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Abstract 

The electrochemical interaction between graphite and molten salts to produce carbon 

nanostructures is reviewed.  It is demonstrated that, depending on the conditions, it is 

possible to electrochemically convert graphite in molten salts to either carbon 

nanoparticles and nanotubes, metal filled carbon nanoparticles and nanotubes, 

graphene or nanodiamonds.  The application of metal filled carbon nanotubes as 

anodes in lithium ion batteries is reviewed.  Surprisingly, this method of preparation 

is relatively simple and very similar to the mass production of aluminium in molten 

sodium aluminium fluoride-alumina mixtures, which is performed economically on a 

tonnage scale, indicating that it may be possible to apply it for the production of novel 

carbon nanostructures. 

 

Introduction 

Molten salts and carbon have contrasting properties in that the former are liquids 

which conduct electricity mainly by the migration of ions whilst the latter is a solid 

and can either be an electronic conductor (carbon) or an insulator (diamond), 

depending on the phase.  Carbon can exist in molten salts such as CO3
2- or C2

2- ions or 

combined with another element to form a gas, CO2 or a hydrocarbon and can also 



exist as an electrode in aqueous or molten salt electrolytes.  In the solid state, the 

electrical conductivity of salts is low due to the lack of defects and the very low 

diffusion coefficients.  On melting, there is usually a significant volume increase 

(25%) which indicates significant space in the liquid state and a high diffusion 

coefficient for the ions leading to a high ionic conductivity coupled with a small 

electronic conductivity.  Application of a voltage to graphite results in a flow of 

current which is linearly dependent on the applied voltage (Ohm’s law).  In 

comparison, a molten salt will only conduct a significant current above the 

decomposition potential of the salt which, in turn, leads to its decomposition.  At the 

present time, graphite/carbon is used as electrodes, both anode and cathode, to 

produce aluminium from alumina dissolved in molten cryolite (Na3AlF6), as the anode 

in the electrolysis of sodium from molten sodium chloride, magnesium from molten 

magnesium chloride, lithium from molten lithium chloride and, lastly, the recycling of 

used nuclear fuel rods using molten lithium chloride [1].  In the Hall-Heroult cell for 

the production of aluminium, the aluminium ions are discharged on a molten 

aluminium layer, supported on a graphite cathode, and the oxygen ions are discharged 

on a carbon anode to form a mixture of carbon dioxide with a small proportion of 

carbon monoxide [2].  One interesting reaction on the cathode is that sodium is able to 

codeposit, due to a similar electrode potential to aluminium, and can diffuse to the 

graphite cathode [3]. For used nuclear fuel rods, the fuel rod is made the cathode in a 

bath of lithium chloride and the cathodic reaction is ionisation of oxygen in the 

cathode to give oxygen ions which diffuse through the electrolyte to the anode where 

discharge takes place to form oxygen on an inert anode (platinum) or a mixture of 

carbon dioxide and carbon monoxide on a carbon anode [4]. In a totally different 

field, molten alkali carbonates are used at very elevated temperatures and pressures to 



catalyse the conversion of graphite to diamond [5].  Overall, there is a wealth of 

information on the interaction of molten salts with carbon which forms the basis of 

this paper to explore novel and exciting applications. 

 

Interaction of graphite with molten salts 

Molten salts may cause various changes on the structure and microstructure of 

graphite. The exposure of graphite to molten chloride salts [6,7] will increase the 

crystallinity degree of the graphite material. The same effect was reported when 

molten fluoride salts are used, and the effect was attributed to the improvement of 

stacking order in graphite exposed to molten salts [8]. If graphite and LiCl are simply 

heated together to 1250 oC; the graphite tends to break up to form a mixture of 

exfoliated nanosheets, graphene and nanorods (Figure 1) [7].  It would be an 

advantage if the graphite could be treated in such a way to get a specific and well 

defined nanomaterial.  At present, this is only achieved on an industrial scale in the 

conversion of carbon to diamond using a molten metal [9] or molten salt catalyst [10].  

 In the 1990s, the group of Kroto found that by electrolysing alkali chlorides using a 

graphite cathode it was possible to create carbon nanotubes [11].  Subsequent work 

showed that the process involved intercalation and that lithium atoms produced the 

highest yield of nanotubes whilst the larger alkali atoms, Na and K, caused the 

graphite to breakup [12].  It was also found that by using a mixed lithium chloride and 

tin chloride melt it was possible to obtain carbon nanotubes that were filled with tin 

and other low melting point metals, depending on the second salt [13]. 

 

Effects of varying the microstructure of the graphite and the electrochemical 

parameters 



The apparatus for the intercalation of lithium into graphite is shown in Figure 2 [14]. 

It was found that the structure and morphology of carbon nanomaterials produced 

were dependent on those of the graphite material used as the cathode in the molten 

salt process [15]. It was further found that nanoparticles as well as tubes can be 

formed by changing the temperature of molten salt [6] and the applied cathode current 

density [16]. The effect of molten salt temperature on the morphology of the carbon 

product is illustrated in Figures 3 and 4 [14]. However, in the earlier experiments it 

was observed that the yield of nanotubes and nanoparticles decreased with time and 

this was interpreted by postulating that the surface of the graphite became saturated 

with lithium so that instead of the lithium ion discharging and the lithium atoms 

penetrating the graphite structure, the lithium just formed a layer of lithium metal on 

the surface of the graphite [17].   

It was found that by switching the current every few minutes the generation of 

nanoparticles and nanotubes continued indefinitely until all the graphite had been 

consumed [16].  Under these conditions, the lithium continually moved from one 

electrode to the other and, overall, this had three distinct advantages – first the LiCl 

was not consumed, which is important in that lithium chloride is expensive, the 

production of nanotubes and nanoparticles was continuous and the whole rods were, 

near enough, totally consumed and chlorine evolution was not a problem. 

In 2014 the scalability of the molten salt process was demonstrated using a modified 

apparatus [16]. The advantages of the molten salt route for the production of these 

novel materials is that the process is about 1000 times faster than the catalytic route 

where a hydrocarbon is dissociated into carbon and hydrogen.  The space occupied by 

the equipment for  the molten salt route is very much smaller than that required for the 

catalytic route as the reactions take place in condensed phases as opposed to a gaseous 



environment.  However, the product is slightly different in that the catalytic route 

produces nanotubes whereas the molten salt route produces nanoscrolls. The 

mechanism for the production of nanoscrolls and nanoparticles, each containing walls 

consisting of several layers graphene is the lithium atoms intercalate into the graphite 

structure causing a strain within the structure which, in turn, encourages the extrusion 

of graphene sheets.  There is a high surface energy between graphite and molten salts 

so in order to minimise this energy, the sheets roll up to form nanoscrolls and 

nanoparticles and when tin chloride is present in the salt, the tin can deposit as small 

droplets on the surface of the graphite around which the graphene sheets can enclose. 

 

Uses of carbon nanoscrolls and nanoparticles 

Both conventional carbon nanotubes and nanoscrolls consist of layers of graphene, it 

is assumed that the mechanical properties are the same and that the nanoscrolls would 

find similar applications to those of nanotubes.  However, at the present time, 

although the synthesis of nanoscrolls has been proved in the laboratory, there is no 

industrial production so that the material is not readily available for evaluation.  

However, there is one electrochemical application where metal filled carbon 

nanoscrolls are particularly apposite and that is in lithium-ion batteries.  These 

batteries also use an intercalation  process for both anodes and cathodes.  Ideally, if a 

lithium metal anode could be used in the anodic reaction would be 

Li = Li+ + e- 

and the cathode reaction is 

Li+ + MeOx + e- = LiMeOx 

where MeOx is a metal oxide and LiMeOx is an intercalation compound in which Li is 

mobile and the activity of Li is very low with the difference in activities between the 



anode and cathode generating the potential to drive the cell [18].  On recharging the 

cell, the lithium is transferred back to the anode but as it is very difficult to obtain a 

planar deposit from the electrolyte, the resulting deposit is very dendritic and can 

grow and contact the cathode, causing a disastrous short circuit leading to fires [19].  

In order to overcome this problem, graphite is used as the anode material which can 

form Li0.167C [20].  The activity of the lithium is reduced in this compound which 

reduces the overall cell voltage slightly but the main problem is the small amount of 

lithium contained in the anode [20].  However, it can be increased by using Si  or Sn 

as the anode but the compounds, Li4Sn and Li4Si, suffer from the disadvantage of 

very large volume changes on the addition and removal of lithium cause the anode to 

decrepitate to very fine particles with little electrical contact with the neighbouring 

particles [21].   This problem can be overcome by enclosing the tin or silicon inside a 

carbon nanotube, where the expansion and contraction can be controlled.  Tin and 

silicon have been inserted into carbon nanotubes using the molten salt route described 

above.  The microstructure of tin filled carbon nanoscrolls produced in molten LiCl is 

shown in Figure 5 [22].  After carrying out charge-discharge cycles, the cell was 

dismantled and the anode material was studied by means of transmission electron 

microscopy [23]. It was deduced that on the first insertion the lithium tin compound 

formed and caused the nanotube to expand but when the anode discharged the alloy 

shrank but still remained in contact with the highly conducting carbon nanotube.  As 

it is known that lithium cannot pass through graphene, this must mean that the lithium 

must move along the sheets of the scroll otherwise passing down the centre of the 

scroll from the ends would be far too slow.  It was found that the capacity of the 

anode has increased by about 50% which is encouraging bearing in mind that the 

anode only contained 50% of the tin filled carbon nanoscrolls [23].  Using silicon 



filled scrolls instead of tin filled scrolls increased the capacity of the anode 

considerably [24]. On the other hand, the lack of scalable methods for the preparation 

of Sn-containing carbon nanostructures is a barrier to the proper evaluation of these 

nanostructures in an industry where tens of grams are required.  However, the molten 

salt approach was recently demonstrated to be capable of producing large-scale 

quantities of Sn-containing carbon nanomaterials[25]. 

 

Intercalation of hydrogen atoms into graphite to prepare graphene 

It is usually very difficult to get hydrogen molecules to dissolve in graphite or carbon 

nanotubes.  However, it has been shown that it is relatively easy to get lithium to 

dissolve in graphite and it should be even easier to insert hydrogen atoms into 

graphite as these atoms are much smaller than the inter layer spacing in graphite. 

Furthermore, it is known that in comparison to lithium chloride most hydrogen 

containing compounds such as H2O, HCl, HBr are far less stable than all lithium 

compounds and should breakdown under an applied potential before lithium oxide or 

lithium chloride. Therefore, the presence of water should result in hydrogen atoms 

intercalating when the graphite, immersed in the molten lithium chloride, is made 

cathodic.  Experiments showed that under electrochemical intercalation using lithium 

chloride exposed to argon gas containing water, the graphite is exfoliated into 

graphene sheets which could then be retrieved simply by washing with water and 

filtration followed by heating in a reducing atmosphere (15% H2, 85% N2) at around 

1300o C which is above the boiling points of LiCl and Li2CO3 [26].  Figure 6 shows 

the starting and the final graphite rod, showing very even erosion. Figures 7 show a 

TEM micrograph of the graphene product [26].  The rate of production was about 



5g/cm2 of electrode/day which is an order of magnitude higher than other graphene 

producing methods, such as CVD and low temperature exfoliation. 

Graphene has some remarkable properties including high ballistic electron mobility, 

high thermal and electrical conductivity which may allow the material to be used in 

electrochemical capacitors [27 -29] and anodes and cathodes in lithium ion batteries 

[30], electrodes for fuel cells [31] and many other applications [32].  Existing 

methods for the production of graphene are based upon chemical oxidation of graphite 

[33], exfoliation of graphite in organic solvents [34], chemical vapour deposition [35 -

37] and molten metals [38].  Compared to the molten salt intercalation route, most of 

the other processes operate at very low production rates. 

 

Synthesis of nanodiamonds 

It has been shown by theoretical analysis that sp3 diamond nucleation from sp2 carbon 

is possible inside carbon nanotubes or nanoparticles due to surface tension effects [39] 

and there have been many attempts to convert carbon nanotubes to diamonds using 

plasma techniques, laser irradiation, shock waves and plasma sintering [40-42] but all 

these techniques require very high pressures and temperatures as well as metallic 

catalysts. Non-metallic catalysts, such as alkali carbonates, have also been used 

although even higher temperatures and pressures are required as well as longer 

reaction times [43]. 

When electrolysing LiCl containing lithium oxide, the reaction at the anode is likely 

to be reaction of the oxygen ions with the carbon to give carbon dioxide which would 

be soluble in the melt and can react with the lithium oxide to form lithium carbonate 

[44].  Examination of the nanocarbon particles and nanoscrolls showed lithium 

carbonate nanoparticles incorporated into the structure between the graphene layers 



(Figure 8) [44].  As mentioned above, lithium carbonate is a known catalyst for the 

conversion of graphite to diamond, albeit at very high temperatures and pressures and, 

even then, it takes several hours for the diamonds to form.  

The oxidation of the carbon nanostructures produced in molten LiCl proceeds at 

considerably lower temperatures than those typically needed for the oxidation of 

carbon nanomaterials, due to the catalytic effect of lithium carbonate crystals 

encapsulated in graphitic nanostructures [45]. It was found that when the carbon 

nanoparticles, containing lithium carbonate were heated in air at about 500oC, the 

nanoparticles were converted into octahedral nanodiamonds (5nm- 1µm) as shown in 

figure 9 [44].  Although the particles were ignited in air at 500oC, it is likely that the 

true temperature is very much higher and probably closer to 4500oC.  The formation 

of nanodiamonds was confirmed by the diffraction pattern of the [111] plane of 

diamonds with additional evidence given by the Raman Spectra of the material which 

confirmed the existence of diamond.  After the heat treatment it was found that the 

density increased from 2.2 gcm-3 to 3.0 gcm-3 which is in accordance with the 

transformation of diamonds form graphite. 

Nanodiamonds are usually made by taking diamonds that have been made at very 

high temperatures and pressures followed by grinding to create nanodiamonds.  

However, the shapes of the nanodiamonds are no way as perfect as those found by the 

molten salt precursor route.  The properties of these novel perfect diamonds, shown in 

Figure 8, prepared by this electrochemical molten salt route are, at present, being 

determined. 

 

Overview of the molten salt synthesis of nanocarbons 



As described earlier, molten salts have been used for decades for the industrial 

production of aluminium, magnesium, sodium and lithium.  By far the largest 

production is for aluminium at around 50 million tonnes/year.  For each tonne of 

aluminium that is produced, about 0.4 tonne of carbon is consumed.  The Hall-Heroult 

cells for aluminium operate at about 4 V with a current density of around 1 A/cm2.  

The temperature of the cells is around 950oC and, somewhat surprisingly, the 

aluminium product is sold for about $3/kg which can be compared with nanoparticles 

and nanodiamonds which sell for $3/g.  The technology described in this paper where 

the temperature is around 800oC, the voltages are of the order of 4V and the current 

density is about 1A/cm2 are very similar to that of the Hall-Heroult cell.   Given that 

the quantity of carbon consumed is about the same, this indicates that carbon 

nanoproducts could be made for an order of magnitude smaller cost than at present!  

This applies to nanotubes, graphene and nanodiamonds. As the erosion of the graphite 

rod electrodes was very uniform one can envisage that planar electrodes could be 

used, perhaps of 1 m2 dimensions so a unit, with about 20 graphite plates, about 1m3 

in size could produce about 600kg/day or 4 tonnes/week or 200 tonnes/year which is 

much higher production rate than other methods for nanoparticles.  Furthermore, it is 

also very interesting to note that in the western world there are plenty of redundant 

Hall-Heroult cells as much of the aluminium industry has moved from Europe to 

regions of the world where energy costs are significantly lower [46].  

 

Conclusions 

Carbon is basically a very cheap commodity and is used industrially on an enormous 

scale.  However, as the size of the carbon product goes from cm scale to nanoscale, 

the cost increases very significantly.  This paper demonstrates that by using molten 



salts, electrochemistry and technology that is readily available from the metallurgical 

industry, it should be possible to reduce the cost of carbon nanoproducts such as 

nanoscrolls, nanoparticles, nanodiamonds and graphene considerably. Although the 

basic electrochemistry has been proven but there is still much to do to convert a 

successful laboratory experiments into an industrial processes.  
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1. Figure 1. Microstructure of the graphite- LiCl mixture heated at the rate of 80 

°C min-1 to 1250 °C. (a) The dominant microstructure consisted of bent 

layered grains. (b) Exfoliated nanosheets which could be found in the 

microstructure. (c) TEM image of a graphene sheet. The inset is the selected 

area electron diffraction pattern taken from edge of the sheet showing the 

hexagonal structure of the (0001) basal plane [7]. Reproduced from Kamali 

AR, Fray DJ (2013) Molten salt corrosion of graphite as a possible way to 

make carbon nanostructures. Carbon 56:121-136 with permission from 

Elsevier. 

 

 

 

 

Figure 2. Schematic of the experimental set-up used for the small scale 

preparation of carbon nanostructures in molten LiCl. A graphite rod is used as 

the cathode and a graphite crucible as the anode. A molybdenum wire is used 

as the quasi-reference electrode [14]. Reproduced from Schwandt C, Dimitrov 

AT, Fray DJ (2010) The preparation of nano-structured carbon materials by 



electrolysis of molten lithium chloride at graphite electrodes. J Electroanal 

Chem 647:150-158 with permission from Elsevier. 

 

 



 

Figure 3. Scanning electron microscopic image of a carbonaceous product that 

contains nanotubes as the main constituent. Experimental was conducted at 

temperature 775°C [14].   

Reproduced from Schwandt C, Dimitrov AT, Fray DJ (2010) The preparation of nano-

structured carbon materials by electrolysis of molten lithium chloride at graphite electrodes. 

J Electroanal Chem 647:150-158 with permission of Elsevier. 

 

 



 

Figure 4. Scanning electron microscopic image of a carbonaceous product that contains 

nanoparticles as the main constituent. Experimental was conducted at temperature 700 °C 

[14].  Reproduced from Schwandt C, Dimitrov AT, Fray DJ (2010) The preparation of nano-

structured carbon materials by electrolysis of molten lithium chloride at graphite electrodes. J 

Electroanal Chem 647:150-158 with permission of Elsevier. 

 

 
 



 

Figure 5. Transmission electron microscopic analysis of tin-filled carbonaceous product 

prepared using an electrolyte of LiCl with an admixture of SnCl2 of 1% by mass [21]. 

Reproduced from Das Gupta R, Schwandt C, Fray DJ (2014) Preparation of tin filled carbon 

nanotubes and nanoparticles by molten salt electrolysis. Carbon 70:142-148 with permission 

from Elsevier. 

 



 

Figure 6. The photographs of (a) the graphite rod which was used as cathode in the molten 

salt process conducted under moist gas flow, (b) the graphite cathode after the molten salt 

process, and (c) the graphene product stored in a jar [25] . Reproduced from Kamali AR, Fray 

DJ (2015) Large-scale preparation of graphene by high temperature insertion of hydrogen in 

graphite ,Nanoscale, 10.1039/C5NR01132A with permission from the Royal Society of 

Chemistry. 

 

 

Figure 7. TEM micrograph of the graphene nanosheets produced as well a typical electron 

diffraction pattern recorded at relatively flat edge of a graphene sheet, with the peaks labelled 

by Miller–Bravais indices[25]. Reproduced from Kamali AR, Fray DJ (2015) Large-scale 



preparation of graphene by high temperature insertion of hydrogen in graphite ,Nanoscale, 

10.1039/C5NR01132A with permission from the Royal Society of Chemistry. 

 

 

Figure 8. TEM micrograph of the as-synthesized electrolytic carbon material. The right panel 

shows a number of CNTs, and the inset is a typical selected area diffraction pattern 

confirming the presence of graphitic carbon and Li2CO3 single-crystals. The left panel 

exhibits two high resolution TEM image. The upper image shows a wall of a CNT 

demonstrating that Li2CO3 nanocrystals, pointed by arrows, embedded into the graphitic 

structure of the wall. The down image presents a carbon nanoparticle in which Li2CO3 

nanocrystals are encapsulated in carbon shells [40].  Reproduced from Kamali AR, Fray DJ 

(2015) Preparation of nanodiamonds from carbon nanoparticles at atmospheric pressure,  

Chem Comm 51:5594-5597  with permission of the Royal Society of Chemistry. 

 



 

Figure 9. SEM micrographs of the ECM after heat treatment in air showing nano and micron 

sized diamonds. The left hand panel shows diamond crystal which are growing on a carbon 

substrate [40].  Kamali AR, Fray DJ (2015) Preparation of nanodiamonds from carbon 

nanoparticles at atmospheric pressure,  Chem Comm 51:5594-5597 
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