency domain is prohibitively large.

The comparisons with empirical data have shown that a degree of agreement between

experiment and calculation can be achieved. The mashed potato gave an extremely

good match whereas the pastry showed certain differences in heating pattern. There

remain, however, many difficulties in ensuring that the experimental and model systems

are identical. The variations in frequency found between sources and the accurate

determination of dielectric properties providing possible sources of discrepancy.
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Chapter

7 Solution for Temperature

7.1 Introduction

The purpose of microwave heating systems is to produce a temperature rise in the load.

A discussion of microwave heating is therefore incomplete without a consideration of

the temperature distribution. The ultimate aim of the simulation must therefore be to

predict the temperature rise that will be produced for a given loading in an applicator.

The previous chapters have focused solely on the electromagnetic portion of the calcu-

lation. For many materials, such as foods and plastics, which have low conductivities

the temperature distribution will be very similar to the power density pattern. This is

the justification for the comparisons made in Chapters 5 and 6. However, this does not

hold for all materials and it is sometimes desirable to calculate actual temperatures.

This chapter addresses the problem of the temperature calculation, which presents

many difficulties for loads heated in multimode applicators. The emphasis is placed

here on the application of the method to microwave heating problems rather than on

the method itself, although a brief description of the formulation is included.

It is often the case that dielectric materials have properties which vary with tempera-

ture. Changes in the permittivity effect the power density and therefore the temperature

in two ways. Firstly a change in ε′′e will directly change the power density since,

pv =
1

2
ε0ε

′′
eω|E|2. (7.1)
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Secondly, changes in both the real and imaginary parts of the permittivity will affect the

electric field distribution. For some materials the variation on permittivity may not be

significant and have a negligible effect on the field pattern. Other materials, especially

ceramics, can show exponential increases in the loss factor with increasing temperature.

In these cases the electric field distribution within the applicator will almost certainly

vary with the temperature of the load. It is then essential to take into account the

variations in properties if the heating process is to be modelled correctly. However, this

process is not straight forward when applied to multimode cavities. The last part of

this chapter looks at how the electromagnetic and thermal models may be coupled to

solve this sort of problem.

7.2 Solution of the Heat Flow Equation

The temperature distribution inside a solid body is governed by the heat flow equation,

ρCp
∂T

∂t
= ∇ · (κ∇T ) + pv, (7.2)

where pv is the power per unit volume produced by the microwave heating and ρ is the

density of the material, Cp the specific heat capacity and κ the thermal conductivity.

This equation is supplemented by the boundary condition,

κ
∂T

∂n
+ he(T − Tamb) + εσs(T

4 − T 4
amb) = 0 on Γ, (7.3)

where n is the normal to the surface Γ and Tamb is the ambient temperature of the

surroundings. The second term of equation (7.3) represents heat loss from the surface

by convection with he being the convective heat transfer or film coefficient. For free

convection in gases Rogers & Mayhew [1980] suggest that he typically lies in the range

0.0005 – 1 kW/m2·K, with the actual value being found experimentally. The third term

of equation (7.3) represents radiation from the surface where σs is the Stefan-Boltzmann

constant and ε is the emissivity.

Equation (7.2) can be solved using the finite element method [Zienkiewicz, 1977].

We start by applying Galerkin’s procedure: premultiplying by a scalar function φ and

integrating over the volume of the element
∫

Ωe

κφ∇2T dΩe −
∫

Ωe

ρCpφ
∂T

∂t
dΩe = −

∫

Ωe

φpv dΩe. (7.4)
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The material properties are considered to be constant within each element, which enables

the κ to be moved outside the gradient. Integrating the first term by parts gives

∫

Ωe

κ∇φ · ∇T dΩe +
∫

Ωe

ρCpφ
∂T

∂t
dΩe =

∫

Ωe

φpv dΩe +
∫

Γe

κφ
∂T

∂n
dΓe. (7.5)

The last term of equation (7.5) represents the heat flow over the surface of an element.

At all inter element boundaries this will cancel, the contributions from the two adjacent

elements exactly cancelling. Comparison with equation (7.3) shows that we can write,

∫

Ωe

κ∇φ · ∇T dΩe +
∫

Ωe

ρCpφ
∂T

∂t
dΩe =

∫

Ωe

φpv dΩe −
∫

Γe

heφ(T − Tamb) dΓe − σs

∫

Γe

εφ(T 4 − T 4
amb) dΓe.

(7.6)

The temperature, T , and φ are replaced, as normal by,

T =
N∑

i=0

λiTi φ =
N∑

j=0

λj qv =
N∑

k=0

λkqvk
. (7.7)

where λi are the shape functions within the element and qvk
is the value of the power

density at node k. Substituting these into equation (7.5) leads to a matrix equation,

[K]T + [M]
∂T

∂t
= [G]Q− [H]T + [H]Tamb − [R]T4 + [R]T4

amb, (7.8)

where the individual element matrices are given by,

[K]ei,j = κ
∫

Ωe

∇λi · ∇λj dΩe,

[M]ei,j = ρCp

∫

Ωe

λiλj dΩe,

[G]ei,j =
∫

Ωe

λiλj dΩe,

[H]ei,j = he

∫

Γe

λiλj dΓe,

[R]ei,j = σsε
∫

Γe

λiλj dΓe, (7.9)

In the interior of the material the contributions to [H] and [R] from adjacent elements

will cancel so they are only non-zero for element faces that are on the surface of the

material.



150 Solution for Temperature

To discretise the temporal derivatives in equations (7.8) the θ–method has been used

[Wood, 1990],

{[M] + θ∆t ([K] + [H])}Tk+1 = {[M]− (1− θ)∆t ([K] + [H])}Tk

+∆t
{
θ[G]Qk+1 + (1− θ)[G]Qk − [R]T4

k + [H]Tamb + [R]T4
amb

}
.

(7.10)

When θ = 0.5, Crank-Nicolson centred differences are used [Crank & Nicolson, 1947],

with θ = 0 forward differences and θ = 1, backward differences are used in equation

(7.10). However, forward differences are always used for the radiation term. This is

because the inclusion of a T4
k+1 term on the left hand side of equation (7.10) would make

solution considerably harder! With θ = 0.5 the method is implicit, has an accuracy of

O(∆t2) and is unconditionally stable.

7.3 Temperature Distribution in Mashed Potato Load

The heat flow equation was solved for the mashed potato loaded cavity problem de-

scribed in Chapter 6. This example serves to demonstrate some of the difficulties

involved in applying the heat flow equation to microwave heating problems. Firstly,

accurate values of the thermal properties were not available. The values that were used

for the calculation are given by Singh & Heldman [1984]; the specific heat for potato as

3.517 kJ/kg ·K and the thermal conductivity as 0.554 W/m ·K. The mashed potato was

formed formed by mixing 120 g of dry powdered instant potato with 600 ml of water,

which gives the mashed potato a water content of around 83%. This is slightly higher

than the value quoted by Singh & Heldman of 75%. This suggests the value of specific

heat capacity that was used used might be slightly too low. The density of the mashed

potato was taken as 948 kg/m3. Since a value of he was unavailable several values were

used so that the effects of adjusting the heat loss from the surface could be observed.

Figure 7.1 shows temperatures calculated from the solution of equation (7.2) for two

values of the convective heat transfer coefficient. The power density distribution was

taken from the field solution given in Chapter 6. The power supplied to the cavity

was taken as 600 Watts, so with the calculated reflection coefficient of 0.38 the power

dissipated in the potato was 513 Watts. The temperature solution was time stepped
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Figure 7.1: Calculated surface temperature distribution for two values of the convective

heat transfer coefficient.

with a step size of ∆t = 0.01 seconds for 20 seconds. The temperature calculation took

only a couple of minutes to perform on a Sparc-10 and so it is considerably faster than

the electric field solution. The calculated temperatures are considerably higher than

those shown in the thermal image. With he = 0.1 kW/m2·K the temperatures at the

end of the potato are predicted to exceed 100◦C, which of course will not happen in

practice since the water in the mashed potato will start to boil. This suggests that

neglecting the evaporative losses from the surface produces unacceptable results. The

inclusion of mass transfer into the temperature calculation increases the complexity

of the calculation significantly, however, this will be required for future calculation if

sensible comparisons with experiments are to be made. Increasing he has the effect

of reducing the surface temperature considerably. This is especially noticeable along

the edges at the end of the tray since heat loss at these points will be from two sides.

The model was unable to take account of the tray in which the potato was contained.

The thin walled plastic tray will have little effect on the electromagnetic field solution,

however, it may have a significant effect upon the temperature distribution. Future

models should be able to account for the containers in which loads are placed.
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7.4 Coupled Electromagnetic and Thermal Models

7.4.1 Introduction

The purpose of this section is to analyse some of the problems that are encountered dur-

ing the application of the coupled model to multimode cavity problems and to demon-

strate, by means of an example, the type of effects that may be observed in temperature

dependent systems. Several recent papers have considered the problem coupling the

thermal and electromagnetic fields for microwave heating problems [Dibben & Metaxas,

1994a; Sundberg, 1994; Huang et al., 1994]. However, very few results are available for

the coupled problem in multimode cavities. Ayappa et al. [1991] use a one dimensional

finite element model to investigate the heating caused by plane waves incident on a

multilayered slab. The results show that the temperature dependence of the material

properties can appreciably effect the temperature distribution. The application of this

one dimensional model to real problems is, however, extremely limited. Shouzheng &

Davis [1991] and Sekkak et al. [1994] have also considered the effects on the electric

field of the temperature dependence of dielectric properties although for a short circuited

waveguide loaded with a dielectric material. They have shown that the use of a coupled

model results in power density and temperature profiles that are significantly different

from those produced by assuming no variation in power density with temperature.

It was seen in Chapter 6 that for low loss materials it was necessary to produce

solutions at several frequencies in order to determine the sensitivity of the system.

This remains true for the coupled model which will require repeated calculations for

each frequency being modelled: the coupled model cannot produce multiple frequency

solutions from a single calculation. This obviously will increase the cost of the calculation

enormously.

The power supplied to the cavity determines the temperature rise, which in turn

will determine the development of the electric field distribution during heating. Small

variations in the power supplied to the cavity may therefore cause the temperature dis-

tribution to evolve in a different manner. This leads to the observation that small errors

in the reflection coefficient, which through equation (4.21) will determine the power ab-

sorbed by the load, may lead to large changes in the field and temperature distributions
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later on in the heating cycle. The results in Chapters 5 and 6 for the reflection coeffi-

cient show large variations in the magnitude with frequency. This suggests that it is also

necessary to solve the system with a variety of power levels to determine the sensitivity

to changes in absorbed power. This will also give an indication of the sensitivity to

errors in the reflection coefficient.

Taking the above comments together, and assuming that it is desired to solve the

system at, say, 5 frequencies and 5 power levels then this requires 25 repeated solutions.

Each solution will require several field calculations. If, for example, 10 field calculations

were required per solution then this leads to a total of 250 field calculations. Even

the shorter calculations presented in Chapter 6 took 4 hours to complete, so that the

problem described here would require 41 days to complete! These numbers are somewhat

arbitrary, but they demonstrate one of the most obvious problems with implementing

the coupled model; the fact that the large computational burden of repeat solutions

leads to unacceptably large solution times.

Before the temperature feedback scheme, which is outlined below, can be used for real

multimode cavity problems there will need to be a considerably more research carried

out to understand the electromagnetic phenomena involved in modelling multimode

cavities. The scheme presented here is therefore of only theoretical interest at present.

7.4.2 Temperature Feedback

In order to reflect the changes in dielectric properties with temperature the algorithm

shown in Figure 7.2 was implemented. The time scales of the thermal and electromag-

netic systems are very different. For the electromagnetic system changes take place in

nano seconds compared to the several seconds required for the thermal system. This

allows the two calculations to be performed separately. During the heat flow calculation

the temperature of each element is monitored. When the change in temperature is suffi-

cient to produce a significant change in dielectric properties the temperature calculation

is suspended and the electric field distribution is recalculated. After each recalulation

of the electric field the reflection coefficient is calculated so that the absorbed power can

be determined and the values of the power density scaled accordingly. This procedure

continues until the load has reached a pre-set temperature or a specified time period
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Figure 7.2: Flow chart showing temperature feedback algorithm.
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Figure 7.3: Relative permittivity and conductivity of Zirconia against temperature.

(from Arai et al. [1993])

has elapsed.

Conceptually this procedure is very simple, however, there are many issues that

are not yet understood. For example, what constitutes a significant rise in dielectric

properties? If the electric field is recalculated after too small a change then the solution

time will be prolonged. Conversely, if too large a change is allowed before re-calculation

then the development of the temperature distribution will be altered. The change in

properties that will cause a significant change in field distribution will be very problem-

dependent. If the system is operating close to a sharp resonance a small change could

produce very large changes in the reflection coefficient and therefore in the absorbed

power.

7.4.3 Ceramic Block Example

In order to demonstrate the application of the temperature feedback to a multimode

cavity, a block of ceramic was modelled. The ceramic that was chosen was zirconia,

which has a permittivity that varies with temperature, as shown in Figure 7.3. A
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a) Start of process b) After 20 minutes

c) After 30 minutes d) After 50 minutes
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Figure 7.4: Normalised power density distribution in the ceramic block on an x-y plane

through the centre of the ceramic.
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Figure 7.5: Temperature density distribution in the ceramic block on an x-y plane

through the centre of the ceramic.



7.5 Conclusions 157

cube of zirconia, 100 mm in each dimension, was modelled in a cavity with the same

dimensions as that used for the mashed potato (see §6.4). This time, however, the

waveguide feed was positioned on the side of the cavity, in order to produce a non-

symmetric excitation. This was to give a more non-uniform heating pattern that was

likey to show more significant variations with changes in dielectric properties. In the

model the ceramic was surrounded by a layer of insulating material 20 mm thick, with

relative permittivity taken to be εr = 1.54− 0.01. The magnetron was assumed to have

an output power of 1 kW. The finite element mesh that was used consisted of 114,620

tetrahedral elements, giving rise to 130,000 unknowns. The power density distribution

in a horizontal slice through the centre of the ceramic and insulator assembly is shown

in Figure 7.4 for various stages of the heating process. The temperatures attained in the

ceramic are shown in Figure 7.5. As the temperature at the centre of the ceramic rises

we initially see a concentration of the power density in a single area, shown in Figure

7.4(b). This is due to the rise in the effective conductivity. However, as the temperature

continues to rise, the conductivity increases significantly which produces a change in the

electric field pattern within the cavity. This alters the power density distribution, as

shown in Figure 7.4(c).

This solution is presented as an example of they type of effects that may be observed

in coupled problems. Since there is no experimental evidence to verify the validity of

the solution there is no way to check the asumptions that have been made.

7.5 Conclusions

The solution of the heat flow equation for microwave heated loads requires considerably

more work before accurate comparisons between experiment and theory can be obtained.

It has been shown that neglecting evaporative losses leads to an overestimation of the

temperatures. It is also necessary to determine accurate values for the thermal properties

over the temperature range of interest.

The solution of coupled problems for multimode cavities needs either faster com-

puting hardware or an advance in the algorithms used for the calculation if reasonable

solution times are to be obtained. If the electric field can be updated rather than re-
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calculated after each change in dielectric properties then a reduction in solution time

may be obtained, however, research into how this can be implemented has yet to be

carried out.



Chapter

8
Conclusions and Recommendations

for Further Work

The most significant part of this thesis is the development of the time domain finite

element method for the solution of multimode cavity problems. With Gaussian pulse

excitation the method allows solution at multiple frequencies, which was seen to be

vital for lightly loaded multimode applicators. The time domain method is also an

order of magnitude faster than the frequency domain method for multimode cavities

loaded with food-like materials. This was due to severe ill-conditioning in the frequency

domain. Comparisons with experimental results have shown that the methods give

good agreement in many cases. The problem of the plastic block loaded cavity demon-

strated that, for low loss materials, the system is extremely sensitive to small changes

in frequency which necessitates solution at several frequencies.

The frequency domain method is well suited to the analysis of single mode applicators

where the problem of ill-conditioning does not arise. This enables solutions at a single

frequency to be obtained in a couple of minutes of computer time. The time domain

method, which needs many cycles of the field to obtain accurate results, was considerably

slower for this type of problem. Comparisons with results obtained using other numerical

methods show that the methods presented here compare favourably, however, certain

differences between calculation and experiment remain, the causes of which still need

to be addressed.

Results in Chapter 2 showed that, when post-processed correctly, Whitney edge ele-
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ments give consistently lower errors than both nodal elements and linear edge elements.

When coupled with the absence of spurious modes and their ability to model sharp

metal corners and dielectric discontinuities this makes Whitney edge elements the best

choice for the discretisation. The ability of edge elements to give accurate answers was

confirmed by the good agreement with experimental results obtained in Chapter 6.

The coupled thermal and electromagnetic problem with temperature dependent ma-

terial properties was seen to be particulary difficult in multimode applicators. This is

due to the sensitivity of the system to small changes which are then amplified by the

non-linear nature of the coupled problem.

The problems associated with the simulation that have been outlined in this disserta-

tion would suggest that that the role of analysis lies not in predicting exact distributions

for specific situations but rather in analysing the effects of changes to the system. For

example, a designer may wish to investigate a new type of food packaging. The analysis

techniques can be used to produce temperature distributions in the food for different

positions of the package in a given cavity. Since the distribution will depend on both

the cavity used and the position of the load the calculation cannot find the actual dis-

tribution that will be obtained in a consumers own oven. However, the designer can

use the analysis to get a feel for the behaviour of the packaging. For example, some

areas may consistently overheat or remain cold so the packaging can be re-designed to

account for this.

8.1 Recommendations for Further Work

Many areas remain which require further understanding and development.

• Further comparisons with experimental data are required in order to fully under-

stand the physical effects that can produce significant changes in the field distri-

bution. This is particularly true for the case where the material properties vary

with temperature.

• Investigation into the causes of ill-conditioning with multimode applicators. This

may lead to new solution methods that allow solutions to the frequency domain
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problem in a reasonable time, maybe through the use of multigrid or domain

decomposition algorithms.

• One of the limiting factors of the problems analysed in this dissertation was mesh

generation. Better mesh generation tools need to be applied to this problem. The

application of adaptive techniques has the potential to reduce computation times

while improving accuracy.

• The post-processing of Whitney element results was seen to improve both the

accuracy and the rate of convergence on mesh refinement. However, only fairly

simple techniques were applied to the post-processing, more sophisticated tech-

niques are worth investigation as well as establishing a theoretical basis for the

post-processing methods.

• Results for single mode cavities showed that the wall losses may play a significant

role in certain cavities. The inclusion of these losses must therefore be considered

for future calculations.

• More work is required in the correct modelling of the apertures used to couple

single mode systems. Apertures with rounded corners have not been modelled,

however, they are used in real systems.

• For food like materials the inclusion of evaporative losses was seen to be necessary.

The extension of the temperature solution algorithms to include mass transfer

must therefore be a priority if food like materials are to be studied in depth.

• This thesis has only considered multimode cavities with static loads, whereas in

practice the load is often on a conveyor or turntable. Mode stirrers are also used to

improve heating uniformity in many ovens. The inclusion of these into the model

presents several difficulties not least in the more complex mesh generation routines

that will be required. Their inclusion into the model, however, is necessary if real

systems are to be modelled.

• A further area that was not considered in this dissertation but which is relevant

to many industrial applicators is the use of multi-port feeds. The effect of the
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number of feeds and their position is a topic that is yet to be investigated.

• The applicators studied in this dissertation were fed via an iso-circulator that has

the effect of decoupling the source from the load. In many real situations, for

example domestic ovens, iso-circulators are not used. In these situations it will be

necessary to determine the effect on the operating frequency and output power of

the load impedance. Furthermore, the use of an ABC to terminate the waveguide

mesh may no longer be valid.
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Ambrosiano, J., Brandon, S., Löhner, R., & DeVore, C. (1994). Electromagnetics via
the Taylor-Galerkin Finite Element Method on Unstructured Grids. Journal of
Computational Physics 110, 310–319.

Arai, M., Binner, J., Carr, G., & Cross, T. (1993). High Temperature Dielectric Prop-
erty Measurements of Engineering Ceramics. In Proceedings of the symposium on
Microwaves: Theory and Application in Materials Processing II, Cincinnati,OH.
American Ceramic Society.

Audhuy-peaudecerf, M., Lefeuvre, S., Majdabadino, M., & Hathouti, S. (1993). Math-
ematical Modelling of EM Fields in a Loaded Microwave Oven. In 28th IMPI
Microwave Power Symposium, Montreal, Canada, July 11 – 14, pp. 201–205.

Axelsson, O. (1980). Conjugate Gradient Type Methods for Unsymmetric and In-
consistent Systems of Linear Equations. Linear Algebra and its Applications 29,
1–16.

Ayappa, K., Davis, H., Crapiste, G., Davis, E., & Gordon, J. (1991). Microwave Heat-
ing: an Evaluation of Power Formulations. Chemical Engineering Science 46 (4),
1005–1016.

Ayappa, K., Davis, H., Davis, E., & Gordon, J. (1991). Analysis of Microwave Heating
of Materials with Temperature Dependent Properties. AIChE Journal 37 (3), 313–
322.



164 Bibliography

Baldomir, D. (1986). Differential Forms and Electromagnetism in Three-Dimensional
Euclidean Space R3. IEE Proceedings Pt. A 133 (3), 139–143.

Bandelier, B. & Rioux-Damidau, F. (1990). Modelling of Magnetic Fields Using Nodal
or Edge Variables. IEEE Transactions on Magnetics 26 (5), 1644–1646.

Bardi, I., Biro, O., Dyczij-Edlinger, R., Preis, K., & Richter, K. (1994a). On the
Treatment of Sharp Corners in the FEM Analysis of High Frequency Problems.
IEEE Transactions on Magnetics 30 (5), 3108–3111.

Bardi, I., Biro, O., Dyczij-Edlinger, R., Preis, K., & Richter, K. (1994b). Solution
of TEAM Benchmark Problem 18 “waveguide loaded cavity”. See Bossavit &
Chaussecourte [1994].

Barret, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V.,
Pozo, R., Romine, C., & van der Vorst, H. (1993). Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods. Society for Industrial and
applied Mathematics, Philadelphia. PA.

Barton, M. & Cendes, Z. (1987). New Vector Finite Elements for Three-Dimensional
Magnetic Field Computation. Journal of Applied Physics 61 (8), 3919–3921.

Bi, Z., Shen, Y., Wu, K., & Litva, J. (1992). Fast Finite Difference Time Domain
Analysis of Resonators using Digital Filtering and Spectral Estimation Techniques.
IEEE Transactions on Microwave Theory and Techniques 40, 1611–1619.

Bossavit, A. (1988a). A Rationale for Edge-Elements in 3-D Field Computations.
IEEE Transactions on Magnetics 24 (1), 74–79.

Bossavit, A. (1988b). Whitney Forms: A Class of Finite Elements for Three-
Dimensional Computations in Electromagnetics. IEE Proceedings Pt. A 135 (8),
493–499.

Bossavit, A. (1990). Solving Maxwell Equations in a Closed Cavity, and the Question
of Spurious Modes. IEEE Transactions on Magnetics 26 (2), 702–705.

Bossavit, A. (1994). A New Rationale for Edge-Elements. International Compumag
Society Newsletter 1 (3), 3–6.

Bossavit, A. (1995). Uniqueness of Solution of Maxwell Equations in the Loaded
Microwave Oven, and How it May Fail. Abstract of paper to be presented at
International Conference on Microwave and High Frequency Heating, 17-21 Sept.
1995, Cambridge, UK.

Bossavit, A. & Chaussecourte, P. (Eds.) (1994). The TEAM Workshop in Aix-les-
Bains, July 7-8.

Brezzi, F. & Marini, D. (1994). A Survey On Mixed Finite Element Approximations.
IEEE Transactions on Magnetics 30 (5), 3547–3551.



Bibliography 165

Buleev, N. (1960). A Numerical Method for the Solution of Two-Dimensional And
Three-Dimensional Equations of Difffusion. Mat. Sb. 51, 227.

Cai, X.-C. & Widlund, O. (1992). Domain Decomposition Algorithms for Indefinite
Elliptic Problems. SIAM Journal of Scientific and Statistical Computing 13 (1),
243–258.

Chan, C., Sangani, H., Yee, K., & Elson, J. (1994). A Finite-Difference Time-
Domain Method using Whitney Elements. Microwave and Optical Technology Let-
ters 7 (14), 673–676.

Chassecourte, P., Lamaudiere, J., & Maestrali, B. (1993). Electromagnetic Field Mod-
elling of a Loaded Microwave Cavity. In 28th IMPI Microwave Power Symposium,
Montreal, Canada, July 11 – 14.

Chaussecourte, P., Hazard, C., Lamaudiere, J., & Maestrali, B. (1991). 3D Numerical
Microwaves; Heating Applications. Communication.

Chen, J., Wu, C., Lo, T., Wu, K.-L., & Litva, J. (1994). Using Linear and Nonlinear
Predictors to Improve the Computational Efficiency of the FD-TD Algorithm.
IEEE Transactions on Microwave Theory and Techniques 42 (10), 1992–1997.

Chen, Z., Ney, M., & Hoefer, W. (1991). A New Finite-Difference Time-Domain
Formulation and its Equivalence with the TLM Symmetrical Condensed Node.
IEEE Transactions on Microwave Theory and Techniques 39 (12), 2160–2169.

Chew, W. (1990). Waves and Fields in Inhomogeneous Media. Van Nostrand Rein-
hold, New York.

Ciarlet, P. (1978). The Finite Element Method for Elliptic Problems. North-Holland,
Amsterdam.

Cline, A., Moler, C., Stewart, G., & Wilkinson, J. (1979). An Estimate for the Con-
dition Number of a Matrix. SIAM Journal on Numerical Analysis 16, 368–375.

Collin, R. (1991). Field Theory of Guided Waves : 2nd Edition. IEEE Press, New
York, USA.

Collin, R. (1992). Foundations for Microwave Engineering. McGraw-Hill, New Yorks.

Crank, J. & Nicolson, P. (1947). A Practical Method for Numerical Evaluation of So-
lutions of Partial Differential Equations of the Heat Conduction Type. Proceedings
of the Cambridge Philosophical Society 43, 50–67.

Davis, J. (1993). Finite Element Analysis of Waveguides and Cavities – a Review.
IEEE Transactions on Magnetics 29 (2), 1578–1583.

Dawes, W. (1992). The Practical Application of Solution-Adaption to the Numerical
Simulation of Complex Turbomachinery Problems. Prog. Aerospace Sci. 29, 221–
269.



166 Bibliography

de Jongh, P. (1989). Moisture Measurements with Microwaves. In HF and Microwave
conference, ARNHEM.

de Pourcq, M. (1984). New Power-Density Calculation Method by Three-Dimensional
Finite Elements. IEE Proceedings Pt. H 131 (6), 411–419.

Desai, R., Lowery, A., Christopoulos, C., Naylor, P., Blanshard, J., & Gregson, K.
(1992). Computer Modelling of Microwave Cooking Using the Transmission-Line
Model. IEE Proceedings Pt. A 139 (1), 30–38.

Deschamps, G. (1981). Electromagnetics and Differential Forms. Proceedings of the
IEEE 69 (6), 676–696.

Dibben, D. & Metaxas, A. (1994a). Finite Element Analysis of Multi-mode Cavities
with Coupled Electrical and Thermal Fields. Presented at the 29th IMPI Micro-
wave Power Symposium, Chicago, USA, 25–27 July.

Dibben, D. & Metaxas, A. (1994b). Finite-Element Time-Domain Analysis of Multi-
mode Applicators Using Edge Elements. International Journal of Microwave
Power and Electromagnetic Energy 29 (4), 242–251.

Duff, I., Erisman, A., & Reid, J. (1986). Direct Methods for Sparse Matrices. Claren-
don Press, Oxford, UK.

Dyczij-Edlinger, R. (1994). Solution of TEAM Benchmark Problem 19 (Loaded Cavity
Resonator). See Bossavit & Chaussecourte [1994].

Eisenstat, S. (1981). Efficient Implementation of a Class of Preconditioned Conjugate
Gradient Methods. SIAM Journal of Scientific and Statistical Computing 2 (1),
1–4.

Engquist, B. & Majda, A. (1977). Absorbing Boundary Conditions for the Numerical
Simulation of Waves. Mathematics of Computation 31, 629–651.

Eswarappa, C. & Hoefer, W. (1994). Autoregressive (AR) and Autoregressive Mov-
ing Average (ARMA) Spectral Estimation Techniques for Faster TLM Analysis
of Microwave Structures. IEEE Transactions on Microwave Theory and Tech-
niques 42 (12), 2407–2411.

Evans, D. (1967). The Use of Pre-conditioning in Iterative Methods for Solving Linear
Equations with Symmetric Positive Definite Matrices. J. Inst. Maths Applics. 4,
295–314.

Faber, V. & Manteuffel, T. (1984). Necessary and Sufficient Conditions for the Exis-
tence of a Conjugate Gradient Method. SIAM Journal on Numerical Analysis 21,
352–362.

Femsys Ltd. (1993). Femgen/Femview User Manual. Leicester, England: Femsys Ltd.



Bibliography 167

Fletcher, R. (1976). Conjugate Gradient Methods for Indefinite Systems. In G. Watson
(Ed.), Numerical Analysis, Dundee. Lecture Notes in Mathematics 506, pp. 73–89.
Springer-Verlag, Berlin.

Flockhart, C., Trenkic, V., & Christopoulos, C. (1994). The Simulation of Coupled
Electromagnetic and Thermal Problems in Microwave Heating. In Second Inter-
national Conference on Computational Electromagnetics, Nottingham, UK, 12–14
April, Volume 384. IEE.

Freund, R. (1992). Conjugate Gradient-Type Methods for Linear Systems with Com-
plex Symmetric Coefficient Matrices. SIAM Journal of Scientific and Statistical
Computing 13 (1), 425–448.

Freund, R. & Nachtigal, N. (1991). QMR: A Quasi-minimal Residual Method for
Non-Hermetian and Linear Systems. Numerische Mathematik 60, 315–339.

Fu, W. & Metaxas, A. (1994). Numerical Prediction of Three-Dimensional Power
Density Distribution in a Multi-Mode Cavity. International Journal of Microwave
Power and Electromagnetic Energy 29 (2), 67–75.

George, A. & Liu, J. (1981). Computer Solution of Large Sparse Positive Definite
Systems. Prentice Hall, London.

George, P. (1991). Automatic Mesh Generation. John Wiley and Sons, Chichester,
UK.

Golias, N., Papagiannakis, A., & Tsiboukis, T. (1994). Efficient Mode Analysis with
Edge Elements and 3-D Adaptive Refinement. IEEE Transactions on Microwave
Theory and Techniques 42 (1), 99–107.

Gustafsson, I. (1978). A Class of First Order Factorization Methods. BIT 18, 142.

Hager, W. (1984). Condition Estimates. SIAM Journal of Scientific and Statistical
Computing 5 (2), 311–316.

Hammer, P., Marlowe, O., & Stroud, A. (1956). Numerical Integration over Simplexes
and Cones. Mathematical Tables and other Aids to Computation 10 (55), 130–136.

Hammond, P. & Baldomir, D. (1988). Dual Energy Methods in Electromagnetism
using Tubes and Slices. IEE Proceedings Pt. A 135 (3), 167–172.

Hara, M., Wada, T., Fukasawa, T., & Kikuchi, F. (1983). A Three Dimensional Anal-
ysis of RF Electromagnetic Fields by the Finite Element Method. IEEE Transac-
tions on Magnetics 19 (6), 2417–2420.

Haugazeau, Y. & Lacoste, P. (1993). Condensation de la Matrice Masse pour les
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Appendix

A Element Types

The basis functions for tetrahedral edge elements are easily defined [Bossavit, 1988b].

The element matrices for Whitney elements have been given explicilty by Lee & Mittra

[1992]. However, the other element shapes require more work. Hexahedral edge elements

have been defined by van Welij [1985] and hexahedral, prismatic and wedges by Brezzi &

Marini [1994]. This appendix provides the full list of the basis functions for hexahedral

and prismatic edge elements.

A.1 Hexahedral Edge Elements

Each hexahedron K is seen as the image of the unit cube K̂ under a tri-linear mapping

F (s) :→ r, as shown in Figure A.1. [van Welij, 1985] On the unit cube we can define

shape functions λi associated with each node i, these are shown in Table A.1. The

mapping F (s) is then defined by [Ciarlet, 1978],

F : s ∈ K̂ → F (s) =
N∑

i=1

λi(s)ai(x, y, z), (A.1)

where λi(s) is the value of the local coordinate evaluated at s and the ai(x, y, z) are the

vertices of the hexahedron.

The elements have degrees of freedom associated with their edges, being the tangen-

tial component of the field along the edge. For the edge where s2 = 1 and s3 = 1, which



176 Element Types

s1

s3

s2

y

x
z

Figure A.1: Unit cube mapped onto the hexahedron by F (s).

λ0 = −s1 − s2 − s3 + s1s2 + s1s3 λ4 = s3 − s1s3 − s2s3 + s1s2s3

+s2s3 − s1s2s3 + 1

λ1 = s1 − s1s2 − s1s3 + s1s2s3 λ5 = s1s3 − s1s2s3

λ2 = s2 − s1s2 − s2s3 + s1s2s3 λ6 = s2s3 − s1s2s3

λ3 = s1s2 − s1s2s3 λ7 = s1s2s3

Table A.1: Homogeneous coordinates for hexahedral element

is in the direction of s1, the shape function is defined as,

w2 = s2s3∇s1. (A.2)

This function is normal to the faces s1 = 0 and s1 = 1, and so does not contribute to the

tangential component of the field on these faces. On all edges in the direction s1 except

for the edge for which w2 is defined, the product s2s3 is zero so the function vanishes.

On its own edge the tangential component is constant. The numbering scheme for the

edges is shown in Figure A.2. The full set of edge shape functions are given in Table

A.2.

In order to assemble the finite element matrices it is necessary to integrate the
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Figure A.2: Edge numbering for hexahedron and prism.

functions over the volume of the element. This requires the evaluation of the shape

functions. van Welij [1985] defines

Vi =
dr

dsi

, (A.3)

which is easily obtainable from the the shape functions given in Table A.1 and equation

(A.1). The Jacobian matrix, dr/ds, has ∇si as its rows and is the inverse of ds/dr,

which has Vi as its columns;

ds

dx
= J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂s1

∂x
∂s1

∂y
∂s1

∂z

∂s2

∂x
∂s2

∂y
∂s2

∂z

∂s3

∂x
∂s3

∂y
∂s3

∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(A.4)

dx

ds
= J−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂s1

∂x1

∂s2

∂x1

∂s3

∂x2

∂s1

∂x2

∂s2

∂x2

∂s3

∂x3

∂s1

∂x3

∂s2

∂x3

∂s3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(A.5)
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w0 = (1− s2)(1− s3)∇s1 w1 = s2(1− s3)∇s1

w2 = s2s3∇s1 w3 = s3(1− s2)∇s1

w4 = (1− s1)(1− s2)∇s3 w5 = s2(1− s1)∇s3

w6 = s1s2∇s3 w7 = s1(1− s2)∇s3

w8 = (1− s1)(1− s3)∇s2 w9 = s1(1− s3)∇s2

w10 = s1s3∇s2 w11 = s3(1− s1)∇s2

Table A.2: Shape functions for hexahedral edge elements.

So that,

Vi · ∇sj = δi,j (A.6)

where δi,j is the Kroneker delta function. The inverse of a matrix can be written,

A−1 =
adj A

|A| , (A.7)

where adj A is obtained by transposing A and replacing each element by its co-factor.

The co-factors are no more than the cross products of the appropriate Vi’s so we can

get an expression for ∇si;

∇s1 =
V2 ×V3

(V2 ×V3) ·V1

. (A.8)

The denominator is the determinant of the matrix, so is the same for all three gradients.

These equations now allow the shape functions for an arbitary hexahedron to be written

entirely in the local coordinates s, and functions Vi which are easily calculated from

the vertices of the hexahedron.

The curl of the shape function w is required for the stiffness matrix. Since the curl

of a gradient is zero we can write,

∇×w2 = ∇× (s2s3∇s1)

= ∇(s2s3)×∇s1 (A.9)

This can be developed further,
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∇×w2 = ∇(s2s3)×∇s1

= (s2∇s3 + s3∇s2)×∇s1

=

(
s2

V1 ×V2

(V2 ×V3) ·V1

+ s3
V3 ×V1

(V2 ×V3) ·V1

)
× V2 ×V3

(V2 ×V3) ·V1

=
s2(V1 ×V2)× (V2 ×V3) + s3(V3 ×V1)× (V2 ×V3)

((V2 ×V3) ·V1)
2

=
s2V2 − s3V3

(V2 ×V3) ·V1

. (A.10)

The expressions for all the ∇×wi are given in Table A.3.

A.2 Prismatic Elements

van Welij [1985] suggests that prismatic elements can be made from a hexahedral element

by making two pairs of vertices coincide. Certainly the mapping F (s):→ r remains valid,

as does the integration. Furthermore, as he points out this mapping becomes singular

at these vertices. It is, however, necessary to redefine the edge shape functions, one

cannot simply use the hexahedral shape functions on those edges whose lengths have

not become zero. This is because the gradients ∇si are now undefined at the duplicate

vertices.

To define the new shape functions we start with a triangular element and define three

new local co-ordinates, ζ1, ζ2, ζ3 corresponding to the normal barycentric co-ordinates of

a triangle. The edge shape functions for the three edges of the triangle are then defined,

as normal, by

w0 = ζ1∇ζ2 − ζ2∇ζ1,

w1 = ζ1∇ζ3 − ζ3∇ζ1,

w2 = ζ2∇ζ3 − ζ3∇ζ2. (A.11)

We now note that the triangular shape functions can be written in terms of the co-
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∇×w0 =
(s2 − 1)V2 − (s3 − 1)V3

(V2 ×V3) ·V1

∇×w1 =
−s2V2 + (s3 − 1)V3

(V2 ×V3) ·V1

∇×w2 =
s2V2 − s3V3

(V2 ×V3) ·V1

∇×w3 =
(1− s2)V2 + s3V3

(V2 ×V3) ·V1

∇×w4 =
(s1 − 1)V1 − (s2 − 1)V2

(V2 ×V3) ·V1

∇×w5 =
(1− s1)V1 + s2V2

(V2 ×V3) ·V1

∇×w6 =
s1V1 − s2V2

(V2 ×V3) ·V1

∇×w7 =
−s1V1 + (1− s2)V2

(V2 ×V3) ·V1

∇×w8 =
(s1 − 1)V1 − (s3 − 1)V3

(V2 ×V3) ·V1

∇×w9 =
−s1V1 + (s3 − 1)V3

(V2 ×V3) ·V1

∇×w10 =
s1V1 − s3V3

(V2 ×V3) ·V1

∇×w11 =
(1− s1)V1 + s3V3

(V2 ×V3) ·V1

Table A.3: Curl of shape functions for hexahedral edge element.



A.2 Prismatic Elements 181

w0 = (1− s2) {(1− s3)∇s1 + s1∇s3}

w1 = s2 {(1− s3)∇s1 + s1∇s3}

w2 = s2 {s1∇s3 − s3∇s1}

w3 = (1− s2) {s1∇s3 − s3∇s1}

w4 = (1− s2) {(1− s1)∇s3 + s3∇s1}

w5 = s2 {(1− s1)∇s3 + s3∇s1}

w6 = (1− s1 − s3)∇s2

w7 = s1∇s2

w8 = s3∇s2

Table A.4: Shape functions for prism edge element

ordinates si,

ζ1 = 1− s1 − s2

ζ2 = s1

ζ3 = s3. (A.12)

Substitution of equations (A.12) into equation (A.11) gives,

w0 = (1− s3)∇s1 + s1∇s3

w1 = (1− s1)∇s3 + s3∇s1

w2 = s1∇s3 − s3∇s1. (A.13)

These can now be used to produce the complete set of shape functions for a prism in

terms of the coordinates s, Table A.4. The curl of these shape functions is developed in

the same way as the hexahedral elements and are given in Table A.5.
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∇×w0 =
−s1V1 − (s3 − 1)V3

(V2 ×V3) ·V1

∇×w1 =
s1V1 − 2s2V2 + (s3 − 1)V3

(V2 ×V3) ·V1

∇×w2 =
s1V1 − 2s2V2 + s3V3

(V2 ×V3) ·V1

∇×w3 =
−s1V1 − s3V3

(V2 ×V3) ·V1

∇×w4 =
(s1 − 1)V1 + 2(1− s2)V2 + s3V3

(V2 ×V3) ·V1

∇×w5 =
(1− s1)V1 + 2s2V2 − s3V3

(V2 ×V3) ·V1

∇×w6 =
−V1 −V3

(V2 ×V3) ·V1

∇×w7 =
V3

(V2 ×V3) ·V1

∇×w8 =
V1

(V2 ×V3) ·V1

Table A.5: Curl of shape functions for prism edge element
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B Waveguide Coupler

In order to measure the spectrum of the magnetron it was necessary to find some way to

couple the spectrum analyser to the microwave system. Since the maximum permissible

power input to the spectrum analyser is below 1 Watt and the output of the magnetron

in the region of 700 Watts a large degree of attenuation is required. For this purpose a

waveguide coupler, shown in Figure B.1 was constructed. It was desired to measure the

spectrum of the power supplied to the cavity rather than the power reflected from the

cavity which will have a spectrum that is also dependent upon the loading. The field a

a point in the waveguide feed is a combination of the forward and backward waves so

the coupler was designed so that it could differentiate between them.

The coupler consists of two E-field probes that are located one quarter of a wave-

length apart in the wall of the waveguide, as shown in Figure B.1. The probes were

designed to provide a high level of attenuation, which also means that they have vir-

tually no perturbing effect upon the fields in the waveguide. The signals from the two

probes are coupled to a packaged quadrature hybrid. This is designed so that the signal

fed in at one port is split so that it appears at the opposite port attenuated by 3 dB and

at the diagonally opposite port attenuated by 3 dB and phase shifted by 90 degrees. A

wave travelling in the forward direction, as shown in Figure B.1, will provide a signal at

the two probes which is 90 degrees apart so that at one output port of the quadrature

hybrid the two signals will add whereas at the other they will be in anti-phase and so
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Figure B.1: Waveguide coupler used to connect the feed waveguide to the spectrum

analyser.

subtract. Since a wave travelling in the reverse direction will produce signals at the

probes which as the opposite phase relationship the forward wave will couple to one of

the output ports and the backward wave to the other. For this to work in practice the

two probes need to be identical and exactly one quarter of a wavelength apart. The

coupler achieved a directionality of 38 dB, that is the signal at the port that should be

zero was 38 dB lower than the signal at the other output port. One port was connected

to the spectrum analyser via a further attenuator and the other port to a matched load.
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