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Huntington’s disease (HD) is a currently incurable neurodegenerative condition caused 

by an abnormally expanded polyglutamine tract in huntingtin (HTT). We identified novel 

modifiers of mutant HTT toxicity by performing a large-scale “druggable genome” siRNA 

screen in human cultured cells, followed by hit validation in Drosophila. We focused on 

glutaminyl cyclase (QPCT), which had one of the strongest effects on mutant HTT-induced 

toxicity and aggregation in the cell-based siRNA screen, and which also rescued these 

phenotypes in Drosophila. We found that QPCT inhibition induced the levels of the molecular 

chaperone alpha B-crystallin and reduced the aggregation of diverse proteins. We generated 

novel QPCT inhibitors using in silico methods followed by in vitro screens, which rescued the 

HD-related phenotypes in cell, Drosophila and zebrafish HD models. Our data reveal a novel 

HD druggable target affecting mutant huntingtin aggregation, and provide proof-of-principle 

for a discovery pipeline from druggable genome screen to drug development. 
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Introduction  

Huntington’s disease (HD) is a fatal, currently incurable, late-onset 

neurodegenerative disorder. The disease signs include involuntary and repetitive choreic 

movements, psychological dysfunction and cognitive impairment, which result from 

progressive degeneration of cortical and striatal neurons 1 2.  

HD is caused by the expansion of a CAG repeat tract in exon 1 of the gene encoding 

huntingtin (HTT), which results in an abnormally long polyglutamine stretch in the N-terminus 

of the protein 3. Although the mechanisms are not fully understood, it is believed that the 

disease arises from a toxic-gain-of function of the mutant protein 4 5. A hallmark of HD is the 

presence of intracellular aggregates, which is also a characteristic of the other ten 

polyglutamine-expansion disorders, as well as other neurodegenerative conditions such as 

Parkinson’s or Alzheimer’s disease 6. The role of these aggregates in the disease is not 

clear, although an increasing importance of the oligomeric forms in toxicity is emerging 7 8 

and reducing mutant HTT aggregation with strategies such as pharmacological upregulation 

of chaperone function has been pursued as a therapeutic strategy in HD 9. Mutant HTT 

toxicity is believed to be accentuated, or possibly induced, after cleavage events resulting in 

the formation of short N-terminal polyglutamine containing fragments, which can also be 

produced by aberrant splicing 10. Hence, exon 1 models have been frequently used for 

disease modeling.  

Here, we combined two approaches to identify modifiers of mutant HTT toxicity by 

first performing a cell-based screen to identify genes that when knocked down could 

suppress mutant HTT-induced toxicity, using a library of 5,623 siRNAs selected according to 

the potential druggability of their targets with small molecules 11. We performed this screen  

in two different HD models. Initially, we screened the effects of siRNAs in a mammalian cell 

line inducibly expressing HTT with an abnormal polyglutamine expansion. In a secondary 

analysis, we validated primary hits in a Drosophila model of HD.  
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One of the strongest suppressors of mutant HTT toxicity in both mammalian cells and 

Drosophila was an enzyme responsible for the modification of N-terminal residues of 

glutamine or glutamate into an N-terminal 5-oxoproline or pyroglutamate (pE), named 

glutaminyl cyclase (QPCT).. QPCT not only suppressed mutant HTT induced toxicity but 

also greatly reduced the number of aggregates. This effect is not HTT-specific, since QPCT 

exerted a general effect on aggregation of different aggregate-prone proteins, including 

other proteins containing an expanded polyglutamine or polyalanine tract, which could be 

attributed to increased levels of the chaperone alpha B-crystallin upon QPCT inhibition. 

Furthermore, we designed small molecule modulators of QPCT activity, which effectively 

suppressed mutant HTT aggregation and toxicity in cells, neurons, fly and zebrafish models 

of the disease.  

Results 

Primary cell screen for suppressors of mutant Htt toxicity  

We performed the primary screen using a stable HEK293/T Rex cell line expressing 

full-length human HTT bearing 138 polyglutamines (Q138) under the control of a 

tetracycline-inducible promoter. We confirmed the expression of HTT(Q138) after inducing 

the cells with doxycycline using antibodies recognizing the N-terminus of human HTT 

(Supplementary Results, Supplementary Fig. 1a and Supplementary Note 1), and 

quantitative RT-PCR using primers spanning different areas of the human HTT cDNA 

(Supplementary Fig. 1b). This cell line had reduced cell viability after expression of mutant 

HTT, which was reverted by treatment with a known reference compound (Y27632) 12 

(Supplementary Fig. 1c), suggesting that this model could be used to identify potential 

modulators of mutant HTT cellular toxicity in a large-scale screen. 

For our high-throughput screen, we utilised a strategy consisting of an iterative 

siRNA screen where positive genes were selected after three consecutive rounds to 

compensate for the variability of the assay. We eliminated non-positive siRNAs and added 
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new siRNAs targeting the selected genes in consecutive passes. We assessed rescue of 

cellular toxicity by each siRNA by fluorescence microscopy and automated image analysis 

using three independent readouts: 1) number of cell nuclei (#nuclei), 2) apoptotic index and 

3) aberrant nuclei index, and used rescue indices to express the effect of each individual 

siRNA for each parameter analysed. In an initial screen, we tested 3 independent siRNAs for 

each of the 5,623 genes (a total of 16,869 siRNAs), from which we selected 670 primary 

genes (see Supplementary Note 1 for screen assay and criteria selection). As shown in 

supplementary figure 2a, the three readouts were partially redundant, as more than 50% of 

the 1,000 top scoring siRNAs of one rescue index also ranked amongst the top 1,000 

siRNAs of at least one of the other rescue indices. In supplementary figure 1b, a 

representation of rescue indices obtained in pass 1 shows the relatively large variability of 

the assay, with non-targeting negative control siRNAs, negQ and negF, showing a #nuclei 

rescue indices of 14% and 3% respectively, while using siRNA targeting HTT as a positive 

control rendered a mean #nuclei rescue index of 81%.  

After 3 consecutive rounds of screening, we selected and 257 genes and ranked 

these based on all three rescue indices, using #nuclei rescue index as a primary criterion 

(Supplementary Data Set 1). 

Secondary RNAi screening in a Drosophila model of HD 

To validate the hits obtained in mammalian cells and to focus on targets with 

potential relevance in vivo, we performed a secondary screen in a Drosophila model that 

expressed a construct containing 48 polyglutamines, Q48, that causes eye degeneration 

when expressed using a GMR-GAL4 driver 13. For most genes selected, we studied two 

UAS-RNAi constructs from the Vienna Drosophila RNAi Center (VDRC): a P-element (GD) 

and a phiC31 (KK) construct, the latter of which carries more GAL4-binding sites and should 

therefore express the RNAi more strongly 14. Of the 257 mammalian genes previously 

selected, we detected 133 that had one or more gene orthologs in flies (Supplementary Data 



6 
 

Set 1 and 2). Of these 133 mammalian genes with fly orthologs, 74 Drosophila genes 

(corresponding to 66 mammalian genes) rescued the Q48-induced eye degeneration with at 

least one RNAi line, while the others showed no obvious or significant effect (Supplementary 

Fig. 3a and 3b and Supplementary Data Sets 1 and 2). We crossed suppressor RNAi lines 

to transgenic flies that expressed EGFP, also driven by the same GMR-GAL4 driver. We 

used EGFP to test whether modifiers affected transgene protein synthesis, since Q48 levels 

can be modified by aggregation or autophagic degradation, which do not impact EGFP 

levels. Two of these fly RNAi lines, targeting orthologs to human CTSF and to human 

ADAM8, ADAM11 and ADAM33, reduced EGFP levels on western blots (Supplementary 

Data Set 2), suggesting a general effect of these genes in protein expression, while 

suppression exerted by the other RNAi lines seemed to be polyglutamine-specific.  

 Functional categorization of mutant HTT modifiers   

To gain further insight into the biological relevance of the data generated, we categorized the 

different sets of HD toxicity modulators according to their molecular function. Suppressors 

were enriched for certain classes of proteins such as GPCRs or transporters compared to 

the initial library, while the number of positive kinases in the screen was reduced and no 

cytokines, growth factors or translational regulators were represented. We observed similar 

functional categorizations after selection from the cell and Drosophila screen 

(Supplementary Fig. 4a). An Ingenuity Pathway Analysis (IPA) of the hits obtained in the 

primary screen in cells (Supplementary Table 1a) revealed that the majority of these proteins 

participate in general processes such as GPCR- or cAMP-mediated signalling, but also in 

canonical pathways related to neurodegeneration, such as apoptosis, mitochondrial 

dysfunction, amyloid processing or protein ubiquitination. Importantly, 10 of these proteins 

have been previously related to HD signalling, including subunits of the succinate 

dehydrogenase complex and huntingtin-associated protein 1 (HAP1) (Supplementary Table 

1a). Many of the genes validated in Drosophila (Supplementary Fig. 4b and Supplementary 

Table 1b) are also involved in processes related to neurodegeneration but were enriched in 
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mitochondrial metabolic pathways, especially those associated with fatty acid biosynthesis 

and metabolism.  

Validation of QPCT in Drosophila 

We focused our attention on a gene that had one of the strongest and most 

consistent effects in rescuing mutant HTT-induced toxicity in the cell-based siRNA screen. 

The gene product has glutaminyl cyclase activity and is named QPCT. Two orthologs have 

been reported in fly 15, Glutaminyl cyclase (QC) and iso Glutaminyl cyclase (isoQC), which 

show about 39% amino acid identity; a third fly ortholog, CG6168, shows expression 

restricted to male accessory glands (www.flyatlas.org) and is not considered further here. 

RNAi lines targeting either QC or isoQC partially rescued eye depigmentation and mediated 

a significant decrease in the number of black spots in flies expressing Q48 (Fig. 1a, 1b and 

Supplementary Fig. 5a) (Data are shown for GD- and KK-RNAi lines in the case of QC, but 

only a KK line was available for isoQC). These effects are likely independent of 

transcription/translation of the Q48, since no change in EGFP protein levels were seen when 

we crossed transgenic flies expressing EGFP driven by the same GMR-GAL4 driver as Q48 

with QC or isoQC RNAi lines (Supplementary Fig. 5b). Thus, QPCT represents an 

interesting candidate for studying in HD. 

 To further evaluate the benefits of downregulating QPCT on HD, we took 

advantage of an additional Drosophila model of neurodegeneration, HD flies that express 

exon 1 of HTT with 120 polyglutamines, GMR-HTT.Q120 in eye photoreceptors 16. 

Drosophila melanogaster has a compound eye consisting of many ommatidia, each of which 

is composed of 8 photoreceptors, seven of which can be visualized by light microscopy 

using the pseudopupil technique 17. Neurodegeneration results in the loss of visible 

rhabdomeres of each photoreceptor and can be rescued or enhanced by genetic or chemical 

approaches 18. Consistent with our data using the Q48 flies, the loss of visible 

photoreceptors in transgenic flies expressing GMR-HTT.Q120 was partially rescued when 
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they were crossed with RNAi lines for either of the two QPCT fly orthologues, QC and isoQC 

(Fig. 1c). We observed no effect on the number of rhabdomeres in QPCT RNAi lines in the 

absence of GMR-HTT.Q120. The effects of QPCT knockdown on toxicity correlated with a 

reduction in HTT aggregation, which we assessed in flies expressing GFP-tagged expanded 

huntingtin exon 1, HTTEx1-Q46-eGFP in the eye 19 (Fig. 1d).  

QPCT modulates mutant HTT aggregation  

To further validate QPCT, we first confirmed the protective effect of its knockdown 

against toxicity and aggregation in HEK293 cells expressing the exon 1 of HTT (from residue 

8) with a 74 polyglutamine expansion fused at its N-terminal to EGFP (EGFP-HTT(Q74)) 20 

(Fig. 2a, Supplementary fig. 6a and 6b). .The QPCT siRNAs used in these experiments as 

well as in the screen do not target QPCT-like, which encodes a paralogous protein that 

catalyzes a similar reaction and shows 51% of sequence identity to QPCT (Supplementary 

Fig. 6b and 6c). We also validated the effect of QPCT knockdown on aggregation in HeLa 

cells (Supplementary Fig. 6d) which, like HEK293 cells, express QPCT 21. We also 

confirmed a decrease in protein aggregation of a construct which expresses full-length HTT 

carrying 138 polyglutamines (similar to the one used in the initial screen) (Supplementary 

Fig. 6e). QPCT siRNA did not have a general anti-apoptotic effect as it did not affect 

caspase 3 activity in response to staurosporine treatment (Supplementary Fig. 6f). 

Consistent with these data, QPCT shRNA reduced EGFP-Q80 (80 glutamines fused to 

EGFP) aggregation in primary cortical neurons (Fig. 2b and Supplementary fig. 6g). We 

could not assess the effect of QPCT knockdown on polyglutamine-mediated toxicity in these 

neurons, where the levels of cell death obtained in this assay were very low, as can be 

appreciated in fig. 2b. While knocking down QPCT was protective, overexpression of QPCT 

in HeLa and HEK293 cells increased the numbers of apoptotic nuclei and also led to a large 

accumulation of HTT(Q74) aggregates (Fig. 2c and Supplementary Fig. 7a), while QPCT did 

not increase caspase activity upon staurosporine treatment (Supplementary Fig. 7b). The 

effects of QPCT were activity-dependent, since the catalytically inactive E201Q mutant did 
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not increase the percentage of cells with HTT(Q74) aggregates (Fig. 2d and Supplementary  

Fig. 7c and 7d).  

We measured mRNA levels of QPCT in HD mice and found that its expression was 

reduced when compared to their wild-type littermates, suggesting that QPCT expression 

may be downregulated as a compensatory mechanism (Supplementary Fig. 8) and that 

raised QPCT activity may not be a prerequisite for aggregation.  

QPCT catalyzes the modification of N-terminal glutamines or glutamates into a 

pyroglutamate (pE) residue. Although the presence of an extended polyglutamine tract 

makes HTT a potential substrate for QPCT, this enzyme only modifies N-terminal residues, 

suggesting that any modification on mutant HTT would require an N-terminal cleavage to 

reveal a glutamine at the N-terminal that could be cyclated. The formation of a pE residue 

may then affect its stability and propensity to aggregate, a hypothesis that was previously 

suggested 22. This cleavage model in either the polyglutamine tract or HTT exon 1 or GFP is 

unlikely, as QPCT modulated the aggregation of constructs consisting only of isolated 

polyglutamine expansions (Q57 and Q81) fused C-terminal to EGFP (Fig. 2e and 2f), or HTT 

exon 1 with 74 glutamines fused to HA 23 (Supplementary Fig. 9a and 9b), and QPCT siRNA 

also reduced the aggregation of an expansion of 37 alanines 24 (Fig. 2f). QPCT appeared to 

modulate the early stages of mutant HTT oligomerisation, since QPCT overexpression 

increased the amounts of Flag-tagged monomeric mutant HTT that were co-

immunoprecipitated by GFP-tagged mutant HTT (Fig. 2g) 25. Since QPCT did not interact 

with HTT directly by immunoprecipitation (e.g. Fig. 2g), its effect on HTT oligomer formation 

is likely mediated via intermediaries.  

Design and characterization of compounds that inhibit QPCT  

To target QPCT pharmacologically, we tested a previously described QPCT inhibitor 

26, which did not rescue the HD phenotype in mammalian cells (Supplementary Fig. 10a and 

10b). While this compound has been effective in Alzheimer disease (AD) models by reducing 
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the formation of extracellular pE-Aβ, this may be due to extracellular QPCT inhibition 21 27. 

Thus, we reasoned that the failure of this compound was likely due to poor cell permeability. 

In order to generate novel QPCT inhibitors, we employed existing data on its structure and 

known inhibitors to generate three 3D pharmacophore models, two ligand-based and one 

structure-based (using the human QPCT X-Ray structure (PDB id: 2AFW)). We used these 

models, along with stringently applied CNS filters and a solubility model developed in-house, 

to select 10,000 compounds from both commercially available screening compounds and the 

SienaBiotech compound library. We screened these molecules in a functional assay 

assessing the conversion of the H-Glu-AMC fluorogenic substrate into pyroGlu-AMC, as 

previously described 28, and selected hits associated with predicted robust binding for the hit-

to-lead phase. The optimization strategy was based on physicochemical properties and 

ensemble docking model-driven approaches. The ensemble docking methodology 29 30 was 

chosen to take into account the flexibility of human QPCT catalytic site and was constructed 

using both X-Ray structures and protein conformations coming from a 100 ns molecular 

dynamic study of the human QPCT 2AFW X-Ray structure. The ensemble docking model 

was evolved during the project development. Initially, only 4 X-Ray structures were used 

(PDB ID: 2AFW, 2AFX, 2AFZ31), then a set of 16 protein conformations, selected by 

clustering of molecular dynamic simulations, were added to improve model accuracy. 

Recently, two more X-Ray structures were added to the model (3PBB32 an 3SI033). All the 

docking calculations were performed using CCDC Gold (versions 4 and 5)34 35 36 along with 

an ad-hoc developed program to rank and select the best scored ligand docking pose from 

the pool of QPCT conformations. Along with the biochemical readouts used during this 

optimization, we included a range of in vitro ADME assays, including solubility 

measurements, a CNS membrane permeability assay (PAMPA-BBB) 37 and stability in the 

presence of human CYP3A4, a member of the cytochrome P450 mixed-function oxidase 

system, and a key enzyme involved in the metabolism of xenobiotics in humans.   

http://en.wikipedia.org/wiki/Cytochrome_P450
http://en.wikipedia.org/wiki/Xenobiotic
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We selected a series of compounds on the basis of these properties and validated 

their effects on mutant HTT aggregation and toxicity in cells expressing HTT(Q74)GFP, 

which led to the selection of three of them, SEN177 (1), SEN817 (2) and SEN180 (3) 

(Supplementary note 2, Fig. 3a, Supplementary Fig. 11a). Non-toxic concentrations of these 

compounds caused a dose-dependent reduction in the percentage of cells with aggregates, 

which correlated with a suppression of mutant HTT-induced apoptosis (Fig. 3b, 3c, 3d, 3d 

and Supplementary Fig. 11b). As seen with genetic knockdown experiments, pharmacologic 

inhibition of QPCT using these compounds also reduced aggregation of polyalanines (Fig. 

3d) and did not affect protein levels, as assessed by measuring GFP levels by western 

blotting (Supplementary Fig. 11c) or by metabolic labeling of wild type HTT followed by 

detection of newly synthesized protein in the presence of SEN177 (Supplementary Fig. 11d). 

Importantly, the effect of these compounds was blocked when QPCT expression was 

suppressed by shRNA, confirming that they protect by a mechanism that requires QPCT 

inhibition (Fig 3e, Supplementary Fig. 11e and 11f). Thus, even though these compounds 

also inhibited QPCT-like (Supplementary Fig. 11a) and we cannot exclude the possibility that 

at least some of the effects observed may be mediated by this QPCT isoenzyme, their 

effects on aggregation were QPCT-dependent, as the shRNA used did not target QPCT-like. 

Consistent with these data, SEN177 greatly reduced the early stages of mutant HTT 

oligomerisation, as it decreased the amounts of GFP-tagged monomeric HTT that were co-

immunoprecipitated by Flag-tagged HTT (Fig. 3f). The protective effect of these compounds 

was also confirmed in primary cortical neurons (Fig. 3g), with SEN177 and SEN817 

significantly reducing the percentage of neurons with Q80 aggregates. 

QPCT modulates the levels of alpha B-crystallin 

 The effects of QPCT inhibition on HTT aggregation appeared to be independent of 

effects on protein clearance pathways targeting mutant huntingtin (autophagy and the 

ubiquitin-proteasome system) (Supplementary Fig. 12), changes in mRNA or protein levels 

(Supplementary Fig. 13a and 13b), or secretion of the enzyme into the medium 
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(Supplementary Fig. 13c). QPCT is localized in the ER and secretory pathway and its 

knockdown, overexpression or inhibition seemed to have inconsistent and rather modest 

effects on different readouts of the ER stress response, measured by GRP78/BIP levels or 

phosphorylation of eIF2α, which did not correlate with its effect on aggregation 

(Supplementary Fig. 14). Our data also suggested that CREB (c-AMP response element 

binding protein) or ERK (extracellular signal-regulated kinase) signaling, recently reported to 

be activated upon QPCT inhibition 38 (Supplementary Fig. 15a and 15b), or JNK signaling 

(Supplementary Fig. 15c) were unlikely contributors to the effects we have observed. 

 QPCT overexpression or knockdown did not modulate levels of HSP70, the main 

inducible stress response chaperone (Supplementary Fig. 15d). We performed 

transcriptional profiling to assess changes in alternative molecular chaperones induced by 

SEN177 in the presence of mutant HTT, and observed upregulation of several small heat 

shock proteins (sHSPs) (HSPB6 with 1.6 fold-change; HSPB3 with 1.5 fold-change; HSPB7 

with 1.5 fold-change; and notably, alpha B-crystallin which had >2.5 fold increase in 

transcript levels) (Supplementary Fig. 16a and Supplementary Data Set 3). We confirmed 

this induction at the protein level as well as with other QPCT inhibitors (Fig. 4a). Genetic 

inhibition of QPCT dramatically increased alpha B-crystallin protein and mRNA levels in the 

presence of HTT(Q74) (Fig. 4b and 4c and Supplementary  Fig. 16b), while QPCT 

overexpression, which increased mutant HTT aggregation and toxicity (Fig. 2c and 

Supplementary Fig. 7a), reduced alpha B-crystallin levels (Supplementary Fig. 16c). QPCT 

also modestly modulated alpha B-crystallin levels in the absence of mutant HTT or in the 

presence of the non-pathogenic Q23 (Supplementary Fig. 16b and 16c).  

As a sHSP, alpha B-crystallin acts as a molecular chaperone and is a suppressor of 

polyglutamine toxicity in cells and in Drosophila 39 40 41. As expected, overexpression of 

alpha B-crystallin lowered the number of HTT(Q74) aggregates, while QPCT inhibitors failed 

to reduce aggregation further (Fig. 4d and Supplementary Fig. 16d), suggesting that this 
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increment in alpha B-crystallin was a major contributor to the protection afforded by QPCT 

inhibition.  

QPCT inhibition protects fly and zebrafish HD models 

We tested QPCT inhibitors in flies expressing Httex1Q46 in the eye and found a 

reduction in the number of aggregates (Fig. 5a). The compound with a greatest effect, 

SEN177, was able to also rescue the number of visible rhabdomeres and prevent 

neurodegeneration (Fig. 5b). 

A transgenic zebrafish expressing Htt exon 1 with 71Q fused to EGFP in the rod 

photoreceptors using the rhodopsin promoter has been established and validated as a 

model to study mutant huntingtin aggregation in vivo 42 . Zebrafish have two homologs with 

putative glutaminyl-peptide cyclotransferase activity, QPCT and QPCTLA with 51% and 47% 

protein identity with QPCT and QPCT-like respectively. In order to test the effect of 

pharmacologic inhibition of QPCT in this model, we first determined the maximum tolerated 

concentration for each of the three compounds tested in mammalian cells and subsequently 

treated HD larvae. SEN817 and SEN180 reduced total number of EGFP-aggregates in the 

retina (Fig. 6a), which correlated with a marked decrease in toxicity similar to the positive 

control, clonidine 42, assessed by a rescue in the total area of eye photoreceptors (Fig. 6b).  

Although the three compounds were protective, their effectiveness varied between 

these models, which might be due to intrinsic properties of each system, SEN180 only mildly 

reduced aggregation in neurons and the effect of SEN817 was not significant in Drosophila. 

Although SEN177 had the highest in vitro activity and was able to efficiently reduce 

aggregates in mammalian cells, primary neurons and Drosophila, we found that this 

compound was tolerated at much higher concentrations than its analogs in zebrafish and 

therefore the bioavailability in this model is much lower, which could explain the lack of effect 

in this system. All together, we have identified a number of small molecules that through 

QPCT inhibition have beneficial effects on the treatment of HD in a variety of in vivo models.  
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Discussion  

Our approach using a two-step screen, starting with an initial large-scale analysis in human 

cell models followed by a validation in Drosophila, has yielded a number of potentially 

druggable targets which may be suitable for HD. A variety of HT-RNAi screens have 

identified genetic suppressors of phenotypes mediated by mutant HTT N-terminal fragments 

in Drosophila, C. elegans and mammalian (mouse and human) cells  44 45 46 47. In most 

cases, aggregation was the primary readout, often measured with C-terminal GFP fusions. 

Differences in the nature of the previous screens (species, cellular context, huntingtin 

fragment length, length of the polyglutamine expansion, primary readout and differences in 

siRNA/shRNA sequences) complicates cross-screen comparisons. Also, virtually no screens 

in this area have examined their false negative rates due to inefficient knockdown. 

Additionally, the screen presented here was biased towards the druggable component of the 

human genome, and a further selection was made in the course of triaging towards specific 

protein target classes. This likely contributes to the relatively poor overlap of hits in the 

present and previous screens. A comparison with a screen performed in HEK293T cells to 

identify genetic suppressors of inducibly expressed mutant HTT exon 1 toxicity 46 revealed 

an overlap of only 4 genes (CPA1, GRIN2A, NR3C2 and USP21) when considering the top 

257 hits (Supplementary Data Set 1). However, matrix metalloproteases, identified in 

HEK293T cells as modulators of fragmentation and toxicity of N-terminal portions of mutant 

HTT 45 were also identified in our dataset, as well as PAK1, which we previously identified as 

a kinase promoting mutant HTT self-association and toxicity 25, thus validating the 

effectiveness of the screen.  

Based on the reproducible and clear rescue that QPCT inhibition exerts on mutant 

HTT toxicity in cells and in Drosophila, we focused on this target. A catalytically inactive 

QPCT was not able to increase the number of aggregates, suggesting that pE modifications 

modulate the levels of aggregates in HD models. Although one obvious mechanism would 
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involve cleavage of the polyglutamine tract followed by cyclation of an N-terminal pE residue 

that may change properties such as stability or hydrophobicity, which would account for its 

change in aggregation 22, our data suggest that the effect of QPCT on HTT may be indirect. 

We found that modulation of aggregation by QPCT was not restricted to mutant HTT but it 

also affected aggregation of other aggregate-prone proteins and that QPCT influences the 

formation of mutant HTT oligomeric species. We observed an induction in several sHSPs, 

mostly alpha B-crystallin, suggesting that QPCT inhibition caused a stress response distinct 

from classical Hsp70 induction, which might be mediated by indirect substrates for pE 

modification. This molecular chaperone reduces aggregation of polyglutamine containing 

proteins 39 41, alpha-synuclein 48 41or amyloid-β peptide  49 50 , underscoring QPCT inhibition 

as an effective target for misfolded protein disorders. Since alpha B-crystallin is regulated at 

the transcriptional level while QPCT resides in the secretory pathway, inhibition of QPCT 

may activate a signalling response that enhance alpha B-crystallin transcription. Our data 

suggest that this is likely independent of an ER stress response or the involvement of ERK 

and CREB, which have been recently found phosphorylated upon QPCT inhibition 38, as well 

as other stress signalling pathways such as JNK. Further work will need to clarify the QPCT 

substrate mediating this effect. It is important to stress that the benefits of QPCT 

downregulation may not be restricted to alpha B-crystallin as an effector, as the upregulation 

of other related sHSPs may also contribute beneficially.  

We identified and characterised a series of compounds that efficiently reduce mutant 

HTT aggregation in mammalian cell lines and also in primary mouse neurons, fly eye and in 

zebrafish. While the levels of rescue and significance obtained varied between compounds 

depending on the model used, this may be as a result of differences in absorption routes and 

bioavailability. Nevertheless, our data showed that pharmacologic inhibition of QPCT using 

this compound series can rescue HD phenotypes and provides proof-of-principle for QPCT 

as a potential therapeutic target for HD and possibly other related intracellular 

proteinopathies by modulating the formation of oligomeric forms, which have been proposed 
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as the most toxic species in these diseases 7 8. Clearly, further work is required before 

considering that this will be clinically relevant, including likely additional drug development. 

Nevertheless, in a broader perspective, our data suggest that a discovery pipeline from 

druggable genome screen to drug development may be tractable for neurodegenerative 

diseases.   
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Figure legends 

Figure 1. Downregulation of QPCT in flies rescues HD toxicity. 

a. The eye phenotype of flies that express Q48 crossed to w1118 (VDRC stock number 

60000) is rescued upon downregulation of Drosophila Glutaminyl cyclase (QCGD38277, VDRC 

GD-RNAi line 38277). Representative images of eye pigmentation rescue are shown. 

F=female; M=male.  

b. Downregulation of QPCT fly orthologs QC and isoQC using KK-RNAi lines (lines 

QCKK106341 and isoQCKK101533) reduced the number of black necrotic-like spots on Q48 flies 

(see Supplementary Fig.5a for quantification). Fisher’s exact test was applied for statistical 
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comparison between control and test genotypes. Females: isoQCKK101533 p=2.42 E-14; 

QCKK106341 p= 3.05 E-12; males: isoQCKK101533 p=3.53 E-0.8; QCKK106341 p= 1.72 E-0.9 

c. Loss of rhabdomeres due to expression of expanded huntingtin exon1 (elav-Gal4; GMR-

HTT.Q120) in the eye was significantly rescued upon downregulation of QPCT fly 

orthologues QC or isoQC (GD- or KK-RNAi lines as indicated). Graph shows the mean ± 

SEM of the average number of rhabdomeres per eye from 4 independent experiments; one-

tailed paired t-test was used to test significance.  

d. The number of aggregates in the eyes of flies expressing expanded huntingtin HTTex1-

Q46-eGFP using GMR-GAL4 was reduced by downregulating QPCT fly orthologs QC and 

isoQC (RNAi lines isoQCKK101533, QCKK10634, QCGD38277). Graph shows mean ± SEM of the 

number of aggregates from 4 independent crosses for each genotype with control levels set 

at 100%. One-tailed paired t-test was used for comparison between control and test 

genotypes (n = 4).    

In all panels, * p<0.05, ** p<0.01 and *** p<0.001. Scale bars represent 200 µm. 

 

Figure 2. QPCT modulates HTT toxicity and aggregation in mammalian cell lines and 

primary neurons 

a. The percentage of cells with apoptotic nuclei or HTT(Q74) aggregates is reduced in 

HEK293 cells transiently expressing EGFP-HTT(Q74) and  treated with QPCT siRNA. 

Representative images are shown in supplementary figure 6a. 

b. QPCT shRNA significantly reduced the number of aggregates in mouse primary cortical 

neurons expressing Q80-EGFP. Scale bar represents 10 µm. The mean of 3 independent 

experiments in triplicate is represented in the graph. Significance was analysed by two-tailed 

paired Student’s t-test.  
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c,d. Overexpression of QPCT (pCMV6-QPCT) together with EGFP-HTT(Q74) in HeLa cells 

for 48h increased the percentage of cells with apoptotic nuclear morphology and aggregates 

(c), this effect is not observed with a catalytically inactive QPCT (QPCT(E201Q)-Flag) (d). 

e. The percentage of HeLa cells expressing EGFP-HTT(Q74), EGFP-Q57 or EGFP-Q81 

with aggregates is enhanced upon QPCT-Flag overexpression for 48 h. 

f. QPCT siRNA reduces the percentage EGFP-Q81 or EGFP-A37 with aggregates in 

HEK293. 

g. Overexpression of QPCT enhanced the amount of mutant HTT(1-548)-Flag co-

immunoprecipitating with HTT(1-588)-GFP. Levels of Flag-HTT(1-588) co-

immunoprecipitated relative to total lysates from 5 independent experiments are represented 

in the graph. Data were analyzed by two-tailed paired Student’s t-test (n= 5 experiments). 

Full blot images are shown in Supplementary Fig. 17a. 

In all panels, unless indicated, graphs show mean values with control conditions set to 100 

and error bars represent standard deviation from a triplicate experiment representative of at 

least three independent experiments. Statistical analyses were performed by two-tailed 

unpaired Student’s t-test: ***p<0.001, **p<0.01; *p<0.05; NS, not significant 

 

Figure 3. Design of QPCT inhibitors that reduce mutant HTT aggregation  

a. Chemical structure of compounds designed to inhibit QPCT activity. Table indicating the 

activity and in vitro ADME properties of the compounds is shown in supplementary fig. 11a.  

b,c. Treatment of HeLa cells expressing EGFP-HTT(Q74) with SEN177, 817 and 180 (50 

µM) for 24h reduced the percentage of cells with aggregates (b) and apoptotic nuclei (c).  

d. SEN177 reduces the percentage of HEK293 cells with EGFP-HTT(Q74) or EGFP-A37 

aggregates in a concentration-dependent manner.  
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e. SEN177 does not further reduce the percentage of EGFP-HTT(Q74) aggregates in QPCT 

shRNA transfected cells. 

f. SEN177 reduces the amount of HTT(1-588)-GFP co-immunoprecipitating with HTT(1-

548)-Flag in HeLa cells (25 µM SEN177). The amount of GFP-HTT(1-548) 

immunoprecipitated relative to total lysates was quantifiedand the average of 5 independent 

experiments is shown in the graph. Data were analyzed by two-tailed paired Student’s t-test 

(n= 5 experiments).   Full blot images are shown in Supplementary information 17b. 

g. Primary neurons expressing EGFP-Q80 for 3 days were treated with 50 µM of indicated 

compounds for further 24h.   

In all panels, unless indicated, graphs show mean values with control conditions set to 100 

and error bars represent standard deviation from a triplicate experiment representative of at 

least three independent experiments. Statistical analyses were performed by two-tailed 

unpaired Student’s t-test: ***p<0.001, **p<0.01; *p<0.05; NS, not significant. 

 

Figure 4. QPCT inhibition induces alpha B-crystallin levels  

a. Alpha B-crystallin (Cryab) protein levels were increased in cells transfected with 

HTT(Q74)GFP and treated with the indicated compounds at 25 µM for 24 h. Full blot images 

are shown in Supplementary information 17c. 

b,c. Knockdown of QPCT for 24 h followed by transfection with HTT(Q74)GFP for another 

24h increased protein (b) and mRNA (c) levels of alpha B-crystallin. Fold change in mRNA 

of QPCT or alpha B-crystallin is represented in the graph with error bars representing 

standard deviation. The mean of three independent experiments in triplicate was normalized 

to 1 and significance was calculated by one sample t-test. Full blot images are shown in 

Supplementary information 17d. 

d. Overexpression of alpha B-crystallin (CRYAB-Flag) reduced the percentage of cells with 

HTT(Q74)GFP aggregates. SEN817 decreased aggregation when added at 25 µM for 24h in 
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control but not CRYAB-expressing cells. In all panels, unless indicated, graphs show mean 

values with control conditions set to 100 or 1, and error bars represent standard deviation 

from a triplicate experiment representative of at least three independent experiments. 

Statistical analyses were performed by two-tailed unpaired Student’s t-test: **p<0.01; 

*p<0.05; NS, not significant. 

 

Figure 5. Pharmacologic inhibition of QPCT in fly  

a. Flies that expressed HTTex1-Q46-eGFP in the eye have fewer aggregates after treatment 

with 50 µM of indicated compounds . Graph represents mean ± SEM from 4 independent 

crosses for each compound. Statistical analyses were performed by one-tailed unpaired 

Student’s t-test. Scale bars represent 200 µm. 

b. Flies expressing HTTEx1-Q120 (GMR-HTT.Q120) show more rhabdomeres after 

treatment with SEN177 (50 µM). Graph represents the average number of rhabdomeres per 

eye ±SEM from 3 independent experiments with females and males counted separately, 

each based on approximately 10 individuals per datapoint, scoring 15 ommatidia from each 

individual. Statistical analysis was performed using one-tailed paired Student’s t-test. 

 

Figure 6. Pharmacologic inhibition of QPCT in zebrafish 

a. Representative sections through the central retina of transgenic HD zebrafish at 7 d.p.f. 

treated with DMSO, SEN177 (1 mM), SEN817 (100 µM) or SEN180 (100 µM) showing 

aggregates (arrow) within the rod photoreceptors. Scale bar represents 10 µm. Treatment 

with QPCT inhibitors resulted in reduction in aggregates (Student’s t-test) for SEN187 and 

SEN810.  

b. Representative sections through the central retina of transgenic HD zebrafish at 9 d.p.f. 

treated with DMSO, SEN177 (1 mM), SEN817 (100 µM) or SEN180 (100 µM). To 

demonstrate that loss of GFP corresponds to loss of photoreceptors, sections were stained 
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with anti-rhodopsin (1D1) antibody (red).  GFP labels the whole rod photoreceptor, whereas 

rhodopsin is present in the rod outer segment. Merged images show co-localisation of GFP 

the rhodopsin (red). Photoreceptor degeneration is ameliorated by SEN817 and SEN180. 

Scale bars, 10 µm. 

In all panels, **p<0.01; *p<0.05; NS, not significant. 

 

Online Methods 

Assays for validation polyglutamine toxicity modifiers in Drosophila 

Drosophila fly stocks: As a model of polyglutamine toxicity, flies that expressed a 

protein with 48 glutamines encoded by P{UAS-Q48.myc/flag}31 13 in eyes under control of  

the GMR-Gal4 driver P{GAL4-ninaE.GMR}12 51 (Q48) were used. Fly orthologs to the genes 

identified in the cell screen were selected by performing reciprocal BLASTP and cross 

checking with databases including http://www.ncbi.nlm.nih.gov/homologene, 

http://www.genecards.org/, http://www.ensembl.org/index.html. The RNAi lines 

corresponding to the identified genes were obtained from Vienna Drosophila RNAi Center 

(VDRC, http://stockcenter.vdrc.at/control/main). 

The following stocks were generous gifts: UAS-Q48.myc/flag from J.L. Marsh 13, 

UAS-Httex1-Q46-eGFP from N. Perrimon 19. Fly lines that are not referenced here are 

documented in FlyBase (www.flybase.org).  

All fly crosses and experiments were performed at 25°C. 

Drosophila RNAi screen: Five virgins of genotype w; GMR-GAL4; UAS-Q48.myc/flag 

(Q48) were crossed to males carrying each UAS-RNAi (GD- and KK-RNAi collections, VDRC, 

http://stockcenter.vdrc.at/control/main). Genetic background was controlled by crossing w; 

GMR-GAL4; UAS-Q48.myc/flag females to w1118 males that share the same genetic background 

(VDRC stock number 60000 for the GD-RNAi lines and 60100 for the KK-RNAi lines). For 

http://www.ncbi.nlm.nih.gov/homologene
http://www.genecards.org/
http://www.ensembl.org/index.html
http://stockcenter.vdrc.at/control/main
http://www.flybase.org/
http://stockcenter.vdrc.at/control/main
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Glutaminyl cyclase (CG32412) the GD-RNAi line 38277 and the KK-RNAi line 106341 were 

used. For isoGlutaminyl cyclase (CG5976), the KK-RNAi line 101533 was used. For GD-RNAi 

lines, degeneration was determined by scoring the eye depigmentation in the progeny of the 

above crosses 4 days after eclosion, assessing modification of polyglutamine loss-of-

pigmentation and black necrotic-like spots. For KK-RNAi lines, as their background leads to dark 

eye pigmentation (http://www.vdrc.at/rnai-library/rnai-protocols), toxicity was assessed by 

scoring the presence or abscence of black necrotic-like spots in the eyes of 10-day old flies. 

Fisher’s exact test was performed to compare the numbers of necrotic-spot-containing flies in 

the KK-RNAi crosses with controls using an arbitrary p<0.005 as a statistical cut-off for 

significance. Eyes were imaged using a Nikon CoolPix 990 digital camera attached to a 

dissecting microscope.  

EGFP expression levels assessed in Drosophila RNAi lines: Western blot analysis 

was performed using progeny of crosses between virgins of the genotype w; GMR-GAL4; UAS-

EGFP and males of each VDRC-RNAi line used or background control (VDRC stock number 

60100). Fly heads were homogenized in Laemmli sample buffer. Rabbit polyclonal anti-GFP at 

1:1000 (AbCam, Ab6556) and monoclonal anti-beta tubulin at 1:10000 (Developmental Studies 

Hybridoma Bank) were used. Blots were scanned using Odyssey Fc Imaging System (LI-COR 

Biosciences). This validation was initially performed once on each suppressor, and 

subsequently RNAi lines showing an apparent reduction in EGFP levels were re-tested using 

the progeny of three independent crosses. Statistical analysis was performed by two-tailed 

paired t-test between the RNAi lines and the control line. 

Pseudopupil assay: Analysis was performed as previously described 17. Virgins of 

genotype elav-GAL4C155; {GMR-HD.Q120}4.62/TM3 (elav-Gal4; GMR-HTT.Q120) 16 were 

crossed with males carrying the RNAi construct for Glutaminyl cyclase (lines QCGD38277 or 

QCKK106341) or isoGlutaminyl cyclase (line isoQCKK101533) and compared to background control 

line.  

http://www.vdrc.at/rnai-library/rnai-protocols
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To evaluate the effect of QPCT inhibitors, virgins of genotype yw; {GMR-

HD.Q120}2.4 (GMR-HTT.Q120) were allowed to mate with w1118 control males for 48 hours 

on standard cornmeal food and then transferred on fly food containing the compounds.  

The number of rhabdomeres per ommatidium was scored in progeny of the above 

crosses at 3 (GMR-Q120) or 4 (elav-Gal4; GMR-HTT.Q120) days post-eclosion. Statistical 

analysis was performed using one-tailed t-test on data from 3 or 4 independent experiments, 

each based on approximately 10 individuals for each genotype, scoring 15 ommatidia per 

eye. When compounds were tested, the analysis was done on females and males of each 

treatment separately. 

Aggregate counting: Virgins of genotype w; GMR-GAL4; UAS-Httex1-Q46-eGFP 19 

were crossed with males of QPCT UAS-RNAi lines or from the background KK-RNAi control 

line, since all the background controls show similar aggregate scoring. Eye pictures of 18-

day old progeny were taken using a Leica MZ16F microscope connected to a Leica 

DFC340FX digital camera. For each genotype, GFP punctae indicating aggregate formation 

was counted using ImageJ “Cell Counter” plugin in the eyes of 20 males, a pool of 5 males 

from four independent crosses. For compound testing, virgins of genotype w; GMR-GAL4; 

UAS-Httex1-Q46-eGFP were crossed with w1118 control males, and females of the progeny 

scored 15 days post-eclosion. The experiment was repeated at least three times and for 

each experiment at least 4 female eyes were scored. An unpaired one-tailed t-test was used 

to determine statistical significance for single comparisons between two groups using 

GraphPad Prism. 

Compound  treatment: Flies were reared on food (Instant Fly Food, Philip Harris, 

Ashby de la Zouch, UK) containing either QPCT inhibitor (50 μM) dissolved in DMSO or 

DMSO alone. The progeny were flipped every 2 days on fresh food containing the specific 

inhibitor or DMSO. 
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Bioinformatics Analysis 

Ingenuity Pathways Analysis (Ingenuity® Systems, www.ingenuity.com) was 

used to analyze the distribution of siRNAs tested among the different protein classes 

as well as to determine the canonical pathways associated to the confirmed primary 

actives. 

 

Assays for validation of polyglutamine toxicity and aggregation modifiers in 

human cell lines 

Cell culture: HEK293 (Human Embryonic Kidney), HeLa (Human cervical 

carcinoma) cells and Atg5-deficient (Atg5-/-) mouse embryonic fibrolasts (MEFs) (gift from N. 

Mizushima) were grown in Dulbecco’s modified eagle medium supplemented with 10% FBS, 

100 U/ml penicillin/streptomycin and 2 mM l-glutamine at 37ºC in 5% CO2. UbG76V-GFP-

expressing stable HeLa cell line (kind gift from N.P. Dantuma) was maintained in medium 

containing 0.5 mg/ml G418.  

Isolation and culture of mouse primary cortical neurons: Primary cortical 

neurons were isolated from C57BL/6 mice (Jackson Laboratories) embryos at E16.5.  

Briefly, brains were harvested and placed in ice-cold PBS/glucose where the meninges were 

removed and the cerebral cortices were dissected. After mechanical dissociation using 

sterile micropipette tips, dissociated neurons were resuspended in PBS/glucose and 

collected by centrifugation. Viable cells were seeded on poly-ornithine-coated 12-multiwell 

plates. Cells were cultured in Neurobasal medium supplemented with 2 mM glutamine, 200 

mM B27 supplement, and 1% Penicillin-Streptomycin at 37°C in a humidified incubator with 

5% CO2. One half of the culture medium was changed every two days until treatment. After 

5 days of culturing in vitro, differentiated cortical neurons were infected with lentiviral 

particles bearing EGFP-Q80 and scramble or QPCT-directed shRNAs. Compounds were 

added 3 days after EGFP-Q80 viral infection and left for another 24h. When EGFP-Q80 was 

http://www.ingenuity.com/
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expressed together with shRNA, 5-6 days were needed before cultures were fixed in a 2% 

PFA-7.5% glucose solution.  

DNA constructs: Human QPCT (NM_012413) plasmid was purchased from Origene 

(pCMV6-XL5-QPCT). A C-terminal Flag-tagged QPCT construct was generated by PCR 

amplification of QPCT cDNA from pCMV6-XL5-QPCT using primers overhanging HindIII and 

BglII sites and insertion into the pCMV5-FLAG in HindIII and BamHI restriction sites, using 

standard restriction enzyme digestion and ligation procedures. QPCT(E201Q)-Flag was 

generated using QuickChange II Agilent Site-Directed mutagenesis kit with the following 

primers Fw 5’-CTTCTTTGATGGTCAAGAGGCTTTTCTTCACTGG-3’ and Rev 5’-

CCAGTGAAGAAAA GCCTCTTGACCATCAAAGAAG-3'. pcDNA or pCMV5-Flag empty 

vectors were used as mock controls for pCMV6-XL5-QPCT or QPCT-Flag respectively. 

Constructs expressing the first exon of the Htt gene carrying 74 polyglutamines 

expressed from pEGFP-C1 (Clontech) (EGFP-HTTQ74) or pHM6 (Roche Diagnostics) (HA-

HTTQ74), or with only 23 polyglutamines (EGFP-HTTQ23), were described previously 52. 

pEGFP-N1-Q57 and pEGFP-N1-Q81 23 and pEGFP-C1-A37 24 have been previously 

described. Mutant HTT(1-588)-Flag was provided by MR Hayden and mutant HTT(1-

548)GFP generated by S. Luo 25. 3xFlag-CRYAB construct has been previously described 

53. The pGL3-BIP/GRP78-luciferase construct was kindly provided by M. Renna 54 

Reagents: Chemical compounds used in cell culture were the autophagy inhibitors 

Bafilomycin A1 (400nM, DMSO; 4 hours; Millipore) and 3MA (10 mM, 16 hours; SIGMA), 

staurosporine (3 μM) and the proteasome inhibitor MG132 (10 μM). PBD150 was 

synthesized as described in 26. 

Transfection: Cells were transfected in 6-well plates with 0.5-1.5 μg of DNA and 5 μl 

of Lipofectamine (Invitrogen) or TransIT-2020 (Mirus) per well for 4 hours in Optimem 

(GIBCO-BRL) and then incubated in full media for 48 hours. Gene knockdown experiments 

were performed using ON-TARGETplus SMARTpool siRNA (Dharmacon) for human QPCT, 

consisting on 4 siRNAs with the following sequences: CUAUGGGUCUCGACACUUA; 
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GUACCGGUCUUUCUCAAAU; CCUUAAAGACUGUUUCAGA; 

GGAACUUGCUCGUGCCUUA, and which do not target the QPCT like sequence. For 

siRNA treatment, a single transfection protocol using 50nM siRNA for 48 h or a double 

transfection protocol which consisted on a first 50 nM siRNA transfection followed by a 

second 50 nM siRNA transfection after 48 hours. 

Western blotting: Cells were washed once in PBS and harvested on lysis buffer (20 mM 

Tris-HCl pH 6.8, 137nM NaCl, 1 mM EGTA, 1% Triton X-100, 10% glycerol, 1x Roche 

complete mini protease inhibitor). Equal loading was obtained by protein concentration 

determination using a Bio-Rad assay followed by resuspension and boiling in Laemli buffer. 

Samples were subjected to 12% SDS-PAGE and transferred to PVDF membrane 

(Immobilion-P, GE Healthcare). Blots were proved with primary antibody: anti-LC3 (1:2000; 

Novus Biologicals, NB100-2220), anti-Hsp70 (1:1000; Enzo SPA810), anti-CRYAB (1:1000; 

Cell signalling 8851),  anti-actin (1:2000; Sigma, A2066), anti-α-tubulin (1:4000; T9026, 

Sigma), anti-Flag epitope (1:2000; SIGMA, F7425), anti-GFP (1:1000; Clontech, Living 

colours, polyclonal), eIF2α (1:1000, Abcam 5369) and phospho-S51-eIF2α_(1:1000, Abcam 

32157), GRP78 (1:1000, Abcam 21685), anti-phospho-ERK (1:1000, Cell signalling, 9101), 

anti-ERK (1:1000, Cell signalling, 9102), anti-phospho-CREB (S133) (1:1000, Cell signalling 

9191), anti-CREB 86B10 (1:1000, Cell signalling, 9104), anti-phospho-JNK (1:1000, Cell 

signalling, 9255), anti-JNK (1:1000, Cell signalling, 9252). The appropriate anti-mouse or 

anti-rabbit secondary antibodies were used and visualized using an ECL detection kit 

(Amersham) or LI-COR Biosciences infrared imager (Odyssey). 

Caspase 3/7 activity assay. Cells were seeded in a 96-well plate 24h prior to the 

assay and 1 µM staurosporine or DMSO was added for the last 8h. Caspase 3/7 activity was 

measured by using a luminogenic caspase 3/7 substrate (Caspase 3/7-Glo Assay, Promega) 

following manufacturer protocols in a Glomax luminometer (Promega). Protein concentration 

was determined in each cell lysate and caspase 3/7 activity was normalized to protein levels.  
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Co-inmunoprecipitation assays: Assays were performed as previously described 

25, where HTT(1-588)Flag(Q138) and HTT(1-548)GFP(Q138) were expressed in HeLa cells 

together with QPCT plasmid for 48h, or treated with 25 µM SEN177 for 24h. Cells were 

lysed in buffer B containing 10 mM Tris pH 7.4, 150 mM NaCl, 1 mM EDTA pH8, 1% triton 

and 1x Roche complete mini protease inhibitor for 20 min on ice, followed by centrifugation 

at 13000 rpm for 10 min. Five hundred micrograms total protein were incubated with primary 

anti-Flag M2 (Sigma) or anti-GFP (Clontech, Living colours, polyclonal) at 5 µg/ml overnight 

at 4°C. Protein G Dynabeads (LifeTechnologies) were added and incubated for further 2 h. 

Beads were washed 3 times with buffer B and eluted using 0.1 M glycine pH 2.5M followed 

by boiling in laemli buffer. Samples were subjected to western blot and visualized using 

LICOR. A fraction of the total lysates was run simultaneously. 

 Reverse-transcriptase PCR analysis: Total RNA was isolated from cell pellets 

using Trizol Reagent (Invitrogen), treated with DNase I, and cDNA synthesis was performed 

by SuperScript III First-Strand Synthesis System (Invitrogen). Standard conditions were used 

for cDNA amplification and PCR products were analyzed by agarose gel electrophoresis and 

ethidium bromide staining or quantitated with real-time PCR. For real-time PCR analysis, the 

reaction mixture containing cDNA template, primers, and SYBR Green PCR Master Mix 

(Invitrogen) was run in a 7900 Fast Real-time PCR System (Applied Bio-systems, Carlsbad, 

CA). Fold changes on mRNA levels were determined by standard curve and after 

normalization to internal control β-actin RNA levels. Primer sequences used in this study 

are: QPCT, 5’-CATGGCATGGATTTATTGG-3’ and 5’- GACGGTATCAGATCAAAC-3’; 

QPCT-like, 5’- CAGCGTCTCTGGAGCACTTA-3’ and 5’- GCCTCCAGGAACTTTCTGACT -

3; GFP 5’- ACGTAAACGGCCACAAGTTC-3’ and 5’- TTCAGGGTCAGCTTGCCGTA-3’; 

actin, 5’-AGAAAATCTGGCCCACACC-3’ and 5’-GGGGTGTTGAAGGTCTCAAA-3’; CRYAB, 

5’- TCTTGAGCTCAGTGAGTACTGG-3’ and 5’-AGCTCACCAGCAGTTCATGG-3’; and 

mouse QPCT, 5’-CGACTTGAGCCAATTGCTGA-3’ and 5’-CTTCCGGGTTAAGAGTGCTG-

3’. 
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mRNA isolation from mouse brain: All mouse experiments were performed under 

appropriate UK Home Office licences and following institutional procedures. We analyzed 

samples from N171 mutant HD mice and wild-type littermate controls at 20 week. mRNA 

was extracted from brains homogenized in Trizol (Invitrogen) using an Ultra torax 

homogenizer.  

Lentivirus infection: shRNA containing pLKO.1 vectors targeting both mouse and 

human QPCT (TRCN032432) were obtained from The RNAi Consortium (TRC) and 

scramble shRNA vector was generated in D. Sabatinit’s laboratory (Addgene, plasmid 1864). 

Lentiviral plasmids to express Q80-GFP were kindly provided by J. Uney 55. Lentiviral 

particles were produced and transduced following The RNAi Consortium protocols.  

Cell toxicity and aggregation assays: Cells were fixed for 7 minutes in 4% 

paraformaldehyde (PFA). For EGFP-tagged constructs, slides were mounted in Citifluor 

(Citifluor, Ltd.) containing 4’,6-diamidino-2-phenylindole (DAPI; 3 μg/ml; Sigma) and 

visualized using an Eclipse E600 fluorescence microscope (plan-apo 60x/1.4 oil immersion 

lens) (Nikon). For detection of HA-tagged constructs, inmunofluorescence with an anti-HA 

(Covance laboratories 1:500) and anti-mouse Alexa488 secondary antibody (Invitrogen, 

1:1000) was performed followed by mounting in Citiflour-DAPI. We assessed the percentage 

of transfected cells (EGFP- or HA-positive cells) with at least one aggregate per cell. 

Apoptotic cell death was determined by assessing the nuclear morphology (nuclei 

fragmented or condensed) in transfected cells. Slides were blinded and at least 200 

transfected cells per slide were scored; each individual experiment was performed in 

triplicate. 

Detection of nascent protein synthesis: Protein synthesis was assessed by 

metabolic incorporation of AHA (L-azidohomoalanine) into cells transfected with EGFP-

HTT(Q23). Briefly, 12 hours after HeLa cells transfection, media was washed and replaced 

with L-methionine/L-cysteine free medium and treated with DMSO or SEN177 (50 uM) for 1h 

prior to addition of AHA (L-azidohomoalanine) to the media and collection of cells every 2 
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hours. Labelled protein was detected by western blot after performing Click-IT protein 

detection assay (Life Technologies) using biotin, following manufacturer protocols. 

Luciferase reporter assay: Cells were transfected with 1 μg of GRP78-luciferase 

(firefly) reporter construct and 50 ng of renilla-luciferase (pRL-TK) as an internal transfection  

efficiency control. Cells were collected in Passive lysis buffer and luciferase activity was  

measured using the Dual-luciferase Reporter Assay System (Promega) following  

manufacturer’s protocol in a Glomax Luminometer (Promega). GRP78-luciferase relative 

activity was calculated relative to the renilla-luciferase transfection efficiency control activity 

for each sample; experiments were performed in triplicate. 

Statistical analysis: Quantification of immunoblots was performed by densitometric 

analysis using the Image J software or the LI-COR Biosciences infrared imager software and 

normalized to loading control (actin or tubulin, as indicated). The p-values were determined 

by two-tailed Student’s t-test.  

 Aggregates were counted in at least 200 cells per slide (with the observer blinded to 

their identity), and percentage was calculated relative to control conditions. p-values were 

determined by unpaired two-tailed Student’s t-test.  

All experiments were done at least three times in triplicate and a representative blot 

or graph from a triplicate experiment is shown unless indicated.  

Heat shock proteins and chaperones PCR array. The Human Heat Shock 

Proteins and Chaperones RT2 Profiler PCR Array (SABiosciences, Frederick, MD) was used 

to study the expression profile of 84 heat shock proteins according to the manufacturer’s 

procedure. Briefly, total RNA was extracted from cells transfected with HTT(Q74)GFP 

treated with DMSO or 25 uM of SEN177 inhibitor for 24h, using Trizol (Invitrogen) and 

further purified using RNeasy mini kit with oncolumn DNAse digest (Qiagen), cDNA was then 

synthesized using an RT2 First strand kit (SABiosciences) and real-time PCR was 
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performed using 7900HT fast real time PCR system (Applied  iosciences). Data were 

analysed with RT2 profiler PCR array data analysis software version 3.5. 

 

Assays for validation of polyglutamine aggregation modifiers in zebrafish  

Maintenance of zebrafish stocks and collection of embryos: All zebrafish 

husbandry and experiments were performed in accordance with UK legislation under a 

licence granted by the Home Office and with local ethical approval. Zebrafish were reared 

under standard conditions (Westerfield et al, 2005) on a 14 h light/10 h dark cycle. Embryos 

were collected from natural spawnings, staged according to the established criteria 56 and 

reared in embryo medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM Mg2SO4, 5 

mM HEPES). 

Determination of the maximum-tolerated concentration of compounds in larval 

zebrafish: Compound exposure experiments were performed on wild-type larvae (TL strain) 

from 2 to 3 days post-fertilization (d.p.f.). Concentration response assays were performed 

over log intervals, from 100 nM to 1 mM, to determine the maximum non-toxic concentration 

(MTC) for subsequent aggregate analysis assays (n=10 larvae per concentration). 

Compound exposure experiments were performed in the dark at 28.5 oC. 

Measuring aggregate number and rhodopsin protein levels in transgenic HD 

zebrafish: Aggregate counting and analysis of rod photoreceptor degeneration 

(photoreceptor number) was performed using heterozygous larvae from Tg (rho:EGFP-

HTT71Q)cu5 zebrafish 42  (hereafter referred to as transgenic HD zebrafish). Embryos from 

outcrossed transgenic HD zebrafish were raised in 0.2 mM 1-phenyl-2-thiourea (PTU) from 1 

to 3 d.p.f. to inhibit pigment formation, screened for transgene expression using EGFP 

fluorescence, and then washed twice in the embryo medium to remove PTU. From 3 to 9 

d.p.f., transgenic HD zebrafish larvae were dark-reared  in embryo medium alone or embryo 

medium contain containing either DMSO, 1mM SEN177, 100 µM SEN180 or 100 µM 

SEN817. Embryo medium and compounds were replenished daily. Larvae were 
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anaesthetized by immersion in 0.2 mg/ml 3-amino benzoic acid ethyl ester (MS222), then 

fixed for aggregate counting at 7 d.p.f. or for photoreceptor analysis at 9 d.p.f. Anaesthetised 

larvae were fixed using 4% paraformaldehyde (PFA) in PBS at 4 oC. Larvae were washed 

briefly in PBS, allowed to equilibrate in 30% sucrose in PBS then embedded in OCT medium 

(Tissue-Tek) and frozen on dry ice for subsequent cryosectioning. Sections were cut at 10 

µm thickness using a cryostat (Bright Instruments). For aggregate counting, sections were 

mounted in 50% glycerol in PBS and the total number of GFP-positive aggregates were 

counted over 100 µm of the central retina, either side of the optic nerve head and mean 

values were calculated (n = 5 fish (10 eyes)) for each treatment group. For quantification of 

photoreceptor number, the GFP-positive area of the central retina was quantified using 

image thresholding and area analysis in ImageJ (n ≥ 5 fish (10 eyes) for each treatment 

group). To demonstrate that loss of GFP corresponds to loss of photoreceptors, sections 

were stained with anti-rhodopsin (1D1) antibody (a kind gift from Paul Linser, University of 

Florida, FL 57 and mounted using VectaShield hard set mounting medium (Vector 

Laboratories). Sections were viewed and representative images acquired using a GX Optical 

LED fluorescent microscope, GXCAM3.3 digital camera and GX Capture software.   
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Supplementary Results 

Supplementary Figure legends 

Supplementary figure 1. Characterization of full-length HTT(Q138) inducible cell line  

a. HEK293/T Rex cells were stably transfected with full-length HTT with 138 polyglutamines, 

HTT(Q138), and expression was induced by treatment with doxycycline (1μg/ml) for 0, 24 or 

48 hours. An anti-N-terminal HTT antibody recognizing amino acids 3-16 of human HTT was 

used to check the expression of the mutant HTT in total lysates (Input) or after 

immunoprecipitation with anti-Flag antibodies. Tubulin was used as a loading control.  

b. HEK293/T Rex cells expressing HTT(Q138) were treated with doxycycline (1μg/ml) for 48 

hours and mRNA levels of HTT transgene were assessed by QPCR using primers 

amplifying sequences close to 800, 2000, 4000, 6500, 8100, 9050, the Flag epitope or an 

untranslated region, and were compared to mRNA levels under non-induced conditions. 

c. Cell viability assay with ROCK1 inhibitor (Y27632) reference compound. The ROCK1 

inhibitor (Y27632) was tested at 20µM on HEK293/T Rex cells stably transfected with full-

length HTT with 138 polyglutamines, HTT(Q138), and induced by treatment with doxycycline 

(1μg/ml) for 0 and 72 hours. Cell viability was assessed with the ATPlite Assay System and 

showed an increase of the ATP concentration due to the effect of the compound. The Z’ 

factor between not induced control and doxycycline-induced condition was 0.42, Graphs 

shows mean values normalized to 100 with error bars representing standard deviation. 

Statistical analyses were performed by unpaired Student’s test: ***p<0.001. 

 

Supplementary figure 2. Primary high-throughput screening for suppressors of 

mutant HTT toxicity in cell cultures  

a. Venn diagram representing the redundancy of the three readouts evaluated in the siRNA 

screen in pass 1. Each circle represents the 1000 siRNAs scoring highest in the rescue 
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indices of the three parameters: proliferation, aberrant nuclei index and apoptotic index. 

Numbers in each overlapping segment indicate the number of positive siRNAs shared by 

different readouts.  

b. Pairwise alignment of rescue indices for proliferation (y axis) against aberrant nuclei index 

(x axis) obtained in pass 1. In green, control non-targeting siRNAs (negQ and negF); in light 

blue, non-transfected cells; red points correspond to HTT siRNA treated cells; and dark blue 

represent siRNA samples.  

 

Supplementary figure 3. Secondary RNAi screen in a Drosophila model of HD  

a, b. Examples of suppressors of Q48 eye degeneration. Flies expressing the Q48 protein in 

the eye (GMR-GAL4; UAS-Q48.myc/flag) were crossed with UAS-RNAi fly lines for each of 

the genes selected from the screen or with the corresponding background control used 

(w1118, stock number 60000 for GD-RNAi lines and 60100 for KK-RNAi lines). Examples of 

suppressors from the GD-RNAi line collection (a) and from the KK-RNAi line collection (b) 

showed a partial rescue on the eye pigmentation and on of black necrotic-like spots 

respectively. F=female; M=male. Scale bars represent 200 µm. 

 

Supplementary figure 4. Functional categorization of mutant HTT toxicity modifiers.  

a. Pie chart representation of the main molecular functions of genes obtained from siRNA 

screen in HEK293 cells (670 primary and 257 further selected genes) (top and middle) and 

66 validated genes in Drosophila (bottom). 

b. Top functional pathways associated with the 66 hits validated in Drosophila. Canonical 

pathways were determined by an Ingenuity Pathway Analysis and were ranked by –log(p-

value). The significance of the association between the data set and the canonical pathway 

was measured in 2 ways: 1) a ratio of the number of molecules from the data set that map to 

the pathway divided by the total number of molecules that map to the canonical pathway 
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displayed, 2) Fisher’s exact test was used to calculate a p-value (blue bars) determining the 

probability that the association between the genes in the dataset and the canonical pathway 

is explained by chance alone (p-value). The threshold line represents a p-value of 0.05, 

canonical pathways below the yellow line are not statistically significant. Number and name 

of the genes associated with each of the top 30 pathways are shown in Supplementary 

Table 1b. 

 

Supplementary figure 5. Validation of QPCT RNAi lines in Drosophila  

a. Downregulation of QPCT fly orthologs QC and isoQC using the KK-RNAi lines (lines 

QCKK106341 and isoQCKK101533) reduced the number of black necrotic-like spots of Q48 flies. 

Fisher’s exact test was applied for statistical comparison between the control and test 

genotypes. BS= black necrotic-like spots; no BS= absence of black necrotic-like spots.  

b. Downregulation of QPCT fly orthologs QC and isoQC (lines QCGD38277 and isoQCKK101533) 

using GMR-GAL4 did not decrease GFP expression level. Graph represents mean ± SEM 

from 3 independent crosses for each genotype, with control conditions (GFP) set to 1. 

Statistical analyses were performed by unpaired two-tailed Student’s t-test: **p<0.01; NS, 

not significant. Full blot images are shown in supplementary figure 18a. 

 

Supplementary figure 6. Validation of QPCT in mammalian cell lines  

a. The number of HEK293 cells transfected with EGFP-HTT(Q74) containing HTT(Q74) 

aggregates relative to the number of transfected cells is reduced when QPCT is knocked 

down with siRNA compared to scramble siRNA treated cells. Representative images are 

shown andquantification is shown in figure 2a. Scale bar represents 20 µm.  

b. We confirmed the efficiency of QPCT knockdown by analyzing mRNA levels by RT-PCR, 

due to the lack of antibodies that recognize the endogenous protein. Total RNA was 

extracted, cDNA synthesized and mRNA levels of QPCT and actin from HEK293 cells 
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transfected with control or QPCT siRNA were amplified by standard PCR and visualized in 

agarose gel stained with ethidium bromide. Full gel images are shown in supplementary 

figure 18b. 

c. We confirmed that the QPCT siRNAs used in these experiments do not target QPCT-like. 

QPCT-like mRNA levels do not change upon QCPT siRNA treatment, measured by 

quantitative RT-PCR. Graph shows the mean of two independent experiments in triplicate 

with error bars representing standard deviation.  

d. HeLa cells were transfected with scrambled or QPCT siRNA followed by transfection with 

EGFP-HTT(Q74) for another 48 hours. Cells were fixed and the percentage of cells with 

HTT(Q74) aggregates in EGFP-positive cells was scored by fluorescence  microscopy.  

e. As in c, we knocked down QPCT in HEK293 cells, then EGFP-HTT(Q138) was 

transfected for the last 48h and the percentage of green cells with aggregates was scored.  

f. After knocking down QPCT, HeLa cells were split in 96 well plates and treated with 1 µM 

staurosporine or DMSO for the last 8 h. Caspase 3/7 activity was determined by using a 

luciferase reporter assay and normalized to protein levels. The average of a triplicate 

experiment is represented in the graph with error bars representing standard deviation.  

g. QPCT mRNA levels relative to Actin mRNA was quantified using real time PCR to confirm 

the level of knockdown in primary cortical neurons infected with scramble or QPCT shRNA 

for 6 days. Graph show the fold change in QPCT mRNA levels normalized to actin in cells 

treated with QPCT shRNA relative to scramble shRNA treated cells from a representative 

experiment. 

In all panels, unless indicated, graphs show mean values with control conditions set to 100 

or 1, and error bars represent standard deviation from a triplicate experiment representative 

of at least three independent experiments. Statistical analyses were performed by two-tailed 

unpaired Student’s t-test: **p<0.01; *p<0.05; NS, not significant. 
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Supplementary figure 7. Characterization of QPCT overexpression in mammalian cell 

lines 

a. Percentage of EGFP-HTT(Q74) cells with aggregates was determined in HEK293 cells 

transfected with either pCMV6-QPCT or empty vector for 48 hours. Graphs show mean 

values with control conditions set to 100 and error bars represent standard deviation from a 

triplicate experiment representative of at least three independent experiments. Statistical 

analyses were performed by unpaired two-tailed Student’s t-test: **p<0.01. 

b. HeLa cells expressing QCPT-Flag or empty Flag vector were split in 96 well plates and 

treated with 1 µM staurosporine or DMSO for the last 8 h. Caspase 3/7 activity was 

determined by using a luciferase reporter assay and normalized to protein levels. The 

average of a triplicate experiment is represented in the graph with error bars representing 

standard deviation. Statistical analyses were performed by two-tailed Student’s t-test, ns: 

non- significant. 

c. Substitution of E201 to glutamine or aspartic residues inactivates QPCT enzymatic activiy 

1. We generated a QPCT construct fused to a Flag epitope in which we mutagenized the 

aspartic 201 to glutamine (E201Q). Both, wild-type and mutant forms were expressed at 

similar levels in HeLa cells, as detected by western blot using anti-Flag antibodies. Full blot 

images are shown in supplementary figure 18c. 

d. The enzymatic activity of wild type and mutant QPCT(E201Q) was assessed by 

fluorometric analysis representing the kinetic of pGlu-AMC formation of either cell lysates 

(Left panel) or conditioned media (Right panel) from HEK293 cells expressing QPCT-Flag, 

QPCT(E201Q)-Flag, non-transfected cells or a reaction blank, incubated with Glu-AMC and 

pyroglutamyl aminipeptidase at different time points. No activity above background was 

detected on expression of the E201 mutant. 
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Supplementary figure 8. Determination of QPCT mRNA levels in mouse brains 

mRNA was extracted from mouse brain from six N171 mutant HD mice and four wild-type 

littermate controls at 20 week of age. Relative levels of QPCT mRNA of each brain detected 

by quantitative PCR were normalized to GAPDH mRNA and the mean values are 

represented in the graph with error bars representing standard deviation. Statistical analyses 

were performed by two-tailed unpaired Student’s t-test: *p<0.05. 

 

Supplementary figure 9. QPCT modulates aggregation of HA-tagged HTT(Q74) 

a. HeLa cells were treated with scrambled or QPCT siRNA followed by a second siRNA 

transfection together with HA-HTT(Q74) for another 24 hours. Cells were fixed followed by 

inmunofluorescence with anti-HA antibodies and the number of HA-transfected cells 

containing aggregates was scored.  

b. HeLa cells were transfected QPCT overexpression construct together with HA-HTT(Q74) 

for 24 hours. Cells were fixed and HA-transfected cells were detected by 

immunofluorescence and the percentage of cells with HA aggregates was scored.  

Graphs show mean values with control conditions set to 100 and error bars represent 

standard deviation from a triplicate representative experiment. Statistical analyses were 

performed by two-tailed Student’s t-test: *p<0.05. 

 

Supplementary figure 10. No effect of PBD150 on mutant HTT aggregation  

a. The effect of increased doses of a previously described QPCT inhibitor, PBD150 2, was 

assessed in HeLa cells transfected with EGFP-HTT(Q74). The effect of the compound at the 

indicated concentrations, or DMSO as a control, was assessed after 24h by counting the 

number of EGFP-positive cells containing aggregates.  
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b. Cells expressing empty vector or QPCT together with EGFP-HTT(Q74) were treated with 

PBD150 for 24h. This compound was not able to inhibit the effect of QPCT increasing the 

number of aggregates containing cells. 

Graphs show mean values and error bars represent standard deviation from a 

representative triplicate experiment. Statistical analyses were performed by two-tailed 

unpaired Student’s t-test: NS, not significant. 

 

Supplementary figure 11. Characterization of QPCT inhibitors  

a. Table showing the activity and in vitro ADME properties of the compounds. aIC50 were 

determined fluorometrically for QPCT and QPCT-like by a coupled enzyme assay with 50 

µM H-Gln-AMC substrate. bSolubility was determined at pH 7.4 at pseudothermodynamic 

equilibrium. cMetabolic stability was determined as percentage remaining after incubation for 

1 h with recombinant hCYP3A4. dPermeability was based on measuring the permeation rate 

of the compound through an artificial membrane. The PAMPA-BBB assay uses a mixture of 

porcine brain lipids in dodecane (2% w/v). 

b. A dose response effect of SEN817 on aggregation was detected in HeLa cells transfected 

with EGFP-HTT(Q74) and treated with increasing concentrations of QPCT inhibitor 

(SEN817) for 24 h and compared to DMSO treated cells.  

c. A general effect of QPCT inhibitors on protein levels was discarded by transfecting HeLa 

cells with an EGFP expressing vector and levels were determined by western blotting after 

24h treatment with the indicated compounds (50 µM). Tubulin was used as a loading control. 

Graph represents the average of 3 independent experiments in triplicate. Full blot images 

are shown in supplementary figure 18d. 

d. De novo synthesis of HTT(Q23) was assessed by metabolic labeling of HeLa cells 

transfected with EGFP-HTTQ23 with AHA. After treating with DMSO or SEN177 (50 µM) 

(Time 0), AHA was added and cells collected at the indicated time points. Newly synthesized 
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HTT(Q23) was detected with anti-GFP antibody and relative levels are represented in the 

graph. Full blot images are shown in supplementary figure 18e. 

e. We confirmed that the effect of the compounds was dependent on QPCT inhibition by 

validating their effect in cells where QPCT was downregulated using lentivirus bearing QPCT 

shRNA. Treatment with 50 µM SEN817 for 24 h reduced aggregation of EGFP-HTT(Q74) in 

HeLa cells infected with scramble shRNA, while this effect was abolished when cells were 

treated with QPCT shRNA.    

f. We confirmed that QPCT was efficiently knocked down with shRNA by quantifying the 

mRNA levels of QPCT relative to actin, by real time PCR. Graph represents values obtained 

from 2 independent experiments.  

In all panels, graphs show mean values with control conditions set to 100 and error bars 

represent standard deviation from a triplicate experiment representative of at least three 

independent experiments. Statistical analyses were performed by two-tailed unpaired 

Student’s t-test: **p<0.01; *p<0.05; NS, not significant. 

 

Supplementary figure 12. QPCT effect is independent on protein degradation 

pathways: autophagy or proteasome activity  

The effect of QPCT was studied in conditions were autophagy was inhibited  by removing 

the essential autophagy gene Atg5  (Atg5-/- MEFs) 3 (a) or by treating cells with an 

autophagy inhibitor, 3-methyladenine (3-MA) (b) which, as reported previously, results in 

higher percentages of aggregate-positive cells 4.  

a. Wild-type or Atg5-null mouse embryonic fibroblasts (MEFs) were infected with lentiviral 

scramble or QPCT shRNA for 5 days. In the last 2 days, EGFP-HTT(Q74) was transfected 

and the percentage of transfected cells with aggregates was scored. QPCT knockdown in 

both wild-type and autophagy- deficient cells led to a reduced percentage of cells with 
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HTT(Q74)GFP aggregates, irrespective of whether they were autophagy-competent or -

deficient.  

b. Similarly, the ability of QPCT overexpression to increase the percentage of HTT-

aggregate-containing cells was also independent of autophagy, since expression of QPCT  

together with EGFP-HTT(Q74) for 48 hours resulted in an increase in the percentages of 

cells with aggregates, irrespective of  the treatment with 3-MA for the last 16 hours.  

c. A possible effect of QPCT on autophagic activity was also dismissed by assessing the 

levels of LC3-II, a conjugated form of LC3 that is specifically recruited to autophagosome 

membranes 5. LC3-II protein levels correlate with the number of autophagosomes per cell 6 7. 

LC3-II levels depend on changes in autophagosome synthesis or degradation. To 

differentiate between these two possibilities, we performed these experiments in the 

presence of bafilomycin A1, an inhibitor of autophagosome-lysosome fusion 8. HeLa cells 

were treated with QPCT siRNA or transfected with QPCT DNA constructs. For the last 4 

hours, cells were treated with bafilomycin A1 and western blot analysis was performed in 

total cell lysates using an anti-LC3 antibody and actin as a loading control. Quantification 

relative to actin is shown in the graphs. Full blot images are shown in supplementary figure 

18f. 

d. To test whether QPCT exerts its effect by modulation of proteasome activity, we 

overexpressed QPCT in the presence of a proteasome inhibitor, MG132, which leads to an 

increase in the number of cells with HTT(Q74) aggregates. The percentage of cells with 

EGFP-HTT(Q74) aggregates in HeLa cells transfected with QPCT was still enhanced when 

cells were treated with MG132 for the last 16 hours, indicating a proteasome-independent 

activity of QPCT.  

e. We further confirmed that QPCT cannot modify proteasome activity, which can be 

monitored by changes in UbG76V-GFP, an ubiquitin-proteasome system (UPS) activity 

reporter that is efficiently and quickly recognized by the proteasome but accumulates in the 

presence of MG132 9. HeLa cells stably expressing Ub(G76V)-GFP were transfected with 
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either empty vector or QPCT overexpression constructs. GFP fluorescence intensity was 

quantified by flow cytometry. As a control, GFP intensity was determined in cells subjected 

to 16 hours treatment with MG132. 

These data suggest that QPCT perturbations do not influence the percentage of cells with 

HTT aggregates via alterations of the UPS or macroautophagy, the major intracellular 

protein degradation pathways. 

Graphs shows mean values with control conditions set to 100 and error bars represent 

standard deviation from a triplicate representative experiment. Statistical analysis were 

performed by two-tailed unpaired Student’s t-test: ***p<0.001, **p<0.01; *p<0.05; NS, not 

significant. 

 

Supplementary figure 13. QPCT does not change mRNA levels or total protein levels 

and its effect does not depend on the secreted fraction 

a. We confirmed that QPCT does not change mRNA levels of the transgene by assessing 

the mRNA levels of GFP in HeLa cells transfected with scramble or QPCT shRNA, along 

with EGFP empty vector for the last 48h. mRNA levels of GFP, QPCT or actin were 

quantified by quantitative real time PCR. Fold changes in GFP and QPCT mRNA levels 

relative to actin from 3 independent experiments are shown in the graphs. 

b. We excluded any effect of QPCT on protein levels by co-transfecting HeLa cells with 

EGFP-HTTQ23 (this form does not aggregate and it is not a target for degradation by 

autophagy 4 10) and DsRed, and either empty vector or QPCT. GFP fluorescence intensity 

was determined by flow cytometry in green- and red-positive cells. 

c. Since QPCT is localized in the secretory pathway and it is secreted to the extracellular 

media 11, we assessed whether its effect on mutant HTT aggregation depends on the 

extracellular fraction of QPCT or QPCT-modified targets that are secreted. Cells expressing 

HA-HTT(Q74) were incubated in conditioned media from cells expressing QPCT for 48 
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hours. Incubation of cells with QPCT-containing conditioned media did not increase 

aggregation, suggesting that the effect of QPCT on mutant HTT aggregation is not 

dependent on the extracellular fraction of QPCT. As a control to check the effect of 

transfected QPCT on aggregation, another set of cells were transfected in parallel with 

QPCT-Flag together with HA-HTT(Q74). 

In all panels, graphs show mean values with control conditions set to 100 and error bars 

represent standard deviation from a triplicate experiment representative of at least three 

independent experiments. Statistical analyses were performed by two-tailed unpaired 

Student’s t-test*p<0.05; NS, not significant. 

 

Supplementary figure 14. Modulation of the ER stress response does not mediate the 

effect of QPCT on aggregation 

 a, b, c. We studied whether QPCT might affect the ER stress response by measuring levels 

of the main regulator of this pathway, GRP78/BIP, using a GRP78 reporter-luciferase 

construct. We observed that both QPCT overexpression (a) and QPCT siRNA (b) resulted in 

an increase in the relative luciferase activity. Two of the QPCT inhibitors (SEN177 and 

SEN180) did not show any response and SEN817 reduced GRP78-luciferase signal (c). 

Renilla-luciferase was used as a control to normalized the GRP78-firefly luciferase activity. 

Treatment with 500nM of thapsigargin for 24 h was used as a control to confirm increased 

transcription of GRP78.  

d, e. In view of this contradictory data, we measured GRP78 protein levels by western 

blotting, which were not altered either when QPCT was overexpressed (d) or knocked down 

(e), suggesting that QPCT does not affect the ER stress response. Full blot images are 

shown in supplementary figure 18g and 18h. 

f, g. Other markers of ER stress such as eIF2α phosphorylation were not affected by QPCT 

overexpression (f) or QPCT inhibition with SEN17 or SEN180 (g). Only treatment with 
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SEN817 slightly reduced its phosphorylation. Full blot images are shown in supplementary 

figure 18i and 18j. 

While we cannot exclude that QPCT may modulate the ER stress response, its effect on this 

pathway does not correlate with the effect we observe in mutant HTT aggregation.  

In all panels, graphs show mean values of the firefly luciferase activity normalized to renilla 

and error bars represent standard deviation from a triplicate experiment representative of at 

least three independent experiments. Statistical analyses were performed by two-tailed 

unpaired Student’s t-test: ***p<0.001, **p<0.01; NS, not significant. 

 

Supplementary figure 15. Investigation of signalling pathways that may be regulated 

by QPCT 

a, b. It has been recently reported that QPCT inhibition results in ERK and CREB 

phosphorylation 12. We checked the phosphorylation levels of ERK (a) and CREB (b), which 

were unaltered in response to QPCT siRNA for 48 h in the presence of EGFP-HTTQ74 for 

the last 24h. Full blot images are shown in supplementary figure 18k and 18l. 

c. QPCT inhibition did not result in changes in activation of JNK, as assessed by levels of 

phosphorylation relative to total levels of the protein when QPCT was knocked down either 

in the presence or absence of EGFP-HTTQ74. Full blot images are shown in supplementary 

figure 18m. 

d. In response to protein misfolding, quality control systems such as the Heat Shock 

Response (HSR) 13, are activated and induce the expression of heat shock proteins or 

chaperones. Levels of Hsp70 levels, the main stress-inducible chaperone, were not altered 

upon QPCT knockdown or overexpression as shown by western blot analysis where Hsp70 

levels were normalized to actin as a loading control. Full blot images are shown in 

supplementary figure 18n. 
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Supplementary figure 16. QPCT inhibition induces alpha B-crystallin levels  

a. Fold changes in mRNA levels of an array of 84 heat shock proteins was assessed by 

quantitative RT-PCR in cells expressing HTT(Q74)GFP treated with 25 µM SEN177. Values 

greater than one indicate an up-regulation, and the fold-regulation is equal to the fold-

change. Values less than one indicate a down-regulation, and the fold-regulation is the 

negative inverse to the fold-change. Fold-changes greater than 1.25 or below 0.75 are 

shown (full details in Supplementary Note 3). 

b. AlphaB-crystallin protein levels were upregulated in cells treated with QPCT siRNA for 5 

days. This increase was significant when HTT(Q74)GFP was also expressed for the last 

24h. Graph shows quantification relative to tubulin of a triplicate experiment representative of 

at least 3 independent experiments. Error bars represent standard deviation. Statistical 

analyses were performed by two-tailed Student’s t-test: **p<0.01; NS, not significant. Full 

blot images are shown in supplementary figure 18o.  

c. Alpha B-crystallin protein levels where detected by western blotting in HeLa cells 

transfected QPCT DNA together with HTT(Q23) or HTT(Q74) for 48h. Full blot images are 

shown in supplementary figure 18p. 

d. Detection of endogenous and CRYAB-Flag by western blotting confirms efficient 

overexpression of alpha B-crystallin. Full blot images are shown in supplementary figure 

18q. 

 

Supplementary Figure 17. Full blots from main figures. 

Blots from figure 2g (a), 3f (b). Blots were scanned using Odyssey Fc Imaging System (LI-

COR Biosciences). 

Blots from figure 4a (c), 4b (d). Blots were developed using ECL detection kit (Amersham). 
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Supplementary Figure 18. Full blots from supplementary figures. 

Blots from figure 5a (a), 11c (d), 11d (e), 14f (i), 14g (j), 15a (k), 15d (n). Blots were scanned 

using Odyssey Fc Imaging System (LI-COR Biosciences). 

Gels from figure 6b (b). Gels were stained with ethidium bromide. 

Blots from figure 7c (c), 12c (f), 14d (g), 14e (h), 15b (l), 15c (m),16b (o), 16c (p), 16d (q). 

Blots were developed using ECL detection kit (Amersham). 

 

Supplementary table 1. Ingenuity Pathway Analysis  

a. Ingenuity Pathway Analysis of the 257 selected genes from high throughput-siRNA 

screen in HEK293 cells 

Table shows the top 30 pathways in which the 257 genes selected in the siRNA screen 

performed in HEK293 cells were categorized by Ingenuity Pathway Analysis, ranked by –

log(p-value). Number and name of the genes associated with each pathway are shown. 

b. Ingenuity Pathway Analysis of the 66 hits that rescue Q48-eye degeneration in 

Drosophila 

Top 30 pathways in which the 66 hits validated in Drosophila were categorized by Ingenuity 

Pathway Analysis, ranked by –log(p-value). Number and name of the genes associated with 

each pathway are shown. 
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Supplementary figure 17. Full blot images. Main figures.  
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m. Blots from supplementary figure 15c 
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Supplementary Note 1. High-throughput siRNA screen 

Detailed methodology and analysis for the siRNA screen in HEK293 cells. 

Generation and maintenance of HEK293 recombinant cell lines for siRNA screen  

The full length human huntingtin (HTT) cDNA containing 138 CAG repeats was 

subcloned from the plasmid pTre2Hyg:3xFLAG:HD138Q into the Invitrogen 

tetracycline-inducible vector pCDNA5/TO (cat.# V103320) by standard restriction 

enzymes digestion and ligation. The derived plasmids were then transfected using 

FuGENE® 6 transfection reagent (Roche, Cat. No. 11 815 091 001) into HEK293/T-Rex 

cells stably expressing the tetracycline-repressor protein (Invitrogen). Clones were 

identified using dilution and ring cloning methods 52. 

Stably transfected cells were maintained in DMEM (Invitrogen GIBCO) 

containing 10% Fetal Bovine Serum Certified (Invitrogen GIBCO), 1% Glutamax 

(Invitrogen GIBCO) and 1% Penicillin/Streptomycin (Cat 15140-122), in the presence of 

the antibiotics used for plasmid selection: 0.25 mg/ml hygromycin B (Invitrogen), 5ug/ul 

of Blasticidin (Invitrogen, ant-bl-1). Cells were grown at 37°C in a 5% carbon dioxide 

fully humidified environment, and used for up to 4-5 passages after thawing.  

Y27632 Rho kinase inhibitor was obtained from TOCRIS (#1254; Bristol, UK).Cell viability 

was measured with the PerkinElmer ATPlite Assay System (#6016949, PerkinElmer, 

Walthman, MA) plating 5000 cells/well and inducing  HTT(Q138) expression with 1ug/mL 

doxyxycline for 0 and 72h. 

RNA extraction and quantitative RT-PCR: Total RNA was purified from plated 

cells using the RNeasy Plus mini kit (QIAGEN), following manufacturer’s instructions. 1 

µg of purified RNA was converted to cDNA for subsequent RT-QPCR, using 

SuperScript II (Invitrogen) and Oligo (dT) primer. RT-QPCRs were performed using an 

iCycler instrument (BioRad) with SYBR green master mix (BioRad). All PCRs were run 

under the same cycling conditions and normalized to βActin. Primers used were Hs-

HD_TAQ1_800-F(AAGCTCCCCCACCATTCG),Hs-HD_TAQ1_800-

R(TCTTGAGTGCTGGCAGATGCT),Hs-HD_TAQ3_2000-

F(TCCATTGTGTCCGCCTTTTAT),Hs-HD_TAQ3_2000 R (TCCGGAA CC 

AGCACATTTTT), Hs-HD_TAQ7_4000-F (TGAGGCCAGGCTTGTACCA), Hs-

HD_TAQ7_4000-R(CGAGGGCCTGGGTGAAG),Hs-HD-TAQ12-6500-

F(GCCGGCGGCCTACTG),Hs-HD_ TAQ12_6500-

R(CAGAGTGGGCAGGGACTGATA),Hs_HD_TAQ15_8100-F(CAACCAGTTTGA 

GCTGATGTATGTG),Hs_HD_TAQ15_8100-R(GCGAGGATCTCGTCTTCTGAA), Hs_HD_ 

http://products.invitrogen.com/ivgn/en/US/adirect/invitrogen?cmd=catProductDetail&productID=V103320


TAQ17_9050-F(CCGTGGTGTATAAGGTGTTTCAGA),Hs_HD_Q17_050-

R(GACCCAGTCCCG GACCAT),Hs_HD_TAQ_3UTR-F(GTGGAGTCAGGCTTCTCTTGCT), 

Hs_ HD_TAQ_3UTR-R (AGGGACAAAGCCCGATGAG), Hs-Act-for 

(CTGGAACGGTGAAGGTGACA), Hs-Act-R (AAGGGACTTCCTGTAACAATGCA).  

Western blotting and inmunoprecipitation: Cell pellets were resuspended in 

ice- cold Ripa buffer (NaCl 150 mM, EDTA 2mM, Tris 50 mM pH 7.5, 1% Triton X-100) 

containing protease inhibitor mixture (mini-complete, ROCHE) and incubated at 4°C for 

1h, followed by pre-clearing of the cell lysate with ProteinG/sepharose slurry (50%) for 

1h at 4°C in an orbital shaker. The supernatant was incubated with Flag antibody 

overnight at 4°C followed by incubation with protein G sepharose bead slurry (50%) 

and gently mixed on an orbital shaker for 2h at 4°C. The sepharose beads were 

separated by centrifugation, washed 2 times in RIPA buffer, and finally resuspended in 

30 µl of Laemmli sample buffer and boiled for 10 minutes. Total lysates or 

immunoprecipitates were separated in a 3-8% Tris Acetate precast gel (Invitrogen) and 

electrotransferred onto pvdf membrane. FLAG-tag was detected using anti-HTT 

(Sigma, H7540) diluted at 1µg/ml in 3% milk in PBS-Tween 0.1% and anti-rabbit 

(Biorad) 1:30000. The signal was revealed by ECL plus (GE) and acquired with 

VersaDoc4000 system. 

 

High-throughput siRNA screen 

siRNA library: Initial library included 16,869 siRNAs (Silencer Select from Ambion) 

targeting 5,623 genes based on the RefSeq annotation of the human genome. The library 

was arrayed on 60 384-well plates, each containing a maximum of 287 sample siRNAs and 

a set of controls in triplicate, each consisting on two non-gene targeting negative control 

siRNAs, HTT positive control siRNA and mock (transfection reagent only). Edge wells were 

not transfected. 

Screening assay: 1,500 to 1,650 HEK293 HTT(Q138) cells per well were seeded in 

collagen I coated Greiner MicroClear 384-well optical plates in complete medium without 

antibiotics. A final concentration of 33 nM siRNA was transfected in 4 identical plates, using 

0.063 µl/well of Dharmafect 3 (Dharmacon/Thermo) as transfection reagent. At 30h after 

siRNA transfection, two identical plates were induced for mutant HTT expression by addition 

of doxycycline to a final concentration of 0.5 µg/ml and the two remaining plates were 

treated with the identical volume of medium in the abscence of doxycycline. Thus, each 

siRNA was screened in duplicate in presence and absence of induced mutHTT. At 72h after 

induction, cells were fixed in 4.6 % PFA and stained with 5 µg/ml Hoechst 33342.  



Image analysis: Fluorescence microscopy images of cell nuclei were acquired on an 

ImageXpress Micro automated fluorescence microscope (Molecular Devices), using a 10x 

objective with a binning of 2 at four non-neighbouring sites per well. Automated Image 

analysis was performed by a custom algorithm using the Definiens Cellenger image analysis 

software package. Three different readouts were extracted: 1) Number nuclei: Number of 

cell nuclei per image field (#nuclei); 2) Apoptotic/mitotic index (%): Relative number of nuclei 

with strongly aggregated, brightly fluorescent and/or heterogeneous chromatin (which also 

includes mitotic nuclei), calculated as (number of apoptotic and mitotic nuclei/number of 

nuclei)*100; and 3) Aberrant nuclei index (%): Relative number of nuclei aberrant in shape, 

size and chromatin texture, as defined as ((number of non-aberrant nuclei)/(number of 

aberrant shaped nuclei + number of small and large nuclei + all apoptotic nuclei)*100. 

Furthermore, the algorithm performed an automated image QC, monitoring each image for 

background intensity, focus and presence of large artefacts. 

Data processing: Raw image analysis data was further processed in Spotfire (Tibco) 

applying the following steps: 1) Exclusion of images failed in Image QC. 2) Calculation of 

inter-replicate plate duplicate mean for each plate position and readout. 3) Calculation of a 

“rescue index” for each duplicate mean and readout as a dual normalized measure for the 

rescue of mutant HTT induced cell toxicity phenotype, computed as (1-y/x)*100 (%) where 

y= (samplei non induced) - (samplei induced)) and, for pass 1, x= plate mean ((samplen non 

induced) - (samplen induced)) or for pass 2 to 3, x = plate mean (neg controls non induced) 

– (neg controls induced). 4) Gene-wise aggregation of the phenotypic results from each of 

three siRNAs screened per gene was performed by the RSA method 2, using an iterative 

hypergeometrical distribution formula to calculate the statistical significance of the 

phenotypic readout ranks obtained for each siRNA and rescue index. Log P values obtained 

for each gene and rescue index are based on non-parametric readout ranks and therefore 

do not assume any (e.g., Gaussian) data distribution. 5) Aggregation over the results from 

the three readouts, obtained for each gene was performed by the identical mathematical 

method as in 4), calculating a “meta” logP value on the ranked logP values of each gene in 

three rescue indices.  

Screen consecutive passes: In an initial screen (pass 1), 16,869 siRNAs targeting 

5,623 genes were tested, from which 670 genes were selected. The effect of each individual 

siRNA on cellular toxicity was expressed in rescue indices for each parameter analysed, 

which indicates the effect of an individual siRNA relative to the plate average phenotype of 

the samples. To avoid any bias due to the pre-selection of siRNAs screened, in consecutive 

rounds indices were calculated using the plate mean of non-targeting negative controls. 

Rescue indices from the three siRNAs targeting each gene, were aggregated into one 



single, gene specific, logP value applying the Redundant siRNA Analysis (RSA) method 2 for 

each readout and a “meta” logP value for each gene was calculated based on the rescue 

indices of the three readouts. Genes were ranked by the logP #nuclei rescue index as a 

primary criterion and other logP rescue indices were used to refine the selection. Genes with 

logP lower than –1.7 were selected and a total of 1,125 siRNas, targeting 670 genes, were 

chosen for a second pass 2 validation.  

Based on a combination of datasets from passes 1 and 2, 256 genes with logP lower 

than –1.7 were selected, considering the three readouts as previously, as well as tractability 

of the genes in terms of assay feasibility. In order to rank these genes, we performed a third 

screen (pass 3) in which those genes that presented two positive siRNAs were re-screened 

and genes with one single positive siRNA were tested with two additional new siRNAs, 

resulting in a library of 566 siRNAs. The mean rescue indices of all samples did not increase 

significantly as compared to pass 2, presumably due to the addition of 120 new siRNAs that 

had not undergone selection by passes 1 and 2. Gene-wise aggregation of results from pass 

1, 2 and 3 and ranking of positive hits was again performed by RSA. Genes were ranked 

based on the three rescue indices and using # nuclei as primary criteria. 
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Supplementary Note 2. Synthesis and Characterization of QPCT Inhibitors  

 
General Methods: All chemicals were purchased by commercial suppliers (Sigma Aldrich, 

Fluorochem) and employed as received. All nuclear magnetic resonance spectra were 

recorded using a Varian Mercury Plus 400 MHz spectrometer equipped with a PFG ATB 

broadband probe. UPLC-MS analyses were run using an Acquity Waters UPLC equipped 

with a Waters SQD (ES ionization) and Waters Acquity PDA detector, using a BEH C18 1,7 

μm, 2,1 x 50 mm column. Gradients were run using 0.05% formic acid water/acetonitrile 95/5 

and acetronitrile with a gradient 95/5 to 100, flow: 0.8 ml/min. Temperature: 40 °C. UV 

detection at 215 nm and 254. ESI+ detection in the 80-1000 m/z range. Retention times 

were expressed in minutes. The purity of compounds submitted for screening were > 95% 

as determined by integrating at 215 nm the peak area of the LC chromatograms. To further 

support the purity statement, all compounds were also analyzed at a different wavelength 

(254 nm), and total ion current (TIC) chromatogram and NMR spectra were used to further 

substantiate results. HRMS (140.000) values are given for final compounds, employing Q 

ExactiveTM Plus (Thermo Fisher). All column chromatography was performed following 

small modifications of the original method described in 1. All TLC analyses were performed 

on silica gel (Merck 60 F254) and spots revealed by UV visualization at 254 nm and KMnO4 

or ninhydrin stain. 

 
Detailed synthesis methods (See Supplementary Note 2 Figure): 
4-(5-Mercapto-4-methyl-4H-[1,2,4]triazol-3-yl)-piperidine-1-carboxylic acid benzyl ester 
(6): To a solution of 1-[(benzyloxy)carbonyl]piperidine-4-carboxylic acid (4) (5.00 g, 19.01 

mmol, 1.0 eq) in acetonitrile (40 mL), was added N,N-carbonyldiimidazole (3.08 g, 19.01 

mmol, 1.0 eq) and the mixture was stirred at 50°C for 2 hours. Then N-methyl-

thiosemicarbazide (5) (2.10 g, 19.96 mmol, 1.1 eq) was added and the reaction stirred at 

50°C for 18 hours. Solvent was removed under reduced pressure; the residue was dissolved 

in dichloromethane and washed with a saturated NH4Cl solution. The organic phase was 

collected and concentrated under reduced pressure. The residue was purified by silica 

column eluting with cyclohexane/ethyl acetate (1:1), affording 2.60 g of title compound (yield, 

41%). Mass (ES) m/z: = 333 (M+1). UPLC Rt = 1.20 min. 1H NMR (400 MHz, CDCl3) δ 7.41 

– 7.06 (m, 5H), 5.08 (s, 2H), 4.35 – 4.10 (m, 2H), 3.51 (s, 3H), 3.04 – 2.84 (m, 2H), 2.83 – 

2.65 (m, 1H), 1.95 – 1.82 (m, 2H), 1.80 – 1.62 (m, 2H).  

 
4-(4-Methyl-4H-[1,2,4]triazol-3-yl)-piperidine-1-carboxylic acid benzyl ester (7): To a 

solution of 4-(5-mercapto-4-methyl-4H-[1,2,4]triazol-3-yl)-piperidine-1-carboxylic acid benzyl 



ester (6) (2.60 g, 7.83 mmol, 1.0 eq) in dichloromethane (4mL) cooled at 0°C, hydrogen 

peroxide (30% water solution, 0.48 mL, 15.66 mmol, 2.0 eq) was added followed by acetic 

acid (4mL). The reaction was allowed to warm up to room temperature and stirred for 18 

hours. 15% NaOH solution was added, bringing the reaction to pH 10 then 15 mL of 

dichloromethane were added and the organic phase was collected. Solvent was evaporated 

under reduced pressure, affording 1.2 g of title compound that was used in the next step 

without further purification (yield, 52%). Mass (ES) m/z: = 301 (M+1). UPLC Rt = 0.95 min. 

 
4-(4-Methyl-4H-[1,2,4]triazol-3-yl)-piperidine (8): 4-(4-Methyl-4H-[1,2,4]triazol-3-yl)-

piperidine-1-carboxylic acid benzyl ester (7) (1.20 g, 3.99 mmol) was dissolved in 6N HCl 

solution (5 mL) and the mixture was heated at 100°C for 6 hours. The reaction was then 

allowed to cool down to room temperature. The aqueous phase was washed with 10 mL of 

dichloromethane and was concentrated under reduced pressure, affording 0.55 g of the 

desired compound as its hydrochloride salt (yield, 83%). Mass (ES) m/z: = 189 (M+1). UPLC 

Rt = 0.25 min. 1H NMR (400 MHz, DMSO-d6) δ 8.29 (s, 1H), 3.58 (s, 3H), 3.02 – 2.89 (m, 

2H), 2.87 – 2.73 (m, 1H), 2.62 – 2.50 (m, 2H), 1.77 – 1.65 (m, 2H), 1.66 – 1.47 (m, 2H). 

 
3'-Bromo-4-(4-methyl-4H-[1,2,4]triazol-3-yl)-3,4,5,6-tetrahydro-2H-[1,2']bipyridinyl (10): 
4-(4-Methyl-4H-[1,2,4]triazol-3-yl)-piperidine (8) (1.67 g, 10.1 mmol, 1.0 eq) was dissolved in 

N,N-dimethylformamide (24 mL). Potassium carbonate (2.09 g, 15.2 mmol, 1.5 eq) and 3-

bromo-2-chloro-pyridine (9) (2.33 g, 12.1 mmol, 1.2 eq) were added and the mixture was 

heated at 100°C for 18 hours under vigorous stirring. The reaction was allowed to cool to 

room temperature, inorganic salts were filtered, and the resulting solution was concentrated 

under reduced pressure. The residue was suspended in ethyl acetate and washed with 

water.  The organic phase was collected and concentrated under reduced pressure. The 

residue was purified by silica column, eluting with dichloromethane/methanol (9:1). 1.35 g of 

the desired compound was obtained (yield, 41%). Mass (ES) m/z: = 322-324 (M+1); 

bromine pattern. UPLC Rt = 0.87 min. 1H NMR (400 MHz, DMSO-d6) δ 8.34 (s, 1H), 8.28 – 

8.23 (m, 1H), 8.00 – 7.91 (m, 1H), 6.98 – 6.85 (m, 1H), 3.84 – 3.69 (m, 2H), 3.63 (s, 3H), 

3.08 – 2.97 (m, 1H), 2.96 – 2.83 (m, 2H), 2.05 – 1.79 (m, 4H).  

 

General procedure for Suzuki couplings: 3'-Bromo-4-(4-methyl-4H-[1,2,4]triazol-3-

yl)-3,4,5,6-tetrahydro-2H-[1,2']bipyridinyl (10) (0.45 g, 1.40 mmol, 1 eq), K3PO4 (0.53 g, 2.52 

mmol, 1.8 eq) and the appropriate boronic acid (1.87 mmol, 1.3 eq) were dissolved in 

dioxane (3.5 mL) and H2O (3.5 mL) and the resulting mixture was degassed under N2 flux.  

Pd3(dba)2 (0.06 g, 0.07 mmol, 0.05 eq) and tricyclohexyl phosphine (0.01 g, 0.04 mmol, 0.03 

eq) were added and the reaction was heated at 100°C for 48 hours under inert atmosphere. 



The mixture was allowed to cool to room temperature and then was diluted with H2O (2 mL) 

and extracted with ethyl acetate (3mL). The organic layer was concentrated and the residue 

was purified. 

 

6''-Fluoro-4-(4-methyl-4H-[1,2,4]triazol-3-yl)-3,4,5,6-tetrahydro-2H-[1,2';3',3'']terpyridine 
(1) –SEN177. Following general procedure for Suzuki coupling, and using 4-fluoro-3-pyridyl-

boronic acid, 0.07 g of compound SEN177 (1) were recovered (yield, 15%) after purification 

on silica column, eluting with DCM/MeOH (9:1). Mass (ES) m/z: = 339 (M+1). UPLC Rt = 

0.69 min. 1H NMR (400 MHz, DMSO-d6) δ 8.46 (s, 1H), 8.35 – 8.22 (m, 3H), 7.63 (dd, J = 

7.4, 1.4 Hz, 1H), 7.29 (dd, J = 8.5, 2.5 Hz, 1H), 7.05 (dd, J = 7.3, 4.9 Hz, 1H), 3.56 (s, 3H), 

3.50 – 3.35 (m, 4H), 2.96 – 2.82 (m, 1H), 2.81 – 2.67 (m, 2H), 1.86 – 1.71 (m, 2H), 1.72 – 

1.53 (m, 2H). 13C NMR (101 MHz, DMSO-d6) δ 163.95, 161.60, 160.59, 156.89, 147.91, 

146.99 (d, JCF = 15.0 Hz), 145.30, 141.99 (d, JCF = 8.0 Hz), 140.27, 134.37 (d, JCF = 4.6 Hz), 

123.13, 118.19, 110.19 (d, JCF = 37.7 Hz), 49.60, 31.69, 30.70, 30.18. HRMS calculated for 

C18H19N6F [M+H]+: 339.17254, found 339.17280. Mass difference (mDa): -0.26; mass 

error (ppm): -0.7666.  

 

4-(4-Methyl-4H-[1,2,4]triazol-3-yl)-3,4,5,6-tetrahydro-2H-[1,2';3',3'']terpyridine (2) – 
SEN180. Following general procedure for Suzuki coupling and using 3-pyridyl-boronic acid, 

0.21 g of compound SEN180 (2) (yield, 48%) were recovered after purification on reverse 

phase C-18 silica column, eluting with of H2O (0.1% HCOOH)/MeOH gradient (from 80:20 to 

100% MeOH). Mass (ES) m/z: = 321(M+1). UPLC Rt = 0.54 min. 1H NMR (400 MHz, 

DMSO-d6) δ 8.80 (d, J = 2.2 Hz, 1H), 8.52 (dd, J = 4.8, 1.6 Hz, 1H), 8.29 (s, 1H), 8.24 (dd, J 

= 4.8, 1.8 Hz, 1H), 8.12 (s, 1H), 8.04 (dt, J = 7.9, 1.9 Hz, 1H), 7.61 (dd, J = 7.4, 1.8 Hz, 1H), 

7.47 (dd, J = 7.9, 4.8 Hz, 1H), 7.04 (dd, J = 7.4, 4.9 Hz, 1H), 3.56 (s, 3H), 3.49 – 3.40 (m, 

3H), 2.93 – 2.80 (m, 1H), 2.80 – 2.66 (m, 2H), 1.80 – 1.70 (m, 2H), 1.70 – 1.55 (m, 2H). 13C 

NMR (101 MHz, DMSO-d6) δ 163.80, 160.50, 156.91, 149.08, 149.02, 147.73, 145.28, 

140.30, 136.06, 135.64, 124.38, 124.05, 118.05, 49.55, 31.70, 30.69, 30.17. HRMS 

calculated for C18H20N6 [M+H]+: 321.18197, found 321.18222. Mass difference (mDa): -

0.25; mass error (ppm): -0.7784. 

 

3'-Benzo[1,3]dioxol-5-yl-4-(4-methyl-4H-[1,2,4]triazol-3-yl)-3,4,5,6-tetrahydro-2H-
[1,2']bipyridinyl (3) – SEN817: Following general procedure for Suzuki coupling and using 

Benzo[1,3]dioxole-5-boronic acid, 0.18 g of compound SEN817 (3) were recovered (yield, 

41%)  after purification on silica column, eluting with DCM/MeOH (9:1). Mass (ES) m/z: = 

364 (M+1). UPLC Rt = 0.78 min. 1H NMR (400 MHz, DMSO-d6) δ 8.30 (s, 1H), 8.19 – 8.13 

(m, 1H), 7.53 – 7.44 (m, 1H), 7.18 (s, 1H), 7.13 – 7.03 (m, 1H), 7.03 – 6.87 (m, 2H), 6.04 (s, 



2H), 3.56 (s, 3H), 3.42 – 3.34 (m, 2H), 2.93 – 2.81 (m, 1H), 2.77 – 2.63 (m, 2H), 1.86 – 1.74 

(m, 2H), 1.73 – 1.57 (m, 2H). 13C NMR (101 MHz, DMSO-d6) δ 160.00, 156.98, 148.17, 

147.06, 146.64, 145.30, 139.88, 134.23, 126.65, 121.64, 117.62, 112.49, 109.41, 108.46, 

101.76, 49.24, 31.88, 30.70, 30.30. HRMS calculated for C20H21N5O2 [M+H]+: 364.17647, 

found 364.1768. Mass difference (mDa): -0.33; mass error (ppm): -0.9062. 

 

Glutaminyl cyclase and iso Glutaminyl cyclase  enzymatic assay: The activity of 

the two enzymes was estimated fluorometrically by a coupled assay using pyroglutamyl 

aminopeptidase (from Bacillus amyloliquefaciens, expressed in E. Coli, purchased from 

QIAGEN, Hilden, Germany) as auxiliary enzyme and H-Gln-AMC (7-amino-4-

methylcoumaride) as substrate (Bachem AG, Switzerland) 2. The assay was conducted in 

384 well non-binding surface plates (Corning Costar) in 50 mM Tris HCl pH 8.0, in a final 50 

µl volume. For the QPCT assay, the reaction mixture contained 50 µM H-Gln-AMC, 1 nM 

QPCT human recombinant expressed in HEK293 (OriGene, MD, USA) and 0.2 U/ml 

pyroglutamyl aminopeptidase, whereas for the isoQPCT the reaction mixture contained 50 

µM H-Gln-AMC, 10 nM isoQPCT human recombinant expressed in HEK293 (Genscript, 

Piscataway, USA) and 0.2 U/ml pyroglutamyl aminopeptidase. For QPCT and QPCT 

(E201Q) activity assay, reaction mixture was incubated with either cells lysates or 

supernatants from HEK293. For compound inhibition tests, the assay was conducted in 

concentration response in a 10 concentrations range (100 µM to 0.005 µM), with a final 1% 

DMSO. As a reference compound the compound PBD150 was used 3. The product 

development was followed at 25°C by repeated kinetic fluorescence readings on a TECAN 

Safire2 plate reader with excitation/emission wavelengths of 380/465 nm. Fluorescence was 

read every 2 minutes for 40 minutes and enzyme activity was calculated as RFU/min from 

the linear part of the product development curve 

Solubility Assay. Standard and sample solutions were prepared from a 10 mM 

DMSO stock solution using an automated dilution procedure. For each compound, three 

solutions were prepared; one to be used as standard and the other two as test solutions. 

Standard: 250 μM standard solution in acetonitrile/buffer, with a final DMSO content of 2.5% 

(v/v). Test sample for pH 3.0: 250 μM sample solution in acetic acid 50 mM, pH = 3, with a 

final DMSO content of 2.5% (v/v). Test sample for pH 7.4: a 250 μM sample solution in 

ammonium acetate buffer 50 mM, pH = 7.4, with a final DMSO content of 2.5% (v/v). The 

250 μM product suspensions/solutions in the aqueous buffers were prepared directly in 

Millipore MultiScreen-96 filter plates (0.4 μm PTCE membrane) and sealed. Plates were left 

for 24 h at room temperature under orbital shaking to achieve “pseudo-thermodynamic 

equilibrium” and to presaturate the membrane filter. Product suspensions/solutions were 



then filtered using centrifugation, diluted 1:2 with the same buffer solution, and analyzed by 

UPLC/UV/TOF-MS, using UV detection at 254 nm for quantitation. Solubility was calculated 

by comparing the sample and standard UV areas: S = (Asmp x FD x Cst)/Ast, where S was the 

solubility of the compound (μM), Asmp was the UV area of the sample solution, FD was the 

dilution factor (2), Cst was the standard concentration (250 μM), and Ast was the UV area of 

the standard solution.  

Metabolic Stability Assay. Compounds in 10 mM DMSO solution were added to an 

incubation mixture in a 96-well microplate containing 20 pmol/mL of hCYP3A4 (0.1-0.2 

mg/mL protein). The mixture was split in two aliquots: one receiving a NADPH regenerating 

system, the other an equal amount of phosphate buffer. The final substrate concentration 

was 1 μM along with 0.25% of organic solvent. Incubation proceeded for 1 h at 37 ºC and 

was stopped by addition of acetonitrile to precipitate proteins. Metabolic stability was given 

as the percent remaining following incubation with cofactor (NADPH) with reference to the 

incubation mixture without  NADPH: % remaining = AreaNADPH x 100/Areactrl where Areactrl 

was the MS peak area of the sample solution without NADPH and AreaNADPH was the MS 

area of the sample solution with NADPH.  

Permeability Assay. The assay was run in a PAMPA filter plate onto which is de-

posited a mixture of porcine pig brain lipids in dodecane (2% w/v), and compounds (10 μM in 

HBSS + Hepes buffer pH = 7.4) were added to the donor chamber and incubated for 4 h at 

37 °C and 80% humidity. Warfarin was used in each well as control for membrane integrity. 

Concentrations of reference t(0), donor, and acceptor solutions were measured by UPLC-

MS-TOF. The passive permeability was calculated according to the following expression: 

                              

where M refers to the total amount of drug in the system minus the amount of sample lost in 

membrane (and surfaces), CA(t) was the concentration of the drug in the acceptor well at 

time t, CA(0) was the concentration of the drug in the acceptor well at time 0, VA was the 

volume of the acceptor well, VD was the volume of the donor well, Pe was the effective 

permeability, A was the membrane area, and t was the permeation time. Compounds were 

defined as low, medium, or highly permeable following the following classification: >10 × 10−6 

cm/s, high (passive permeability was unlikely to be limiting for passive diffusion); between 2 

and 10 ×10−6 cm/s, medium (permeability may be limiting in the case of low solubility, high 

metabolic turnover rate or active secretion); between 0 and 2 × 10−6 cm/s, low (high risk that 

permeability was limiting for passive diffusion).  

 



Supplementary Note 2 Figure 

 

 

 

 

 

 

Supplementary Note 2 Figure. Synthetic scheme for SEN177, SEN817 and SEN180. 
Reagents and conditions: (i) CDI, CH3CN, 90°C, 18 h (41%); (ii) H2O2, CH3COOH, rt, 18 h 

(54%); (iii) 6N HCl, 100°C, 6 h (quantitative); (iv) DMF, K2CO3, 100°C, 18 h (41%); (v) 

Pd2(dba)3, tricyclohexyl phosphine, R-B(OH)3, K3PO4,  H2O/Dioxane (1:1),  100°C , 48 h (15-

48%). Reaction of N-protected isonipecotic acid (4) and N-methyl-thiosemicarbazide (5) 

afforded triazole derivative 6, which was desulfurised in the presence of hydrogen peroxide 

to give intermediate 7. Nitrogen deprotection in acidic conditions, followed by nucleophilic 

aromatic substitution on 3-bromo-2-chloro-pyridine (9), gave compound 10, which underwent 

a Suzuki-Miyaura coupling with the desired boronic acids yielding final compounds SEN177 
(1), SEN180 (2) and SEN817 (3).  
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Supplementary Data Set 1. List of 257 human genes obtained in HEK293 siRNA screen and validation in Drosophila

HEK293T HT-siRNA 
screen ranking Gene symbol Annotation RefSeq transcripts Fly ortholog Rescue Drosophila Q48-eye 

degeneration

CG18347 +
CG12201 +

2 MPST mercaptopyruvate sulfurtransferase NM_021126,NM_001013440,NM_001013436 none
3 TLR2 toll-like receptor 2 NM_003264 CG6890  - 
4 KCNK3 potassium channel, subfamily K, member 3 NM_002246 CG9637  - 
5 GABRR1 gamma-aminobutyric acid (GABA) receptor, rho 1 NM_002042 none

6 PIGR polymeric immunoglobulin receptor NM_002644 none

7 LILRB2 leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 2 NM_005874 none

8 GCNT2 glucosaminyl (N-acetyl) transferase 2, I-branching enzyme (I blood group) NM_145655,NM_001491, NM_145649 none

9 TPSB2 tryptase alpha/beta 1; tryptase beta 2 NM_024164 none

10 EDG3 sphingosine-1-phosphate receptor 3 NM_005226 none

11 CPA1 carboxypeptidase A1 (pancreatic) NM_001868 CG17633  - 
CG6852  - 
CG7975  - 

13 FCER1G Fc fragment of IgE, high affinity I, receptor for; gamma polypeptide NM_004106 none

14 NDUFS8 NADH dehydrogenase (ubiquinone) Fe-S protein 8, 23kDa (NADH-coenzyme Q reductase) NM_002496 CG3944  - 
CG7838  - 
CG14030  - 

16 SLC16A6 solute carrier family 16, member 6 (monocarboxylic acid transporter 7); similar to solute carrier family 16, membe  NM_004694 none
CG7400 +
CG30194 +

18 ACACA acetil-CoA carboxilase A alpha NM_198838,NM_198837,  NM_198835,NM_198836, 
NM_198839,NM_000664, NM_198834

CG11198 +

19 TRPC3 transient receptor potential cation channel, subfamily C, member 3 NM_003305 none
CG1513 +
CG5077 +

21 BHMT2 betaine-homocysteine methyltransferase 2 NM_017614 none

22 USP9Y ubiquitin specific peptidase 9, Y-linked NM_004654 CG1945 +
CG32412   +
CG5976 +

24 TBXA2R thromboxane A2 receptor NM_001060,NM_201636 none

25 LDHD lactate dehydrogenase D NM_153486,NM_194436 none

26 FADS2 fatty acid desaturase 2 NM_004265 none

27 KREMEN2 kringle containing transmembrane protein 2 NM_024507,NM_172229,NM_145347,NM_145348 none

28 NTSR2 neurotensin receptor 2 NM_012344 none

29 SLC9A3R2 solute carrier family 9 (sodium/hydrogen exchanger), member 3 regulator 2 NM_004785 none

30 BACH/ACOT7 acyl-CoA thioesterase 7 NM_181866,NM_181865,NM_181864,NM_181862,   
NM_181863,NM_007274

none

31 BF/CBF complement factor B NM_001710 none

32 SALPR relaxin/insulin-like family peptide receptor 3 NM_016568 none

33 KCNN1 potassium intermediate/small conductance calcium-activated channel, subfamily N, member 1 NM_002248 CG10706 +
34 STX10 syntaxin 10 NM_003765 CG7736 +
35 KCNQ1 potassium voltage-gated channel, KQT-like subfamily, member 1 NM_181798,NM_181797,NM_000218 none

36 CTSF cathepsin F NM_003793 CG12163 +
37 PYC1 PYD (pyrin domain) containing 1 NM_152901 none

38 AMFR autocrine motility factor receptor NM_001144,NM_138958 none

39 ARHGAP10 Rho GTPase activating protein 10 NM_024605 CG8948  -
CG14593 +
CG30106 +

41 MASS1 G protein-coupled receptor 98 NM_032119 none

Top 257 genes selected from the high-throughput siRNA screen performed in HEK293 cells for rescuing HTT(138) toxicity were ranked by logP #nuclei rescue index. In column 5, the existence of Drosophila 
orthologs for each mammalian gene is indicated. Those genes for which RNA lines were available as GD and/or KK constructs and for which there were no declared off-target effects were tested 
(http://stockcenter.vdrc.at/control/main). RNAi lines that did not rescue the Q48-eye degeneration phenotype in Drosophila (-), or those that showed significant rescue (+) are indicated in column 6.  RNAi 
lines that  show a general effect on GFP levels. Hits positive in both high-throughput and  Drosophila screen are highlighted in grey.

15 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) NM_004336

12 GLRX

GPR37L140 G protein-coupled receptor 37 like 1 NM_004767

glutaredoxin (thioltransferase) NM_002064

NM_005094

1 SLC25A22 solute carrier family 25 (mitochondrial carrier: glutamate), member 22 NM_024698

solute carrier family 27 (fatty acid transporter), member 4

oxysterol binding protein-like 11 NM_022776

NM_01241323 QPCT glutaminyl-peptide cyclotransferase

17 SLC27A4

20 OSBPL11



42 ACADS acyl-Coenzyme A dehydrogenase, C-2 to C-3 short chain NM_000017 CG4703-PA  -
43 CSAD cysteine sulfinic acid decarboxylase NM_015989 CG7811 +
44 HTRA3 HtrA serine peptidase 3 NM_053044 CG8464  -
45 GPR18 G protein-coupled receptor 18 NM_005292 none

46 PGAM2 phosphoglycerate mutase 2 (muscle) NM_000290 CG1721    +
47 LGR7/RXFP1 relaxin/insulin-like family peptide receptor 1 NM_021634 CG31096 *  -
48 OVTN ovochymase 2 NM_198185 none

CG1697    +
CG17212  +

50 LANCL1 LanC lantibiotic synthetase component C-like 1 (bacterial) NM_006055 CG2061  -
51 TSTA3 tissue specific transplantation antigen P35B NM_003313 CG3495  -
52 IL17RA interleukin 17 receptor A NM_014339 none

53 F12 coagulation factor XII (Hageman factor) NM_000505 none

54 GPR2/CCR10 chemokine (C-C motif) receptor 10 NM_016602 none

55 FGFR4 fms-related tyrosine kinase 4 NM_002020,NM_182925 CG1389 +
56 TFPI tissue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor) NM_006287,NM_001032281 none

57 SLC4A2 solute carrier family 4, anion exchanger, member 2 (erythrocyte membrane protein band 3-like 1) NM_003040 CG8177 +
58 FLJ10948 enoyl Coenzyme A hydratase domain containing 2 NM_018281 CG8778
 +
59 P2RY13 purinergic receptor P2Y, G-protein coupled, 13 NM_023914,NM_176894 none

60 PLAU plasminogen activator, urokinase NM_002658 none

61 PEX5 peroxisomal biogenesis factor 5 NM_000319 CG14815 Enhancer
62 BAIAP2 BAI1-associated protein 2 NM_006340,NM_017450,NM_017451 none

63 PTPRG protein tyrosine phosphatase, receptor type, G NM_002841 CG11516  -
64 KCNQ4 potassium voltage-gated channel, KQT-like subfamily, member 4 NM_172163,NM_004700 CG33135 +
65 SMURF1 SMAD specific E3 ubiquitin protein ligase 1 NM_020429,NM_181349 CG4943  -
66 LILRB1 leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 1 NM_006669 none

67 RET ret proto-oncogene NM_020975,NM_020630 CG14396  +
68 SDHA succinate dehydrogenase complex, subunit A, flavoprotein (Fp) NM_004168 CG17246  +
69 DHPS deoxyhypusine synthase NM_001930,NM_013406,NM_013407 CG8005


70 GPR124 G protein-coupled receptor 124 NM_032777 CG15744
 +

71 CAPN10 calpain 10 NM_021251,NM_023088,NM_023085,NM_023083,NM_0
23089

none

72 CLIC1 chloride intracellular channel 1 NM_001288 none

73 PIGK phosphatidylinositol glycan anchor biosynthesis, class K NM_005482 CG4406 *  -
74 GRIN2A glutamate receptor, ionotropic, N-methyl D-aspartate 2A NM_000833 CG33513  -
75 MMP13 matrix metallopeptidase 13 (collagenase 3) NM_002427 none

76 GPR35 G protein-coupled receptor 35 NM_005301 none

77 ADRA2B adrenergic, alpha-2B-, receptor NM_000682 none

78 DHRS4L2 dehydrogenase/reductase (SDR family) member 4 like 2 NM_198083 CG10672  -
79 ETFB electron-transfer-flavoprotein, beta polypeptide NM_001985,NM_001014763 CG7834 +
80 KIFC3 kinesin family member C3 NM_005550 CG7831 +
81 AGPAT4 1-acylglycerol-3-phosphate O-acyltransferase 4 (lysophosphatidic acid acyltransferase, delta) NM_020133,NM_001012734,NM_001012733 CG4753 +
82 SLC30A1 solute carrier family 30 (zinc transporter), member 1 NM_021194 CG17723  -
83 VIPR1 vasoactive intestinal peptide receptor 1 NM_004624 none

84 RAMP3 receptor (G protein-coupled) activity modifying protein 3 NM_005856 none

85 KCNK16 potassium channel, subfamily K, member 16 NM_032115 CG1615  -
CG18660  -
CG1090  -

87 CACNG2 calcium channel, voltage-dependent, gamma subunit 2 NM_006078 none

88 MGC15763 oxidoreductase NAD-binding domain containing 1 NM_138381 none

89 ADAM8 ADAM metallopeptidase domain 8 NM_001109 CG42252/CG9163 +
90 SUCNR1 succinate receptor 1 NM_033050 none

91 HRMT1L4 protein arginine methyltransferase 8 NM_019854 CG6554 +
92 CST3 cystatin C NM_000099 none

93 SLC22A2 solute carrier family 22 (organic cation transporter), member 2 NM_153191,NM_003058 CG6331  -
94 MPP5 membrane protein, palmitoylated 5 (MAGUK p55 subfamily member 5) NM_022474 CG32717  -
95 KIF9 kinesin family member 9 NM_182903,NM_022342,NM_182902 none

96 NMBR neuromedin B receptor NM_002511 CG30106 (**GPR37L1) +
97 PNR trace amine associated receptor 5 NM_003967 none

98 IFNAR2 interferon (alpha, beta and omega) receptor 2 NM_207584,NM_000874,NM_207585 none

99 HADHB hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/enoyl-Coenzyme A hydratase (trifunc    NM_000183 CG4581 +
100 SDHB succinate dehydrogenase complex, subunit B, iron sulfur (Ip) NM_003000 CG3283 *  -

NM_004727

49 RHBDL2

86 SLC24A1 solute carrier family 24 (sodium/potassium/calcium exchanger), member 1

rhomboid, veinlet-like 2 (Drosophila) NM_017821



101 LTC4S leukotriene C4 synthase NM_145867,NM_000897 none

102 TRPM2 transient receptor potential cation channel, subfamily M, member 2 NM_001001188,NM_003307 none

103 SCN1B sodium channel, voltage-gated, type I, beta NM_199037,NM_001037 none

104 EPHB3 EPH receptor B3 NM_004443 CG1511   -
105 ABCA2 ATP-binding cassette, sub-family A (ABC1), member 2 NM_001606,NM_212533 none

106 KCNK17 potassium channel, subfamily K, member 17 NM_031460 none

107 CELSR1 cadherin, EGF LAG seven-pass G-type receptor 1 (flamingo homolog, Drosophila) NM_014246 CG11895  -
108 SLC19A1 solute carrier family 19 (folate transporter), member 1 NM_003056,NM_194255 none

109 CTSL2 cathepsin L2 NM_001333 CG6692  -
110 ACE angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 NM_152830,NM_152831,NM_000789 CG8827  -
111 CTRC chymotrypsin C (caldecrin) NM_007272 none

112 IL6R interleukin 6 receptor NM_181359,NM_000565 none

113 RSC1A1 regulatory solute carrier protein, family 1, member 1 NM_006511 none

114 PDE7A phosphodiesterase 7A NM_002604,NM_002603 none

115 CRAT carnitine acetyltransferase NM_004003,NM_000755,NM_144782 none

116 CHRNE cholinergic receptor, nicotinic, epsilon NM_000080 CG11348  -
117 SLC1A2 solute carrier family 1 (glial high affinity glutamate transporter), member 2 NM_004171 CG3159 +
118 NR0B1 nuclear receptor subfamily 0, group B, member 1 NM_000475 none

119 C14orf20 testis-specific serine kinase 4 NM_174944 none

120 USP21 ubiquitin specific peptidase 21 NM_012475,NM_001014443 CG14619  - 
121 HRMT1L3 protein arginine methyltransferase 3 NM_005788 CG6563 +
122 GPT glutamic-pyruvate transaminase (alanine aminotransferase) NM_005309 CG1640  -
123 KLK8 kallikrein-related peptidase 8 NM_144505,NM_007196,NM_144506,NM_144507 none

CG2867 +
CG10078 +

125 TRPC7 transient receptor potential cation channel, subfamily C, member 7 NM_020389 none

126 FLT3 fms-related tyrosine kinase 3 NM_004119 none

127 DKFZp566O084 dehydrogenase/reductase (SDR family) member 7B NM_015510 CG7601  -
129 SLC10A2 solute carrier family 10 (sodium/bile acid cotransporter family), member 2 NM_000452 none

130 ADORA3 adenosine A3 receptor NM_000677,NM_020683 none

131 SLC23A2 solute carrier family 23 (nucleobase transporters), member 2 NM_203327,NM_005116 CG6293  -
132 SLC2A2 solute carrier family 2 (facilitated glucose transporter), member 2 NM_000340 CG1086 +

CG13743 ***  -
CG17509  -

134 KCNJ12 similar to hkir2.2x; similar to inward rectifying K+ channel negative regulator Kir2.2v; potassium inwardly-rectifying     NM_021012 CG6747 +
135 SLC12A7 solute carrier family 12 (potassium/chloride transporters), member 7 NM_006598 CG5594 +
136 GPR26 G protein-coupled receptor 26 NM_153442 none

137 ASNA1 arsA arsenite transporter, ATP-binding, homolog 1 (bacterial) NM_004317 CG1598  -
CG32072  -
CG11801  -

139 SENP2 SUMO1/sentrin/SMT3 specific peptidase 2 NM_021627 none

140 AVPR1A arginine vasopressin receptor 1A NM_000706 CG11325  -
141 UGT1A3 UDP glucuronosyltransferase 1 family, polypeptide A3; UDP glucuronosyltransferase 1 family, polypeptide A5; U                                          NM_019093 CG8652 +
142 MAP2K4 mitogen-activated protein kinase kinase 4 NM_003010 CG9738  -
143 KCNS2 potassium voltage-gated channel, delayed-rectifier, subfamily S, member 2 NM_020697 none

144 CASP8 caspase 8, apoptosis-related cysteine peptidase NM_033356,NM_033355,NM_033357,NM_033358,NM_0
01228

none

145 KCNJ14 potassium inwardly-rectifying channel, subfamily J, member 14 NM_170720,NM_013348 CG6747  -
146 TNFRSF11A tumor necrosis factor receptor superfamily, member 11a, NFKB activator NM_003839 none

147 TNFRSF5/CD40 CD40 molecule, TNF receptor superfamily member 5 NM_152854,NM_001250 none

148 HSD17B4 hydroxysteroid (17-beta) dehydrogenase 4 NM_000414 CG3415 +

149 KLK6 kallikrein-related peptidase 6 NM_002774,NM_001012966,NM_001012965,  
NM_001012964

none

150 CAPN5 calpain 5 NM_004055 none

151 ABP1 amiloride binding protein 1 (amine oxidase (copper-containing)) NM_001091 none

152 SULT1C2 sulfotransferase family, cytosolic, 1C, member 4 NM_006588 CG5428  -
153 OSBPL1A oxysterol binding protein-like 1A NM_018030,NM_080597,NM_133268 CG3860  -
154 ADAMTS12 ADAM metallopeptidase with thrombospondin type 1 motif, 12 NM_030955 CG4096 +
155 KIAA1045 XM_048592 none

156 LHCGR luteinizing hormone/choriogonadotropin receptor NM_000233 CG7665 +
157 HTR1B 5-hydroxytryptamine (serotonin) receptor 1B NM_000863 none

158 CARD8 caspase recruitment domain family, member 8 NM_014959 none
CG12370  -159 CRHR2 corticotropin releasing hormone receptor 2 NM 001883

138 ELOVL4 NM_022726

133 solute carrier family 38, member 11FLJ39822 NM_173512

elongation of very long chain fatty acids (FEN1/Elo2, SUR4/Elo3, yeast)-like 4

phosphoribosyl pyrophosphate amidotransferase NM_002703124 PPAT

http://flybase.bio.indiana.edu/.bin/fbidq.html?FBgn0037807


CG8422 *  -
160 GRCA G protein-coupled receptor 162 NM_014449,NM_019858 none

161 UCP1 uncoupling protein 1 (mitochondrial, proton carrier) NM_021833 none

162 SLC22A11 solute carrier family 22 (organic anion/urate transporter), member 11 NM_018484 CG8654 +
163 PYGM phosphorylase, glycogen, muscle NM_005609 CG7254  -
164 GALGT2 beta-1,4-N-acetyl-galactosaminyl transferase 2 NM_153446 none

165 GLDC glycine dehydrogenase (decarboxylating) NM_000170 CG3999

166 SOAT2 sterol O-acyltransferase 2 NM_003578 CG8112 +
167 PPARG peroxisome proliferator-activated receptor gamma NM_005037,NM_015869,NM_138712,NM_138711 CG8127  -
168 TNFRSF17 tumor necrosis factor receptor superfamily, member 17 NM_001192 none

169 DPP8 dipeptidyl-peptidase 8 NM_197960,NM_197961,NM_130434,NM_017743 CG3744 +
170 SLC7A10 solute carrier family 7, (neutral amino acid transporter, y+ system) member 10 NM_019849 CG3297  - 
171 SLC22A8 solute carrier family 22 (organic anion transporter), member 8 NM_004254 none

172 CTRL chymotrypsin-like NM_001907 none

173 SLCO5A1 solute carrier organic anion transporter family, member 5A1 NM_030958 CG3811 +
174 EPHA3 EPH receptor A3 NM_182644,NM_005233 CG1594    -
175 GPR54 KISS1 receptor NM_032551 none

176 SLC12A3 solute carrier family 12 (sodium/chloride transporters), member 3 NM_000339 none

177 ADAM12 ADAM metallopeptidase domain 12 NM_021641,NM_003474 none

178 CAPNS1 calpain, small subunit 1 NM_001749,NM_001003962 none

179 RARG retinoic acid receptor, gamma NM_000966 CG8127 +
180 NDUFA6 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 6, 14kDa NM_002490 CG7712 +
181 GPR64 G protein-coupled receptor 64 NM_005756 none

182 KCNK7 potassium channel, subfamily K, member 7 NM_005714,NM_033456,NM_033455,NM_033348,NM_0
33347

none

183 PGCP plasma glutamate carboxypeptidase NM_016134 none

184 CA12 carbonic anhydrase XII NM_001218,NM_206925 none

185 ADAM11 ADAM metallopeptidase domain 11 NM_002390 CG42252  -
186 USP40 ubiquitin specific peptidase 40 NM_018218 none

187 LTB4R leukotriene B4 receptor NM_181657 none

188 GABRB3 gamma-aminobutyric acid (GABA) A receptor, beta 3 NM_000814,NM_021912 CG17336 +
189 SLC18A2 solute carrier family 18 (vesicular monoamine), member 2 NM_003054 CG33528 +
190 PAK1 p21 protein (Cdc42/Rac)-activated kinase 1 NM_002576 CG10295 +
191 CAPN1 Calpain 1 NM_005186 CG7563 +
192 LRP1 low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor) NM_002332 CG1372 +

CG1907 +
CG18418 +
CG7514 +

194 PITRM1 pitrilysin metallopeptidase 1 NM_014889 CG3107 +
195 HCN4 hyperpolarization activated cyclic nucleotide-gated potassium channel 4 NM_005477 CG8585 +
196 GPR83 G protein-coupled receptor 83 NM_016540 CG5811  -
197 HTR4 5-hydroxytryptamine (serotonin) receptor 4 NM_000870,NM_199453 none

198 CAPN3 calpain 3, (p94) NM_173089,NM_173090,NM_173088,NM_173087,NM_0
24344,NM_000070,NM_212465,NM_212464,NM_212467

CG7563  -

199 GPR87 G protein-coupled receptor 87 NM_023915 none

200 PKD1L2 polycystic kidney disease 1-like 2 NM_052892,NM_182740 none

201 SLC1A7 solute carrier family 1 (glutamate transporter), member 7 NM_006671 CG3747  -
CG9637  -
CG9361  -

203 MGC16169 TBC domain-containing protein kinase-like NM_033115 CG4041 +
204 SOAT1 sterol O-acyltransferase 1 NM_003101 CG8112  -
205 GPR8 neuropeptides B/W receptor 2 NM_005286 none

206 M160 CD163 molecule-like 1 NM_174941 none

207 PVRL2 poliovirus receptor-related 2 (herpesvirus entry mediator B) NM_002856 none

208 GPR150 G protein-coupled receptor 150 NM_199243 none

209 PTPRM protein tyrosine phosphatase, receptor type, M NM_002845 CG10975 +
210 EDNRB endothelin receptor type B NM_003991,NM_000115 none

211 MGC23280 dehydrogenase/reductase (SDR family) member 13 NM_144683 none

212 NR3C2 nuclear receptor subfamily 3, group C, member 2 NM_000901 none

213 HAP1 huntingtin-associated protein 1 NM_003949,NM_177977 none

214 TRAR5 trace amine associated receptor 8 NM_053278 none

215 IL22RA1 interleukin 22 receptor, alpha 1 NM_021258 none

159 CRHR2 corticotropin releasing hormone receptor 2 NM_001883

potassium channel, subfamily K, member 9

193 SLC25A11 solute carrier family 25 (mitochondrial carrier; oxoglutarate carrier), member 11 NM_003562

NM_016601202 KCNK9

http://flybase.bio.indiana.edu/.bin/fbidq.html?FBgn0037807


216 GPR75 G protein-coupled receptor 75 NM_006794 none

217 B3GNT5 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5 NM_032047 CG4934  -
218 DRD4 dopamine receptor D4 NM_000797 none

219 ACY1 aminoacylase 1 NM_000666 CG6465  -
220 EBI2 G protein-coupled receptor 183 NM_004951 none

221 VNN3 vanin 3 NM_078625,NM_018399,NM_001024460 none
CG17697  -
CG4626  -

223 LRP3 low density lipoprotein receptor-related protein 3 NM_002333 none

224 FUT10 fucosyltransferase 10 (alpha (1,3) fucosyltransferase) NM_032664 CG4435  -
225 GPR41 free fatty acid receptor 3 NM_005304 none

226 SLC12A5 solute carrier family 12 (potassium-chloride transporter), member 5 NM_020708 CG5594 +
227 FAAH fatty acid amide hydrolase NM_001441 CG30502  -
228 ADAM33 ADAM metallopeptidase domain 33 NM_025220,NM_153202 CG42252  -

CG16720 +
CG15113 (**HTR1B) +

230 GPR151 G protein-coupled receptor 151 NM_194251 none

231 HTR3A 5-hydroxytryptamine (serotonin) receptor 3A NM_000869,NM_213621 CG11822 +
232 GPR25 G protein-coupled receptor 25 NM_005298 none

233 SCN11A sodium channel, voltage-gated, type XI, alpha subunit NM_014139 CG9907 +
234 FGFR4 fibroblast growth factor receptor 4 NM_022963,NM_002011,NM_213647 CG1389 +
235 PSMB9 proteasome (prosome, macropain) subunit, beta type, 9 (large multifunctional peptidase 2) NM_148954,NM_002800 CG8392  -
236 TBC1D8 NM_007063 CG7324 *

CG31094 +
CG31092 +

238 RAB40A RAB40A, member RAS oncogene family NM_080879 CG1900  -
239 CLCA4 chloride channel accessory 4 NM_012128 none

240 OSGEPL1 O-sialoglycoprotein endopeptidase-like 1 NM_022353 CG14231 +
241 SLC27A3 solute carrier family 27 (fatty acid transporter), member 3 NM_024330 CG30194 (**SLC27A4) +

CG7887  -
CG6515  -

243 TRPM6 transient receptor potential cation channel, subfamily M, member 6 NM_017662 CG34123 +
244 MMP17 matrix metallopeptidase 17 (membrane-inserted) NM_016155 CG1794 +
245 GPR157 G protein-coupled receptor 157 NM_024980 none

246 SLC22A3 solute carrier family 22 (extraneuronal monoamine transporter), member 3 NM_021977 none

247 UBE2D1 ubiquitin-conjugating enzyme E2D 1 (UBC4/5 homolog, yeast) NM_003338 CG7425  -
248 IL2RB interleukin 2 receptor, beta NM_000878 none

249 FMO3 flavin containing monooxygenase 3 NM_006894,NM_001002294 none

250 TRPM8 transient receptor potential cation channel, subfamily M, member 8 NM_024080 none

CG4994  -

CG9090  -
252 USP34 ubiquitin specific peptidase 34 NM_014709 CG5794  -
253 ELA2A chymotrypsin-like elastase family, member 2A NM_033440 none

254 SPPL2A signal peptide peptidase-like 2A NM_032802 none
CG1349 +
CG6646  -
CG8553 +
CG5025 +

257 ACVR1B activin A receptor, type IB NM_020328,NM_020327,NM_004302 CG8224 +

tachykinin receptor 1

HTR5A 5-hydroxytryptamine (serotonin) receptor 5A NM_024012

NM_003383,NM_001018056very low density lipoprotein receptor

frizzled homolog 10 (Drosophila) NM_007197

256 SEPHS1 selenophosphate synthetase 1; similar to selenophosphate synthetase 1 NM_012247

251 solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 3

NM_015727,NM_001058

255 PARK7 Parkinson disease (autosomal recessive, early onset) 7 NM_007262

SLC25A3 NM_002635,NM_005888 ,NM_213612,NM_213611

242 TACR1

*** RNAi line with off target effect

* No RNAi lines available

** Also homologue 

237 VLDLR

229

222 FZD10



Supplementary Data Set 2. List of RNAi Drosophila lines that rescued Q48-eye degeneration and their effect on GFP levels

Female Male
1 ACACA CG11198 ACC KK108631 8,19E-06 2,75E-03 GD8105 no effect not tested
2 KCNN1 CG10706 SK KK103985 5,96E-04 6,06E-03 GD28155 weak no changes
3 STX10 CG7736 Syx6 KK104795 3,04E-04 3,16E-04 GD1579 no effect no changes
4 CSAD CG7811 b KK105436 3,04E-04 1,09E-03 GD2890 no effect no changes
5 KCNQ4 CG33135 KCNQ KK106655 6,38E-07 1,19E-02 GD8754 lethal RNAi toxic no changes
6 ETFB CG7834 CG7834 KK110434 1,48E-02 2,15E-05 GD36661 weak no changes
7 KIFC3 CG7831 ncd KK110355 4,83E-05 1,38E-07 GD22570 no effect no changes
8 AGPAT4 CG4753 CG4753 KK109865 1,21E-03 1,09E-04 GD1731 no effect no changes

9, 10, 11 ADAM8/33/11 CG42252 mmd KK103449 7,81E-04 5,31E-03 GD45927 no effect significant reduction 
12 HRMT1L4 CG6554 Art1 KK110391 1,97E-05 2,33E-07 GD40388 weak no changes
13 MPP5 CG32717 sdt KK100685 5,83E-05 3,70E-01 GD2984 medium no changes
14 HADHB CG4581 Thiolase KK105500 2,01E-11 1,58E-08 no changes
15 SLC1A2 CG3159 Eaat2 KK104371 6,51E-05 4,55E-03 no changes
16 HRMT1L3 CG6563 Art3 KK109448 4,83E-05 1,36E-03 no changes

CG2867 Prat GD20926 weak no changes
CG10078 Prat2 KK108948 7,81E-04 4,40E-02 GD48823 no effect no changes

18 SLC2A2 CG1086 Glut1 KK101365 1,47E-06 4,29E-01 GD13326 weak no changes
19 SLC12A7 CG5594 kcc KK101742 2,78E-02 1,79E-03 GD10278 weak not tested
20 UGT1A3 CG8652 Ugt37c1 GD46514  medium no changes
21 HSD17B4 CG3415 Mfe2 KK108880 4,12E-03 2,06E-02 GD34613 no effect no changes
22 ADAMTS12 CG4096 CG4096 KK108353 5,45E-03 4,55E-03 no changes
23 LHCGR CG7665 Lgr1 KK104877 1,20E-04 1,96E-06 GD13566 no effect no changes
24 SLC22A11 CG8654 CG8654 KK100112 4,83E-05 1,65E-09 GD4715 no effect no changes
25 DPP8 CG3744 CG3744 GD34696 no changes
26 SLCO5A1 CG3811 Oatp30B KK110237 8,74E-05 4,55E-03 GD22983 no effect no changes
27 RARG CG8127 Eip75B KK108399 3,04E-04 7,96E-05 GD44851 enhancer/RNAi toxic no changes
28 NDUFA6 CG7712 CG7712 KK100616 2,52E-05 2,29E-04 GD35923 strong no changes
29 GABRB3 CG17336 Lcch3 KK109606 2,80E-07 1,19E-02 GD37408 no effect no changes
30 SLC18A2 CG33528 Vmat KK104072 5,14E-05 7,52E-04 GD4856 no effect no changes
31 PAK1 CG10295 Pak KK108937 1,77E-03 1,96E-01 GD12553 weak no changes
32 CAPN1 CG7563 CalpA KK101294 2,80E-07 7,25E-08 GD35261 no effect no changes
33 LRP1 CG1372 yl KK109716 1,98E-05 2,42E-02 GD36345 medium no changes

CG1907 CG1907 KK103359 3,10E-03 3,50E-03 GD1341 medium no changes
CG18418 CG18418 KK102109 3,04E-04 4,21E-02 GD9008 no effect no changes
CG7514 CG7514 KK103023 1,97E-05 1,61E-06 GD37233 no effect no changes

35 PITRM1 CG3107 CG3107 KK103826 1,47E-06 7,52E-04 GD40196 no effect no changes
36 HCN4 CG8585 Ih KK110274 4,83E-05 6,13E-08 no changes
37 MGC16169 CG4041 CG4041 KK108887 8,60E-06 3,50E-03 no changes
38 PTPRM CG10975 Ptp69D KK104761 1,98E-05 8,77E-04 GD4789 no effect no changes
39 SLC12A5 CG5594 kcc KK101742 2,78E-02 1,79E-03 GD10278 weak no changes
40 HTR5A CG16720 5-HT1A KK106094 1,97E-05 4,55E-03 no changes

40,41 HTR1B/HTR5A CG15113 5-HT1B KK109929 1,70E-16 3,90E-07 GD46485 medium no changes
42 HTR3A CG11822 nAChRβ3 KK101868 4,83E-05 1,92E-01 no changes
43 SCN11A CG9907 para KK104775 1,20E-04 7,96E-05 GD6131 no effect no changes
44 FGFR4/FLT4 CG1389 tor KK101154 5,86E-06 4,40E-02 GD4298 weak no changes

CG31094 LpR1 KK106364 7,75E-10 5,32E-05 GD14756 no effect no changes
    

Table shows the list of Drosophila  orthologs that were confirmed to rescue Q48-eye degeneration, employing GD- or KK-RNAi lines depending on availability. For KK lines, the 
p-value was calculated by scoring individuals for the presence or absence of black necrotic spots, and comparing genotypes using Fisher’s exact test in both female and male 
RNAi expressing flies. In order to account for multiple testing, results that showed a p<0.005 in at least one sex were considered significant. Weak, medium or strong rescue of 
Q48-eye pigmentation was used as a criterion for assessing suppression of degeneration by the GD RNAi lines. Positive RNAi lines were crossed with transgenic flies that 
expressed EGFP under control of GMR-GAL4 and GFP levels were assessed by western blotting and indicated when significant.
Columns E-F: BS= presence of black necrotic-like spots; columns E and F show p-values obtained with the Fisher's exact test.

KK lines
KK BS p-value

GFP levelsEye pigmentation rescue GD lines
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Refseq Symbol Description Gene name
Fold Change 

(SEN177 compared 
to DMSO)

Comments

NM_020247 ADCK3 AarF domain containing kinase 3 ARCA2/CABC1/COQ10D4/COQ8/SCAR9 0,9155 OKAY
NM_007348 ATF6 Activating transcription factor 6 ATF6A 0,8924 OKAY
NM_004323 BAG1 BCL2-associated athanogene BAG-1/HAP/RAP46 1,4241 OKAY
NM_004282 BAG2 BCL2-associated athanogene 2 BAG-2/dJ417I1.2 1,0861 OKAY
NM_004281 BAG3 BCL2-associated athanogene 3 BAG-3/BIS/CAIR-1/MFM6 0,999 OKAY
NM_004874 BAG4 BCL2-associated athanogene 4 BAG-4/SODD 0,6602 OKAY
NM_004873 BAG5 BCL2-associated athanogene 5 BAG-5 0,8111 OKAY
NM_005125 CCS Copper chaperone for superoxide dismutase - 1,2383 OKAY
NM_006431 CCT2 Chaperonin containing TCP1, subunit 2 (beta) 99D8.1/CCT-beta/CCTB/HEL-S-100n/PRO1633/TCP-1-beta 0,8909 OKAY
NM_005998 CCT3 Chaperonin containing TCP1, subunit 3 (gamma) CCT-gamma/CCTG/PIG48/TCP-1-gamma/TRIC5 1,0192 OKAY
NM_006430 CCT4 Chaperonin containing TCP1, subunit 4 (delta) CCT-DELTA/Cctd/SRB 0,8621 OKAY
NM_012073 CCT5 Chaperonin containing TCP1, subunit 5 (epsilon) CCT-epsilon/CCTE/HEL-S-69/TCP-1-epsilon 0,8809 OKAY
NM_001762 CCT6A Chaperonin containing TCP1, subunit 6A (zeta 1) CCT-zeta/CCT-zeta-1/CCT6/Cctz/HTR3/MoDP-2/TCP-1-zeta/TCP20/TCPZ/TTCP20 0,9147 OKAY
NM_006584 CCT6B Chaperonin containing TCP1, subunit 6B (zeta 2) CCT-zeta-2/CCTZ-2/Cctz2/TCP-1-zeta-2/TSA303 0,9504 OKAY
NM_006429 CCT7 Chaperonin containing TCP1, subunit 7 (eta) CCTETA/CCTH/NIP7-1/TCP1ETA 0,9388 OKAY
NM_000394 CRYAA Crystallin, alpha A CRYA1/CTRCT9/HSPB4 0,9372 C
NM_001885 CRYAB Crystallin, alpha B CMD1II/CRYA2/CTPP2/CTRCT16/HEL-S-101/HSPB5/MFM2 2,5924 OKAY
NM_001539 DNAJA1 DnaJ (Hsp40) homolog, subfamily A, member 1 DJ-2/DjA1/HDJ2/HSDJ/HSJ2/HSPF4/NEDD7/hDJ-2 1,0184 OKAY
NM_005880 DNAJA2 DnaJ (Hsp40) homolog, subfamily A, member 2 CPR3/DJ3/DJA2/DNAJ/DNJ3/HIRIP4/PRO3015/RDJ2 0,9699 OKAY
NM_005147 DNAJA3 DnaJ (Hsp40) homolog, subfamily A, member 3 HCA57/TID1/hTID-1 0,8901 OKAY
NM_018602 DNAJA4 DnaJ (Hsp40) homolog, subfamily A, member 4 MST104/MSTP104/PRO1472 1,376 B
NM_006145 DNAJB1 DnaJ (Hsp40) homolog, subfamily B, member 1 HSPF1/Hdj1/Hsp40/RSPH16B/Sis1 0,9089 OKAY
NM_016306 DNAJB11 DnaJ (Hsp40) homolog, subfamily B, member 11 ABBP-2/ABBP2/DJ9/Dj-9/EDJ/ERdj3/ERj3/ERj3p/PRO1080/UNQ537/hDj-9 0,936 OKAY
NM_017626 DNAJB12 DnaJ (Hsp40) homolog, subfamily B, member 12 DJ10 1,0729 OKAY
NM_153614 DNAJB13 DnaJ (Hsp40) homolog, subfamily B, member 13 RSPH16A/TSARG5/TSARG6 0,9143 OKAY
NM_001031723 DNAJB14 DnaJ (Hsp40) homolog, subfamily B, member 14 EGNR9427/PRO34683 1,0162 OKAY
NM_006736 DNAJB2 DnaJ (Hsp40) homolog, subfamily B, member 2 DSMA5/HSJ-1/HSJ1/HSPF3 0,8643 OKAY
NM_012266 DNAJB5 DnaJ (Hsp40) homolog, subfamily B, member 5 Hsc40 0,9873 OKAY
NM_005494 DNAJB6 DnaJ (Hsp40) homolog, subfamily B, member 6 DJ4/DnaJ/HHDJ1/HSJ-2/HSJ2/LGMD1E/MRJ/MSJ-1 0,7307 OKAY
NM_145174 DNAJB7 DnaJ (Hsp40) homolog, subfamily B, member 7 DJ5/HSC3 1,1617 B
NM_153330 DNAJB8 DnaJ (Hsp40) homolog, subfamily B, member 8 DJ6 0,9372 C
NM_012328 DNAJB9 DnaJ (Hsp40) homolog, subfamily B, member 9 ERdj4/MDG-1/MDG1/MST049/MSTP049 0,5872 OKAY
NM_022365 DNAJC1 DnaJ (Hsp40) homolog, subfamily C, member 1 DNAJL1/ERdj1/HTJ1/MTJ1 0,9288 OKAY
NM_018981 DNAJC10 DnaJ (Hsp40) homolog, subfamily C, member 10 ERdj5/JPDI/MTHr/PDIA19 0,9562 OKAY
NM_018198 DNAJC11 DnaJ (Hsp40) homolog, subfamily C, member 11 dJ126A5.1 0,9371 OKAY
NM_201262 DNAJC12 DnaJ (Hsp40) homolog, subfamily C, member 12 JDP1 1,0116 OKAY
NM_015268 DNAJC13 DnaJ (Hsp40) homolog, subfamily C, member 13 RME8 1,0081 OKAY
NM_032364 DNAJC14 DnaJ (Hsp40) homolog, subfamily C, member 14 DNAJ/DRIP78/HDJ3/LIP6 1,0847 OKAY
NM_013238 DNAJC15 DnaJ (Hsp40) homolog, subfamily C, member 15 DNAJD1/HSD18/MCJ 0,9673 OKAY
NM_015291 DNAJC16 DnaJ (Hsp40) homolog, subfamily C, member 16 - 0,9971 OKAY
NM_018163 DNAJC17 DnaJ (Hsp40) homolog, subfamily C, member 17 - 1,1312 OKAY
NM_152686 DNAJC18 DnaJ (Hsp40) homolog, subfamily C, member 18 - 0,862 OKAY
NM_194283 DNAJC21 DnaJ (Hsp40) homolog, subfamily C, member 21 DNAJA5/GS3/JJJ1 1,0204 OKAY
NM_006260 DNAJC3 DnaJ (Hsp40) homolog, subfamily C, member 3 ERdj6/HP58/P58/P58IPK/PRKRI 0,9051 OKAY
NM_005528 DNAJC4 DnaJ (Hsp40) homolog, subfamily C, member 4 DANJC4/HSPF2/MCG18 1,253 OKAY
NM_025219 DNAJC5 DnaJ (Hsp40) homolog, subfamily C, member 5 CLN4/CLN4B/CSP/DNAJC5A/NCL 1,3822 OKAY
NM_033105 DNAJC5B DnaJ (Hsp40) homolog, subfamily C, member 5 beta CSP-beta 0,7327 B
NM_173650 DNAJC5G DnaJ (Hsp40) homolog, subfamily C, member 5 gamma CSP-gamma 0,9372 C
NM_014787 DNAJC6 DnaJ (Hsp40) homolog, subfamily C, member 6 DJC6/PARK19 0,7604 OKAY
NM_003315 DNAJC7 DnaJ (Hsp40) homolog, subfamily C, member 7 DJ11/DJC7/TPR2/TTC2 0,9956 OKAY
NM_014280 DNAJC8 DnaJ (Hsp40) homolog, subfamily C, member 8 HSPC331/SPF31 0,9706 OKAY
NM_015190 DNAJC9 DnaJ (Hsp40) homolog, subfamily C, member 9 HDJC9/JDD1/SB73 0,9068 OKAY
NM_005526 HSF1 Heat shock transcription factor 1 HSTF1 0,9946 OKAY
NM_004506 HSF2 Heat shock transcription factor 2 HSF 2/HSTF 2 0,9175 OKAY
NM_001538 HSF4 Heat shock transcription factor 4 CTM/CTRCT5 1,1293 OKAY

Supplementary Data Set 3.  Heat shock proteins and chaperones PCR array.
Fold changes in mRNA of 84 heat shock proteins and chaperones were analyzed by quantitative PCR in cells expressing HTT(Q74) and treated with 25 µM SEN177 for 24 h relative to DMSO-treated cells. Fold-
change values greater than one indicates a positive- or an up-regulation, and the fold-regulation is equal to the fold-change. Fold-change values less than one indicate a negative or down-regulation, and the fold-
regulation is the negative inverse of the fold-change. Fold-changes greater than 1.25 are indicated in blue; fold-change values less than 0.75 are indicated in red. 



NM_001017963 HSP90AA1 Heat shock protein 90kDa alpha (cytosolic), class A member 1 EL52/HSP86/HSP89A/HSP90A/HSP90N/HSPC1/HSPCA/HSPCAL1/HSPCAL4/HSPN/Hs
p89/Hsp90/LAP2

0,9373 OKAY

NM_007355 HSP90AB1 Heat shock protein 90kDa alpha (cytosolic), class B member 1 D6S182/HSP84/HSP90B/HSPC2/HSPCB 0,9321 OKAY
NM_003299 HSP90B1 Heat shock protein 90kDa beta (Grp94), member 1 ECGP/GP96/GRP94/HEL-S-125m/HEL35/TRA1 0,9207 OKAY
NM_016299 HSPA14 Heat shock 70kDa protein 14 HSP70-4/HSP70L1 1,0878 OKAY
NM_005345 HSPA1A Heat shock 70kDa protein 1A HEL-S-103/HSP70-1/HSP70-1A/HSP70I/HSP72/HSPA1 1,0103 OKAY
NM_005346 HSPA1B Heat shock 70kDa protein 1B HSP70-1B/HSP70-2 0,8173 OKAY
NM_005527 HSPA1L Heat shock 70kDa protein 1-like HSP70-1L/HSP70-HOM/HSP70T/hum70t 1,0183 OKAY
NM_021979 HSPA2 Heat shock 70kDa protein 2 HSP70-2/HSP70-3 1,0782 OKAY
NM_002154 HSPA4 Heat shock 70kDa protein 4 APG-2/HS24/P52/HSPH2/RY/hsp70/hsp70RY 0,931 OKAY
NM_014278 HSPA4L Heat shock 70kDa protein 4-like APG-1/HSPH3/Osp94 0,8327 OKAY
NM_005347 HSPA5 Heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa) BIP/GRP78/HEL-S-89n/MIF2 1,0561 OKAY
NM_002155 HSPA6 Heat shock 70kDa protein 6 (HSP70B') - 0,9372 C
NM_006597 HSPA8 Heat shock 70kDa protein 8 HEL-33/HEL-S-72p/HSC54/HSC70/HSC71/HSP71/HSP73/HSPA10/LAP1/NIP71 1,0581 OKAY
NM_004134 HSPA9 Heat shock 70kDa protein 9 (mortalin) CSA/GRP-75/GRP75/HSPA9B/MOT/MOT2/MTHSP75/PBP74 0,8929 OKAY
NM_001540 HSPB1 Heat shock 27kDa protein 1 CMT2F/HEL-S-102/HMN2B/HS.76067/HSP27/HSP28/Hsp25/SRP27 1,1449 OKAY
NM_001541 HSPB2 Heat shock 27kDa protein 2 HSP27/Hs.78846/LOH11CR1K/MKBP 0,7428 B
NM_006308 HSPB3 Heat shock 27kDa protein 3 DHMN2C/HMN2C/HSPL27 1,3923 OKAY
NM_144617 HSPB6 Heat shock protein, alpha-crystallin-related, B6 HEL55/Hsp20 1,3377 B
NM_014424 HSPB7 Heat shock 27kDa protein family, member 7 (cardiovascular) cvHSP 1,4979 B
NM_014365 HSPB8 Heat shock 22kDa protein 8 CMT2L/DHMN2/E2IG1/H11/HMN2/HMN2A/HSP22 0,8032 OKAY
NM_002156 HSPD1 Heat shock 60kDa protein 1 (chaperonin) CPN60/GROEL/HLD4/HSP-60/HSP60/HSP65/HuCHA60/SPG13 0,9396 OKAY
NM_002157 HSPE1 Heat shock 10kDa protein 1 (chaperonin 10) CPN10/EPF/GROES/HSP10 1,0345 OKAY
NM_006644 HSPH1 Heat shock 105kDa/110kDa protein 1 HSP105/HSP105A/HSP105B/NY-CO-25 0,8431 OKAY
NM_002622 PFDN1 Prefoldin subunit 1 PDF/PFD1 1,0932 OKAY
NM_012394 PFDN2 Prefoldin subunit 2 PFD2 0,8477 OKAY
NM_001235 SERPINH1 Serpin peptidase inhibitor, clade H (heat shock protein 47), member 1, (collagen binding protein 1) AsTP3/CBP1/CBP2/HSP47/OI10/PPROM/RA-A47/SERPINH2/gp46 1,1666 OKAY
NM_022464 SIL1 SIL1 homolog, endoplasmic reticulum chaperone (S. cerevisiae) BAP/MSS/ULG5 1,1833 OKAY
NM_030752 TCP1 T-complex 1 CCT-alpha/CCT1/CCTa/D6S230E/TCP-1-alpha 0,9971 OKAY
NM_000113 TOR1A Torsin family 1, member A (torsin A) DQ2/DYT1 0,8676 OKAY
NM_001101 ACTB Actin, beta BRWS1/PS1TP5BP1 1,0037 OKAY
NM_004048 B2M Beta-2-microglobulin - 1,0289 OKAY
NM_002046 GAPDH Glyceraldehyde-3-phosphate dehydrogenase G3PD/GAPD 0,9706 OKAY
NM_000194 HPRT1 Hypoxanthine phosphoribosyltransferase 1 HGPRT/HPRT 1,0929 OKAY
NM_001002 RPLP0 Ribosomal protein, large, P0 L10E/LP0/P0/PRLP0/RPP0 1,1432 OKAY
SA_00105 HGDC Human Genomic DNA Contamination HIGX1A 0,9372 C

Column F indicates the gene's expression levels:OKAY , this gene's average threshold cycle is reasonably detected; B , this gene’s average threshold cycle is relatively high (> 30), meaning that its relative expression level is low, in both control and test samples; C: This gene’s average 
threshold cycle is either not determined or greater than the defined cut-off value (35), in both samples meaning that its expression was undetected, making this fold-change result erroneous and un-interpretable.

Columns A, B, C and D indicate the Refseq, symbol, description and gene name respectively of the chaperones and heat shock proteins analysed in the PCR array. 

Fold changes in mRNA levels in SEN177 treated HeLa cells relative to DMSO is shown in column E. Fold-change values greater than one indicate a positive- or an up-regulation, and the fold-regulation is equal to the fold-change. Fold-change values less than one indicate a negative or down-
regulation, and the fold-regulation is the negative inverse of the fold-change. Fold-changes greater than 1.25 are indicated in blue; fold-change values less than 0.75 are indicated in red.
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