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Summary 
 

Whey is a by-product of cheese manufacture, containing a mixture of proteins of 
commercial value, each having unique attributes for nutritional, biological and food 
ingredient applications. A tremendous amount of whey, normally treated as a waste product, 
is produced worldwide each year. This work describes the cation-exchange adsorption of the 
two major whey proteins, alpha-lactalbumin (ALA) and beta-lactoglobulin (BLG) with the 
purpose of optimising a process for isolating them from whey.  Adsorption of pure BLG and 
ALA was studied onto SP Sepharose FF using 0.1M acetate buffer. Batch experiments were 
carried out at various pH values for ALA and BLG, and the relevant Langmuir isotherm 
parameters, dissociation constant, Kd, and maximum binding capacity, qm, were determined. 
The optimum pH for separation was chosen to be pH 3.7. At pH 3.7, both Kd and qm 
pertaining to ALA were found to have higher numerical values than those of BLG, implying 
different characteristics of adsorption of the two proteins on this adsorbent. The Kd for the 
former protein was almost four times larger than the latter, while qm was 1.3 times higher. 
Packed-bed column adsorption was performed using a 1-ml column at pH 3.7, flow rate 1 
ml/min and initial concentration of 3 mg/ml for BLG and 1.5 mg/ml for ALA both in 0.1M 
sodium acetate buffer. The t1/2 for the resulting ALA breakthrough was 75% longer than its 
BLG counterpart. The above results suggest the possibility of the occurrence of competitive 
adsorption between the proteins when adsorbed simultaneously.  

In traditional batch uptake experiments, the kinetic rate constants of ALA and BLG in 
both the single- and two-component systems were determined using the simple kinetic model. 
The values so obtained implied that BLG was adsorbed faster than ALA. In the confocal laser 
scanning microscopy experiments, the different behaviour of ALA and BLG in the single-
component system with regard to their penetration within the adsorbent beads suggested that 
the two proteins have different transport mechanisms governing their adsorption. The two-
component system results showed that ALA was able to displace BLG in spite of the lower 
affinity of the former protein to the adsorbent.   

The packed-bed adsorption and elution of a mixture of ALA and BLG were then 
investigated under the above conditions but using a 5-ml column. BLG breakthrough 
occurred first, and its concentration in the outlet exceeded its feed value by 1.6 fold before 
declining to the feed value, followed by the breakthrough of ALA.  ALA displaced and eluted 
all the BLG from the column in a pure form.  Pure ALA could then be eluted with good 
recovery. The single- and two-component breakthrough curves for ALA and BLG were 
simulated by the simple kinetic model using the isotherm parameters, but the overshoot 
phenomenon could only be predicted after correcting these parameters.    

The evidence of the competitive nature of adsorption observed in binary mixtures was 
used to develop a facile separation procedure for the two proteins from aqueous solutions of 
whey concentrate powders. A novel consecutive two-stage separation process was developed 
to separate ALA and BLG from whey concentrate mixtures. Almost all the BLG in the feed 
was recovered, with 78% being recovered at 95% purity and a further 20% at 86% purity. In 
addition, 67% of ALA was recovered, 48% at 54% purity and 19% at 60% purity. The 
correction factors employed for the pure binary mixture were used to simulate the 
breakthrough curves of the two proteins in experiments conducted with whey concentrate in 
each of the two stages of the novel separation process, and there was agreement between the 
experimental and theoretical results. 
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of 7.6 mg/ml whey concentrate feedstock added to the ALA-BLG flow-through fraction 
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(from the first stage of the consecutive two-stage process) was applied onto an SP 
Sepharose FF column at pH 3.7 and flow rate 2 ml/min. 

Figure 8.14 Size-exclusion analysis on Superdex 200 for the eluted ALA fractions that 
were collected from the first stage of the consecutive two-stage process and then further 
purified on a Superdex 200 size-exclusion column, (A) ALA fraction collected in the pH 
5.2 eluate; (B) ALA fraction collected in the pH 7.0 eluate. 

Figure 8.15 Electrophoretic patterns for the collected ALA peaks shown in Figure 8.14, 
lane 1: molecular mass marker; lane 2: ALA fraction collected from pH 5.2 eluate; lane 3: 
ALA fraction collected from pH 7.0 eluate. In this experiment, each well was loaded with 
14μl of sample. 

Figure 8.16 Flow diagram of the consecutive two-stage process. 

 
Chapter 9 
 

Figure 9.1 Predicted and experimental breakthrough curves for the adsorption of BLG 
onto a 5-ml packed-bed of SP Sepharose FF at pH 3.7, feed concentration of 3 mg/ml, 
flow rate of 2 ml/min, and temperature 20oC, using k1=35*10-3mlmg-1min-1(A), and 
k1=55*10-3mlmg-1min-1(B). 

Figure 9.2 Predicted and experimental breakthrough curves for the adsorption of ALA 
onto a 5-ml packed-bed of SP Sepharose FF at pH 3.7, feed concentration of 1.5 mg/ml, 
flow rate of 2 ml/min, and temperature 20oC, and at flow rate of 2 ml/min using 
k1=30*10-3mlmg-1min-1 and the equilibrium batch isotherm parameters (A), and after 
increasing qm 1.5 times (B). 

Figure 9.3 Experimental and predicted profiles for the packed-bed adsorption of a 
mixture of BLG and ALA onto SP Sepharose FF at pH 3.7, flow rate of 2 ml/min and 
feed concentrations of 3 and 1.5 mg/ml, respectively. The theoretical profiles were 
predicted after modifying BLG isotherm parameters such that q′m = 3.5 (qm) and K′

d = 600 
(Kd). 

Figure 9.4 Experimental and predicted profiles for the packed-bed adsorption of a 
mixture of BLG and ALA onto SP Sepharose FF at pH 3.7, flow rate of 2 ml/min and 
feed concentrations of 3 and 1.5 mg/ml, respectively. The theoretical profiles were 
predicted after modifying the isotherm parameters such that for BLG: q′m = 3.0 (qm) and 
K′

d = 600 (Kd), and for ALA: q′m = 1.5 (qm).    

Figure 9.5 Experimental and predicted profiles for the packed-bed adsorption of BLG and 
ALA during the first (A) and second (B) stages of the whey purification process. The 
theoretical profiles were predicted after modifying the isotherm parameters such that for 
BLG: q′m = 3.5 (qm) and K′d = 600 (Kd). 

Figure 9.6 Experimental and predicted profiles for the packed-bed adsorption of BLG and 
ALA during the second stage of the whey purification process. The theoretical 
breakthrough curve for ALA was predicted using a modified value for k1 (90*10-3 mlmg-

1min-1).   
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Symbols and Abbreviations 
 

ALA alpha-lactalbumin 
BLG  Beta-lactoglobulin 
BSA  bovine serum albumin 
CLSM  confocal laser scanning microscopy 
DF   Diafiltration 
FPLC  fast protein liquid chromatography 
GMP  Glycomacropeptide 
IEC  Ion-exchange chromatography 
IEX  Ion-exchange 
Ig  Immunoglobulin 
MFGM  Milk fat globule membranes 
pI  Iso-electric point 
SEC  Size-exclusion chromatography 
WP  whey protein powder 
WPC  whey protein concentrate 
WPI   whey protein isolate 
 

AA  absolute peak area of ALA, mAu.ml 
AB  absolute peak area of BLG, mAu.ml 
Atot  Total absolute peak areas of the two proteins, mAu.ml 
C  Bulk fluid protein concentration, mg/ml 
CAB  total effluent concentration of ALA and BLG in binary and whey 

mixtures 
Cc  concentration of protein in the collected peak, mg/ml 
Cf  Feed bulk fluid protein concentration, mg/ml 
Ci  initial concentration of protein in batch solution, mg/ml 
C*  soluble protein concentration at equilibrium, mg/ml    
Co  initial liquid phase batch uptake protein concentration, mg/ml 
C   point protein concentration inside the pores, mg/ml 
ci  initial point protein concentration inside the pores, mg/ml 
cR  point protein concentration in equilibrium with q*, mg/ml 
D  effective pore diffusivity, m2/s 
DAB  molecular diffusivity of the protein in free aqueous solution, m2/s 
De  dielectric constant of the medium 
Dx  coefficient of axial dispersion along the column  
ε  porosity of the adsorbent particles 
F  Flow rate, ml/min 
FD  amount of feed, mg 
Fring  integral fluorescence within the ring, AU 
Fs  integral fluorescence within the shell, AU 
F*  Equilibrium integral fluorescence within the shell, AU 
k1  traditional forward rate (adsorption) constant, mlmg-1min-1 
k-1  traditional backward rate (desorption) constant, min-1 
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k1
′  confocal forward rate constant, mlmg-1 min-1 

Kd  dissociation constant for the protein-adsorbent interaction, mg/ml  
MA relative molecular mass of the protein, kDa 
q 

 
concentration of protein adsorbed on the adsorbent at any time,  
mg/ml 

q*  adsorbed protein concentration at equilibrium, mg/ml  
qi  initial concentration of protein adsorbed on the adsorbent, mg/ml 
qm  maximum protein binding capacity of the ion exchanger, mg/ml 
Qrel  relative solid-phase capacity, AU/m3 

ri 
 inner radius of the fluorescent ring, μm 

ro 
 outer radius of the fluorescent ring, μm 

Δr  thickness of the fluorescent shell, μm 
rt  rate of batch uptake adsorption per volume of solution, mg.min-1ml-1  
R  ratio of BLG to ALA in binary and whey mixtures 
RF  degree of saturation in terms of fluorescence intensity (Fs/F*) 
Rq  degree of saturation in terms of adsorption capacity (q/q*) 
SA  slope of the ALA calibration curve, mAu.ml2mg-1

  
SB  slope of the BLG calibration curve, mAu.ml2mg-1

  
t1/2  time corresponding to half the maximum concentration (0.5*Cf), min 
t10%brkthru  time corresponding to 10% of the maximum concentration, min         
T  absolute temperature, K 
V  volume of solution surrounding the adsorbent, ml 
Vb  bead volume, ml 
Vc  volume of collected peak, ml 
Vf  volume of feed sample loaded onto the column, ml 
VL  volume of column, ml 

sV   volume of original solution before adding the adsorbent suspension 

wV   volume of fluid contained within the adsorbent suspension 
vL  linear velocity, cm/h 
V  settled volume of the adsorbent, ml 
W  amount of adsorbent, mg 
X  distance along the column, m 
Z  Charge 
μ  viscosity of the protein solution, poise 
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1 Introduction 
Opportunities for the commercial extraction of bioproducts from food waste 

streams are increasing. Future initiatives to improve the recovery of by-products require 

additional research to investigate possible uses for valuable waste-stream components 

and to develop cost-effective techniques for their recovery (Beszedits and Netzer, 1982). 

One example of a potential field for bioproduct recovery is the extraction of proteins 

from milk whey using chromatographic techniques (Conrado, 2005). 

 Whey is a liquid mixture composed of a variety of chemical compounds but are 

unfortunately present at low concentrations. Because of this, whey has long been 

considered a waste product of dairy operations rather than a by-product. This very fact 

has created the problem of utilising whey, a problem which can be further grasped by 

considering that in the manufacture of cheeses or casein products only 10 to 20% (w/w) 

of the raw milk is utilised to obtain the final product; 80 to 90% (w/w) of the raw milk 

yields whey as a waste product. Thus the problem of whey utilisation is that a tremendous 

amount of whey in the order of 150 million tonnes is produced worldwide each year and 

this whey is composed of very dilute concentrations of valuable proteins and other 

biochemicals. There are three main types of whey utilisation: animal feedstocks, lactose 

production and the production of whey powders and individual whey proteins 

(Sienkiewicz, 1990).  

Whey protein powders (WP), well known for their nutritional value and versatile 

functional properties, are widely utilised in the food industry. The heterogeneous nature 

of WP preparations is typical of many commercial food protein preparations. For these 

products, the observed functionality is the sum of the functionality of individual proteins. 

The use of WP preparations, rather than the individual proteins, contributes to functional 

variability among commercially available whey proteins and can limit their applications 

(Morr and Ha, 1993; Mate and Krochta, 1994). Two main types of WP, whey 

concentrates which are purified varieties of whey that are concentrated up to a specified 

percentage of purity (< 90 % (w/w) protein) and whey isolates which are whey 

concentrate varieties of high purity (90 % (w/w) protein), are used as food additives in 

the production of a variety of baked goods, dairy products, meats, and beverages (Cayot 
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and Lorient, 1997). However, the lack of consistency in the gross composition and 

functionality of these products has limited their acceptance by the food processing 

industry (Morr and Ha, 1993). Commercial whey protein concentrates can also develop a 

stale off-flavour due to the presence of lipid and protein impurities (Morr and Ha, 1991). 

In addition, the unique nutritional, therapeutic, and functional characteristics of the 

individual whey proteins are largely unrealised in these whey products due to interactions 

between components and degradation during processing. There has thus been 

considerable commercial interest in the production of individual (purified) whey proteins 

with well-characterised functional and biological properties (Zydney, 1998). There is also 

an increasing need to produce individual whey proteins on a large scale without 

damaging protein structure or their functional properties. 

The present study will focus on the two major whey proteins, alpha-lactalbumin 

(ALA) and beta-lactoglobulin (BLG), as they constitute in total 75% by weight of the 

total proteins in whey. In addition, each of these two proteins is of commercial value and 

has unique attributes for nutritional, biological and food ingredient applications. The uses 

and applications pertaining to each protein are discussed in detail in Chapter 2. 

Several techniques have been proposed for the separation of individual whey 

proteins. These include selective precipitation, membrane separation and 

chromatographic techniques. Membrane filtration has proved difficult due to the 

relatively similar physicochemical properties of the different whey proteins. Good 

selective separation on the basis of size requires a large difference in molecular weight 

and would therefore be limited to separating only certain components of whey proteins 

(Goodall et al., 2008). Chromatographic separation techniques are of singular importance 

to the biopharmaceutical industry because they can deliver high-purity products, are 

relatively easy to develop, and can readily be scaled from the laboratory scale to the 

desired production level (Lightfoot, 1999). Separating proteins on the basis of their 

isoelectric points gives two distinct groups, namely the major whey proteins: beta-

lactoglobulin, bovine serum albumin and alpha-lactalbumin, which are negatively 

charged at the pH of rennet whey (pH 6.2 to 6.4); and minor whey proteins: lactoferrin 

and lactoperoxidase that carry a positive net charge at the pH of whey. These distinct 

properties offer the possibility of selectively separating the groups using ion exchange 
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chromatography. Ion exchange is probably the most frequently used chromatographic 

technique for the separation and purification of proteins. The reasons for the success of 

ion exchange in this regard are its widespread applicability, high resolving power (high 

selectivity), high capacity, and the simplicity and controllability of the method 

(Amersham Biosciences, 2001).    

In search for a viable facile process for isolating and separating the two major whey 

proteins, alpha-lactalbumin (ALA) and beta-lactoglobulin (BLG), from whey, it was 

therefore decided to adopt the ion-exchange adsorption approach. As will be discussed 

later on, most of the whey purification work has been done using anion-exchange 

adsorption. Very few studies used cation-exchangers for separating whey proteins, 

particularly the two major ones. For whey proteins column chromatography, only 

selective elution has been used for separation by previous workers. Therefore, cation-

exchange selective adsorption chromatography was selected for the purpose of this work. 

This implies that the two proteins must be in the form of cations. Hence, the working pH 

should be below the lower pI of the two proteins (pI for ALA is 4.2, and for BLG is 5.2). 

It will be shown that a working pH of 3.7 maximises the adsorption of both proteins. 

Adsorption took place on the strong cation-exchanger SP Sepharose FF. This type of 

adsorbent was chosen due to its excellent flow characteristics. It is characterised by 

having a high degree of cross-linking that greatly improves its physical and chemical 

stability at high flow rates. Therefore, it allows simple and conventional scale up so that 

the method established on a small-scale column can be applied more or less directly to 

the larger column. It is also optically transparent (Stone and Carta, 2007) which enables it 

to be used for confocal laser scanning microscopy studies. 

Very few studies have been devoted to modelling of whey protein purification using 

adsorption chromatography, most of which were directed to investigating the adsorption 

of different whey proteins from raw whey solutions. To the best knowledge of the author, 

no work has been made on the adsorption of pure alpha-lactalbumin and beta- 

lactoglobulin (major whey components), which forms the underlying foundation for 

adsorption of whey mixtures as a whole. Understanding the nature of single-component 

adsorption would enable extension to the binary mixtures and, in turn, to whey mixtures. 
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Aim of work 
 

The objective of the present work is to investigate the characteristics of the cation-

exchange selective adsorption of the two pure major whey proteins, alpha-lactalbumin 

and beta-lactoglobulin, first as single-components and then in binary mixtures using 

modelling and simulation tools, with the purpose of developing and optimising a facile 

process of separating them from whey mixtures. As mentioned earlier, the cation-

exchange selective adsorption has been selected because it was not previously used by 

other workers for whey protein column chromatography. The prime aim of studying the 

characteristics of adsorption in pure systems is to elucidate the nature of the adsorption 

process and understand the events underlying the separation of the two proteins, as well 

as to yield information that could be subsequently exploited in the development and 

simulation of the whey purification process.  

 In view of the above objectives, the results and discussion will be organised such 

that the equilibrium, kinetics and dynamics of adsorption are first studied using batch, 

batch uptake and packed-bed techniques before embarking on the whey purification 

process. Hence, the subsequent chapters of the thesis are to be found arranged as follows: 

A) A background (Chapter 2) which includes an overview of whey regarding its 

composition, applications and methods used for its purification. The uses and 

commercial value of the proteins of interest, ALA and BLG, are discussed in 

detail. In addition, a background is given to the ion-exchange adsorption 

method which is the focus of the present study. 

B) Theoretical (Chapter 3) which presents the theoretical basis of this work. 

C) Experimental (Chapter 4) which discusses the experimental aspects of this work. 

D) Equilibrium studies (Chapter 5) to construct the adsorption isotherm and hence 

obtain the equilibrium parameters, namely the maximum binding capacity of 

the adsorbent and the dissociation constant for the protein-adsorbent interaction. 

E) Kinetic studies (Chapter 6) to determine the rate constant for the adsorption 

process. The studies will be conducted using the traditional method where the 

protein uptake profile is obtained indirectly by measuring the change in protein 

concentration in the bulk liquid phase, and by the direct confocal laser scanning 
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microscopy measurements where the penetration of the dye-conjugated protein 

within single adsorbent beads at different times during batch uptake could be 

visualised. 

F) Packed-bed studies (Chapter 7) to obtain the breakthrough curves for the 

adsorption of pure ALA and BLG in both single- and two-component systems. 

G) Chromatographic purification of whey concentrate (Chapter 8) to develop a 

novel selective adsorption process for isolating ALA and BLG.  

H)  Simulation of the breakthrough curves of ALA and BLG in pure systems and in 

whey (Chapter 9) to model the whey purification process. 

I) Overall conclusions and outlook (Chapter 10). 

 

It is to be noted that in each of chapters (5, 6, 7 8 and 9), a review of the literature 

pertinent to the topic under consideration is to be found at the beginning of the 

chapter; there is no separate chapter totally dedicated to an overall literature survey. 
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2 Background 

2.1 Whey 

2.1.1 What is whey? 

Whey is a by-product of cheese and casein manufacture that contains about 63 g/l 

solids, of which 50 g/l is lactose and 6 g/l is protein (Bottomley et al., 1990). It is a 

multicomponent protein mixture containing proteins of commercial value, each having 

unique attributes for nutritional, biological, and food ingredient applications (Smithers et 

al., 1996). Dairy whey is characterised as the water-like liquid or serum that separates 

from the curds during cheese manufacturing (Kosikowski, 1979). There are two types of 

whey: sweet and acid. Acid whey is obtained from the manufacturing of cheese in which 

the caseins or principal milk proteins are removed from milk by precipitation at a pH of 

4.6. The proteins and other compounds remaining in the water-like liquid at this pH have 

a specific composition and the whey is characterized as acidic. Sweet whey is produced 

when the caseins are enzymatically coagulated using rennet type enzymes at a pH of 5.9 

to 6.3 (Dybing & Smith, 1991).   

2.1.2 Whey composition 

In general whey (sweet or acid) is a dilute solution composed of lactose, a variety 

of proteins, minerals, vitamins and fat. It contains about 6% (w/w) solids of which 70% 

(w/w) or more is lactose and about 0.7% (w/w) is proteins (Zall, 1984). These proteins 

are soluble at pH 4.6 and 20°C including beta-lactoglobulin (0.2-0.4%, w/v, milk), alpha-

lactalbumin (0.060-0.17%, w/v, milk), bovine serum albumin (0.04%, w/v, milk) and 

immunoglobulins (0.040-0.09%, w/v, milk) (Eigel et al., 1984). Minor proteins are also 

present: lactoferrin, lactoperoxidase, enzymes, protein components of the MFGM (milk 

fat globule membranes), proteose-peptone components and glycomacropeptide (only 

found in sweet whey) (Strange et al., 1992). The composition of whey varies according to 

its production method. There are two types of whey: acid whey and sweet whey. Acid 

whey is obtained during the making of acid type of cheese such as cottage cheese and is 

produced by acid coagulation where bacterial cultures of lacto-bacillus are added to the 
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milk to produce lactic acid. Sweet whey, on the other hand, is manufactured during the 

making of rennet type hard cheese like cheddar or Swiss cheese and is produced by 

enzymatic coagulation where rennet (natural complex of enzymes produced in any 

mammalian stomach to digest the mother's milk) is added to the milk. 

2.1.3 Whey protein concentrates and whey protein isolates 

In the latest two decades, the evolution of separation technologies, viz. those 

relying on selective, porous membranes, have permitted a number of protein whey 

components to become widespread additives in food. Whey may indeed be subject to 

several treatments, thus giving rise to whey products with specific qualitative and 

quantitative profiles of proteins, minerals, lipids and sugars. The afore-mentioned 

membrane-based separation technologies include ultrafiltration (UF) to concentrate 

proteins, or diafiltration (DF) to remove most lactose, minerals and low molecular weight 

components – and thus produce whey protein concentrates (WPC). Depending on their 

concentration, there are WPC containing 35%, 50%, 65% and 80% (w/w) protein. When 

the threshold of 90% (w/w) protein is reached, a whey protein isolate (WPI) is 

accordingly obtained – which is a protein concentrate of high-quality and purity. Both 

those products are used as vectors for the promotion of many biological properties (cf. 

p.8-9) upon addition to foods (Huffman and Harper, 1999). 

2.1.4 Individual whey proteins 

Table 2.1 shows the composition of the different proteins present in bovine whey 

together with their isoelectric points and molecular weights of their monomeric subunits.  

 
 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Enzyme
http://en.wikipedia.org/wiki/Mammal
http://en.wikipedia.org/wiki/Stomach
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Table 2.1 Physical characteristics of individual whey proteins (Wong et al., 1996; 
Cayot and Lorient, 1997). 

 

 

Whey proteins are classified into major and minor proteins. 

2.1.4.1 Major whey proteins 

2.1.4.1.1 Beta Lactoglobulin (BLG) 

Beta-Lactoglobulin is quantitatively the dominant whey protein (58% (w/w)), and 

was first discovered in 1934 (Madureira et al., 2007). BLG is the major whey protein of 

cow’s milk (~3 g/l), and is also present in many other mammalian species; a notable 

exception being humans’. When in isolated form, it exhibits a low solubility (despite its 

globular nature) and a low ionic strength. Synthesised in the mammary gland of 

ruminants (and other species) and present in milk, this protein has several genetic 

variants – of which BLG A is the most common (Eigel et al., 1984). Bovine BLG is a 

small soluble protein that normally exists as a dimer of subunit molecular mass around 

18,400 Da. It dissociates to a momomer below about pH 3. Each monomer comprises 162 

amino acid residues, with one free cysteine residue and two disulphide bridges. 

Nevertheless, its native 3D-configuration (Figure 2.1) remains fairly intact at lower pH 

values, as determined using NMR (Sawyer & Kontopidis, 2000; Uhrinova et al., 2000). 

BLG solutions form gels in various conditions when the native structure is 

sufficiently destabilised to allow aggregation (Bromley et al., 2005). Under prolonged 

heating at low pH and low ionic strength, a transparent ‘fine-stranded’ gel is formed, in 

which the protein molecules assemble into long stiff fibres. BLG is a better foam 

stabilizer than the other whey proteins, and can be used in the production of 

confectioneries (Cayot and Lorient, 1997). 

* 

* has been also cited as 4.2-4.5 (Gerberding and Byers, 1998). It has to be noted that whey also contains some 
residual casein whose amount depends on the method of whey storage.
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BLG plays a role in transfer of passive immunity to the newborn, and in 

regulation of phosphorus metabolism in the mammary gland (Farrell et al., 1987). The 

amino acid content of this protein is rather important, because – besides fueling muscle 

growth – it is a source rich in the essential amino acid cysteine, which is important for 

synthesis of Glutathione (GSH) antioxidant which protects cells from toxins such as free-

radicals (de Wit, 1998). 

 

 

Figure 2.1 Three dimensional structure of beta-lactoglobulin, reproduced from 
Swaisgood (1996). 

2.1.4.1.2 Alpha Lactalbumin(ALA) 

Alpha-Lactalbumin is the second major whey protein in cow's milk (~1 g/l) 

representing about 20% (w/w) of the total whey protein, and is fully synthesized in the 

mammary gland. It is also present in many other mammalian species. Its molecular 

weight is 14, 176 Da and it contains 123 amino acid residues with a sequence quite 

homologous to that of lysozyme. Three genetic variants have already been identified – A, 

B and C (Fox, 1989). One of the main structural differences with beta-lactoglobulin is 

that it does not have any free thiol group that can serve as the starting point for a covalent 

aggregation reaction. As a result, pure ALA will not form gels upon denaturation and 

acidification (Figure 2.2). 

ALA provides an important source of energy for the newborn (de Wit, 1998) and 

therefore is used in infant formula. It is also used as a nutraceutical (functional food) 

because of its high tryptophan content. In addition, ALA provides enhanced whippability 

in meringue-like formulations (Pearce, 1992). The protein was found to have strong 

affinity for glycosylated receptors on the surface of oocytes and spermatozoids and thus 
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may have a potential as a contraceptive agent (Maubois and Ollivier, 1997). ALA also 

contributes to reduce the risk of incidence of some cancers as it constrains cell division, 

when incubated in distinct mammalian intestinal cell lines (Ganjam et al., 1997). 

 

Figure 2.2 Three-dimensional structure of alpha-lactalbumin, Swaisgood (1996). 

2.1.4.1.3 Bovine serum albumin (BSA) 

Bovine serum albumin is of interest in a number of food and therapeutic applications. It is 

used as a nutrient in cell and microbial culture. It is also used to stabilise some enzymes 

during digestion of DNA and to prevent adhesion of the enzyme to reaction tubes and 

other vessels. 

2.1.4.1.4 Bovine Immunoglobulins (Ig) 

Immunoglobulins can enhance the immunological properties of infant formula and they 

can be used therapeutically in the treatment of animal neonates (Zydney, 1998). 

2.1.4.2 Minor whey proteins 

Whey also contains many proteins present at relatively low concentrations but 

with important biological activity. Lactoferrin and lactoperoxidase both have strong 

antibacterial activity and can be used in the development of improved infant formula, 

“therapeutic”cosmetics, and mouthwash solutions. Lactoferrin also enhances iron 

absorption in infant formula. In addition, a variety of biologically active peptides with 

interesting anti-opioid and anti-thrombotic activity can be produced from lactoferrin. 

Glycomacropeptide (GMP) is a peptide fragment produced by enzymatic cleavage of κ-

casein by chymosin. GMP is highly soluble in water and thus remains in the whey 

http://en.wikipedia.org/wiki/DNA
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fraction after coagulation of the milk. GMP has been examined for improved lipid 

digestion, protection against influenza, prevention of tartar adhesion to teeth, and 

inhibition of E.coli attachment to intestinal walls (Maubois and Ollivier, 1997). Whey 

also contains numerous growth factors, hormones, and a variety of enzymes, many of 

which have biological activity (Zydney, 1998). 

2.1.5 Whey purification 

2.1.5.1 Available processes for separation 

Several processes have been proposed for commercial-scale production of whey 

protein fractions. These processes fall into three main categories: (1) selective 

precipitation; (2) membrane filtration; and (3) selective adsorption or selective 

elution. Precipitation and membrane separation processes are volume-dependent 

separation methods, wherein the equipment capacity and cost of manufacture is 

proportional to the volume of solution processed and not to the mass of product produced. 

For dilute protein solutions such as whey, large volumes of liquid must be processed to 

recover a fixed mass of protein. Selective adsorption processes are less volume dependent 

because adsorbent capacity depends mostly on the mass of protein recovered, not the 

volume of liquid processed (Doultani et al., 2004), as well as the concentration of the 

adsorbed species. The following review will be confined to the third type of processes as 

they are the main interest of this study. 

  Selective adsorption or selective elution processes include ion exchange 

chromatography in which polyvalent, charged proteins bind to appropriately charged ion 

exchangers; affinity chromatography which exploits the specific recognition interactions 

that can occur between proteins and immobilised ligands; and a more general class 

normally referred to simply as adsorption chromatography where the mechanism of 

adsorption is often uncertain. Examples of the latter class include the use of 

hydroxyapatite where adsorption is due to hydrophilic interactions, and other non-

charged adsorbents where hydrophobic interactions are implicated in the adsorption 

process. 

There are many examples of selective adsorption and selective elution processes 

for whey proteins. In case of affinity chromatography, Gurgel et al. (2000) used the 
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immobilized hexapeptide, WHWRKR, for ALA adsorption, while Gambero et al. (1997) 

separated the same protein from bovine milk whey using chemically modified silica with 

β-Diketoamine groups.  For BLG adsorption, Wang and Swaisgood (1993), Noppe et al. 

(1998) and Vyas et al. (2002) used immobilised retinal. Puerta et al. (2002) studied the 

adsorption kinetics of beta-lactoglobulin on a polyclonal immunochromatographic 

support. Konecny et al. (1994) used thiophilic chromatography on a T-gel to purify IgG 

from sweet cheese whey and found this method suitable for large-scale whey IgG 

isolation. 

Using hydrophobic chromatography, Chaplin (1986) separated bovine whey proteins and 

caseins on a fast protein liquid chromatography column, phenyl-superose; Hahn et al. 

(2003) compared different hydrophobic interaction media regarding dynamic binding 

capacity, recovery and mass transfer properties; and Conrado et al. (2005) described the 

operating parameters related to the use of Streamline®phenyl for the recovery of ALA 

from cow-milk whey in an expanded-bed adsorption mode of operation using a 

theoretical model. 

Being the focus of this study, ion-exchange chromatography will thus be discussed 

in more detail in the following subsection. However, the whey purification processes 

pertaining thereto will be dealt with in a forthcoming chapter dedicated to this topic (cf. 

Chapter 8).   

2.2 Ion-exchange chromatography (IEC) 

2.2.1 Historical Background 

Separation and purification operations with ion exchange resins involve the 

reversible interchange of ions between a functionalized insoluble resin (the ion-exchange 

material) and an ionisable substance in solution (Dechow, 1989). While Thompson 

(Cuatrecasas et al., 1968) reported in 1850 the first ion exchange applications which used 

naturally-occuring clays, ion exchange resins have only been used in biochemical and 

fermentation product recovery for the last few decades (Parikh and Cuatrecasas, 1985; 

Lowe, 1979). In these early studies, biochemicals such as adenosine triphosphate 

(Scouten, 1981), alcohols (Larson et al., 1983), alkaloids (Colowick et al., 1984), amino 
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acids (Chaiken et al., 1984), growth regulators (Nishikawa, 1975), hormones (Graves and 

Wu, 1974), nicotine (Nishikawa et al., 1974), penicillin (Lowe, 1984), and vitamin B-12 

(Bottomley et al., 1976) were purified using ion exchange resins. 

Ion exchange applications intensified following the work of Moore and Stein 

(Van Deemter et al., 1956) which showed how very complex mixtures of biochemicals, 

in this case amino acids and amino acid residues, could be isolated from each other using 

the ion exchange resin as a column chromatographic separator. 

In biotechnology applications, ion exchangers are important in preparing water of 

the necessary quality to enhance the desired micro-organism activity during fermentation. 

In downstream processing, ion exchange resins are used to convert, isolate, purify or 

concentrate the desired product or by-products (Dechow, 1989). 

Ionic interactions as the basis for separation and purification of proteins by ion-

exchange chromatography have been applied successfully since the late 1940s (Janson 

and Ryden, 1998). Ion exchange adsorbents have found widespread use in the 

purification of proteins, both in the laboratory and in the production plant, since the 

introduction in 1956 of the first ion exchanger specifically designed for proteins 

(Peterson and Sobers, 1956). This has been highlighted in a study by Bonnerjea et al. 

(1986) which showed that ion exchangers were used in 75% of all the published 

purification protocols that they examined. 

Reasons for the popularity of IEC include its (1) high resolving power, (2) high 

protein-binding capacity, (3) versatility (there are several types of ion exchangers, and the 

composition of the buffer and pH can be varied over a wide range), straight forward 

separation principle (primarily according to differences in charge), and (5) ease of 

performance (Janson and Ryden, 1998), in addition to relative cheapness and their 

acceptance by the regulatory authorities in the production of pharmaceutical proteins. 

This is in contrast to affinity adsorbents which, although they result in good resolution, 

are limited to one protein or group of proteins, are expensive and their use may be 

questioned by regulatory bodies (Skidmore and Chase, 1990).  
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2.2.2 Theory and principles 

Separation in ion exchange chromatography depends upon the reversible 

adsorption of charged solute molecules to immobilised ion exchange groups of opposite 

charge (Amersham Biosciences, 2001), i.e. IEC separates molecules on the basis of 

differences in their net surface charge. Molecules vary considerably in their charge 

properties and will exhibit different degrees of interaction with charged adsorbents 

according to differences in their overall charge, charge density and surface charge 

distribution. These interactions can be controlled by varying conditions such as ionic 

strength and pH. The differences in charge properties of biological compounds are often 

considerable, and since ion exchange chromatography is capable of separating species 

with very minor differences in properties, e.g. two proteins differing by only one charged 

amino acid, it is a very powerful separation technique.  

In ion exchange chromatography one can choose whether to bind the substances 

of interest and allow the contaminants to pass through the column, or to bind the 

contaminants and allow the substance of interest to pass through. Generally, the first 

method is more useful since it allows a greater degree of fractionation and concentrates 

the substances of interest. 

IEC takes advantage of the fact that the relationship between net surface charge 

and pH is unique for a specific protein. In an ion-exchange (IEX) separation, reversible 

interactions between charged molecules and oppositely charged ion-exchange media are 

controlled in order to favour binding or elution of specific molecules and achieve 

separation. A protein that has no net charge at a pH equivalent to its isoelectric point (pI) 

will not interact with a charged medium. However, at a pH above its isoelectric point, a 

protein will be negatively charged and therefore will bind to a positively charged medium 

or anion exchanger and, at a pH below its pI, a protein will bind to a negatively charged 

medium or cation exchanger. In addition to the ion exchange interaction, other types of 

binding may occur, but these effects are very small and are mainly due to van der Waals 

forces and non-polar interactions (Amersham Biosciences, 2004). 
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2.2.3 IEX in practice: Steps in IEX separation 

Most ion exchange experiments are performed in five main stages. These steps are 

illustrated schematically below (Figure 2.3). 

 
 

The first stage is equilibration in which the ion exchanger is brought to a starting 

state, in terms of pH and ionic strength, which allows the binding of the desired solute 

molecules. The exchanger groups are associated at this time with exchangeable counter-

ions (usually simple anions or cations, such as chloride or sodium). 

The second stage is sample application and adsorption, in which solute molecules 

carrying the appropriate charge displace counter-ions and bind reversibly to the gel. 

Unbound substances can be washed out from the exchanger bed using starting buffer. 

In the third stage, substances are removed from the column by changing to elution 

conditions unfavourable for ionic bonding of the solute molecules. This normally 

involves increasing the ionic strength of the eluting buffer or changing its pH. In Figure 

2.3, desorption is achieved by the introduction of an increasing salt concentration 

gradient and solute molecules are released from the column in the order of their strengths 

of binding, the most weakly bound substances being eluted first. 

Figure 2.3 Steps of ion-exchange chromatography (Amersham Biosciences, 
2001). 
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The fourth and fifth stages are the removal from the column of substances not 

eluted under the previous experimental conditions and re-equilibration at the starting 

conditions for the next purification (Amersham Biosciences, 2001). 

2.2.4 The adsorbent (Ion-exchanger) 

Ion-exchange media include porous or non-porous matrices, chosen for their 

physical stability, their chemical resistance to stringent cleaning conditions and their low 

level of non-specific interaction. The matrices are substituted with functional groups that 

determine the charge of the medium (Amersham Biosciences, 2004). 

2.2.4.1 The matrix 

An ion exchanger consists of an insoluble matrix to which charged groups have 

been covalently bound. The charged groups are associated with mobile counterions. 

These counter-ions can be reversibly exchanged with other ions of the same charge 

without altering the matrix. 

It is possible to have both positively and negatively charged exchangers (Figure 

2.4). Positively charged exchangers have negatively charged counter-ions (anions) 

available for exchange and are called anion exchangers. Negatively charged exchangers 

have positively charged counter-ions (cations) and are termed cation exchangers. 

 
 

The matrix may be based on inorganic compounds, synthetic resins or 

polysaccharides. The characteristics of the matrix determine its chromatographic 

properties such as efficiency, capacity and recovery as well as its chemical stability, 

mechanical strength and flow properties. The nature of the matrix will also affect its 

Figure 2.4 Ion-exchanger types (Amersham Biosciences, 2001). 
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behaviour towards biological substances and the maintenance of biological activity 

(Amersham Biosciences, 2001). 

Modern ion-exchange media use either polymer or agarose-based matrices to 

fulfil not only the requirements for high binding capacity as well as chemical and 

physical stability, but also to generate media with suitable particle sizes for a range of 

applications (Table 2.2) (Amersham Biosciences, 2004). 

     Table 2.2 Ion-exchange matrices (Amersham Biosciences, 2004). 

 

 

2.2.4.2 Functional (charged) groups 

The presence of charged groups is a fundamental property of an ion exchanger. 

The type of group determines the type (in terms of charge of an IEX medium; i.e. a 

positively-charged anion exchanger or a negatively-charged cation exchanger) and 

strength of the ion exchanger; while their total number and availability determines the 

capacity. There is a variety of functional groups which have been chosen for use in ion 

exchangers; some of these are shown in Table 2.3. 

        

 

 

 

 

 

 

 

 

The second column in the table represents the structure of the adsorbent matrix and the agarose 
content is expressed in terms of (w/v) %. 
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Table 2.3 Functional groups used on ion-exchangers (Amersham Biosciences, 2001). 

 
 

Sulphonic and quaternary amino groups are used to form strong ion exchangers; 

the other groups form weak ion exchangers (as shown in the second column of Table 2.3). 

The terms strong and weak refer to the extent of variation of ionization with pH and not 

the strength of binding. Strong ion exchangers are completely ionized over a wide pH 

range whereas with weak ion exchangers, the degree of dissociation and thus exchange 

capacity varies much more markedly with pH (Amersham Biosciences, 2001). 

There are several advantages to working with strong ion exchangers: 

• development and optimisation of separations is fast and easy since the charge 

characteristics of the medium do not change with pH. 

• the mechanism of interaction is simple since there are no intermediate forms of 

charge interaction. 

• sample loading (binding) capacity is maintained at high or low pH since there is no loss 

of charge from the ion exchanger (Amersham Biosciences, 2004). 

Due to their excellent flow characteristics, Sepharose fast flow ion-exchangers 

were used in the present work, and are therefore described further below. 

2.2.4.3 Sepharose Fast Flow ion exchangers 

Sepharose Fast Flow ion exchangers are based on 90 μm agarose beads with a 

high degree of cross-linking that is used to give the media greatly improved physical and 

chemical stability. This high stability allows the gels to be used at the higher flow rates 

required for modern laboratory separations as well as meeting the throughput and 

cleaning-in-place requirements of process scale chromatography. To give a complete 

range of ion exchange media Sepharose Fast Flow is available with the weak exchanger 
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groups, DEAE and CM and the strong exchanger groups Q and SP. Figure 2.5 shows the 

partial structures of these media.  

 
Figure 2.5 Functional groups on different Sepharose Fast Flow ion exchange media 
(Amersham Biosciences, 2001). 
 

Characteristics of the different ion exchangers based on Sepharose Fast Flow are listed in 

Table 2.4. 
 

Table 2.4 Characteristics of Q, SP, DEAE and CM Sepharose Fast Flow (Amersham 
Biosciences, 2001). 
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2.2.4.3.1 Properties 

Physical stability 

Sepharose Fast Flow ion exchangers are supplied either pre-swollen and ready for 

packing in a column or already in pre-packed columns. The highly cross-linked nature of 

the matrix means that the bead size and bed volumes do not change with changes in ionic 

strength or pH. 

Binding Capacity 

As is the case with all ion exchangers the capacity is dependent upon the accessibility of 

the charged groups and their number. Sepharose Fast Flow ion exchangers are highly 

substituted and have an exclusion limit of approximately 4 x 106 giving high capacity for 

proteins. Q Sepharose Fast Flow and SP Sepharose Fast Flow are highly substituted with 

strong ion exchange groups. These groups remain charged and maintain consistently high 

capacities over broad working pH ranges of 2-12 and 4-13 respectively. This allows the 

selection of a pH value and buffer that best suit the properties of the sample (Amersham 

Biosciences, 2001). 

It is to be noted that throughout this study, the strong cation exchanger SP Sepharose FF 

will be used for reasons that were discussed above. An electron microscopy image of SP 

Sepharose FF beads is shown in Figure 2.5. The beads are all regular in shape and the 

adsorbent has an open structure (Staby et al., 2005). 
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Figure 2.6  Scanning electron microscopy image of SP Sepharose FF beads 
(reproduced from Staby et al., 2005).The magnification is 1600x. 

2.2.5 Factors affecting IEX separation 

The interaction between small molecules and ion exchanger depends on the net 

charge and the ionic strength of the medium. When the concentration of competing ions 

is low, the ions of interest bind to the ion exchanger, whereas when it is high, they are 

desorbed. The interaction between a protein and an ion exchanger depends not only on 

the net charge and the ionic strength, but also on the surface charge distribution of the 

protein, pH, the nature of particular ions in the solvent, additives such as organic solvents, 

and properties of the ion exchanger. 

The interaction I between two charges Za and Zb separated by a distance r is given 

by Coulomb’s law, 

 

                                    I = Za Zb /De r2                                                                          (2.1) 

where, 

De = dielectric constant of the medium 

From the above equation, it is thus clear that the more charged a protein is, the more 

strongly it will bind to a given oppositely charged ion exchanger. Similarly, more highly 

charged ion exchangers (i.e., those with a higher degree of substitution with charged 

groups) usually bind proteins more effectively than weakly charged ones. Conditions, for 
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example, pH, that alter the charge on either the protein or the ion exchanger will affect 

their interaction and may be used to influence the ion-exchange process (Janson and 

Ryden, 1998). 

2.2.5.1 The pH parameter 

The pH is one of the most important parameters in determining protein binding, as 

it determines the charge on both the protein and the ion exchanger. 

Since all molecules with ionisable groups can be titrated, their net surface charge is 

highly pH dependent. In the case of proteins, which are built up of many different amino 

acids containing weak acidic and basic groups, their net surface charge will change 

gradually as the pH of the environment changes i.e. proteins are amphoteric. Each protein 

has its own unique net charge versus pH relationship which can be visualised as a 

titration curve (Figure 2.7). This curve reflects how the overall net charge of the protein 

changes according to the pH of the surroundings. 

-

0

 
Figure 2.7 Theoretical protein titration curve, showing how net surface charge 
varies with pH. 
 

 As one of the most important steps of chromatography as well as being the focus 

of our study, adsorption including equilibrium, kinetics and different techniques will be 

further discussed in more detail in the forthcoming chapters. 
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2.2.6 Modelling chromatography 

The first theoretical models of chromatography are dated back to the late 1930s 

and early 1940s. The pioneering works [Wicke and Kolloid, 1940; Wilson, 1940; De 

Vault, 1943; Martin and Synge, 1941; Martin and James, 1952; Craig, 1944] began with 

approaches aiming to develop and improve understanding of chromatography. 

Linear kinetic rate constant model was first used by Wilson, 1940; Weiss, 1943; 

and De Vault, 1943 extended this model to nonlinear chromatography. Any 

hydrodynamic dispersion or mass transfer effects are neglected in this model. Earlier, 

Bohart and Adams (1920) derived equations for the film and pore diffusion model, but it 

does not seem that they attempted any calculations based on this model. Wicke and 

Kolloid (1939, 1940) derived the same model equation and discussed its application to 

gas chromatography on activated charcoal. The model has no analytical solutions. It was 

only around 1987 that the calculation of the band profiles of single compounds and 

binary mixtures began to become accessible [Guiochon et al., 1988]. 

Models for predicting the performance of chromatographic adsorption have been 

initially developed for nonporous adsorbent particles so that the intraparticle diffusion 

mass transfer mechanisms need not be considered in the kinetics of adsorption. Thus the 

mathematical complexity in solving the model equations are partly eliminated (Liapis et 

al., 1989; Mao et al., 1991). Other adsorption models for porous particles are based 

mostly on rate theories which considered only one rate limiting step; i.e. either rate of 

interaction or rate of diffusion (pore or film) as controlling the overall adsorption 

mechanism (Chase, 1984; Arnold et al., 1985; Liapis et al., 1989; Mao et al., 1991; 

Finette et al., 1998). Arve and Liapis (1988), on the other hand, have developed a 

sophisticated model for biospecific affinity chromatography considering three rate 

controlling mechanisms simultaneously, two for film and pore diffusion mass transfer 

mechanisms and one for the interaction between adsorbate and adsorbent. Hortsmann and 

Chase (1998) used this model to describe the adsorption kinetics of a series of paraquat-

protein conjugates to an immunosorbent consisting of monoclonal anti-paraquat 

antibodies covalently immobilised to Sepharose 4B. 

In general, two main models were proposed for the adsorption of proteins; namely 

the simple ‘kinetic rate constant’ model which is based on a single lumped kinetic 



                                                                                                               El-Sayed, Chapter 2 
 

 24

parameter, and the more rigorous ‘pore-diffusion’ model which considers the individual 

transport processes occurring prior to the adsorption reaction, that is taking into account 

diffusion across the liquid film surrounding individual particles and also the diffusion 

within the ion-exchanger particle itself. The literature pertaining to the use of these 

models in describing the ion-exchange adsorption will be reviewed in detail in the 

following chapters.  
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3 Theoretical 

3.1 Adsorption equilibrium 

3.1.1 Single-component systems 
  

Chromatography and adsorption work by the differential adsorption of species to 

an adsorbent surface, or ligands, from a complex chemical mixture. The adsorption of a 

chemical species can be represented by the equilibrium reaction 

 

      Keq 
A + S                         AS 

                                                                                                                                        (3.1)                               
 
 
where A is the dissolved chemical species, S is an adsorption site, AS is the chemical 

bound to the site, and Keq
 is the equilibrium constant governing the association reaction. 

The equilibrium constant for this adsorption is  

 

                                                          Keq = 
]][[

][
SA

AS                                                      (3.2) 

   

 Three assumptions are inherent in this representation of the adsorption reaction. 

Firstly, it is completely reversible, and the chemical’s interaction with the adsorption site 

causes no alteration in its solution properties or solution state. Secondly, chemicals bind 

to sites in a one-to-one fashion, and they bind only to sites. In other words, the binding is 

“specific,” and there is no “non-specific” binding, or interaction between molecules and 

the surface. Thirdly, there is only one mode of binding to the site; all binding is equal and 

is described by a single value for Keq. Despite these limiting assumptions, this “site 

model” of adsorption still serves as a very accurate description of adsorption in liquid 

chromatography. 

 The most efficient operation uses all the adsorption sites available. In this case, the 

concentration of the empty adsorption sites available cannot be ignored. The 
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concentration of unoccupied sites is not readily measurable, but the total number of sites 

is 

                                         

                                       Stot                        [AS] + [S]                                                      (3.3) 

 

where Stot is the total site concentration. Combining the general expression for Keq, Eq. 

(3.2) with Eq. (3.3) for Stot gives 

 

                                                       [AS] = 
][1
][

AK
ASK

eq

toteq

+
                                                     (3.4) 

 

the well-known Langmuir isotherm. It is to be noted that in the following discussions 

[A], [AS], Stot and (1/Keq) will be referred to as C* (the soluble protein concentration at 

equilibrium), q* (the adsorbed protein concentration at equilibrium), qm (the maximum 

protein binding capacity of the ion exchanger) and Kd (the dissociation or desorption 

constant for the protein-adsorption interaction and is equal to the reciprocal of the 

association constant Kadsorption), respectively. Since the Langmuir isotherm has often been 

used to correlate equilibrium adsorption data for proteins (Belter et al., 1988; Leaver, 

1984; Chase, 1984), and as the experimental data in this thesis complied with this type of 

isotherm, it was adopted throughout this work. This hyperbolic isotherm, which is a 

concave-downward isotherm, has a linear slope at low concentration and tends to a 

limiting plateau as the adsorbent becomes saturated (Harrison et al., 2003). It can be 

expressed as 

 

                                               
d
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*                                                                   (3.5) 

 
Rearranging equation (3.5) gives the following linear forms 
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or, 
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−=                                                                   (3.7) 

from which Kd and qm can be calculated by least squares linear regression analysis 

(Skidmore et al., 1990). It has to be noted that higher dissociation constant, Kd, implies 

lower association constant and therefore weaker binding to the adsorbent. 

3.1.2 Two-component system 

3.1.2.1 Non-competitive Langmuir model 

This assumes that the adsorption sites for the two proteins are mutually 

independent, that is the adsorption of one type of protein to the ion-exchanger in no way 

affects the adsorption of the other species and there is therefore no competition between 

the proteins for the adsorption sites (Skidmore and Chase, 1990). Hence, the adsorption 

characteristics of the protein in the two-component system will be the same as that in 

single-component systems, i.e. 
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=                               (3.8)   

where the subscripts 1 and 2 indicate adsorbate species 1 and 2. 

3.1.2.2 Totally competitive Langmuir model 

This assumes that there is total competition between proteins for adsorption to the 

ion-exchanger. The model involves a fractional occupancy of the adsorption capacity for 

each protein species and uses Langmuir parameters derived from single-component 

experiments (Skidmore and Chase, 1990). The governing equations at equilibrium are 
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The above two equations are solved simultaneously with the mass balance equations: 

 

                                *
1

*
11 vqVCVCo +=                                                                       (3.11) 

 

                                   *
2

*
22 vqVCVCo +=                                                                      (3.12) 

 
where v is the settled volume of ion exchanger, V the volume of liquid external to the ion 
exchanger, and Co1 and Co2 are the initial concentrations of the two proteins. A Matlab 
program was written by the author to solve Eq. 3.9, 3.10, 3.11, and 3.12 for values of C1

*, 
C2

*, q1
*, and q2

* for a particular set of initial conditions V, v, Co1 and Co2 using the values 
of Kd1, Kd2, qm1, and qm2 determined in single-component adsorption isotherm 
measurements. The value of Co2 was taken as twice that of Co1 as is normally found in 
whey.       
 

3.2 Adsorption kinetics 

3.2.1 Traditional system 
This technique is used to characterise the kinetics of adsorption through studying 

the time-course of protein uptake onto the adsorbent. Evidently, such kinetics cannot be 
inferred from equilibrium batch measurements made to determine the isotherm. The 
analysis of these kinetics begins with a mass balance on the solute in the liquid 

 

                                   
dt
dqv

dt
dCVrV t =−=                                                        (3.13) 

where where rt is the rate of adsorption per volume of solution external to the adsorbent, 
C the solute (soluble protein) concentration, q the adsorbed solute concentration, t time, 
v  the settled volume of ion-exchanger (mentioned earlier), and V the volume of solution 
external to the adsorbent (mentioned earlier). This volume is given by   

 
                                     ws VVV +=                                                                    (3.14) 

 

where sV  is the volume of original solution before adding the adsorbent suspension, and 

wV is the volume of fluid contained within the 1:1 (v/v) adsorbent suspension and this 
comprises 50% of the total adsorbent volume. 
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This rate is dictated according to the employed kinetic model and, in that respect, two 
main models were proposed. 

3.2.1.1  Kinetic rate constant model 

The model takes an empirical approach to the adsorption process and assumes that 
all the rate limiting processes can be represented by kinetic rate constants. In such an 
approach, the rate of mass transfer of protein to the adsorbent is assumed to be described 
by  

                                         qkqqCk
dt
dq

m 11 )( −−−=                                                     (3.15) 

                                         
dt
dqv

dt
dCV −=                                                                      (3.16) 

where k1 and k-1 are the adsorption and desorption rate constants respectively. 
For batch uptake adsorption, the protein concentration in solution at time t could be 
obtained by solving equations (3.15) and (3.16) numerically as will be discussed in the 
following experimental chapter. The alternative analytical solution of Eq. (3.15) would be 
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and Co is the initial liquid phase protein concentration (Skidmore et al., 1990). 

3.2.1.2  Pore diffusion model 

A more rigorous approach to modelling the adsorption process is to consider 
diffusion within the pores of the adsorbent. The following assumptions are used as the 
basis for the construction of the model: 
(1) The adsorbent is made of a porous material, into which the solute must diffuse, in a 
manner described by an effective pore diffusivity, D, which is assumed to be independent 
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of solute concentration and adsorbent loading, and is based on the porosity of the particle 
to small molecules, rather than the actual extent to which molecules of a particular 
protein can penetrate the particle. 
 (2) The adsorbent particles are spherical, with uniform size and density, and the 
functional groups of the ion exchanger are distributed evenly throughout the interior of 
the particle (Skidmore et al., 1990). 
(3) The liquid film mass transfer resistance can be neglected because the adsorption is so 
fast and hence film diffusion is not a rate determining step. 
 
For diffusion of protein in the liquid within the ion exchanger particle, the point 
concentration of protein, c, is given by 
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where q is the point concentration of adsorbed protein and r the radial coordinate within 
the ion-exchanger particle (Ruthven, 1984). The particle porosity could be determined 
from knowledge of the solid content of the adsorbent. Sepharose resins are formulated 
from 6% (w/v) agarose and hence the particle porosity is taken as 0.94 (Skidmore et al., 
1990). 
 
Assuming local equilibrium and differentiating the Langmuir equation (Eq. 3.5) with 
respect to t yields 
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Substituting Eq. 3.21 into Eq. 3.20 gives 
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with the initial condition t = 0,  c = 0 
 

and the boundary conditions  r = 0 ,    0=
∂
∂

r
c ; and                                                                     
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 r = R     c = cR , where cR
 is the concentration in equilibrium with q* obtained from the  

Langmuir equation.  

3.2.2 Confocal microscopy system 

3.2.2.1 Modification of the simple kinetic model 

When applying the traditional simple kinetic model equations (Eq. 3.17, 3.18 and 

3.19) to the uptake profiles obtained from the confocal system, it was assumed that the 

equilibrium integral fluorescence within the shell, F*, is proportional to q*. Thus, Co, Kd, 

and qm in Eq. 3.17, 3.18 and 3.19 were each multiplied by *

*

q
F  to obtain their respective 

counterparts of Co
′, Kd

′ and Fmax (AU). Throughout this thesis, the primed symbols pertain 

to the characteristics of adsorption obtained from measurements of fluorescence obtained 

by the confocal system in contrast to the unprimed symbols which refer to determination 

of the characteristics of adsorption by the traditional method of monitoring changes in the 

concentration of protein in the bulk liquid phase.  Accordingly, )min( 11
1

−−⋅mgmlk  in  

Eq. (3.17) must be multiplied by *

*

F
q  to obtain the appropriate substitute )min( 11

1
−−′ AUk . 

The modified equations would thus be as follows:   
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3.3 Packed-bed adsorption 

3.3.1 Simple kinetic model 
 

For single-component systems, the equation of continuity in the mobile phase is 

given by 

                                                t
C

t
q

x
Cv

x
CD Lx ∂

∂
=

∂
∂

−
∂
∂
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−2

2

                                      (3.26) 

 

and the rate equation (Eq. 3.15) is recast to the form  

                                               ])([1 qKqqCk
t
q

dm −−=
∂
∂

                                         (3.27) 

where Dx is the axial dispersion coefficient, and x is the distance along the column 

(Cowan et al., 1989). 

The initial conditions are    0=t , 0=x    fCC =)0,0(     0)0,0( =q  

0=t , 0≠x    0)0,0( =C      0)0,( =xq  

while the boundary conditions are    0=x       fCtC =),0(           0),0( =tq   and 

x = l        0)0,( =lC      or        0=
∂
∂

x
C      0=

∂
∂

x
q  

Considering the column dimensions and the flow rate employed, it was reasonable to 

neglect the axial dispersion term. Eq. (3.26) and (3.27) were then solved simultaneously 

to give the adsorption breakthrough curve. The numerical solution is discussed in the 

following experimental chapter. 

For two-component systems with competition between species, the governing 

equations are as follows: 
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where the initial conditions are 
 

0=t , 0=x    
11 )0,0( fCC =     0)0,0(1 =q          

22 )0,0( fCC =          0)0,0(2 =q  

0=t , 0≠x    0)0,(1 =xC         0)0,(1 =xq          0)0,(2 =xC             0)0,(2 =xq  
 
and the boundary conditions are 
 

0=x       
11 ),0( fCtC =             0),0(1 =tq  
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The above four equations were solved numerically to give the adsorption breakthrough 

curves as will be discussed in the following experimental chapter.   
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4 Experimental 

4.1 Materials 

Pure β-lactoglobulin from bovine milk, approximately 90% pure (by gel 

electrophoresis), chromatographically purified and lyophilized (MW 18 kDa), and pure 

α-lactalbumin from bovine milk, ≥ 90% pure (by gel electrophoresis), calcium depleted 

(MW 14 kDa) were purchased from Sigma-Aldrich (Gillingham, UK). Whey concentrate, 

MyPro whey protein WPC80 (80 wt% total protein) was purchased online from 

www.protein.co.uk.  It has a protein composition (w/w) of 60% BLG, 20% ALA, 8% 

bovine serum albumin, 10% immunoglobulin, 1% lactoferrin and 1% others 

(manufacturer’s data).  

SP Sepharose FF (loose and columns), Superdex 200 columns and PD-10 

Sephadex G-25 medium columns were obtained from GE Healthcare (Amersham, UK). 

Ultra-filtration membranes Vivaflow 50 for sample concentration were purchased from 

Sartorius Ltd. (Epsom, UK). AlexaFluor 647 and AlexaFluor 488 dyes were obtained 

from Invitrogen (Leiden, Netherlands).  

Reagents used for buffer preparation (anhydrous sodium acetate and Tris-HCl, 

Fluka (Gillingham, UK); glacial acetic-acid, 99%; ethanol 99.8%, Riedel-de Haen 

(Seelze, Germany); sodium hydroxide, Fisher Scientific (Loughborough, UK); sodium 

chloride, Riedel-de Haen; phosphate buffered saline PBS powder of pH 7.4, Sigma-

Aldrich (Gillingham, UK)) were all of analytical grade. 

For all experiments, distilled deionised water was used.  

4.2 Methods 

4.2.1 Preparation of reagents 

4.2.1.1 Ion-exchanger 

   SP Sepharose FF was supplied as a slurry in 20% ethanol solution containing 

0.2M sodium acetate. The ion-exchanger was equilibrated with the appropriate buffer 

solutions by packing it in a PD-10 column and passing several bed volumes of buffer 
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through the bed. The adsorbent was then suspended in buffer and the suspension poured 

into a measuring cylinder. After allowing to settle, the volume of buffer in the measuring 

cylinder was adjusted to equal the volume of settled ion-exchanger. Samples of ion-

exchanger were then obtained by suspending the ion-exchanger in the measuring cylinder 

and aliquoting known volumes of this (1:1 v/v) suspension, using a P-5000 automatic 

Gilson pipette. 

4.2.1.2 Equilibrium buffer 

8.2 g (0.1M) of anhydrous sodium acetate were weighed in a 1-litre volumetric 

flask. The amount was mixed and dissolved in 800-ml of distilled deionized water and 

the pH was brought down to the required value, using acid measuring, by adding the 

appropriate amount of glacial acetic acid. The volume was then made up to 1-litre, while 

readjusting the pH when needed.  

The working pH values were chosen to be values below the isoelectric point of 

the protein, where the protein is positively-charged (i.e. a cation), as well as to lie within 

the effective pH range for the acetate buffer, stated to be 3.6-5.6 (Mohan, 2003).  

4.2.1.3 Protein 

Different concentrations of protein samples were prepared by dissolving the 

protein in equilibrating buffer. Since no information is available on the long-term storage 

of these proteins, the samples were freshly prepared. At the employed pH values, the 

protein solutions were clear with no evidence of turbidity or protein denaturation. In 

addition, the protein concentrations were analysed using size exclusion chromatography 

on Superdex 200 column and were found to be stable (no loss in concentration with time 

of exposure was detected). 

4.2.2 Batch techniques 

These were confined to single-component studies. 

4.2.2.1 Procedure 

To each of a series of falcon tubes containing 14-ml of protein solutions buffered 

at pH 3.7 and freshly-prepared at different concentrations was added 1-ml of a 50/50 



                                                                                                              El-Sayed, Chapter 4 

 36

(settled volume/solution volume) suspension of the cation exchanger. The tubes were left 

to shake overnight, at 20 oC ± 2 oC, on a rotating wheel, and then centrifuged for 20 

minutes at 3000g. The experiments were performed in triplicate and the experimental 

error was within 5-10%. 

4.2.2.2 Analysis-UV spectrophotometry 

The supernatant was analysed on a UV spectrophotometer at 280 nm in 100-QG 

far-UV-light quartz cuvettes (Fisher Scientific (Loughborough, UK)).  The optical 

density data were converted to their corresponding protein concentrations by reference to 

a standard calibration curve prepared with the respective protein. With the equilibrium 

protein concentration (C*) so determined, the corresponding quantity of protein adsorbed 

onto the exchanger (q*) was calculated by mass balance (Eq. 4.1). 

 

              ( )** CC
W
Fqq i

D
i −⎟

⎠
⎞

⎜
⎝
⎛+=                                                     (4.1)                               

  

where C* and Ci are the equilibrium and initial concentrations in solution, respectively; 

likewise q* and qi are the equilibrium and initial concentrations on the adsorbent, FD the 

mass of feed, and W the mass of adsorbent. 

4.2.3 Packed-bed studies 

These include single-, and two-component as well as whey concentrate systems. 

4.2.3.1 Procedure 

The frontal analysis packed-bed column experiments were performed on an 

‘AKTA Explorer 100’ chromatography system (GE Healthcare). One-ml (0.7 cm internal 

diameter × 2.5 cm bed height) and 5-ml (1.6 cm internal diameter × 2.5 cm bed height) 

HiTrap SP Sepharose FF prepacked columns, purchased from the same company, were 

used. Buffers (for equilibration, elution and washing) and samples were loaded onto the 

column in a downflow manner using the system’s piston and peristaltic pumps, 

respectively. All buffers and samples were filtered through 0.45 μm membranes, and 

degassed under vacuum, in order to mitigate bubble entrainment problems. The following 
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buffer systems were employed: 0.1M sodium-acetate buffer was used for column 

equilibration, 1M NaCl in 0.1M sodium acetate for elution in single-component systems 

and 0.1M Tris-HCl for elution in two-component and whey concentrate systems, 1M 

NaOH for periodical column cleaning, and 20% ethanol in 0.2M sodium acetate for long-

term storage of the adsorbent.  

For packed-bed column experiments, the bulk fluid protein concentration (column 

effluent concentration), C, is recorded as a function of time, t, to give what is known as 

the ‘breakthrough curve’, the area above which, in case of symmetrical curves only, is 

equal to Cf ×t1/2, where Cf is the feed bulk concentration (inlet adsorbate concentration), 

and t1/2 is the time corresponding to half the maximum concentration (0.5×Cf). This area 

is proportional to the total amount of protein adsorbed onto the ion exchanger. Using this 

proportionality together with the Langmuir isotherm equation, the capacity of the 

adsorbent in equilibrium with the inlet adsorbate concentration (q) is determined using 

the following relation 
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where VL is the volume of the column, F is the flow rate. The general formula for 

calculating the amount of protein adsorbed onto the ion-exchanger, q, at any time in cases 

where the breakthrough curve is unsymmetrical, is given by 

 

                     dt
V
FCCq

L

f ×−= ∫
∞

0
)(                                                                                 (4.3)                 

 

A q-time curve similar to the concentration-time breakthrough curve can be 

constructed. The packed-bed experiments were performed in duplicate and the 

experimental error was within 10-15%. 

It has to be noted that the dead volume was taken as the retention volume existing 

between the point of injection and the point where the first drop of effluent comes off the 

column when pure buffer (not containing the protein) is passed through the system. The 
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retention time corresponding to this volume was excluded from the time of the 

breakthrough curve.   

4.2.3.2 Analysis 

4.2.3.2.1  Size-exclusion chromatography (SEC) 

Size-exclusion experiments were carried out on a Fast Protein Liquid 

Chromatography (FPLC) system using a Superdex 200 column GL, purchased from GE 

Healthcare, of 1-cm internal diameter, and a height of 30 cm. 

The size-exclusion technique separates BLG and ALA on the basis of the 

difference in their molecular weights at pH 3.7, BLG being a dimer of total size 36 kDa 

(Sawyer and Kontopidis, 2000) and ALA a monomer of 14 kDa. A 0.2-ml protein sample 

was injected onto the column using a 1-ml syringe, while 0.1M sodium acetate buffer of 

pH 3.7 at flow rate of 0.5 ml/min was passed onto the column in order to elute the protein. 

As expected, BLG was eluted first with a peak retention volume of 17.5 ml, whereas 

ALA was eluted at 19.5 ml. It was not possible to obtain two completely separate peaks 

for each of BLG and ALA, and therefore the peak areas could not be converted to their 

corresponding concentrations using the standard calibration curve of the pure proteins.  

 

Calibration method 

Alternatively, a linear calibration curve plotting the absolute peak area pertaining 

to each protein versus the respective protein concentration in the binary mixture (Figure 

4.1) was constructed by preparing several protein mixtures with different proportions of 

ALA and BLG ranging from 0% (pure ALA) to 100% (pure BLG). For each of these 

protein samples, the total concentration as well as the composition was known, and thus 

the concentration of each protein in the mixture was determined. Additionally, the FPLC 

system calculated the absolute peak areas for each protein by integrating area below the 

peak. Investigating different total protein concentrations, it was found that the slope of 

the calibration line did not vary, i.e. the absolute peak area was only a function of the 

composition of the protein mixture. 
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Figure 4.1 Calibration lines for ALA (A) and BLG (B) on the size-exclusion protein 
analysis system. 

The fractions of the column effluent were analysed for individual protein content 

by converting the peak areas for each of the two proteins, obtained by the FPLC system, 

into their corresponding protein concentrations using the calibration curves described 

above. 

  

Calculating concentrations for merged peaks 

In some cases, it was noticed that the two peaks pertaining to the two proteins 

were merged into one single peak (i.e. the chromatogram did not demonstrate two distinct 

peaks), thus making it impossible to obtain the two areas, and thereby the concentrations, 

associated with each. This problem was solved in the following way. At each data point, 

the total peak area, Atot, is the sum of those of the two components. 

 

                BAtot AAA +=                                                                                                  (4.4)                            

where 

Atot  = total absolute peak areas of the two proteins, i.e. area of the merged peaks 

AA  
   =  absolute peak area of ALA 

AB   =  absolute peak area of BLG 

In terms of concentration C: 

 

              BBAAtot CSCSA ×+×=                                                                                    (4.5)                             

A B 
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 where SA  and SB are the slopes of the calibration curves in Figure 4.1. 

 

In this binary mixture at any time, the concentration can be expressed in terms of mass 

fraction, x, times total effluent concentration, Ctot, which is the sum of (CA + CB). Ctot was 

calculated from the following identity:     

                               

          ftotftot AbsAbsCC =                                                                                           (4.6)                             

 

where Cf is the total feed concentration, Abstot is the effluent absorbance corresponding to 

the total effluent concentration, and Absf is the total feed absorbance. For the study at 

hand, Cf was equal to 4.5 mg/ml and Absf was approximately equal to 1300 mAu.   

 

In terms of mass fraction, x, Eq. (4.5) becomes: 

 

       BtotBAtotAtot xCSxCSA ××+××=                                                                          (4.7)                            

                                  

which ultimately leads to the next expression        

                                      

      
BA

totBtot
totAA SS

CSACxC
−
−

=×=                                                                                     (4.8)                            

                                 

where all terms on the right hand side are known.   

4.2.3.2.2 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 

The protein samples (collected fractions) were prepared according to the 

manufacturer’s protocol (Invitrogen) under reducing conditions using dithiol-threitol 

(DTT) as a reducing agent. Samples were then heated at 70oC for 10 min prior to 

electrophoresis. A 7 μL volume of each sample was loaded per well. Electrophoresis was 

afterwards run at a potential difference of 200 volts for 35 min, using NuPAGE Novex 4-

12% Bis-Tris gel and NuPAGE MES running buffer, purchased from Invitrogen. The 

protein was fixed for 20 min using 40% methanol and 7% acetic acid solution before it 
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was stained overnight with Coomassie Brilliant Blue R250 (reddish with a dye strength 

indicator of 250) having the molecular formula C47H50N3O7S2
+, a molecular mass of 

833.048, and a composition of 0.2% Coomassie blue, 7.5% acetic acid and 50% ethanol. 

The protein was then destained in the same fixing solution. The protein bands were 

quantified using ImageJ software by plotting the intensity of these gel bands and 

integrating the area under the plot.  

4.2.3.3 Modelling and simulation 

In order to predict the breakthrough curves for single-component packed-bed 

adsorption, the simple kinetic rate constant model (see Chapter 3) was solved using a 

built-in Partial Differential Equation Matlab programme (pdepe solver), the details of 

which are given in the Appendix. The programme solves initial-boundary value problems 

for systems of partial differential equations in one space variable and time. Some 

modifications were made to the programme to take account of the initial and boundary 

conditions of the problem at hand as well as the display of output results required (for e.g. 

C/Cf instead of C). The programme solves for C/Cf (given as u1 in the programme script) 

and q (u2) against time, and its input parameters are; 

- dimensions of packed bed, internal diameter and apparent height (d,x); 

- volumetric flow rate (F); 

- time-length (t); 

- initial feed bulk fluid concentration (Cf);  

- Langmuir adsorption isotherm dissociation constant of the protein/ion exchanger 

interaction (Kd); 

- Langmuir adsorption isotherm maximum capacity of the ion-exchanger (qm); 

- overall forward rate constant (k1). 

Of these parameters, the first four were measured physical characteristics of the 

experimental system, the next two, Kd and qm, were determined from batch experiments, 

k1 was calculated from the batch uptake profile, discussed earlier. 

The programme was tested on lysozyme adsorption data obtained from previous literature 

(Skidmore et al., 1990) and it proved to be fairly satisfactory, as it gave the same shape of 
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breakthrough curves predicted in the literature, when using the same values of input 

parameters.  

Since the Matlab built-in programme solves only systems of two equations, another 

Matlab programme was written by Dr. Bart Hallmark in the Chemical Engineering and 

Biotechnology Department, University of Cambridge (see Appendix) to solve 

simultaneously the system of four equations describing the modelling of two-component 

systems (see Chapter 3).  

4.2.4 Confocal laser scanning microscopy (CLSM) techniques 

4.2.4.1 Instrumentation 

Confocal microscopy measurements were performed using a Leica TCS SP5 laser 

scanning microscope (Leica, Milton Keynes, UK) equipped with a multi-line argon ion 

laser and red and green helium neon (543 and 633) lasers as excitation sources. Up to 

three detection channels could be acquired simultaneously. Image acquisition and 

analysis were performed using the built-in LAS AF (Leica Application Suite, Advanced 

Fluorescence, Beta Version) software. 

4.2.4.2 Finite bath experiments 

Experiments were conducted on pure BLG with an initial concentration of 3 

mg/ml and settled exchanger volume to solution volume (v/V) ratio of 1:14, and pure 

ALA under various conditions of initial concentration and v/V ratio. Before conducting 

the finite bath experiments, three preceding steps were required. These will be described 

in turn. 

1. Labelling the protein with a fluorescent dye. 

The required protein concentration was prepared by dissolving the protein in 0.1 

M PBS buffer at pH 7.4. The protein was then labelled with a fluorescent dye 

according to the standard protocol provided by the manufacturer. It should be 

noted that the dye coupling reaction took place at a pH range of 7.5 to 8.5 by 

adding sodium bicarbonate to the original protein solution. BLG was labelled with 

AlexaFluor 647 fluorescent dye (absorption and emission maxima of 650 and 668 

nm, respectively), while ALA was labelled with AlexaFluor 488 fluorescent dye 
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(absorption and emission maxima of 494 and 519 nm, respectively). The two 

proteins were labelled with two different dyes that have non-overlapping 

absorption and emission spectra in order to facilitate their identification in the 

two-component experiments.   

2. Excess dye removal and buffer exchange 

The conjugated protein was then passed through a PD-10 Sephadex G-25 size-

exclusion chromatography column to separate labelled protein from excess 

unconjugated dye, as well as to exchange the buffer in which the protein was 

dissolved from 0.1 PBS to 0.1 M acetate buffer of pH 3.7. 

 

3. Protein concentration 

Since the protein was diluted in the previous step, it was necessary to bring it back 

to its original concentration using Vivaflow membranes and centrifugation at 

4500 rpm and 4oC for 25 min. The degree of labelling (DOL) (moles of dye/moles 

of protein) was then measured according to the manufacturer’s instructions and 

was found to be 1.03 for BLG and 0.37 for ALA. 

 

The finite bath experiments were then carried out as follows. In order to minimise 

the consumption of fluorophore per experiment as well as to avoid light 

attenuation due to reabsorption or inner filtering (Harinarayan et al., 2006; 

Ljunglöf, 2002; and Ljunglöf and Thommes, 1998), the labelled protein was 

mixed with unlabeled protein. To ascertain the appropriate amount of dye-labelled 

protein needed to be present in order to give a satisfactory degree of fluorescence, 

different ratios of labelled to unlabeled proteins were prepared and imaged under 

the microscope. A ratio of labelled to unlabeled proteins of 1:34 was chosen as 

the working ratio. A volume of 0.1 ml of conjugated protein was mixed with 3.4 

ml of unlabeled protein and was placed in a reaction vessel placed on an orbital 

shaker. The adsorption experiment was started by adding 0.5 ml of adsorbent 

slurry (settled adsorbent diluted 1:1 with 0.1 M acetate buffer of pH 3.7) to the 

stirred protein solution. Aliquots of 100 μl volume were withdrawn from the 

vessel at fixed times. It should be noted that adsorption was allowed to proceed 
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overnight in order to allow adsorption to approach equilibrium and samples were 

taken thereafter for analysis. These samples will henceforth be referred to as the 

equilibrium samples. The particles were re-suspended in 0.5 ml excess buffer and 

centrifuged at 6000 rpm for 5 min. The centrifugation/re-suspension cycle was 

repeated six times to remove non-bound proteins. The washed re-suspended beads 

were then imaged under the confocal microscope.  

4.2.4.3 Confocal microscopy experiments 

Individual adsorbent particles were analysed using horizontal scanning by 

acquisition of two-dimensional confocal images perpendicular to the optical axis. Only 

the central slice near the maximum diameter of each bead image was used for further 

image analysis and all images presented in this thesis represent these central slices. A 

40*0.6 immersion (oil) objective lens was used for all measurements. The pinhole 

aperture was set to 50 μm. The He/Ne 633 laser provided excitation of AlexaFluor 647 at 

633 nm and the emitted fluorescent light was detected between 660 and 680 nm, whereas 

the argon laser (set at 20% power) provided excitation for AlexaFluor 488 at 488 nm and 

the emitted fluorescent light was detected between 490 and 515 nm. The images were 

then taken as an overlay of the scans obtained in the two separate channels. The image 

size for all images was 512*512 pixels and the pixel size was 1.45 μm. Control 

experiments were carried out by adsorbing underivatized protein to SP Sepharose FF and 

imaging samples of the beads after washing. Insignificant fluorescence was detected. 

The fluorescence intensity profiles of the labelled protein bound to the adsorbent across 

central horizontal cross sections of the beads were compiled for each time interval using 

imageJ software. The adsorbent particle diameter was found to vary between 60-120 μm. 

The depth of penetration of the fluorescently-labelled protein was monitored in beads of 

comparable sizes, in order to minimise any heterogeneity effects resulting from disparity 

in bead size. The resulting fluorescence profiles showed that three slightly different 

behaviours occurred, pertaining to each of the three particle-size ranges investigated.  
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4.2.4.4 Data analysis of confocal microscopy results 

The fluorescence profiles were integrated by calculating the area under the 

fluorescence intensity-time curve, Fring, using either ImageJ or Matlab Curve Fitting 

Toolbox. The results obtained from both methods were comparable.  

The relative solid-phase capacity (Qrel) was obtained in arbitrary units per m3 of 

adsorbent using Eq. (4.9)   
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where ir  is the inner radius of the fluorescent ring in μm, or  is the outer radius of the 

fluorescent ring in μm, Vb the bead volume, and Fs is the integral fluorescence within the 

shell.   

In order to construct the batch uptake curve, the relative capacities were related to the 

relative capacity at equilibrium ( ∞
relQ ) and the degree of saturation versus time (RF) was 

calculated according to Eq. (4.10) (Ljunglöf and Thommes, 1998). 

 

*F
F

Q
QR s

rel

rel
F == ∞                                                                                                  (4.10) 

where F* is the equilibrium integral fluorescence within the shell.   

4.2.5 Batch uptake techniques 

A schematic diagram of the experimental set-up of a continuous adsorption 

system with recycling is illustrated in Figure 4.2. A protein sample of known 

concentration together with the suspended ion-exchanger were agitated in a beaker (1) 

using an orbital shaker (2) and maintained at 20oC by means of a temperature regulator 

(3). The solution was then pumped by a peristaltic pump (5) to a UV flow-

spectrophotometer (6). In order to prevent ion-exchanger beads being pumped through 

the UV spectrophotometer (280 nm wavelength range), the solution was filtered on 

uptake. This filtration was provided by means of a standard 1.6 cm-diameter 

chromatography column adapter fitted with a 20-μm net (4). The analogue output signal 
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from the UV spectrophotometer was connected to an analogue-to-digital converter (7) 

and on to a personal computer, PC (8), to be recorded using ‘Labview’ software. The 

solution pumped out of the UV spectrophotometer was recycled back to the beaker, so as 

to keep the sample volume constant throughout the duration of the experiment. Initially, 

the UV spectrophotometer was zeroed by passing pure buffer through the system. 

Afterwards, the buffer was replaced by the protein sample and the voltage reading 

corresponding to the employed protein concentration was recorded in order to calibrate 

the measurement of liquid-phase protein concentration. Using this concentration-to-

voltage ratio, the voltage readings were later converted to their corresponding 

concentration values. On starting the experiment (zero-time), a sample of the ion-

exchange adsorbent was pipetted into the protein solution already present in the beaker 

and the voltage reading was recorded and plotted versus time. Typically between 1-5 ml 

of ion-exchanger were used with a recycle flow rate of 1-1.5 ml/min, and the initial 

volume of protein solution varied between 30-40 ml.  

A concentration-time plot was constructed from the voltage-time curve using the 

concentration-to-voltage ratio mentioned earlier. The amount of protein adsorbed, q, was 

calculated by mass balance and plotted as a normalised value, Rq, against time expressed 

in minutes. The experiments were performed in triplicate and the error was within 3-5%. 
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Figure 4.2 Schematic diagram of the continuous-flow system. 

1. beaker 2. orbital shaker  3. temperature regulator  

4. chromatography column adapter 5. peristaltic pump (P-1) 

6. UV flow spectrophotometer  7. Analogue-to-digital converter (ATD) 

8. personal computer (PC)          

 

4.2.5.1 Estimating the forward rate constant (k1) 

The k1 value that gave the best fit to the experimental data was determined by 

solving the simple kinetic model (see Chapter 3). The model was solved using an 

Ordinary Differential Equation built-in Matlab programme (ode45 solver). The 

programme outputs are plots of either C or q versus time. The programme input 

parameters were as follows, 

- volume of liquid external to the ion-exchanger particles (V); 

- volume of settled ion exchanger (v); 

- initial bulk fluid protein concentration (Co); 

- time-length (t); 

- Langmuir adsorption isotherm dissociation constant of the protein/ion exchanger 

interaction (Kd); 
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- Langmuir adsorption isotherm maximum capacity of the ion-exchanger (qm); 

- overall forward rate constant (k1).      

Of these seven parameters, the first four were measured physical characteristics of the 

experimental system, the next two, Kd and qm, were determined from the batch isotherm 

experiments, thus k1 was the only unknown parameter. The k1 value that gave the best fit 

to the experimental data was determined using statistical regression. The profiles of C 

versus t calculated numerically from the programme were in good agreement with those 

obtained from the analytical solution (Eq. 3.17) with accuracy within 3%.  

4.2.5.2   Estimating the diffusivity (D) 

The pore diffusion model was solved using a Partial Differential Equation built-in 

Matlab programme (pdepe solver). The programme outputs are plots of c versus time. 

The programme input parameters were: 

- volume of liquid external to the ion-exchanger particles (V); 

- volume of settled ion exchanger (v); 

- initial point protein concentration (co) which is equal to zero; 

- time-length (t); 

- Langmuir adsorption isotherm dissociation constant of the protein/ion exchanger 

interaction (Kd); 

- Langmuir adsorption isotherm maximum capacity of the ion-exchanger (qm); 

- protein point concentration at r = R (cR) that is in equilibrium with q*, and this is 

obtained using Langmuir equation; 

- particle porosity (ε) and this is taken as being 0.94 (Skidmore et al., 1990); and 

- effective diffusivity (D).  

The c-t curve at r = R-ΔR was converted to its corresponding C-t curve using the mass 

balance equation in conjunction with Langmuir equation 
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The value of D that gave the best fit to the experimental data was determined using 

statistical regression. This value was then compared to the molecular diffusivity of the 

protein in free aqueous solution, DAB, estimated using the semi-empirical equation 

(Polson, 1950) 

                                       
( )3

1
15104.9

A

AB

M

TD
μ

−×=                                                     (4.12)                               

where MA is the relative molecular mass of the protein, μ the viscosity of the protein 

solution and T the absolute temperature. The viscosity of the protein solution was taken 

to be that of water. 
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5 Equilibrium adsorption isotherms for the pure whey 
proteins 

5.1 Introduction 
 

The equilibrium adsorption isotherms of ALA and BLG have been studied by a 

number of workers onto various types of adsorbents and they were all found to follow a 

Langmuirian-type behaviour. Galisteo and Norde (1995) studied the adsorption isotherms 

of ALA on poly (styrene-sulphonate) (PSS) lattices of different surface charge densities 

as a function of pH and ionic strength. Different concentrations of KCl were used without 

any buffers and the pH was adjusted using KOH or HCl. The adsorption characteristics of 

two ALA conformers, namely apo-ALA (Ca-depleted ALA) and Ca-ALA (ALA bound 

to a Ca2+ ion), were investigated. Unusually high protein adsorption was detected on the 

employed adsorbent relative to most other colloidal adsorbents, but the maximum binding 

capacity for both conformers was the same. Cabilio et al. (2000) investigated the 

adsorption behaviour of ALA at a Pt/electrolyte interface in an acidic, neutral and 

alkaline media over a temperature range of 273 to 353 K using the cyclic voltammetry 

technique. It was shown that the surface charge density determined by protein adsorption 

is directly proportional to the amount of adsorbed protein. The Langmuir isotherm 

showed that the protein expressed the highest affinity for adsorption at pH 2 and the 

lowest at pH 11. Conrado et al. (2005) studied the Langmuir adsorption isotherm for 

ALA onto the hydrophobic adsorbent Streamline Phenyl at pH 7.5 using 50 mM Tris 

buffer with 35 mM EDTA. The maximum binding capacity was found to be 19.28 mg 

protein/g of resin, and the dissociation constant was 0.61 mg protein/g of resin. 

As for BLG, McCreath et al. (1997) estimated the Langmuir adsorption 

parameters of the protein onto SP-PVA-FEP (a polyvinyl alcohol (PVA) coated 

particulate perfluoropolymer (FEP) support functionalised with anion-exchanger groups 

(DEAE and Q)) at pH 8.0 using 20 mM sodium phosphate buffer. The maximum 

adsorption capacity and dissociation constant were found to be 14.9 mg/ml and 0.054 

mg/ml, respectively onto DEAE-PVA-FEP, and 17.2 mg/ml and 0.089 mg/ml, 

respectively onto Q-PVA-FEP.  
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For multi-component systems, a theoretical discussion of an approach to 

modelling multicomponent protein adsorption was published by Velayudhan and Horvath 

(1988), although they did not present any associated experimental data. Experimental 

results from a non-protein system were published in an earlier paper (Jacobson et al., 

1987) from the same laboratory. This paper presented two methods for determining 

competitive adsorption isotherms from the results of frontal analysis chromatography and 

included a theoretical discussion of the derivation and use of the parameters of the 

Langmuir isotherm. Skidmore and Chase (1990) investigated multicomponent adsorption 

of a model system consisting of bovine serum albumin and lysozyme to the cation-

exchanger S Sepharose FF. Two equilibrium models, one based on competitive 

adsorption to the ion-exchanger and the other based on non-competitive adsorption, were 

compared to experimental results. Some discrepancies were found suggesting the 

necessity of taking additional factors into account. Garke et al. (1999) studied the 

adsorption behaviour of lysozyme and gamma-globulin on the strong cation-exchanger 

Streamline SP by determining the equilibrium isotherms with batch experiments. 

Adsorption isotherms of the binary mixture of both proteins were modelled using the 

Langmuir parameters derived from single-component systems. Comparison of 

experimental results with the competitive Langmuir model displayed significant 

deviations for the adsorption of lysozyme in the mixture. An extended Langmuir model, 

accounting for the distinct accessibility of the sorbent's surface for the competing proteins, 

revealed much better consistency with experimental data. Cano et al. (2005) reported a 

novel approach to determining competitive protein adsorption isotherms in which the 

competitor concentration is held constant across the entire isotherm. Using labelling 

techniques, the effect of competing species on equilibrium behaviour and the apparent 

heterogeneity of anion-exchange adsorbents in the presence of competitors can be 

quantitatively studied by fitting the data to two popular single-component binding models, 

the Temkin and the Langmuir-Freundlich (L-F) isotherms. The same workers also 

investigated the effectiveness of three multi-component binding models, the extended 

Langmuir–Freundlich, Langmuir and Jovanovic–Freundlich models, in describing the 

binary competitive equilibrium adsorption of two cytochrome b5 mutants (Cano et al., 

2007). James (1994) studied the binary adsorption equilibrium of the two minor whey 



                                                                                                              El-Sayed, Chapter 5 

 52

proteins, lactoferrin and lactoperoxidase, at different pH values. Multi-component 

isotherm results showed clear evidence of competitive adsorption between the two 

proteins. Results from batch studies were examined using the Extended Langmuir model 

and the thermodynamically consistent Ideal Adsorbed Solution (IAS) theory derived for 

the Langmuir isotherm equation. Discrepancies were observed between experimental data 

and the model results determined using single-component equilibrium parameters.   

For a whey mixture, Carrere et al. (1996) obtained the equilibrium parameters 

onto the strong anion exchanger Spherosil QMA from batch experiments at pH 8.0 using 

0.02 M Tris HCL buffer. The maximum binding capacity for the total proteins in whey 

was 129.3 kg/m3 and the dissociation constant was 0.72 kg/m3.     

5.2 Single-component systems 

Adsorption isotherms for BLG at pH values of 3.7, 4.0, 4.5 and 5.0 and for ALA 

at pH values of 3.7, 3.8 and 3.9 were measured experimentally. Figure 5.1A shows an 

example of these isotherms for each of the two proteins at pH 3.7. This pH was chosen to 

be the working pH for our study for reasons that will be explained later. Each of the 

discrete points in Figure 5.1A represents an experimental result relating the amount of 

protein adsorbed (q*) to the corresponding equilibrium concentration of protein in the 

liquid phase (C*). The data points were found to comply with the Langmuir adsorption 

isotherm (Eq. 3.5).  
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Figure 5.1 Langmuir isotherms (A) and their linear plots (B) for the binding of BLG 
and ALA to SP Sepharose FF in 0.1M acetate buffer at pH 3.7 and 20oC. 

 
The agreement with a Langmuir isotherm is evident from the linearity of the plots 

in Figure 5.1B where the data have been linearized using Eq. (3.7). This linear form was 

adopted here because it provides a better distribution of data points as compared to the 

other common forms.  

The two parameters that define the isotherm, qm and Kd, are obtained from the 

ordinate intercept, qm/Kd, and the slope, -1/Kd, of the line. Values so determined for these 

parameters, recorded in Table 5.1, were utilised to construct the solid lines in Figure 5.1A 

representing the calculated shapes of the Langmuir isotherms. As can be seen from Table 

A 

B 
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5.1, both Kd and qm pertaining to ALA were found to have higher numerical values than 

those of BLG, implying differences in the characteristics of adsorption of the two 

proteins on this adsorbent. At pH 3.7, Kd for ALA was almost four times larger than that 

for BLG, while its qm was 30% higher. Thus, ALA is the weaker-bound protein (higher 

Kd) and is evidently accessible to greater proportion of binding sites within the adsorbent 

(larger qm) probably because of its smaller size. The relevant isotherm parameters for the 

other pH values were determined likewise and the values obtained are compiled in Table 

5.1.  

 

Table 5.1 Values of the equilibrium isotherm parameters, calculated by linear 
regression, for BLG and ALA at different pH values.  
 pH qm, mg/ml Kd, mg/ml 

3.7 113 ±3 0.008 ±5*10-4 

4.0 133 ±2 0.053 ±0.004 

4.5 130 ±3 0.13 ±0.01 
BLG 

5.0 79 ±2 0.719 ±0.03 

3.7 147.0 ±8.5 0.029 ±0.0003

3.8 119.9 ±3.5 0.071 ±0.0007ALA 

3.9 95.9 ±2.3 0.088 ±0.0008

 

Variation of the desorption constant, Kd, with pH in Table 5.1 is understandable in 

light of the fact that it is a conditional constant and for adsorption of a macromolecule 

such as a protein, it is given by Kd = Kint* Kcoul where Kint is the intrinsic constant 

accounting for adsorption when the macromolecule carries no net surface electric charge 

and Kcoul is that for coulombic adsorption and the latter varies with changes in pH and 

ionic strength (Morel, 1983; Tanford, 1961). The graphical pKd versus pH relation (where 

pKd= -log Kd) shown in Figure 5.2A was obtained at a constant ionic strength of 0.1M, 

thus the linear increase of pKd with a drop of pH implies an exponential decrease of Kd as 

the pH falls. As the pH is increased, however, the line appears to be heading for a pH 

value close to the well-established pI value of 5.2-5.3 for BLG (Wong et al., 1996; Cayot 

and Lorient, 1997) and 4.2-4.5 for ALA, Gerberding and Byers, 1998.  
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Figure 5.2 Dissociation constant (A), Kd, and maximum binding capacity (B), qm, for 
ALA and BLG adsorption to SP Sepharose FF as a function of pH. 
 

This behaviour appears to be the basis of a promising general method for 

pinpointing the exact value of the pI of a protein. All that is needed is an analogous line 

on the other side of pI (conducted with an anion-exchanger) at the same ionic strength. 

Theoretically, these two lines should meet at one point on the pH-axis. Otherwise, if the 

two lines did not meet at one point, the appropriate value of pI will be the point half way 

between the intersections of the two lines with the pH-axis. Thus the rise of the line in 

Figure 5.2A as the pH is lowered from the pI reflects stronger binding (lower Kd) 

evidently due to the build up of net charge in that direction. Clearly in case of ALA, pKd 

drops sharply as the pH gets closer to the isoelectric point and the solubility of the protein 

A 

B 
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decreases. It is to be noted that in case of ALA and for pH values less than 3.7, it was not 

possible to obtain a satisfactory Langmuir isotherm and the results were erratic probably 

due to either competition between free protons and the protein cations for the adsorption 

sites, or due to protein denaturation at acidic pH. This could also well be the reason for 

the decline of qm pertaining to BLG below the pH of maximum adsorption in Figure 

5.2B.  

 In conclusion, a qm versus pH relation for ALA in conjunction with that for BLG 

in Figure 5.2B is instrumental in selecting the working pH that maximises the adsorption 

of both proteins. Furthermore, qm versus pH and pKd versus pH relations for both 

proteins are helpful in selecting the best pH for elution if needed.         

In view of the above and taking into consideration the solubility of ALA, pH 3.7 

was chosen as the working pH for the remainder of our single, two-component and whey 

studies. 

5.3 Two-component system 

It was not possible to obtain the complete experimental equilibrium profiles of 

ALA and BLG in the two-component system. The individual concentrations of the two 

proteins in some instances could not be quantified using size-exclusion analysis since the 

relevant peaks could not be identified as they merged into one peak; and since the total 

concentration was not known and could not be measured, it was not possible to use the 

relevant method outlined in Section 4.2.3.2.1. 

The equilibrium profiles of ALA and BLG were theoretically predicted using 

Langmuir model for the two-component systems as depicted in Figure 5.3. 
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Figure 5.3 Equilibrium profiles for ALA (A) and BLG (B) in two-component 
systems as predicted using the non-competitive and the totally-competitive 
Langmuir models.  

 

The solid lines pertain to the profiles predicted using the non-competitive model 

(Section 3.1.2.1), while the discrete points pertain to those predicted using the totally-

competitive model (Section 3.1.2.2). The single-component Langmuir isotherm 

parameters, determined in the previous section, were used to obtain these profiles. As can 

be seen in Figure 5.3, the non-competitive model profiles are equivalent to those of 

single-component systems. Unlike BLG, the totally competitive profiles for ALA do not 

follow a Langmuirian-type behaviour. The predicted equilibrium parameters, qm and Kd, 

for the two proteins were calculated by linearizing the equilibrium profiles (as was shown 

in the single-component studies). The relevant values are listed in Table 5.2. Clearly, it 
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was not possible to determine the equilibrium parameters for ALA using the totally-

competitive model since the relevant ALA profile did not exhibit a Langmuirian-type 

behaviour. 

Table 5.2 Equilibrium parameters for ALA and BLG in two-component systems as 
predicted by the non-competitive and the totally-competitive Langmuir models. 
  

 non-competitive  Totally-competitive 

 qm, mg/ml Kd, mg/ml  qm, mg/ml Kd, mg/ml 

ALA 147.0 0.029  ND* ND* 

BLG 113.6 0.008  91.7 0.007 
* Not determined 

As can be seen in the table, the totally-competitive model predicts lower qm value 

for BLG as compared to the non-competitive model. In addition, the value of Kd for ALA 

predicted by the totally-competitive model is slightly lower than that predicted by the 

non-competitive model. This implies that the competitive adsorption in the two-

component system should in theory entail a slightly stronger binding for BLG.   

5.4 Conclusions 

Single-component batch experiments were performed on the adsorption of pure 

ALA and BLG to the cation exchanger SP Sepharose FF. Equilibrium Langmuir isotherm 

parameters for ALA and BLG were determined at different pH values. qm versus pH and 

pKd versus pH relations for both proteins proved instrumental in delineating an optimum 

working pH of 3.7. Results at this pH showed that Kd for ALA was almost four times 

larger than that of BLG, while qm for ALA was 30% higher. The lower Kd for BLG 

implies stronger binding.  

The two-component isotherm profiles were predicted using both the non-

competitive and the totally-competitive Langmuir models. As expected, for both proteins 

the isotherm parameters predicted by the non-competitive model were the same as those 

of the single-component systems. The BLG Langmuir isotherm predicted by the totally-

competitive model yielded qm and Kd values lower than those obtained in the single-
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component system. The predicted isotherm for ALA, however, did not follow a 

Langmuirian-type isotherm.  
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6 Kinetic studies for the adsorption of pure whey 
proteins 

6.1  Introduction 

In the traditional method of studying the adsorption kinetics of proteins, the 

protein uptake profiles are usually obtained indirectly in traditional batch uptake 

experiments by measuring the change in protein concentration in the bulk liquid phase. 

The protein solid-phase concentration is then calculated from the reduction of its fluid- 

phase concentration using mass balance, i.e. assuming that each molecule which 

disappears from the solution is bound to the adsorbent. The confocal laser scanning 

microscopy (CLSM) method which has been used rather recently for direct measurements 

of protein uptake during batch experiments in a finite bath, appears to offer an attractive 

alternative. By coupling of a fluorescent dye to the protein molecules, the penetration of 

the protein within single adsorbent beads at different times during batch uptake could be 

visualised. Intensity profiles of the protein distribution within a single adsorbent bead 

could be obtained by horizontal scanning. Integrating these intensity profiles yields the 

overall fluorescence within a bead, which when plotted at different incubation times 

produces the protein batch uptake profiles. In this section, the literature pertaining to the 

traditional method will be reviewed first followed by that pertaining to the CLSM method.     

For single-component systems, Skidmore et al. (1990) determined the kinetic 

characteristics of the adsorption of bovine serum albumin (BSA) and lysozyme to the 

strong cation exchanger S Sepharose FF and compared the rates of protein adsorption to 

two different models, namely the simple kinetic model and the film and pore diffusion 

model. While the experimental batch uptake profile for lysozyme was consistent with 

both models, that of BSA was consistent only with the pore diffusion model. Following 

the same line of work, Aboudzadeh et al. (2006) studied the adsorption of human serum 

albumin (HSA) and ovalbumin on the weak anion exchanger DEAE Sepharose FF. The 

adsorption of ovalbumin was predicted well using both models whereas that of human 

serum albumin could only be predicted using the film and pore diffusion model. Chen et 

al. (2002) studied the adsorption kinetics of BSA and gamma-globulin to an anion-
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exchanger DEAE Spherodex M using batch adsorption experiments. Various models; 

namely pore diffusion, surface diffusion, homogeneous diffusion and parallel diffusion 

were analysed and tested for their feasibility to predict the experimental adsorption 

profiles. The surface and homogeneous diffusion models failed to predict the BSA 

adsorption profile, since the adsorption isotherm of BSA is rectangular which entails that 

surface diffusion is not rate limiting. Both models, however, were able to predict the 

adsorption profile of gamma-globulin. On the other hand, the adsorption kinetics of both 

proteins were well predicted by both the parallel and the pore diffusion models. The same 

author (Chen et al., 2003) studied the effect of the initial protein concentration and 

adsorption density on the pore diffusivity. It was found that the rate of pore diffusion 

decreased exponentially with increasing protein adsorption density. Moreover, the pore 

diffusivity decreased with increasing the initial protein concentration because of the 

increase of the adsorption density or the steric hindrance effect for the proteins.     

For multi-component systems, Lewus and Carta (1999b) investigated the kinetics 

of two-component protein adsorption on the cation exchanger S HyperD-M for mixtures 

of cytochrome c and lysozyme. S HyperD-M comprises porous silica particles whose 

pores are filled with a charged poly (acrylamide) gel. The observed adsorption kinetics 

were found to be consistent with diffusional transport through a tight fitting charged gel 

mesh. Thus, single and two-component mass transfer rates were described in terms of a 

homogeneous diffusion model, where the driving force for diffusion was given by the 

adsorbed protein concentration gradient. Accordingly, the ensuing intraparticle 

concentration profiles were predicted to be smooth (i.e. have homogeneous fluorescence 

intensity distribution). Based on microscopic visualisation studies with capillary 

supported gels, the existence of such smooth profiles consistent with the homogeneous 

diffusion model was later confirmed experimentally for both single and multicomponent 

systems (Lewus and Carta, 1999a; Lewus and Carta, 2001; Russel et al., 2003; Russel 

and Carta, 2005). A theoretical study of two-component protein adsorption in spherical 

ion exchange particles was reported by Gallant (2004) based on the numerical solution of 

a pore diffusion model. Garke et al. (1999) investigated the influence of protein size on 

the adsorption kinetics of lysozyme and gamma-globulin on the strong cation-exchanger 

Streamline SP. The kinetics were modelled using the film and pore diffusion model, 
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taking into account diffusion across the liquid film and within the adsorption pores. It was 

shown that the effective pore diffusion coefficients of both proteins depend on the total 

protein concentration and the concentration ratio of the competing proteins in the liquid 

phase. In the binary mixture, the diffusion rate of the faster diffusing protein, lysozyme, 

was slowed down by the lower diffusion rate of the larger protein, gamma-globulin. 

Coetzee and Petersen (2005) described a simplified resistance model for reversible 

multicomponent ion-exchange. The study investigated the use of a simple film-diffusion 

mechanism to describe mass-transfer kinetics. Furthermore, a simplified Fritz and 

Schleunder isotherm was used to overcome complex iterative techniques in order to 

obtain equilibrium conditions at the solid/liquid interface. The procedure was evaluated 

using a chelating resin in a ternary system and proved to be very effective with 

reversibility well explained. Martin et al. (2005) studied the two-component protein 

adsorption kinetics of a binary mixture of lysozyme and cytochrome c in the porous 

cation-exchanger SP Sepharose FF. The experimental batch uptake results showed that 

the two proteins were competitively adsorbed and that an overshoot of adsorbed 

cytochrome c occurred during simultaneous adsorption. Model predictions based on the 

assumption that the adsorption isotherms are rectangular and that lysozyme completely 

displaces cytochrome c were in qualitative and quantitative agreement with the 

experimental kinetics suggesting that the overshoot phenomena observed with 

multicomponent systems in these resins can be explained with a diffusion model without 

the need to account for flux coupling or electrophoretic contributions to transport.  

Confocal laser scanning microscopy is an important modern technique for the 

study of protein adsorption within chromatographic beads. Originally introduced by 

Ljunglöf and Hjorth (1996), it has become popular as it allows direct observation of 

protein adsorption patterns within optically transparent beads (Stone and Carta, 2007). 

Ljunglöf and Hjorth (1996) studied the adsorption of protein A to IgG Sepharose 6 Fast 

Flow. Hubbuch et al. (2003) carried out an experimental study on the interplay of sorbent 

structure and fluid phase conditions in the single- and two-component adsorption and 

transport of BSA and IgG 2a on SP Sepharose FF and SP Sepharose XL. Harinarayan et 

al. (2006) performed capacity measurements on two different commercial ion-exchange 

resins with three different monoclonal antibodies at various pH and conductivity values. 
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Linden et al. (2002) investigated the effect of pH and ionic strength on the uptake profiles 

of BSA and monoclonal antibody. Boushaba et al. (2007) used dual fluorescence CLSM 

to visualise the binding of a fluorescently labelled polyclonal ovine anti-fluorescein 

F(ab′)2 antibody to immobilised fluorescein. Ljunglöf and Thommes (1998) studied 

protein uptake for lysozyme and human IgG to two different porous adsorbents during 

batch experiments in a finite bath. Results from direct confocal microscopy measurement 

corresponded well to the data obtained from indirect fluid phase measurements. However, 

other authors reported that the techniques used in CLSM, particularly the need to use dye-

labelled protein to achieve protein visualisation, can alter the adsorption properties of the 

protein (Russel and Carta, 2005; and Ljunglöf et al., 2006) leading to artefacts. In 

addition, it was shown that competition between dye-labelled and native protein 

molecules for the adsorption sites results in apparent adsorption patterns that exhibit 

either overshoots when the native protein is more favourably adsorbed, or smooth profiles 

when adsorption of the labelled protein is favoured (Teske et al., 2005; Gallant, 2004; 

Martin et al., 2005; and Teske et al., 2006). For the two-component systems, Linden et al. 

(1999) were the first to use CLSM to visualise the two-component diffusion of two 

labelled proteins within a porous stationary phase. They studied the finite bath uptake of 

bovine serum albumin and human immunoglobulin G to two different ion-exchange 

adsorbents and to an affinity adsorbent.  

6.2  Traditional method 

The discussion below deals first with single-component adsorption where only 

one protein is present, and will be followed by the two-component system involving a 

mixture of the two proteins.  

6.2.1 Single-component studies 

In this section and the following one, the adsorption kinetics of each of ALA and 

BLG onto SP Sepharose FF were mainly studied at pH 3.7, settled exchanger volume to 

solution volume (v/V) ratio of 1:14, and initial concentrations of ALA and BLG (Co) of 

1.5 and 3 mg/ml, respectively; these are approximately the concentrations of these two 

proteins that are normally found in whey. However to further elucidate the nature of the 
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adsorption process, the effects of the initial concentration as well as the v/V ratio were 

investigated in a separate Section (Section 6.2.3). It is to be stressed that these 

experiments ‘approach’ rather than ‘reach’ equilibrium, as they were performed only for 

a time duration that did not exceed 4 hours. Therefore the values of the time taken to 

reach equilibrium (where the curve flattens out) as well as the actual equilibrium position 

(equilibrium concentration) will not necessarily equal their corresponding values 

achieved in equilibrium batch experiments. They are expected though to eventually reach 

these values when given equivalent period of time (overnight or 18 hours). 

The experimental and theoretical time courses for ALA and BLG uptake are 

depicted in Figures 6.1A and 6.1B, respectively. The theoretical profiles were predicted 

by the simple kinetic model (Section 3.2.1.1) and the estimated values of k1 that gave the 

best fit to the experimental results were found to be 30*10-3 mlmg-1min-1 and  

35*10-3 mlmg-1min-1 respectively for ALA and BLG. As judged from these values, the 

adsorption of BLG is expected to be faster than that of ALA.  
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Figure 6.1 Experimental and predicted time courses of ALA (A) and BLG (B) 
uptake onto SP Sepharose FF at v/V of 1:14, and initial concentrations of 1.5 mg/ml 
and 3 mg/ml, respectively. The theoretical time courses were predicted using the 
simple kinetic model and fitted to the experimental results with an accuracy of 3-5%. 

 

The corresponding time courses for the amount of protein adsorbed (q) for ALA 

and BLG are shown in Figures 6.2A and 6.2B, respectively. As shown in the Figures, the 

adsorption profile pertaining to BLG flattens out at a maximum value of q (q* = 40 mg/ml) 

equal to twice that of ALA (q* = 20 mg/ml).  
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Figure 6.2  Experimental and predicted amount of ALA (A) and BLG (B) adsorbed 
onto SP Sepharose FF as a function of time at v/V of 1:14, and initial concentrations 
of 1.5 mg/ml and 3 mg/ml, respectively. The theoretical profiles were predicted by 
the simple kinetic model and fitted to the experimental results with an accuracy of 
3-5%. 

 

Alternatively, ALA and BLG adsorption profiles were predicted by the pore 

diffusion model as shown in Figures 6.3A and 6.3B, respectively.  
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Figure 6.3 Experimental and predicted time courses of ALA (A) and BLG (B) 
uptake onto SP Sepharose FF at v/V of 1:14, and initial concentrations of 1.5 mg/ml 
and 3 mg/ml, respectively. The theoretical time courses were predicted by the pore 
diffusion model. 

 

For BLG, the theoretical prediction did not agree well with the experimental 

results as the model only predicted the initial stages of adsorption with accuracy within 

5%. The theoretical profiles for ALA were in fair agreement with the experimental results 

with accuracy within 5-10%. This indicates that the kinetics of BLG is better described 
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by the simple kinetic model, whereas that of ALA can be described by both the simple 

kinetic model and the pore diffusion model. The estimated diffusivities for ALA and 

BLG were 0.01*10-10 m2/s and 0.002*10-10 m2/s (their molecular diffusivities in free 

solution were 1.15*10-10 m2/s and 0.08*10-10 m2/s, respectively). The diffusivity of ALA 

is larger than that of BLG which implies that the adsorption of ALA appears to be five 

times faster than that of BLG. This is contradictory to the results obtained earlier using 

the simple kinetic model, where the value of k1 for BLG was larger than that of ALA. 

This discrepancy would be expected in light of the fact that the pore diffusion model 

failed to predict the BLG adsorption profile. In view of the above, the simple kinetic 

model will be adopted for the remainder of this study.  

6.2.2 Two-component studies 

The time courses for the total and individual uptakes of ALA and BLG in a binary 

mixture onto SP Sepharose FF, at pH 3.7 and v/V of 1:14 and initial concentrations of 1.5 

and 3 mg/ml, respectively are shown in Figure 6.4.  
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Figure 6.4 Experimental time courses for the total uptake of both ALA and BLG in 
a binary mixture, together with their individual uptakes onto SP Sepharose FF at 
pH 3.7, v/V of 1:14, and initial concentrations of 1.5 and 3 mg/ml, respectively. 

 

To obtain the individual batch uptake adsorption profiles for each of ALA and 

BLG, 1-ml fractions were withdrawn from the initial sample volume during the course of 
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the experiment, centrifuged at 3000g for 5 min, and then analysed on the size-exclusion 

chromatography system to determine the concentrations of the collected fractions. The 

plot of these concentrations relative to the initial concentration, C/Co, with time 

represents the individual batch uptake adsorption profiles for ALA and BLG (Figures 

6.5A and 6.5B). Each of these profiles is compared to its respective counterpart 

pertaining to the pure protein (single-component system), obtained earlier, as presented in 

Figures 6.5A and 6.5B, respectively. The theoretical adsorption profiles of ALA and 

BLG in mixture were predicted by the simple kinetic model and the k1 values so obtained 

were 15*10-3 mlmg-1min-1 and 25*10-3 mlmg-1min-1 for ALA and BLG, respectively. 

Evidently, the values of k1 in the two-component system decreased by about 50% and 

30% compared to their values in single-component systems (30*10-3 mlmg-1min-1 and 

35*10-3 mlmg-1min-1 ) for ALA and BLG, respectively.         
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Figure 6.5  Experimental and predicted time courses for 1.5 mg/ml ALA (A) and 3 
mg/ml BLG (B) uptake, when applied in a binary mixture of both ALA and BLG 
onto SP Sepharose FF at pH 3.7 and v/V of 1:14. The corresponding experimental 
time courses for ALA and BLG in single-component systems are also shown. 
 
 In order to predict the adsorption profile for the total concentration of ALA and 

BLG in mixture, qm and Kd values for the mixture were estimated. The qm value for the 

mixture of ALA and BLG was determined as the arithmetic mean of the two individual 

qm values of the two pure proteins. Kd for the mixture, on the other hand, was calculated 

as the geometric mean of the individual Kd values (because Kd is an intensity parameter 

rather than a capacity one). The simple kinetic model was solved using the values of qm 

A B 
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and Kd for the mixture. The value of k1 was taken to be the one that gave the best fit to the 

experimental data (Figure 6.6), and was found to be 33*10-3 mlmg-1min-1, which is 

approximately the weighted-average of the two k1 values of pure ALA (30*10-3 mlmg-

1min1) and BLG (35*10-3 mlmg-1min-1) obtained earlier. As can be seen from the figure, 

the model only predicted the early part of the experimental batch uptake profile with 

accuracy within 5%, but failed to predict the later stages where adsorption approaches 

equilibrium. This discrepancy between the predicted and experimental results could point 

to presence of a strong competitive adsorption between the two proteins that was not 

considered in this treatment. Therefore, the difference that appeared between the single-

component and the two-component batch uptake profiles pertaining to each protein would 

thus be expected (Figures 6.5A and 6.5B).  
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Figure 6.6 Predicted and experimental batch uptake profiles for a mixture of ALA 
and BLG onto SP Sepharose FF at v/V of 1:14, pH 3.7 and initial concentrations of 
1.5 and 3 mg/ml, respectively. 

6.2.3 Effect of initial concentration and v/V ratio 

Traditional batch uptake experiments were performed at different initial 

concentrations of ALA and BLG and v/V ratio of 1:14. The concentrations were chosen to 

be in a range close to the normal concentrations of the two proteins in whey. The 

corresponding adsorption profiles were constructed and the values of q* so obtained were 
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plotted against the corresponding values of the initial concentration (Figure 6.7). As can 

be seen from the q*-Co plot in Figure 6.7, q* increases linearly with increasing Co for both 

ALA and BLG in the employed range of concentrations. The rate of increase, i.e. the 

slope of the line, is constant for both proteins and has a value of 13.5.  
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Figure 6.7 Effect of the initial concentration of ALA and BLG on the equilibrium 
adsorption capacity q* at v/V of 1:14. 
 

It should be noted that at higher values of v/V ratio and wider range of initial 

concentrations, the q*-Co relation for BLG is not linear as shown in Figure 6.8. It could, 

however, be approximated to a linear relation at low concentrations.  
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Figure 6.8 Effect of the initial concentration of BLG on the equilibrium adsorption 
capacity q* at v/V of 1:27. 
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 The effect of initial concentration on the rate of BLG uptake is shown in Figure 

6.9. The rate of uptake increases with increasing initial concentration. The same 

behaviour holds true for ALA as will be shown later in Figure 6.15B. 
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Figure 6.9 Effect of initial concentration on time course of BLG uptake onto SP 
Sepharose FF at v/V of 1: 27 and pH 3.7. 

Table 6.1 shows the values of q* for ALA and BLG at different values of initial 

concentration and v/V ratio. For each protein, two sets of v/V ratios each corresponding to 

one initial concentration are presented.  

Table 6.1  Effect of v/V on the values of q*. 

  v/V Q* (mg/ml) 

1:14 20.0 
Co = 1.5 

1:42 60.0 

   

1:14 89.0 
Co = 5.0 

1:17 109.0 

ALA 

   

1:14 40.0 
Co = 3.0 

1:27 71.7 

   

1:14 55.1 

BLG 

Co = 4.0 
1:27 82.5 

q* , m
g/

m
l 
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For a constant initial concentration of ALA, it is clear that q* increases 

proportionally with dilution (i.e. decreasing v/V ratio). The same does not hold true for 

BLG particularly at an initial concentration of 4 mg/ml. This indicates that the q*-v/V 

relation for BLG particularly at higher concentrations is probably not linear, a behaviour 

similar to that was encountered earlier with the q*-Co relation of the same protein (Figure 

6.8).  

The effect of the v/V ratio on the rate of uptake for ALA and BLG is similar to 

that of the initial concentration.    

 

6.3 Confocal microscopy method 

The results herein are reported on the location and amounts of adsorbing proteins 

within adsorbent beads of diameters 80-90 μm that represent the average of the bead size 

distribution normally present in SP Sepharose FF. Larger-size (90-120 μm) and smaller-

size (60-80 μm) beads were also inspected but the significance of the modest differences 

observed are discussed in a separate forthcoming subsection (Section 6.3.3). 

Furthermore, the main set of experiments were conducted at a settled exchanger 

volume to solution volume, v/V, ratio of 1:14 using initial protein concentrations of 3 

mg/ml and 1.5 mg/ml for BLG and ALA, respectively. Other values for these two 

variables (v/V ratio and initial protein concentration) were used only in the section 

entitled ‘additional exploratory experiments on the adsorption of ALA’ (Section 6.3.1.1). 

6.3.1 Single-component studies 

Figure 6.10 shows two sets of time courses of confocal scans of beads of SP 

Sepharose FF incubated with either 3 mg/ml of fluorescently-labelled BLG (Figure 6.10A) 

or 1.5 mg/ml of fluorescently-labelled ALA (Figure 6.10B). The proteins were adsorbed 

at pH 3.7 and a v/V ratio of 1:14. The scans of samples withdrawn at different times, 

demonstrate the time course of penetration of the dyed-protein through the adsorbent 

particle. 
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A) 

            
     t = 1 min              t = 2 min            t = 15 min           t = 60 min             t = 18 h 
B)  

        
     t = 5 min              t = 20 min              t = 2 h               t = 18 h 

Figure 6.10 Time series of confocal microscopy scans describing the binding of 3 
mg/ml pure BLG (A) and 1.5 mg/ml pure ALA (B) at v/V of 1:14 to SP Sepharose FF 
beads at pH 3.7 and medium particle size of the adsorbent.  

 For BLG, the confocal images revealed that the protein was adsorbed in a shell-

wise fashion where it was first bound initially solely to the outer parts of the bead and 

then gradually filled the whole volume of the bead from the outermost region towards the 

centre of the bead. ALA, on the other hand, was observed to adsorb initially to the outer 

surfaces of the adsorbent beads in a shell-wise fashion. The thickness of the shell (Δr = 

ro – ri) increased gradually with time, with its inner edge progressing a little way towards 

the centre of the particle. Unlike BLG, ALA did not fill the entire volume of the beads 

under these experimental conditions. The images show the penetration of protein into the 

bead, for BLG in the form of a steady incursion reminiscent of the shrinking core model 

in catalysis (Levenspiel, 1972), while for ALA it shows a shell which does not penetrate 

further. These cannot be compared with the simple kinetic model as this does not predict 

the distribution of protein within the bead. Inspection indicates that (Δr) 4 = k t for both 

proteins which is not given by standard models. The proportionality constant (k) for BLG 

was much higher than that of ALA which is consistent with the faster adsorption for BLG. 

The corresponding fluorescence intensity profiles across the particle radius are 

shown in Figure 6.11. Each plot in this figure embodies a set of intensity-distance curves 

at different times. The general trends displayed in these plots were in accord with the 

qualitative information discernable from the scans in Figure 6.10.  



                                                                                                              El-Sayed, Chapter 6 

 75

  

 

0

10

20

30

40

50

60

70

80

-90 -60 -30 0 30 60 90
radial distance, μm

flu
or

es
ce

nc
e 

in
te

ns
ity

, A
U

   
  

2 min

5 min

10 min

20 min

90 min

 

0

10

20

30

40

50

60

70

80

90

100

-90 -60 -30 0 30 60 90

radial distance, μm

flu
or

es
ce

nc
e 

in
te

ns
ity

, A
U

   
   

 
.

5 min
120 min
240 min

 
Figure 6.11 Fluorescence intensity profiles for the images in Figure 6.10 pertaining 
to BLG (A) and ALA (B). Green circles represent the fluorescence profiles after 18 
hours.  

 
In Figure 6.11 plot (A) pertaining to BLG, a sharp adsorption front was observed 

at 2 min. It then became shallower with time until it eventually flattened out (i.e. the 

particle was completely and homogeneously filled with BLG). The curve then exhibited 

an overshoot at 90 min. Overshoots are defined as adsorbed phase concentrations that are 

higher at certain radial positions within the particle compared with positions nearer the 

particle surface (Ljunglöf et al., 2006). The overshoot phenomenon was also encountered 

by Hubbuch et al. (2003) when studying the adsorption of IgG 2a to SP Sepharose FF at 

pH 4.5. The dynamics of protein adsorption and transport were described by the latter 

authors as a ‘wave’ of molecules building up towards the inner section of the bead and 

leading to an overshoot in the centre of the particle. The overshoot observed in case of 

BLG supports the earlier finding that the transport mechanism of this protein is not a 

pore-diffusional one as 0/ ≠∂∂ rc  at the particle centre.  

From the fluorescence intensity profile of BLG, it can be deduced that some of the 

BLG-AlexaFluor 467 originally bound at the outer rim of the support is subsequently 

transported to the inner part of the sorbent. This is evident from the decrease of the 

intensity observed at the outer shell and the development of a ‘wave-like’ profile at the 

inner section of the support before resulting in an overshoot in the centre of the support. 

A B 
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The overshoot was found to be temporary, especially since it was followed by the 

establishment of an apparent equilibrium situation, where a homogeneous sorption profile 

over the whole particle radius was observed.     

Different explanations have been given to the overshoot phenomenon. Grimes and 

Liapis (2002) constructed a model to show how the interplay of diffusive and 

electrophoretic transport mechanisms affect functioning of the electrical double layer 

present inside pores of charged adsorbent particles and hence could contribute to the 

‘overshoot’ behaviour. Dziennik et al. (2003) discussed an electrokinetic contribution to 

the transport in ion-exchange particle and found that the ‘overshoot’ effect could be 

correlated to high adsorbent surface charge densities. Liapis et al. (2001); and Zhang et al. 

(2004) included an additional contribution to the transport equations from a double-layer-

induced electrophoretic transport mechanism. Recently, other workers (Martin et al., 

2005; Carta et al., 2005; and Teske et al. (2005, 2006)) have proposed that the overshoot 

is caused by the displacement of weaker-binding fluorescently-labelled protein by its 

stronger-binding unlabelled native counterpart.  

In Figure 6.11 plot (B) pertaining to ALA, the sharp adsorption front present at 

the beginning of adsorption (5 min) did not get much shallower with time. The reason for 

this could possibly be the low concentration of ALA in solution (only half the 

concentration used in the experiments with BLG), since if all or most of ALA had been 

taken up by the adsorbent in the early stages of the experiment, none or very little would 

be left in solution to penetrate further within the bead (depletion effect). This hypothesis 

will be tested in a forthcoming subsection.   

Integrating the intensity profiles of Figure 6.11 yielded Fring (AU), which was then 

converted to the fluorescence intensity within the shell, Fs, and then normalised to give 

RF. For each protein, the RF-t plot in Figure 6.12 is compared to the Rq-t curve obtained 

from traditional batch uptake experiments (solid discrete circles in the figure). For BLG 

(Figure 6.12A), the RF-t plot was in good agreement with its Rq-t counterpart. It is to be 

noted that the theoretical prediction of the shape of the Rq-t curve using the simple kinetic 

model with the best-fit estimate of k1 of 35*10-3 mlmg-1min-1 (solid line) was also in good 

accord with the experimental results.  For ALA (Figure 6.12B), there was no agreement 

between the Rq-t and the RF-t profiles. The theoretical prediction of the Rq-t curve from 
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the simple kinetic rate model yielded a curve that was in good agreement with the 

experimental Rq-t results (Figure 6.12B, solid line). The best-fit value of k1 for this curve 

was found to be 30*10-3 ml mg-1min-1.  
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Figure 6.12 Fractional approach to equilibrium during finite bath adsorption of 3 
mg/ml BLG (A) and 1.5 mg/ml ALA (B) to medium particle-size SP Sepharose FF at 
pH 3.7 and v/V of 1:14. 
 

In order to corroborate the confocal microscopy findings quantitatively, an 

attempt was made to derive a rate constant for the kinetic uptake profiles for BLG and 

ALA obtained from the microscopic measurements of adsorbed protein profiles using the 

simple kinetic model described earlier. The model reasonably predicted the protein 

uptake profile throughout the entire duration of the protein adsorption experiment (Figure 

6.12). The best-fit values of k1
′ were found to be 36*10-3 ml mg-1min-1 and 4*10-3 ml mg-

1min-1 for BLG and ALA, respectively. The value of k1
′ for BLG was approximately 

equal to that obtained using the traditional method (k1), while k1
′ for ALA was 

considerably lower which is consistent with the qualitative disagreement observed in 

Figure 6.12B. 

The discrepancy between the Rq-t and the RF-t profiles in the case of ALA could 

be due to a competitive adsorption taking place between the native unlabelled proteins 

and their fluorescently-labelled counterparts. In this case, the unlabelled protein 

(presumed to be bound less strongly to the adsorbent) could have been adsorbed more 

B A 
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quickly onto the bead at the start of the experiment and was later displaced by the more 

strongly-bound labelled variant. The implication is that unlabelled proteins were adsorbed 

to the bead at the beginning of the experiment, but could not be detected by the 

microscope. This could also explain the low rate of ALA penetration as well as the 

apparent inability of ALA to penetrate deep within the bead. If so, the opposite effect 

could explain the overshoot observed earlier with BLG, where the labelled protein could 

possibly have been adsorbed first and then later displaced by its unlabelled counterpart. 

The above suggestions imply that the conjugation of the protein with a fluorophore can 

affect its adsorption characteristics as has already been pointed out earlier by a number of 

workers (Teske et al., 2005; Russel and Carta, 2005; and Ljunglöf et al., 2006). There is a 

possibility that the risk of alteration of the mass transfer properties may be higher when 

working with low-molecular weight proteins (compared to large molecules like 

antibodies). Ljunglöf et al. (2007) showed that labelling of an antibody fragment slightly 

affects its mass transfer properties as judged from the relevant values of the retention 

factors of labelled and unlabelled proteins obtained using gradient elution.    

According to this argument, the lack of agreement in case of ALA could well be 

an indication that the presumed effect of the presence of the fluorophore covalently 

attached to the protein on the adsorption characteristics is more pronounced for this 

protein than it was for BLG.   

6.3.1.1 Additional exploratory experiments on the adsorption of ALA  

Further experiments were conducted in order to elucidate the nature of the binding 

of ALA to the adsorbent as well as to understand the reason behind the different 

behaviour, relative to BLG, that ALA exhibited with regard to the characteristics of 

penetration within the adsorbent beads. Adsorption of fluorescently-labelled ALA both at 

a lower v/V ratio of 1:42 maintaining a concentration of 1.5 mg/ml, and at a higher 

concentration of 3 mg/ml maintaining a v/V ratio of 1:14 was investigated. Lowering v/V 

ratio by one third without changing the concentration triples the number of ALA 

molecules in solution and thus avoids the suspected depletion alluded to earlier. The 

confocal scans for these two situations are given in Figure 6.13. 
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A) 

         
   t = 5 min               t = 20 min               t = 2 h                    t = 18 h 
B) 

                 
         t = 5 min             t = 20 min                 t = 2 h                  t = 18 h 

Figure 6.13 Time series of confocal microscopy scans describing the binding of pure 
ALA to SP Sepharose FF beads at pH 3.7 using A) 1.5 mg/ml and v/V of 1:42, and B) 
3 mg/ml and v/V of 1:14 at a medium particle size of the adsorbent. 

 
Regarding the effect of reducing v/V (Figure 6.13A), ALA appears to be adsorbed 

to the outer regions of the particles in a shell-wise fashion as was previously observed 

with v/V of 1:14, but still did not penetrate to the centre of the beads.   

As to the effect of doubling the initial ALA concentration in solution (Figure 

6.13B), ALA seems to be first adsorbed to the outer rim of the adsorbent bead in a shell-

wise fashion, while some ALA molecules randomly penetrated to the innermost regions 

of the bead in an uneven manner resulting in distinct “areas” where ALA appeared to be 

adsorbed, and other areas apparently devoid of ALA molecules. With time, the thickness 

of the fluorescent shell increased slightly and more ALA molecules were observed to 

penetrate deeper into the beads again in the same uneven, “granular” manner as described 

immediately above.  

The relevant fluorescence intensity profiles (Figure 6.14) support the confocal 

imaging results. The profile pertaining to ALA at v/V ratio of 1:42 (Figure 6.14A) shows 

almost the same intensity maxima as those detected at a v/V ratio of 1:14. In addition, the 

thicknesses of the fluorescent shells were slightly increased relative to those obtained 

with the reference value of the v/V ratio.  A sharp front was observed at the beginning and 
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remained the same throughout the entire period of the experiment. This shows that with 

decreasing v/V, more ALA was bound to the outermost region of the adsorbent bead but it 

did not penetrate any further into the centre. 
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Figure 6.14 Fluorescence intensity profiles for 1.5 mg/ml ALA and v/V of 1:42 (A) 
and 3 mg/ml BLG and v/V of 1:14 (B) at medium particle size of the adsorbent. 
Green circles represent the fluorescence profiles after 18 hours. 

 
The fluorescence intensity profile pertaining to 3 mg/ml ALA (Figure 6.14B) 

shows substantially higher fluorescence intensity at the adsorption front but almost the 

same values of the intensity maxima as was shown by the profile of ALA obtained from 

experiments conducted at 1.5 mg/ml (Figure 6.11B).  A comparison of the F-t curves (for 

simplicity Fs-t curves will be henceforth referred to as F-t curves) (CLSM method) and 

the q-t curves (traditional method) obtained for the different ALA uptake conditions is 

shown in Figures 6.15A and 6.15B, respectively. One feature that is common to all these 

curves is related to the rate of uptake. 
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Figure 6.15  Comparison between F-t curves (A) and q-t curves (B) for the different 
ALA adsorption experiments involving the medium particle size (80-90 μm). The 
normalised curves at 3 mg/ml and v/V of 1:14 are also compared (C).   
 

Judging from the inclination of the curves in Figures 6.15A and 6.15B, it is 

deduced that the confocal and traditional methods yielded the same trend for the rate of 

uptake: doubling the concentration > reducing v/V > reference condition. The increase in 

the rate of uptake upon reducing v/V corroborates the previous suspicion that the number 

of protein molecules in the original solution was limited and significant depletion might 

have occurred as a result of adsorption. The confocal (Figure 6.15A) and traditional 

(Figure 6.15B) results differ in one respect namely the value of their maxima. The 

traditional maxima varied linearly with the initial ALA concentration since the q* value 

A 

 

B 

C 
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doubled as the initial ALA concentration doubled and tripled as the initial number of 

ALA molecules tripled. This was not the case for the confocal maxima (F*) and the 

implied lack of proportionality between F* and q*precluded obtaining the confocal rate 

constants for these situations. It is of interest, however, to note that when the two curves 

(F-t and q-t) pertaining to the doubled concentration were normalised, they agreed well 

(Figure 6.15C). The indication is that the discrepancy which was encountered in Figure 

6.12B for ALA at the reference condition disappeared. This suggests that the effect of 

dye-conjugation on the protein adsorption characteristics is related to the protein 

concentration. Unfortunately, it is necessary to use the reference concentrations for the 

separation process aspects of this work as these represent the protein concentrations 

normally found in whey.       

6.3.2 Two-component studies 

Figure 6.16 depicts the time series of confocal images for a mixture of 1.5 mg/ml 

ALA and 3 mg/ml BLG when adsorbed to SP Sepharose FF at v/V of 1:14. As can be 

seen from the figure, the innermost volume of the beads is mostly filled with BLG (blue) 

while the outermost is mostly occupied by ALA (green). BLG filled the entire bead in 

only 5 min. The ALA fluorescent shell (green) became thicker with time as more ALA 

penetrated toward the centre of the bead. In addition, the blue colour corresponding to the 

adsorbed BLG became less intense with time as more ALA penetrated toward the 

innermost regions. This behaviour shows that BLG was apparently adsorbed much faster 

than ALA at the beginning of each experiment. Afterwards, however, there is clear 

evidence that ALA was able to displace some of the adsorbed BLG.  

 

        
   t = 5 min                t = 20 min             t = 180 min                t = 18 h  

Figure 6.16 Time series of confocal microscopy scans describing the binding of a 
mixture of 3 mg/ml pure BLG and 1.5 mg/ml pure ALA to SP Sepharose FF beads 
at pH 3.7 and medium particle size of the adsorbent.  
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The ALA and BLG fluorescence intensity profiles support this argument (Figure 

6.17). The BLG profile in the mixture followed a behaviour similar to that encountered in 

single-component adsorption. An increase of the locally adsorbed BLG occurred towards 

the centre, followed by an overshoot in the adsorbed protein concentration towards the 

centre of the bead and a subsequent decline to a homogeneous equilibrium value. ALA, 

on the other hand, adsorbed mainly to the outer part of the adsorbent with some 

molecules penetrating in an uneven manner to the centre of the bead. As more ALA 

adsorbed to the outermost regions of the particle, the intensity of ALA within the outer 

shells increased while that of BLG decreased. This indicates that ALA was able to 

displace previously adsorbed BLG despite the apparently lower affinity of ALA to the 

adsorbent (as evidenced by its higher Kd value). The value of F for BLG after 18 hours 

dropped by 20% relative to its maximum value (F*) (cf. Figure 6.18) which indicates that 

20% of BLG that had been adsorbed was subsequently driven off the beads, presumably 

as a result of successful competition of ALA for the adsorption sites.  
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Figure 6.17  Fluorescence intensity profiles for the images in Figure 6.16 at the 
medium particle-size of the adsorbent.   
 

Similar behaviour was reported by Hubbuch et al. (2003) when studying the 

adsorption of a mixture of IgG 2a and BSA to SP Sepharose XL at pH 4.5. The 

adsorption front detected for IgG 2a was described by a concentration gradient of 

bound/accumulated molecules moving towards the centre of the adsorbent followed by an 

overshoot of bound/accumulated protein at the centre of the bead. The displacement of 

IgG 2a by BSA in spite of the lower affinity of the latter to the adsorbent was attributed 

to the different transport mechanisms governing the adsorption of the respective protein 

molecules; BSA being characterised by a pore-diffusional transport whereas IgG 2a 

characterised by an electrokinetically-based secondary transport that is non-diffusive. 

 In the situation at hand, the following explanation is proposed to account for the 

fact that BLG appeared to be adsorbed much faster than ALA and that the lower-affinity 

18 h 
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protein (ALA) was able to displace the higher-affinity one. It is reasonable to assume that 

the motion of BLG within the porous adsorbent bead is dictated by electrical forces (non-

diffusive) while that of ALA is more governed by its concentration gradient (diffusive). 

Thus the faster-moving BLG gets adsorbed first (cation-exchange of BLG for Na+) 

leaving ALA lagging behind. The displacement could be envisaged as another cation-

exchange adsorption occurring later when the lingering ALA manages to catch up with 

the adsorbed BLG. Yet, it would not be possible to assume that the adsorbed BLG so 

displaced was adsorbed directly on the adsorbent surface since neither the relative Kd 

values of the two proteins (ALA is larger by a factor of 4), nor their relative 

concentrations (ALA is lower by a factor of 2) is conducive to such replacement. It is 

therefore more likely that the belated exchange takes place in the diffuse-layer part of the 

adsorbed BLG. In complexation parlance, the expelled BLG is conceived to have been an 

outer-sphere complex separated from the surface by at least one molecular layer of the 

solvent. The redistribution of ions in this layer that occur when invaded by ALA must 

lead to the expulsion of BLG in order to maintain electro-neutrality. It seems that the 

widespread notion that the more-strongly adsorbed (lower Kd) protein would be expected 

to displace the weaker one needs to be reconsidered. It is only when the mass transfer 

resistances are not rate-limiting (or the mass transfer rate limitation is the same for both 

proteins) that we can expect this notion to hold under similar experimental conditions for 

the two proteins. 

The F-t curves for ALA and BLG during two-component adsorption to SP 

Sepharose FF are presented in Figure 6.18. The figure also shows a comparison of the 

two-component results with their single-component counterparts. Values of the rate 

constant, k1
′, were calculated using the simple kinetic model as was explained previously 

in the single-component studies. The best-fit values of k1
′ for BLG and ALA in the two-

component system were estimated to be 23*10-3 mlmg-1min-1 and 2.1*10-3 mlmg-1min-1, 

respectively (Figure 6.19 and Table 6.2). The table also contains the values of their 

single-component counterparts as well as the corresponding best-fit values of k1 obtained 

from traditional batch uptake experiments. In both confocal and traditional experiments, 

the value of the rate constant for BLG in mixture decreased to about two-thirds of the 

value obtained when pure BLG was investigated, whereas the rate constant of ALA in the 
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mixture dropped to about one half of its value when pure. Evidently, the proportionality 

between the confocal and traditional results for ALA was realized only when the same 

experimental conditions of v/V and initial concentration were maintained whether in the  

single- or two-component systems which did not hold true when the experimental 

conditions were varied as shown earlier. 
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Figure 6.18 F-t curves for ALA and BLG during finite bath adsorption when a 
mixture of 1.5 mg/ml of ALA and 3 mg/ml of BLG at v/V of 1:14 is adsorbed to SP 
Sepharose FF of medium particle size. The single-component profiles for both 
proteins are also shown. 
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Figure 6.19 Confocal versus traditional batch uptake for ALA (A) and BLG (B) 
when a mixture of 1.5 mg/ml of ALA and 3 mg/ml of BLG at v/V of 1:14 is adsorbed 
to SP Sepharose FF of medium particle size. 
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Table 6.2  Confocal and traditional rate constants for BLG and ALA adsorption 
both individually and in mixture, along with their corresponding F* and q* values. 

a    these values were determined using the simple kinetic model as there is a proportionality between F* 
and q*.  
 

In comparing the confocal results in mixture with their corresponding traditional 

batch uptake results under the same conditions, the following features can be concluded: 

for BLG, the confocal and traditional results were in good agreement; however for ALA 

the discrepancy between the confocal and traditional profiles repeated what was 

encountered in the relevant profiles obtained with pure ALA (Figure 6.12B). It is evident 

that the apparent values of both k1
′ and k1 in the two-component system decreased by 

about 50% and 30% compared to their values in pure systems for ALA and BLG, 

respectively. This result is in good agreement with the decrease in k1
′ values obtained 

from the CLSM experiments for both proteins. 

For both single- and two-component systems, the rate constant values for BLG 

were larger than ALA. This explains the fact that BLG in the two-component system 

preceded ALA in penetrating the adsorbent particle. 

6.3.3 Effect of particle size 

The effect of particle size on the batch uptake adsorption of ALA and BLG was 

studied using CLSM. In view of the resulting fluorescence profiles, three different 

behaviours, pertaining to three particle-size ranges, were observed. As the adsorbent 
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particle diameter was found to vary between 60-120 μm, the investigated particle-size 

ranges were 60-80 μm, 80-90 μm, and 90-120 μm. The medium-size range has been 

investigated earlier (Sections 6.3.1 and 6.3.2), and therefore this section will deal only 

with the study of the smallest and largest particle–size ranges. In some instances, 

however, the medium-size range will be referred to for the sake of comparison. 

6.3.3.1 Single-component systems 

For BLG, these experiments were conducted at a v/V ratio of 1:14 and an initial 

concentration of 3 mg/ml. The confocal time scans of beads of SP Sepharose FF 

incubated with fluorescently-labelled BLG are shown in Figure 6.20. As was the case 

with the medium-particle size (Figure 6.10), BLG gradually filled the beads in a shell-

wise fashion until the whole beads were completely filled. For the smallest particle-size 

range of 60-80 μm, BLG filled the entire bead in about 20 min, whereas for the largest 

particle-size range of 90-120 μm, full penetration of the bead did not occur within two 

hours. 
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A) particle-size range of 60-80 μm 

            
 t = 1 min           t = 2 min        t = 5 min      t = 15 min      t = 20 min   
                     

    
t = 120 min        t = 18 h 
 
B) particle-size range of 90-120 μm 

          
     t = 2 min                  t = 10 min                t = 40 min               t = 120 min             

 

        t = 18 h 

Figure 6.20 Time series of confocal microscopy scans describing the binding of 3 
mg/ml pure BLG to SP Sepharose FF beads at pH 3.7 for the smallest and largest 
particle-size ranges of the adsorbent.  
 

The general trends displayed in the corresponding fluorescence intensity profiles 

(Figure 6.21) were in accord with the qualitative information discernable from the scans 

in Figure 6.20.  The curves in Figure 6.21 exhibited overshoots at the two employed 

particle-size ranges as was previously encountered with the medium-size range. The time 

of overshoot increased with increasing the particle size. The overshoot occurred at 90 min 

for the smallest particle size (plot A), and the particle was entirely filled shortly before 
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that time. For the 90-120 μm particles in plot (B), the overshoot was only observed after 

18 hours.   
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Figure 6.21 Fluorescence intensity profiles for the images in Figure 6.20. Plots A and 
B represent the profiles for 60-80 μm, and 90-120 μm particles, respectively. Green 
circles represent the profiles after 18 hours.  

 
The ALA adsorption experiments were performed at the reference conditions of 

1.5 mg/ml initial concentration and v/V ratio 1:14, at a lower v/V ratio of 1:42 maintaining 

the same initial concentration, and at a higher concentration of 3 mg/ml maintaining the 

same v/V ratio. The relevant time series of the confocal scans are depicted in Figure 6.22. 

The general penetration behaviour of ALA within the smallest and largest particle-size 

ranges was the same as that encountered previously with the medium-size range. Unlike 

BLG, ALA did not fill the entire volume of the beads.   
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a) particle-size range of 60-80 μm  

       
  t = 5 min          t = 20 min       t = 120 min       t = 18 h 
 
A) particle-size range of 90-120 μm  

         
        t = 5 min                  t = 20 min                       t = 2 h                        t = 18 h 
 
b) particle-size range of 60-80 μm 

       
   t = 5 min        t = 20 min         t = 2 h             t = 18 h 

 
B) particle-size range of 90-120 μm 

     
      t = 5 min                  t = 20 min                       t = 2 h                        t = 18 h 
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c)  particle-size range of 60-80 μm 

          
  t = 5 min         t = 20 min        t = 120 min        t = 18 h 
 
C) particle-size range of 90-120 μm 

           
       t = 5 min                  t = 20 min                   t = 120 min                   t = 18 h 

Figure 6.22 Time series of confocal microscopy scans describing the binding of pure 
ALA to SP Sepharose FF beads at pH 3.7, for the smallest and largest particle-size 
ranges of the adsorbent. Scan series (a and A) pertain to 1.5 mg/ml ALA at v/V of 
1:14; scan series (b and B) pertain to 1.5 mg/ml ALA at v/V of 1:42; and scan series 
(c and C) pertain to 3 mg/ml ALA at v/V of 1:14.  
  

The thickness of the fluorescent shells increased when the v/V ratio was decreased 

three times. The same was true when the concentration was doubled. Nevertheless, ALA 

did not fill the entire beads in both cases even for the smallest particle size. As expected, 

the largest particles exhibited the smallest absolute thickness for the fluorescent shell, 

whereas the smallest particles had the largest shell thickness. The corresponding 

fluorescence profiles in Figure 6.23 support this finding since the length of the adsorption 

front was longer for larger particles (for example, from -90 to +90 μm in Figure 6.23A, 

right). On the other hand, the height of the adsorption front was slightly higher for 

smaller particles (for example, from 0 to +20 μm in Figure 6.23A, left). 
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Figure 6.23 Fluorescence intensity profiles for ALA at 1.5 mg/ml and v/V ratio 1:14 
(A), 1.5 mg/ml and v/V ratio 1:42 (B), and 3 mg/ml and v/V ratio 1:14 (C). The plots 
on the left and the right columns pertain to the 60-80 μm, and 90-120 μm particles, 
respectively. Green circles represent the profiles after 18 hours. 
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The F-t curves for the BLG and ALA adsorption experiments at the reference 

conditions (whey conditions) for the three employed particle-size ranges are shown in 

Figure 6.24. 
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Figure 6.24 F-t curves for BLG (A) and ALA (B) at the reference conditions for the 
various particle-size ranges. 

 For BLG (Figure 6.24A), the three batch uptake profiles pertaining to the three 

particle-size ranges reached a maximum (F*) at approximately the same value of 5500 

AU. This implies that the same amount of protein (per bead) was adsorbed within the 

three ranges of particle size. Judging from the inclination of the curves, it can be seen that 

the rate of uptake slightly decreases with increasing the particle size. It has to be noted 

here that the value of k1
′ for the smallest particle-size range is 55*10-3 mlmg-1min-1. The 

importance of this will be evident in Chapter 9. For ALA (Figure 6.24B), the value of F* 

has the lowest value at the largest particle size and has the highest value at the medium 

size. This indicates that the largest amount of protein is adsorbed in the medium-size 

particles. Furthermore, the highest initial rate of uptake is within the smallest particle size. 

The adsorption within the medium and largest particle sizes has approximately the same 

initial rate of uptake. The same behaviour persisted for ALA at the other experimental 

conditions (Figure 6.25). 

A B 



                                                                                                              El-Sayed, Chapter 6 

 95

0

500

1000

1500

2000

2500

3000

0 100 200 300 400

time, min

F,
 A

U
   

 

60-80 microns
80-90 microns
90-120 microns

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250

time, min

F,
 A

U
   

   
  

60-80 microns
80-90 microns
90-120 microns

 

Figure 6.25 F-t curves for the different ALA adsorption experiments at the various 
particle-size ranges; 1.5 mg/ml ALA and v/V 1:42 (A), and 3 mg/ml ALA and v/V 
1:14 (B).  

 

6.3.3.2 Two-component system 

Figure 6.26 depicts the time series of confocal images for a mixture of 1.5 mg/ml 

ALA and 3 mg/ml BLG when adsorbed to SP Sepharose FF at v/V of 1:14.  

A) particle-size range of 60-80 μm 

          
    t = 5 min             t = 10 min           t = 40 min              t = 18 h 
 
B) particle-size range of 90-120 μm 

                                
       t = 2 min                   t = 5 min                 t = 60 min                 t = 18 h 

Figure 6.26 Time series of confocal microscopy scans describing the binding of a 
mixture of 3 mg/ml pure BLG and 1.5 mg/ml pure ALA to SP Sepharose FF beads 
at pH 3.7 and different particle-size ranges of the adsorbent.  

A B 
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BLG gradually filled the beads in a shell-wise fashion as can be clearly seen in the 

largest particle-size images. The smallest size was completely filled in 5 min, as was 

previously encountered with the medium size. The thickness of the ALA fluorescent shell 

decreased with increasing the particle-size of the bead, and less ALA penetrated to the 

innermost regions as observed from the intensity of the blue colour observed with the 

largest size relative to that observed with the smallest size. The same behaviour is also 

clear in the corresponding fluorescence intensity profiles (Figure 6.27). 
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Figure 6.27 Fluorescence intensity profiles for the images in Figure 6.26 at the 
smallest (A), and largest particle–size ranges (B).   
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The F-t curves for BLG and ALA in the two-component system at the reference 

conditions are shown in Figure 6.28. The BLG adsorption profiles for the three particle- 

size ranges exhibited the same maximum value of 5500 AU (equal to that in single-

component system), and the rates of uptake were not significantly different for the three 

ranges of particle-size as was the case with the single-component system. The adsorption 

profiles for ALA showed the highest maximum value at the medium-size range, and the 

lowest at the largest-size range. The highest value for F* is 2550 AU which is equal to the 

corresponding value in the single-component system. Unlike the single-component 

system, the differences between the F* values pertaining to the three particle sizes are not 

very significant.  The adsorption within the smallest particles had the highest initial rate 

of uptake, whilst the initial rates of uptake within the medium and largest particles were 

not significantly different, a behaviour similar to that encountered with the single-

component system.   
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Figure 6.28  F-t curves for 3 mg/ml BLG (A) and 1.5 mg/ml ALA (B) in the two-
component system at v/V of 1:14 and various particle-size ranges. 
 

6.4 Conclusions 

In the single-component traditional experiments, it was possible to describe the 

adsorption kinetics of both ALA and BLG at the employed operating conditions using the 

A B 
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simple kinetic model. It was not possible, however, to describe the adsorption kinetics of 

BLG using the pore diffusion model. 

The value of the rate constant for BLG, as estimated using the simple kinetic 

model, was found to be 1.2 times higher than that of ALA, which indicates that BLG was 

adsorbed faster than ALA. 

For the two-component system, the individual batch uptake profiles for ALA and 

BLG showed no evidence for competitive adsorption between the two proteins. The 

values of the rate constants for ALA and BLG in the two-component system respectively 

dropped by about one-half and one-third of its corresponding values in the single-

component systems. The value of k1 for BLG was therefore 1.6 times higher than that of 

ALA and hence the adsorption of BLG was faster.   

The CLSM technique was useful in visualising the adsorption onto SP Sepharose 

FF of ALA and BLG at the level of an individual bead and in determining the location of 

the adsorption sites for both proteins. For pure systems, the CLSM results showed 

differences in the behaviour of ALA and BLG with regard to their penetration into the 

adsorbent bead. BLG filled the bead more rapidly than ALA in a shell-wise fashion until 

the whole bead was filled. The binding of ALA to the adsorbent, however, took place in a 

shell-wise fashion only at the outermost region of the bead, with some ALA molecules 

penetrating in an uneven manner into the innermost region. This suggests that the two 

proteins have different transport mechanisms.    

It was possible to compare both qualitatively and quantitatively the F-t and q-t 

curves for ALA and BLG in single- and two-component systems. The simple kinetic rate 

model traditionally used to determine the kinetic rate constant, k1, for batch uptake 

experiments was modified in order to describe batch uptake kinetics based on CLSM data. 

The confocal method was able to successfully reproduce the value of the BLG 

rate constant obtained traditionally for both single- and two-component systems. 

However, it failed to do so with ALA (k1
′ was about 1/7 of k1), probably because the mass 

transfer properties of the protein were altered as a result of its conjugation to the dye. It 

can thus be concluded that provided the labelling of the protein does not affect its 

transport properties, the CLSM technique supports the traditional method.  
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 Furthermore, the CLSM technique had an additional merit over the traditional 

method particularly when studying the adsorption of proteins in mixtures as it permitted 

direct visualisation of the displacement of BLG by ALA. The F-t curves obtained showed 

that the F values of BLG reached a maximum after which they declined. The traditional 

method, on the other hand, showed no evidence of competitive adsorption.  

In view of the above, CLSM could be a useful technique in understanding the 

events underlying the separation of proteins and in gaining additional insight into the 

nature of the adsorption process in comparison to traditional methods that rely on 

monitoring changes in the concentration of adsorbates in the bulk liquid phase. 
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7 Packed-bed studies for the adsorption of pure whey 
proteins 

7.1 Introduction 

Several studies have been reported on the single-component ion-exchange 

adsorption of proteins. Skidmore and Chase (1990) studied the packed-bed adsorption of 

bovine serum albumin (BSA) and lysozyme to the strong cation exchanger S Sepharose 

FF. The experimental breakthrough profiles were compared to theoretical profiles 

obtained using the simple kinetic model and the pore and film diffusion model. 

Aboudzadeh et al. (2006) used the same two models to predict the breakthrough curves of 

human serum albumin (HSA) and ovalbumin (OVA) on the weak anion exchanger DEAE 

Sepharose FF. The adsorption of HSA was consistent with both models; however, neither 

model could correctly predict the latter part of the breakthrough profile of OVA. Avci et 

al. (2000) investigated theoretically and experimentally the adsorption of BSA to the 

weak anion exchanger DE52 in packed columns. The theoretical analysis was based on a 

dynamic pore-diffusion model that took into account the interfacial and intraparticle mass 

transfer as well as surface reaction phenomena. This model was also used by other 

workers to predict the performance of continuous expanded-bed adsorption of proteins 

such as lysozyme (Owen and Chase, 1999), and to anticipate breakthrough curves for the 

packed-bed adsorption of lysozyme, BSA and HSA; incorporating extra terms for axial 

particle size distribution (Bruce and Chase, 2002; Tong et al., 2003; Chen et al., 2003) 

and particle classification in expanded beds (Yun et al., 2005). Packed-bed experiments 

were performed by McCreath et al. (1997) using the cation-exchanger SP-PVA-FEP to 

purify lysozyme from egg white, and the anion-exchanger Q-PVA-FEP to purify G6PDH 

from a clarified homogenate of bakers’ yeast. Melter et al. (2008) characterized the 

retention behaviour of a monoclonal antibody on a weak cation exchanger, Fractogel 

EMD COO−(s). 

For two-component systems, results of studies of the adsorption of a mixture of 

albumin and β-lactamase to encapsulated ion exchangers were presented by Nigam et al. 
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(1988); where they reported that competition between the two adsorbing proteins 

occurred, with albumin displacing the more weakly bound β-lactamase from the ion-

exchanger. Skidmore et al. (1990) investigated multicomponent adsorption of a model 

system consisting of bovine serum albumin and lysozyme to the cation-exchanger S 

Sepharose FF. Evidence of competitive adsorption was seen in the breakthrough profiles.  

Less work has been performed on two-component, competitive adsorption of 

protein systems involving the two major whey proteins, α-lactalbumin (ALA) and β-

lactoglobulin (BLG). Flashner et al. (1983) studied the high performance anion 

exchanger chromatographic separation of four proteins cytochrome c, α1-acid 

glycoprotein, ovalbumin, and β-lactoglobulin on polyethyleneimine (PEI)-silica gel 

column using a 20-min linear gradient from 0.025 M to 0.50 M potassium phosphate at 

pH 6.80. Wahlgren et al. (1993) investigated the adsorption of a mixture of BLG, 

lactoferrin and lysozyme on hydrophilic silica surfaces. BLG (negatively-charged) 

adsorbed in small amounts while lactoferrin and lysozyme (both positively-charged) 

adsorbed in higher quantities. They deduced that the adsorption from binary mixtures of 

oppositely charged proteins was affected by protein-protein interactions. According to 

them, there was either a cooperative adsorption leading to higher amounts of adsorbed 

proteins or a competitive adsorption depending on the solution conditions, the protein and 

the surface. Outinen et al. (1996) evaluated the adsorption characteristics of α-

lactalbumin and β-lactoglobulin on eleven strongly-basic anion-exchange adsorbents by 

performing frontal analysis with sweet whey (pH 6.5). Significant fractionation of the 

two proteins was obtained only with Diaion HPA, and optimum fractionation conditions 

(pH 6–7, β-lactoglobulin load of 16–20 mg per cm3 of resin, degree of demineralization 

0–50) were determined in batch adsorption experiments in which 75–80% recovery of α-

lactalbumin was obtained. Kim and Kuga (2002) studied the separation of the two 

variants of BLG (A and B) using a cellulose-based anion exchanger bearing water-

soluble polycations. In all of the above column-chromatography studies, the method of 

protein separation was based on selective elution following adsorption rather than 

selective adsorption. In addition to column-chromatography studies, a few relevant, 

competitive adsorption studies have been performed on ion-exchange membranes. 

Weinbrenner and Etzel (1994) studied the competitive adsorption of α-lactalbumin and 
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bovine serum albumin to a sulphopropyl ion-exchange membrane. Competitive 

adsorption caused displacement of bound BSA monomer by the more strongly bound 

BSA dimer, illustrating that even apparently single protein systems may display 

multicomponent competitive behaviour. In the two-protein experiment, ALA was 

competitively displaced by the more strongly bound BSA monomer and dimer, indicating 

that the binding strength was in the order: BSA dimer > BSA monomer > ALA. Goodall 

et al. (2008) constructed binary solution breakthrough curves to show that ALA and BSA 

were displaced from the strong and weak anion exchanger membranes by BLG. One 

limitation of this method was the low protein binding capacities observed. 

The results reported in this chapter will be divided into two main sections 

pertaining to: A) single-component studies where only one pure protein, either ALA or 

BLG is adsorbed to the cation exchanger SP Sepharose FF in a packed-bed mode, and B) 

two-component or binary studies where both proteins are simultaneously adsorbed onto a 

packed-bed of the cation exchanger.  

7.2 Single-component systems 

The packed-bed profiles pertaining to the adsorption of either 3 mg/ml BLG or 

1.5 mg/ml ALA onto a 1-ml column of SP Sepharose at pH 3.7 and linear velocity of 158 

cm/h (flow rate of 1 ml/min) are shown in Figure 7.1. Initial feed concentrations of ALA 

and BLG were chosen as those normally found in real whey mixtures. 
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Figure 7.1 Single-component breakthrough curves for the adsorption of BLG and 
ALA onto a 1-ml packed-bed of SP Sepharose FF at pH 3.7, feed concentrations of 3 
and 1.5 mg/ml respectively, linear velocity of 158 ml/min (flow rate of 1 ml/min), and 
temperature 20oC. 

As can be seen in the figure, the breakthrough curves for both proteins eventually 

reached a C/Cf value of unity. The t1/2 value for ALA (150 min) was found to be about 

four times longer than that for BLG (38 min). It can also be observed that the BLG 

breakthrough curve is steeper than that of ALA probably due to the higher concentration 

of BLG in the feed. Values of the slopes of the breakthrough curves together with the rest 

of the dynamic adsorption data are given in Table 7.1. 

Table 7.1 Single and two-component dynamic adsorption data for ALA and BLG on 
a 1-ml column of SP Sepharose FF at pH 3.7. 

 vL (cm/h) t1/2 (min) t10%brkthru (min) max 
C/Cf 

slopebrkthru (min-1) 

158* 38 25 1.0 0.0252 BLG 
158 32 24 1.0 0.0490 
158* 150 95 1.0 0.0070 ALA 158 120 50 1.0 0.0070 

* single-component results 
Values of the slopes were taken as average values excluding the early and later stages of the 
breakthrough curves where values of C/Cf are constant with time. 

 

The difference in the values of t1/2 along with the already cited isotherm 

parameters for BLG and ALA (obtained from the batch experiments, Chapter 5) suggest 
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the possibility of separating the two proteins when adsorbed simultaneously. This will be 

further investigated in the following section.  

7.3 Two-component system 

A mixture of 1.5 mg/ml ALA and 3 mg/ml BLG at pH 3.7 was pumped through a 

1-ml column of SP Sepharose FF at a linear velocity of 158 cm/h (flow rate of 1 ml/min). 

The concentration of total proteins in the column effluent fractions was measured on the 

AKTA Explorer 100 with respect to time and is the dotted curve shown in Figure 7.2. 

This curve displays a t1/2 of 42 min, which is fairly close to that obtained earlier for pure 

BLG (38 min) under the same conditions. 
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Figure 7.2 Packed-bed adsorption profiles for a mixture of ALA and BLG of feed 
concentrations 1.5 and 3 mg/ml, respectively onto SP Sepharose FF at pH 3.7 and 
linear velocity of 158 cm/h (---- experimental profile of total protein concentration, 

 profile produced by summing up the individual protein concentrations in the 
analysed fractions, o profile obtained by summing up the two profiles obtained in 
experiments with pure proteins). 

 

In order to get the corresponding profiles for the individual components, the 

column effluent fractions were analysed on a size-exclusion system and the results are 

shown in Figure 7.3 as discrete points. Also included in Figure 7.3 as solid curves are the 

two single-component adsorption profiles for the two individual pure proteins which were 
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obtained earlier. Agreement between the discrete points and the solid curve for the same 

protein is much better for BLG than for ALA, suggesting that the adsorption behaviour of 

BLG is the same in mixture as when alone under these experimental conditions. The 

relevant dynamic data for the individual breakthrough profiles of ALA and BLG are 

given in Table 7.1. 
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Figure 7.3 Single-component adsorption profiles of ALA and BLG both in the 
mixture and as pure proteins onto (1-ml) SP Sepharose FF beds at pH 3.7, linear 
velocity of 158 cm/h, and feed concentrations of 1.5 and 3 mg/ml, respectively. 

 

As can be seen from Figure 7.3, the BLG profiles are steeper than the ALA ones. 

This could be due to the fact that the ALA concentration is lower than that of BLG, and 

although likely to be bound less strongly to the adsorbent (as it has higher Kd than BLG), 

the path of ALA through the column should be more tortuous owing to its accessibility to 

finer pores as it is a smaller protein. Adding up the two discrete profiles shown in Figure 

7.3, pertaining to the breakthroughs of both proteins in the mixture, yields the discrete 

profile shown in Figure 7.2 as rhombic symbols, whereas summing up the profiles 

pertaining to each of the separate pure proteins (solid curves, Figure 7.3) produces the 

profile shown in Figure 7.2 as hollow circles. The fair degree of correspondence between 

the dotted curve and the rhombic points in Figure 7.2 lends credence to the applicability 
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of both the calibration and calculation methods adopted. In addition, the pure-proteins 

profile (circle) is obviously very similar to the profile of the protein mixture (rhombic 

symbols). It can thus be deduced that the behaviour of each of the two proteins in the 

mixture is very much similar to that when applied to the column as single components. In 

other words, there is no clear evidence for a degree of competition between the proteins 

for binding to the adsorption sites under these adsorption conditions. 

In view of the foregoing results, it would not be possible to separate ALA from 

BLG during the adsorption stage using a 1-ml column, perhaps due to insufficient 

adsorption capacity under the employed chromatography conditions. Hence, a possible 

approach to the problem was to scale up the column volume to 5 ml. The adsorption 

profiles of both BLG and ALA thus obtained are shown in Figure 7.4. 
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Figure 7.4 Two-component breakthrough profiles of ALA and BLG when a mixture 
of both proteins is applied onto a (5-ml) SP Sepharose FF bed at pH 3.7, linear 
velocity of 30 cm/h (flow rate of 1 ml/min), and feed concentrations of 1.5 and 3 
mg/ml, respectively. The single-component profiles for pure ALA and pure BLG 
under the same conditions are also shown in the figure. 

 

A distinctive breakthrough curve for each protein can be observed, with BLG 

breaking through first with a t1/2 of 190 min followed by ALA with a t1/2 of 725 min. It 

can also be observed that the breakthrough profiles of the two proteins have different 
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slopes as the BLG breakthrough curve is much steeper than that of ALA which is 

probably due to the higher concentration of BLG in the feed (Table 7.2).  

Figure 7.4 also depicts the breakthrough profiles for ALA and BLG respectively 

in the binary mixture as compared with their corresponding single-component profiles 

(also shown in the figure). It is clear that the t1/2 values for both proteins in the two-

component mixture are not significantly different from their pure component counterparts. 

The behaviours of both proteins in the mixture are almost identical to their behaviours 

when pure, except for the significant overshooting of the BLG concentration which 

occurred in the two-component profile. Values of the relevant adsorption dynamic data 

are presented in Table 7.2. 

Table 7.2 Single and two-component dynamic adsorption data for ALA and BLG on 
a 5-ml column of SP Sepharose FF at pH 3.7. 

 vL (cm/h) t1/2 (min) t10%brkthru (min) max 
C/Cf 

slopebrkthru  
(min-1) 

  30* 190 160 1.0 0.0122 
30 190 165 1.6 0.0223 
60 93 80 1.6 0.0269 

BLG 

150 38 28 1.6 0.0303 
  30* 725 630 1.0 0.0035 
30 725 630 1.0 0.0035 
60 330 270 1.0 0.0048 

ALA 

150 150 100 1.0 0.0067 
* single-component results 
Values of the slopes were taken as average values excluding the early and later stages of the 
breakthrough curves where values of C/Cf are constant with time. 

 

Of particular interest is the observation that the normalised concentration of BLG 

overshot its value in the feed by more than 50% before if fell back to the feed value of 

unity. This implies that ALA is able to displace and, thereby elute, a certain amount of 

adsorbed BLG. The overshoot phenomenon was previously encountered in a number of 

studies on different systems of multiple proteins under different operating conditions 

(Cowan et al., 1989; Skidmore et al., 1990; Hubbuch et al., 2003; and Goodall et al., 

2008). From the equilibrium data (Table 5.1), it is clear that ALA has a higher Kd and 

hence is more weakly-bound to the adsorbent than BLG. However, ALA was able to 

displace BLG; a finding that is consistent with the CLSM results obtained earlier 
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(Chapter 6, Section 6.3.2). A similar behaviour was reported by Hubbuch et al. (2003) 

when studying the binary adsorption of IgG 2A and BSA to SP Sepharose XL at pH 4.5, 

where the strongly-bound IgG 2A was displaced by the weakly-bound BSA. This 

behaviour is different from that encountered by other workers studying other protein 

systems (Garke et al., 1999; Cowan et al., 1989; Skidmore et al., 1990) where the 

strongly-bound protein (as judged from its Kd
 value) was found to displace the weaker-

bound one. 

To determine quantitatively the amount of BLG eluted by ALA, the experiment 

was performed again but this time was terminated just before the ALA breakthrough 

point (∼500 min). The protein exiting the column was collected up to this point, and was 

analysed using a size-exclusion chromatography system. The concentration of BLG in 

this fraction was found to be equivalent to the inlet concentration (3 mg/ml) (Figure 7.5) 

which indicates that ALA had eluted all the BLG off the column. This result, in turn, 

suggests that the separation of the two proteins from each other could be successfully 

achieved under the existing conditions.  
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Figure 7.5 Analytical size exclusion chromatography on Superdex 200 for the SP 
Sepharose column effluent produced during the course of the BLG breakthrough 
shown in the previous figure. A 0.2-ml sample volume was applied to the size-
exclusion column and eluted with 0.1M sodium acetate buffer of pH 3.7. 
 

Now that conditions could be found under which all the BLG was eluted and only 

ALA remained adsorbed onto the column, an elution study was required to determine the 
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optimum conditions for obtaining the highest recovery of ALA. Preliminary elution 

experiments were first carried out on a 1-ml column; loading a 20-ml sample and using as 

eluents, solutions of 0.1M sodium acetate buffer containing 1M NaCl and adjusted to pH 

values of 3.7, 3.0 and 2.5. The eluted peaks were collected and analysed using size-

exclusion chromatography to obtain the corresponding concentration of ALA (Cc) and, in 

turn, calculate the percentage recovery as follows: 

 

                                     %recovery= 100×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

ff

ccff

VC
VCVC                                                            (7.1) 

 

where 

Cf = initial feed concentration of protein (mg/ml)  

Cc = concentration of protein in the collected peak (mg/ml) 

Vf = volume of feed sample loaded onto the column (ml) 

Vc = volume of collected peak (ml) 

 

The respective recovery values so obtained were 35, 39 and 53% for pH values of 

3.7, 3.0 and 2.5. An additional trial was conducted at pH 3.0 in which the concentration 

of NaCl was doubled to 2M but this yielded a very low 8% recovery. The low recoveries 

of protein during elution with salt led to the notion of performing the elution process 

above the pI where the protein becomes negatively charged (the same as the exchanger) 

and can thus be eluted without the need for salt addition. Thus 0.1M buffer solution alone 

was used as an eluent at pH values of 5.6, 8.0 and 9.0 and the respective recoveries were 

75%, 86% and 99%. However, since no buffering action was expected for the acetate 

solution at pH 8.0 or 9.0 (the effective range for the acetate buffer is 3.6-5.6, Mohan 

(2003), it was replaced by a 0.1M Tris-HCl buffer at pH 9.0 and the somewhat more 

modest 91% recovery obtained therewith was deemed to be satisfactory. The addition of 

0.1 M NaCl to the eluent was expected to have a screening effect (shielding the adsorbent 

charge and thus lowering the electrostatic interactions between the protein and the 

adsorbent) that might improve elution, but it made no significant difference (87% 

recovery of ALA was obtained). The elution protocol involving 0.1M Tris-HCl buffer at 
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pH 9.0 was applied to the scaled-up process using the 5-ml column with a linear velocity 

of 30 ml/min and it yielded equivalent results. Figure 7.6 shows the ALA eluted peak on 

an FPLC using size exclusion. The use of Tris-HCl buffer for elution without salt 

addition is advantageous since the use of salt is undesirable because it is expensive to 

recover or use just once (Doultani et al., 2004; Etzel, 1999). An additional merit in using 

Tris-buffer is its pH buffering range of 7.0-9.0 which would enable reducing the pH of 

the eluted ALA when necessary, from pH 9.0 to a neutral pH of 7.0. 
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Figure 7.6 Size-exclusion analysis of ALA eluted fraction on Superdex 200, obtained 
when eluting with 0.1M Tris-HCl buffer at pH 9.0. A 0.2-ml sample volume was 
applied to the size-exclusion column and eluted with 0.1M sodium acetate buffer of 
pH 3.7. 
 

To further optimise the process of separating ALA and BLG, the effect of linear 

velocity (flow rate) on the column adsorption characteristics was studied (Figure 7.7). 

Table 7.2 presents the adsorption dynamic data for ALA and BLG when a binary mixture 

of both proteins was applied to a 5-ml SP Sepharose FF bed at pH 3.7, with feed 

concentrations of ALA and BLG of 1.5 and 3 mg/ml, respectively, and linear velocities of 

30, 60 and 150 cm/h (corresponding to flow rates of 1, 2 and 5 ml/min, respectively). The 

table also shows the dynamic data pertaining to pure single-component ALA and BLG at 

a linear velocity of 30 cm/h on the 5-ml column. 
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Figure 7.7  Adsorption profile of ALA (A) and BLG (B) when a binary mixture 
containing ALA and BLG at feed concentrations of 1.5 and 3 mg/ml, respectively 
was applied onto a 5-ml bed of SP Sepharose FF bed at pH 3.7 and flow rates of 1, 2 
and 5 ml/min (corresponding to linear velocities of 30, 60 and 150 cm/h, 
respectively). The figure also shows the profiles obtained with pure ALA (a) and 
BLG (b) at a flow rate of 1ml/min. 
 

From both figure and table, it can be deduced for both ALA and BLG that the 

slopes as well as the plateaus of the breakthrough curves at the three employed linear 

velocities are nearly the same. Thus, the linear velocity had no effect either on the 

steepness of the curves or their maximum values of C/Cf. For ALA, the maximum value 

B 

A 
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of C/Cf was 1 as expected; while for BLG, it peaked at a value of 1.6 at each of the three 

linear velocities used for reasons that were discussed earlier. As expected, the value of t1/2 

for both proteins decreased with an increase in linear velocity. Values of t1/2 were 38, 93 

and 190 min for BLG and 150, 330 and 725 min for ALA at linear velocities of 150, 60 

and 30 cm/h, respectively. For both proteins, increasing the linear velocity by a factor of 

(n) decreased t1/2 by a factor of approximately (1/n). It is also notable that the t1/2 values at 

linear velocity of 30 cm/h in the 5-ml column (Table 7.2) are five times those obtained 

during single-component experiments using a 1-ml column at 158 cm/h (Table 7.1). By 

comparing the adsorption dynamic data of the pure protein with its corresponding data 

obtained when in binary mixture at a linear velocity of 30 cm/h (Table 7.2), it can be seen 

that for ALA, the two sets of data are nearly identical. However for BLG, the maximum 

C/Cf value when in mixture was about 1.6 times its value of 1.0 when pure. In addition, 

the slope of the pure BLG breakthrough curve was approximately half that of BLG in 

mixture. From the above study of the effects of linear velocity, it may be inferred that a 

linear velocity of 150 cm/h is probably the most favourable as it requires the least time 

required for separation. Furthermore, some overlapping between ALA and BLG 

breakthrough curves was observed at 60 cm/h (Figure 7.7) and overlapping increased 

further with increasing the linear velocity to 150 cm/h. Clearly at 30 cm/h, no 

overlapping was encountered and the two proteins were completely separated (Figure 7.7, 

also refer to Figure 7.4). The slight decrease in the degree of separation that occurs at 60 

cm/h might not justify opting for the significantly longer operational times that would be 

required at 30 cm/h compared to operation at 60 cm/h. 

In Figures 7.8A and 7.8B, C/Cf is plotted as a function of the amount of adsorbate 

applied to the bed (F.Cf 
.t). The result is breakthrough curves pertaining to ALA and BLG 

when a binary mixture of both proteins was applied to a 5-ml SP Sepharose FF bed at pH 

3.7, with feed concentrations of ALA and BLG of 1.5 and 3 mg/ml, respectively, and 

flow rates of 1, 2 and 5 ml/min (corresponding to linear velocities of 30, 60 and 150 cm/h, 

respectively). The curves are shown to be sharper at lower flow rates. Hence, in order to 

use the maximum amount of the adsorption capacity of the bed before breakthrough 

occurs, low flow rates would be preferred. Thus, to achieve a reasonable compromise 

between reducing operational time and maximising the dynamic capacity of the adsorbent 
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as well as minimising the overlapping of the breakthrough curves, a flow rate of 2 ml/min 

corresponding to a linear velocity of 60 cm/h would be an optimal choice. 
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Figure 7.8 Effect of flow rate on the two-component adsorption profiles of ALA (A) 
and BLG (B) plotted as a function of the amount of protein applied to the bed. 

7.4 Conclusions 

Single-component packed-bed experiments were performed on the adsorption of 

pure ALA and BLG to the cation exchanger SP Sepharose FF at pH 3.7. For packed-bed 

A 

B 
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studies using a 1-ml column and a linear velocity of 158 cm/h, t1/2 of ALA was four times 

longer than that of BLG, probably due to its lower concentration, as well as its smaller 

size (half that of BLG) which allows for more accessibility to finer pores and hence a 

more tortuous path.  

The packed-bed adsorption and elution of a mixture of ALA and BLG were then 

investigated under the above conditions but using a 5-ml column. BLG broke through 

first, and its concentration in the outlet exceeded its feed value by about 60% before 

declining to the feed value, followed by the breakthrough of ALA.  ALA displaced and 

eluted all the BLG from the column in a pure form.  Pure ALA could then be eluted with 

good recovery. This process was optimised with regard to linear velocity as well as 

adsorption capacity and an optimum linear velocity of 60 cm/h was chosen.  

In summary, a novel method based on selective adsorption of proteins was 

established to separate ALA and BLG from their pure binary mixture. Evidence of the 

competitive nature of adsorption observed in binary mixtures can be used to develop a 

facile separation process for the two proteins from whey. The process promises to have 

both environmental as well as economical merits because it enables obtaining almost all 

the BLG present in the two-component system by simple displacement during the loading 

period, while ALA was subsequently eluted by simple isocratic elution without the need 

to use salt.  
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8 Purification of the two major whey proteins using 
selective adsorption 

8.1 Introduction 

Several attempts have been made to separate and purify the different components 

of whey using ion-exchange adsorption techniques. A few adsorption studies involving 

whey proteins have been performed on ion-exchange membranes. Weinbrenner and Etzel 

(1994) studied the competitive adsorption of α-lactalbumin and bovine serum albumin to 

a sulphopropyl ion-exchange membrane. Goodall et al. (2008) constructed rennet whey 

breakthrough curves to show that ALA and BSA were displaced from the strong and 

weak anion exchange membranes by BLG. The limitation of this method was the low 

protein binding capacities observed.   

Regarding column chromatography studies, a number of workers used anion-

exchange chromatography to separate whey proteins. Flashner et al. (1983) separated β-

lactoglobulin on a polyethyleneimine (PEI)-silica gel anion exchange column using linear 

gradient elution with potassium phosphate (0.025-0.50 M) at pH 6.80. Colby et al. (1996) 

studied the effect of compression on the scale-up of a commercial packed-bed ion-

exchange process to manufacture a whey growth factor extract using lactoperoxidase and 

lactoferrin as model substances. Vogt and Freitag (1997) investigated the suitability of 

anion-exchange and hydroxyapatite displacement chromatography for the processing of 

technical dairy whey. Lan et al. (2002) employed a liquid–solid circulating fluidized bed 

ion-exchange extraction system for continuous protein recovery from cheese whey.  

Pedersen et al. (2003) developed a consistent set of chromatographic data, including 

isotherms and transport properties, for the adsorption of whey proteins onto several anion 

exchangers.  

Others performed a combination of cation- and anion-exchange steps to purify 

these proteins. Gerberding and Byers (1998) described a preparative ion-exchange 

chromatographic process for the separation and recovery of the four major proteins [α-

lactalbumin, β-lactoglobulin, bovine serum albumin and immunoglobulin G (IgG)] and 

lactose from sweet dairy whey. In that work, it was found that an anion-exchange step 
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was most effective in separating β-lactoglobulin from the whey feed mixture of pH 5.8 

while a cation-exchange step was used to further recover the IgG. The low recovery and 

incomplete separation observed made the process impractical for commercial application. 

Ye et al. (2000) used cation- exchange chromatography to recover lactoperoxidase and 

lactoferrin by applying salt-gradient elution using 0-0.55 M NaCl in 50 mM Tris-HCl, pH 

6.5. The effluent was adjusted to pH 8.5 and passed through an anion exchange column to 

recover α-lactalbumin and β-lactoglobulin. α-lactalbumin was eluted using 0-0.15 M 

NaCl in 50 mM Tris-HCl, pH 8.5. Next the buffer irrigating the column was adjusted to 

pH 6.8, and the β-lactoglobulin was eluted using 0-0.2 M NaCl in 50 mM Tris-HCl, pH 

6.8.  

Less work has been done on the cation-exchange chromatography of whey 

proteins. Hahn et al. (1998) developed a fractionation scheme for IgG, lactoferrin and 

lactoperoxidase based on the cation exchangers S-HyperD F, S Sepharose FF, Fractogel 

EMD-S 650 (S) and Macro-Prep High S. They investigated the binding capacities for IgG 

and the different elution behaviours observed when sequential step gradients with NaCl 

buffers were applied. Lozano et al. (2008) employed cation-exchange chromatography 

only as a final purification step after isolating BLG from bovine whey using precipitation. 

Doultani et al. (2004) developed a cation-exchange column chromatography process that 

used selective elution to fractionate proteins from whey. Three different elution 

procedures were used as follows: (a) a single elution buffer to obtain whey protein isolate 

(WPI); (b) two elution buffers to obtain α-lactalbumin and WPI depleted in α-

lactalbumin (ALA); and (c) four elution buffers to obtain ALA, WPI depleted in ALA, 

lactoperoxidase and lactoferrin.  

It is now clear that very little work has been done on the cation-exchange 

adsorption of the two major whey proteins, β-lactoglobulin and α-lactalbumin. In 

addition, all of the column-chromatography whey purification studies reported in 

previous literature were based on selective elution rather than selective adsorption. 

In the previous chapter, it was shown that it is possible to separate ALA and BLG 

from a pure binary mixture of both proteins when adsorbed simultaneously as cations 

onto a 5-ml column of SP Sepharose FF at pH 3.7 at feedstock concentrations of 1.5 and 

3 mg/ml, respectively. The optimal flow rate for the process was found to be 2 ml/min 
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which is equivalent to a linear velocity 60 cm/h. This work is now further extended to 

whey where the adsorption of proteins from solutions of whey isolate and whey 

concentrate powders is investigated under the previously developed adsorption conditions. 

The aim is to study the characteristics of adsorption of proteins from whey as opposed to 

pure protein systems, and to hence develop a facile separation process to separate the two 

major whey proteins and produce them with the highest possible yield and purity. As in 

the previous chapter, the method by which the two major proteins are separated is based 

on selective adsorption rather than selective elution, a technique which to the best of the 

author’s knowledge has not been adopted elsewhere for column-chromatography 

purification of whey proteins.  

8.2 Preliminary work on whey isolate 

Being the purest of available whey powders with regard to total protein content, 

whey isolate, with a total protein weight percentage of 90%, was first chosen for this 

study. A concentration of 4.5 mg/ml of this variety of whey was prepared by dissolving 

the powder in an acetate buffer of pH 3.7, and was used to simulate real whey feedstocks. 

It should be noted that the 4.5 mg/ml concentration employed was the same as the total 

(ALA+BLG) concentration (CAB) that was previously used in pure mixtures. Analysis of 

this mixture on an FPLC chromatography system using size exclusion (Figure 8.1) 

showed that it contains BLG and ALA, with concentrations of 2.3 and 0.9 mg/ml, 

respectively.  
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Figure 8.1 Analysis of 4.5 mg/ml of whey isolate using size-exclusion 
chromatography. 

 

Table 8.1 shows the whey isolate composition according to the manufacturer’s 

specifications, the FPLC analyses and the SDS estimates. 

Table 8.1 Whey isolate composition. 

 Manufacturer’s 
specifications 

SDS 
estimates 

Gel 
filtration 
Analyses 

 
total 

proteins 

 
90% 

 
__ 

 
__ 

 
BLG* 

 
47% 

 
62% 

 
57% 

 
ALA* 

 
17% 

 
21% 

 
35% 

*BLG, ALA percentages are taken on the basis of total proteins in the whey mixture. 
 

A comparison of the protein composition results for the original whey isolate as 

determined by SDS gel electrophoresis (62% BLG and 21% ALA) with those determined 

by gel filtration (57% BLG and 35% ALA), showed a significant discrepancy regarding 

the percentage of ALA present. This could be due to the presumed presence of 26% (w/w) 

of glycomacropeptides (GMP) in the sweet whey isolate mixture, as indicated by the 

providing manufacturer. GMP is a peptide fragment produced by enzymatic cleavage of 

ALA 
BLG 
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κ-casein by chymosin during the making of sweet-based cheese (not commonly present 

in the acidic varieties). It is highly soluble in water and thus remains in the whey fraction 

after coagulation of milk (Zydney, 1998). According to a previous study of GMP by gel 

chromatography (Kawasaki et al., 1993), the molecular weight of GMP aggregate was pH 

dependent, with a range from 20 to 50 kDa at pH 7 and from 10 to 30 kDa at pH 3.5. 

Although the theoretical molecular weight for monomeric GMP is 7 kDa (Kinsella and 

Whitehead, 1989; Xu et al., 2000), the apparent molecular weight from 15% SDS 

polyacrylamide electrophoresis was found to be 20 to 24 kDa (Li and Mine, 2004). Thus, 

GMP would be expected to run in the same position as BLG in the SDS-PAGE (pH 7.0) 

analysis, and co-elute with ALA as one peak in the gel filtration (pH 3.7). 

In view of the above, it was concluded that BLG would be better quantified by gel 

filtration than by SDS electrophoresis, and vice versa for ALA. This would translate to 

whey isolate having a composition of 57% BLG and 21% ALA and, in turn, a BLG to 

ALA ratio, R, of 2.6:1.0. This corresponds to BLG and ALA concentrations of 2.30 and 

0.90 mg/ml, respectively in the 4.5 mg/ml solutions employed.  

To investigate the behaviour of whey isolate, in presence of GMP, on the 

adsorption column, a whey solution at a concentration of 4.5 mg/ml corresponding to CAB 

of 3.20 mg/ml was applied onto a SP Sepharose FF column at pH 3.7 and flow rate 2 

ml/min. The relevant BLG and ALA adsorption profiles are depicted in Figure 8.2. It 

should be noted that there is absolutely no evidence for the presence of GMP with regard 

to the breakthrough profiles. The presence of GMP in preparations of ALA and BLG is 

reported to add more value to these proteins. GMP has been examined for improved lipid 

digestion, protection against influenza, prevention of tartar-adhesion to teeth and hence 

improvement of teeth decay (Maubois and Ollivier, 1997). It also exhibits various 

biological activities (Abd El-Salam et al., 1996; Dziuba and Minkiewicz, 1996), such as 

suppression of gastric secretion, promotion of bifido-bacterial growth, binding of cholera 

and Escherichia coli enterotoxin, inhibition of viral and bacterial adhesion to intestinal 

walls, and modulation of immune system (Brody, 2000). It would therefore be beneficial 

for some industrial food and pharmaceutical applications to keep the GMP in the 

produced ALA and BLG fractions. 

  

http://jds.fass.org/cgi/content/full/87/1/174#KAWASAKI-ETAL-1993
http://jds.fass.org/cgi/content/full/87/1/174#BRODY-2000
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Figure 8.2  Packed-bed adsorption profiles for BLG and ALA when whey isolate 
solutions of 4.5 and 6.3 mg/ml concentration were applied onto a 5-ml SP Sepharose 
FF column at pH 3.7 and flow rate 2 ml/min.  

 
As in the pure binary mixtures, studied earlier in Chapter 7, the BLG 

breakthrough started before that of ALA and its maximum outlet concentration exceeded 

that of its feedstock concentration by approximately 1.6 times. This implies the ability of 

ALA to displace some of the adsorbed BLG which was driven off the column indicating 

the interplay of competitive adsorption between the two proteins. Nevertheless, the ALA 

breakthrough began when the BLG concentration was at its maximum. It is to be recalled 

that for the binary mixtures at a flow rate of 2 ml/min, the ALA breakthrough occurred 

just before the BLG concentration had fallen back to its feedstock value and there was 

insignificant overlapping between the ALA and BLG curves. This difference in 

behaviour could be attributed either to the difference between R (BLG to ALA mass ratio) 

in the pure binary mixtures (3:1.5) and that found in whey isolate (2.6:1.0); or to the 

difference between CAB in the whey isolate (3.20 mg/ml) from that of binary mixtures 

(4.50 mg/ml). A loss in both protein recovery and purity using feedstocks of whey isolate 

would thus be expected, as a result of this overlapping of the ALA and BLG 

breakthrough curves. To study the effect of total concentration, the initial whey 

concentration was raised by a factor of 1.4 so as to obtain an initial whey concentration of 
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6.3 mg/ml that corresponds to CAB of approximately 4.5 mg/ml as in pure mixtures. This 

increased the steepness of the ALA and BLG breakthrough curves, but no significant 

change regarding their relative positions was realised (Figure 8.2). Thus, no improvement 

of separation was achieved, which denotes that the BLG to ALA ratio, rather than the 

total concentration, might possibly be the key factor. This will be investigated later on.   

An additional adsorption experiment was performed on the 4.5 mg/ml whey 

isolate to determine the recovery and purity of ALA and BLG produced after separation. 

The experiment was terminated this time at the start of the breakthrough of ALA, when 

the BLG concentration had reached its maximum, i.e. at a time of 250 min. The column 

effluent collected up to this point was pooled and analysed on an FPLC system using size 

exclusion. The analysed fraction was found to contain mostly BLG with a recovery of 

84% of the amount fed to the column. The column was then eluted with 0.1M Tris-HCl 

buffer at pH 9.0 and the eluted fraction was also analysed using gel filtration. This 

fraction contained mainly ALA along with some BLG, with an ALA recovery of 72% of 

the amount fed. 

The purity of the two collected fractions was determined using SDS-PAGE gel 

electrophoresis and the relevant patterns are shown in Figure 8.3. The first lane on the left 

presents the molecular mass marker, the second lane is the whey isolate starting material, 

the third is the flow through-fraction and the last lane is the eluted fraction. In the original 

whey isolate, 62% of BLG and 21% of ALA were determined. On the other hand, 95% 

purity of BLG was achieved in the flow through-fraction whereas in the eluted fraction, 

purities of 42% for ALA and 37% for BLG were obtained.  
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Figure 8.3 Electrophoretic patterns pertaining to whey isolate, lane 1: molecular 
mass marker; lane 2: whey isolate starting material; lane 3: flow-through-fraction; 
lane 4: eluted fraction.    

 
The fact that GMP did not show up in the breakthrough curves nor in the SDS or 

size-exclusion analyses substantiates the supposition that it is camouflaged with either 

ALA or BLG. If one were to continue working with whey isolate, one should embark on 

a potentially laborious project whereby GMP is either quantified or removed. Both 

approaches proved to be unwieldy and unsuccessful as the following literature works 

attest. Several methods have been attempted such as TCA (1,1,1-trichloroethane) 

pretreatment (Morr and Seo, 1988), ethanol precipitation (Saito et al., 1991), and 

ultrafiltration (Kawasaki et al., 1993; Chu et al., 1996). Li and Mine (2004) investigated 

the three previous methods and the highest recovery of GMP, obtained using 

ultrafiltration was only 33.9%. Accordingly and in order to focus on the separation of the 

two relevant proteins ALA and BLG and to avoid any further complications, it was 

decided not to conduct further experiments with the sweet whey isolate but instead focus 

on the use of acid-based whey concentrate variety which is normally devoid of GMP.   

8.3 Whey concentrate studies 

A solution of whey proteins was prepared by dissolving whey concentrate powder 

in acetate buffer of pH 3.7 at a concentration of 4.5 mg/ml, and this was a convenient and 

1        2                 3               4 

http://jds.fass.org/cgi/content/full/87/1/174#MORR-AND-SEO-1988
http://jds.fass.org/cgi/content/full/87/1/174#SAITO-ETAL-1991
http://jds.fass.org/cgi/content/full/87/1/174#KAWASAKI-ETAL-1993
http://jds.fass.org/cgi/content/full/87/1/174#CHU-ETAL-1996
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reproducible way to simulate native whey feedstocks. The concentration of 4.5 mg/ml 

was chosen initially in order that the situation might be directly comparable to the total 

(ALA+BLG) concentration (CAB) that is normally present in native whey. It is to be noted 

that a total protein concentration of 4.5 mg/ml was also used when studying pure binary 

mixtures. Analysis of the whey concentrate solution on an FPLC system using size-

exclusion (Figure 8.4) showed that it contains BLG with the higher molecular weight 

(first peak), and ALA at concentrations of 1.90 and 0.73 mg/ml, respectively, and hence a 

CAB of 2.63 mg/ml and a BLG to ALA mass ratio (R) of 2.6. 
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Figure 8.4 Analysis of 4.5 mg/ml of whey concentrate using size-exclusion 
chromatography. 
 

According to the manufacturer’s specifications, the whey concentrate powder 

contains 80% by wt total proteins of which 20% is ALA and 60% is BLG. FPLC analyses 

and SDS estimates gave comparable results (Table 8.2). 
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Table 8.2  Whey concentrate composition. 

 Manufacturer’s 
specifications 

SDS 
Estimates 

Gel 
filtration 
analyses 

 
total 

proteins 

 
80% 

 
__ 

 
__ 

 
BLG* 

 
60% 

 
54% 

 
53% 

 
ALA* 

 
20% 

 
21% 

 
20% 

*BLG, ALA percentages are taken on the basis of total proteins in the whey mixture. 
 

Figure 8.5 depicts the adsorption profiles pertaining to ALA and BLG when a 4.5 

mg/ml whey concentrate mixture was applied to a 5-ml column at a flow rate of 2 ml/min 

and pH 3.7.  
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Figure 8.5 Packed-bed adsorption profiles for BLG and ALA when whey 
concentrate solutions of  respectively 4.5 and 7.6 mg/ml concentrations were applied 
onto an SP Sepharose FF column at pH 3.7 and flow rate 2 ml/min. 

 

As can be seen from the figure, BLG breakthrough preceded that of ALA and its 

maximum outlet concentration reached approximately 1.6 times its feedstock 

concentration. This demonstrates the ability of ALA to displace some of the adsorbed 

BLG which was subsequently desorbed from the column causing the BLG effluent 
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concentration to exceed that of the feed, a phenomenon indicating the presence of some 

form of competitive adsorption between the two proteins. Furthermore, ALA 

breakthrough was observed to begin at the point when the BLG concentration in the 

effluent had reached a maximum and hence overlapping between the breakthrough curves 

of the two proteins occurred. This overlapping of the breakthrough curves has a 

significant detrimental effect on the degree of separation that can be achieved as will be 

discussed later in detail. It should be noted that in the previous work on pure binary 

mixtures (Chapter 7), no significant overlapping was observed. In an attempt to reduce 

the degree of overlapping, several adsorption trials were performed under modified 

operating conditions including different total concentrations (CAB), BLG to ALA mass 

ratios (R), and flow rates (F).    

In the above experiment, as a result of the whey concentrate powder containing 

other compounds in addition to ALA and BLG, the total concentrations of these two 

proteins (CAB = 2.63 mg/ml) was less than that used in the previous work on pure binary 

mixtures where the total feed concentration was 4.5 mg/ml.  The concentration of whey 

concentrate used as feedstock was therefore increased to 7.6 mg/ml so as to yield 

concentrations of ALA and BLG of 1.25 and 3.25 mg/ml, respectively thus giving a total 

concentration of ALA + BLG (CAB) of 4.5 mg/ml. As shown in Figure 8.5, the increase in 

CAB improved the sharpness of both breakthrough curves, but had no effect on the 

position of ALA breakthrough with respect to that of BLG and hence overlapping still 

persisted. The t1/2 values for both proteins (the times at which the breakthrough curve had 

risen to half the feed concentrations) decreased with increasing CAB (Table 8.3). The 

decrease amounted to roughly 44% and 32% for BLG and ALA, respectively as 

compared to the values obtained with the 2.63 mg/ml solution of whey concentrate. 

Table 8.3 Effect of CAB on the t1/2 values of ALA and BLG for whey concentrate. 

CAB, mg/ml 2.63 4.5 
t1/2 ALA, min 410 280 
t1/2 BLG, min 135 75 
 

In conclusion, increasing CAB has no effect on the degree of separation but rather 

on the operational time. Thus, a CAB of 4.5 mg/ml corresponding to a whey powder 

concentration of 7.6 mg/ml will be employed in all of the forthcoming studies.  



                                                                                                              El-Sayed, Chapter 8 

 127

In the next experiment, the flow rate was reduced from 2 to 1 ml/min (Figure 8.6). 

It is to be noted that in the previous studies on pure binary mixtures (Chapter 7), it was 

found that overlapping was reduced and in turn separation was improved by decreasing 

the flow rate. A similar improvement was not observed for whey concentrate solutions. 

As can be seen from Figure 8.6, roughly the same degree of overlapping occurred at the 

lower flow rate. 
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Figure 8.6  Packed-bed adsorption profiles for 3.25 mg/ml BLG and 1.25 mg/ml 
ALA when 7.6 mg/ml whey concentrate was applied onto an SP Sepharose FF 
column at pH 3.7 and flow rates of 1 and 2 ml/min. 
 

Finally, the ratio R of the concentrations of BLG to ALA was adjusted by adding 

pure ALA solution to a 7.6 mg/ml whey concentrate solution such that the final 

concentrations of BLG and ALA in the whey-ALA mixture were 3.0 and 1.5 mg/ml, 

respectively. The value of R would thus be reduced to 2.0 as in the pure binary mixtures 

used previously. The relevant BLG and ALA adsorption profiles at a flow rate of 1 

ml/min are shown in Figure 8.7. 
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Figure 8.7  Packed-bed adsorption profiles for  a solution containing 3.0 mg/ml BLG 
and 1.5 mg/ml ALA (created by adding pure ALA to a 7.6 mg/ml solution of whey 
concentrate) was applied onto an SP Sepharose FF column at pH 3.7 and flow rate 
of 1 ml/min. The profiles pertaining to 7.6 mg/ml whey concentrate (without 
addition of pure ALA) are also shown. 

 

It can be seen that t1/2 for ALA decreased with the decrease in R, while that for 

BLG did not change significantly.  Even though the value of R in the whey mixture was 

adjusted to be equal to that in the solution of the pure proteins, it was still not possible to 

obtain the same degree of separation previously achieved using a pure protein mixture. 

However, increasing the value of R to 4.0 enhanced the separation as will be shown in 

later experiments (see the second stage in the consecutive two-stage process, Figure 8.13). 

The above experimental findings would be expected by examining the characteristics of 

Eq. 8.1: 
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where VL is the volume of the column, F is the flow rate, Cf is the feed concentration of 

the protein and qm is the maximum binding capacity of the adsorbent. The left-hand side 

of the equation should strictly be q* which is an estimate of the capacity of the adsorbent 
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in equilibrium with the feed. However in case of ALA and BLG proteins, the values of Kd 

are very small compared to the feed concentrations of these proteins, Cf, (Table 5.1) and 

therefore the values of q* for each protein are essentially equal to qm.  It should also be 

noted that this simplified relation applies only to symmetrical breakthrough curves. 

However, it suffices for the qualitative reasoning discussed hereafter:  

- increasing the total concentration, CAB, increases the individual concentrations of 

ALA and BLG and thus decreases their breakthrough times (t1/2) by about the same 

degree. As a result, overlapping and hence separation were not affected. 

- decreasing the flow rate, F, increases t1/2 values for both proteins by roughly the 

same degree and thus has no significant effect on improving the separation. 

- increasing the ratio of BLG to ALA, R, increases the concentration of BLG at the 

expense of the concentration of ALA. This, in turn, decreases the t1/2 of BLG relative 

to that of ALA and thus reduces overlapping between the breakthrough curves of the 

two proteins and consequently improves separation.  

Thus, it can be concluded that modifying the operating conditions (total 

concentration and flow rate) so as to be comparable with those used previously for pure 

mixtures did not improve the degree of separation. This is probably a result of the 

complex nature of whey in which there are additional compounds present. Moreover, of 

the three operating conditions investigated, R was found to be the key factor dictating the 

degree of separation achieved; increasing R improved the separation. However, 

increasing R requires adding pure BLG to the whey feedstock and this would not be 

feasible in a large-scale process designed for the economic isolation of whey proteins. 

Therefore, in the following experiments whey concentrate will be used without any 

additions of pure BLG.  

In what follows, the aim is to establish an optimal process for the separation and 

purification of ALA and BLG from whey concentrate, such that the adsorption of 

proteins from a 7.6 mg/ml solution of whey concentrate at a flow rate of 2 ml/min is 

performed on the 5-ml column.  

An adsorption experiment was conducted and the loading of the feedstock was 

terminated at the ALA breakthrough point (also the BLG maximum), i.e. 180 min (Figure 

8.5). Analysing the column effluent collected up to this point using size exclusion 
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revealed that this fraction contained mostly BLG with a recovery of 80% of the amount 

of BLG that had been fed to the column (Figure 8.8). The column was then eluted with 

0.1M Tris-HCl buffer at pH 9.0. The eluted fraction was analysed using gel filtration and 

was found to contain mainly ALA with a recovery of 84% of that in the feedstock, along 

with some BLG.  
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Figure 8.8 Analytical size-exclusion chromatography on Superdex 200 for the flow-
through fraction, collected up to the start of the ALA breakthrough, for 7.6 mg/ml 
whey concentrate.  

 

The purity of the produced ALA and BLG eluted fractions was determined using 

SDS-PAGE gel electrophoresis. Figure 8.9 shows the electrophoretic patterns pertaining 

to these fractions. Lanes 1, 2, 3 and 4 from the left present the molecular mass marker, 

whey concentrate starting material, flow through-fraction and eluted fraction. The purity 

of BLG in the obtained flow through-fraction was 95%, while the composition of the 

eluted fraction was 32% ALA and 38% BLG. The higher molecular-weight bands also 

present are those of bovine serum albumin (BSA) and immunoglobulin G (Ig G). It is to 

be mentioned here that when this experiment was performed at a flow rate of 1 ml/min, 

rather than 2 ml/min, and the ALA fraction was analysed using SDS electrophoresis, 44% 

purity of ALA was obtained. Nevertheless, the improvement in ALA purity with the 

lower flow rate was not enough to justify operating at such a longer time. 

BLG 
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Figure 8.9  Electrophoretic patterns pertaining to 7.6 mg/ml whey concentrate, lane 
1: molecular mass marker; lane 2: whey concentrate starting material; lane 3: BLG 
flowthrough fraction; lane 4: ALA eluted fraction.    
 

In light of the above study, it can be deduced that: 

- the purity of ALA in the eluted fraction drops as a result of the overlapping that starts 

at the ALA breakthrough point, corresponding to BLG maximum, and ends when BLG 

breakthrough reaches a plateau at its inlet concentration (i.e. at C/Cf = 1.0). 

- overlapping also affects the recovery of BLG in the flow-through fraction as some of 

it (20%) was yet to be eluted from the column by the competitive adsorption of ALA at 

the point of terminating the application of feedstock. 

-  in spite of the similarity in the shapes of the ALA and BLG breakthrough curves 

between pure and whey mixtures, it was not possible to attain the same degree of 

separation obtained in the mixtures of pure proteins due to the complex nature of whey as 

well as its different BLG to ALA ratio. 

To obtain an ALA fraction free of BLG, the loading of feedstock was terminated 

at the point where the concentration of BLG in the effluent falls back down to its initial 

value, i.e. C/Cf =1, and that occurred at 420 minutes (Figure 8.5). Two fractions were 

collected, a BLG flow-through fraction (stream 2, Figure 8.16) collected up to 180 min 

(which contains BLG), followed by an ALA-BLG flow-through fraction (stream 4, 

Figure 8.16) collected between 180 and 420 min (which contains a mixture of both ALA 

and BLG). With this strategy, all BLG is removed from the column and is collected as an 

effluent in these two fractions. ALA together with other whey impurities are left on the 

column. To obtain an eluted fraction that contains ALA with minimal co-eluted 
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impurities (ALA eluted fraction) the column was eluted consecutively with buffers 

containing 0.1 M solutions of sodium acetate (pH 5.2), Tris-HCl (pH 7.0), and finally 

Tris-HCl (pH 9.0). The BLG flow-through fraction was found to contain mostly BLG 

with a recovery of 40% of the applied thereof as estimated by size exclusion 

chromatography analysis. The recoveries of ALA in the fractions eluted at pH 5.2 and pH 

7.0 eluted fractions (streams 3 and 3′, respectively, Figure 8.16) as calculated from size-

exclusion analysis (Figure 8.10), were 30% and 15%, respectively. No significant amount 

of ALA was recovered when the column was further eluted at pH 9.0.  
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Figure 8.10 Size-exclusion analysis on Superdex 200 for pH 5.2 (A) and pH 7.0 (B) 
eluted fractions pertaining to 7.6 mg/ml whey concentrate when the prolonged 
adsorption experiment (one-stage process) was performed. 
 

The SDS analysis (Figure 8.11) of the BLG flow-through fraction yielded a BLG 

purity of 95%, whereas the purities of ALA in the peaks eluted at pH 5.2 and pH 7.0 were 

respectively 54% and 60%. The ALA-BLG flow-through fraction contained a mixture of 

BLG and ALA in the ratio of 5:1.  

ALA ALA  A  B 
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Figure 8.11  Electrophoretic patterns for the ALA and BLG fractions produced 
after the adsorption and elution of 7.6 mg/ml whey concentrate during the one-stage 
process, lane 1: molecular mass marker; lane 2: whey concentrate starting material; 
lane 3: BLG flow-through fraction; lane 4: ALA-BLG flow-through fraction; lane 5: 
pH 5.2 eluted fraction; lane 6: pH 7.0 eluted fraction; lane 7: pH 9.0 eluted fraction. 
Samples were diluted 10 times.   
 

As can be seen in Figure 8.11, each of the electrophoretic patterns for the pH 5.2 

and pH 7.0 eluted fractions shows the presence of a lower molecular mass band that 

corresponds to the molecular mass of ALA, and another band that corresponds to the 

molecular mass of BLG comprising roughly 30% and 15% of the total amount of protein 

eluted at the respective pH values of 5.2 and 7.0. These fractions also contain other 

higher bands that represent the higher molecular-weight proteins present in whey 

concentrate such as bovine serum albumin and immunoglobulin G. A mass balance, 

performed on the amounts of BLG in both the feed and effluent fractions, showed that 

almost no BLG was left on the column and that practically none should appear in the 

eluted fractions. It can thus be inferred that the significant band that runs in the SDS gel 

electrophoresis analysis with an apparent molecular mass similar to that of BLG is in fact 

unlikely to be BLG. This might probably be some of the higher molecular weight 

compounds that had degraded to lower molecular weights at the employed pH values.  

To improve the overall recoveries of both proteins, as well as to take advantage of 

the high R in the ALA-BLG flow-through fraction produced during the process (5:1), a 

consecutive two-stage approach was introduced as follows (see Figure 8.16). The ALA-
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BLG fraction was mixed with an equal volume of fresh whey concentrate feedstock 

(streams 4 and 5, respectively, Figure 8.16). The mixture now containing BLG and ALA 

in the ratio of 4:1, as estimated by SDS analysis (Figure 8.12), was fed to the column at 2 

ml/min and the resulting adsorption profiles for BLG and ALA are shown in Figure 8.13.  

As in the first stage, two fractions were collected during the loading period. The 

first fraction (stream 6, Figure 8.16) was collected up to the start of the ALA 

breakthrough, while the second fraction (stream 8, Figure 8.16) was collected up to the 

point where BLG dropped to its inlet concentration (C/Cf = 1). The first fraction was 

found to contain almost pure BLG with a purity of 95% as estimated using SDS gel 

electrophoresis shown in Figure 8.12. The electrophoretic pattern of the second fraction 

showed that it contained 86% BLG together with 5% ALA. Therefore this BLG-rich 

fraction from the second stage required no further processing unlike the situation during 

the first stage of operation where the amount of ALA present in the equivalent flow-

through fraction was substantially higher. It should be noted here that the degree of 

separation was enhanced by virtue of the higher BLG to ALA ratio now present in the 

feedstock used in the second stage (4:1), which was the result of the addition of ALA-

BLG flowthrough fraction from the first stage to the solution of whey concentrate. In 

other words, increasing the ratio of BLG to ALA improved the separation as was 

mentioned earlier. Noteworthy here is the fact that when the protein recovery of the 

second stage was calculated on the basis of its feed alone, it turned out to increase 

proportionally with R relative to the first stage. It is clear that the second stage was 

introduced as an alternative for adding BLG from the beginning in order to raise R.  

After collecting the second flow-through fraction, the application of feedstock 

was terminated and the column was eluted consecutively with 0.1 M sodium acetate 

buffer (pH 5.2) followed by 0.1 M Tris-HCl buffer (pH 7.0) (streams 7 and 7′, 

respectively, Figure 8.16). The purities of ALA in the two eluted fractions were estimated 

to be 54% and 60%, respectively using SDS gel electrophoresis. These values were the 

same as those for the equivalent fractions collected in the first stage. 
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Figure 8.12  Electrophoretic patterns for the ALA and BLG fractions produced 
after the adsorption and elution of 7.6 mg/ml whey concentrate during the second 
stage of the consecutive two-stage process, lane 1: molecular mass marker; lane 2: 
whey concentrate starting material; lane 3: BLG flow-through fraction; lane 4: 
ALA-BLG flow-through fraction; lane 5: pH 5.2 eluted fraction; lane 6: pH 7.0 
eluted fraction; lane 7: pH 9.0 eluted fraction. Samples were diluted 10 times. 
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Figure 8.13  Packed-bed adsorption profiles for BLG and ALA when a (1:1 v/v) 
mixture of 7.6 mg/ml whey concentrate feedstock added to the ALA-BLG flow-
through fraction (from the first stage of the consecutive two-stage process) was 
applied onto an SP Sepharose FF column at pH 3.7 and flow rate 2 ml/min. 
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The above results showed that the presence of other higher molecular-weight 

proteins in the eluted fractions lowers the purity of ALA therein. Hence, it was assumed 

that this purity could be improved by further purification of the eluted fractions using 

size-exclusion chromatography. To verify this assumption, a 0.2 ml sample of each of the 

fractions eluted at pH 5.2 and pH 7.0, produced from the first stage of the previous 

experiment, were applied to a Superdex 200 gel-filtration column and the peaks 

containing ALA were collected. Each of these peaks was further analysed on the same 

column (Figure 8.14), as well as on an SDS electrophoresis gel (Figure 8.15). The results 

showed that fractions containing ALA of at least 85-90% purity could be achieved by this 

additional step. It is therefore recommended that a subsequent size-exclusion 

chromatography process be used as an intermediate purification or a final polishing step, 

in order to increase the purity of ALA in the eluted fractions. 
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Figure 8.14 Size-exclusion analysis on Superdex 200 for the eluted ALA fractions 
that were collected from the first stage of the consecutive two-stage process and then 
further purified on a Superdex 200 size-exclusion column, (A) ALA fraction 
collected in the pH 5.2 eluate; (B) ALA fraction collected in the pH 7.0 eluate. 
 

 

  A   B 
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Figure 8.15 Electrophoretic patterns for the collected ALA peaks shown in Figure 
8.14, lane 1: molecular mass marker; lane 2: ALA fraction collected from pH 5.2 
eluate; lane 3: ALA fraction collected from pH 7.0 eluate. In this experiment, each 
well was loaded with 14 μl of sample. 
 

A schematic diagram of the consecutive two-stage process is depicted in Figure 

8.16. About 78% of the BLG applied in the two feed streams (1 and 5) was recovered in 

the two flow-through fractions obtained (streams 2 and 6). In the first stage, 27% was 

recovered, whereas 51% was recovered in the second stage. A further 20% of BLG fed to 

the process was recovered in the BLG (+ALA) flow-through fraction obtained from the 

second stage (stream 8). Therefore, a total of 98% (78%+20%) of BLG was recovered 

using this process. As for ALA, 33% of the amount fed to the process was recovered in 

the two eluted fractions obtained from the first stage (streams 3, 3′), in addition to a 

further 34% recovered in the two eluted fractions obtained from the second stage (streams 

7, 7′). Hence, a 67% overall recovery of ALA was obtained in this process.  
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Figure 8.16  Flow diagram of the consecutive two-stage process. 

A summary of the recoveries and purities of ALA and BLG obtained from the 

consecutive two-stage process is presented in Table 8.4. 

Table 8.4 Recoveries and purities of ALA and BLG for the consecutive two-stage 
process. 

Protein Stream number* recovery (%) Purity (%) 
 Stage 1 

BLG 2 
 

27 95 

3 22 54 
3′ 11 60 ALA 

3+3′ 33  
 Stage 2 

6 51 95 BLG 

 
8 
 

20 86 

7 26 54 
7′ 8 60 ALA 

7+7′ 34  
 Overall process 
 2+6 78 95 

BLG 8 20 86 
 2+6+8 

 
98  

3+7 48 54 
3′+7′ 19 60 ALA 

3+3′+7+7′ 67  
* see flow diagram (Figure 8.16). 

pH 7.0 ALA eluate, 60% 

Whey concentrate 

Whey concentrate 

ALA+BLG flowthru

 Second stage 
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4 

BLG flowthru, 95% 

BLG flowthru, 95% 

pH 5.2 ALA eluate, 54% 

BLG (+ALA), 86% 

pH 5.2 ALA eluate, 54% 

pH 7.0 ALA eluate, 60% 
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8.4 Conclusions 

The cation-exchange adsorption of whey concentrate mixtures was studied at pH 

3.7 using SP Sepharose FF with the aim of separating ALA and BLG from these mixtures. 

BLG breakthrough occurred first, and its concentration in the outlet exceeded its feed 

value by about a factor of 1.5 before declining to the feed value, followed by the 

breakthrough of ALA. ALA was able to displace and drive BLG off the column and 

therefore BLG was collected in a pure form. Substantially pure ALA could then be eluted 

from the column. This evidence of competitive adsorption was used to establish a 

consecutive two-stage novel process for separating ALA and BLG from whey 

concentrate mixtures. In both stages, the application of feedstock was terminated at the 

point where BLG reached its inlet concentration (at C/Cf=1). In both stages, two fractions 

were collected during the loading period; a fraction containing almost pure BLG was 

collected up to the start of the ALA breakthrough, followed by a second fraction 

containing both ALA and BLG. This second fraction from the first stage was mixed with 

whey concentrate solution to form the feedstock for the second stage. In the second stage, 

the second fraction contained BLG at sufficiently high purity as to require no further 

processing. At the termination of feedstock application during each stage of operation, 

the column which then had almost no adsorbed BLG remaining was eluted to obtain 

substantially purified ALA. The flow-through and eluted fractions were analysed using 

size-exclusion as well as SDS gel electrophoresis to estimate purities. In the second stage, 

the breakthrough as well as the analysis profiles were very similar to those of the first 

stage, but the ALA-BLG flowthrough fraction from the second stage was found to 

contain mostly BLG with 86% purity. The overall recoveries of BLG and ALA from the 

consecutive two-stage process were found to be 98% and 67%, respectively, showing 

increases of about 2.5 times and 1.5 times over the one-stage process. The 98% recovery 

of BLG is the sum of the two BLG flowthrough fractions collected in stages one and two 

(78%) and the ALA-BLG flowthrough fraction of the second stage (20%). Thus 78% of 

the recovered BLG had a purity of 95%, whereas the remaining 20% had a purity of 86%. 

The purity of ALA in the pH 5.2 and pH 7.0 eluted fractions in the two stages was 54% 

and 60%, respectively. A size-exclusion polishing step has been shown to be suitable for 

improving the purity of ALA present in the eluted fractions. 
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To sum up, a novel consecutive two-stage process was developed to isolate ALA 

and BLG from whey concentrate solutions. The novelty of the process comes from the 

fact that it is based on selective adsorption of whey proteins rather than selective elution. 

The latter has been used by many other workers in previous literature. The selective 

adsorption technique also makes the process simple and viable for separation as mostly 

all the BLG was recovered during the loading step. ALA, on the other hand, was 

recovered using simple consecutive elution by varying the pH. No salt addition was 

required for elution which is an additional economical as well as an environmental merit 

to the process.   
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9 Simulation of the breakthrough curves for the 
adsorption of whey proteins 

9.1 Introduction 

A few studies have been made on the modelling of whey protein adsorption. 

James (1994) investigated both the single and binary adsorption/desorption equilibrium 

and dynamics of lactoferrin and lactoperoxidase, purified from raw whey solutions, using 

three different Sepharose cation exchangers. Carrere et al. (1996) studied the recovery of 

alpha-lactalbumin and beta-lactoglobulin from sweet whey protein by a fluidized ion 

exchange chromatographic process. They lumped both components as one entity in the 

pore-diffusion adsorption model as well as in a subsequent lumped kinetic elution model. 

By means of the pore-diffusion model, Conrado et al. (2005) described, the operating 

parameters related to the use of a hydrophobic resin (Streamline Phenyl) for the recovery 

of alpha-lactalbumin from cow’s milk whey in an expanded-bed adsorption mode of 

operation. 

As evident from the confocal laser scanning microscopy (CLSM) and packed-bed 

experiments in Chapters 6 and 7, the more weakly adsorbed protein (ALA) was able to 

displace the more strongly adsorbed one (BLG), a result that has also been encountered 

by some authors on other systems (Hubbuch et al., 2003). In order to account for this, the 

previous equilibrium, kinetic, and packed-bed results were relied upon in order to 

propose the following explanation. The faster BLG was envisaged to be electrokinetically 

transferred at first and exchanged for the neutralising Na+ ions. The locus of this 

adsorption is assumed to be the diffuse part of the electric double layer. In complexation 

notation, the adsorbed BLG is an outer-sphere complex separated from the surface by at 

least one layer thick of the solvent. The displacement occurs later when the lagging 

(diffusing) ALA manages to catch up with the adsorbed BLG whereupon the mass action 

redistribution must entail expulsion of some of the adsorbed BLG (an exchange of BLG 

for ALA) in order to maintain electroneutrality. The importance of this articulation will 

become evident later in the text.  
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In this chapter, the intention is to use various models of the adsorption process to 

simulate the breakthrough curves obtained from our previous packed-bed studies both for 

pure proteins, either alone or in mixture, and for these proteins when present in whey 

concentrate. Being the simplest of models as the name implies, the simple kinetic model 

will be first examined and appropriate correction factors for the isotherm and kinetic 

parameters will be introduced when necessary. The model has been used by various 

workers to simulate protein breakthrough curves (Cowan et al., 1989; Skidmore et al., 

1990; Conrado et al., 2005; Aboudzadeh et al., 2006). However, the approach of 

introducing correction factors was not adopted. In addition, the possibility of using a 

more sophisticated pore and diffusion model will be investigated. 

9.2 Single-component systems 

In this section, simulation of the packed-bed adsorption of either 3 mg/ml pure 

BLG or 1.5 mg/ml pure ALA onto a 5-ml column of SP Sepharose at pH 3.7 and linear 

velocity of 60 cm/h (flow rate of 2 ml/min) is studied. Kinetic studies preceded this work 

(Chapter 6) where batch uptake profiles for ALA and BLG were predicted using both the 

simple kinetic model and the pore diffusion model. For both proteins, the former model 

gave better fit to the experimental data. Therefore the simple kinetic model will be used 

throughout this study. In order to theoretically predict the breakthrough curve for BLG, 

values of the equilibrium isotherm parameters determined from batch experiments (qm = 

113.6 mg/ml and Kd
 = 0.008 mg/ml) (Chapter 5), as well as the forward kinetic rate-

constant for adsorption within medium-size adsorbent particles (k1 = 35*10-3 mlmg-1min-1) 

obtained from batch uptake experiments (Chapter 6), were used to solve the simple 

kinetic model for packed-bed adsorption (Eq. 3.26 and 3.27). The model solves for C as a 

function of both time and position along the height of packed bed (x). The theoretical 

breakthrough curve so obtained was constructed as a solid curve (Figure 9.1A) and 

compared to its corresponding experimental profile.  
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Figure 9.1 Predicted and experimental breakthrough curves for the adsorption of 
BLG onto a 5-ml packed-bed of SP Sepharose FF at pH 3.7, feed concentration of 3 
mg/ml, flow rate of 2 ml/min, and temperature 20oC, using k1=35*10-3mlmg-1min-

1(A), and k1=55*10-3mlmg-1min-1(B). Agreement between predicted and 
experimental results was within accuracy of 10%. 
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 As can be seen from the figure, the experimental adsorption profile (discrete points) 

in its early stage (before reaching t1/2) yields a sharp and symmetrical breakthrough curve 

that is steeper than its corresponding theoretical curve. Both curves nearly have the same 

t1/2 as well as the same equilibrium position (curve plateau), but the time corresponding to 

5% of the maximum capacity of the adsorbent or the so called ‘breakthrough time’ is 

under-predicted by the model. In addition, the model well predicts the later stage of the 

breakthrough curve (after reaching t1/2). As accurate prediction of the early stage of the 

breakthrough curve is more important from a practical point of view, the value of k1 was 

increased from 35*10-3 to 55*10-3 mlmg-1min-1, in order to get a better fit to the 

experimental data (Figure 9.1B). The modified value of k1 corresponds to adsorption 

within the smallest particles of the adsorbent, as was determined from the relevant 

profiles of adsorbed protein as visualised using CLSM techniques (Figure 6.24A). Hence, 

the early stage of the breakthrough curve is better predicted using the value of the rate 

constant corresponding to adsorption within the smallest particles, while the later stage of 

the curve could be predicted using the value of the rate constant corresponding to 

adsorption within the medium-size particles. This could be due to difference in the nature 

of packed beds as opposed to batch adsorption systems. During the packing process, the 

adsorbent suspension is allowed to sediment and the supernatant liquid is subsequently 

removed from the top of the column. The larger particles are therefore expected to settle 

predominantly towards the bottom of the column while the smaller particles aggregate 

towards the top. During operation in a downflow mode (as was the case here), the protein 

solution will be expected to come in contact first with the smaller particles. Therefore, the 

rate of adsorption in the packed bed at the beginning of feedstock application was more 

controlled by adsorption to the smaller particles rather than to the larger ones. Apparently, 

with time the smaller particles became completely saturated first and hence the 

adsorption was then governed by the rate of adsorption to the larger particles.   

The experimental and theoretical profiles for 1.5 mg/ml pure ALA are depicted in 

Figure 9.2.  
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Figure 9.2  Predicted and experimental breakthrough curves for the adsorption of 
ALA onto a 5-ml packed-bed of SP Sepharose FF at pH 3.7, feed concentration of 
1.5 mg/ml, flow rate of 2 ml/min, and temperature 20oC, using k1=30*10-3mlmg-

1min-1 and the equilibrium batch isotherm parameters (A), and after increasing qm 
1.5 times (B). 
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The theoretical profile was predicted using the relevant equilibrium isotherm 

parameters (qm = 147.0 mg/ml and Kd
 = 0.029 mg/ml) obtained in Chapter 5, and the 

kinetic rate constant for adsorption within the medium-size particles (k1 = 30*10-3 mlmg-

1min-1) obtained in Chapter 6. As can be seen in Figure 9.2A, the predicted value for t1/2 

is lower by about one-third of its actual value. This, in turn, indicates that the predicted 

amount of protein adsorbed onto the bed, q, is underestimated by the model by a factor of 

two-thirds according to Eq. 4.2. This implies that additional adsorption processes are 

occurring in the packed-bed (relative to the batch system). These could be a result of the 

segregation of the different sizes of adsorbent beads in packed beds, a phenomenon that 

does not occur in batch systems, as well as the continuous feed at a constant inlet 

concentration in packed bed operation which might have resulted in ALA, being small in 

size, becoming more accessible to finer pores (additional adsorption sites). If one is to 

assume that additional adsorption sites are available for ALA within the packed-bed, qm 

can be modified to account for this by increasing its value by a factor of 1.5. With this 

modification, good agreement between predicted and actual results was attained in the 

early stage of the breakthrough curve using the value of the rate constant that corresponds 

to adsorption within the medium-size particles (Figure 9.2B). Unlike BLG, the adsorption 

in the early stage appears to be governed by the transport within the medium-size 

particles not the smallest ones. This is understandable in light of the fact that the largest 

amount of ALA was adsorbed within the medium-size particles as was implied from the 

profiles of adsorbed ALA obtained using CLSM techniques (Figure 6.24B). 

Survey of the literature (Aboudzadeh et al., 2006; Yun et al., 2005; Tong et al., 

2003; Chen et al., 2003; Avci et al., 2000; Skidmore et al., 1990) showed that the 

alternative use of a pore diffusion model to model packed bed adsorption does not 

significantly affect the t1/2 value and thus it is not expected to resolve the discrepancy 

observed.  
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9.3 Two-component systems 

As was highlighted previously in the ‘Introduction’ to this chapter, it has been 

postulated that the transport mechanism is different for the two proteins under 

consideration; while BLG is electrokinetically transported, ALA is governed by a slower 

diffusion process. Strictly speaking, the author realises that the simple kinetic model is 

not suited for such a situation. However, in the absence of a compatible model accounting 

for these two mechanisms, it was decided to continue to work with the simple model to 

see whether introducing appropriate correction factors to the system parameters can 

improve the agreement between experimental results and theoretical simulations as was 

the case with the single-component systems. 

For the two-component system, an attempt was made to predict the individual 

breakthrough profiles for BLG and ALA when a mixture of both proteins was adsorbed 

onto SP Sepharose FF at the reference whey conditions (i.e. feed concentrations of 3 

mg/ml and 1.5 mg/ml for BLG and ALA, respectively) and at the optimum flow rate of 2 

ml/min. The simple kinetic model for two-component systems with competition between 

species was solved (Eq. 3.32, 3.33, 3.34, and 3.35). 

The following two-component simulation results will first deal with pure binary 

mixtures and will be extended thereafter to whey concentrate.  

9.3.1 Pure binary mixture 
 

The adsorption profiles for ALA and BLG in the two-component system are 

shown in Figure 9.3. It was not possible to predict the shapes of the individual 

breakthrough curves of ALA and BLG using the single-component equilibrium isotherm 

parameters obtained in Chapter 5. As shown in the figure, the BLG overshoot could only 

be predicted when the value of Kd for BLG was increased by a factor of 600 (i.e. was 

more than 150 times higher than that of ALA), while the value of qm for the same protein 

was augmented 3.5 times (i.e. was 2.7 times larger than that of ALA). The apparent 

(modified) values of qm and Kd will be referred to as q′m and K′
d, respectively. 



                                                                                                              El-Sayed, Chapter 9 

 148

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
/C

f

time, min

BLG theor
ALA theor
BLG exp
ALA exp

 
Figure 9.3 Experimental and predicted profiles for the packed-bed adsorption of a 
mixture of BLG and ALA onto SP Sepharose FF at pH 3.7, flow rate of 2 ml/min 
and feed concentrations of 3 and 1.5 mg/ml, respectively. The theoretical profiles 
were predicted after modifying BLG isotherm parameters such that q′m = 3.5 (qm) 
and K′

d = 600 (Kd). 
Both the value of t1/2 and the maximum value of the overshoot for BLG were well 

predicted by the simple kinetic model under the modified conditions. This could be 

understandable in light of the fact that theoretically and from the electrokinetic point of 

view, the strongly-bound protein BLG (with lower Kd) should displace the weakly-bound 

ALA, provided that the transport of both proteins is not limited by mass transfer 

resistances (or the mass transfer rate limitation is the same for both proteins). However in 

the situation under consideration, ALA was able to displace BLG, in spite of the apparent 

lower affinity of the former to the adsorbent, as was evidenced from both the packed-bed 

and also from the two-component, batch CLSM results. The reason for this could be 

attributed to the difference in transport mechanisms of the two proteins; BLG being 

governed by a fast electrokinetic transport mechanism, whilst ALA being controlled by a 

diffusional one. As a result, the transport of ALA was slower, and hence it managed to 

displace the BLG that had already been adsorbed in the diffuse layer as was explained in 
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detail in chapter 6 (Section 6.3.2). It is also to be noted that the predicted ALA 

breakthrough profile (Figure 9.3) was not in agreement with its experimental counterpart 

and t1/2 was underestimated by the model as was encountered with the single-component 

ALA results. If the qm for ALA were to be modified as in the single-component system 

by increasing it 1.5 times, a good fit to the ALA breakthrough curve would be obtained 

(Figure 9.4). The value of qm for BLG would, however, need to be slightly modified such 

that the apparent (modified) qm (q′m) is 3.0 times (rather than 3.5 times) higher than the 

original qm obtained from batch experiments. In addition, the overshoot was not as 

accurately described as in Figure 9.3. 
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Figure 9.4 Experimental and predicted profiles for the packed-bed adsorption of a 
mixture of BLG and ALA onto SP Sepharose FF at pH 3.7, flow rate of 2 ml/min 
and feed concentrations of 3 and 1.5 mg/ml, respectively. The theoretical profiles 
were predicted after modifying the isotherm parameters such that for BLG: q′m = 
3.0 (qm) and K′

d = 600 (Kd), and for ALA: q′m = 1.5 (qm). Agreement between 
predicted and experimental results is within accuracy of 10-15%.   
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9.3.2 Whey concentrate 
 

To simulate the novel whey concentrate separation process developed in Chapter 

8, the relevant breakthrough curves of ALA and BLG for stages one and two of the 

process were predicted by the simple kinetic model using the fore-cited modified 

equilibrium isotherm parameters for both proteins, as well as the corresponding kinetic 

rate constants (obtained in section 9.3.1). The theoretical profiles along with their 

experimental counterparts are depicted in Figure 9.5. For the first stage of the process 

(Figure 9.5A), as was the case with the pure binary mixture, the BLG overshoot could 

only be predicted when the value of Kd for BLG was increased 600 times (i.e. was more 

than 150 times higher than that of ALA), while the value of qm for the same protein was 

augmented 3.5 times (i.e. was 2.7 times larger than that of ALA). Unlike the pure binary 

mixture, the model, under the previously employed conditions, overestimated the value of 

t1/2 for BLG but fairly predicted that of ALA in both stages of the process. The model was 

also able to predict the maximum overshoot value of BLG.  
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Figure 9.5 Experimental and predicted profiles for the packed-bed adsorption of 
BLG and ALA during the first (A) and second (B) stages of the whey purification 
process. The theoretical profiles were predicted after modifying the isotherm 
parameters such that for BLG: q′m = 3.5 (qm) and K′d = 600 (Kd). 
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To obtain a better fit for the ALA breakthrough curve in the second stage, k1 was 

increased three times from 30*10-3 mlmg-1min-1 to 90*10-3 mlmg-1min-1 (Figure 9.6). 

Furthermore, a better fit for the early part of the BLG breakthrough curve could be 

obtained by decreasing the value of either qm, Kd or k1 (data not shown). As a result, the 

value of t1/2 was decreased but unfortunately that also decreased the maximum value of 

the overshoot. Therefore, it was not possible to obtain a good fit for both t1/2 and the 

overshoot maximum value at the same time, as they are interrelated.  
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Figure 9.6 Experimental and predicted profiles for the packed-bed adsorption of 
BLG and ALA during the second stage of the whey purification process. The 
theoretical breakthrough curve for ALA was predicted using a modified value for k1 
(90*10-3 mlmg-1min-1). Agreement between predicted and experimental results is 
within accuracy of 5-10%.   
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component and whey concentrate mixtures are summarised in Table 9.1. The values 

pertaining to the two individual stages of the whey purification process are also included. 

Table 9.1 Original and corrected values of the isotherm parameters and the rate 
constant for the adsorption of ALA and BLG from single-, two-component and 
whey concentrate mixtures. The values pertaining to the two stages of the whey 
purification process are included. 

 

 

9.4 Conclusions 

The single-component breakthrough curve of pure BLG was well predicted by the 

simple kinetic model using Langmuir isotherm parameters obtained from batch uptake 

experiments. This model, however, could only accurately predict the breakthrough of 

ALA when qm was increased by a factor of 1.5 which implies the occurrence of additional 

adsorption processes occurring during adsorption in a packed bed compared to batch 

uptake. That the two proteins differ in their mechanism of adsorption is reflected in the 

nature of the correction factor involved, the factor needing correction was associated with 

k1 for BLG and with qm for ALA. 

Agreement between experimental and theoretical two-component breakthrough 

curves for mixtures of pure ALA and BLG could only be obtained using the simple 
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model after correcting the Langmuir isotherm parameters. Kd for BLG needed to be 

increased by a factor of 600, while qm was augmented by a factor of 3.0. In addition, the 

qm value for ALA needed to be increased by a factor of 1.5 as was encountered in the 

single-component systems. It is evident that the enormous factor of 600 is not merely a 

correcting one but rather an inversion factor because what is needed here is to 

significantly reverse the relative values of the two dissociation constants. With Kd for 

ALA greater than that of BLG, it is ALA that should have been displaced according to 

the simple kinetic model; the opposite was found in practice. 

For adsorption of whey concentrate mixtures, the simple kinetic model accurately 

predicted the individual breakthrough curves for ALA and BLG after correcting the 

Langmuir isotherm parameters for BLG using the same factors as proved necessary for 

pure mixtures. The value of qm for ALA, however, needed no correction.  

In summary, the batch experiments did not necessarily produce parameters that 

could be used to obtain accurate simulations of pure single-component breakthrough 

curves, let alone multi-component adsorption. Packed-bed experiments with the 

individual pure proteins did not yield information that would predict what would happen 

with mixtures of the two proteins. However, work with the mixture of the two pure 

proteins gave a good expectation of what would happen with whey concentrate. 

The results obtained herewith should be beneficial to the theoretician who wants 

to combine the electrokinetic and diffusion transport mechanisms while taking into 

account the additional adsorption processes in a model befitting the present case. Until 

then, the simulation conducted herein might find applicability to situations not far from 

that adopted here, i.e. when the operating conditions like the flow rate and volume of the 

column are varied. 
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10 Overall conclusions and outlook 
The present studies on the cation-exchange adsorption of pure ALA and BLG 

onto SP Sepharose FF, both in single- and two-component systems, elucidated the nature 

of the adsorption process and yielded information that was later exploited in developing 

the whey concentrate purification process. These studies included batch, batch uptake and 

packed-bed experiments to study the equilibrium, kinetics and dynamics of adsorption. 

Single-component batch experiments were useful in determining the Langmuir 

isotherm parameters, qm and Kd, for ALA and BLG at different pH values. The pKd 

versus pH relation proved to be linear for both proteins and its extrapolation to pKd = 0 

gave the pI for each protein. The qm versus pH relation enabled the determination of the 

optimum working pH of 3.7, at which the adsorption of both proteins was maximised. At 

this pH, Kd for ALA (Kd = 0.029 mg/ml) was found to be approximately four times larger 

than that of BLG (Kd = 0.008 mg/ml) which implies stronger binding for BLG. The value 

of qm for ALA (qm = 147.0 mg/ml), on the other hand, was about 30% higher than that of 

BLG (qm = 113.6 mg/ml) which indicates higher accessibility of ALA to adsorption sites 

probably due to its smaller size. 

In single-component traditional batch uptake experiments, the adsorption profiles 

of ALA and BLG were better described by the simple kinetic model rather than by the 

pore diffusion model. Therefore, the rate constants for both proteins were determined 

using the former model and were estimated to be 30*10-3 mlmg-1min-1 and 35*10-3 mlmg-

1min-1, respectively. In the two-component system, the individual batch uptake profiles 

for the two proteins showed no evidence for competitive adsorption. The values of the 

rate constants for ALA and BLG respectively dropped by 50% and 33% of their 

corresponding values in the single-component systems. In both single- and two-

component systems, it was found that BLG was adsorbed faster than ALA as was judged 

from the values of the rate constants of both proteins. The value of k1 for BLG was 17% 

and 55% higher than that of ALA in single- and two-component systems, respectively. 

The confocal laser scanning microscopy (CLSM) experiments were helpful in 

further understanding the adsorption process, as they permitted direct visualisation of the 

protein adsorption at the bead level, and hence determining the location of the adsorption 
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sites for both proteins. In the single-component systems, the different behaviour of ALA 

and BLG with regard to their penetration within the adsorbent beads suggested that the 

two proteins have different transport mechanisms governing their adsorption; ALA being 

characterised by a pore-diffusional transport whereas BLG characterised by an 

electrokinetically-based secondary transport that is non-diffusive. BLG penetrated fast 

into the adsorbent beads and gradually filled them in a shell-wise fashion, while 

adsorption of ALA was mostly confined to the outer shells of the adsorbent, with some 

ALA molecules penetrating in an uneven manner into the innermost region. The two-

component system results showed that ALA was able to displace BLG in spite of the 

lower affinity of the former protein to the adsorbent. For both single- and two-component 

systems, CLSM results, F-t curves, were compared both qualitatively and quantitatively 

to their counterparts, q-t curves, obtained in traditional experiments by indirect 

measurements of the protein concentration in the fluid phase. A novel quantitative 

approach was undertaken by modifying the simple kinetic rate model traditionally used to 

determine the kinetic rate constant, k1, for batch uptake experiments, in order to describe 

batch uptake kinetics based on CLSM data. The CLSM method successfully reproduced 

the value of the rate constant for BLG, but failed to do so with ALA probably because the 

mass transfer properties of the protein were altered as a result of its conjugation to the 

dye.     

Single-component packed-bed experiments using 1-ml columns at a linear 

velocity of 158 cm/h and initial concentrations of 3 mg/ml for BLG and 1.5 mg/ml for 

ALA, showed that the breakthrough time value, t1/2, for ALA was four times longer than 

that of BLG, probably due to its lower concentration, as well as its smaller size (half that 

of BLG) which allows for more accessibility to finer pores. The difference in the 

breakthrough time values of both proteins suggested the feasibility of using this adsorbent 

to separate the two proteins when present in a mixture. However, it was not possible to 

separate ALA from BLG in the two-component system during the adsorption stage using 

a 1-ml column, perhaps due to insufficient adsorption capacity under the employed 

chromatography conditions. The behaviour of each of the two proteins in the mixture was 

very much similar to that when applied to the column as single components. In other 
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words, there was no clear evidence for a degree of competition between the two proteins 

with regard to binding to adsorption sites under the employed conditions. 

Subsequent two-component packed-bed experiments with 5-ml columns at the 

above concentrations and a linear velocity of 30 cm/h showed evidence of competitive 

adsorption. BLG broke through first, and its concentration in the outlet exceeded its feed 

value by about 1.6 times before declining to the feed value, followed by the breakthrough 

of ALA.  ALA displaced and eluted all the BLG from the column in a pure form.  The 

remaining ALA could be eluted thereafter at high purity and with 91% recovery.  The 

fact that ALA displaced BLG in spite of the lower affinity of the former to the adsorbent 

supported the CLSM results obtained earlier. This process was optimised with regard to 

linear velocity as well as adsorption capacity and an optimum linear velocity of 60 cm/h 

was chosen. Evidence of the competitive nature of adsorption observed in binary 

mixtures was used to develop a facile separation process for ALA and BLG from whey 

concentrate.  

Adsorption of aqueous solutions of whey concentrate powders was performed 

using a 5-ml column and at a linear velocity of 60 cm/h. The characteristics of adsorption 

were studied in light of the results of the pure systems. As was the case with pure binary 

mixtures, BLG breakthrough occurred first, and its concentration in the outlet exceeded 

its feed value by about 1.5 fold before declining to the feed value, followed by the 

breakthrough of ALA. ALA was able to displace and drive BLG off the column and 

therefore BLG was collected in a pure form. Substantially pure ALA could then be eluted 

from the column. With whey concentrate mixtures, however, a lower degree of separation 

was obtained relative to the pure binary mixtures. This was a result of the substantial 

overlapping that occurred between the individual breakthrough curves of ALA and BLG 

when adsorbed from whey concentrate. Furthermore, it was found that modifying the 

operating conditions (total concentration and flow rate) so as to be comparable with those 

used previously for pure mixtures did not improve the degree of separation. This is 

probably a result of the complex nature of whey in which there are additional compounds 

present. Moreover, of the three operating conditions investigated (variation of total 

concentration, flow rate and ratio of BLG to ALA), the ratio, R, was found to be the key 

factor dictating the degree of separation achieved; increasing R improved the separation. 
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However, increasing R requires adding pure BLG to the whey feedstock and this would 

not be feasible in a large-scale process designed for the economic isolation of whey 

proteins. 

Making use of the strong competitive adsorption between the two proteins, a 

novel consecutive two-stage separation process was developed to separate ALA and BLG 

from whey concentrate mixtures. Almost all of the BLG in the feed was recovered, with 

78% being recovered at 95% purity in the first stage and a further 20% at 86% purity in 

the second. In addition, 67% of ALA was recovered; 48% at 54% purity followed by 19% 

at 60% purity in both the first and second stages. In both stages, the application of 

feedstock was terminated at the point where BLG reached its inlet concentration (at 

C/Cf=1). In both stages, two fractions were collected during the loading period; a fraction 

containing almost pure BLG was collected up to the start of the ALA breakthrough, 

followed by a second fraction containing both ALA and BLG. This second fraction from 

the first stage was mixed with whey concentrate solution to form the feedstock for the 

second stage. In the second stage, the second fraction contained BLG at sufficiently high 

purity as to require no further processing. At the termination of feedstock application 

during each stage of operation, the column which then had almost no adsorbed BLG 

remaining was eluted to obtain substantially purified ALA. The novelty of the process 

stems from the fact that it is based on selective adsorption of whey proteins rather than 

selective elution. The latter has been used by many other workers in previous literature. 

The selective adsorption technique also makes the process simple and viable for 

separation as mostly all the BLG was recovered during the loading step. ALA, on the 

other hand, was recovered using simple consecutive elution by varying the pH. No salt 

addition was required for elution which is an additional economical as well as an 

environmental merit to the process.   

The simple lumped kinetic model was used to simulate the single and two-

component breakthrough curves for the adsorption of ALA and BLG onto a 5-ml column 

and at a linear velocity of 60 cm/h. When compared to equivalent experimental results, 

the model accurately predicted the single-component BLG adsorption profiles using the 

Langmuir isotherm parameters, qm and Kd, obtained in batch experiments. The 

breakthrough curve for ALA, however, was well predicted only after increasing qm which 
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indicates the occurrence of additional adsorption processes in the packed-bed relative to 

the batch system. An overshoot of the concentration of BLG in the bed exit stream  

observed experimentally in the two-component system, was only predicted after 

correcting the two isotherm parameters in order to account for the unexpected finding that 

the weakly-bound ALA was able to displace the strongly-bound BLG. The correction 

factors employed for the pure binary mixture were used to simulate the breakthrough 

curves of the two proteins in experiments conducted with whey concentrate in each of the 

two stages of the novel consecutive two-stage separation process, and there was 

agreement between the experimental and theoretical results. These considerations should 

be helpful in developing a model compatible with the mechanisms of adsorption that 

were proposed for these two proteins in light of the CLSM and packed-bed results. 

Concerning the unexpected result that the more weakly adsorbed protein (ALA) 

was able to displace the more strongly adsorbed one (BLG), the author proposed the 

following. The faster BLG was envisaged to be electrokinetically transferred at first and 

exchanged for the neutralising Na+ ions. The locus of this adsorption is assumed to be the 

diffuse part of the electric double layer. In complexation notation, the adsorbed BLG is 

an outer-sphere complex separated from the surface by at least one layer thick of the 

solvent. The displacement occurs later when the lagging (diffusing) ALA manages to 

catch up with the adsorbed BLG whereupon the mass action redistribution must entail 

expulsion of some of the adsorbed BLG (an exchange of BLG for ALA) in order to 

maintain electroneutrality. Therefore, the widespread notion that the more-strongly 

adsorbed (lower Kd) protein would be expected to displace the weaker one needs to be 

reconsidered. It is only when the mass transfer resistances are not rate-limiting (or the 

mass transfer rate limitation is the same for both proteins) that we can expect this notion 

to hold under similar experimental conditions for the two proteins. 
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Outlook 
The logical approach of studying the characteristics of adsorption in pure systems 

before extending the study to real mixtures can be adopted for other protein systems. In 

order to study the adsorption in pure systems, the proteins under consideration should be 

highly soluble in the buffer solution. Therefore in the present study, the adsorption was 

investigated at pH values below the pIs of both proteins where the two proteins are 

soluble and act as cations. Alternatively, the anion-exchange adsorption can be studied at 

a pH value above the pI range between both proteins.  It is to be noted that ALA has 

limited solubility in that pH range. However, an alternative approach can be adopted if 

the sole purpose of the study is to separate ALA and BLG from whey without studying 

the pure system. The adsorption can be performed on either a cation- or an anion-

exchanger at a pH lying between the pI values of the two proteins. In this case, one 

protein will be a cation and the other an anion. That protein with a charge opposite to that 

of the adsorbent will thus be adsorbed, while the other protein having the same charge as 

that of the adsorbent will therefore be driven off the column. A third approach is to 

conduct the adsorption at the pI of one of the two proteins. Thus, one protein will have a 

net zero charge and could hence be easily eluted off the column. Nevertheless, even at its 

pI, the protein could still bind to the ion-exchanger by virtue of forces other than the 

electrostatic (coloumbic) ones, such as asymmetrical charge distribution or hydrogen-

bonding. However, this should not be discouraging since the extent of such adsorption 

might not be sizable. Even if it was, this protein will be weakly bound to the adsorbent, 

relative to the other protein, and thus could be easily separated by elution. 

The present work focuses on studying the adsorption of ALA and BLG at the 

whey conditions. In future work, the physico-chemical properties for ALA and BLG 

particularly in the binary system can be studied under various conditions of initial 

concentration and BLG to ALA ratio. As evident from the present study, the BLG to 

ALA ratio plays a key role in the separation process. Therefore, its effect on the 

competitive adsorption between the two proteins and hence on their separation can be 

further investigated. 

Using the qm versus pH and the Kd versus pH relations obtained from batch 

experiments in delineating the pI of ALA and BLG is a promising method that can be 
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generalised to other protein systems. To verify the general applicability of this method, 

batch experiments can be performed under different values of ionic strength and at a 

larger range of pH values covering the cation- and anion exchange regions of the 

adsorbent. It is to be realized that the method is based on the electrochemical rather than 

the electro-kinetic (zeta) potential.  

Confocal laser scanning microscopy could be a useful technique in understanding 

the events underlying the separation and in elucidating the nature of adsorption provided 

the labelling of the protein does not affect its mass transfer properties. Thus, the effect of 

dye conjugation on altering the mass transfer properties of the protein needs to be further 

investigated. This could be done by conducting gradient elution experiments with 

labelled and unlabelled proteins and comparing their retention factors in order to study 

the criteria affecting the mass transfer alteration such as size and structure of the protein. 

This should also facilitate the task of constructing a suitable model for the process.  

The novel two-stage process developed for whey concentrate purification on a 

small lab-scale can be scaled up by increasing the column height first and then gradually 

increasing the column diameter. The volumetric flow rate and sample load will be 

increased accordingly. The linear flow rate, sample concentration and ratio of sample to 

adsorbent will be kept the same. The same type of adsorbent used for the small scale 

should be suitable for the large scale due to its good flow characteristics. However, 

different system factors such as less efficient flow distribution, wall effects, and extra 

column zone spreading that leads to peak broadening and hence less resolution, may 

affect performance after scale up and will therefore need to be taken into consideration.  

An economic assessment of the two-stage process will be required to test its 

feasibility. The cost of the products is much higher than the cost of the raw material 

which indicates that the process could have a promising potential. The whey concentrate 

costs about £ 15 per Kg, while ALA costs about £ 350*103 per Kg and BLG costs about 

£ 30*103 per Kg. In addition, the cost of SP Sepharose FF is low compared to other 

commercially available adsorbents, and it is anticipated that the column could be reused 

for many cycles of operation (however the precise number would have to be determined 

under process conditions), while the cost of buffers should not be high as they are used in 

very low concentrations. From the technical point of view, the process provides products 
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with relatively high yields and purities as compared to the other separation processes 

cited in literature. Therefore, it is worth a protein manufacturer taking a greater interest in 

this novel process. 

    

Final remark 
The objectives that were set out for investigation as outlined in the Introduction 

have been fully achieved. It is believed therefore that this dissertation makes a significant 

contribution to knowledge regarding the isolation of proteins from whey. 
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12 Appendix 
 
% Solving the simple kinetic-rate constant model for single-component packed-bed 
adsorption 
 
function [u1,u2,x]=simpmodel 
clear; 
close all; 
% defining input parameters 
% height of packed-bed, x in m 
x= 0.023; 
% forward-rate constant, k1 in mlmg-1min-1 
k1=1.7*10^-3; 
% maximum adsorption capacity for the resin, qm in mg/ml 
qm=120; 
% dissociation constant for the ion-exchanger protein interaction, kd in mg/ml 
kd=0.019; 
% Flowrate in ml/min 
F=1; 
% diameter of packed-bed in cm 
d=1; 
% velocity in m/s (=F/area*conversion factor) 
v=(F*(4/pi)/d^2)*0.01/60; 
% initial bulk concentration, C0 in mg/ml 
C0=1; 
m = 0; 
x = linspace(0,x,50); 
%  time in seconds 
t = (0:120:24000); 
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 
u1 = sol(:,:,1); 
u2 = sol(:,:,2); 
figure(1); 
hold on 
plot(t,u1(:,end),'r') 
title('Concentration as a function of time'); 
ylabel('C, mg/ml'); 
xlabel('Time,sec '); 
figure (2); 
plot(t,u2(:,end)) 
title('Amount adsorbed as a function of time'); 
ylabel('q, mg/ml'); 
xlabel('Time, sec'); 
% defining the boundary condition 
function [c,f,s] = pdex4pde(x,t,u,dudx) 
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c = [1; 1]; 
f = [0; 0] .* dudx; 
y= k1*(u(1)*(qm-u(2))-(kd*u(2))); 
s = [-(v)*dudx(1)-y; y]; 
end 
% defining the initial condition 
function u0 = pdex4ic(x) 
if x==0 
    u0= [C0;0]; 
else 
    u0= [0;0]; 
end 
end 
function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t) 
pl = [ul(1)-C0; 0]; 
ql = [0; 1]; 
pr = [0; 0]; 
qr = [1; 1]; 
end 
end 
______________________________________________________________________ 
% Solving the simple kinetic-rate constant model for single-component batch uptake 
adsorption 
 
function dy=beta (t,y) 
% defining the initial condition 
dy = zeros(2,1); 
%v=volume of settled resin, ml  
v=1;  
%V=volume of solution, ml  
V=14; 
%Kd= dissociation constant, mgml^-1  
Kd=0.008; 
%qm=maximum resin capacity, mg/ml  
qm=113.6; 
%k1= adsorption rate constant,mlmg^-1min^-1 
K1=30*10^-3; 
% dc/dt=-dq/dt 
dy(1) = [-K1*y(1)*(qm-y(2))+K1*Kd*y(2)]*(v/V); 
%dq/dt=k1C(qm-q)-k2q  
dy(2)= [K1*y(1)*(qm-y(2))-K1*Kd*y(2)]; 
 
% Script of the program 
close all 
clear all 
clc 
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%t=time, min  
t=150 
%C0=initial concentration, mg/ml  
C0=4 
[t,y] = ode45(@beta,[0 t],[C0 0]); 
figure(1) 
plot (t, y(:,1),'b') 
hold 
figure(2) 
plot (t, y(:,2),'k') 
% Experimental results 
t=[0 
0.183 
0.55 
0.75 
1.033 
1.383 
1.783 
3 
3.583 
4.533 
5.533 
7.5 
12.15 
15.933 
18.033 
24.467 
32.367 
40.567] 
C= [4 
3.91 
3.61 
3.37 
3.126 
2.788 
2.509 
2.3 
1.77 
1.44 
1.3 
1 
0.626 
0.372 
0.146 
0.059 
0.048 
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0.064] 
figure(1) 
plot(t,C,'*') 
 
______________________________________________________________________ 
% Solving the simple kinetic-rate constant model for two-component packed-bed 
adsorption 
 
Read Input data file 
 
function outputs = read_input_data() 
%Contains problem set up statements 
 
%Flag for testing numerical dispersion/diffusion - when 0 it turns off any absorption 
test_flag=1; 
 
%%Flow data 
% outputs.flow = 4.3e-4;         %Metres per second 
F=2; 
% diameter of packed-bed in cm 
d=1.6; 
% velocity in m/s (=F/area*conversion factor) 
outputs.flow = (F*(4/pi)/d^2)*0.01/60; 
outputs.length = 2.5e-2;     %Metres 
outputs.node_number = 300;    %number 
 
%Vector of inputs 
 
outputs.C0(1) =3.0;   
outputs.C0(2)=1.5;           %mg/ml 
 
 
%Vector of binding constants 
 
outputs.qm (1) = 113.6*3.0;   %mg/ml 
outputs.qm (2) = 147*1.5; 
 
%Vector of kds 
 
outputs.kd (1) = 0.008*600;  %mg/ml 
outputs.kd (2) = 0.029; 
 
%Vector rate constants btw binder and material in solution 
 
outputs.k1 (1) = test_flag*35e-3/60;   %ml . mg^-1 . s^-1 
outputs.k1 (2) = test_flag*30e-3/60; 
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outputs.max_steptime = 5;     %seconds 
outputs.solver_time = 20000;  %seconds 
outputs.mu = 1/6;     %Upwinding parameter 
 
% area = pi()*outputs.d^2*0.25; 
% outputs.flow = ((outputs.vol_flow*1e-6)/60)/area; 
 
outputs.display_step_size = 10; 
 
end 
 
ODE statement file 
 

function dC=ode_statements(t,c) 

 

%The ODE statements 

 

%Initialise global variables 

global M C b time_steps k1 kd qm v dx old_q new_q sim_nodes mu qsum; 

 

num_comps=max(size(kd)); 

new_q=0; 

 

%Let's have a go at a competitive binding scenario where kd1 is a function 

%of c2 

 

 

%Calculate the value of q based on delta t between now and previously. If 

%yet_to_ityerate is 1 then iteration not started! 

%Determine whether time_steps is empty or not 

ts_not_initialised=length(time_steps); 

 

if t==0 

    %This is the first iteration 
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    %DEBUG DEBUG DEBUG 

        q=c.*0; 

    %q=linspace(1,10,10)'; 

    %DEBUG DEBUG DEBUG 

     

    new_q=q; 

    %Added 

    %old_q=q; 

else 

    %Work out last time step 

    %Care needed at the front end since time_steps will still be empty at 

    %the first *proper* iteration. 

     

    if ts_not_initialised==1 && t>0 

        time_steps=[0 t]; 

        old_q=c.*0; 

        dt=t; 

    else 

        dt=t-time_steps(1,end); 

    end 

%Loop through all components 

    for j=1:num_comps 

        %Work out current, updated vector of q - simple forward time step 

        %new_q=old_q(:,end).*(1-k1*dt.*c-k1*dt*kd)+k1*qm*dt.*c; 

        %Loop to add up individual old q components but first extract the q 

        %and c for the component j in the outer loop 

        current_start=(j-1)*sim_nodes+1; 

        current_stop=sim_nodes*j; 

        current_q=old_q(current_start:current_stop,end); 

        current_c=c(current_start:current_stop,1); 
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        additive_term=0; 

              for i=1:num_comps 

            start_node=(i-1)*sim_nodes+1; 

            stop_node=sim_nodes*i; 

 

            %Perform addition 

            additive_term=additive_term+old_q(start_node:stop_node,end)./qm(i); 

        end 

        sum_term=k1(j)*qm(j).*current_c.*additive_term; 

         

        %         if length(time_steps)<2 

        new_q(current_start:current_stop,1)=dt*(-

k1(j)*kd(j).*current_q+k1(j)*qm(j).*current_c-sum_term)+current_q; 

         

        %Now, BC states that first value of new_q is always zero 

        new_q(current_start,1)=0; 

         

        %         else 

   % new_q(current_start:current_stop,1)=((-

k1(j)*kd(j).*current_q+k1(j)*qm(j).*current_c-sum_term)-

eta.*old_q(current_start:current_stop,end-1)+lambda.*current_q)./(lambda-eta); 

        %         end 

            

       

    end 

end 

%Now we have a new vector 'q' for the current timestep. 

 

%Populate sparse matrix and BC vector. Start from 2 to deal with boundary 

%condition at l=0 where C=C0 

for j=1:num_comps 
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    %Removing end BC - sim_nodes-1 --> sim_nodes-0 

    for i=2:(sim_nodes-0) 

                    

                %Define current index in matrix and vectors and the current q 

        %subvector 

        index=(j-1)*sim_nodes+i; 

        start_q=(j-1)*sim_nodes+1; 

        stop_q=sim_nodes*j; 

         

        %Extract current q and c (for flux correction of current time step) 

        current_q=new_q(start_q:stop_q,1);  

        current_c=c(start_q:stop_q,1); 

%Extract additive term for q at point i for all components 

        q_sum=0; 

        for k=1:num_comps 

            start_temp_q=(k-1)*sim_nodes+1; 

            stop_temp_q=sim_nodes*k; 

            current_temp_q=new_q(start_temp_q:stop_temp_q,1); 

            q_sum=q_sum+current_temp_q(i)/qm(k); 

        end 

         

        %Interrogate value of q_sum for sanity check 

%         disp('Q sum is currently:'); 

%         disp(num2str(q_sum)); 

         

        %Put into global for viewing later 

        %qsum=[qsum q_sum]; 

         

        %If this is wrong STOP! 

        if q_sum>1 || q_sum<0 

            break 
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        end 

         

        %van Leer giving difficulties. Trying generalised 4-point, upwind 

        %biased scheme instead. This applies between nodes 3 and 

        %sim_nodes-1 

                     

        %Evalulate all constants  

        alpha=(-v/dx)*(0.5-mu); 

        beta=-3*mu*v/dx; 

        gamma=(-v/dx)*(-0.5-3*mu); 

        delta=(-v/dx)*mu; 

            

        %Populate main matrix M as per pg 214 of Chu et al. 

        if i>=3 && i<sim_nodes 

            %Populate matrix for general case 

            M(index,index+1)=alpha; 

            M(index,index)=beta-k1(j)*qm(j)+k1(j)*qm(j)*q_sum; 

            M(index,index-1)=gamma; 

            M(index,index-2)=delta; 

             

        elseif i==2 

            %For sim_node 2 - do normal upwinding 

            %M(index,index+1)=alpha; 

            M(index,index)=-(v/dx)-k1(j)*qm(j)+k1(j)*qm(j)*q_sum; 

            M(index,index-1)=(v/dx); 

                         

%         elseif i==1 

%              %For sim_node 1 

%             M(index,index+1)=alpha; 

%             M(index,index)=beta-k1(j)*qm(j)+k1(j)*qm(j)*q_sum; 
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        elseif i==sim_nodes 

            %For last node also do normal upwinding 

            M(index,index)=-(v/dx)-k1(j)*qm(j)+k1(j)*qm(j)*q_sum; 

            M(index,index-1)=v/dx; 

                    end 

                %Populate BC vector 

        b(index,1)=k1(j)*kd(j)*current_q(i); 

    end 

%Define linear relationship for ode solver to solve 

dC=M*c+b; 

end 

 

Pde solution file 
 

function output=pde_solution(input_data) 

clear global M C b time_steps k1 kd qm v dx old_q sim_nodes 

global M C b time_steps k1 kd qm v dx old_q sim_nodes mu qsum ;  

 

time_steps=0; 

 

%Unpack required data to start with 

sim_nodes=input_data.node_number; 

length=input_data.length; 

C0=input_data.C0; 

kd=input_data.kd; 

qm=input_data.qm; 

k1=input_data.k1; 

solution_time=input_data.solver_time; 

v=input_data.flow; 

mu=input_data.mu; 

max_step_time=input_data.max_steptime; 
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%Work out node spacing 

dx=length/(sim_nodes-1); 

 

%Interrogate number of components 

num_comp=max(size(kd)); 

 

%Work out total number of nodes in each vector and matrix as number of 

%components*number of nodes required 

nodes=num_comp*sim_nodes; 

 

%Prepare blank concentraion vector and sparse matrix 

C=zeros(nodes,1); 

%C=ones(nodes,1)*1e-1; 

M=spalloc(nodes,nodes,2*nodes); 

b=zeros(nodes,1); 

 

%Populate Jacobian pattern to ease ode15s' job a bit 

jac_patt=M; 

for i=3:nodes-1 

    jac_patt(i,i+1)=1; 

    jac_patt(i,i)=1; 

    jac_patt(i,i-1)=1; 

    jac_patt(i,i-2)=1; 

end 

jac_patt(1,1)=1; 

jac_patt(1,2)=1; 

jac_patt(2,1)=1; 

jac_patt(2,2)=1; 

jac_patt(2,3)=1; 

jac_patt(nodes,nodes)=1; 
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jac_patt(nodes,nodes-1)=1; 

jac_patt(nodes,nodes-2)=1; 

 

%Turn off divide by zero errors 

%s=warning('off','MATLAB:divideByZero') 

 

options=odeset('OutputFcn',@query_solver,'JPattern',jac_patt,'MaxStep',max_step_time); 

 

%Define time span vector 

time_span=[0 solution_time]; 

%Populate initial conditions 

initial_conds=zeros(nodes,1); 

%initial_conds=ones(nodes,1)*1e-1; 

for i=1:num_comp 

    initial_conds((sim_nodes*(i-1))+1,1)=C0(i); 

end 

%Call our ODE solver 

[T C]=ode15s(@ode_statements,time_span,initial_conds,options); 

output.concs=C; 

output.time=T; 

output.q=old_q; 

 

end 

 

Query solver file 
 
function status=query_solver(t,y,flag) 
 
global time_steps old_q new_q 
 
%Put current version of q and time into the old q for next iteration 
old_q=[old_q new_q]; 
 
%First time around, time_steps is the time span which screws things up. 
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%This has length 2, so examine and correct 
 if length(t)==2 
     %time_steps=t(1); 
     %Don't damn well touch it!!! 
 else 
    time_steps=[time_steps t]; 
 end 
status=0; 
 
disp(num2str(t)); 
 
%Return status value 
 
end 
 
Main program file 
 
%******************************************** 
%Solve concentration profile for adsorption in a column 
% 
% 
%******************************************** 
 
clear; 
clc; 
 
 
%Read in initialisation data 
input_data=read_input_data(); 
 
%Solve PDE 
pde_solution=pde_solution(input_data); 
 
%Display results 
display_results(pde_solution, input_data); 
 
 
Display results file 
 
function display_results(results, input_data) 
 
step=input_data.display_step_size; 
time_size=length(results.time); 
q=results.q'; 
num_comps=max(size(input_data.kd)); 
sim_nodes=input_data.node_number; 
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%Plot the final breakthrough curve 
for i=1:num_comps 
    break_through(:,i)=results.concs(:,(i*sim_nodes)); 
end 
figure; 
plot(results.time*2.5/60,break_through/3); 
 
hold 
 
% experimental results 
tB = [55.787 
67.307 
77.547 
82.027 
83.947 
86.507 
89.067 
91.627 
94.187 
95.467 
97.387 
100.587 
103.147 
105.707 
109.547 
110.187 
110.5 
125.5 
125.5 
135.5 
150.5 
170.5 
180.5 
190.5 
200.5 
220.5 
220.5 
215.5 
230.5 
240.5 
250.5 
260.5 
270 
280 
290 
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300] 
CB=[0 
0.012 
0.099 
0.183 
0.233 
0.314 
0.395 
0.485 
0.575 
0.615 
0.687 
0.793 
0.866 
0.933 
1.011 
1.021 
1.181 
1.321 
1.37 
1.411 
1.344 
1.481 
1.507 
1.537 
1.564 
1.557 
1.524 
1.441 
1.427 
1.367 
1.124 
1 
1 
1 
1 
1] 
plot (tB, CB*3, '*') 
 
tA = [197.867 
234.987 
261.867 
282.347 
299.627 
313.067 
326.507 
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343.787 
357.227 
377.067 
394.347 
404.587 
421.227 
441.707 
462.187 
489.067 
509.547 
547.307 
550 
560 
570 
580 
590 
600 
610] 
CA= [0 
0.041938688 
0.084486705 
0.185036124 
0.285677711 
0.371080969 
0.457326533 
0.560210858 
0.647867095 
0.7376483 
0.797687624 
0.824073078 
0.880507637 
0.91469403 
0.938488558 
0.959541109 
0.978233153 
1 
1 
1 
1 
1 
1 
1 
1] 
plot (tA, CA*1.5, 'o') 
 
end 
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